
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Faculty Research, Scholarly, and Creative Activity 

1-1-2022 

Flexible and Robust Real-Time Intrusion Detection Systems to Flexible and Robust Real-Time Intrusion Detection Systems to 

Network Dynamics Network Dynamics 

Kicho Yu 
Northeastern University 

Khanh Nguyen 
San Jose State University, khanh.nguyen@sjsu.edu 

Younghee Park 
San Jose State University, younghee.park@sjsu.edu 

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca 

Recommended Citation Recommended Citation 
Kicho Yu, Khanh Nguyen, and Younghee Park. "Flexible and Robust Real-Time Intrusion Detection Systems 
to Network Dynamics" IEEE Access (2022): 98959-98969. https://doi.org/10.1109/
ACCESS.2022.3199375 

This Article is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in 
Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU ScholarWorks. For more 
information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F3076&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ACCESS.2022.3199375
https://doi.org/10.1109/ACCESS.2022.3199375
mailto:scholarworks@sjsu.edu


Received 13 June 2022, accepted 7 July 2022, date of publication 17 August 2022, date of current version 23 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3199375

Flexible and Robust Real-Time Intrusion
Detection Systems to Network Dynamics
KICHO YU 1, KHANH NGUYEN2, AND YOUNGHEE PARK 2, (Member, IEEE)
1Khoury College of Computer Science, Northeastern University, Boston, MA 02115, USA
2College of Engineering, San José State University, San Jose, CA 95192, USA

Corresponding author: Younghee Park (younghee.park@sjsu.edu)

1

2

3

4

5

6

7

8

9

10

11

ABSTRACT Deep learning-based intrusion detection systems have advanced due to their technological
innovations such as high accuracy, automation, and scalability to develop an effective network intrusion
detection system (NIDS). However, most of the previous research has focused on model generation through
intensive analysis of feature engineering instead of considering real environments. They have limitations to
applying the previous methods for a real network environment to detect real-time network attacks. In this
paper, we propose a new flexible and robust NIDS based on Recurrent Neural Network (RNN) with a
multi-classifier to generate a detection model in real time. The proposed system adaptively and intelligently
adjusts the generated model with given system parameters that can be used as security parameters to defend
against the attacker’s obfuscation techniques in real time. In the experimental results, the proposed system
detects network attacks with a high accuracy and high-speed model upgrade in real-time while showing
robustness under an attack.
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INDEX TERMS Long short-term memory, network intrusion detection system, recurrent neural network,
real-time data analysis.

I. INTRODUCTION14

Deep learning has been popularly applied in various15

applications and solutions in diverse fields, including image16

processing and autonomous driving. In addition, deep learn-17

ing techniques have provided many benefits to developing18

network intrusion detection system (NIDS) due to automa-19

tion and high accuracy. Without human intervention, NIDS20

can detect (un)known network attacks through intensive data21

analysis based on historical attack data. Therefore, deep22

learning-based NIDS is one of the most important defense23

methods to automatically monitor network behavior and to24

detect abnormal behavior based on the built-in attack models25

through automatic feature engineering.26

Many deep learning-based IDSes (DL-IDS) have been pro-27

posed for a decade to improve the attack detection techniques28

due to advantages such as automatic feature generation, effec-29

tiveness and scalability [1], [2], [3], [4], [5], [7], [8], [9],30

[10], [17], [23]. Many deep learning methods, such as CNN,31

GAN, and Autoencoder, have been popularly utilized for the32

The associate editor coordinating the review of this manuscript and

approving it for publication was Amin Zehtabian .

development of NIDS [21], [22], [34], [35], [36]. Zhang et al. 33

proposed both SMOTE and GAN for NIDS [27], [28], [29]. 34

Several research studies applied CNN based on LSTM for 35

an intrusion detection that is appropriate for two-dimension 36

data [34], [35], [36]. Yuan et al. developed a DDOS detection 37

method [34] and Radford et al. proposed a detection method 38

to evaluate the sequence features in two directions after mod- 39

ifying the LSTM technique [35]. Wang et al. proposed the 40

modified CNN to learn spatial features and LSTM to learn 41

time features [36]. In addition, Zeng et al. proposed a payload 42

detection method with multiple deep learning models: CNN, 43

LSTM, and a stacked autoencoder [21]. Yu et al. used a 44

convolutional autoencoder to extract payload features [22]. 45

Rigaki et al. used GAN to improve the malware detection, 46

because adversarial learning like GAN enhances the robust- 47

ness of IDS [23]. 48

However, despite the trustworthiness of the DL-IDS, chal- 49

lenges remain concerning the development of real-time intel- 50

ligent IDS by adapting to network dynamics. The network 51

traffic patterns are often changed due to various conditions 52

and network environments. In general, attackers try to hide 53

their actual features and avoid detection by obfuscating their 54
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behavior. The previous DL-IDS that fully relies on historical55

training data for attack model generation cannot adapt to56

the real-time network behavior by reflecting the change of57

network features. Thus, we need to work on several important58

issues: (i) data dependency, (2) model dependence, and (3)59

impracticality. In other words, the current DL-IDS systems60

have three main weaknesses: first, they cannot update built-in61

attack models in real-time by including new network data and62

new network features. Second, the pre-built-in attack models63

cannot be improved by reflecting current network behavior.64

Third, due to these two limitations, the previous DL-IDS65

cannot show high accuracy in a real environment to detect66

real-time attacks since they cannot adjust their system to new67

network dynamics in real time. Therefore, it is important68

to address the challenges by developing a new NIDS by69

considering network dynamics and real-time characteristics70

in networks.71

This paper proposed a flexible and robust NIDS by using72

deep learning while updating the built-in attack models in73

real time by considering current network behavior and per-74

formance. The proposed system utilizes Recurrent Neural75

Network (RNN) with a multi-classifier in order to randomly76

select new data sets depending on system parameters in77

the system. It has two different approaches: the best-effort78

approach and the adaptive feature-engineering approach. The79

best-effort approach aims to upgrade the pre-built-in attack80

models by training data sets by randomly selecting a new data81

set in real time under a given random traffic size and time.82

The adaptive feature-engineering approach also updates the83

pre-built-in models through feature engineering along with84

the first method, the best-effort approach. In other words,85

the second method replaces the current model with the new86

model by updating the attack model with the new feature87

sets depending on the current network dynamics and system88

performance in real time. Therefore, the proposed method89

can detect network attacks effectively since it adapts to the90

current network environment. The proposed system randomly91

selects high-quality new data while deleting ambiguous data92

sets within a given random time. Due to the random time and93

data selection in order to upgrade the current model, attackers94

cannot disturb the proposed process even though attackers try95

to obfuscate real-time traffic patterns. Through four differ-96

ent data sets in NIDS, such as NSL-KDD 99, Kyoto 2006,97

UNSW-NB15, and CIDDS, the proposed system presented98

high performance and robustness under attacks in real time.99

The paper contributes to the following aspects in100

DL-NIDS. First, the proposed system first presents a101

real-time adaptive and robust NIDS based on deep learning.102

Second, the proposed system has random features to pre-103

vent attackers from obfuscating current traffic to interrupt104

the model generation in real time. Third, the paper explains105

the relationship between data sizes and model accuracy with106

diverse parameters in the system. Finally, we evaluate the pro-107

posed system by using large different data sets with different108

factors. We also demonstrate the robustness of the proposed109

model under attack.110

The rest of the paper is organized as follows: Section II 111

discusses the previous NIDS based on machine learning and 112

deep learning. Section III presents our proposed system and 113

Section IV shows our data sets and experimental results. 114

Finally, we will conclude our work in Section VI while 115

discussing our methods in different angles in Section V. 116

II. RELATED WORKS 117

Machine learning (ML) and deep learning (DL) techniques 118

have been popularly adapted to develop intrusion detection 119

systems (IDS) because of their high accuracy, automation, 120

and no previous knowledge requirement [1], [2], [3], [4], [7], 121

[8], [9], [10], [17]. IDS can be deployed at a single com- 122

puter such as host-based intrusion detection system (HIDS) 123

to many networks as network-based intrusion detection sys- 124

tem (NIDS) [15], [16]. IDS can be categorized based on 125

a detection method: signature-based detection method and 126

anomaly-based detection method [15]. 127

There are various kinds of machine learning-based IDS, 128

since a machine learning can be applied to packet-based 129

attack detection in IDS. Mayhew et al. proposed a 130

packet parsing-based detection method based on SVM and 131

K-means [18]. Hu et al. proposed a packet parsing-based 132

detection method based on a fuzzy C-means to reduce the 133

false alarm rate and the missed alarm rate [19]. Min et al. 134

used a text-based CNN to detect attacks from payloads that 135

provided content features [20]. Zeng et al. adopted different 136

deep learning models (CNN, LSTM, and a stacked autoen- 137

coder) to extract features as a payload analysis [21]. Yu et al. 138

trained a convolutional autoencoder model to extract payload 139

features [22]. As adversarial learning enhances the robustness 140

of IDS, Rigaki et al. used a GAN to improve the malware 141

detection effect [23]. 142

Machine learning can be applied to a feature engineering- 143

based detection method in which common features are packet 144

length, the proportion of TCP flags, and source byte [17]. 145

Machine learning-based intrusion detection systems can 146

be combined with SVM, decision tree, Naïve Bayes, and 147

K-Means to increase accuracy or to accelerate the detection 148

speed [24], [25], [26]. Ahmim et al. proposed a hierarchi- 149

cal decision tree method as a part of statistic-based fea- 150

ture detection methods [32]. Alseiari et al. applied K-Means 151

to detect attacks in smart grid [33]. Moreover, deep 152

learning-based detection learns features without previous 153

knowledge. Potluri et al. proposed a CNN-based detection 154

method because CNN is suitable to process 2-dimensional 155

data, and they used that after converting the feature vectors 156

into 2-dimensional images [27]. Zhang et al. used SMOTE to 157

up-sample the minority classes such as User to Root attacks 158

and Remote to User attacks to make the class balanced and 159

then XGBoost to detect attacks [28]. Zhang et al. improved 160

the aforementioned approach by GAN — adversarial learn- 161

ing — to improve accuracy in seven out of eight attack 162

types [29]. Teng et al. proposed a detection method based 163

on SVM by grouping traffic according to a protocol type 164

such as TCP, UDP, and ICMP [30]. Ma et al. proposed 165
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a spectral clustering-based detection method after training166

with DNN [31].167

Many research projects have also worked on sequence data168

to generate a model based on time-series data. Sequence169

feature-based detection for NIDS has been evolved from170

CNN and RNNwith the LSTMmodel since the deep learning171

technique can consider sequence data to generate a model.172

Yuan et al. proposed a DDOS detection method based on173

LSTM and CNN [34]. Radford et al. proposed a session174

detection method based on a bi-LSTM, because bi-LSTM is175

suitable to lean the sequence features in two directions [35].176

Wang et al. proposed hierarchical deep learning using a177

character-level CNN to learn spatial features and LSTM to178

learn time features [36].179

Hybrid approaches usually achieved better accuracy180

because of the combination of two different methods.181

Some researchers combined rule-basedmethods andmachine182

learning-based methods. Meng et al. proposed a KNN183

method to rank alerts, whereas McElwee et al. proposed a184

DNN to filter alarms from McAfee data [37], [38]. Other185

research focused on log data instead of network data by186

extracting important features from network and system log187

based on domain knowledge to discover anomalies [39], [40],188

[41]. Uwagbole et al. proposed an SQL-injection detection189

method for the Internet of Things (IoT) using SVM [42].190

Vartouni et al. proposed a web attack detection method based191

on the isolate forest model [43].192

III. OUR APPROACH193

This section presents our approach to develop a flexible194

intrusion detection system to adapt to network dynamics over195

time by using RNN, as shown in Figure 1. The system archi-196

tecture has three parts: data processing, data classification197

through multi-classifier, and RNN Modeling. To build the198

real-time robust IDS, the proposed system consists of two199

different methods to update the proposed system in real-200

time: (1) the best-effort approach and (2) the adaptive feature-201

engineering approach. The first method continues improving202

the trained model over time by adding a high-quality real-203

time data through an eclectic approach. The second method204

adjusts the existing model by adding extra feature sets based205

on the feature importance with the new data. The proposed206

method demonstrates the effectiveness and the robustness by207

upgrading the current attack models in real time by adjusting208

data and network features. The following sections will be209

discussed in detail.210

A. DATA CLASSIFICATION BY A MULTI-CLASSIFIER211

The proposed system first performs data processing and212

data classification based on the multi-classifier in Figure 1.213

The data processing first performs data cleansing by using214

archived historical data for a model generation and real-time215

incoming data to update the generated model in real time.216

In other word, the data processing is where we load datasets,217

clean them, and balance them in terms of the binary depen-218

dent variables.219

FIGURE 1. Real-time intrusion detection system architecture.

After the data cleaning and sampling, the proposed system 220

utilizes the Random Forest algorithm as a multi-classifier 221

to select the best quality of data and to evaluate the feature 222

importance. Random Forest consists of multiple decision 223

trees as an ensemble classifier through bagging which is to 224

count and average the votes from each decision tree [44]. 225

Bagging is also called as bootstrap aggregation and it reduces 226

the variance which is a proxy for a consistency. The vote can 227

be mathematically expressed as 228

Ĉ(x) = majority vote {Ĉi(x)}ni=1 (1) 229

where we have a total n trees and Ĉi(x) is the classification of 230

ith random forest tree [6]. 231

As a byproduct of Random Forest, in which feature impor- 232

tance is generated. It is a list of features and how quantita- 233

tively important they are in Random Forest decision making. 234

It is calculated using a normalization on Gini Impurity. 235

C∑
i=1

fi(1− fi) (2) 236

where fi is the frequency of label i at a node and C is the 237

number of unique labels. When a tree sprouts a branch, the 238

improvement in the split-criterion is the importance measure 239

attributed to the splitting variable, and is accumulated over all 240

the trees in the forest separately for each variable [6]. 241

Based on the results of the multi-classifier by using the two 242

equations (1) and (2), the system collects the most promising 243

datasets to be used for input for RNN in the next step. It also 244

selects feature sets based on the outcomes of the feature 245

importance, as we demonstrated in the evaluation section. 246

Our previous work proposed a multi-classifier by exploiting 247

various machine learning techniques to exclude ambiguous 248

data from the training data for high accuracy [3], [4]. 249

As discussed in this Section III-A, the multi-classifier out- 250

performs in data classification by detecting outliers, which 251

results in decreasing system performance based on our 252

previous research outcomes [3] and [4]. In addition, the 253

multi-classifier showed higher speed to perform data classi- 254

fication than deep learning algorithms due to many hidden 255

layers. 256

B. ADAPTIVE RNN MODELING 257

As shown in Figure 1, the data processing selects and cleans 258

historical data or real-time data through data sampling to 259

balance datasets. Then, the multi-classifier with the results 260
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of the feature engineering (f ) collects high-quality data after261

excluding ambiguous data as explained in Section III-A. The262

feature engineering is where we perform a feature transfor-263

mation to convert string features into a numerical feature,264

use a multi-classifier to classify features to detect malicious265

traffic from benign traffic, and then apply hyperparameter266

tuning on the RNN model to use in the last process. The267

continuous data processing is where we imitate real-time data268

processing from the datasets. Lastly, the RNN modeling is269

where we split data into initial inputs and sequential inputs,270

control our environment with threshold, and run an RNN271

model with the LSTM capability.272

Recurrent Neural Network (RNN) is a type of an artificial273

neural networks that is used for sequential or temporal data.274

The basic RNN has the following architecture in Figure 2,275

where xi is an ith input, yi is an ith output, W is a weight276

matrix, and hi is an ith hidden layer with an activation func-277

tion. The proposed system uses Sigmoid as an activation278

function because that leads the highest accuracy as discussed279

in Section IV-C. It also uses LSTM instead of a simple RNN280

to mitigate RNN’s innate vanishing gradient problem.281

FIGURE 2. A Recurrent Neural Network (RNN).

As explained in the previous subsection, an RNN model282

has an innate long-term memory loss, due to multiplicative283

gradient that can be exponentially decreasing with respect to284

the number of layers. We use LSTM to preclude the early285

stage of memory loss to update training. The standard LSTM286

has input gates and output gates. The net input and the acti-287

vation with inj on the j-th memory cell are288

netinj (t) =
∑
u

winjuy
u(t − 1)289

yinj (t) = finj (netinj (t)) (3)290

where y is an activation function of the input [10].291

The net output and the activation of outj on the j-th memory292

cell are293

netoutj (t) =
∑
u

woutjuy
u(t − 1)294

youtj (t) = foutj (netoutj (t)) (4)295

where y is an activation function of the output [10].296

In this paper, we propose a new network intrusion detection297

system by utilizing the RNN model with the multi-classifier.298

The proposed system has different system parameters, such as299

a random time (1t), a window size ($ ), and a block size (β), 300

to build a model in real time. The proposed system collects 301

data at a randomly selected time (1t). The collected data size 302

is determined by the two system parameters: a window size 303

($ ) and a block size (β). The window size is the data size to 304

generate a model, and the block size is the data to be used for 305

model upgrades in real time. 306

To improve the RNN models in real time, this paper pro- 307

poses two approaches: (1) the best-effort approach and (2) 308

the adaptive feature-engineering approach, as described in the 309

following. 310

1) THE BEST-EFFORT APPROACH 311

Given a random time (1t), a window size ($ ), and a block 312

size (β), the proposed system keeps improving the current 313

model when the system achieves better system performance 314

(m) as an accuracy. For example, at a random time, the system 315

processes a set of data based on the value of the window size 316

to generate the first model. The system updates the current 317

model with the new model by regenerating the new model 318

with the original data sets (i.e. the amount of the window 319

size) and additional data according to the block size (β). 320

Based on the result of the multi-classifier according to the 321

system parameter values, the input data will be provided to 322

the input gates at the RNN modeling as in Eq 5 and 5. Those 323

equations are where j-th memory cell has an input gate inj 324

and an output gate outj. The input gate’s activation at time t 325

and the output gate’s activation at time t are yinj (t) and youtj (t) 326

respectively [10]. 327

Unlike the standard LSTM, our LSTM has a threshold 328

value δ that a metricm compares with. For example, if we 329

choose a metric m as an accuracy, then a threshold value δ is 330

the best by-far accuracy. This makes our LSTM equations for 331

input gate and output gate as follows respectively. 332

netinj (t) =
∑
u

winjuy
u(t − 1) 333

yinj (t) =

{
finj (netinj (t − 1)) m ≥ δ
finj (netinj (t − 1)) m < δ

334

netoutj (t) =
∑
u

woutjuy
u(t − 1) (5) 335

youtj (t) =

{
foutj (netoutj (t − 1)) m ≥ δ
foutj (netoutj (t − 1)) m < δ

(6) 336

In this way, our model can be selectively updated based on 337

the threshold δ. 338

2) THE ADAPTIVE FEATURE-ENGINEERING APPROACH 339

The approach generates a new model based on the updated 340

new feature sets by considering the system parameters that are 341

used for the best-effort approach. In other words, the adaptive 342

feature-engineering approach changed the feature sets on 343

the top of the best-effort approach. In detail, based on the 344

aforementioned δ threshold, our LSTM adaptively updates 345

features seen as f ′ in Equation (7) and (8). The list of features 346
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was selected from Random Forest’s Feature Importance as347

explained in Section III-A.When ametric such as an accuracy348

(or a recall) exceeds the δ threshold, we update the current349

feature sets by adding new features or deleting old features.350

If it does not exceed, then our LSTM is the same as a regular351

LSTM.352

netinj (t) =
∑
u

winjuy
u(t − 1)353

yinj (t) =

{
f ′inj (netinj (t − 1)) m ≥ δ
finj (netinj (t − 1)) m < δ

(7)354

The net output and the activation of outj are355

netoutj (t) =
∑
u

woutjuy
u(t − 1)356

youtj (t) =

{
f ′outj (netoutj (t − 1)) m ≥ δ
foutj (netoutj (t − 1)) m < δ

(8)357

IV. EVALUATION358

This section presents our experiments setup and results to359

evaluate our proposed system by using four different pub-360

lic datasets: NSL-KDD 99, UNSW-NB15, Kyoto 2006, and361

CIDDS. We used MacBook Pro 2019 2.4 GHz 8-Core Intel362

Core i9 64 GB 2667 MHz DDR4 to measure accuracy, and363

True Positive and False Positive Rates. First, we explained364

each dataset with the feature sets and now we will present our365

experimental results to show the effectiveness and the robust-366

ness of the proposed system while computing the area under367

curve (AUC) to characterize the performance of the proposed368

system based on the ROC (receiver operating characteristic)369

curve.370

A. DATASETS371

We summarize four different public datasets (NSL-KDD 99,372

UNSW-NB15, Kyoto 2006, and CIDDS) to evaluate our pro-373

posed system as follows.374

1) NSL-KDD 99 [11]375

NSL-KDD 99 is an improvement of KDDCUP’99 dataset.376

It has no duplicate records in the training dataset. This377

prevents a model from having a high bias toward frequent378

records. There are 42 features along with 1 feature called379

‘‘class’’ which explicitly explain the data packet being mali-380

cious or benign. The attacks are in 4 categories: Denial of381

service (DoS), user to root (U2R), remote to local (R2L), and382

probing (PROBE).383

2) UNSW-NB15 [12]384

Cyber Range Lab of the Australian Centre for Cyber Secu-385

rity (ACCS) created this dataset. It contains hybrids of the386

modern normal and contemporary attack patterns actively387

collected on network traffic. It has 45 features including two388

columns that specify the type of data packet and the attack389

category.390

3) Kyoto 2006 [13] 391

The dataset contains 24 statistical features: both numerical 392

and categorical features. One column indicates the type of 393

packet: normal, known attack, or unknown attack. In our 394

data analysis, we dropped packets with an unknown attack 395

and downsampled. Specifically, we downsampled 2,613,808 396

known attack packets to 130,742 normal packets. The Kyoto 397

dataset includes important features required for detecting an 398

intrusion in a system such as source/destination bytes, flag 399

status, the duration of the connection, IP addresses. These 400

features are recognized and selected using feature selection 401

techniques. The final attributes are chosen from the associa- 402

tion data packets with the existing features, which are used 403

for intrusion detection in real time. The features selected are 404

duration, source bytes, flag, Source IP Address, Source Port 405

Number, Destination IP Address, Destination Port Number, 406

attack label. 407

4) CIDDS [14] 408

CIDDS-001 (Coburg Network Intrusion Detection Dataset) 409

was created for the purpose of evaluation of Anomaly- 410

based Network IDS. The dataset contains 14 features in 411

total including a column that mentions if the data packet 412

is attacker, victim, or normal. It includes both numerical 413

and categorical features. Due to the size of the data and 414

our computing power, we have trained our models using 415

CIDDS-001-internal-week1 file. 416

B. RESULTS OF THE MULTI-CLASSIFIER 417

As we discussed in Section III-A, the multi-classifier can 418

improve system accuracy with the quick data processing 419

time compared to deep learning techniques while deleting 420

ambiguous data from the collected data. Figure 3, 4, 5, and 6 421

showed ROC AUC from different machine learning models: 422

Logistic Regression, Decision Tree, KNN, Random Forest, 423

Multilayer Perceptron, Gaussian Naïve Bayes, and Gradient 424

Boost. 425

The proposed system utilized the RandomForest algorithm 426

to achieve our data classification goal since it showed the 427

best accuracy for the four different datasets, as shown in 428

the benchmark results in this experiment. Note that the pro- 429

posed system can also utilize more than one machine learning 430

algorithm to create an ensemble method for the solution of 431

the data classification problem, as presented in our previous 432

work. 433

In addition, the Random Forest algorithm generates fea- 434

ture importance as explained in Section III-A. As shown 435

in Figure 1, we used the top ten features from all the 436

available features based on the feature importance from the 437

Random Forest algorithm experiments. The importance val- 438

ues of each feature for each dataset ranges from around 439

0.03 to 0.35 bits as the entropy outcomes. NSL-KDD 99 has 440

43 features and its top features are src_bytes, dst_bytes, and 441

difficulty_level. UNSW-NB 15 has 45 features and its top 442

features are attack_cat, sttl, and ct_state_ttl. Kyoto 2006 has 443
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TABLE 1. List of the best ten features for each dataset.

FIGURE 3. Performance evaluation with NSL-KDD 99 dataset.

FIGURE 4. Performance evaluation with UNSW-NB15 dataset.

24 features and its top features are destination_ip_address,444

destination_port_number, and dst_host_srv_count. CIDDS445

has 16 features and its top features are attackID, attackType,446

and attackDescription.447

C. RESULTS OF HYPERPARAMETER TUNING448

A hyperparameter tuning is an important part of improving a449

deep learning model. This paper performed a hyperparameter450

tuning onto activation function, learning rate, and dropout451

rate.452

The result of hyperparameter tuning is as shown in Table 2.453

This paper tested activation functions first. We tested Relu,454

Sigmoid, and Softmax. Sigmoid with binary cross-entropy455

shows the highest accuracy. For example, we achieved accu-456

racies of 90.82%, 90.99%, and 91.71% for 80K, 100K, and457

120K window size, respectively, in the Kyoto 2006 dataset.458

Once we found that Sigmoid activation function leads with459

the highest accuracy, we tested learning rate and dropout rate.460

We set up the dropout rates as 0.05, 0.1, and 0.15, and the461

learning rates as 1, 0.5, 0.1, and 0.05.462

FIGURE 5. Performance evaluation with kyoto 2006 dataset.

FIGURE 6. Performance evaluation with CIDDS dataset.

Based on those experiments and as seen from Table 2 on 463

page 98965, we conclude that the dropout rate is optimal at 464

0.15 for all 4 datasets, and the learning rate is optimal around 465

0.1 or 0.05, depending on the dataset. Overall, a learning rate 466

provides more weights than a dropout rate. In other words, 467

a learning rate is metric-elastic, whereas a dropout percentage 468

is metric-inelastic. 469

D. IMPACT OF WINDOW SIZE AND BLOCK SIZE 470

This paper has differentiated the training size (i.e. win- 471

dow size, $ ) into three categories for an experiment: 50K, 472

100K, and 150K traces: 50K traces for RNN1($ = 50K), 473

100K traces for RNN2($ = 100K), and 150K traces for 474

RNN3($ = 150K), respectively, in the experimental results. 475

In other words, the proposed system generated three different 476

models based on the three different windows sizes. After 477

generating the first model for each, given a time (1 t ), the 478

proposed system updates the generated model with the two 479

different block sizes, β = 20K or 40K traces. The block size 480

is the amount of the new real-time data that we feed into the 481
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TABLE 2. Kyoto hyperparameter tuning (accuracy).

FIGURE 7. Performance evaluation with NSL-KDD 99 dataset (β = 20K).

proposed system to regenerate the new model. Since we used482

historical archival datasets, we simulated the real-time data483

feed by adding random new data for each dataset. The system484

set up with a threshold (δ) as a current accuracy. For example,485

for RNN1($ = 50K) and the window size β = 20K, the486

system first creates an attack model to detect network attacks487

in real time. After that, when the system keeps improving the488

model with the highest accuracy than the threshold (i.e. the489

current accuracy), the proposed system replaces the current490

model with the new model by combining the original 50K491

dataset with additional 20K dataset.492

In NSL-KDD 99 dataset, the performance of the RNN2493

case is slightly better than the other two cases (RNN1494

and RNN3) for both different block sizes (i.e. β = 20K495

or 40K traces). Under the 20K block size, RNN2 showed496

97.710% True Positive Rate and 1.908% False Positive Rate.497

That True Positive Rate is slightly higher than 97.390% and498

97.584% from RNN1 and RNN3 respectively. Under the 40K499

block size, RNN2 showed 98.019% True Positive Rate and500

5.230% False Positive Rate. That True Positive Rate is lightly501

better than 97.739% and 97.770% from RNN1 and RNN3502

respectively.503

In UNSW-NB15 dataset, the performance from RNN3504

performs relatively the best than other cases for both505

block sizes, but the difference between RNN1 and RNN2506

is minimal. Under the 40K block size, RNN3 showed507

almost 99.991% True Positive Rates, whereas RNN1 and508

RNN2 showed 98.512% and 99.748% True Positive Rates509

respectively.510

FIGURE 8. Performance evaluation with NSL-KDD 99 dataset (β = 40K).

FIGURE 9. Performance evaluation with Kyoto 2006 dataset (β = 20K).

In Kyoto 2006 dataset, the RNN2 case performs relatively 511

the best for the 20K block size, whereas the RNN1 case 512

performs relatively the best for the 40K block size. Under the 513

20K block size, RNN2 showed 95.103% True Positive Rate, 514

whereas RNN1 and RNN3 showed 91.545% and 92.908% 515

True Positive Rate respectively. 516

In CIDDS dataset, the difference among the three different 517

cases is minuscule. In terms of the block size, the 20K block 518

size performs better than the 40K block size. True Positive 519

Rates are at least 99.900% in both block sizes, but the one 520

from 20K block size is relatively higher. 521

These experiments demonstrated that the data size for 522

model building does not significantly impact the system per- 523

formance. The sophisticated system settings in the algorithm 524

is the most important to generate the best model in real-time 525

with a given small amount of data. Note that the experimental 526

results in this section are related to the best-effort approach. 527

But when we used the adaptive feature engineering approach 528

also showed similar results with the best-effort approach. 529

E. ATTACK IMPACT 530

The proposed system keeps updating the generated model 531

depending on the system parameters according to the 532
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FIGURE 10. Performance evaluation with Kyoto 2006 dataset (β = 40K).

FIGURE 11. Performance evaluation with UNSW-NB15 dataset (β = 20K).

detection threshold. Attackers can intentionally generate533

obfuscated traffic to prevent our system from updating the534

generated model or to disturb our updated process for high535

false alerts. Thus, we made an experiment of our system536

under attacks to evaluate the robustness in which the pro-537

posed system can securely upgrade the current model with538

the new model under attacks. For this purpose, we utilized539

only NSL-KDD 99 and Kyoto 2006 out of the four datasets540

since we can match their feature sets between target data and541

attack data. The target data is actual dataset that the pro-542

posed system needs to generate the attack model for intrusion543

detection. The attack data is an obfuscated traffic that attack-544

ers intentionally generate to interrupt our updated process545

for the model generation. The target data is the NSL-KDD546

99 dataset, and the Kyoto 2006 dataset is used as attack data.547

We set up our system parameters: 50,000 traces for the win-548

dow size ($ ), 20,000 traces for the block size (β), and 70%549

for the detection threshold (δ).550

Figure 15 showed the result of our experiments under551

attack. Our baseline shows 98.086% True Positive Rate552

and 2.376% False Positive Rate with the NSL-KDD553

99 dataset. We used the following feature sets for this554

FIGURE 12. Performance evaluation with UNSW-NB15 dataset (β = 40K).

FIGURE 13. Performance evaluation with CIDDS dataset (β = 20K).

FIGURE 14. Performance evaluation with CIDDS dataset (β = 40K).

experiment: src_bytes, dst_bytes, difficulty_level, flag, and 555

same_srv_rate. 556

Under the 20% attack rate that attackers randomly gener- 557

ate 10,000 obfuscated traces, the proposed system showed 558

96.855% True Positive Rate and 0.992% False Positive Rate. 559
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FIGURE 15. Performance evaluation with the proposed system under
various attack Rate ($ = 50K and β = 20K).

Under the 50% attack rate that attackers randomly generate560

15,000 obfuscated traces, our system resulted in 96.584%561

True Positive Rate and 1.618% False Positive Rate. Figure 15562

demonstrated that our proposed system achieved around 98%563

accuracy when attackers can generate less than 50% attack564

traffic to interrupt our updated process. Due to the space565

limitation, we drop out other attack cases for different system566

parameter settings. Therefore, our system will be used for567

future model generation. It can securely build a model in real568

time since attackers cannot generate the exact traffic pattern569

at a specific time.570

F. DATA PROCESSING TIME571

The proposed system has been developed by combining572

RNN with the Random Forest algorithm by setting vari-573

ous system parameters. We evaluated the entire processing574

time to generate an attack model from the data process-575

ing to the model building for two methods, respectively.576

We evaluated the system time for RNN and Random For-577

est with 500MB and 1GB datasets for each. As a result,578

the Random Forest algorithm spent 3.39570 minutes for579

1GB and 1.71211 minutes for 500MB, but the RNN method580

required 43.32197 minutes for 1GB and 24.61870 minutes581

for 500MB. Therefore, because the deep learning techniques582

require more time than the machine learning techniques, it is583

not appropriate to utilize the RNN method in a real environ-584

ment. Thus, we first utilized the Random Forest algorithm585

to select the best subset used for input for the next RNN586

technique as shown in Figure 1. The best subset included587

only high-quality data after deleting ambiguous data. Since588

the window size used for these experiments is much smaller589

than 500MB, the system time of the proposed system was590

less than 2-3 minutes. In detail, the 50K window size was591

2MB, the 100K window size was 4M, and the 150K win-592

dow size was 6.1MB. With the high specification of the593

experiment machine than ours, we expect that the system594

time to generate a model will significantly drop to several595

milliseconds.596

V. DISCUSSION 597

This paper first proposed a real-time NIDS based on the com- 598

bination of RNN and Random Forest with a reasonable data 599

size. The goal of the proposed system continues improving 600

the generated models by reflecting network dynamics in real 601

time while considering the system parameters and feature 602

sets. This section discusses the advantages and disadvantages 603

of the proposed system with future work. 604

A. REAL-TIME MODEL BUILDING 605

To build a model in real time and to achieve the highest 606

accuracy, the proposed system utilizes the machine learning 607

technique first to reduce the data processing time and then 608

applies the deep learning technique to generate an accurate 609

attackmodel based on the well-classified selected data. Aswe 610

discussed in the evaluation section, most deep learning tech- 611

niques require a lot of processing and model building time 612

while providing more advantages than other methods, such as 613

automation, scalability, and effectiveness. With no previous 614

knowledge, most deep learning methods automatically create 615

an attack model through multiple layer processing with a 616

large data size (i.e. more than 1TB). However, such nice 617

features cannot be useful in a real network environment since 618

network behavior is dynamically changing over time. The 619

pre-built model cannot continuously monitor ever-changing 620

network behavior. In addition, it is not practical to build 621

up the attack model with such large data sizes due to time 622

issues. Thus, to build or to update an attack model in real 623

time, the system must create an accurate model with small 624

high-quality data. To achieve this goal, the combination of 625

the multi-classifier and deep learning solved two important 626

issues: data classification and intelligent attack model gener- 627

ation in real-time. 628

B. TRAINING DATA SIZE 629

The training data size is important to build an accurate attack 630

model. However, selecting high-quality right data is the most 631

significant task before the model building. To build a real- 632

time NIDS, the proposed system established three important 633

system parameters: a window size ($ ), a block size (β), 634

and a random time (1t). Based on these system parameters, 635

the proposed system collects and selects training data in 636

real time. When we consider the current network capacity 637

(5G or 6G), the proposed system can collect enough data 638

size within several microseconds. Since a 10 Gbps gigabit 639

network can transmit 1.25 gigabytes per second, the proposed 640

system easily collects 50K to 100K traces (2M to 10MB) in 641

real-time within less than one millisecond as we discussed 642

in the evaluation section. And then, the Random Forest algo- 643

rithm performs data classification to identify ambiguous data 644

that reduce system performance for high accuracy. Through 645

the experiments, this paper recommends that the window size 646

($ ) would be from 50K to 100K. This paper showed that the 647

largest data size that is more than 100K did not provide the 648

highest accuracy through our experiments. 649
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C. SYSTEM VULNERABILITY650

As simulated in Section IV, attackers can intentionally inject651

their fake traffic into the network to prevent our system652

from updating the attack model correctly. However, since the653

proposed system collects and selects real-time data at a given654

random time (1t), attackers cannot easily obfuscate current655

target traffic patterns. In addition, the window size ($ ) and656

the block size (β) along with used feature sets are unknown.657

To compromise the proposed system, attackers must keep658

performing a brute force attack to inject fake data into the659

system. Furthermore, since the Random Forrest algorithm as660

a multi-classifier detects outliers or ambiguous data from the661

collected data, attackers cannot easily defeat the proposed662

system with a simple effort and time. However, as attack663

strategies continue to evolve, the proposed system needs to664

keep fortifying itself from other possible attack cases.665

In future work, we will develop a more advanced real-time666

network intrusion detection system by challenging the667

above-mentioned issues while developing various attack668

methods to improve robustness.669

VI. CONCLUSION670

In this paper, we proposed a flexible and robust NIDS671

by using RNN while updating the built-in attack models672

in real-time by considering current network behavior and673

performance. The proposed system utilizes RNN with a674

multi-classifier in order to randomly select new data sets675

depending on system parameters in the system. Our system676

also has random features to prevent attackers from obfus-677

cating current traffic to interrupt the model generation in678

real-time.679

We have found that the combination of machine learning680

and deep learning serves two ends: high accuracy inmodeling681

and real-time detection. Random Forest enables us to achieve682

real-time detection due to high performance for data classifi-683

cation, while RNN utilizes its innate sequential data parsing684

to increase high accuracy. Based on the hyperparameter tun-685

ing, we have found that a combination of Sigmoid activation,686

0.15 dropout rate, and 0.1 or 0.05 learning rate leads to the687

highest metric. A block size matters; 20K performs better688

than 40K in terms of accuracy. On the other hand, a window689

size of 50K or 100K does provide a better performance in the690

proposed system. We demonstrated that our proposed system691

achieved around 98% accuracy when attackers can generate692

less than 50% of attack traffic to interrupt our updated pro-693

cess.694

By utilizing both multi-classifier and deep learning with695

the random system parameters, our proposed framework696

can provide significant contributions in the direction of the697

real-time network intrusion detection systems.698
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