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ABSTRACT It is important to comprehend the attacker’s behavior and capacity in order to build a stronger
fortress and thus be able to protect valuable assets more effectively. Prior to launching technical and
physical attacks, an attacker may enter the reconnaissance stage and gather sensitive information. To collect
such valuable data, one of the most effective approaches is through conducting social engineering attacks,
borrowing techniques from deception theory. As a result, it is of utmost importance to understand when an
attacker behaves truthfully and when the attacker opts to be deceitful. This paper models attacker’s states
using theMarkovDecision Process (MDP) and studies the attacker’s decision for launching deception attacks
in terms of cooperation and deception costs. The study is performed throughMDPmodeling, where the states
of attackers are modeled along with the permissible actions that can be taken. We found that the optimal
policy regarding being deceitful or truthful depends on the cost associated with deception and how much
the attacker can afford to take the risk of launching deception attacks. More specifically, we observed that
when the cost of cooperation is low (e.g., 10%), by taking MDP optimal policy, the attacker cooperates
with the victim as much as possible in order to gain their trust; whereas, when the cost of cooperation is
high (e.g., 50%), the attacker takes deceptive action earlier in order to minimize the cost of interactions
while maximizing the impact of the attack. We report four case studies and simulations through which
we demonstrate the trade-off between cooperative and deceptive actions in accordance with their costs to
attackers.

INDEX TERMS Attack strategy, cooperative, deceptive, Markov decision process, MDP, optimal solution,
social engineering attacks.

I. INTRODUCTION
Social engineering remains the primary avenue for launching
cyber attacks [1]. Attackers often gather required sensitive
information (e.g., credentials) about the underlying infras-
tructure using techniques such as sending out phishing emails
or texts, setting up phishing websites, executing malicious
payloads on the target computer, or even through engaging
with the target through interactive conversations (e.g., vishing
or phishing over the phone).

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaojie Su .

In order to build a strong defense layer against harm-
ful cyber attacks and thus understand the intention behind
attacks, it is important to study the attacker’s mindset and
mental models that reflect how these adversarial entities
decide when to demonstrate truthful or deceitful behav-
ior. By understanding these mental models and taking into
account the circumstances that may lead to such behaviors,
defenders will be able to employ effective countermeasure
strategies and thus be more proactive in building their defense
systems.

The game-theoretical modeling of interactions between
attackers and defenders has been studied in prior
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FIGURE 1. A generic social engineering attack.

research [2], [3], [4], [5], [6], [7]. In this paper, we use the
MarkovDecision Process (MDP) tomodel attacker’s possible
states in a generic social engineering attack and understand
how the attacker decides whether to be deceptive or truthful
when conducting an attack. Figure 1 illustrates a typical
social engineering attack. The attacker agent on the left starts
a stream of communication data with users on the right.
The attacker’s goal is to deceive users into disclosing their
sensitive information. One of the most important techniques
used by the attacker is to ‘‘build trust’’ by communicating
the truthful data and then conducting an attack and finally
sending the misleading data in a proper state. As a result,
the attacker sends mixed signals that include both truthful
and deceptive data. Users, on the other hand, comprehend
the received data and, based on their perception, classify
the sender as Neutral, Trusted, Challenged or Blocked and
respond accordingly. The users are usually in a neutral state
the first time they receive data. If the users believe the data
they have received is genuine, they consider the sender to be
trustworthy and respond appropriately. If users are suspicious
about the received data at any stage, they place the sender in
the Challenged state and expose less data in their response,
or they may ask the sender some challenging questions.
Finally, if the users discover a sufficient number of red flags,
they place the sender in the Blocked state and prevent further
communication.

To the best of our knowledge, such an MDP-based
approach to model an attacker’s mindset has not been dis-
cussed in the literature. The existing approaches to modeling
optimal policies in the security domain primarily focus on
the defender’s side [8], [9], [10], [11]. While it is of utmost
importance to determine the optimal strategies for defenders
in order to build an effective security defense mechanism,
it is also important and very informative to learn about the
attacker’s side and their optimal policies in order to predict
their next moves and thus proactively build a strategic-based
defense system. The determination of optimal attack decep-
tion strategies is the focus of this paper.

This paper models optimal policies in performing decep-
tion from the attacker’s point of view. In doing so, appropriate
cost parameters are incorporated into the model to reflect
the potential defense strategies that can be utilized in order
to secure the system. More specifically, the costs associated

with deceptive and cooperative actions are formulated and
controlled through a number of case studies to study and
analyze their effects on the overall optimal decisions made
by the attacker. The key contributions of this paper are as
follows:
– Introduce an MDP-based mathematical model to repre-

sent the interaction of a deceitful attacker in a generic
social engineering attack in a way that the agent may
transit to different states by taking a specific action.
To the best of our knowledge, there is no other similar
work on this line of research and the authors are the first
formulating the problem in this manner.

– Present the analysis of the MDP-based model to show
the trade-off between actions and the cost of deceptive
behavior and finding the optimal attack strategy,

– Evaluating the MDP optimal strategy by comparing it
with the random-based strategy, and

– Report the results of a number of experiments in which
a set of sensitivity analysis were performed through four
case studies and simulations designed for different levels
of cooperative and deceptive costs.

The paper is organized as follows: Section II reviews
the literature related to modeling cybersecurity problems
using MDP. In Section III, an MDPmodel is presented, along
with the state variables, permissible actions, and their rewards
in each state. The process for selecting the value for the
parameters of the proposed model is discussed in section IV.
Section V provides a quantitative dynamic analysis of the
model and the trade-off between the costs and state values.
Performance analysis of the MDP-based model is presented
in Section VI. A discussion on the possible implications of
the introducedmodel is presented in SectionVII. SectionVIII
concludes the paper and highlights future research directions.

II. RELATED WORK
In this section, we describe different cyber security scenarios
that need optimal decision-making by using game theory and
MDP techniques. In each cyber security scenario, at least two
agents are involved: an attacker and a defender, both of whom
make decisions about how to act or respond optimally.

Kiennert et al. [12] provided a survey of game theory
and MDP approaches for optimal decision-making in intru-
sion detection systems (IDS). They classified these optimal
decisions into three main categories: Resource Alloca-
tion Optimization, IDS Configuration, and Countermeasure
Optimization that can be formulated and solved using MDP
techniques (i.e. single agent decision-making with uncer-
tain outcomes) or game theory techniques (i.e. multi-agent
decision-making with interaction and conflicts). They also
discussed evaluation parameters, validation methodologies,
limitations, and practical or real-world challenges for these
techniques.

Considering single agent decision-making, Bao and
Musacchio [10] focused on the defender’s optimal decision.
They designed their model for IDS in which the defender
takes the optimal action by using MDP. Their scenario
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consists of three states and each state is composed of tuples
which are : (NotConnected, NotDetected), (Connected, Not-
Detected) and (Connected, Detected). In each state, the
defender can take two actions: 1) stay in that state or 2) go
to the next state. During the process, the probability of each
action and the defender/attacker’s learning speed determine
the defender’s optimal policy provided by the MDP solution.

On the other hand, considering multi-agent security
games [12], Casey et al. [2], proposed a model based on
signaling game theory for cyber-identity management, which
tries to challenge and add some cost to deceptive agents
(i.e. players of the game). Their system was applied to wire-
less ad hoc networks (WANETs) to avoid Sybil attacks,
in which an attacker tries to penetrate a network by using a
non-real identity and impersonating a cooperative agent.

Moosavi and Bui [3] proposed a robust framework for
intrusion detection in a wireless sensor network (WSN) by
modeling it as a stochastic game. In their robust framework,
the parameters of their model are not fixed and their values
belong to a set. Therefore, their model is applicable to differ-
ent types of WSNs.

Huang et al. [13] combined MDP and game theory tech-
niques in their proposed IDS for wireless sensor networks.
They usedMDP for predictingwhich nodes were weakest and
thus presented the greatest risk and game theory for choosing
optimal defense strategies.

In certain cyber security scenarios, the defender tries to
conduct deceptive actions to mislead the attacker. Because
these deceptive actions may have costs, the defender needs
to consider optimal decision-making.

Han et al. [14] conducted a survey about defensive decep-
tion applications in cyber security and identified four ways
to model defensive deception: 1) process models, 2) proba-
bilistic models, 3) practical models, and 4) game-theoretical
models. In addition, they discussed the definition, benefits,
limitations, and evaluation methods for each category. They
also explained possible ways to design and deploy defensive
deception in a target system. The differences and similarities
of deception and moving target defense techniques are also
explained.

Pawlick et al. [15] provided a survey about common game
theory techniques, including Stackelberg, Nash, and signal-
ing games for modeling defensive deception as it relates
to cyber security and privacy. They also divided defensive
deception applications into six categories: 1) perturbation,
2) moving target defense, 3) obfuscation, 4) mixing,
5) honey-x, and 6) attacker engagement. Each category is
defined based on its structures, agents, actions, and duration.
Related works are studied.

Given the moving target defense (MTD) as a defensive
deception strategy, Cho et al. [16] explained several aspects
of the MTD mechanism. They divided MTD methodolo-
gies into three categories: 1) shuffling, 2) diversity, and
3) redundancy. In addition, important algorithms for imple-
menting MDT including game theory, genetic algorithms,
and machine learning are discussed. They also provided

a comparison between deception andMDT and other security
mechanisms, especially those deception techniques used for
changing the attack surface, which is the baseline of the
MDT concept, considered in detail. Other aspects such as
evaluation methods, including analytical models, simulation,
emulation, and real test-beds, and application domains are
discussed.

Crouse et al. [17] used probabilistic models to evaluate
defense performance in different scenarios, including the
honeypot strategy from deception defense and the shuffling
strategy from moving target defense. They compared the
honeypot defense model, shuffle defense model, no defense
model, and a combined (shuffle and honeypot) model. To do
so, they calculated the probability of attacker success in
all models and also by considering two different attacks:
1) foothold attacks, in which the attacker needs only one
victim node, and 2) minimum-to-win attacks, in which the
attacker needs a specific number (minimum number) of vic-
tim nodes for his/her goal. Their results demonstrated that the
honeypot defense strategy decreases attacker success (after a
certain initial scan) in both attack types, but the combined
model performed the best.

To the best of our knowledge, there is no other work that
poses the problem of modeling interactions between attackers
and victims from the attacker’s perspective. The analysis of
interactions between attackers and victims from the attacker’s
point of view is useful in understanding the attackers’ mental
models and hopefully predicting their next attacks. Indeed,
we are the first to pose such a perspective and model the
problem using MDP.

III. MODEL FORMULATION
TheMarkov Decision Process (MDP) is a modeling approach
suitable for multi-stage problems with the characteristic of
being partly random and partly under the control of a decision
maker. In such problems, the decisions are controlled by the
actions taken at each state; whereas, the state transition pro-
cesses are governed by the Markov Decision Process itself.
It is important to note that randomness is introduced into the
system where there is a decision that needs to be made. In the
case of state transitions, the underlying probability distribu-
tions define randomness in the system. In the case of decision
making through actions, the decision choices and possible
actions usually are drawn from a set of options that may
introduce randomness to the system. For instance, consider a
special case where the decision to be made is based on a split
choice (50/50) of constraints and probability distributions.
In this case, there is a good chance that the decision maker
chooses an action randomly, since both actions may return
the same number of rewards. There is a special case where
the choices of decisions and actions are limited to one and
thus randomness is eliminated since there is no decisions
(i.e., option) to be made and it is just a deterministic finite
state machine.

There may or may not be an optimal policy for any MDP.
A randomized policy can be optimal when the constraints
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are imposed during decision making. Expressing such prob-
lems as an MDP is the first step towards solving it and it
enables abstractions of a problem. Suchmodeling approaches
offer a formalization of the underlying problem where a
sequential decision-making process and strategy are needed.
In more sophisticated modeling techniques such as Rein-
forcement Learning (RL), MDP plays a crucial role in for-
malizing the interaction between an agent and its surrounding
environment.

Inherently, MDP-based modeling approaches enable us to
maximize returns in long ranges by predicting the rewards
obtained in the subsequent states. Therefore, formalizing
a problem using an MDP-based model is the first step to
simplifying the underlying interaction problem that can be
utilized in the next stage of modeling through techniques
such as reinforcement learning for optimization purposes.
From the application’s point of view, any problems involv-
ing interactions (e.g., game theory) can be effectively trans-
formed to an MDP formalization. Thus, the next step or
actions that can maximize the rewards or returns can be
predicted [18].

In the context of social engineering attacks, an instance
problem of game theory either with one player or two play-
ers, the objective of the adversarial agent is to find a way
to lure the victim to respond to the requests made by the
adversarial agents. Such modeling is beneficial when dealing
with an interactive social engineering attack such as phishing
on the phone or physical social engineering attacks where
there is a sequence of messages exchanged between the two
parties, and each performs specific tasks at each state to max-
imize their returns (i.e., two-players game) before reaching
equilibrium.

The current formulation of the problem is with the assump-
tion of a ‘‘fully observable system’’ where the agent has full
knowledge, obtained through interactions with the environ-
ment, about the system and its states. This choice makes
sense in the context of social engineering since the inter-
actions between the adversarial agent and victim reveal
whether the victim trusts or challenges the adversarial agent.
In more complex situations, the model can be formulated
using POMDP (Partial Observable MDP) or even HMM
(Hidden Markov Model).

The MDP model employed in this work is based on dis-
counted cost because there was little or no certainty about
the rewards being received in future stages or actions. The
model is also an infinite horizon MDP instead of a finite
horizon MDP because a typical social engineering endeavor
may last for a long time and thus theremay not exist any upper
bound for limiting the process. The finite horizon approach is
usually best for cases in which there is a constraint (e.g., time)
that should be considered. Having said that, it is possible
to model the given problem using different MDP methods
including modeling using the finite horizon approach where
certain levels of reward can be treated as an upper bound
and constraints. As stated earlier, the modeling of interactions
in social engineering can be performed through different

variations or methodologies that need to be explored in future
work on this line of research.

In this study, we model the interactions in a generic social
engineering attack from the attacker’s point of view using
Markov Decision Process (MDP). Figure 2 illustrates the
overall picture of the proposed MDP-based state machine to
model the attacker’s states and actions.

A. MDP DESCRIPTION
The MDP is a stochastic, sequential, discrete-base model.
Based on the Markov property, the state captures all rele-
vant information from history. Once the state is known, the
historical data may be discarded, i.e., the state has sufficient
information about the future. A Markov process is a mem-
oryless random process, i.e., a sequence of random states
S1, S2, . . .with the Markov property. It is an environment
in which all states are Markov which helps the simplicity of
applying it to Social Engineering attacks that are not planned
in detail. Policies are stationary (time-independent). In this
paper, we implemented theValue Iterationmethod for solving
MDP. As part of future work, other iterative solution methods
such as Policy Iteration, Q-learning, Sarsa, etc. exist that can
also be utilized for this problem [19].

MDP is formulated as a 4-tuple (S,A,P,R), where:
• S is the finite set of states.
• A is the finite set of actions.
• P is the probability of transition from one state to another
upon performing an action.

• R is the expected immediate rewards received after state
transition associated with the control action performed.

In order to find the optimal policy, we rely on the ‘‘Bellman
Equation’’ [20] which asserts that the optimal value V ∗ of a
decision problem at a certain point in time (i.e. state) is the
expected discounted sum of rewards obtained, starting from
that state and taking optimal policy π :

V ∗(s) = max
π

E(
∞∑
t=0

γ trt ) (1)

Therefore, considering our problem with finite states and
finite actions, the general form of the value function is as
follows [21]:

V ∗i+1(s) = max
a∈A

∑
s′∈S

P(s, a, s′)
[
R(s, a, s′)+ γV ∗i (s

′)
]
,∀s ∈ S

(2)

where:
– V ∗i+1(s) is the value function in the state s by taking the

optimal action.
– P(s, a, s′) is the transition probability starting from state
s and ending at state s′ after taking action a.

– R(s, a, s′) is the expected rewards received after state
transition from s to s′ after taking action a.

– γ is the discount factor.
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FIGURE 2. An MDP model for a generic social engineering attack: The
Attacker’s view. C: Cooperate; D: Deceive.

The expected instantaneous reward plus the predicted dis-
counted value of the following state, employing the best
possible action, is the value of a state s. Therefore, the optimal
policy is as follows:

π∗(s) = argmax
a∈A

∑
s′∈S

P(s, a, s′)
[
R(s, a, s′)+ γV ∗i (s

′)
]
(3)

B. MODEL DESCRIPTION
The MDP model for a generic social engineering attack is
implemented as below:

The four states that the attacker might encounter in this
model are considered as:

S ∈ {Neutral,Trusted,Challenged,Blocked}

These states are chosen in an analogous way by defenders
based on their employed defense strategies. Accordingly, the
set of states may change with respect to the employed defense
strategies.

The three actions the attacker might select in this model are
considered as:

A ∈ {Deceptive,Cooperative,Reset}

The attackers choose these actions based on their attack
strategy and the rewards and costs.

As demonstrated in Figure 2, the Neutral state is the start-
ing point of the decision-maker (i.e., adversarial agent). The
Neutral state has been defined to comply with the general
formalism of MDP and finite state machine in which an
initial state is needed to start the sequential processes.When a
deceitful or cooperative action is demonstrated by the adver-
sarial agent, this action will be received by the victim and thus
will evoke a response. As a result of the initial deceptive or
cooperative action and the victim’s reaction to it, the state of
the adversarial agent will be changed immediately. In other
words, when the adversarial agent is in the Neutral state and
the agent receives a deceptive or cooperative action, the state
will change to the Trusted or Challenged state.

The adversarial agent cannot stay in the Neutral state
without triggering any action. Taking any cooperative or
deceitful action will take the agent to the other states.
The attacker is aware of its transitioned state based on the
responses it receives from the victim. For instance, if the
victim asks verification questions, the adversarial agent may
realize that its state is in the Challenged state; whereas,
if the victim responds to questions naturally, the attacker
may believe it is in the Trusted state. In an analogous way,
if the attacker decides to end the conversation (e.g., not
having enough resources, getting enough information from
the victim, putting a delay or end the conversation before
being blocked), it can go back to the Neutral state. If the
victim classifies the received message as threatening, it can
put the sender in the Blocked state and not let them send
more messages and the attacker can recognize that it is in the
Blocked state.

There are three major states (except the blockage state) that
require defining value functions.

‘‘Challenged’’ state
The utility function for the ‘‘Challenged’’ state is as fol-

lows, equation V ∗i+1(s = C), as shown at the bottom of the
next page.

1) ‘‘TRUSTED’’ STATE
The utility function for the ‘‘Trusted’’ state is as follows,
equation V ∗i+1(s = T ), as shown at the bottom of the next
page.

2) ‘‘NEUTRAL’’ STATE
The utility function for the ‘‘Neutral’’ state is as follows,
equation V ∗i+1(s = N ), as shown at the bottom of the next
page.

C. IMPLEMENTATION FOR FINDING OPTIMAL STRATEGY
Value iteration is a simple iterative algorithm for determining
optimal value function V ∗ in Equation2 that converges to the
right values [20], [22]. Algorithm 1 shows the pseudo-code
for value iteration in MDP. First, the initial values for all
states are set to zero. Next, new values are calculated for each
state using Equations 2. This process is repeated until the
values are reached equilibrium and do not change. In addition,
a maximum number of repetitions (e.g., 1000) is taken into
account to avoid falling into an infinite loop when the values
are changing very slightly (a small changing value δ can also
be used as the stop point) [21].

IV. INITIAL SETTINGS FOR MODEL PARAMETERS
Having presented an MDP-based model through which a set
of states are defined, these states represent the states that an
adversarial agent can be in while interacting with victims
and launching social engineering attacks. In suchMDP-based
models, the obtained optimal strategy relies on the values of
the model parameters including the transition probabilities
and expected rewards. While the initial probability values
are context-dependent, the reward values should demonstrate
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the gains and losses for each action taken by the adversarial
agent, so the model converges properly. Table 1 shows the
reward values gained when the attacker changes its state from
one state to another.

These reward values should be scaled in a pre-determined
range to avoid the effects of large rewards superficially, and
they should be meaningful, representing the value gained
through the transition from one state to another. As an exam-
ple, when an adversarial agent is Challenged and triggering
an action causes the adversarial agent to end up with the

Blocked state, there should not be any gains (if not losses),
and therefore no rewards should be given to the attacker
(i.e., reward = 0); whereas, while in the Challenged state,
the attacker tends to act smart and performs an action that
gains the trust of the victim and thus ends up in the Trusted
state. As a result, the adversarial attacker should gain a good
number of reward points for being able to achieve the victim’s
trust while being challenged (i.e., reward = 8). These initial
reward values are representative of such gains and losses
when the adversarial agent triggers an action when being

V ∗i+1(s = C) = max
a∈A

∑
s′∈S

P(C, a, s′)
[
R(C, a, s′)+γV ∗i (s

′)
]

V ∗i+1(s = C)

= max



P(C,D,T )
[
R(C,D,T )+ γV ∗i (T )

]
+

P(C,D,B)
[
R(C,D,B)+ γV ∗i (B)

]
+

P(C,D,C)
[
R(C,D,C)+ γV ∗i (C)

]
< Deceptive >

P(C,C,T )
[
R(C,C,T )+ γV ∗i (T )

]
+

P(C,C,B)
[
R(C,C,B)+ γV ∗i (B)

]
+

P(C,C,C)
[
R(C,C,C)+ γV ∗i (C)

]
< Cooperative >

P(C,R,N )
[
R(C,R,N )+ γV ∗i (N )

]
< Reset >

V ∗i+1(s = T ) = max
a∈A

∑
s′∈S

P(T , a, s′)
[
R(T , a, s′)+ γV ∗i (s

′)
]

V ∗i+1(s = T )

= max



P(T ,D,T )
[
R(T ,D,T )+ γV ∗i (T )

]
+

P(T ,D,B)
[
R(T ,D,B)+ γV ∗i (B)

]
+

P(T ,D,C)
[
R(T ,D,C)+ γV ∗i (C)

]
< Deceptive >

P(T ,C,T )
[
R(T ,C,T )+ γV ∗i (T )

]
+

P(T ,C,B)
[
R(T ,C,B)+ γV ∗i (B)

]
+

P(T ,C,C)
[
R(T ,C,C)+ γV ∗i (C)

]
< Cooperative >

P(T ,R,N )
[
R(T ,R,N )+ γV ∗i (N )

]
< Reset >

V ∗i+1(s = N ) = max
a∈A

∑
s′∈S

P(N , a, s′)
[
R(N , a, s′)+ γV ∗i (s

′)
]

V ∗i+1(s = N )

= max



P(N ,D,T )
[
R(N ,D,T )+ γV ∗i (T )

]
+

P(N ,D,C)
[
R(N ,D,C)+ γV ∗i (C)

]
< Deceptive >

P(N ,C,T )
[
R(N ,C,T )+ γV ∗i (T )

]
+

P(N ,C,C)
[
R(N ,C,C)+ γV ∗i (C)

]
< Cooperative >
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Algorithm 1 Pseudo-Code of Value Iteration in MDP
1: Input
2: S States
3: A Actions
4: P Transition probability matrix
5: R Reward matrix
6: γ Discount factor
7: Output
8: V ∗ values for each state using utility function
9: A∗ Optimal actions for each state (optimal policy)

10: i← 0
11: V ∗i ← 0
12: while (i < maxItr) do
13: for (s ∈ S) do
14: V ∗i+1(s)← max

a∈A

∑
s′∈S

P(s, a, s′)
[
R(s, a, s′)+ γV ∗i (s

′)
]

15: A∗(s)← argmax
a∈A

∑
s′∈S

P(s, a, s′)
[
R(s, a, s′)+ γV ∗i (s

′)
]

16: end for
17: if (V ∗i+1 == V ∗i ) then
18: break;
19: else
20: V ∗i ← V ∗i+1
21: i← i+ 1
22: end if
23: end while

return V ∗i+1,A
∗

in the underlying state and trying to gain the trust of the
victim.

This section presents the process and the rationales for
choosing values for the parameters of the proposed model.
It also demonstrates the practical implications of the intro-
duced MDP-based deception model through simulations.
The simulations present the trade-off between costs, actions,
and impacts of different strategies that are available to the
deceivers. The goal is to model the best deceptive or coop-
erative actions that the deceivers can take with respect to the
costs involved in each action. As a result, the optimal poli-
cies in various scenarios are recommended to the deceivers
in order to optimize their pay-offs of the game-based
interactions.

A. VALUES FOR EXPECTED REWARDS
Themodel that we simulated is based on theMarkovDecision
Process model presented in Figure 2. The model consists of
four states, along with actions and their probability values,
as well as the rewards associated with each action. While
simulating the model, we considered a few assumptions on
the magnitude of the probability and rewards for each action.
Some of the assumptions about the costs, rewards, and prob-
ability transitions for the deceivers are as follows:

• The cost of being deceptive is much higher than the cost
of being cooperative. We consider the costs for decep-
tive and cooperative actions as 10 and 5, respectively
(i.e., Cost(Deceptive) > Cost(Cooperative)).

• The rewards achieved for the transition between states
depend on the source and destination states. Here are
some considerations:
- - There will be some high reward if the deceivers

change their status from being ‘‘Challenged’’ to a
‘‘Trusted’’ entity regardless of any actions being
taken by the deceivers (i.e., cooperative or decep-
tive). The ‘‘Trusted’’ state is the most desirable state
for deceivers and they would like to stay in this state
and continue deceiving the target.

- - There will be absolutely no rewards for the cases
where the deceivers are first challenged and then
blocked regardless of any actions being taken by the
deceivers.

- - The relative amount of rewards received by the
deceivers for each change and regardless of the
possible actions are as follows:

R(Challenged,−,Trusted) > R(Neutral,−,Trusted)

> R(Neutral,−,Challenged)

> R(Challenged,−,Challenged)

≥ R(Challenged,−,Neutral)

≥ R(Trusted,−,Trusted)

> R(Trusted,−,Challenged)

≥ R(Trusted,−,Neutral)

> R(Challenged,−,Blocked)

As shown in these inequalities, without considering the
action taken, the most desirable transition for the attacker is
from Challenged to Trusted and the least desirable transition
is from Challenged to Blocked. Being in the Neutral state,
moving to Trusted is safer than moving to Challenged and so
the expected reward is greater. Being in the Challenged state,
the expected reward for staying in the Challenge sate is equal
to or greater than that for ending the communication and
going back to Neutral. Being in the Trusted state, the agent
may prefer to keep the trust rather than move to Challenged,
which is less safe, or ending the conversation and going
back to Neutral. The effect and cost of actions taken will be
considered in the next section to calculate the final expected
reward values.

The initial setting and values for each reward for this
simulation are listed in Table 1:

TABLE 1. Initial rewards.
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The discount factor is γ = 0.9, and the initial reward value
is set R = 10. The selection of these parameters was based on
the pilot study of selecting different values for each parameter
and observing which value settings would better represent the
problem. It is important to emphasize that different parameter
settings result in different optimal policies and thus different
results.

B. VALUES FOR PROBABILITY TRANSITIONS
Table 2 lists the probability values and the rewards computed
by the Markov Decision Process, along with some other
assumptions regarding the likelihood of the probabilities that
occur for each transition.

1) NEUTRAL→ {TRUSTED | CHALLENGED}
a: PROBABILITY ASSUMPTIONS
As shown in Table 2, when the attacker is in the Neutral
state, there are two possible states to which the state of the
attacker can transfer. These states are Trusted, which will
be the new state of the attacker with the possible actions of
being cooperative and deceptive with probability of P1 = 0.7
and P2 = 0.3, respectively. It is also possible to transition
into the Challenged state with the same actions of being
cooperative or deceptive, with probabilities of P3 = 0.3 and
P4 = 0.7, respectively. As indicated in the table, our initial
assumption was that the probability of changing the state of
the attacker from Neutral to Trusted when the attacker opts
to cooperate (P1 = 0.7) is much higher than the probability
of ending up with the Trusted state and being deceptive
(P2 = 0.3).

A similar justification can be made when the state of the
attacker can be changed to Challenged through cooperative
and deceptive actions. More specifically, the probability of
ending up in the Challenged state when the attacker is deceit-
ful (P4 = 0.7) should be much higher than the probability of
being cooperative and still be challenged (P3 = 0.3).

b: REWARDS ASSUMPTIONS
Given that the ultimate goal of the attacker is to deceive as
much as possible, it is desirable to remain in the Trusted
state and yet perform deceptive actions. As a result, rewards
that the attacker can gain for landing at the Trusted state
(R1 = 0) are greater than the rewards that the attacker can
gain by ending up in the Challenged state (R3 = −2) if the
attacker opts to demonstrate the behavior of a good citizen.
On the other hand, if the attacker decides to be deceitful with
the hope of ending at the Trusted state, the rewards should
be greater (R2 = −5) than when the attacker ends at the
Challenged state (R4 = −7).
It is important to note that the costs associated with coop-

erative and deceptive actions are already incorporated into
the rewards and therefore the rewards are a function of pure
rewards minus the cost of the actions. It is also important to
emphasize that the cost of being deceitful is (or should be)
much greater than the cost of being cooperative.

2) TRUSTED→ {TRUSTED | CHALLENGED | NEUTRAL}
a: PROBABILITY ASSUMPTIONS
As shown in Figure 2, there are three possible states that an
attacker can be in if the state is Trusted. With the proba-
bility of π1 = 0.8, it is possible to continue being a good
citizen and be cooperative and thus remain in the same state
(i.e., Trusted). It is also possible to take advantage of the trust
and thus perform some deceitful activities with the probabil-
ity of π2 = 0.3. There is no strict relationship between π1 and
π2 except that it is likely to observe more normal behavior
than deceitful behavior from the attacker (i.e., π2 = 0.3 ≤
π1 = 0.8), and yet stay at the Trusted state.
While in the Trusted state, the attacker might be challenged

and thus arrive in the Challenged state. This unwanted conse-
quence might occur due to an attacker’s abnormal behavior
and deceitful actions. The probability of such a transition
due to deceitful action is high (π4). That is, if the attacker
demonstrates normal behavior, the landing state would likely
be some other state than Challenged. However, there is a
slight possibility that even with normal behavior, the attacker
may end up in the Challenged state (π3 = 0.2).

b: REWARDS ASSUMPTIONS
Intuitively, if the attacker is already in the Trusted state
and continues to behave properly, it is likely to stay at the
Trusted state and thus rewards would be minimal (ρ1 = −3).
On the other hand, if the attackers take advantage of the trust,
perform deceptive actions, and still retain the trust, then the
rewards would be significant (ρ2 = −8).
The unwilling scenario occurs when the attacker behaves

normally yet ends up in the Challenged state. Such a scenario
may yield very low rewards for the attacker as reflected by
the negative value (ρ3 = −4). The worst scenario is when the
attacker acts deceptively and then ends up in the Challenged
state with minimal rewards of (ρ4 = −9).

3) CHALLENGED→ {TRUSTED | CHALLENGED | BLOCKED |
NEUTRAL}
a: PROBABILITY ASSUMPTIONS
Asmodeled and shown in Figure 2, when the attacker is in the
Challenged state, there are possibilities of ending in any state
(i.e., Trusted, Blocked, Neutral, or even remain Challenged)
with any action (i.e., being cooperative or deceitful). With
respect to the probability transition assumptions and with the
goal of attaining trust again and landing at the Trusted state,
there is a high possibility that a challenged attacker starts to
behave rationally and thus be cooperative (φ1 = 0.5). In an
analogous way, there is a small probability that the attacker
will demonstrate deceitful behavior (φ2 = 0.1) yet hope
to gain trust and thus change the state to Trusted. It is also
possible that with some probability (φ5 = 0.3 and φ6 = 0.2)
the attacker may not be able to convince the other party
and thus remain in the Challenged state. The worst scenario
occurs when with some probability of actions (φ3 = 0.2 and
φ4 = 0.7) the attacker ends up in the Blocked state.
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TABLE 2. Expected rewards and probability transition values (‘‘�’’ means much smaller than).

b: REWARDS ASSUMPTIONS
When the attacker is in the Challenged state, there should be
high rewards if the attacker can gain the trust and move back
to the Trusted state (ω1 = +3 and ω2 = −2). As a matter of
fact, the rewards should be higher when the attacker deceives
and yet gains the trust of the system. On the other hand,
there should be huge negative rewards when the attacker loses
the game and end up in the Blocked state (ω3 = −5 and
ω4 = −10). Given the high cost of deception for the attacker,
the negative rewards gained by conducting expensive decep-
tion and landing at the Blocked state should be extremely
high (ω4 = −10). A moderate level of negative rewards
(ω5 = −3 and ω6 = −8) should be also considered when the
attacker is still struggling to convince the victim and remains
in the Challenged state.

V. QUANTITATIVE DYNAMIC ANALYSIS
This section presents the numerical results of the presented
model. The numerical results are presented in terms of
1) MDP states (i.e., Neutral, Challenged, Trusted, and
Blocked), 2) Actors’ actions (i.e., cooperative or deceptive),
and the cost associated with each action. For the sensitivity
analysis, we change one of the costs and fix the second one
to demonstrate the effects of high or low costs on the optimal
policy and model. Without loss of generality, the fixed values
for costs are 10% and 50%.

We believe further analysis of showing the impact of
changes in the parameter settings is a valuable topic and
should provide additional insights for researchers. The analy-
sis presented in this section contains and presents interesting
results about the sensitivity of the model to different settings
that can be helpful in designing such an application for a
real problem domain and can shed light on the practical
implications of the proposed abstract model.

The case studies demonstrate realistic scenarios in which
the cooperation and deception costs are controlled to observe
each scenario’s best-optimized policy or strategy. These four

scenarios are part of use cases of a more extensive and
more comprehensive social engineering detection framework
in which exchanged communication data (e.g., textual or
verbal) are utilized to decide about the state of the attacker
or defender in each stage. In such a framework, the state
(i.e., Neutral, Trusted, Challenged, and Blocked) of each
party (i.e., either attacker or defender) is determined using
the exchanged communication data. To estimate the state of
each party, contemporary machine learning and, in particu-
lar, Natural Language Processing (NLP) techniques can be
employed.

The four scenarios resemble different scenarios where
the associated costs are different. For instance, when the
cooperation cost is minimal (i.e., case study I in which the
cooperation cost is equal to 10%), the adversarial agent may
decide to be more cooperative in order to gain the trust of
the victim. Whereas, if the cooperation cost is high (i.e., case
study II in which the cooperation cost is equal to 50%), it is
costly for the adversarial agent to be cooperative and thus
the agent needs to find a way to lure the victim as soon as
possible in order to reduce its cost but successfully luring the
victim.

Similarly, when the deception cost is minimal (i.e., case
study III in which the deception cost is equal to 10%), the
adversarial agents may conduct a great number of deceptive
actions in order to lure the victim. Whereas, when the cost of
deception for the adversarial agent is high (i.e., case study IV
in which the deception cost is equal to 50%), the adversarial
agent may be cautious about taking a deceptive action in order
not to end up with the Blocked state.

Figures 3, 4, 5 and 6 illustrate these four case studies.
In these figures, the x-axis depicts the deceptive or cooper-
ative cost and the y-axis depicts the state value, which is the
expected return while being in the underlying state and taking
the corresponding action of cooperative, deceitful, or rest. Put
differently, the state value shows how much return we expect
when taking each action.
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A. OPTIMAL POLICY AND DECEPTIVE COST
In the first two case studies, we consider cases in which the
cooperative costs are set at a fixed rate and then we study
the model for various levels of deception costs. Hence, the
process is similar to a typical sensitivity analysis, in which
one parameter is controlled at a certain level, and the other
parameter is changed systematically to observe the impacts
of changes.

1) CASE STUDY I: COOPERATIVE COST = 10%
Figure 3 illustrates the trend of state values for each action
(i.e., Cooperative, Deceptive, and Reset) when the decep-
tive cost increases. The x-axis represents the deceptive cost
changing between 0.05 and 1.0 with steps of 0.05 unit, where
the deceptive cost is calculated and then deducted based on
some percentages of the rewards; whereas, the y-axis repre-
sents the state value when each action is performed.

a: CHALLENGED STATE
As illustrated in Figure 2, an attacker can take three permis-
sible actions while in the Challenged state: 1) be coopera-
tive (C), 2) be deceptive (D), or reset (R) and change the state
to Neutral.

Figure 3.(a) illustrates the trend of state value when the
attacker is in the Challenged state. As illustrated in the figure,
with the increase of deception cost, and when the attacker
is in the Challenged state, the state values for all permis-
sible actions decrease. The state value for deceptive action
starts just below 5 with the Deceptive cost of 0.05 and then
smoothly decreases to −5 when the cost of being deceptive
reaches 1. However, being Cooperative and/or Resetting offer
better state values compared to the Deceptive action. There-
fore, while being in the Challenged state, the attacker is better
off being Cooperative or Resetting than being Deceptive and
thus avoiding the potential of ending in the Blocked state.

The state values of being cooperative and resetting start at
17 and 20, respectively, suggesting that when the deception
cost is at 0.05, it is a better option to reset than cooperate. The
recommended policy by the model, however, changes with
the increase of deception cost. When that occurs, cooperative
and reset actions gain equal state values for the attacker when
the deception cost is 0.25. The increase of deception cost
from 0.25 to 1 increases the likelihood of cooperative actions
compared to exhibiting any other actions due to the high risk
of being identified and thus blocked. As a result, there is a
mixed suggestion of actions that can be taken by the attacker
while maximizing the state value.

Figure 3.(d) illustrates the optimal policy when the decep-
tion cost changes between 0.05 and 1 and the attacker is
being challenged and thus cooperative cost is fixed at 10%
of rewards. The optimal policy is taken from the upper bound
of the fitted curves in Figure 3.(a) for each action with the
objective of maximizing the state value. According to
the figure, the optimal action policy for the attacker, when the
attacker is in the Challenged state, is to reset if the deceptive

cost is below 0.025, and be cooperative otherwise, when the
deception cost is greater than 0.25.

b: TRUSTED STATE
As illustrated in Figure 2, an attacker can take two permissible
actions while in the Trusted state: 1) be cooperative (C) or
2) be deceptive (D).

Figure 3.(b) demonstrates the trend of state values with
respect to changes in the deception cost when the attacker
is in the Trusted state. As shown in the figure, it is equally
beneficial to take either action (i.e., being cooperative or
deceptive) when the deception cost is below 0.15. However,
the state value gained by the deception action drops substan-
tially when the deception cost is increased; whereas, the state
value gained by being cooperative remains steady at 10.

Figure 3.(e) depicts the optimal policy for this case,
which is drawn from the upper bound of curves depicted
in Figure 3.(b). As the figure suggests, an attacker may opt
to take the action of being deceptive (i.e., the attacker goal)
when the deception cost is below 0.15, even though taking
the action of being cooperative is also possible. However,
if deception cost increases to 0.15 or greater, it is better for the
attacker to be cooperative in order to avoid the risk of being
challenged again.

c: NEUTRAL STATE
As illustrated in Figure 2, an attacker can take two permissible
actions while in the Neutral state: 1) be cooperative (C) or
2) be deceptive (D).

As demonstrated in Figure 3.(c), A similar trend is
observed when the attacker is in the Neutral state. Given
equal state values gained by both actions (i.e., cooperative
and deceptive), and with respect to the goal of the attacker
to be more deceptive, it is more beneficial for the attacker to
be deceptive when the deception cost is below 0.1. However,
if the cost of deception increases above 0.1, and given the
risk of being challenged, it is better for the attacker to be
more cooperative than deceptive. The state value gained by
being deceptive dramatically drops to 3.5 when the deception
cost is elevated to 1; whereas, the state value gained by being
cooperative remains steady at 13 when the deception cost is
greater than 0.15.

Figure 3.(f) demonstrates the optimal policy when the
attacker is in the Neutral state. As demonstrated in the figure,
the attacker may be deceptive when the deception cost is
below 0.1. As soon as the deception cost increases above 0.1,
the attacker needs to be more cooperative in order to avoid
being challenged, avoiding the expensive consequences asso-
ciated with being challenged.

2) CASE STUDY II: COOPERATIVE COST = 50%
In Case Study I, we maintained the cooperative cost at 10%
of the reward. In order to study whether an increase in the
cooperation cost would affect the optimal policy and thus
the actions that are recommended to the attacker, in this case
study, we increase the cost of being cooperative to 50% of the
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FIGURE 3. Optimal policy at different states when cooperative cost = 10%.

total rewards and then capture how the dynamics of the model
change. Figure 4 illustrates the trends for state values for the
three attacker states (i.e., Challenged, Trusted, and Neutral)
along with the permissible actions the attacker can take at
each state.

a: CHALLENGED STATE
Figure 4.(a) illustrates the trends of state values for the three
permissible actions when the attacker is in the Challenged
state. Similar to Figure 3, the x-axis depicts the increase of
deception cost in the range of 0.05 and 1 with the step size
of 0.05; whereas, the y-axis depicts the state values gained
by taking the corresponding actions.

As seen in the figure, given how risky it is for the attacker
to be in this state (i.e., Challenged), it is better to either
reset actions and move to the Neutral state or be more
cooperative than deceitful. The state values gained by being
deceitful, cooperative, or resetting actions are 4.5, 14, and 20,
respectively, when the deception cost is at 0.05. The sim-
ulation suggests the attacker should reset and move to the
Neutral state rather than taking any other action. This trend
for state values remains the same until the deception cost
is increased to 0.25% of the total reward, at which point
the attacker can take risks and try deceiving the target. The
trend remains the same when the cost of deception is even
greater.
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Figure 4.(d) illustrates the optimal policy for such a setting,
taking the upper bound of the curves drawn in Figure 4.(a),
with the goal of maximizing the state values for the attacker.
As the figure suggests, it is better for the attacker to reset
actions and return to the Neutral state when the deception cost
is below 0.25. However, if the cost of deception increases,
then it is better for the attacker to take the risk to start deceiv-
ing the target. The primary reason for this recommendation is
that the cooperation cost is already at its peak, and thus it is
not beneficial for the attacker to remain cooperative, and the
attacker can try to reach its goal in deceiving the target.

Figure 4.(d) demonstrates the situation in which the
attacker is being challenged and the optimal policy (i.e.,
upper bound of curves in Figure 4.(a)) actions that are recom-
mended according to the level of the deception cost. As the
figure suggests, it is recommended that the attacker reset the
activity and return to the Neutral state if the deception cost
is below 0.25. However, it is recommended that the attacker
perform some deceitful action when the deception cost is
greater than 0.25.

b: TRUSTED STATE
Figure 4.(b) compares the state value gains obtained by per-
forming cooperative or deceptive actions when the attacker is
in the Trusted state. Inspection of the figure suggests it is best
for an attacker to deceive when they are in the Trusted state
and cooperation cost is high (i.e., 50%), regardless of any
consequences. The primary reason for that recommendation
is due to the high cost of cooperation and relatively low cost of
deception. Therefore, it is intuitive and reasonable to conduct
deception at all costs.

Figure 4.(e) demonstrates the optimal policy (i.e., the upper
bound of curves in Figure 4.(b)) for such a situation in which
it is recommended to take the deception action regardless of
deception cost.

c: NEUTRAL STATE
Similar and intuitive results are also obtained when the
attacker is in the Neutral state (Figure 4.(c)). Given the high
cost of cooperation and low cost of deception, it is best for the
attacker to deceive the target up to a certain level of deception
cost. More specifically, inspection of the figure suggests that
the attacker should deceive the target when the deception cost
is below 0.7; whereas the attacker should cooperate when
the deception cost elevates above 0.7. The point at which
the policy changes (e.g., 0.7), is called the ‘‘turning point’’,
where another action will be taken to maximize the state
value. Figure 4.(f) illustrates the optimal policy drawn from
the upper bounds of curves drawn in Figure 4.(c) where the
turning point (i.e., 0.7) decides about changes in the policy.

B. OPTIMAL POLICY AND COOPERATIVE COST
In the last two case studies, we explore cases in which the
deception costs are set at the fixed rate and then we study the
model for various levels of cooperative costs.

1) CASE STUDY III) DECEPTIVE COST = 10%
a: CHALLENGED STATE
Figure 5.(a) demonstrates the trend of state values for per-
missible actions when the attacker is in the Challenged state.
Because the attacker has already been challenged, it makes
sense to be cautious and thus to not play deceitful games.
Inspection of the figure suggests the state value is around
3 and remains steady regardless of changes in cooperative
costs. On the other hand, both cooperative and reset actions
are recommended to the attacker as a better choice than being
deceitful. The state value for the reset and cooperative actions
are 18 and 16, respectively. However, as the cooperative cost
grows, the model suggests taking the conservative action of
resetting the entire activity and returning to the Neutral state.

Figure 5.(d) demonstrates the optimal policy for this case
in which it has been recommended to take the reset action and
thus avoid the risk of being blocked.

b: TRUSTED STATE
Figure 5.(b) represents the recommended actions when the
attacker is in the Trusted state, with the deceptive cost fixed
at 10% of the total rewards. Inspection of the figure suggests,
given the low cost of deception, it is recommended to be
deceptive regardless of the cost of being cooperative. The
state value for deceptive action starts at 16 when the cooper-
ation cost is at 0.05 and remains steady when the cooperative
cost elevates even to 1.

Figure 5.(e) shows the optimal policy for this case taken
from the upper bound of the curves shown on 5.(b), suggest-
ing taking the action of deception at all risks. This recommen-
dation is expected because there is little risk and harm to the
attacker.

c: NEUTRAL STATE
A similar recommendation is given when the attacker is in
the Neutral state. Figure 5.(c) depicts the trend of state value
for both cooperative and deceptive actions. However, in this
case, it is recommended to be cooperative when the cooper-
ation cost is below 0.1. Once the cooperation cost is greater
than 0.1, however, it is recommended to start deceiving the
target.

Figure 5.(f) illustrates the optimal policy for this case when
it is highlighted to be cooperative when the cooperative cost
is below 0.1, but perform deception otherwise.

2) CASE STUDY IV) DECEPTIVE COST = 50%
In this case, we set the deception cost at a higher level (i.e.,
50%) and observe the behavior of the model and thus capture
the optimal policy recommended in this case.

a: CHALLENGED STATE
Figure 6.(a) illustrates the trends of state values for the reset,
cooperative, and deceptive actions. Inspection of the figure
suggests it is not recommended to take deceptive action when
the cooperative cost is low. The state value starts with 0 at the
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FIGURE 4. Optimal policy at different states when cooperative cost = 50%.

0.05% level of the cooperative cost and turns into a negative
value −5 at 1% of cooperative cost. On the other hand, it is
highly recommended to be cooperative when the cooperative
cost is below 0.35. Once the cooperative cost goes beyond
0.35, then deceptive action is recommended.

Figure 6.(d) shows the optimal policy for this case taken
from the upper bound of curves represented in Figure 6.(a).
As is apparent from this optimal policy, it is recommended to
be cooperative when cooperative cost is low, <0.35. How-
ever, once the cooperation cost elevates beyond 0.35, it is
recommended to be deceitful.

b: TRUSTED STATE
Figure 6.(b) illustrates the case when the attacker is in the
Trusted state. Both cooperative and deceptive actions demon-
strate a similar trend for the state value. However, there is
a turning point when the deception cost is at 0.9 where the
optimal policy changes. More specifically, when the cost of
deception is below 0.9 it is recommended to be deceptive.
However, when the turning point of 0.9 is reached, it is
recommended to be cooperative.

Figure 6.(e) shows the optimal policy for this case illustrat-
ing the turning point and policy changes at 0.9.
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FIGURE 5. Optimal policy at different states when deceptive cost = 10%.

c: NEUTRAL STATE
A similar observation is produced when the attacker is in the
Neutral state (Figure 6.(c)). There is a turning point at 0.4%
of the cooperative cost. Accordingly, it is recommended to be
cooperative when the cooperation cost is below 0.4. However,
it is recommended to be deceptive once the turning point is
passed and cooperation has a high cost.

Figure 6.(f) illustrates the optimal policy for this case
demonstrating the turning point and the optimal policy for
this case.

VI. PERFORMANCE ANALYSIS
A typical issue of modeling interactions through probabilis-
tic settings, and in particular models such as MDP and
Reinforcement Learning, is that these models are very

sensitive to the initial probabilistic values set for each param-
eter. This section investigates this issue through a numerical
case study and reports the performance of the model when
the parameter settings and values are controlled. The main
objectives of this case study were:

– To identify the optimal strategy by MDP using the new
set of values for model parameters,

– To analyze the performance/effectiveness of the
obtained optimal strategy on the model and capture the
accumulative rewards and the number of steps that the
adversarial agent can continue interactions before being
blocked,

– To compare the performance/effectiveness of the opti-
mal strategy with a purely random strategy and compare
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FIGURE 6. Optimal policy at different states when deceptive cost = 50%.

their acquired rewards and number of steps taken by the
agent before being blocked.

Taking Optimal Actions. Having the above objectives in
mind, first the MDP optimal strategy for the attacker was
obtained using algorithm1. The agent’s behavior (i.e., the
attacker) was then simulated in the model by applying the
MDP optimal policy through the following steps:

1) Start with the Neutral state, as the initial step of the
adversarial agent,

2) Choose theMDPOptimal Action ‘‘amdp’’ for the under-
lying state (i.e., ‘‘s’’),

3) Based on the chosen action, identify the states that can
be transitioned to (i.e., S ′p) from state ‘‘s’’ where S ′p is

the subset of states that can be reached from s by
action ‘‘amdp’’,

4) Taking into account the transition probabilities of S ′p,
proceed with taking the transition to the next state by
considering the weights defined for each of the transi-
tion probabilities,

5) Receive the reward for the transition and add it to the
previous rewards and also increase the number of steps
by one,

6) if the new state is the Blocked state then return the
rewards and the number of steps; otherwise go to Step 2

Taking RandomActions. In a similar manner, the authors
repeated the same steps with the exception of taking random
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FIGURE 7. The proposed MDP model with values for rewards and
transition probabilities.

actions instead of taking the steps identified by the MDP
optimal strategy (Step 2) to compare the results.

Rules for selecting values for Transition Probability. For
transition probabilities, we considered the following rules and
constraints:
– The summation of transition probabilities from one state

to another for each action needs to be equal to 1. In the
case of obtaining the summation not equal to one, we can
standardize the values to ensure they fall into the proper
interval of [0, 1].

– Taking the Cooperative action, the probability of tran-
sitioning to the Trusted state should be greater than
the probability of transitioning to the Challenged state.
Furthermore, the probability of transitioning to the Chal-
lenged state should be greater than the probability of
transitioning to the Blocked state.

– The probability of transitioning to the Blocked state
should be greater than the probability of transitioning
to the Challenged state. Taking the Deceptive action,
the probability of transitioning to the Challenged state
should be greater than the probability of transitioning to
the Trusted state.

It should be noted that, in this model, the Reset action can
be taken only on the Trusted and Challenged states, and the
destination state will be the Neutral state. Therefore, if the
agent takes the Reset action, it will transit to the Neutral state
with the probability equal to 1.00.

The Neutral state is the start state and also the safest state
for the adversarial agent to remain in the model. Therefore,

during the communication, if the attacker feels threatened by
being blocked, it can take the Reset action and transit to the
Neutral state to refresh its status. The Reset action can be
considered as asking the receiver to ‘‘end the communication
for a while’’, which would allow the attacker to collect more
information with the goal of launching more effective attacks
or even changing the attack strategy.

Rules for selecting values for expected rewards. For
transition rewards, we considered the following simple
rules:
– Taking the Deceptive action and not transitioning to the

Blocked state, the agent will be rewarded by one point
(r = +1).

– Taking the Deceptive action and transitioning to
the Blocked state, the agent will be penalized by
10 point(r = −10).

– Taking the Cooperative and Reset actions, do not bring
any rewards to the agent.

Having regulated the rules for transition probabilities and
awards, the considered values to examine the performance
of the model are shown in Figure 7. The label of the edges
is shown by the name of the action (C as Cooperative, D as
Deceptive and R as Reset) followed by the pair of transition
probability and reward. For instance, D(0.7,−10) on the
edge from the Challenged state to the Blocked state implies
that being in the Challenged state and taking the Deceptive
action, the agent transitions to the Blocked state with the
probability of 0.7 and the obtained rewards will be equal
to −10, which means the agent will incur a big penalty
for being blocked. To ease the visualization of the actions,
a coloring scheme has been adopted in Figure 7 where Reset,
Cooperative, andDeceptive actions are colored in blue, green,
and yellow. The Probability Transition Matrix (T) and the
Reward matrix (R) values are shown in Table 3. These matri-
ces can also be implemented as 3D matrices as below by con-
sidering state indices Neutral=0, Trusted=1, Challenged=2,
Blocked=3, equations T and R, as shown at the bottom of the
page.

Algorithm 2 lists the pseudocode for evaluating the value
iteration MDP for the proposed model. In this algorithm,
optimal actions, A∗, are obtained for each state using pseu-
docode 1. Starting from the initial state Neutral, the optimal
action for Neutral state A∗(s = Neutral) is extracted. Given
that it is possible to transition to Trusted and Challenged
states with different probabilities, the next state is selected
randomly following the distribution probability of the state.
Being in the current state and having the optimal action in

T =

[[0, .7, .3, 0], [0, .8, .2, 0], [0, .5, .3, .2], [0, 0, 0, 0]], a = c
[[0, .3, .7, 0], [0, .3, .7, 0], [0, .1, .1, .6], [0, 0, 0, 0]], a = d
[[0, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0]], a = r


R =

[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0,−10], [0, 0, 0, 0]], a = c
[[0, 1, 1, 0], [0, 1, 1, 0], [0, 1, 1,−10], [0, 0, 0, 0]], a = d
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], a = r
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TABLE 3. Expected rewards and probability transition values considered
for the performance analysis conducted for simulation of the numerical
case study.

the current state along with the next selected state, the reward
is extracted. This process is repeated to transition from one
state to the next, adding the rewards obtained in each iteration
until the agent transitions to the Blocked state or reaches the
maximum number of moves.

Algorithm 2 Pseudo-Code of Evaluating MDP
1: Input
2: S States
3: A Actions
4: P Transition probability matrix
5: R Reward matrix
6: A∗ MDP optimal actions for each state (optimal

policy)
7: maxItr Maximum number of iterations (stop point)
8: Output
9: itrs number of iterations
10: R∗ Summation of the awards obtained)
11: i← 0
12: si← Neutral
13: R∗ = 0
14: while (si! = Blocked & i < maxItr) do
15: i← i+ 1
16: Ai← A∗(si)
17: Si+1← weightedRandomChoice(P, Si,Ai)
18: R∗← R∗ + R(Si,Ai, Si+1)
19: Si← Si+1
20: end while

itrs← i
return R∗, itrs

Having applied pseudocode 1 on this model, the optimal
solution was found after 335 iterations. More specifically, the
optimal strategy using the value iteration algorithm were:
– The optimal action when the agent is in the Neutral state

is being Deceptive,

– The optimal action when the agent is in the Trusted state
is also being Deceptive,

– The optimal action when the agent is in the Challenged
state is taking the Reset action.

Following that optimal strategy, the attacker avoids being
blocked. Utilizing the MDP optimal policy for the attacker
and limiting the maximum number of steps to 30, the adver-
sarial agent was able to stay in themodel for all the 30 steps by
not being blocked while gaining+23 points. However, taking
random actions, the agent was blocked after only 4 steps and
losing −7 points.

Given that the transited states are chosen by weighted
random selection, we repeated the process 10 times
(i.e., episode) to make sure that the failure of the random
strategy to save the adversarial agent from being blocked did
not happen by chance. Table 4 shows the result of running
the process for each episode, the average number of steps,
and the acquired rewards for both strategies. Performing the
experiment for 10 episodes, MDP with its optimal pol-
icy, on average obtained +21.7 points without being
blocked, while taking random actions, on average, the agent
paid−7.5 as the penalty and transitioned to the Blocked state
after approximately 7 random actions.

TABLE 4. The performance of MDP-based optimal vs. random-based
adversarial agents.

As indicated in Table 4, using the MDP optimal strat-
egy, the adversarial agent still plays the game without being
blocked (i.e., #actions = 30, the upper limit considered in
the model); whereas, the random-based adversarial agent is
blocked within a very short number of actions.

VII. DISCUSSIONS AND IMPLICATIONS
The presented model can be applicable to different settings
and problems. This section discusses the scenarios and cases
where the MDP-based model can be adapted. Furthermore,
we discuss the automation aspects of the model as well as the
possible implications of the presented model for defenders.

A. MODEL USABILITY
To understand the usability and the applications of the pre-
sented model better, two points should be considered:

Firstly, this model presents a general-purpose model for
the attacker’s optimal decision strategy. By general-purpose
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model, wemean that not only can this model be adapted when
the attacker faces different cyber security defense scenarios
(e.g., IDS, MDT, honeypot, phishing, etc.), but also in dif-
ferent phases of the attack (e.g., reconnaissance, scanning,
exploitation, access maintenance, etc.) in which the attacker
encounters a diverse form of defense infrastructures.

Secondly, this model provides a general view for modeling
different attack scenarios and also attack phases. By general
view, we mean this model can serve as the basis for similar
models with a different set of states and/or actions based on
the defender or the attacker’s infrastructures. For example,
one can add another state such as a ‘‘wait’’ state to the
attacker’s state in which the attackers take some time to be
stealthy or gain enough credits before conducting a costly
deceptive action that they could not afford before.

Given these applications of the model, we conclude that
this model has broad applications in attack and defense mod-
eling. As an example, when attackers face defense systems,
such as IDS, WANET, WSN, MDT, honeypot, mixed net-
works, and perturbation, they may adapt similar models to
decide when to launch attacks in order to elevate their gains
and attack the target more effectively. Another example is the
situation in which an attacker conducts phishing or vishing
(i.e., phishing over the phone) attacks in the reconnaissance
phase or a Sybil attack in the exploit or access maintenance
phase.

In conclusion, the key point for designing such a model
in other usages is to design the states, actions, and transition
parameters (such as probabilities, costs, rewards, and learning
rate) properly and then by forming the utility function the
optimal decision and policies can be obtained. The designing
process presented through this model can be in its simplest
version in which only one agent (attacker or defender) is
making the decision and the states are as few as possible
(e.g. only two states: start-state and end-state) and fixed
parameters (such as fixed costs) or it can bemore complicated
with additional states, more actions, and various parameters.
Finally, it should be mentioned that such a model can be
designed from other agents’ point of view (e.g. the defenders)
or considering several interacting agents.

B. AUTOMATION
The model introduced in this paper can be used as a base for
further automation in launching attacks. Furthermore, a com-
plementary model also can serve as a model for defending
systems. There are some other mathematical models such as
reinforcement learning and hidden Markov model (HMM)
that can be integrated with the proposed MDP-based model
for cases when the exact modeling states are unknown in
advance. In particular, the basic foundation of reinforcement
learning is the Markov Decision Process. The reinforcement
learning module augment and enhance the model with the
capability of learning from the environment and thus enhanc-
ing the performance of the model in suggesting the best
optimal actions where there are some uncertainty. On the
other hand, HMMs are capable of estimating the current state

of the agent where there is little to no knowledge about the
surrounding areas and conditions.

C. IMPLICATIONS
The proposed decision-making model for optimal policy can
have several implications for defenders and system admin-
istrators. The model demonstrates the influence of decep-
tion and cooperation costs from the attacker’s point of view.
According to themodel and the trade-off analysis presented in
this paper, the attackers are reluctant to perform any deceptive
actions if the cost is high for such malicious actions. As a
result it is recommended to keep the cost of deception asmuch
as possible and maintain a relatively low cost for cooperative
actions in order to prevent possible deceptive activities. These
types of analysis can be further incorporated into risk analysis
and management in order to find out about the attackers’
tolerance level in absorbing the cost and launching attacks.

D. LIMITATIONS
Kiennert et al. [12] discuss the limitations of game-theoretic
approaches as the main concept of ‘‘high abstraction level,’’
which is due to enormous assumptions made by the designer
and results in a challenge for real-world applications and con-
sequently a challenge for validating such an actual system.
Some of these assumptions are the perfect rationality of the
agents, the model designing assumptions, complete informa-
tion about the costs and rewards, fixed and not changing costs
and rewards, and so on.

Some of these limitations hold also for our proposed
model. Themain limitation formodels similar to the proposed
model is ‘‘model designing assumptions’’ such as fixed sets
of states and actions for the agent. This hurdle is worst for
scenarios that the opponent agent is a human compared to
a machine or an automated agent. For example, when the
attackers deploy vishing (i.e., phishing over phone) attacks
on their victims, designing the states that the attacker will
end up might not be that simple due to unpredictability of
the human responses. We mitigated this drawback by consid-
ering the attacker perspective for designing our model which
makes the action set determined by the attackers and not their
opponents.

VIII. CONCLUSION AND FUTURE WORK
Humans are the weakest link in information security [23],
so it is impossible to ignore the critical role of human oper-
ators in functioning critical infrastructure. Unsurprisingly,
humans have been the prime targets for attacks due to the
low cost yet effective outcomes of such attacks. According
to analysis and reports, phishing is the number one cause
of data breaches [24]. This type of attack can be launched
through various forms of channels such as emails, phones,
and shoulder-surfing. To launch effective social engineering
attacks, attackers are thus utilizing techniques drawn from
deception theory. In order to build a strong fortress around
critical infrastructure, it is essential to study the attacker’s
mindset and predict their next move.
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This paper modeled the deceiver’s strategies and pol-
icy optimization for optimally conducting deceitful activi-
ties. We formulated the optimal decision problem through a
Markov Decision Process (MDP), thus being able to yield
the dynamic characteristics of deception in social engineering
attacks. By modeling and analyzing the attacker’s behavior,
the defenders are able to learn about deception strategies
and thus guard themselves against such attacks. Through the
presentedMDP-basedmodel for capturing deceiver’s optimal
policy in deception, we are able to predict the attacker’s next
move and thus be prepared for such deceptions and social
engineering attacks.

The objective of formulating the problem using MDP from
the attacker’s point of view is to enhance the practice of
ethical hacking and penetration testing practices by extracting
and analyzing the best optimal policy for the attacker to
launch more cost-effective social engineering attacks. As a
result, the immediate practical implication of this research
result is that the attacker needs to identify the cost of being
cooperative or deceitful as well as the consequences of being
challenged or blocked. By knowing the cost, learning about
the victim, and the probability transitions, then a typical
penetration tester or ethical hacker can decide on how to
approach the victim and then make a proper and informed
decision when taking the next step.

A critical factor that influences the attacker’s behavior
in conducting deception attacks is the costs associated with
cooperation and deception. According to the MDP-based
model presented in this paper, attackers should be reluctant
to perform deceitful activities if the deception cost is high
relative to the cooperation cost, which discourages attackers
from launching any deception attacks.

There are several security controls that might help in
elevating the cost associated with deception. For instance,
employing proper and continuous authentication schemes
would help in preventing adversaries from launching socio-
technical attacks. Another example would be proper reg-
istrations along with the effective collection of credentials
of individuals in interactive settings. This way, we are
able to verify the identity and credentials of individuals.
These security controls hurdle adversaries of performing
social engineering attacks without revealing their own true
identities.

An interesting application of the MDP-based model is to
trap adversaries by intentionally keeping the cost of decep-
tion low. Such settings can be built in honeypots with the
goal of identifying potential attackers. Furthermore, it will
be extremely useful in analyzing attacker’s behavior and
strategies in deceiving individuals who have access to criti-
cal information. In particular, this model would help in the
automated detection of interactive social engineering attacks
such as phishing over the phone (i.e., vishing). Such a strategy
would help organizations to learn about attackers and what
assets they target and thus tighten security controls for prime
targets. Furthermore, it would be very useful to understand
the capability of attackers with respect to cost and how

much security controls would be needed for protecting critical
assets.

As part of future work, it would be useful to model both
attacker and defender’s behavior and build an interactive
MDP game-based model with the goal of analyzing their
optimal decisions under various conditions and contexts. It is
important to learn about the attacker’s capacity and willing-
ness to conduct deception attacks in terms of payoffs between
costs and gains. The important aspects that are beneficial
to learn about attackers are their ultimate decisions when
stronger and more preventive security controls are incorpo-
rated into the system. Such conditions and contexts can be
formulated using entropy-based information gain analysis
and reasoning under uncertainty.

AVAILABILITY
The simulation code along with the data and analysis will be
made available upon request.
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