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Convolutional Long-Short Term Memory Network with
Multi-Head Attention Mechanism for Traffic Flow Prediction
Yupeng Wei * and Hongrui Liu

Department of Industrial and Systems Engineering, San Jose State University, San Jose, CA 95192, USA
* Correspondence: yupeng.wei@sjsu.edu

Abstract: Accurate predictive modeling of traffic flow is critically important as it allows transportation
users to make wise decisions to circumvent traffic congestion regions. The advanced development
of sensing technology makes big data more affordable and accessible, meaning that data-driven
methods have been increasingly adopted for traffic flow prediction. Although numerous data-driven
methods have been introduced for traffic flow predictions, existing data-driven methods cannot
consider the correlation of the extracted high-dimensional features and cannot use the most relevant
part of the traffic flow data to make predictions. To address these issues, this work proposes a decoder
convolutional LSTM network, where the convolutional operation is used to consider the correlation
of the high-dimensional features, and the LSTM network is used to consider the temporal correlation
of traffic flow data. Moreover, the multi-head attention mechanism is introduced to use the most
relevant portion of the traffic data to make predictions so that the prediction performance can be
improved. A traffic flow dataset collected from the Caltrans Performance Measurement System
(PeMS) database is used to demonstrate the effectiveness of the proposed method.

Keywords: traffic flow prediction; deep learning; convolutional LSTM; attention mechanism

1. Introduction

Traffic congestion results in reduced efficiency of transportation infrastructure, in-
creased traveling time, and a waste of energy fuel [1–3]. According to a report by Nation-
wide, 1.9 billion gallons of fuel are wasted every year as a result of traffic congestion [4].
Traffic congestion could be induced by numerous factors, such as bottlenecks, traffic ac-
cidents, and severe weather conditions. To address the issue of traffic congestion, traffic
flow prediction has gained much attention in the recent decade. Accurate predictive mod-
eling of traffic flow is critically important as it allows transportation users to make wise
decisions to circumvent traffic congestion regions [5]. Therefore, commuter and shipment
activities could be effectively scheduled to increase moving efficiency. Moreover, accurate
predictive modeling of traffic flow can also assist in reducing carbon emissions and traffic
incident possibilities.

The advanced development of sensing technology makes big data more affordable
and accessible, and thus, data-driven methods have been increasingly adopted for the pre-
dictive modeling of traffic flow. Data-driven methods can be classified into two categories:
machine learning methods and deep learning methods [6–10]. In comparison with machine
learning methods, deep learning methods have gained more attention from both academia
and industry in traffic flow predictions due to their extraordinary prediction fidelity and
robustness. Among these deep learning methods, artificial neural networks (ANNs) and
autoencoder-based methods have been widely used for traffic flow predictions as these
methods are capable of decomposing the original traffic flow data into features located at a
higher dimensional feature space, and these high-dimensional features can reveal the latent
information in the traffic flow data. However, there are two primary issues for ANNs and
autoencoders: (1) they can not take the temporal correlation of traffic flow data into account;
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(2) they can not consider the correlation of the extracted high-dimensional features. To
consider the temporal correlation of traffic flow data, deep learning methods with recurrent
characteristics are adopted, such as long short-term memory (LSTM), recurrent neural
network (RNN), and gated recurrent unit (GRU). While these deep learning methods with
recurrent characteristics are promising, they are not able to use the most relevant part of
the traffic flow data to make predictions, which leads to a higher prediction time and a
worse prediction accuracy. To address these issues, this work introduces a novel deep
learning-based framework to consider the temporal correlation of traffic flow data, the
correlation of the extracted high-dimensional features, and the most relevant part of the
traffic flow data to make predictions in a unified manner. More specifically, a decoder
network is firstly proposed to decompose the traffic flow data into high-dimensional fea-
tures. Second, a convolutional LSTM network is introduced to simultaneously consider
the correlation of the decomposed high-dimensional features and the temporal correlation
of traffic flow data, where the convolutional operation is used to consider the correlation
of the high-dimensional features, and the LSTM network is used to consider the temporal
correlation of traffic flow data. Next, the multi-head attention mechanism is introduced to
use the most relevant portion of the traffic data to make predictions so that the prediction
performance can be improved. The primary contribution of this work can be summarized
as follows:

• A decoder network is introduced to decompose the original traffic flow data into
features located at a higher-dimensional feature space.

• A convolutional LSTM network is introduced to consider the correlation of the high
dimensional features and the temporal correlation of traffic flow data.

• A multi-head attention mechanism is introduced to use the most relevant portion of the
traffic data to make predictions so that the prediction performance can be improved.

The remainder of this paper is organized as follows. Section 2 reviews data-driven
methods reported in the literature for traffic flow predictions. Section 3 introduces the
proposed deep learning model. Section 4 demonstrates the effectiveness of the proposed
method utilizing the traffic flow data from the Caltrans Performance Measurement System
(PeMS) database. Section 5 concludes this research work and directs future work.

2. Literature Review

In the context of traffic flow predictions, data-driven methods can be classified into two
categories: machine learning [11–13] and deep learning methods [14,15]. These machine
learning methods include support vector regression [16], random forest [17], Gaussian
process [18], Bayesian models [19], and so on. For example, Tang et al. [20] combined the
support vector machine method with multiple denoising mechanisms to predict the traffic
flow. A dataset collected by the real-time detectors located in the city of Minneapolis was
used to evaluate the performance of the proposed methods. The simulation results have
shown that the denoising mechanisms could boost the performance of the support vector
machine. Zhang et al. [21] introduced a hybrid framework based upon support vector
regression to predict the traffic flow, where the random forest method was implemented
for feature selections, and the genetic algorithm was adopted to determine the model
hyperparameters. The simulation results have shown that the proposed methodology
enables better prediction accuracy. Xu et al. [22] introduced a scalable Gaussian process
model for large-scale traffic flow predictions. The proposed model combined the Gaussian
process with alternative directional methods for paralleling and optimizing hyperparam-
eters during the training process. Wang et al. [23] presented a vicinity Gaussian process
method for short-term traffic flow prediction under the conditions of missing data with
measuring errors. In the proposed model, a directed graph was constructed based on the
traffic network, a dissimilarity matrix and a proper cost function were selected to boost the
prediction performance. Zhu et al. [24] introduced a linear conditional Gaussian process
method, where temporal and spatial correlations of traffic flow were taken into account. A
simulated traffic dataset was adopted to evaluate the effectiveness of the Gaussian process
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method, and simulation results have shown that the utilization of both spatial and temporal
data can dramatically boost prediction accuracy. Li et al. [25] presented a Bayesian network
to tackle the node selection challenge in traffic flow prediction. Experimental results have
shown that the proposed directed correlation-based Bayesian network method results in a
sparse model and better performance in traffic flow prediction.

With the advanced improvement of computational power, deep learning methods
are increasingly adopted in traffic flow prediction due to their extraordinary perfor-
mance. These deep learning methods include LSTM [26,27], gated recurrent neural
network (GRU) [28,29], recurrent neural network (RNN) [30,31], graph neural network
(GNN) [32–34], and so on. For instance, Tian et al. [35] introduced LSTM-based predictive
modeling of traffic flow, where a smoothing function was implemented to deal with the
missing data points, and the LSTM was used to capture the prediction residual. Two
traffic flow datasets were used to evaluate the performance of the proposed methodol-
ogy, and the results have shown that the smoothing function can boost the performance
of the predictive model. Dai et al. [36] integrated the spatial-temporal analysis with a
GRU network to forecast the traffic flow in a short time interval. In the proposed method,
the GRU model was applied to process the spatial-temporal features extracted from the
collected traffic data. The simulation results have shown that the GRU outperforms the
convolutional neural network (CNN) in both prediction accuracy and robustness. Zhene
et al. [37] combined the CNN with RNN for urban traffic flow predictions, where CNN
was adopted to extract attributes from traffic flow data and RNN was implemented to
make predictions. In comparison with the traditional RNN, the proposed RNN was able to
process multiple temporal features simultaneously. The experimental results have demon-
strated that online traffic flow prediction could be achieved with high precision by using
the proposed methodology. Luo et al. [38] introduced a k-nearest neighbor-based (KNN)
LSTM method to extract temporal and spatial correlations, where KNN was utilized to
capture spatial correlations and LSTM was adopted to further extract temporal correlations.
A dataset provided by the University of Minnesota Duluth Data center was utilized to
demonstrate the effectiveness of the proposed methods, and the results have indicated
that the proposed method outperforms the auto-regressive integrated moving average
and wavelet neural network in terms of prediction accuracy. Zhu et al. [39] integrated
the GNN with RNN to extract the spatial and temporal correlations of traffic data. The
belief rule-based algorithm was adopted for data fusion, and the fused traffic data were
fed into the proposed methodology for traffic flow prediction. Yu et al. [40] presented
a novel GNN methodology to predict the traffic flow, in which a weighted undirected
graph was utilized to differentiate the density of connected roads. A simulation model was
introduced to simulate the traffic propagation, and the simulation results were considered
in the GNN model for online traffic flow prediction. The simulation results have shown
that the proposed GNN outperforms the traditional GNN in traffic flow predictions. More
details about applying GNN for traffic flow predictions can be found in [41].

While numerous data-driven methods have been studied to predict traffic flow under
various conditions, some issues still exist with these methods. The existing data-driven
methods can not consider the correlation of the extracted high-dimensional features and
can not use the most relevant part of the traffic flow data to make predictions, which leads
to a higher prediction time and a worse prediction accuracy. To deal with these issues, this
work proposes a decoder convolutional LSTM network to simultaneously consider the
correlation of the decomposed high-dimensional features and the temporal correlation of
traffic flow data, where the convolutional operation is used to consider the correlation of
the high-dimensional features, and the LSTM network is used to consider the temporal
correlation of traffic flow data. Moreover, a multi-head attention mechanism is introduced
to use the most relevant portion of the traffic data to make predictions so that the prediction
performance can be improved.
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3. Convolutional LSTM with Multi-Head Attention Mechanism

This section introduces the convolutional LSTM with a multi-head attention mech-
anism. Figure 1 shows the framework of the proposed deep learning approach. First, a
moving window with a fixed window size is utilized to split raw traffic flow into historical
traffic flow as features and future traffic flow as labels. The historical traffic flow is fed into
a decoder network to be decomposed into multiple time-series signals. The decomposed
signals are fed into the convolutional LSTM network to consider the correlation of the
decomposed high dimensional features and the temporal correlation of traffic flow data.
The outputs of the convolutional LSTM are transited to the multi-head attention model for
traffic flow prediction. Next, the prediction loss is calculated based on the future traffic
flow and predicted traffic flow, and the backpropagation algorithm is adopted to train the
proposed method. More details of the proposed deep learning approach are provided in
the following subsections.

Traffic flow
data

Moving
window

Historical
traffic flow

Future traffic
flow

Decoder
network

Decomposed
traffic data

Convolutional
LSTM

Convolutional
outputs

Multi-head
attention

Predicted
traffic flow

Prediction loss

Convolutional LSTM with
Muli-head attentionTraffic Data Preprocessing

Traffic sensor
monitors

Figure 1. The framework of the convolutional LSTM with a multi-head attention mechanism for
traffic flow prediction.

3.1. Decoder Network for Traffic Data Decomposition

The initial step of the proposed method is to decompose the traffic flow so that the
most useful latent information can be reflected and the data can be better analyzed. To
decompose the traffic flow data, this research uses a decoder network that stacks multiple
fully connected layers. The output of the decoder network can be written as Equation (1),

Di,L = fL . . . [ fl . . . [ f2[ f1(Xi)]]] (1)

where Xi ∈ R1×T represent the traffic flow data for data sample i; L refers to the total
number of stacked fully connected layers in the decoder network; Di,L ∈ Rm×T refers to
the output of the decoder network for data sample i; m represents the number of hidden
nodes in the fully connected layers of the decoder network; T represents the length of the
historical traffic flow; and fl(·) can be given by Equation (2).

fl(·) := Relu(Wl ·Di,l−1 + bl) (2)

In Equation (2), Relu represents the rectified linear unit activation function; Wl refers
to the kernel weight matrix at the l-th fully connected layer in the decoder network;
Di,l−1 represents the output of the l − 1-th fully connected layer for data sample i; and
bl represents the bias weight matrix at the l-th fully connected layer. Next, the output
Di,L of the decoder network is fed into the convolutional LSTM network to consider the
correlation of the decomposed high-dimensional features and the temporal correlation of
traffic flow data.

3.2. Convolutional LSTM Cell

The traditional LSTM is capable of considering the temporal correlation of traffic flow
data. However, the traditional LSTM fails to consider the correlation of the decomposed
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high-dimensional features. To address this issue, this research aims to introduce the
convolutional LSTM cell that incorporates a convolutional operation into the traditional
LSTM cell so that both the temporal correlation of traffic flow data and the correlation of
the decomposed high-dimensional features can be considered in a unified manner [42].
Figure 2 shows the framework of the convolutional LSTM cell. In the convolutional LSTM
cell, the output vector d(t)

i,L of the decoder network at time t and the hidden state hi,t−1
of the one-dimensional convolutional LSTM cell at the prior time point t− 1 are fed into
the one-dimensional convolutional LSTM cell to perform the weighted convolutional
operations. Such convolutional operations can consider the correlation of the decomposed
high dimensional features Di,L. The recurrent usage of the convolutional LSTM cell can
extract temporal correlations, and the output of this cell can be written as Equation (3),

fi,t = σ(Ci, f +W f ,c ◦ ci,t−1 + b f )

ai,t = σ(Ci,a +Wa,c ◦ ci,t−1 + ba)

ci,t = fi,t ◦ ci,t−1 + ai,t ◦ Tanh(Ci,c + bc)

oi,t = σ(Ci,o +Wo,c ◦ ci,t + bo)

hi,t = oi,t ◦ σ(ci,t)

(3)

where fi,t, ai,t, ci,t, oi,t, respectively, refer to the outputs of the forget gate, input gate, mem-
ory cell, and output gate; W f ,c,Wa,c,Wo,c represent the trainable matrices for the forget
gate, input gate, and output gate, respectively; b f , ba, bc, bo represent the bias vectors for
the forget gate, input gate, memory cell, and output gate; σ refers to the sigmoid function;
Tanh refers to the hyperbolic tangent function.

X +

X

Tanh X

Tanh

Weighted Convolutional Operation

(a) 1D Convolutional LSTM Cell
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Figure 2. The framework of the one-dimensional convolutional LSTM cell with weighted convo-
lutional operations, where (a) is the 1D convolutional LSTM cell and (b) gives an example of the
weighted convolutional operation.

Moreover, Ci, f , Ci,a, Ci,c, Ci,o, respectively, refer to the outputs of the convolutional
operations at the forget gate, input gate, memory cell, and output gate. These convolutional
outputs can be written as Equation (4), where ∗ refers to the convolutional multiplication;
W f ,d and W f ,h refer to the kernel matrices of the convolutional operations at the forget gate;
Wa,d and Wa,h are the kernel matrices of the convolutional operations at the input gate;
Wc,d and Wc,h represent the kernel matrices of the convolutional operations in the memory
cell; and Wo,d and Wo,h represent the kernel matrices of the convolutional operations at the
output gate. 

Ci, f = W f ,d ∗ d(t)
i,L +W f ,h ∗ hi,t−1

Ci,a = Wa,d ∗ d(t)
i,L +Wa,h ∗ hi,t−1

Ci,c = Wc,d ∗ d(t)
i,L +Wc,h ∗ hi,t−1

Ci,o = Wo,d ∗ d(t)
i,L +Wo,h ∗ hi,t−1

(4)

In summary, the convolutional LSTM cell integrates the convolutional operations with
the traditional LSTM cell, where the convolutional operations are adopted to consider the
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correlation of the decomposed high-dimensional features Di,L and the traditional LSTM
cell is utilized to extract the temporal correlations of traffic flow data. The integration of the
convolutional operation with the traditional LSTM cell allows the neural network to con-
sider both the correlation of the decomposed high-dimensional features and the temporal
correlation of traffic flow data. Next, the hidden outputs, hi,t for all t, of the convolutional
LSTM cell are fed into the multi-head attention mechanism for the final prediction.

3.3. Multi-Head Attention Model

In the recent decade, the attention mechanism [43,44] has been introduced to deal with
time series as it is capable of using the most relevant proportion of a time series to make
predictions. The primary theory of the attention mechanism is simulating the data retrieval
process in the data management system. To retrieve data, a query should be inserted into a
data management system. If the query is matched with a key, the value associated with the
key will be retrieved. Equation (5) shows the construction process of queries Qi, keys Ki,
and values Vi for traffic flow predictions.

(WQ, WK, WV) ·Hi = (Qi, Ki, Vi) (5)

In Equation (5), Hi represents the hidden outputs of the convolutional LSTM network
for data sample i, and Hi can be written as Hi = (hi,1, . . . , hi,t, . . . , hi,T); and WQ ∈ Rr×T ,
WK ∈ Rr×T , WV ∈ Rr×T are trainable weight matrices. To use the most relevant portion
of the values V, the attention vector a should be obtained by using Equation (6), where
So f tMax is the normalized exponential function.

a = So f tMax(Qi · K′i/
√

T) (6)

To retrieve the most relevant part of the values V, the attention vector is multiplied by
the value matrix, which can be written as Oi = aVi.

The multi-head attention mechanism stacks the multiple attention model [45,46].
Figure 3 presents the framework of the multi-head attention model for traffic flow pre-
diction. The attention vector of the multi-head attention mechanism can be written as
ah = So f tMax(W(h)

Q Hi · (W
(h)
K Hi)

′/
√

T), where W(h)
Q , W(h)

K , W(h)
V are trainable weight ma-

trices of the h-th attention model; and ah is the attention vector of the h-th attention model.
The output of the h-th attention model is written as Oi,h = ah(W

(h)
V Hi).

...
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Figure 3. The framework of the multi-head attention model for traffic flow prediction.

Next, the output of all attention models is concatenated, which can be written as
Equation (7), where H is the number of attention models and has been stacked in the
multi-head attention model.

Ci = Concat{Oi,1, . . . , Oi,h, . . . , Oi,H} (7)
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Next, the concatenated output C is fed into a fully connected layer for final predictions.
The training loss of the traffic flow prediction is written as Equation (8), where N refers to
the total amount of data samples; yi,j is the true traffic flow for sample i at time j; and ŷi,j is
the predicted traffic flow for sample i at time j.

L =
1

N × T

N

∑
i=1

T

∑
j=1

(yi,j − ŷi,j)
2 (8)

The backpropagation algorithm is utilized for training the proposed deep learning
model. Table 1 presents the training process of the proposed method. First, the weight
matrices in the deep learning model are randomly initialized, the traffic flow data and
labels are prepared, and the learning rate is initialized. Next, the traffic flow data Xi for data
sample i are fed into the decoder network to decompose the traffic flow data into multiple
parts. The output Di,L of the decoder network is fed into the convolutional LSTM layer
to extract temporal and spatial correlations, and the output of this layer is Hi. Next, Hi is
fed into the multi-head attention model to use the most relevant portion of the features
extracted by the convolutional LSTM layer. The output of the multi-head attention model
Ci is fed into the fully connected layers for traffic flow predictions, and the trainable weight
matrices are updated in each training iteration.

Table 1. The pseudo-code to train the proposed deep learning model for traffic flow predictions.

1. Initialize trainable weight matrices
2. Prepare the traffic flow data Xi and the traffic flow labels yi,j, ∀i, j
3. Initialize the learning rate
4. While iteration = 1,. . . ,I, repeat

4.1. While l = 1, . . . , L, repeat
Di,l = Relu(Wl ·Di,l−1 + bl), Di,l = Xi if l = 1

4.2. End iteration
4.3. Feed Di,L into the convolutional LSTM layer to obtain Hi
4.4. While h = 1, . . . , H, repeat

Obtain attention vector ah ← So f tMax(Qi,h · K′i,h/
√

T)
Obtain attention model’s output Oi,h ← ah ·Vi,h

4.5. End iteration
4.6. Obtain Ci ← Concat{Oi,1, . . . , Oi,h, . . . , Oi,H}
4.7. Feed Ci to FC layers
4.8. Update weight matrices in fully connected layers
4.9. Update weight matrices in the multi-head attention layer
4.10. Update weight matrices in convolutional LSTM layer
4.11. Update weight matrices in the decoder network

5. End iteration

4. Case Study

In this section, a real-world traffic flow dataset was used to demonstrate the effective-
ness of the proposed deep learning approach. The following subsections provide dataset
descriptions, evaluation metrics, model architecture, and prediction results.

4.1. Dataset Description

Traffic flow data collected by the Caltrans Performance Measurement System (PeMS)
was utilized to demonstrate the effectiveness of the proposed methodology. The dataset
was collected in real-time from over 40,000 unique detectors located on the freeway in the
state of California [47]. The collected dataset aggregated hourly traffic flow data obtained
from the corresponding detection station. In this study, we used two cases to demonstrate
the effectiveness of the proposed method. The first case used the traffic flow data collected
from January to March in the year 2022 located at the I5-North freeway, where the post-mile
range is from 495.73 to 621.42 in the state of California. The second case used the traffic
flow data collected from February to April in the year 2022 located at the I5-North freeway,
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where the post-mile range is from 495.73 to 621.42 in the state of California. The post-mile
refers to the range of routes that move through individual counties in the state of California.
For both two cases, the data for the first two months were used to train the proposed deep
learning model, and the remaining month was used to test the proposed model. Figure 4
highlights the range of the post-mile 495.73 to 621.42 at the freeway I5-North. To avoid
loss of generality, both training and test data were standardized. In this work, we use the
data rescaling method to standardize all data to guarantee that both vehicle miles traveled
(VMT) and vehicle hours traveled (VHT) are on the same scale. The data rescaling method
refers to multiplying each data point by a constant factor, where the factors for VMT and
VHT are 10−5 and 10−3, respectively.

I5 North

I5 North

Figure 4. The post-mile ranges from 495.73 to 621.42 located at the freeway I5-North.

4.2. Evaluation Metric

To evaluate the performance of the proposed methodology, this study adopts the root
mean squared error (RMSE) and mean absolute error (MAE). The RMSE and MAE can be
defined by using Equation (9), where N is the total amount of data samples; yi,j refers to
the true traffic flow for the sample i at time j; and ŷi,j represents the predicted traffic flow
for the sample i at time j.

RMSE = (
1

N × T

N

∑
i=1

T

∑
j=1

(yi,j − ŷi,j)
2)1/2

MAE =
1

N × T

N

∑
i=1

T

∑
j=1
|yi,j − ŷi,j|

(9)

4.3. Model Architecture and Hyperparameters

In this case study, we use three tasks to evaluate the prediction performance of the
proposed deep learning model for both two cases. These tasks include the next 1st-hour
traffic flow prediction (first task), the next 5th-hour traffic flow prediction (second task),
and the next 10th-hour traffic flow prediction (third task). The next nth-hour traffic flow
prediction refers to using the past 24 h traffic flow data to predict the traffic flow in the
24 + n h. Tables 2–4 show the model architecture and hyperparameters used in this case
study for three tasks. For these three tasks under two cases, we use the batch size of 100
and utilize the past 24 h traffic flow data to make predictions in each batch. We also use
the filter size of 2 in the first task and use the filter size of 10 in the remaining two tasks.
Moreover, the number of hidden nodes in the decoder network is 100.
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Table 2. The model architecture and hyperparameters used for the next 1st-hour traffic flow predic-
tion task.

No. of Layers Descriptions Output Dimensions

1 Input layer 100 × 24 × 1
2 FC layer 100 × 24 × 100
3 Convolutional LSTM 100 × 24 × 99
4 Multi-head attention 100 × 24 × 99
5 Flatten layer 100 × 2376
6 Dense layer 100 × 1

Table 3. The model architecture and hyperparameters used for the next 5th-hour traffic flow predic-
tion task.

No. of Layers Descriptions Output Dimensions

1 Input layer 100 × 24 × 1
2 FC layer 100 × 24 × 100
3 FC layer 100 × 24 × 100
4 FC layer 100 × 24 × 100
5 Convolutional LSTM 100 × 24 × 91
6 Multi-head attention 100 × 24 × 91
7 Flatten layer 100 × 2184
8 Dense layer 100 × 1

Table 4. The model architecture and hyperparameters used for the next 10th-hour traffic flow
prediction task.

No. of Layers Descriptions Output Dimensions

1 Input layer 100 × 24 × 1
2 FC layer 100 × 24 × 100
3 FC layer 100 × 24 × 100
4 FC layer 100 × 24 × 100
5 FC layer 100 × 24 × 100
6 FC layer 100 × 24 × 100
7 Convolutional LSTM 100 × 24 × 91
8 Multi-head attention 100 × 24 × 91
9 Flatten layer 100 × 2184
10 Dense layer 100 × 1

4.4. Traffic Flow Prediction Results for the First Case

Figure 5 shows the traffic flow prediction results for three different tasks under the first
case, where VMT refers to vehicle miles traveled, and VHT refers to vehicle hours traveled.
From these three figures, we can observe that the proposed methodology can predict the
traffic flow with high accuracy, as the true VMT and VHT are close to the predicted VMT
and VHT. For example, for the 5th-hour prediction task, the predicted VMT is 1.260 when
the true VMT is 1.219. For the 1st-hour prediction task, the predicted VHT is 0.337 when
the true VHT is 0.325. To further demonstrate the performance of the proposed method, we
compare the proposed method with existing methods reported in the literature, and these
methods are listed in Table 5. In this table, the D-ConvoLSTM method refers to the decoder
network with the convolutional LSTM network; and the D-Attention method refers to
the decoder network with the multi-head attention mechanism; LSTM refers to the long
short-term memory network; LASSO refers to the least absolute shrinkage and selection
operator; ANN refers to the artificial neural network.
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Table 5. Symbols and descriptions of the proposed method and other methods for traffic
flow predictions.

Method Symbol Description

D-ConvLSTM Decoder with convolutional LSTM
D-Attention Decoder with multi-head attention

LSTM Long short term memory network
LASSO Regression with l1-norm regularization
ANN Artificial neural network
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Figure 5. The VMT and VHT prediction results for three different tasks under the first case, where
(a,c,e) show the VMT predictions for three tasks; and (b,d,f) show the VHT predictions for three tasks.

Table 6 compares the traffic flow prediction performance of the proposed method with
methods listed in Table 5 in terms of RMSE and MAE. From this table, we can conclude that
the proposed method can predict traffic flow with high accuracy and outperforms existing
data-driven methods. For example, for the 1st-hour task, the RMSE of the VMT prediction
for the proposed method is 0.032, and the RMSE of other data-driven methods ranges from
0.038 to 0.088. For the 5th-hour task, the RMSE of the VHT prediction for the proposed
method is 0.128; however, the RMSE of LSTM is 0.145, and the RMSE of ANN is 0.245.
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Table 6. The traffic flow prediction errors in terms of RMSE and MAE for the proposed methods and
other data-driven methods under the first case.

1 h Task 5 h Task 10 h Task

VMT VHT VMT VHT VMT VHT

RMSE

Proposed 0.032 0.066 0.080 0.128 0.084 0.167
D-ConvLSTM 0.044 0.079 0.099 0.128 0.094 0.157
D-Attention 0.043 0.086 0.105 0.179 0.113 0.199
LSTM [30] 0.038 0.064 0.065 0.145 0.104 0.191

LASSO [48] 0.088 0.141 0.142 0.242 0.141 0.240
ANN [49] 0.054 0.103 0.137 0.245 0.138 0.241

MAE

Proposed 0.024 0.048 0.059 0.090 0.058 0.116
D-ConvLSTM 0.034 0.058 0.072 0.097 0.064 0.115
D-Attention 0.034 0.066 0.076 0.135 0.077 0.138
LSTM [30] 0.029 0.045 0.046 0.107 0.064 0.130

LASSO [48] 0.063 0.096 0.099 0.165 0.098 0.163
ANN [49] 0.039 0.072 0.090 0.172 0.089 0.168

4.5. Traffic Flow Prediction Results for the Second Case

Figure 6 shows the traffic flow prediction results for three different tasks under the
second case, where VMT refers to vehicle miles traveled, and VHT refers to vehicle hours
traveled. From this figure, we can observe that the proposed methodology can predict
the traffic flow with high accuracy as the true VMT and VHT are close to the predicted
VMT and VHT. For example, for the 5th-hour prediction task, the predicted VMT is 1.085
when the true VMT is 1.082. For the 1st-hour prediction task, the predicted VHT is 2.110
when the true VHT is 2.138. Table 7 compares the traffic flow prediction performance of
the proposed method with methods listed in Table 5 in terms of RMSE and MAE. From
this table, we can conclude that the proposed method can predict traffic flow with high
accuracy and outperforms existing data-driven methods. For example, for the 1st-hour
task, the RMSE of the VMT prediction for the proposed method is 0.053, and the RMSE of
other data-driven methods ranges from 0.055 to 0.091. For the 5th-hour task, the MAE of
the VHT prediction for the proposed method is 0.093; however, the RMSE of LSTM is 0.129,
and the RMSE of ANN is 0.175.

Table 7. The traffic flow prediction errors in terms of RMSE and MAE for the proposed methods and
other data-driven methods under the second case.

1 h Task 5 h Task 10 h Task

VMT VHT VMT VHT VMT VHT

RMSE

Proposed 0.053 0.100 0.084 0.135 0.100 0.172
D-ConvLSTM 0.088 0.153 0.094 0.157 0.118 0.184
D-Attention 0.055 0.087 0.112 0.168 0.141 0.253
LSTM [30] 0.055 0.106 0.113 0.187 0.119 0.225

LASSO [48] 0.091 0.145 0.149 0.256 0.145 0.248
ANN [49] 0.063 0.112 0.143 0.255 0.146 0.256

MAE

Proposed 0.042 0.078 0.062 0.093 0.064 0.109
D-ConvLSTM 0.060 0.107 0.060 0.104 0.078 0.125
D-Attention 0.043 0.107 0.075 0.123 0.104 0.187
LSTM [30] 0.046 0.076 0.077 0.129 0.080 0.153

LASSO [48] 0.063 0.099 0.102 0.175 0.100 0.168
ANN [49] 0.044 0.079 0.096 0.175 0.099 0.179
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Figure 6. The VMT and VHT prediction results for three different tasks under the second case, where
(a,c,e) show the VMT predictions for three tasks; and (b,d,f) show the VHT predictions for three tasks.

5. Conclusions and Future Work

In this study, a deep learning approach was proposed to predict traffic flow. In
the proposed deep learning approach, a convolutional long short-term memory network
was used to consider the correlation of the extracted high-dimensional features and the
temporal correlation of traffic flow data in a unified manner. Moreover, a multi-head
attention mechanism was implemented to use the most relevant portion of the traffic flow
data to make predictions so that the prediction performance can be improved. A traffic flow
dataset collected from the Caltrans Performance Measurement System (PeMS) database was
used to demonstrate the effectiveness of the proposed method. Experimental results have
shown that the proposed method can accurately predict the traffic flow with a minimum
RMSE of 0.032 and outperforms the existing data-driven methods in terms of RMSE and
MAE. Future work will be directed to use the convolutional LSTM network to make traffic
flow predictions under more complicated environments and conditions.
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