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Abstract: The World Health Organization labelled the new COVID-19 breakout a public health
crisis of worldwide concern on 30 January 2020, and it was named the new global pandemic in
March 2020. It has had catastrophic consequences on the world economy and well-being of people
and has put a tremendous strain on already-scarce healthcare systems globally, particularly in
underdeveloped countries. Over 11 billion vaccine doses have already been administered worldwide,
and the benefits of these vaccinations will take some time to appear. Today, the only practical
approach to diagnosing COVID-19 is through the RT-PCR and RAT tests, which have sometimes been
known to give unreliable results. Timely diagnosis and implementation of precautionary measures
will likely improve the survival outcome and decrease the fatality rates. In this study, we propose
an innovative way to predict COVID-19 with the help of alternative non-clinical methods such as
supervised machine learning models to identify the patients at risk based on their characteristic
parameters and underlying comorbidities. Medical records of patients from Mexico admitted between
23 January 2020 and 26 March 2022, were chosen for this purpose. Among several supervised machine
learning approaches tested, the XGBoost model achieved the best results with an accuracy of 92%. It is
an easy, non-invasive, inexpensive, instant and accurate way of forecasting those at risk of contracting
the virus. However, it is pretty early to deduce that this method can be used as an alternative in the
clinical diagnosis of coronavirus cases.

Keywords: COVID-19 diagnosis; machine learning; data-driven approaches; SMOTE; SHAP; LIME;
infection prediction

1. Introduction

Coronaviruses are a family of enveloped, highly diverse, single-stranded viruses
and are closely correlated to RNA viruses that infect birds and mammals [1]. They have
a diameter of 60–140 nm and a genome size from 26–32 kb. When viewed under an
electron microscope, they appear to look like a crown due to the glycoprotein spike-like
projections on their surface, which resemble a solar corona [2]. Even though the majority of
human coronaviruses (HCoV-NL63, HCoV-OC43, HCoV-229E, and HCoV-HKU1) cause
minor illnesses, the epidemics of two betacoronaviruses (β-CoV), Middle East respiratory
syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus
(SARS-CoV), in the last two decades have resulted in high mortality rates of 37% and 10%,
respectively [3]. The novel coronavirus disease of 2019, also known as COVID-19, is caused
by a strain of coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). Its symptoms include cough, fever, fatigue, shortness of breath, body aches and loss
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of taste or smell [4]. Epidemiological studies have shown that elderly individuals are more
prone to severe illnesses, while children often have milder symptoms [5,6]. People with
underlying severe medical conditions, such as diabetes, hypertension, cancer, lung/liver
or kidney disease, have shown a bad prognosis and are at a higher risk of hospitalisation.
In worst-case scenarios, the infection can be fatal [7,8]. The first case originated in Wuhan,
Hubei Province, China, in December 2019 and has since spread to the entire world [9]. As
of June 2022, over 532 million cases have been reported, and around 6.3 million deaths
have been recorded [10].

COVID-19 is highly contagious and can transmit through direct contact (human-to-
human transmission and droplet) and indirect contact (airborne contagion and contam-
inated objects) [11]. Its symptoms typically manifest between 1 and 14 days, while the
mean incubation period is 5.2 days [12]. Countries worldwide have enforced norms such
as social distancing, face masks, quarantine and vaccinations to curb the spread of this
dangerous virus. Since it spreads rapidly and has no effective cure, the most efficient
method of tackling its spread is early detection and isolation of patients. Currently, to diag-
nose COVID-19, there are two major types of tests: the first being the molecular/nucleic
acid tests which include the reverse transcription-polymerase chain reaction (RT-PCR)
test, digital PCR, isothermal nucleic acid amplification test and clustered regularly inter-
spaced short palindromic repeats (CRISPR) system that detect the RNA component of the
virus [13]. The RT-PCR test is considered the gold standard technique worldwide to detect
COVID-19 since it delivers results more rapidly and accurately than others [14–17]. How-
ever, RT-PCR has difficulty discriminating true positives from true negatives in COVID-19
affected patients [18]. Another flaw is the false-negative rates which are highly variable.
The false-negative rates are maximum during the first five days after exposure (up to 67%)
and least during the eight-day after exposure (21%) [19]. Furthermore, due to the acute
shortage of RT-PCR test kits in underdeveloped countries, testing and detection are delayed.
The second type of test is the rapid antigen test (RAT). This test identifies antigens and
small proteins on the virus’s surface and gives the result within 15–30 min. Its primary
disadvantages have been its low specificity (77.8%) and sensitivity (18.8%) [20]. Thus, there
is an urgent requirement for a method that overcomes the pitfalls of the previous tests.
One way to tackle this problem is by using artificial intelligence (AI) and machine learn-
ing (ML) to enhance clinical prediction since they recognise complex patterns in massive
datasets [21]. With the advancement of machine learning, research can offer a strategic
framework for developing automated, complicated and objective algorithmic tools for the
analysis of multimodal and multidimensional biological/mathematical data. ML models
can aid in the prediction of patients who are at a high risk of contracting COVID-19. This
can prevent the spread and reduce fatalities. ML-powered prediction models combine
numerous features to estimate the risk of infection and alleviate the burden on healthcare
systems worldwide.

AI can be defined as a wide field of computer science concerned with developing
models that can mimic human cognitive abilities. ML is a subclass of AI where the computer
learns on its own by analysing historical data or experience and makes accurate predictions
without being explicitly programmed. The historical data may be divided into two subsets
for training and testing, among other configurations. For example, a classifier may be
trained on the training dataset, where it learns about the various interesting patterns
which discriminate the several existing classes. The trained model, i.e., the classifier, then
predicts the classes of the testing dataset. There are four categories of machine learning.
(a) Supervised machine learning methods are algorithms that learn from historical or
prior datasets using labels to predict appropriate classes for unseen data (classification)
or forecast future occurrences (regression) [22]. This learning style requires the presence
of supervision in the form of labels in the training phase. The learning system’s expected
output is compared to the actual results. If discrepancies are discovered, they can be
corrected by adjusting the model appropriately, usually through the employment of an
optimisation algorithm that lowers the error indicative of the goodness of fit. (b) In
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unsupervised learning, the input data are unclassified or unlabelled [23]. The algorithm
does not specify the correct result, but it investigates the information in order that it may
derive deductions from it, characterise unlabelled datasets and find meaningful patterns
in it [24]. (c) Semi-supervised learning methods are those that fall between supervised
and unsupervised learning models. They use both labelled and unlabelled data during
the training process. This technique is used to increase the precision of learning [24]. (d)
Reinforcement learning approaches use actions to engage with the learning environment to
identify erroneous results [25]. The model is trained based upon the previous outcomes,
and rewards and punishments exist for the predictions. Based on this principle, the model
learns to maximise the rewards and minimise the penalties, thereby learning from the
environment [26–28]. In addition to these approaches, it is important to highlight deep
learning (DL), which is a subset of ML. The various deep learning architectures draw
inspiration from and are built upon computational analogues of neurons in the human
mind and aim to mimic how human beings learn. These techniques are representation-
learning approaches with many layers of representation created by building simple yet
non-linear components that change the representation at one level (beginning with the raw
input) into a higher, increasingly abstract level [29]. Applications of DL can be found in
the fields of natural language processing [30], image recognition [31], recommendation
systems [32], speech recognition [33], medical diagnosis [34], etc., among others. Deep
learning is extremely useful in learning complex patterns in data by means of developing
tailored models that use different combinations of transformations. DL model performance
scales with the amount of data, and its abstraction does not require the entire architecture
to be hardcoded.

In this research, machine learning and deep learning algorithms are utilised to perform
a preliminary diagnosis of COVID-19 using demographic and epidemiological parameters.
These techniques can be extremely useful in geographical settings where medical resources
are scarce or during pandemic peaks when demand is at its maximum, thereby putting
strain on the resources. The article serves to emphasise the following contributions:

• Extensive review of background research: We perform a detailed review of recent
work in the literature, which looks at various diagnostic procedures for COVID-19
using AI and ML. Emphasis is placed on articles which consider demographic and
epidemiological parameters as part of their data.

• Pre-processing: The data are pre-processed to understand the most important parame-
ters. Correlation techniques have been used to underline the most important columns
in the dataset.

• Balancing: We use the Borderline-SMOTE technique to balance the data.
• Feature importance: We highlight relevant feature importance derivation techniques.
• Application of ML models: Machine learning and deep learning techniques have been

used to derive insights from the data. As demonstrated below, the models tend to
perform quite well for the considered data.

• Analysis of parameters: Information about the various parameters is obtained, and
their effect on COVID-19 patients is studied. The results obtained are compared with
state-of-the-art studies in the literature using similar data.

• Future directions: We provide an overview of some challenges faced and potential
future directions to extend the work.

In this study, a labelled epidemiological dataset from various hospitals in Mexico is
considered. The entire dataset in Spanish is pre-processed and balanced. Several classifiers
are developed and are extensively evaluated using performance metrics such as accuracy,
precision, recall, specificity and AUC. We also look at some popular techniques used in
medical AI research, such as boosting and deep learning networks. The proposed models
may augment efforts of detection and intervention and are ideally expected to reduce
the heavy burden already faced by healthcare systems all around the world. The paper
is organised as follows: Section 2 consists of similar studies that diagnose and forecast
COVID-19 using machine learning. Section 3 elaborates on the dataset description, data
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pre-processing, correlation analysis and some theoretical concepts related to ML. The
performance metrics, model evaluation and description of results are explained in detail
in Section 4. Section 5 highlights the key issues and future directions. Section 6 concludes
the paper.

Motivation and Contributions

The SARS-CoV-2 virus has had devastating ramifications on human lives all across
the world. Early detection of COVID-19 may increase the survivability odds of the patient,
and reduce the further spread of the disease by isolating and quarantining the patients
diagnosed as positive, thereby assisting in avoiding another COVID-19 wave and can
mitigate the load on the healthcare professionals. Currently, there are different tests for
detecting the COVID-19 strain in a patient but each of them has its respective drawbacks,
such as having a high false-negative rate, delay in obtaining the results, expensive or
even invasive. Our study proposes using machine learning classifiers as a technique to
screen patients easily and precisely without the shortcomings faced by the current methods.
There have been multiple coronavirus outbreaks in the past two decades. Our research
can contribute to advancing the collective knowledge on the diagnosis of the virus and
diminish the repercussions of another such outbreak in the future.

In our study, we used supervised binary classification algorithms of different categories
such as the simple generalised linear logistic regression model, the lazy non-linear K-nearest
neighbours’ classifier, tree-based ensemble models involving bagging (random forest) and
boosting (XGBoost and AdaBoost) methods and the deep learning-based artificial neural
network classifier. The major objective of using a variety of classifiers was to obtain a
thorough understanding of how well these algorithms comprehend the data and diagnose
the patients; as each kind of classifier has its own strengths and weaknesses, this can help
us to arrive at a conclusion as to which algorithm is better suited to deliver more accurate
predictions to recognise if the case is positive or negative. We also analysed the results
obtained to infer how each feature contributes to the outcome of the diagnosis by using
SHAP and LIME techniques. Further discussion about the parameters is made from a
medical perspective. Our models are supports to help researchers from both technical and
medical fields.

2. Related Work

With rapid advancements made in increasing the computational power of machines
and the development of new sophisticated algorithms revolutionising the big data niche,
exponential progress has been seen in AI in the past two decades. In healthcare settings,
accurate diagnosis and initiating treatment at the appropriate time are crucial. With broad
impact encompassing the medical landscape, ML has transformed how we diagnose dis-
eases, make predictions, analyse images, provide personalised treatment and aid patients.
ML approaches have already been utilised to treat COVID-19, diabetes, pneumonia, cancer,
dementia, liver failure and Parkinson’s disease, amongst other ailments. They provide
accurate detection and estimation results [35–40], and this has helped decrease human
intervention in clinical practice.

From the start of the COVID-19 pandemic, we have seen a variety of areas where ML
has been used extensively. Predicting the outbreak of COVID-19 in different countries,
estimating the occurrence of the next wave and its severity, predicting mortality rates,
contact tracing, detection of people not wearing facemasks or practising social distancing,
developing vaccines to better understand the correlation of the underlying problems of the
patient with mortality rate [41], etc., have been some of the use cases of ML. Early diagnosis
of COVID-19 patients is critical to prevent the illness from progressing in an individual
and from spreading to others. Research has shown that radiological imaging of the chest,
such as computed tomography (CT) and X-ray, can be helpful in the early detection and
treatment of COVID-19 [42]. A survey of recent literature reveals that COVID-19 mortality
can be easily predicted using CT scans [43]. Narin et al. [44] were able to build a deep
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convolutional neural network (CNN) model which was able to detect COVID-19 with an
accuracy greater than 96% using chest X-ray scans. Ozturk et al. created a DL model named
DarkCovidNet, which could detect COVID-19 accurately up to 98.08% from chest CT scan
images [45]. According to these studies, these models could predict COVID-19 effectively
and were as reliable as RT-PCR tests. Apart from that, they are much quicker and instantly
produce results. However, these methods are invasive and need to have a radiology expert
who can interpret the results, thus making the tests expensive. Furthermore, doctors do
not recommend CT scans for all patients due to the radiation emitted by the machine,
which can cause cancer [46]. X-rays are also prone to false-negative results [34], among
other pitfalls.

Blood markers, epidemiological parameters and other demographic factors can be
used for preliminary diagnosis of COVID-19. Unlike CT scans and X-rays, these facilities
are available in all hospitals. The demographic parameters can be easily collected from
patients. These tests can be used in parallel with RT-PCR tests. Muhammed et al. [47]
used supervised ML models to predict COVID-19 using a Mexican epidemiological dataset.
Eleven features were extracted for training the ML models. The dataset was obtained from
the General Director of Epidemiology, who had published it on their website [48]. Five
ML algorithms: decision trees, logistic regression, naïve Bayes, support vector machine
and artificial neural networks (ANN) were deployed. The accuracies obtained by them
were 94.99%, 94.4%, 94.36%, 92.4% and 89.2%, respectively. The article concluded that
these models could be effectively deployed in hospitals. Quiroz-Juarez et al. [49] used
ML to identify high risk coronavirus patients. The dataset obtained for this research
was published by the Mexican Federal Government [48]. Four ML algorithms: neural
networks, logistic regression, support vector machines and K-nearest neighbours (KNN)
were used. The accuracies obtained were 93.5%, 92.1%, 92.5% and 89.3%, respectively.
The article concluded that neural networks could easily outperform conventional machine
earning algorithms. Prieto [50] used the Mexican dataset to forecast COVID-19 using ML
and Bayesian approaches. Parameter estimation techniques were used in the beginning.
Clinical analysis was performed later. The synthetic minority oversampling technique
(SMOTE) was used in this research to balance the dataset. The author claimed that the
techniques mentioned above are accurate and many false-positive and false-negative results
have been eliminated. Iwendi et al. [51] used ML algorithms to diagnose COVID-19 in
patients from Brazil and Mexico. Demographics, social and economic conditions, symptom
reports and clinical factors were all considered. The models they developed obtained an
accuracy of 93% for the Mexican dataset and 69% for the Brazilian dataset.

AI was used in early COVID-19 detection in [52]. Decision tree, Support Vector
Machine and voting classifiers were used on the benchmarked dataset from Mexico. The
best model obtained sensitivity, specificity and AUC of 75%, 61% and 72%, respectively. The
results obtained were satisfactory according to the study. The effect of medical conditions
on COVID-19 susceptibility was studied in [53]. Many COVID-19 datasets were considered
for this research. The study claims that diabetes is a strong factor which links to COVID-19
mortality and that comorbidities such as hypertension and obesity are also important.
Maouche et al. [54] used four ML algorithms: Multi-Layer Perceptron (MLP), decision tree,
random forest and Gradient Boosting to diagnose COVID-19 using the Mexican dataset.
The accuracies obtained by the models were 97.92%, 97.14%, 99.06% and 99.28%. Feature
importance methods were used and the most important parameters were age, hypertension,
pneumonia, diabetes and obesity.

Delgado-Gallegos et al. [55] used a decision tree model to understand the stress
occupancy in healthcare professionals from Mexico. An accuracy of 94.1% was obtained by
the models. Many frontline COVID-19 workers suffered from compulsive and xenophobia
stress, according to the study. A random forest algorithm was used to predict the diagnosis
of COVID-19 in [56]. A precision of 95% was obtained by the model. The article concluded
that non-clinical diagnosis using information technology is going to play a crucial role
in medical settings in the coming years. Mukherjee et al. [57] used KNN to diagnose
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COVID-19 using a cloud-based Internet of Things (IoT) system. Seven COVID-19 datasets
were used for this research. An ant colony optimization (ACO) algorithm was used for
feature selection. Maximum accuracy of 97% was obtained by the models. The rest of the
related articles are described in Table 1.

Table 1. Related works which diagnose and predict COVID-19 mortality using machine learning approaches.

Reference Models Accuracy Critical Analysis/Findings

[58] K-Means and Principal
Component Analysis -

The use of unsupervised learning in COVID-19
diagnosis. The use of principal component analysis

in feature selection is also highlighted.

[59]
Naïve Bayes, Decision Tree, KNN,
Support Vector Machine, Random
Forest and Multi-layer perceptron

96% The use of data mining to assist machine learning.

[60] Logistic Regression and Support
Vector Machine 72% Accurate severity classification.

[61]
Decision Tree, Random Forest,
Rotation Forest, Multi-Layer

Perceptron, Naïve Bayes, KNN
87% The use of rotation forest in diagnosing COVID-19.

[62] Many ML models 87%
The main causes of COVID-19 deaths in Mexico

were due to age, chronic diseases, bad eating habits
and unnecessary contact with infected people.

[63] Ensemble Algorithms 96% The use of feature importance techniques such as
Shapley Additive Values.

[64] Random Forest, XGBoost, KNN
and Logistic Regression 92% The use of local interpretable

model-agnostic explanations.

[65] Ensemble Algorithms 85% The use of SMOTETomek in data balancing.

3. Materials and Methods
3.1. Dataset Description

Mexico is one of the worst-hit countries with COVID-19, with over 5,770,000 cases
and 325,000 deaths, as of 1 June 2022. It has one of the highest mortality rates of COVID-19,
globally. There has also been an acute shortage of RT-PCR test kits, along with the fact that
many of the tests were not conducted in an environment which could provide maximum ac-
curacy. The dataset used in this research belongs to the official COVID-19 dataset provided
by the General Directorate of Epidemiology in Mexico [66]. The data were compiled using
a “sentinel model” in which 10% of patients with a viral respiratory diagnosis were tested
for COVID-19 from 475 USMER (Unidades Monitoradas de Enfermedad Respiratoria Viral)
hospitals to monitor viral respiratory diseases located throughout the country’s health
sector (ISSSTE, IMSS, SEMAR, SEDENA, etc.). The dataset used is taken from a period
starting from 23 January 2020 to 26 March 2022, containing details of 15,519,390 tuples
(rows) and 41 columns. Each row represents a patient record, while the columns are the
various clinical, demographic and epidemiological parameters. The original dataset is
collected in Spanish. It consists of the lab results for COVID-19 tests conducted in Mexico.
This is an open-access dataset accessible to all users who need it to facilitate access, usage,
reuse and redistribution. The details of the attributes are described in Table 2.
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Table 2. List of attributes present in the Mexican COVID-19 dataset after converting to English
(variable type is denoted in brackets).

Categories Characteristics

(1) Medical History 1. Pneumonia (Integer) 8. Other chronic illnesses (Integer)
2. Pregnancy (Integer) 9. Cardiovascular disease (Integer)
3. Diabetes (Integer) 10. Obesity (Integer)
4. CPOD (Integer) 11. Renal disease (Integer)
5. Asthma (Integer) 12. Tobacco (Integer)
6. Autoimmune disease (Integer) 13. Smoke (Integer)
7. Hypertension (Integer)

(2) Demographic Data 14. Address (String) 21. Birth City (String)
15. State (String) 22. Age (Integer)
16. Simple Address (String) 23. Nationality (String)
17. Origin (String) 24. Indigenous (Integer)
18. Sector (String) 25. Migrant (Integer)
19. Gender (Integer) 26. Original Country (String)
20. Birth State (String)

(3) Medical Information 27. ID (Integer) 35. Last update (Date)
28. Last updated test date (Date) 36. Type of care (Integer)
29. Registration Number (String) 37. ICU admission date (Date)
30. Hospital address (String) 38. Date symptoms began (Date)
31. Classification Final (Integer) 39. Patient Death date (Date)
32. Delay (Integer) 40. Intubation (Integer)
33. Case Address (String) 41. Contact (Integer)
34. Register Address (String)

3.2. Data Pre-Processing

Since all the column names of the dataset had initially been in Spanish, translation to
English was done before any pre-processing. Each column represented a different type
of feature. The features were categorized into three major classes: (a) variables used for
record-keeping, (b) variables used to store demographic details and (c) variables used to
store clinical information about the patient. Elimination of all the record-keeping variables,
such as the record id, date of update of the records, etc., was conducted since they were
not relevant to the objectives of this research. We retained only two features among the
demographic variables: sex and the patient’s age. From the clinical information records
of the patients, the following features were chosen: pneumonia, pregnancy, diabetes,
COPD, asthma, autoimmune disease, hypertension, other chronic diseases, cardiovascular
disease, obesity, renal chronic disease, tobacco and if the patient had contact with any
other patient. From the 39 initial parameters, the number of features was reduced to 15.
The “Classification_Final” was the target variable or result, which identified if the patient
had COVID-19 or not. The values for input parameter “gender” in the original dataset
was encoded to 1—female, 2—male and 99—if not specified. For males, the values were
replaced from ‘2’ to ‘0’ to obtain a Boolean encoding. For other variables, they were encoded
in a number format: 1 for “yes” and 2 for “no”. All the twos were replaced with ones for
better understanding. The attribute age had numerical values. The Classification_Final
variable had an original encoding of the range 1–7 where ‘1’ and ‘2’ represented COVID-19
positive results, 3 indicated SARS-CoV-2 cases, the value ‘4’ described an invalid case, the
value ‘5’ meant that a laboratory did not perform the testing, ‘6’ indicated suspicious cases
and ‘7’ represented the SARS-CoV-2 negative cases. The rows which had the values ‘4’,
‘5’ and ‘6’ for the Classification_Final column were dropped, and the values ‘1’, ‘2’ and
‘3’ were replaced by a single value 1 to indicate that they were infected with COVID-19
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and ‘7’ which stated that COVID-19 negative cases were replaced by 0 to effectively obtain
a Boolean ‘0/1’ output from the model. After this step, the dataset had 14,307,250 rows
and 16 columns. Further, exploratory data analysis (EDA) was performed on the dataset
to understand the data better. Figure 1 describes the number of people who succumbed
to COVID-19, the age distribution of the population which was tested and the number of
males and females tested. The data types were analysed, and all the rows with missing
values were deleted since the dataset was huge. The rows which had corrupt data were
systematically eliminated too. The hospitals had already normalized the values of all
the attributes.
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After initial data exploration, Pearson’s correlation coefficient analysis was utilised
to understand how each variable influenced the result and other variables. The Pearson
correlation represented by “r” is used to understand the relationships among various
parameters. If the correlation coefficient value is “1/−1” with the output, it demonstrates
that there is a perfect relationship, while 0 indicates it has no effect. If the correlation
coefficient value is positive, it shows that the variable affects the result positively. If it is
negative, it offers an inverse impact on the output. The correlation coefficient analysis
technique is based on the premise that the significance of a feature set within a dataset may
be evaluated by examining the strength of the association between variables’ characteristics.
If the values range between 0.7 and 1.0, it is a strong correlation. If the values range between
0.3 and 0.7, it is considered a moderate correlation. Any value below 0.3 indicates a weak
correlation [67]. Figure 2 shows the variables with a high and low correlation with the
target variable (RT-PCR result). Some variables have a slight positive correlation relation
and some variables have a slight negative correlation with the result. The “pneumonia”
attribute shows the highest correlation among all variables, followed by age. This means
that older adults are at an increased risk of contracting the virus. Some other interesting
details from the coefficient analysis were found as well, such as men were at a higher
risk of contracting the disease than women. The comorbidities also played an important
role, and the features that had the most influence were hypertension, diabetes and obesity.
Autoimmune diseases did not affect the result. A threshold modulus value of 0.01 was
set to further eliminate the variables which had negligible influence on the output. Based
on this value, the features COPD, asthma, autoimmune disease, cardiovascular disease
and renal chronic disease were eliminated. This helped to narrow the dataset to the ten
best features.
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3.3. Some Machine Learning Algorithms and Related Terminologies

The first step in the ML process is to gather reliable data from a range of sources.
This stage of data collection is critical to the modelling process. Choices such as selecting
improper features or concentrating only on a subset of the data set’s items might make the
model less efficient. It is critical to take the required precautions while obtaining data since
errors committed at this point will only exacerbate issues as advancement to the subsequent
phases is made. The second step involves data preparation and processing. The primary
objective of this step is to identify and mitigate any possible biases in the data sources and
their characteristics. Combination of all the data and randomization of it is performed in
this stage. This ensures that data are dispersed uniformly and the ordering has no effect
on the learning process. Analysis of data must be done carefully to understand the data
and their properties. Filtering of unnecessary features, such as names, IDs, etc., which
have no significance to the model’s output, were removed. Further, processing was done
to find if there were any discrepancies present such as missing data, duplicate data and
wrong data which can skew the results. This can be performed by visualizing the data in
order to comprehend its structure and the relationships between the variables and classes.
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Exploratory analysis can help us detect imbalances and relationships within the data and
outliers and null values can be systematically eliminated. Further, feature scaling may be
performed to have a uniform distribution of values. Data transformation by feature scaling
also has other benefits such as an increased training speed, better prediction outputs and
effective memory utilization. There are two major types of feature scaling: normalization
and standardization. Normalization is a mapping method that creates new ranges from
existing ones [68]. Of the several methods of normalization and standardization, such as (a)
scaling to a range, (b) clipping, (c) log scaling and (d) Z-score, we look at min-max scaling
which is a popular one where the values are converted in the range of 0 and 1 or −1 and 1.

The simple formula for min-max scalar that can scale data to a range is:

X′ = (X − Xmin)/(Xmax − Xmin) (1)

Here X, Xmax, Xmin and X′ represent the original value, maximum value, minimum
value and normalized value of the feature, respectively. Standardization, also known as
variable scaling is another scaling technique [69]. It results in zero mean and unit standard
deviation for each attribute in the dataset. It is also referred to as z-score normalization and
can be defined as follows:

X′ = (X − µ)/σ (2)

Here X, µ, σ and X′ represent the original value, mean value, standard deviation and
the standardized value for an attribute, respectively. Any of the above scaling methods
can be used. To further enhance the accuracy, conversion of the string and object data type
attributes to integer types is performed. There is another critical part of data processing
which is segmenting the datasets into train-test splits. The bigger portion will be used
to train the model, while the smaller portion will be used to evaluate it. Furthermore,
the datasets should be divided in such a way that they are not leaning toward a bias.
This is critical, since reusing the same datasets for training and evaluation will distort
the model’s efficiency. A processed input for the ML model may significantly increase
its performance. It may also aid in decreasing the model’s errors, resulting in increased
prediction accuracy. As a result, it is essential to consider and examine the datasets to
fine-tune them for better classification results. The next step is to choose a model which best
aligns with the dataset. Different algorithms were created with distinct objectives in mind.
It is imperative to select a model that is appropriate for the given problem from a variety of
models designed for a spectrum of tasks, including voice recognition, image classification
and general prediction. In this study, supervised classification algorithms were utilised to
build models for predicting COVID-19 infection. Algorithms such as logistic regression,
random forest, artificial neural networks (ANNs), decision trees and ensemble models such
as extreme gradient boosting (XGBoost) were used for training purposes. The next step in
the ML process cycle is the training stage. The pre-processed data are fed into the model
which then learns the underlying patterns in it. Most of the dataset is utilized for training.
This step takes a considerable amount of time as training models on large datasets with
complex patterns require many iterative improvements on the part of the optimization
algorithm. Once the model is trained, the final step is evaluating it to see how well it
performs. It explains how well the model has been predicting by testing it on data it has not
previously been exposed to, i.e., the test set. By testing it on the unseen data, we can obtain
a better understanding if the model is able to adapt to new information and extrapolate to
give correct outputs.

An important part of choosing the right model for the task is contingent upon success-
ful hyperparameter tuning. Hyperparameter tuning seeks to emphasize the favourable
outcomes obtained during the previous training cycles. The model is analysed and im-
proved and this is accomplished by fine-tuning the model’s parameters. The performance
peaks for certain values of the parameters are retained and utilized to build the final model.
The term hyperparameter tuning refers to the process of determining these values for the
variables. There are several methods to determine these optimal values: one of these is to
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return to the training stage and train the model using several iterations of the training data.
This might result in increased accuracy since the extended length of training exposes the
model to more variations of system parameters applied to the training set and increases its
quality by exploring a broader region of the search space. Another approach is to refine the
model’s initial values. Arbitrary starting values often provide suboptimal outcomes. How-
ever, if we can improve the starting values or possibly start the model with a distribution
rather than a number, the predictions may improve. There are also hyperparameters that
one may tweak to observe changes in model performance. Examples of hyperparameters
used in a simple model which can be altered are—learning rate, loss function applied, the
training steps, etc. In this work, we use a grid search optimization technique to obtain
optimized values for the parameters. Grid search is a tuning technique which performs
comprehensive searching for the parameter by manually checking every value within the
hyperparameter space which has been specifically defined.

Once model tuning is complete, the trained model is available for the final step in the
pipeline to make predictions using the model. At this point, the model is deployed for use
on unseen data. The model develops autonomy from human intervention and makes its
predictions based on the test input and mapping it has learned from the training data. The
machine learning algorithms used for this research are elaborated below. Figure 3 describes
the process-flow of this research.

• Logistic regression: For binary and multiclass classification problems, logistic regres-
sion is an extensively used statistical classification approach. The logistic function is
used to forecast the likelihood of a class label [70]. The model gives exceptional results
when the labels are binary. Contrary to its name, this is a classification model, not a
regression model. It is quite simple to implement and achieves excellent performance
when using linearly separable classes. It uses the sigmoid function to classify the
instances. The mathematical equation for logistic regression can be given as:

log(P(Y)/(1− P(Y))) = β0 + β1Y (3)

where P is the probability that Y belongs to class C and β0 and β1 are model parameters.
• Random forest: The random forest (RF) method is a widely used machine learning

technique that interpolates the output of numerous decision trees (DT) to produce a
single result [71]. It is based on the notion of ensemble learning, which is a method for
integrating several weak classifiers in order to solve a complex problem. It can be used
for both regression and classification problems. RF is a technique that extends the
bagging approach by combining bagging with feature randomization to generate an
uncorrelated forest of decision trees. It partitions the data into training and testing sets
using the bootstrapping data sampling approach. The model builds trees repeatedly
with each bootstrap. The final forecast is based on the average vote for each class.
The larger the number of trees in the forest, the better the reliability. The chance of
overfitting also decreases drastically. Further, it provides great flexibility since it can
accurately perform classification and regression jobs with high accuracy. It can also be
used to understand the importance of each feature. However, its main disadvantage
is that these models are very complex and require much time and memory to train
the models. The equations to calculate the Gini impurity and entropy are described in
Equations (4) and (5). Both Gini impurity and entropy are measures of impurity of
a node.

Gini Impurity =
c

∑
k=1

fk(1− fk) (4)

Entropy =
C

∑
k=1
− fi log( fi) (5)

where f is the frequency of the label and c represents the number of labels.
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• XGBoost: The extreme gradient boosting (XGBoost) [72] algorithm is another pre-
diction modelling algorithm based on ensemble learning, which can be applied to
classification, regression and ranking problems. Generally, gradient boosting algo-
rithms may suffer from overfitting as a result of data inequality [72]. However, the
regularisation parameter in the XGBoost technique mitigates the danger of model
overfitting. It is also an iterative tree-based ensemble classifier which seeks to improve
the model’s accuracy by using a boosting data resampling strategy to decrease the
classification error. The algorithm is composed of a number of parameters. The ideal
parameter combination improves the model’s performance. It also makes use of the
previous unsuccessful iteration results in the subsequent steps to achieve an optimal
result. The XGBoost algorithm makes use of several CPU cores, allowing for simulta-
neous learning during training. The objective function of XGBoost is given by the sum
of loss and regularization function as described in Equation (6).

obj(θ) =
n

∑
k

l
(
yk − y′ik

)
+

j

∑
j=1

ω
(

f j
)

(6)

where f j is the prediction and where j is the tree (regularisation function).
• AdaBoost: Adaptive boosting, also referred to as AdaBoost, is a machine learning

approach that uses the ensemble methodology [73]. It is a meta-algorithm for statistical
classification that may be used in combination with a variety of learning algorithms
to enhance performance [73]. It is a widely used algorithm and it makes use of the
terminology named decision stumps, which are single-level decision trees (decision
trees with just one split). A key feature of AdaBoost is its adaptivity based on the
results of the previous classifiers. The first step of the algorithm involves constructing
a model where all data points are assigned equal weights. Points that have been
misclassified are provided with larger weights. With this change, the models deployed
subsequently are expected to be more reliable. The model continues to train till it
reduces its loss function. However, AdaBoost’s performance degrades when irrelevant
features are added. It is also slow compared to XGBoost since it is not tuned for speed.
The model function for AdaBoost is described in Equation (7).

H(x) = Sign(
T

∑
t=1

αtht(x)) (7)

The final classifier has a result H(x) for x which is given by the sign of weighted
summation of outcomes of T weak classifiers denoted by ht(x) and the weights assigned αt
which is calculated by using the error term of the classifier T.
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• KNN: The k-nearest neighbours algorithm (k-NN or KNN) is a simple non-parametric
supervised ML algorithm used for both regression and classification [74]. A dataset’s k
closest training instances serve as the input for the model’s learning process. It is also
known as a “lazy learner” algorithm since it does not utilise the input during training.
The KNN algorithm is based on the principle of majority voting. It gathers information
from the training dataset and utilises it to make predictions about subsequent records.
The first step in a KNN algorithm is to select k number of neighbours where k is an
optimal constant. Calculation of the Euclidean distance (or Hamming distance for text
classification) is conducted to find the nearest data points. Choosing a suitable value
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of k is crucial as it affects the functioning of the algorithm. The benefits of the KNN
model include its robustness, ease of implementation and its ability to pre-process
large datasets. However, selecting the right k value requires expertise. Further, it also
increases the computational time during testing.

• ANN: Artificial neural networks (ANNs) mirror the human brain’s functioning, en-
abling software programs to discover patterns in large datasets [75]. They make use of
nodes referred to as artificial neurons, interconnected over multiple layers of varying
sizes to mimic the activities and roles of biological neural networks in the human
brain. To their credit, ANNs have the ability to draw inferences about the correlations
between variables which is not possible with other types of statistical models. The
ANN architecture is composed of a series of node layers, they consist of a single input
layer, connected to one or more hidden layers, which are then connected to an output
layer. The nodes link to one another and each of them has a weight and threshold as-
sociated with it. Only when a node’s output exceeds a certain threshold, is it activated
and begins transferring data to the network’s next layer. The node architecture for the
ANN model is described in Figure 4.
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• SMOTE: Data imbalance is a common problem in medical machine learning and often
results in overfitting. Imbalanced class distribution has a considerable performance
penalty in comparison to most traditional classifier learning techniques that assume a
generally balanced class distribution and equal misclassification costs. An effective
method to overcome dataset imbalance in ML is by using the synthetic minority
oversampling technique (SMOTE) [76]. SMOTE employs an oversampling technique
to adjust the initial training set. Rather than just replicating minority class cases,
SMOTE’s central concept is to offer new artificial instances which are similar to the
minority class. This new dataset is constructed by interpolating between numerous
occurrences of a minority class within a specific neighbourhood. In this research, a
technique called the Borderline-SMOTE was used. It is based on the principle that
borderline cases may provide negligible contribution to the overall success of the
classification [77]. The models are more reliable when the data are balanced. Figure 5
shows the dataset before and after the use of the Borderline-SMOTE algorithm. Further,
the training data were split randomly into an 80:20 ratio, with the larger proportion
of the partition reserved for training the model. The smaller set was used for testing
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the models’ performance. It was made sure that both the subsets maintained a similar
composition and lacked bias. 
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• Shapley Additive Values (SHAP): SHAP is based on the principle of game theory and
it is used to increase the interpretability and transparency of the ML models [78]. Most
ML and deep learning models are compatible with SHAP. The ‘Tree-Explainer’ proce-
dure is mainly used in tree-based classifiers such as decision tree, random forest and
other boosting algorithms. SHAP employs a variety of visual descriptions to convey
the importance of attributes and how they influence the model’s decision making. The
baseline estimates of various parameters are compared to forecast the prediction.

• Local Interpretable Model-Agnostic Explanations (LIME): LIME is independent of any
model and can be used with all the existing classifiers [79]. By adjusting the source of
data points and seeing how the predictions vary, the technique seeks to understand
the model’s prediction. To acquire a deeper understanding of the black-box model,
specific approaches look at the fundamental components and how they interact in
LIME. It also modifies the attribute values in a particular order before assessing the
impact on the whole outcome.
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4. Results and Discussion

This study establishes a strategy for detecting COVID-19 patient outcomes by tracking
patients’ demographic, clinical and epidemiological characteristics. Early diagnostic fore-
casting of SARS-CoV-2 can help reduce the burden on the healthcare system and help save
lives by predicting COVID-19 before the condition becomes extremely severe. A variety of
supervised ML algorithms have been used to understand the hidden correlation between
the features by utilising an epidemiological dataset of coronavirus cases in Mexico.

4.1. Performance Metrics

The model’s precision, accuracy, F1-score, recall/sensitivity and AUC were all tested
using the conventional assessment metrics. Additionally, a confusion matrix was also used
to understand the results (true positive, true negative, false positive, false negative). The
models were tested on the 20% validation data which were not used during the training
phase. All classes contribute equally to the final averaged statistic in macro-average since
the Borderline-SMOTE data balancing technique was used prior to training.

• Accuracy: It is a measurement which calculates the number of COVID-19 cases diag-
nosed accurately from the total number of cases. Correct diagnosis in this scenario
is when the prediction for the case is positive, and its result is positive or when the
prediction for the case is negative, and the result is also negative. It is an important
metric to understand if the model is accurately diagnosing the virus. It is given by
the formula:

Accuracy =
tp + tn

tp + tn + f n + f p
(8)

• Precision: It is another metric which calculates the ratio of patients correctly diagnosed
as COVID-19 positive from the total patients predicted as COVID-19 positive by the
ML models. This means that it also considers the false-positive cases, which are
the patients incorrectly diagnosed with COVID-19 positive diagnosis. This metric
indicates the merit of the positive cases diagnosed by the algorithm and to understand
that if a patient was predicted as COVID-19 positive by the model, what would be the
likelihood of them being affected by it. It is given by the formula below:

Precision =
tp

tp + f p
(9)

• Recall: It is a performance metric that can be defined as the ratio of the patients
correctly diagnosed as COVID-19 positive to the total patients infected by the virus.
This metric emphasizes the false-negative cases. The recall is exceptionally high when
the number of false-negative cases is low. It is calculated by the formula given below:

Recall/Sensitivity =
tp

tp + f n
(10)

• F1-score: It is an estimate which gives equal importance to the precision and recall
values obtained previously for the COVID-19 cases. It gives a better idea about the
positive cases of the virus obtained. It is given by the following formula:

F1− score = 2× precision× recall
precision + recall

(11)

• AUC (area under curve): The ROC (receiver operating characteristic) curve plots the
true positive rate against the false-positive rate for various test instances. It indicates
how well the models are differentiating the binary classes. The area under this curve
is the AUC. High values for AUC indicate that the classifier is performing well.

• Confusion matrix: For binary classification, the confusion matrix is a 2 × 2 matrix.
All the classified instances will be in the confusion matrix. The diagonal elements
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indicate the correct classified instances (both true-positive and true-negative). The
non-diagonal elements indicate the wrongly classified instances (both false-positive
and false-negative). All the mentioned performance metrics can be easily calculated
using the confusion matrix.

4.2. Model Evaluation

All the models were developed using the Python programming language in an open-
source Jupyter notebook integrated development environment (IDE). All the essential
libraries required for data analysis by the Python notebook, such as pandas, NumPy, Scikit,
Keras, Seaborn, mathplotlib, etc., were installed and set up in the Conda virtual environ-
ment. They were used to assist in training the model and creating plots to better understand
the data and results using graphical tools. They were trained on a standalone personal com-
puter with an Intel Core i5 8th Generation processor, 16 GB RAM and 1.6 GHz processor in
a Manjaro Linux operating system environment. All the models were subsequently trained
with an 80:20 training–testing ratio. The confusion matrices obtained by the classifiers for
the testing data are described in Figure 6. As the image depicts, the false-positive and
false negative values are extremely few. This indicates that most of the COVID-19 patients’
diagnoses have been predicted accurately.

XGBoost is a turbocharged decision tree-based algorithm whose strength stems from
software and hardware enhancements which improve the accuracy and significantly ac-
celerate the processes. It utilises more precise estimates to build the optimal decision tree
and has been known to test the boundaries of computation by iteratively simulating every
prediction depending on the error of its antecedent. During the training stage, this classifier
obtained an accuracy of 94.5%. The precision, recall and F1-score values obtained were
94.7%, 93.8% and 94.2%, respectively. During the testing phase, the models obtained an
accuracy, precision, recall and F1-score of 92%, 92%, 91% and 91.4%, respectively. The
model was tuned to enhance its performance by modifying parameters such as the maxi-
mum depth of the tree, the learning rate and the number of trees in the ensemble model.
The subsample and regularization parameters, such as alpha and lambda, were used to
avoid overfitting, and for each tree, a randomised sample of columns was considered.
The parameters were initially chosen by intuition and were further optimised using grid
search iteratively.
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Using AdaBoost, many flaws in the model can be improved. It gives importance to
both data samples and models which makes the algorithm focus on observations which
are tricky to categorize. Further, it makes use of decision stumps to sequentially train
weak learners. While training, accuracy, precision, recall and F1-score values of 92.1%,
88.9%, 91.2% and 90% were achieved using the AdaBoost model. During the testing
phase, the scores were 90.4%, 90.1%, 89.5% and 89.8%, respectively. The SAMME R (a new
variant of the AdaBoost model) algorithm was used as it adjusts the additive model based
on the probability predictions and is more accurate and quicker than the conventional
classifier [80]. Apart from the above techniques, the weak learners were continuously
varied using base models such as logistic regression, decision tree and random forest.
Decision tree was found to be the most effective.

An artificial neural network (ANN) is made up of numerous perceptrons. Its function
is to train the model by computationally mimicking, in high-level terms, the operating
principles of biological neurons present in the human brain. They are constructed using
several interconnected layers with weighted connections. It makes use of the concept of
backpropagation to adjust weights and biases after incorporating feedback. After comple-
tion of training, it yielded accuracy, precision, recall and F1-score of 86.6%, 84.9%, 83.2%
and 84.1%, respectively. For testing, it obtained accuracy, precision, recall and F1-scores
of 86.2%, 88.2%, 83.1% and 85.7%, respectively. A decaying learning rate was chosen to
maintain the convergence. Further, three hidden layers were used using a leaky rectified
linear unit (Leaky ReLU) and sigmoid as activation functions. The adaptive moment
estimation (Adam) optimizer with a batch size of 32 was utilized. ADAM is considered
to be a cross between stochastic gradient descent with momentum and root mean square
propagation (RMSprop) [81]. ADAM was chosen as the training cost for it was the least
and it outperformed other optimisers. The number of neurons in the layers and dropouts
were decided using the grid search technique.

Random forest is a collection of several decision trees. The results of the trees are
combined to classify the instances based on majority voting. The first step is to create a
randomised sample from the original data for each tree. For every node, a random selection
of characteristics is chosen to achieve the best split possible. During training, the accuracy,
precision, recall and F1-score obtained were 91%, 91.6%, 89.9% and 90.7%, respectively.
During testing, the accuracy, precision, recall and F1-score obtained were 89%, 88.3%,
88.1%and 88.2%, respectively. To optimize the model’s output, a variety of hyperparameter
tuning methods were utilized. Tree count, node depth, the number of leaf nodes and the
branch level were some of the parameters considered.

KNN assigns new data points to categories based on their similarity measure, which is
often a distance measure such as Euclidean distance or Manhattan distance. It classifies new
instances using a majority voting technique using the number of nearest neighbours. After
training, the accuracy, precision, recall and F1-score obtained were 91.9%, 92.3%, 90.6% and
91.3%, respectively. During the testing phase, the accuracy, precision, recall and F1-score
obtained were 91.6%, 91.7%, 90.5% and 91%, respectively. The most important parameter
for the KNN algorithm is the value of ‘K’ (The number of neighbours to consider). In this
research, the elbow method was used to find the optimal value of ‘K’ [82]. Further, the ball
tree algorithm was used since the dataset was huge and had complex patterns [82]. Other
parameters, such as leaf size, bias weights and metrics, were also optimized using the grid
search technique.

Binary logistic regression uses the sigmoid function to classify instances. After training
the model, the accuracy, precision, recall and F1-score obtained were 84.2%, 73.3%, 63.8%
and 68.2%. Compared to other models, the performance of logistic regression was poor
since it uses a simple approach. For testing, the model obtained accuracy, precision, recall
and F1-score of 78.4%, 70%, 60.1% and 64.7%. The gradient descent algorithm was chosen
with the regularization parameter ‘C’ whose values were tested from 0.01 to 100 for optimal
hyperparameter tuning.



Information 2022, 13, 330 19 of 28

Table 3 summarises the results obtained by the classification algorithms. The AUCs
are described in Figure 7. Experimental results demonstrated that the XGBoost model
performed the best among all the classifiers. ANN, RF, AdaBoost and KNN yielded an
accuracy of 86.2%, 89%, 90.4% and 91.6%, respectively. The training and testing accuracies
of all the models are described in Figure 8. Further, all the metrics of all the classifiers are
pictorially depicted in Figure 9.

Table 3. Summary of the results obtained by various machine learning models used in this research
(in percentage).

Model
Training Testing

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

XGBoost 94.5 94.7 93.8 94.2 92 92 91 91.4
AdaBoost 92.1 88.9 91.2 90 90.4 90.1 89.5 89.8

ANN 86.6 84.9 83.2 84.1 86.2 88.2 83.1 85.7
Random

forest 91 91.6 89.9 90.7 89 88.3 88.1 88.2

KNN 91.9 92.3 90.6 91.3 91.6 91.7 90.5 91
Logistic

Regression 84.2 73.3 63.8 68.2 78.4 70 60.1 64.7

XGBoost, due to enhancements in its algorithm, was able to understand the data
better and give superior results. It works by enhancing the core gradient boosting machines
framework using system optimisations such as pruning. The approximate greedy algorithm
performs really well on the COVID-19 data because it creates trees in parallel, approximates
the splits in the trees and employs its unique sparsity-aware split finding method which
takes care of dense zero entities, missing values and one-hot encoded data, this is very
useful for large dataset such as this one. XGBoost further takes advantages of regularization
algorithms LASSO (L1) and Ridge (L2) to inflict a greater penalty on more complicated
models to prevent overfitting along with its convex loss function. It also implements
the quantile sketch technique to locate the ideal split locations for weighted datasets
and has an inbuilt cross validation algorithm which is executed after each step. These
distinctive characteristics help the XGBoost outperform the other models when they are
run independently on the COVID-19 dataset.
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RT-PCR and RAT COVID-19 testing can be supplemented using these models, which
is beneficial in areas where there is an acute shortage of the above test kits. The classifiers
can also be used in parallel to prevent false-negative results. It can also be highly useful
during instances such as a pandemic peak. Further, these supervised ML techniques
may be utilised retrospectively. This research demonstrates the potential of ML-based
estimation techniques as tools augmenting interventions against the COVID-19 pandemic.
With customized process pipelines in place, the described methods may also extend to
enable early intervention against other diseases and new pandemics which might occur
in future.
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4.3. Feature Importance using SHAP and LIME

As automation becomes ever more feasible in the face of increased computational
budgets, regardless of the number of ethical and legal considerations, clinical predictions
derived using AI classifiers will have a tremendous impact on patient outcome going
forward. Therefore, highly precise, concise and interpretable models are desirable. In the
diverse medical arena, a classifier’s interpretability aids the medical professional’s ability
to validate diagnoses made. Evaluating the algorithm’s output before taking the final
decision and defending treatment choices based on the classifiers are equally important.
Further, feature estimates dependent on various parameters are critical for the resilience
and interpretability of the models. In this research, two feature importance techniques
have been utilized: (a) SHAP and (b) LIME. These two techniques help us understand the
impact of various parameters in automated COVID-19 diagnosis.

SHAP understands the model using Shapley values which describe how each at-
tribute influences the diagnosis. Figure 10a describes the bar chart obtained by SHAP.
The attributes are arranged in descending order based on their importance. According to
SHAP, the most important parameter is the presence of pneumonia. The other important
attributes include pregnancy, sex, hypertension, age, diabetes and whether the patient was
in contact with another infected patient. Further, Figure 10b explains the model precisely.
The beeswarm plot also considers the value of the clinical markers. A vertical line splits the
two classes. The colour “red” indicates a higher value and the colour “blue” indicates a
lower value. From the figure, it can be inferred that pneumonia was mostly observed in
non-COVID-19 cases (other viral infections). It can also be inferred that only a few pregnant
women were susceptible to COVID-19. From a gender perspective, men are more likely to
contract COVID-19. If a patient was in contact with another COVID-19 patient, there is a
high percentage of chance to contract COVID-19. Older people (elderly population) are
also more vulnerable in contracting this deadly virus. The presence of diabetes and obesity
also plays a crucial role in diagnosing COVID-19.
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LIME: The LIME feature importance models are described in Figure 11. Figure 11a de-
scribes a COVID-19 positive patient and Figure 11b describes a COVID-19 negative patient.
LIME forecasts other samples by creating unique training samples near the instance to be
analysed and utilizes the previous model to anticipate the cases. The instance is systemati-
cally spread based on the weights to other data points. A linear regression model is utilized
based on the new samples. This approach is used to validate the learned linear model on
a micro level. In Figure 11 the colour “blue” indicates COVID-19 negative diagnosis and
the colour “orange” indicates a COVID-19 positive diagnosis. In Figure 11a, the prediction
probability is more for the COVID-19 positive patient. The score is calculated based on
various parameters such as pneumonia, age, pregnancy, diabetes and hypertension. The
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weights of the parameters are also considered along with majority voting in coming to
a final decision. In Figure 11b, the LIME model indicates that the patient is COVID-19
negative. All the parameters except “pregnancy” point to negative diagnosis. Using LIME,
feature importance for each patient can be calculated accurately. According to explainable
AI techniques, the best features obtained were pneumonia, pregnancy, sex, another_case,
hypertension, age, diabetes, tobacco, obesity and other diseases.
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As a retrospective evaluation technique, ML models can be deployed to predict COVID-
19 diagnosis. This study describes how ML models may be built, validated and used to
swiftly identify patients. The study also highlights the use of feature importance methods
in identifying the most important markers. This aids in reducing the substantial work-
load placed on front-line health professionals. This also helps underdeveloped countries
which lack technical and clinical resources under the burden of case volume during an
infection peak.

4.4. Further Discussion

In this research, a set of epidemiological and demographic parameters strongly associ-
ated with COVID-19 were identified. The data also contained details of patients who had
similar symptoms but were diagnosed as COVID-19 negative. Before the actual test results
are obtained, these traits may help the doctors in identifying potential patients.

Many viral diseases cause pneumonia. This condition is extremely dangerous and
can lead to fatality. In severe cases, COVID-19 is known to induce pneumonia along with
conditions such as acute respiratory distress syndrome (ARDS) and multi-organ failure.
However, in this dataset, most of the COVID-19 patients did not suffer from pneumonia.
COVID-19 is known to spread among all humans including pregnant women. However,
most of the pregnant women in this dataset were diagnosed as COVID-19 negative. This
dangerous disease in known to spread rapidly. Nationwide lockdowns were imposed
to prevent the spread of this disease. It was likely that a patient could contract COVID-
19 when he was in contact with another infected patient. Patients with comorbidities,
such as hypertension and diabetes, are more vulnerable to succumb to COVID-19. This
research reinforces that diabetes, tobacco use and obesity increases the chance of infection.
According to the study, the presence of other diseases apart from the ones mentioned
above, are not extremely dangerous from an infection standpoint. Furthermore, most
patients suffering from hypertension were COVID-19 negative. These are some of the main
inferences made from the study.
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The pandemic’s heavy toll on human health and well-being has spurred various
research labs to develop intelligent systems with the purpose of automating COVID-19
detection and severity. However, only a few ML models based on demographic and
epidemiological models have been deployed. Muhammed et al. [48] used ML models
to diagnose COVID-19 for the Mexican dataset. Five ML models were utilized and a
maximum accuracy of 95% was obtained by the decision tree model. However, no feature
importance techniques were utilized to understand the model’s predictions. Juárez et al. [49]
used the Mexican dataset for COVID-19 diagnosis. Among the four ML modes, neural
network obtained the maximum accuracy of 93.5%. Iwendi et al. [51] used AI to diagnose
COVID-19 for the Brazilian and Mexican patients. However, the accuracy obtained for the
Mexican dataset was only 69%. Martinez-Velaquez et al. [52] used ML for early detection
of COVID-19 where 22 features were considered and a maximum sensitivity of 75% was
obtained. Rezapour and Colin [53] used ML to understand the relationship between
COVID-19 susceptibility and comorbidities. The abovementioned works are summarized
and compared in Table 4.

Table 4. Comparison of various researches in diagnosing COVID-19.

Reference Dataset Origin ML Models Used No of Parameters
Considered Accuracy Feature

Importance

[48] Mexico Five 10 94.99% No
[49] Mexico Various ML models 21 93.50% No
[51] Mexico Various ML models - 69% No
[52] Mexico Various ML models 22 Sensitivity-75% Gini Index
[53] Mexico Various ML models 14 Qualitative No

Proposed Mexico Six 10 94.50% SHAP and LIME

In this research, ML was used to analyse the epidemiological and demographic pa-
rameters in predicting the occurrence of infection with coronavirus causing COVID-19.
These results are often easily available in shorter time intervals and at a lower price than
radiographic and molecular tests. A dataset from Mexico was utilized and six machine
learning models commonly used in medical AI were deployed. Information about patients,
data security, integration of data and automation are the advantages of using EMR (elec-
tronic health records). We emphasize the use of data-driven models which aim to help
clinicians make better decisions by providing them with valuable information generated by
the trained models. Further, feature importance techniques, such as SHAP and LIME, have
been effectively utilized which make the model more precise, interpretable and accurate.
This helps medical professionals during the final diagnosis of the patient.

5. Challenges and Future Directions

Various challenges and clear directions for upcoming ML enthusiasts and medical
professionals are provided in this section.

5.1. Challenges

With AI making progress in leaps and bounds in the development of new algorithms,
it has increased the scope to where it can be applied. ML has many potential applications
across different medical problems. However, there is a clear dearth of such procedures
being effectively used in clinical practice. The following are some challenges that should be
addressed before widespread adoption is likely.

• Data from a single country: For this research, data were collected from Mexico. How-
ever, data from all geographic areas must be considered for better validation. This is
not a trivial task as there are clear differences in reporting standards and authenticity
across different countries.
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• Imbalance in data: In much of medical AI research, data imbalance is a persistent issue.
The number of healthy patients is always more than the number of infected people.
However, the models perform well when there are an equal number of classes. In this
research, the Borderline-SMOTE technique was used to balance the data. Appropriate
pre-processing should precede model training when working with such data.

• Original values: The data obtained for this research was already normalized. However,
original data are required to form accurate medical intuitions.

• Missing blood and clinical markers: Clinical markers, such as CRP (C reactive protein),
D-dimer, ferritin and lactate dehydrogenase (LDH) are known to be extremely useful
in diagnosing COVID-19. However, these markers were not available in the dataset.

• Variance in computer equipment: There is no one single uniform standard architec-
ture followed by machines universally. The data are quite sensitive to software and
hardware changes of the setup.

• Distributional shift in test data: An ML model will struggle to perform well if it
is unable to adapt to novel scenarios. Trained models in supervised learning are
notoriously bad at detecting meaningful changes in context or data, which leads to
inaccurate predictions based on out-of-scope data. When the ML method is incorrectly
applied to an unexpected patient situation, it might cause a disparity between the
learning and operational data.

• Difficulties in deploying AI systems on a logistical level: Numerous existing difficulties
in converting AI applications to clinical practice are due to the fact that the majority
of healthcare data are not easily accessible for machine learning. Data are often
compartmentalised in a plethora of medical imaging archiving systems, electronic
health records (EHR), pathology systems, electronic prescription tools and insurance
databases, making integration very challenging.

• Interpreting the result: The model may be able to derive complex and hidden patterns.
However, sometimes these patterns might have no meaning. This might be problem-
atic in medical applications, where there is a high need for techniques that are not just
effective, but also clear, interpretable and explainable.

• Quality of data: It is essential to obtain reliable input from authentic sources. It is also
necessary to filter out the noise which may have crept in while feeding the data.

• Data privacy: Most of the medical data obtained from the patients are highly confiden-
tial. A leak, attack or misuse of it can be catastrophic.

5.2. Future Directions

• Improving the dataset: For further research, a more balanced dataset can be collected.
Important clinical markers mentioned in the previous section can also be considered.
COVID-19 severity can also be predicted.

• Using different algorithms: This research can be expanded by experimenting with
different ML algorithms and combining them, as each model has its own pros and
cons, there could be a model which is tailor-made for this dataset

• Medical validation: Medical validation can be performed by doctors to comment
on the authenticity of the models. Further, the models can be deployed in medical
facilities and feedback on accuracy can be incorporated.

• Combining other AI methodologies: CT-scans, X-rays, MRIs, ultrasound and cough
sound analysis also use AI to diagnose COVID-19. The integration of these models is
expected to produce compelling results.

6. Conclusions

COVID-19 must be diagnosed as early as possible for the patients to obtain appropriate
treatment and prevent it from spreading to others. In recent studies, it has been proved that
laboratory markers are an excellent diagnosis method since they are relatively cheap and
easily available in most hospitals for implementation schemes using data-driven techniques.
In this work, an extensive review of related literature was conducted in the beginning. The
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dataset used in this research contained epidemiological and demographic characteristics of
patients from Mexico who were tested for COVID-19. Data pre-processing was performed
subsequently, followed by correlation analysis. The 10 best features were chosen for training
the ML models. Six popular ML classifiers commonly used in medical AI were trained
and tested. Among all the models, XGBoost achieved the highest accuracy with 94.5%
during training and 92% while testing. To understand the importance of each attribute,
feature importance methods, such as SHAP and LIME, were utilized. Furthermore, the
proposed models were compared with the other state-of-the-art models and the reliability
and effectiveness of the tested models were determined.

There is much scope for improvement in automated COVID-19 diagnosis. For accurate
and precise predictions, various factors have to be addressed, particularly in modern clinical
settings. Good quality data, rigorous testing and external validation must be conducted
by ML and medical researchers in the near future. The trained models aim at realizing
a relatively easy and inexpensive mode of quick detection of cases that may lessen the
burden on healthcare workers by augmenting their efforts, especially during periods of
increased caseload.
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