
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Faculty Research, Scholarly, and Creative Activity

1-1-2022

CONTROL-CORE: A Framework for Simulation and Design of CONTROL-CORE: A Framework for Simulation and Design of

Closed-Loop Peripheral Neuromodulation Control Systems Closed-Loop Peripheral Neuromodulation Control Systems

Pradeeban Kathiravelu
Emory University

Mark Arnold
Lehigh University

Jake Fleischer
Lehigh University

Yuyu Yao
Lehigh University

Shubham Awasthi
Vellore Institute of Technology

See next page for additional authors

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca

Recommended Citation Recommended Citation
Pradeeban Kathiravelu, Mark Arnold, Jake Fleischer, Yuyu Yao, Shubham Awasthi, Aviral Kumar Goel,
Andrew Branen, Parisa Sarikhani, Gautam Kumar, Mayuresh V. Kothare, and Babak Mahmoudi. "CONTROL-
CORE: A Framework for Simulation and Design of Closed-Loop Peripheral Neuromodulation Control
Systems" IEEE Access (2022): 36268-36285. https://doi.org/10.1109/ACCESS.2022.3161471

This Article is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in
Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU ScholarWorks. For more
information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F3067&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ACCESS.2022.3161471
mailto:scholarworks@sjsu.edu

Authors Authors
Pradeeban Kathiravelu, Mark Arnold, Jake Fleischer, Yuyu Yao, Shubham Awasthi, Aviral Kumar Goel,
Andrew Branen, Parisa Sarikhani, Gautam Kumar, Mayuresh V. Kothare, and Babak Mahmoudi

This article is available at SJSU ScholarWorks: https://scholarworks.sjsu.edu/faculty_rsca/3067

https://scholarworks.sjsu.edu/faculty_rsca/3067

Received February 9, 2022, accepted March 15, 2022, date of publication March 22, 2022, date of current version April 8, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3161471

CONTROL-CORE: A Framework for Simulation
and Design of Closed-Loop Peripheral
Neuromodulation Control Systems
PRADEEBAN KATHIRAVELU 1, MARK ARNOLD 2, (Senior Member, IEEE), JAKE FLEISCHER2,
YUYU YAO2, SHUBHAM AWASTHI 3, AVIRAL KUMAR GOEL4, ANDREW BRANEN5,
PARISA SARIKHANI1, GAUTAM KUMAR5, MAYURESH V. KOTHARE 2, (Fellow, IEEE),
AND BABAK MAHMOUDI1,6, (Member, IEEE)
1Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA
2Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
3School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
4Department of Computer Science and Information Systems, Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus, Sancoale,
Goa 403726, India
5Department of Chemical and Materials Engineering, San José State University, San Jose, CA 95192, USA
6Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Corresponding author: Pradeeban Kathiravelu (pradeeban.kathiravelu@emory.edu)

This work was supported in part by the National Institutes of Health under Grant OT2OD030535, and in part by the Google Summer of
Code (GSoC) 2021 Project.

ABSTRACT Closed-loop Vagus Nerve Stimulation (VNS) based on physiological feedback signals is a
promising approach to regulate organ functions and develop therapeutic devices. Designing closed-loop
neurostimulation systems requires simulation environments and computing infrastructures that support
i) modeling the physiological responses of organs under neuromodulation, also known as physiological
models, and ii) the interaction between the physiological models and the neuromodulation control algo-
rithms. However, existing simulation platforms do not support closed-loop VNS control systems modeling
without extensive rewriting of computer code and manual deployment and configuration of programs. The
CONTROL-CORE project aims to develop a flexible software platform for designing and implementing
closed-loopVNS systems. This paper proposes the software architecture and the elements of the CONTROL-
CORE platform that allow the interaction between a controller and a physiological model in feedback.
CONTROL-CORE facilitates modular simulation and deployment of closed-loop peripheral neuromodula-
tion control systems, spanning multiple organizations securely and concurrently. CONTROL-CORE allows
simulations to run on different operating systems, be developed in various programming languages (such
as Matlab, Python, C++, and Verilog), and be run locally, in containers, and in a distributed fashion. The
CONTROL-CORE platform allows users to create tools and testbenches to facilitate sophisticated simulation
experiments. We tested the CONTROL-CORE platform in the context of closed-loop control of cardiac
physiological models, including pulsatile and nonpulsatile rat models. These were tested using various
controllers such as Model Predictive Control and Long-Short-Term Memory based controllers. Our wide
range of use cases and evaluations show the performance, flexibility, and usability of the CONTROL-CORE
platform.

INDEX TERMS Closed-loop simulations, neuromodulation control systems, workflows.

I. INTRODUCTION
Modulating the peripheral autonomic nervous system is a
promising approach to regulate the physiological functions

The associate editor coordinating the review of this manuscript and

approving it for publication was Alberto Botter .

of internal organ systems [1]. Closed-loop feedback-control
approaches allow adaptive delivery of stimulation to achieve
desired outcomes. Designing and prototyping closed-loop
neurostimulation systems require flexible and modular sim-
ulation environments for experimenting with several com-
ponents, including i) computational models that represent

36268 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

P. Kathiravelu et al.: CONTROL-CORE: Framework for Simulation and Design

TABLE 1. SPARC Ecosystems.

the organ physiology in response to neurostimulation, also
known as the physiological models (PMs), ii) the neuromod-
ulation control systems, and iii) the interaction between the
PMs and the control systems. However, existing control sys-
tems frameworks and simulation platforms do not facilitate
closed-loop Vagus Nerve Stimulation (VNS) control systems
modeling without considerable rewriting of computer code,
complex installations, and manual configurations.

A. SPARC PROGRAM
Stimulating Peripheral Activity to Relieve Conditions
(SPARC) [2] is an NIH-funded research program to develop
therapeutic devices for peripheral neuromodulation effec-
tively. SPARC consists of the core components, K-CORE,
DAT-CORE, MAP-CORE, and SIM-CORE, to enable
the development of peripheral neuromodulation devices.
Table 1 summarizes the original components of the SPARC
ecosystem.

SPARC has implemented SIM-CORE primarily with the
Open Online Simulations for Stimulating Peripheral Activ-
ity to Relieve Conditions (O2S2PARC or OSPARC) frame-
work [2], which has been developed by IT’IS.1 OSPARC is a
web-based platform that allows sharing of SIM-CORE simu-
lations without expecting casual users to install the software
toolchain required for each simulation on their local machine.
Effective neuromodulation of a complete organ system is a
complex task that is difficult to achieve using the existing
components of OSPARC.

B. MOTIVATION
The state-of-the-art, including SIM-CORE/OSPARC or the
existing overall SPARC ecosystem, do not have the capabil-
ities to facilitate effective modeling of closed-loop periph-
eral neuromodulation control systems. CONTROL-CORE,
a multi-university2 project funded by the National Institutes
of Health (NIH) as part of the SPARC Program aims to
bridge this gap in the SPARC ecosystem and the state-of-
the-art. We develop the CONTROL-CORE framework to
become the fifth component of the SPARC ecosystem and
bring in the capabilities of seamless and distributed closed-
loop simulations for peripheral neuromodulation control sys-
tems. By facilitating the modeling of distributed closed-loop
neuromodulation control systems, CONTROL-CORE

1https://itis.swiss/
2Emory University School of Medicine, Lehigh University, San José State

University, the University of Pittsburgh, and Thomas Jefferson University.

completes the SPARC ecosystem and fills the gap in enabling
the modeling of closed-loop VNS control systems.

C. CONTRIBUTIONS
This paper proposes a protocol and framework to facili-
tate closed-loop simulations for designing and prototyping
peripheral neuromodulation control systems with minimal
computational overhead. The CONTROL-CORE protocol,
known as concore,3 allows modular simulation of con-
troller and PM nodes to run on different operating sys-
tems and computing platforms, including OSPARC, local
(Windows, macOS, or Ubuntu), Docker, and distributed
implementations. The local implementations allow develop-
ers to use concore to create simulations from source code
with appropriate tools installed locally (e.g., Matlab license).
The Docker [3] implementation enables nodes to be con-
tainerized [4] so that researchers from diverse backgrounds,
such as neurophysiology [5] and radiology [6], may reuse
themwithout manual installation, configuration, source code,
or a Matlab license in their host environment. Since the PM
may be computationally intensive and/or only available on
specific platforms (such as OSPARC), it may be desirable
to test such a controller on a limited-resource machine while
running themore computationally intensive PM on a different
machine via an internet connection. The distributed imple-
mentation of CONTROL-CORE enables such an execution
over the Internet. Moreover, the distributed mode will allow
interfacing closed-loop control algorithms with experimental
and clinical systems regardless of the local computing infras-
tructures.

D. ILLUSTRATIVE USE CASES
concore is agnostic to the control-system technique and
programming environments. It allows the closed-loop control
systems modules to be written in several languages (such
as Python, Matlab, C++, and Verilog) so that the applica-
tion developers can code in their preferred language(s) and
seamlessly execute them as CONTROL-CORE workflows.
We highlight the usability and features of the CONTROL-
CORE platform through several illustrative use cases. We
adopted the peripheral neuromodulation control systems that
we had developed in various languages to use the concore
protocol to demonstrate the performance and versatility of
CONTROL-CORE platform for designing closed-loop neu-
romodulation control systems. We tested concore with
cardiac PMs, including pulsatile and nonpulsatile rat mod-
els. These were connected to Model Predictive Control
(MPC) [7] and Long-Short-TermMemory (LSTM) [8]-based
controllers. The time to simulate one cardiac cycle in a local
implementation is about 0.1 seconds, and in a distributed
implementation, a couple of seconds.

3https://github.com/ControlCore-Project/concore

VOLUME 10, 2022 36269

P. Kathiravelu et al.: CONTROL-CORE: Framework for Simulation and Design

E. PAPER ORGANIZATION
The rest of the paper elaborates on the capabilities of the
CONTROL-CORE platform for building closed-loop periph-
eral neuromodulation control system simulations. Section II
presents the background and related work. Section III elab-
orates the architecture of the CONTROL-CORE platform,
including OSPARC, local, Docker, and distributed imple-
mentations. Section IV presents the implementation details
of the CONTROL-CORE platform. Section V presents use
cases and evaluates the functionality and performance of the
CONTROL-CORE framework. Finally, SectionVI concludes
the paper with a summary of the research and future work.

II. BACKGROUND AND RELATED WORK
The CONTROL-CORE framework constructs closed-loop
workflows from multiple programs rather than developing
them as a single monolith program. It assumes that separate
programs simulate the controller and the PM–they should
not be combined in a single program as is typically done on
OSPARC. The concore protocol aims to solve the com-
plexities that arise from such separation of PM and controller
into two separate programs: i) the controller will eventually
be implemented into a medical device and ii) the PM repre-
sents the physiological responses of the organ when stimu-
lated by such a device. This section presents the background
on closed-loop workflows, OSPARC, and related work on
workflow frameworks.

A. WORKFLOWS
Workflow frameworks facilitate reproducible science by
composing modular workflows from services [9]. Stan-
dard workflow languages such as Common Workflow Lan-
guage (CWL) [10] and Workflow Description Language
(WDL) [11] are widely used in research and industry as
they express complex executions as a workflow composed
of reusable service instances [12]. They support creating
workflows from containerized services. They enhance the
reusability of the programs compared to developing those as
a large monolith application [13]. While services can run as
stand-alone programs, a workflow requires interaction among
the services, ensuring interoperability between their inter-
faces and input/outputs. Interoperable Application Program-
ming Interfaces (APIs) such as REST interfaces [14] enable
chaining the services to compose larger workflows [15].

The workflow standards natively support workflows that
have a start and an end step with no directed cycle
(dicycle) [16]. These standard workflows can be represented
by a Directed Acyclic Graph (DAG) [17], [18]. Such a DAG
can denote an open-loop (non-feedback) control, like the one
shown by Figure 1a. Here the controller provides stimula-
tion (u) to the PM, and the PM responds with its output (ym).
Most of the publishedmodels currently on OSPARC either do
not have any controller or are open-loop. The input (u) and
output (ym) of PMs can be represented as one-dimensional
vectors of floating-point numbers. Although internally,

PMs may use extensive computations involving large arrays
simulating dynamic responses of an organ, the number of sen-
sors and transducers that could ever be implanted in a patient
or an animal model is limited. We develop our framework
based on this observation that PM communication bandwidth
is minimal.

Open-loop control has been shown to be inadequate in var-
ious scientific domains such as chemical manufacturing [19]
as well as business processes [20], as they consist of feedback
loops in the form of dicycles. Figure 1b shows closed-loop
control, in which the controller does not issue a predeter-
mined stimulation u, but instead adapts the stimulation based
on the feedback it obtains from the PM. Such workflows can
be specified by Directed Graphs (DGs) since DGs do not
prohibit dicycles, unlike the DAGs. The interactive services
on OSPARC (such as Jupyter Lab) are not restricted to DAGs
and can support feedback loops. However, the computational
services, such as those vetted by IT’IS staff, are limited to
DAGs and therefore also are unsuitable for feedback control.

FIGURE 1. Open-loop vs. Closed-loop.

State-of-the-art workflow frameworks essentially limit
their focus to workflows that a DAG can represent. Although
research on DG workflows [21] exists, an interopera-
ble generic workflow framework with a high-performance,
natively built for the efficiency of closed-loop control sys-
tems is still lacking. A closed-loop workflow entails many
iterations of each service execution when represented by a
series of DAG workflows or even when a DG workflow is
natively supported. Hence, an overhead caused by a service
execution [22] will quickly add up in executing a closed-loop
workflow. Consequently, performance overheads of each iter-
ation of service invocation by a workflow framework [23]
will disproportionally impact the performance of closed-loop
workflows. Hence, the performance of each service is more
crucial in a DG workflow than a DAG workflow to ensure
the workflow execution completes in an acceptable time. The
overhead and latency caused by the workflow frameworks by
executing services multiple times in loops make them unfit
for the latency-sensitive peripheral neuromodulation control
systems modeling, as closed-loop neuromodulation systems
algorithms demand a higher performance with a subsecond
latency [24].

Closed-loop peripheral neuromodulation control systems
operate at different time scales, depending on the delay

36270 VOLUME 10, 2022

P. Kathiravelu et al.: CONTROL-CORE: Framework for Simulation and Design

of the physiological response. For example, gastrointestinal
(GI) closed-loop workflows execute in the orders of min-
utes, whereas animal heartbeats occur hundreds of times per
minute. Although dynamic software-defined workflows [25]
can facilitate complexworkflowswith loops by extending and
leveraging the standard workflow languages, their usability
and performance are not optimized for peripheral neuromod-
ulation control systems that always consist of loops. Fur-
thermore, such generic frameworks still rely on workflows.
Therefore, they are limited by the performance bottlenecks
of workflow frameworks. Hardware settings such as ferret-
GI [26] feedback require low latency that is not achievable by
workflow frameworks at all. This state of affairs significantly
hinders the adoption of workflow frameworks in simulating
control systems composed of feedback loops.

B. OSPARC
Although OSPARC provides a User Interface (UI) that allows
users to connect the input and output files of simulations with
other OSPARC-provided services into ‘‘studies’’ unique to
each user, OSPARC was not designed with the concept of
feedback control as something that users might wish to exper-
iment with. To publish a simulation on OSPARC, a researcher
needs to provide source code to IT’IS, who manually vet the
code and containerize it to be compatible with the underlying
architecture of OSPARC. This process can take several days.
Such containers may only run on the OSPARC platform.

Two of the services that OSPARC provides are Jupyter
Lab [27] and Jupyter Notebook [28]. Jupyter Lab allows a
user to develop Python and Octave code directly on OSPARC
without needing the assistance of IT’IS. Octave [29] is an
open-source workalike of the proprietary Matlab [30] lan-
guage supporting only a subset of its features. Jupyter Note-
book, which provided somewhat similar functionality for
Python, has been deprecated. Jupyter Notebook or Jupyter
Lab would be instantiated with the same graphical UI as other
OSPARC-provided services: the user double-clicks to choose
Jupyter Lab or Notebook, which appears in the user’s study as
a rectangle. The user may rename this rectangle, which acts
as a node in a DG. The user can then provide links to other
nodes, which are visibly unnamed edges in the DG.

Our goal for CONTROL-CORE is to be a framework for
peripheral neuromodulation control systems simulations with
feedback control as its central concept. OSPARC allows inter-
active nodes such as Jupyter Lab to interconnect with each
other. IT’IS has recently enhanced the underlying OSPARC
engine by revising it to use sidecars to transfer the changed
Jupyter Lab output files to the input of other nodes every few
seconds. We have observed it taking as long as 10 seconds,
although 1-2 seconds is more typical. Therefore, currently,
a Jupyter Lab PM node could accept its input edge from a
Jupyter Lab controller node (telling the organ what electros-
timulation is being provided) while simultaneously the PM’s
output (e.g., heart rate) may be input to the controller, thereby
closing the loop. By leveraging this recent enhancement

to OSPARC, we developed concore, which is described in
greater detail in the next section.

III. SOLUTION ARCHITECTURE
This section describes how the concore protocol allows
running modular workflows on different computing and pro-
gramming environments without having to change the source
code for nodes.

A. THE PROTOCOL
The concore protocol is simple code, which could be writ-
ten in any language that supports rudimentary file operations.
It polls and sleeps to wait until a change occurs before pro-
ceedingwith computation. The computationwithin each node
is based on both the input data from the file and the internal
state maintained locally within that node. The computation
result is written out to another file that other nodes will be
waiting for. The concore style of coding is like event-
driven approaches used in Hardware Description Languages
(HDLs) [31], allowing graphs more complicated than a sim-
ple controller-PM system to be resolved.

An application developer can develop aCONTROL-CORE
workflow from programs such as PMs and controllers. The
user specifies the workflows through a workflow definition
(a graphically composed GraphML [32] file) illustrating the
communications across the programs. Existing programs can
be adapted to follow the concore protocol to compose the
workflows. If the programs do not exist, the application devel-
oper can write them first, following the concore protocol
from scratch. Figure 2 illustrates how a concore workflow
is developed, built, and executed across multiple platforms.

FIGURE 2. A workflow following the concore protocol.

There are two possible ways to develop a workflow for
OSPARC: the red dotted arrow indicates uploading the source
code directly to OSPARC as described in the next section;
the green dashed arrow indicates using the same tools on
OSPARC as used for the local implementation described later.

We have implemented the concore protocol in Python,
Octave, and (for systems outside of OSPARC that possess
the appropriate license) Matlab. We also partially support
Posix shell scripts to facilitate the running (on systems with-
out the license) of previously-compiled Matlab, using the
Matlab Compiler Runtime (MCR) [30]. In addition, we sup-
port languages not supported on OSPARC, including Verilog

VOLUME 10, 2022 36271

P. Kathiravelu et al.: CONTROL-CORE: Framework for Simulation and Design

(to model the hardware limitations of limited-resource con-
trollers) and C++.

B. OSPARC EXECUTION
In the typical case (like Figure 1b) we might have a controller
whose input from the PM is a file called ‘‘ym’’. Using the
concore protocol, this takes only two lines of Python:

whi le concore .unchanged () :
ym = concore .read (1 , "ym" ,initialym)

or similar Matlab/Octave:

whi le concore_unchanged ()
ym = concore_read (1 , "ym " ,initialym) ;
end

or C++4:

vector<double > ym ;
whi le (concore .unchanged ()) {
ym = concore .read (1 , "ym" ,initialym) ;
}

where ym is the variable that contains the updated value
read from the file ‘‘ym’’, and the number 1 is a port num-
ber. (Since OSPARC allows multiple input ports with mul-
tiple files per port, the concore protocol allows multiple
concore.read calls inside the concore.unchanged
loop.) The concore.read encapsulates file and sleep
operations, and keeps track of the previous value(s) so that
concore.unchangedwill cause the concore.read to
re-execute until the new value of ym is different than the pre-
vious value. Because the file may not exist at the start of the
simulation, an initialym must be provided (eliminating
the chicken-or-egg dilemma between the two nodes). The
amount of real-time for the sleep call is configurable with
concore.delay.

The data file transferred in the concore protocol
is required to be the textual representation of a one-
dimensional list (array) of floating-point values, with a
simulation time stamp appended on the left. In other
words, ‘‘[’’followed by the simulation time and then
a comma-separated list of numbers terminated by ‘‘]’’. This
representation is native to Python and directly acceptable
to Matlab. We developed a parser of this format for other
languages. The concore.read automatically strips the
simulated time from the input data and uses this to determine
concore.simtime. (In the case of multiple inputs, this
will be the maximum of all possible times). The remaining
one-dimensional vector will be returned to the user. If a
control system formulation requires two-dimensional data
(e.g., column vectors), it is the user’s responsibility to convert
this data to the format as above. The initialym value is the
full-textual representation that would have been found in the
file if it had existed (a string including the ‘‘[’’, simulation
time and ‘‘]’’).

4C++ uses the vector class. Since Verilog does not have an equivalent,
its compatible but more cumbersome calling sequence is omitted here.

Associated with the same file ‘‘ym’’ in the other node
(the PM) is

concore .write (1 , "ym" , ym , delta)

which again encapsulates the file operations required.
In the OSPARC implementation, this file actually resides in a
directory/outputs/output_1 that IT’IS uses for sidecar
file transfer. The connection between the two concurrently
running Jupyter Lab nodes is made by the IT’IS sidecar
file-sharing mechanism denoted by the edge from PM to
Controller (C) shown in Figure 3.5 This causes ‘‘ym’’ to
be transferred to /inputs/input_1 in the other Jupyter
Lab node (C), which is where the concore.read shown
above will look for this file. The analogous approach that
concore uses on non-OSPARC implementations will be
described later.

The variable ym could be replaced with any expression that
returns the correct sized vector. The concore.simtime is
automatically concatenated to the string written to the file.
The parameter, delta, allows the advancement of simu-
lation time. Advancing the simulation time with non-zero
delta in at least one node in the loop is necessary to trigger
other nodes to continue the simulation. Part of the reason sim-
ulation time is included in every file is that the actual vector
(excluding the time) may remain identical during consecutive
times.Without explicitly including the time in the file input to
a node, the node could not know it is supposed to be triggered.

FIGURE 3. OSPARC study with C and PM.

Similar concore calls are associated with the other edge
in Figure 3, which transfer a file ‘‘u’’. In the PM:

whi le concore .unchanged () :
u = concore .read (1 , " u " ,initialu)

and in the controller:

concore .write (1 , " u " , \ldots)

Because of the concurrency of nodes, a potential for race
conditions exists, where the concore.write in the one

5Note that the unlabeled edges in Figure 3 denote the sidecars that allow
the transmission of the ‘‘u’’ and ‘‘ym’’ files of Figure 1b. The edges do not
represent the files themselves. The edges could allow additional files to be
transmitted in a more complex example.

36272 VOLUME 10, 2022

P. Kathiravelu et al.: CONTROL-CORE: Framework for Simulation and Design

node is not finished at the time concore.read in the other
node is accessing the same file. Recall that concore.read
polls for a change in the file (in the most recent
example, ‘‘u’’). At startup, this file may not exist, and
if there is a file exception, our code assumes the default
value (initialu) to start the simulation. Later, concore
assumes that only one of three things happens: 1) the file
is identical to the last time it was read (and so the polling
continues); 2) the file’s contents have changed (and so the
polling stops); or 3) the file has zero bytes because the file
has been reopened for write but has not yet been overwrit-
ten (and again the polling continues). If this assumption is
satisfied, concore synchronizes the nodes correctly. This
assumption is valid when we run the two nodes on non-
OSPARC implementations described in the next section, but
we occasionally noticed a brief moment when the OSPARC
sidecar file sharing removed the old version of the file from
a node before copying the new file from the other node. This
caused the default value to be inserted in the middle of a
simulation, destroying the validity of the result. The staff at
IT’IS corrected this bug so thatconcore operates flawlessly
on OSPARC.

C. LOCAL EXECUTION
TheCONTROL-CORE project beganwith the goal of finding
a way to use feedback control within OSPARC; however,
the scope of CONTROL-CORE is larger than a program-
ming technique to be used only on OSPARC. We designed
concore so that the same code that operates on OSPARC
will work when it runs on other platforms, such as MS
Windows, macOS, Ubuntu, or Docker.

Tomake the framework user-friendly, we needed to replace
the OSPARC UI and its associated runtime engine for the
local execution on non-OSPARC environments. We consid-
ered using graphical front ends provided for standard work-
flow languages for the UI. However, the inherent feature of
all such workflow languages is that they are based on DAGs,
which is incompatible with closed-loop control. We built a
minimal workflow composer that allows users to graphically
create more diverse workflows, such as the one shown in
Figure 4, and store them in a GraphML format. The nodes in
Figure 4 show the instance names of the controller (CZ) and
physiological model (PZ) as well as the associated Python
programs. The edges that connect the nodes also have unique
labels.

The basic feature concore relies on is some form of
file sharing between nodes. When controller and PM run
as independent processes on a local Posix operating system
(either macOS or a version of Linux such as Ubuntu), the
file-sharing can be accomplished by using a symbolic link
(ln -s) between the input and output directories. We can
simplify the paths a bit from what OSPARC uses, making
the input port 1 directory for the controller (let’s call it CZ
this time) be ./CZ/in1. This is symbolically linked to a
directory that is also symbolically linked to the output port 1
directory for the physiological model (let’s call it PZ this

FIGURE 4. A concore workflow.

time), which is ./PZ/out1. Similar symbolic links occurs
for ./PZ/in1 and ./CZ/out1. The current directory (.)
in this example is the directory on the local Posix machine
equivalent to an OSPARC study. Processes runningWindows
support a similar concept but use ‘‘\’’ in the paths being
symbolically linked (by mklink). The visual representation
of the GraphML allows us to hide these implementation
details from the user.

The GraphML6 (Figure 4) is processed by our command-
line tool called makestudy that the user invokes as

. / makestudy sdir /example .graphml

where sdir is a directory that contains the work-
flow (example.graphml here) along with the source
files it references. This creates a directory example
with the same name as the workflow that has sev-
eral scripts. In addition to the scripts, makestudy
creates a ./src directory that contains a copy of
the relevant source files, the Python (concore.py),
C++ (concore.hpp), Verilog (concore.v) or Matlab
(concore*.m and import_concore.m) library, and
additional support files. The most important script that
makestudy generates is a script (known as ./build)
that sets up the necessary symbolically-linked directo-
ries. (See Appendix for details.) Our tool also gen-
erates another script (known as ./run) that initiates
running the two programs (./CZ/cvxpymatcore.py
and ./PZ/pmcvxpymatcore.py) in separate processes
(analogously to what happens in an OSPARC study). Here is
the ./run script generated by makestudy using Figure 4
as the GraphML file for Posix:

(cd CZ ;python3 cpymat .py >concoreout .txt&
echo $! >concorepid)&

(cd PZ ;python3 pmpymat .py >concoreout .txt&
echo $! >concorepid)&

In each node (in this example, CZ and PZ), this script
creates concorepid (the process id of the node used
by ./stop) and concoreout.txt (the output of the
node). There is not an easy equivalent to $! in Windows
to find the process id of the node to used by stop.bat.

6Like Figure 3, the edges VCY and VPY do not represent files ‘‘u’’ and
‘‘ym’’ of Figure 1b, but rather the means by which they are transmitted.

VOLUME 10, 2022 36273

P. Kathiravelu et al.: CONTROL-CORE: Framework for Simulation and Design

Instead, at runtime concore.py or its Matlab equiv-
alent (import_concore.m) create batch files that do
taskkill /F /PID of the process id for the currently
running process if that process detects it is running under
Windows. Again, these Windows batch files will be created
for each node, and stop.bat invokes these scripts.

The tool also generates: a script named ./maxtime
which allows the user to specify the maximum simulation
time in concore.maxtime for each edge directory (e.g.,
./VCY and ./VPY of Figure 4); a script named ./debug
which allows the user to interactively debug each node in
separate windows; a script named ./stop which stops the
nodes from running if they do not terminate; and a script
named ./clear which erases the files used for sharing
between nodes so that the simulation can be restarted.

As shown in Figure 4, the GraphML file gives more
information than was shown in the OSPARC UI. Each node
is labeled with a name (corresponding to a directory that
will contain that node). This is typically followed by a
colon and the source file’s name that will run in that node.
(On OSPARC, the user must have manually uploaded this
file to Jupyter Lab prior to running it). Our tool notes the
extension of the source file (Python, Octave, Matlab, C++,
and Verilog have different requirements to run). Also, we
require each edge in the GraphML file to be labeled with a
unique name. These names (VPY and VCY in the example of
Figure 2) correspond to the actual directories that contain data
files ym and u, respectively.

Figure 5 shows the files and directories of a sample local
concore execution. example directory has scripts (green)
and src subdirectory with source files copied from sdir
(purple). After ./build it has subdirectories (CZ, PZ) with
another copy of source files (orange) and symbolic links
(blue) to subdirectories (VCY,VPY) that transfer data files
(red). ./PZ/in1 and ./CZ/out1 are both symbolically
linked to ./VCY which contains u. Likewise, ./CZ/in1
and ./PZ/out1 are both symbolically linked to ./VPY
which contains ym.

D. CONTAINERIZED EXECUTION
In addition to local implementation using operating system
symbolic links,concore supports a containerized execution
with Docker:

. / makedocker sdir /example .graphml

Instead of symbolic links within the same file sys-
tem, concore accomplishes file sharing for the con-
tainerized execution using Docker volumes (VCY and VPY
in the illustrative execution presented in Figure 5) and
Docker containers (PZ and CZ in Figure 5). In the
example directory, makedocker creates the Dockerfiles
needed to build the images docker-cvxpymatcore and
docker-pmcvxpymatcore. It also creates the ./run
needed to run them:

FIGURE 5. Files and directories of an illustrative local concore execution.

sudo docker run −−name=CZ −v VCY : / out1 −v
VPY : / in1 :ro docker−cvxpymatcore\&

sudo docker run −−name=PZ −v VPY : / out1 −v
VCY : / in1 :ro docker−pmcvxpymatcore\&

The ./stop and ./clear scripts accomplish a simi-
lar effect as their non-Docker counterparts, with the extra
restriction that to be successful,./stopmust be done before
./clear. This is because ./stop does docker stop
and docker rm. The ./clear, which does docker
volume rm, fails if there are containers attached to the
volumes associated with GraphML edges, so the ./clear
must happen after ./stop.
The ./maxtime script is more involved than its non-

Docker counterpart since docker cp only allows copy-
ing files to containers, not directly to volumes. It is nec-
essary to place concore.maxtime in volumes because
the user invokes the ./maxtime script before the ./run
script, and so at that point, the containers do not exist.7 To
broadcast concore.maxtime to all volumes, the Docker
./maxtime script momentarily builds, runs, and destroys a
container called concore that mounts all volumes. Using
paths through this container, the user-specified maximum
time is copied to each volume just prior to the user invoking
./run.

A different option, which departs from the requirement of
providing source code for every node, pulls previously-built
Docker containers for nodes when the language extension is
not given for a node in the GraphML file. This will be useful
for general-purpose controllers that naïve users can instan-
tiate without having to understand their internal operation.
In this option, the ./run script is similar to those above,

7The non-Docker implementation, which does not have this restriction,
follows an analogous approach for consistency.

36274 VOLUME 10, 2022

P. Kathiravelu et al.: CONTROL-CORE: Framework for Simulation and Design

but pulls the image from the Docker hub, and the ./build
does not do anything (at least as regards the node pulled from
the Docker hub). Obviously, this option is only useful in the
Docker implementation.

The user provides source files for every node in the
GraphML file in the typical case. Another exception to this
requirement is what we call a null node, where the node name
is followed only by a colon. Since the contents of Docker
volumes exist prior to and after the Docker run command,
such volumes can provide inputs and outputs to the overall
system by connecting one side to a null node. Null nodes
do not correspond to containers. Figure 6 illustrates a four-
node system of which two are null nodes, IN and OUT. This
is useful because the null nodes allow additional Docker
volumes, VIN and VOUT as edge labels, but otherwise is
similar to the two-container system of Figure 4.

FIGURE 6. Examples of null nodes.

Here is the corresponding ./run script generated by
makedocker for the GraphML file of Figure 6:

sudo docker run −−name=CZ −v VCZ : / out1 −v
VOUT : / out2 −v VPZ : / in1 :ro −v VIN : / in2 :ro
docker−cpymat\&

sudo docker run −−name=PZ −v VPZ : / out1 −v
VCZ : / in1 :ro docker−pmpymat\&

BecauseCZ has two outputs,concore.oport[’VCZ’]
will be 1 and concore.oport[’VOUT’] will be 2.
Likewise, concore.iport[’VPZ’] will be 1 and
concore.iport[’VIN’] will be 2.

The approach illustrated in Figure 6 is useful when the
input file is to remain unchanged during the entire simulation.
A more complicated situation occurs when a user wishes to
vary some experimental parameters during the simulation,
for example, whether the PM exhibits a healthy or diseased
behavior. Although such behavioral change could be hard-
coded into the PM, doing so would be a poor choice for a PM
that will be reused in different contexts. Instead, CONTROL-
CORE supports testbench nodes that output knob files to
allow a user to customize the behavior of the system, as shown
in Figure 7. The KNOB edge is an optional input to the PM.
This PM is written more generally than before to use a default
value if this edge does not exist. The testbench node does
not set the simulation time pacing of the system (which is
still determined by the feedback loop between CZ and PZ).
Rather OZ observes the PM output, and based on conditions
selected by the user, changes the KNOB accordingly. This is
particularly useful when the CZ and PZ are pre-built Docker

FIGURE 7. Testbench node modifies knob to PM.

images for which the user cannot modify the source code.
Instead, the user gives a simple source code for OZ to specify
the circumstances in which the KNOB will vary.

E. DISTRIBUTED EXECUTION
The concore protocol enables running a controller with the
PM together on the same platform, whether that platform
is OSPARC, Windows, Ubuntu, macOS, or Docker. But in
practice, a successful controller will eventually be imple-
mented in an embedded processor (so that a custom circuit
can be implanted in an animal experiment or a patient in the
future). Since the PMmay be quite computationally intensive
and/or may only be available on certain platforms (such as
OSPARC), it would be desirable to test such a controller
on a limited-resource machine (similar to that which will be
implanted) while running the more computationally intensive
PM on a different machine via an internet connection. There-
fore, the CONTROL-CORE platform supports a distributed
execution to facilitate workflows that span multiple servers
from various organizations. How can we distribute the PM
and controller onto separate sites? In the abstract, it involves
a data transfer via the Internet, as illustrated by Figure 8, but
with the concore library being used at each site.

FIGURE 8. Communication via the Internet.

The distributed implementation communicates via the
Internet with the support of ‘‘wrappers’’ so that a controller
can be local while the PM can be remote (e.g., running on
OSPARC). We introduced a wrapper in place of the con-
troller and PM on each host, thus seamlessly separating and
distributing the execution to two sites. The wrapper in site-1
takes the placeholder position of the controller, whereas the
wrapper in site-2 assumes the position of the PM. With
this approach, the local and distributed simulations can be

VOLUME 10, 2022 36275

P. Kathiravelu et al.: CONTROL-CORE: Framework for Simulation and Design

made seamless without hindering the user adoption of either
approach. The source code for PM and controller does not
change whether both run locally at a single site without
wrappers or are distributed between two sites using wrappers.

The GraphML file that has the wrapper for the PM (node
name PW, source file pwrap.py) is shown in Figure 9a. The
GraphML file that has the wrapper for the controller (node
name CW, source file cwrap.py) is shown in Figure 9b.
In these figures, the nodes PZ and CZ and associated source
files are identical to the earlier example. Instead of using
the concore protocol to communicate directly between PZ
andCZ, they use theconcore protocol to communicate with
their associated wrappers.

FIGURE 9. Wrappers.

We considered three alternative approaches to implement
the distributed execution of CONTROL-CORE. First, we
considered a peer-to-peer architecture with site-1 and site-2
as peers. However, such an architecture appeared overengi-
neered given the limited bandwidth required by CONTROL-
CORE. Next, we considered a client-server architecture.
Finally, we settled on a Mediator-based architecture.

1) CLIENT-SERVER ARCHITECTURE
The client-server architecture provides a straightforward
implementation, using RESTful POST requests for the dis-
tributed execution. In this approach, the user runs the wrapper
of the controller as a server in a cloud server or a remote
server. The user runs the wrapper of PM from the client site,
such as OSPARC (by logging onto OSPARC and initiating a
study containing the wrapper) or a local machine. The client
site uses Python’s requests [33] module. Since the Python
request module already exists in OSPARC, OSPARC can
run the PM as an ordinary client, not requiring any mod-
ification by IT’IS. However, if all the controller computa-
tions are performed in the cloud, this approach will be more
CPU intensive and costly. Furthermore, this could impose a
maintenance challenge shouldmoreworkflows (than a simple
controller) be introduced.

2) MEDIATOR-BASED ARCHITECTURE
In the chosen Mediator-based architecture, as depicted in
Figure 10, a central cloud VM consists of Mediator,8 a

8https://github.com/ControlCore-Project/Mediator

FIGURE 10. The Mediator-based architecture.

lightweight RESTful server application. We developed a
secure and multitenant implementation of a Mediator [34] to
facilitate loosely-coupled communications between the PMs
and controllers via the wrappers. The Mediator facilitates the
execution of workflows using the respective wrapper routines
of the PM and the controller. We hosted the Mediator in
an Amazon Web Services (AWS) cloud server to facilitate
communications between the distributed PM and controller
nodes deployed across various sites.

We developed the Mediator with Flask [35], a lightweight
web-service engine that is often used to build web applica-
tions from Python classes quickly. The Mediator functions as
an intermediary that accepts the files from the POST requests.
All services (PM and Controller, in the depicted case) of a
workflow acquire their files through POST requests posted to
the Mediator by the other services composing the workflow
(i.e., in the illustrated case, the PM gets its input files from the
controller; the controller gets those from the PM). TheMedia-
tor temporarily stores them in a user-specified directory (such
as ‘‘dir1’’ in Figure 10) to exchange across the services of
the workflow. The Mediator performs no computation except
matching the outputs of PM and controller from different
sites. Hence, it is cost-effective, less CPU intensive, and more
scalable than a client-server model.

The Mediator approach allows all the service nodes to
be equal, rather than following an asymmetric client-server
model with having to decide on either PM or controller as the
server and the other one as the client. Both site-1 and site-2
can be client sites such as OSPARC or a local machine. For
example, this allows a user of an OSPARC PM to ‘‘jailbreak’’
and connect it to a limited resource controller (instead of
requiring the controller to run on a cloud server). Locally a
wrapper (based on the concore library) shares data through
the Mediator from PM and controller.

F. USER EXPERIENCE
Figure 11 shows the deployment architecture of the
CONTROL-CORE framework, with its major components
at the client sites. At its base is the concore protocol
that specifies how the application developer develops the
programs (such as PMs and controllers). It also consists of

36276 VOLUME 10, 2022

P. Kathiravelu et al.: CONTROL-CORE: Framework for Simulation and Design

the concore scripts that enable the execution of the work-
flows, defining them as edges and nodes in the execution
environment.

FIGURE 11. The CONTROL-CORE deployment architecture in the client
sites.

CONTROL-CORE consists of a browser-based open-
source visual workflow composer, DHGWorkflow.9 DHG-
Workflow functions as a user-facing front-end to create
Directed Hypergraphs (DHGs), a superset of DGs, using its
drag-and-drop interface. DHGWorkflow lets the users create
workflows visually without having to manually write the
workflow definitions (which is common in standard work-
flow languages such as CWL and WDL). DHGWorkflow
stores the workflows as GraphML files in the file system
storage, together with the concore user programs such as
PMs and controllers. These GraphML files and the user pro-
grams collectively define the user workflows. CONTROL-
CORE also consists of a parser to parse the GraphML files
generated by DHGWorkflow into a python representation.
Leveraging theWrapper, CONTROL-CORE thus facilitates a
seamless execution of the workflows locally in the execution
environment or in a distributed manner.

As a GraphML implementation, DHGWorkflow is fully
compatible with other GraphML frameworks, such as the
popular downloadable GraphML tool, yEd [36]. yEd is a
generic GraphML composer that allows users to design var-
ious types of GraphML diagrams. DHGWorkflow focuses
entirely on composing hypergraph workflows, unlike yEd.
It is simpler and easier to use by the CONTROL-CORE
application developers. The DHG representation covers more
potential application scenarios compared to DGs or DAGs.

DHGWorkflow comes with features for collaborations
among the users, such as sharing a workflow with other col-
laborators through a URL or a workflow ID and collaboration
on the same workflow by multiple users, by caching them
in the server. It also tracks the history of changes made to
the workflow by the users by storing the workflows created
by the user in the cookies of the user’s browser. There-
fore, any changes made to the workflow definition can be

9https://github.com/controlcore-project/DHGWorkflow

reverted. DHGWorkflow allows the workflows to be saved
as GraphML files. DHGWorkflow also consists of other fea-
tures such as i) a custom validation based on user-provided
Javascript code snippets for nodes and edges, and ii) export-
ing the workflows as PNG and JPG images. The CONTROL-
CORE Parser, developed using the python libraries lxml [37]
and beautifulsoup4 [38], parses the GraphML files into their
respective Python representations.

IV. IMPLEMENTATION
This section looks into the implementation details of the
CONTROL-CORE Mediator and wrappers and how they
facilitate the distributed execution securely and seamlessly.

A. MEDIATOR MULTITENANCY
The Mediator is a Python-based Docker container with a
RESTful interface provided by Flask. Since Flask is not
optimized to run stand-alone in production, we fronted it
with Gunicorn, [39] a Python Web Server Gateway Interface.
Gunicorn exploits the multiple processors and the multiple
cores available in the server to cater to and process multiple
REST calls at once. For example, a 16 processor 4-core
server could run 64 worker nodes, efficiently parallelizing
the workload. The Flask community has recommended such
a deployment architecture rather than deploying a web appli-
cation entirely based on Flask in a production environment.
The website of the CONTROL-CORE project, delivered by a
GET request, is hosted in the same deployment architecture
of Flask and Gunicorn.

When deployed in a public cloud server, the Mediator
can serve concurrent requests from multiple users. However,
exposing the Mediator to the public as a cloud service cre-
ates a security concern, and consequently, a need for proper
authentication measures. To manage the access to the Medi-
ator better, we deploy Kong API Gateway [40] together with
theMediator. Kong is an open-source API gateway developed
as an extension to NGINX [41] load balancer, with easily-
configurable authentication, authorization, and access control
measures. Each Mediator interface is exposed as a Kong
API, composed of a service definition and a route definition.
The service definition specifies where the backend service
endpoint is. The route definition specifies how the users can
access the respective service via the API exposed through
Kong.

We limit access to the Mediator by firewall policies to only
allow the ports exposed by Kong, hence providing access
control measures. We also define the access to the admin
APIs of Kong more restrictively. In the public cloud-based
Mediator deployment, the firewalls are configured through
the AWS security groups [42]. The Mediator exposes the
service endpoints and the website at port 80 to the public.

As CONTROL-CORE aims to serve users who belong
to a wide area network, representing several organizations,
their data space must be protected and separated from others.
We call these users ‘‘tenants’’ of the Mediator. Once the
API keys are created from OSPARC by invoking the Kong’s

VOLUME 10, 2022 36277

P. Kathiravelu et al.: CONTROL-CORE: Framework for Simulation and Design

admin interface, the tenants can build workflows using the
programs such as PMs and controllers.

When the PMs are deployed in OSPARC, multiple tenants
could access them simultaneously to create and execute work-
flows with controllers deployed across various sites. Sim-
ilarly, tenants can compose workflows from different PMs
and controllers deployed across multiple sites concurrently.
The files belonging to each workflow are exchanged across
the workflow’s services through a user-specified directory
(we call it, dirname). The dirnamemust be included in all
the service invocations to exchange the files in the Mediator
correctly.

The APIs that communicate with the PM and controller
wrappers should be secured to avoid compromising their
access. We configure the key-auth plugin provided by Kong
for those private APIs. Each user can create a unique Kong
consumer and associated API key (which can be configured
to expire after a specific time interval). Once a user creates
an API key, it needs to be used in each service request. The
API gateway will drop the REST calls without the correct
API key. Hence, access requests to the Mediator private APIs
without the API key will fail, hence protecting them from
unauthorized access.

Figure 12 illustrates the multitenant execution of theMedi-
ator with two tenants running their workflows concurrently
via the Mediator. The Mediator is deployed with Kong in
front, receiving all the requests first before forwarding them
to the Mediator, as in a load balancer. Kong is configured
with Apache Cassandra [43] as its data store. The data store
persists the service and route definitions and the global con-
figurations of the Kong API gateway, such as the timeout
and plugin definitions. Site-2 and site-3 have the controllers
communicating with the PMs in OSPARC via the Mediator
in this representation. Several such sites may execute their
workflows concurrently, between themselves and with those
PMs hosted in OSPARC. Although OSPARC is presented
here to host the PMs as in one typical use case scenario of
the SPARC ecosystem, the PMs can be hosted on any site.

Relying on just the user-provided dirname alone to cre-
ate a folder is unsuitable and unsafe for a multitenant envi-
ronment. Multiple users may concurrently choose the same
dirname for their workflows, as they are unaware of the
existing directories that belong to the workflows of other
tenants. Therefore, the Mediator stores the workflow’s data
files (u and ym) in a directory dedicated to each workflow.
The directory has a name with the user-provided dirname
followed by the API key of the tenant, as below:

directory = dirname + "_ " + apikey

The Mediator includes an initialization method for the
Mediator to acquire the startup values for the files u and ym.
The security of the Mediator is limited access through the
Kong API keys. AsCONTROL-CORE uses files to transfer
data between the PM and controller through the Mediator,
we also should consider the security of the host or the

FIGURE 12. Multitenant deployment of CONTROL-CORE Mediator with
the API Keys from Kong.

container that consists of the Mediator. The Mediator uses
the secure_filename construct to ensure that a tenant
cannot maliciously or naïvely replace the system files or
any other file that does not belong to the tenant’s workflow
through the RESTful POST invocations of the APIs. This
approach prevents the files from being written to a folder in
a higher level in the folder hierarchy or a folder outside from
where the Mediator initializes, by disabling the characters
such as ‘‘/’’ and ‘‘..’’ in thedirname and replacing themwith
safe characters such as ‘‘_’’ instead. The Mediator returns
a success message in JSON [44] format when the method
invocation completes successfully. The status output message
from the Mediator is parsed and interpreted by the programs
such as the PM and controller.

B. DISTRIBUTED API DEFINITIONS
Now, we look into the Mediator services, init, cleanup,
ctl, and pm, and how they work with the API key (key) for
the secured access and invocation of the APIs. The init
service initializes the Mediator before the execution of a
workflow for the first time. Upon invocation, the cleanup
service cleans up the Mediator and removes the workflow
files stored in Mediator after the workflow completion. The
ctl service endpoint of the Mediator lets the invocation
of the controller program, whereas the pm service endpoint
allows the invocation of the PM program.

The init and cleanup services share a similar API
endpoint that do not produce a file output. However, the
init service expects the initial values of the files passed
on as the body of the HTTP POST request. ∀ service
∈ {init, cleanup}, the REST API endpoint is at
/service/<dirname>?apikey=<key>. For exam-
ple, a sample POST request to invoke the init service
endpoint of dirname, ‘‘test’’ with an API key, ‘‘xyz’’:
/init/test?apikey=xyz.

The init procedure is currently invoked from PM,
although it can be invoked from either PM or controller. This

36278 VOLUME 10, 2022

P. Kathiravelu et al.: CONTROL-CORE: Framework for Simulation and Design

procedure provides the Mediator with the initial values of the
files shared between the service nodes before the service APIs
such as ctl and pm are invoked. The cleanup procedure
periodically empties the folders after theworkflow executions
are completed. This procedure ensures that the temporary
outputs from the service APIs such as ctl and pm are not
left behind in the server of the Mediator. The cleanup
procedure can be run from one of the clients as the final step.

The pm and ctl services also need to indicate which files
they are expecting as the output/return file from the invo-
cation. Therefore, ∀ service ∈ {pm, ctl}, the endpoint
is at /service/<dirname>?fetch=returnfile&
apikey=<key>.

For example, POST request to invoke the ctl ser-
vice endpoint with dirname of ‘‘test,’’ using an API
key, ‘‘xyz’’ is: /ctl/test?fetch=u&apikey=xyz.
This indicates the file u must be fetched via the Medi-
ator and returned. The respective pm service endpoint is,
/pm/test?fetch=ym&apikey=xyz.

The wrappers use the concore protocol to connect to the
local node, and Python requests module to connect to the
remote node. After using concore to read the data locally,
the local file that passed that data is then used to create a
POST request to the proper URL (denoted as MEDIATOR in
the cwrap.py code presented in the Appendix.). This request
also includes the API key and service name (for example,
the wrapper that connects to the controller will request the
/pm service). Unlike concore.unchanged, theMediator
cannot ensure that the data has changed. There is a loop that
repeatedly issues POST requests until the simulated time t
has changed. If the POST requests time out, the loop reissues
the POST requests and only fails after an agreed-upon global
time delay. Typically, the loop exits and the wrapper does
concore.write to continue the closed-loop.
The Mediator can occasionally encounter a race condition

and deadlock when u (or ym) is accessed concurrently in
the Mediator by the /ctl and /pm interfaces. The prob-
lem happens when read access is attempted by one POST
response simultaneously to write access by the other POST
request. The race condition is more frequent with Gunicorn
due to multiple worker processes. Although the PM and its
respective wrapper, as well as the controller and its respective
wrapper, are synchronized by the concore module, the
Mediator does not have the concore module based seri-
alization. We use Python FileLock library for safe inter-
process communication when multiple processes access the
same files in the Mediator. This library provides a mutual
exclusion (mutex) [45] to the file access to prevent concurrent
read-write accesses, thus resolving these race conditions.

C. SECURE ADMIN INTERFACE
Since each user needs to have their own API key to access the
secured APIs of Mediator, there should be a straightforward
approach for the generation of consumers and API keys.
Typically, the Kong API Gateway’s admin interface is private
and is not exposed to the public, as that would be a security

concern. With public access to the admin interface, malicious
users may take down the API gateway or naïve users may
misconfigure the APIs and break the deployment. We limit
access to API key generation through only the OSPARC
platform by configuring the firewall policies in the security
group of the CONTROL-CORE VM in the AWS. However,
even then, we should not expose the whole admin interface
of the Kong as-is to prevent curious users from accessing
the entire configuration. Therefore, we expose the API key
creation interface of Kong securely through a secondary Kong
as a service, only to the OSPARC network.

Figure 13 shows the CONTROL-CORE deployment, with
the Mediator configured with two Kong instances. Here
the Kong is configured to generate API keys (port 8002)
only when requested from the specified networks such as
OSPARC. We highlight that this secondary Kong is utilized
only when the API keys are generated. An API key generator
feature in-built in the CONTROL-CORE PM wrappers cre-
ates a consumer and an API key for the user if the user does
not have an API key.

FIGURE 13. Kong’s admin interface securely exposed as a service to
OSPARC network through another Kong.

Suppose the user already has a valid API key generated
in the previous iteration. In that case, the API key generator
will return the existing key to the user rather than creating
a new one. Because users invoke the API key generator by
logging into OSPARC through their local browsers, each user
can copy and paste their unique key to their other wrapper
instances (such as the controller wrapper in site-2 depicted in
Figure 13) and the wrapper instances of different workflows.
The admin interface for the API key generation does not
require to be reaccessed by the user as long as the API key
remains valid and the user possesses them in their wrappers.
Hence, once the API key is generated and copied to the PM
and controller nodes, the secondary Kong is not accessed
by the same user in most cases for a long time. Therefore,
the impact of the secondary Kong on the performance is
negligible.

V. EVALUATION
We evaluate the functionality and performance of
CONTROL-CORE with a set of illustrative use cases for
closed-loop neuromodulation control systems. We assess
CONTROL-CORE across various programming languages

VOLUME 10, 2022 36279

P. Kathiravelu et al.: CONTROL-CORE: Framework for Simulation and Design

and execution environments in a local and distributed
execution.

A. MPC WITH LINEAR PM
To get an idea of how a realistic neurostimulation simulation
performs on various platforms using concore, we initially
used a linear non-pulsatile model for a rat cardiac PM:

x(t + 1) = Ax(t)+ Bu(t)

ym(t + 1) = Cx(t)+ Du(t) (1)

The model is defined by four configuration matrices:
A,B,C, and D. The column vector x is the internal state of
the PM. The column vector u has six elements (three stimu-
lations points: Vagal, Sympathetic, and Baroreceptive; each
stimulation point is defined by a frequency and pulse width).
The output of the PM is a column vector with two elements,
Heart Rate (HR) and Mean Arterial blood Pressure (MAP).
The simulation time, t , is an integer indicating the number
of heartbeats since the start of the simulation corresponding
to concore.simtime. This is a non-pulsatile model since
it only reports HR and MAP every heartbeat, rather than
giving detailed information on the varying pressure during
the systole and diastole periods. In contrast, the complete
pulsatile model [46] requires solving Delayed Differential
Equations (DDEs) [47], which are challenging to do effi-
ciently in Python or Octave.

Even though (1) is highly simplified compared to the com-
plete pulsatile model, (1) is usable with the controller [46]
designed using Model Predictive Control (MPC) [48]. MPC
can handle multi-input and multi-output systems, which are
usually hard to be handled by scalar single-loop feedback
controllers [49]. It also can handle constraints. Constraints
are crucial for the biomedical system because violating them
can lead to unsafe consequences.MPC has preview capability
over an extended period. MPC uses a flexible and open
methodology for solving optimization problems, making it
extendable in many ways. MPC consists of certain challenges
in the development of proper models: Sometimes, a complex
nonlinear model and a disturbance/noise model are required,
which is especially significant for biomedical systems. Other
limitations include a selection of prediction horizon and
weight matrices, and the design of extra conditions to guaran-
tee stability should be carefully considered. Choosing MPC
for the controller here is only an example—concore is
compatible with other approaches.

This controller can be implemented in Python using
cvxopt [50], requiring about 0.07 seconds per heart-
beat on a 2.6GHz laptop. For benchmarking purposes
(1) has the advantage that it can easily be implemented
in Python with concore (notes: initialization is omit-
ted; X contains matrices obtained from a data file set
up using pmcvxpymatcore.dir; conversions to/from
Numpy arrays and transpositions .T are required after read-
ing and before writing so that Plant can work with column
vectors whilst concore needs lists):

TABLE 2. Local Linear Cardiac Benchmark.

We benchmarked this with five platforms: OSPARC
(hosted in the AWS cloud infrastructure with northern Vir-
ginia cloud region), an x86 (2.6 GHz, 8 GB, Windows 10)
laptop (in eastern Pennsylvania), an x86 (2.8 GHz, 16 GB,
macOS Big Sur) laptop (in northwestern Georgia), a virtual
machine (3.6 GHz, 8 GB, Windows 10) with Matlab license
(hosted in eastern Pennsylvania) and AWS cloud (hosted in
northern Virginia). We initially tested the cloud deployment
with t2.micro AWS VM because it is free-tier eligible
(1 GB, 1 vCPU, Linux). However, we observed that AWS
t2.micro was of too poor performance, and instead, we
upgraded to an r5.large instance (2 vCPU, 10 ECU, 16
GB, Linux). This AWS platform is used for (local) Docker
computation and Mediator communication. There are two
classes of benchmarks: local (that do not use the Mediator)
and distributed (that use the Mediator for communication but
have computation performed elsewhere).

Table 2 shows the local benchmarks for the linear car-
diac model (1) using the cvxopt controller. The speed
of the local implementation depends on several factors,
including concore.delay and the time (independent of
concore) for numerical computations performed by the
particular controller/PM on the given hardware. Inside of
concore.read is concore.retrycount that indi-
cates the number of times reads had to be reattempted due
to zero-length files. Although concore is functional for an
arbitrarily short concore.delay, we use the heuristic that
concore.retrycount should be around 10 percent of
the number of simulation cycles. On most local platforms,
this gives a concore.delay around 0.005-0.02 seconds,
which represents the minimum time overhead incurred by
each edge in the GraphML file.

36280 VOLUME 10, 2022

P. Kathiravelu et al.: CONTROL-CORE: Framework for Simulation and Design

TABLE 3. Distributed Linear Cardiac Benchmark.

On OSPARC, there are two possible local implementa-
tions: a) using the built-in sidecar file sharing implicit with
nodes and edges created in the OSPARCUI (like Figure 3); b)
amakestudy implementation using a GraphMLfile created
outside of OSPARC whose nodes and edges are invisible to
the OSPARC UI. For all the benchmarks, the controller gives
plots of HR and MAP (Figure 14 obtained from ym) and
stimulations (Figure 15 obtained from u). Table 3 shows the
benchmarks for the corresponding distributed executions.

FIGURE 14. HR and MAP (ym) of Linear Model.

One of the advantages of CONTROL-CORE is the
ability to connect nodes written in different languages.
Figure 16 shows the same Python controller connected to a
PM using a 16-bit matrix coprocessor [51] coded in Verilog
to realize (1). The HR and MAP in Figure 17, which is
more zoomed into the region near the setpoint (110.4 mmHg,
374.5 bpm) than the other figures, exhibits quantization
because the 16-bit format, which has a 9-bit mantissa, cannot
reflect small perturbations to numbers of this magnitude.
CONTROL-CORE allows users to explore such tradeoffs.

B. MPC WITH PULSATILE PM
Using (1), which is the basis for pmcvxpymatcore.py
and pmvxpymatcore.v as depicted in Figures 4 and 16,
does not yield a realistic simulation. Instead, the full pulsatile
model [46] gives a more accurate simulation, as shown in
Figure 18 using pmoct.m written in proprietary Matlab to
solve DDEs. Figure 18a, which interprets the source code
file, is only possible on local systems that possess a Mat-
lab license. To overcome this restriction, the local Ubuntu
version provides a ./compile command that invokes

FIGURE 15. Stimulation output (u) of Linear Model.

FIGURE 16. Python controller with Verilog PM.

FIGURE 17. HR and MAP (ym) of Linear 16-bit Verilog.

MCR. The resulting object code and its invoking script,
run_pmoct.sh, can be used by local Ubuntu systems
without the Matlab license as shown in Figure 18b. This
can then be containerized and used on any platform (without
a Matlab license) using Docker. Although setting this up
requires a license and a little effort on the developer’s part,
once compiled, it can run on any local operating system that
supports Docker without a Matlab license. The simulation
output in Figures 19 and 20 is noticeably different than the
earlier examples because the fidelity of the PM is better. The
simulation speed (about two iterations per second) is slower
because of the time required to solve the DDEs.

VOLUME 10, 2022 36281

P. Kathiravelu et al.: CONTROL-CORE: Framework for Simulation and Design

FIGURE 18. Pulsatile Matlab to solve DDEs.

FIGURE 19. HR and MAP (ym) of Pulsatile Model.

C. LSTM WITH PULSATILE PM
Other controller formulations are possible, for example, a
Tensorflow [52] controller (candr.py) based on LSTM
neural network trained from experimental data (or in this case
from random exploration of the Pulsatile PM), as shown by
Figure 21. Tensorflow-LSTM controller is an MPC wherein
the model is an LSTM. In addition to the advantages of
the MPC, this consists of an added benefit of learning from
data as opposed to developing equations and fitting param-
eters, depending on the problem. Once trained, the model
structure and the weights are stored in an .h5 file (inside
candr.dir). For Docker, the source-file directory needs to
include a special candr.Dockerfile since Tensorflow is
not included in the default.10

Figure 22 shows the HR and MAP generated by
CONTROL-CORE for three different set points, and
Figure 23 gives the corresponding stimulation parameters.
The speed is about half of MPC with the Pulsatile PM.

D. POWER-AWARE TOOLS
One of the goals of the CONTROL-CORE platform is to
allow control system designers to explore the tradeoffs of
different alternatives. A metric of interest for implanted

10candr.py requires particular versions of Tensorflow and Numpy,
which illustrates the advantage of containers for reproducible results [3]
compared to a local installation that might have incompatible versions.

FIGURE 20. Stimulation output (u) of Pulsatile Model.

FIGURE 21. LSTM controller with Pulsatile PM.

FIGURE 22. HR and MAP (ym) of LSTM controller.

controllers is the power they consume, which can be
attributed to several factors, including the actual neural stim-
ulation, measurement, communication, and computing. For
example, Figure 24 illustrates a powermeter.py tool that
connects between the example controller and PM previously
illustrated in Figure 4. This node passes the input (u) from
theVC edge unchanged to theVXP edgewhile also computing
the energy that would be required to accomplish this. For
full communication, it also passes VP back to VXC while
noting the HR. (This example ignores the energy required to
measure MAP and HR, although similar code could consider
measurement and communication costs.)

36282 VOLUME 10, 2022

P. Kathiravelu et al.: CONTROL-CORE: Framework for Simulation and Design

FIGURE 23. Stimulation (u) of LSTM controller.

Because the power meter node (XZ) has two input
ports and two output ports, we disambiguate which edge
is connected to which port using concore.iport and
concore.oport. For example, the first concore.read
takes its input from VC and the second one takes its input
from VP. It does not matter what port numbers are assigned
to these edges. Similarly, the output edges VXC and VXP are
referenced symbolically.

The period of each beat can be computed from HR
(ym[1]), and the energy of each of the three stimulation
points is the product of its pulse width and frequency times
that period. The advantage of this approach is neither the
controller nor PM needs to be instrumented for conducting
such power-aware simulations. Indeed, they could just as
easily have been pre-built Docker images. Users simply edit
the GraphML file to invoke a simple tool like this. Users
could also easily create similar tools for their own customized
experiments in their language of choice using pre-built PM
and/or controller images without knowing about the internal
details of the images, which might have been written in a
language that is unavailable or unfamiliar to the users.

E. DISCUSSION
Stability is a critical factor in control systems [53], espe-
cially in the applications that aim to support medical use
cases such as CONTROL-CORE. concore operates in a
time-sensitive manner, providing synchronization between
the PMs and Controllers. An event-triggered control scheme
is an approach to address communication and computa-
tion constraints of real-time control tasks that are designed

FIGURE 24. Power Meter connects Controller and PM.

to be implemented on embedded processors. The goal of
event-triggered control schemes, as opposed to time-
triggered control strategies, is to increase the functionali-
ties of the embedded processors using real-time scheduling
algorithms based on event-triggered execution of control
tasks [54].

Efficient real-time scheduling of event-triggered control
tasks is proposed in the literature, such as the H∞ weighted
integral event-triggered synchronization [55]. An example of
a sample event-triggered scheduling algorithm is to execute
a control task whenever a specific error gets larger than a
threshold or the state norm. Instead of periodic implemen-
tations, this aperiodic (event-triggered) implementation of
control tasks saves the microprocessors’ computation and
communication resources and increases their durability and
functionalities. Using concore protocol in designing event-
triggered control strategies is feasible. Implementing and
deploying more control systems with CONTROL-CORE,
including the event-triggered control systems, is future work.

VI. CONCLUSION
We have designed a scalable multitenant simulation and
design platform for closed-loop peripheral neuromodulation
control systems. Through several illustrative use cases, we
demonstrated the capabilities of the CONTROL-CORE plat-
form to model closed-loop neuromodulation control systems
to treat conditions affecting internal organs. As part of the
larger SPARC program, CONTROL-CORE fills a gap in the
potential to leverage PMs for developing closed-loop VNS
systems by allowing interaction between control algorithms
and the PMs. With the novel concore protocol that facil-
itates seamless communication between the controllers and
the PMs and a securedMediator deployment, the CONTROL-
CORE platform provides a modular architecture for com-
posing workflows from various disjoint services locally or
remotely. Our evaluations on the use case prototypes high-
light the feasibility and performance of the proposed frame-
work.

VOLUME 10, 2022 36283

P. Kathiravelu et al.: CONTROL-CORE: Framework for Simulation and Design

Standard workflow frameworks are not optimized to run
across multiple infrastructures in a distributed manner. The
CONTROL-CORE Mediator facilitates a distributed work-
flow execution based on RESTful communication across the
service nodes. While the Mediator is still a centralized entity,
we note that such a RESTful approach can be extended to
support completely decentralized workflows across multiple
servers and infrastructures. With a centralized (such as the
API key generation of CONTROL-CORE) or a decentral-
ized trust mechanism, closed-loop workflows can be adopted
into a decentralized peer-to-peer environment as future work.
Hence, we believe CONTROL-CORE provides the first step
towards decentralized modeling of peripheral neuromodula-
tion control systems globally across diverse infrastructures
through RESTful interactions.

APPENDIX
A. BUILD SCRIPTS
The Posix ./build script with Figure 4 as its GraphML:

Here is the corresponding ./build script generated by
makedocker:

B. WRAPPER IMPLEMENTATION
The following illustrates the main aspects for cwrap.py:

ACKNOWLEDGMENT
The authors are grateful for the support from the NIH that
made this work possible. They would also acknowledge the
guidance from Tyler Best and Herbert Sauro. They appreciate
the assistance with OSPARC that they received from the staff
at IT’IS, especially Sylvain Anderegg, Pedro Crespo-Valero,
Esra Neufeld, and Katie Zhuang.

REFERENCES
[1] C. H. Gibbons, ‘‘Basics of autonomic nervous system function,’’ in

Handbook of Clinical Neurology, vol. 160. Amsterdam, The Netherlands:
Elsevier, 2019, pp. 407–418.

[2] M. Osanlouy et al., ‘‘The SPARC DRC: Building a resource for
the autonomic nervous system community,’’ Frontiers Physiol.,
vol. 12, p. 929, Jun. 2021. [Online]. Available: https://www.frontiersin.
org/article/10.3389/fphys.2021.693735

[3] C. Boettiger, ‘‘An introduction to Docker for reproducible research,’’ ACM
SIGOPS Oper. Syst. Rev., vol. 49, no. 1, pp. 71–79, Jan. 2015.

[4] O. Rudyy, M. Garcia-Gasulla, F. Mantovani, A. Santiago, R. Sirvent, and
M. Vázquez, ‘‘Containers in HPC: A scalability and portability study in
production biological simulations,’’ in Proc. IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), May 2019, pp. 567–577.

[5] H. M. Foroushani, R. Dhar, Y. Chen, J. Gurney, A. Hamzehloo, J.-M. Lee,
and D. S. Marcus, ‘‘The stroke neuro-imaging phenotype repository: An
open data science platform for stroke research,’’ Frontiers Neuroinform.,
vol. 15, p. 27, Jun. 2021.

[6] C. Andrikos, G. Rassias, P. Tsanakas, and I. Maglogiannis, ‘‘An enhanced
device-transparent real-time teleconsultation environment for radiolo-
gists,’’ IEEE J. Biomed. Health Informat., vol. 23, no. 1, pp. 374–386,
Jan. 2019.

[7] E. F. Camacho and C. B. Alba,Model Predictive Control. Berlin, Germany:
Springer, 2013.

[8] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[9] R. Qasha, J. Cała, and P. Watson, ‘‘A framework for scientific workflow
reproducibility in the cloud,’’ in Proc. IEEE 12th Int. Conf. e-Sci. (e-
Science), Oct. 2016, pp. 81–90.

[10] P. Amstutz et al., Common Workflow Language, V1. 0. U.K.: Figshare,
2016.

[11] W. F. Miller and A. T.-I. Yaung, ‘‘Method, system, and program for
generating a workflow,’’ U.S. Patent 7 100 147, Aug. 29, 2006.

36284 VOLUME 10, 2022

P. Kathiravelu et al.: CONTROL-CORE: Framework for Simulation and Design

[12] E. Larsonneur, J. Mercier, N. Wiart, E. L. Floch, O. Delhomme, and
V. Meyer, ‘‘Evaluating workflow management systems: A bioinformatics
use case,’’ in Proc. IEEE Int. Conf. Bioinf. Biomed. (BIBM), Dec. 2018,
pp. 2773–2775.

[13] B. D. O’Connor, D. Yuen, V. Chung, A. G. Duncan, X. K. Liu, J. Patricia,
B. Paten, L. Stein, and V. Ferretti, ‘‘The dockstore: Enabling modular,
community-focused sharing of Docker-based genomics tools and work-
flows,’’ FResearch, vol. 6, p. 52, Jan. 2017.

[14] E. H. Beni, B. Lagaisse, andW. Joosen, ‘‘WF-Interop: Adaptive and reflec-
tive REST interfaces for interoperability between workflow engines,’’
in Proc. 14th Int. Workshop Adapt. Reflective Middleware, Dec. 2015,
pp. 1–6.

[15] F. Curbera, M. Duftler, R. Khalaf, and D. Lovell, ‘‘Bite: Workflow
composition for the web,’’ in Proc. Int. Conf. Service-Oriented Comput.
Salt Lake City, UT, USA: Springer, 2007, pp. 94–106.

[16] J. Bang-Jensen and G. Gutin, Classes of Directed Graphs. Berlin,
Germany: Springer, 2018.

[17] M. Kotliar, A. V. Kartashov, and A. Barski, ‘‘CWL-Airflow: A lightweight
pipeline manager supporting common workflow language,’’ GigaScience,
vol. 8, no. 7, Jul. 2019, Art. no. giz084.

[18] G. Kaushik, S. Ivkovic, J. Simonovic, N. Tijanic, B. Davis-Dusenbery,
and D. Kural, ‘‘Rabix: An open-source workflow executor supporting
recomputability and interoperability of workflow descriptions,’’ in Proc.
Pacific Symp. Biocomput. Singapore:World Scientific, 2017, pp. 154–165.

[19] C. Houben, N. Peremezhney, A. Zubov, J. Kosek, and A. A. Lapkin,
‘‘Closed-loop multitarget optimization for discovery of new emulsion
polymerization recipes,’’ Organic Process Res. Develop., vol. 19, no. 8,
pp. 1049–1053, Aug. 2015.

[20] N. Melão and M. Pidd, ‘‘A conceptual framework for understanding busi-
ness processes and business process modelling,’’ Inf. Syst. J., vol. 10, no. 2,
pp. 105–129, Apr. 2000.

[21] S. W. Sorde, S. K. Aggarwal, J. Song, M. Koh, and S. See, ‘‘Modeling and
verifying non-DAG workflows for computational grids,’’ in Proc. IEEE
Congr. Services (Services), Jul. 2007, pp. 237–243.

[22] R. Prodan and T. Fahringer, ‘‘Overhead analysis of scientific workflows
in grid environments,’’ IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 3,
pp. 378–393, Mar. 2008.

[23] W. Chen and E. Deelman, ‘‘Workflow overhead analysis and opti-
mizations,’’ in Proc. 6th Workshop Workflows Support Large-Scale Sci.
(WORKS), 2011, pp. 11–20.

[24] P. Afshar, A. Khambhati, S. Stanslaski, D. Carlson, R. Jensen, S. Dani,
M. Lazarewicz, J. Giftakis, P. Stypulkowski, and T. Denison, ‘‘A trans-
lational platform for prototyping closed-loop neuromodulation systems,’’
Frontiers Neural Circuits, vol. 6, p. 117, Jan. 2013.

[25] P. Kathiravelu, P. Sarikhani, P. Gu, and B. Mahmoudi, ‘‘Software-defined
workflows for distributed interoperable closed-loop neuromodulation con-
trol systems,’’ IEEE Access, vol. 9, pp. 131733–131745, 2021.

[26] A. M. Lennox, ‘‘Gastrointestinal diseases of the ferret,’’ Vet. Clinics North
Amer., Exotic Animal Pract., vol. 8, no. 2, p. 213, 2005.

[27] B. Granger and J. Grout, ‘‘JupyterLab: Building blocks for interactive
computing. Slides of presentation made at SciPy,’’ in Proc. 15th Annu. Sci.
Comput. Python Conf., Austin, TX, USA, Jul. 2016.

[28] B. M. Randles, I. V. Pasquetto, M. S. Golshan, and C. L. Borgman, ‘‘Using
the Jupyter notebook as a tool for open science: An empirical study,’’ in
Proc. ACM/IEEE Joint Conf. Digit. Libraries (JCDL), Jun. 2017, pp. 1–2.

[29] J. W. Eaton, D. Bateman, and S. Hauberg, GNU Octave. London, U.K.:
Network Theory, 1997.

[30] D. M. Etter, D. C. Kuncicky, and D. W. Hull, Introduction to MATLAB.
Upper Saddle River, NJ, USA: Prentice-Hall, 2002.

[31] M. G. Arnold, Verilog Digital Computer Design: Algorithms Into Hard-
ware. Upper Saddle River, NJ, USA: Prentice-Hall, 1999.

[32] U. Brandes, M. Eiglsperger, J. Lerner, and C. Pich, Graph
Markup Language (GraphML). London, U.K.: Chapman & Hall,
2013.

[33] Requests: HTTP for Humans. Accessed: Feb. 9, 2022. [Online]. Available:
https://docs.python-requests.org

[34] C. Hérault, G. Thomas, and P. Lalanda, ‘‘A distributed service-oriented
mediation tool,’’ in Proc. IEEE Int. Conf. Services Comput. (SCC), 2007,
pp. 403–409.

[35] M. Grinberg, Flask Web Development: Developing Web Applications With
Python. Sebastopol, CA, USA: O’Reilly Media, 2018.

[36] yEd Tool. Accessed: Feb. 9, 2022. [Online]. Available: https://www.
yworks.com/products/yed

[37] S. Behnel, M. Faassen, and I. Bicking, lxml: XML and HTMLWith Python.
lxml, 2005. Accessed: Feb. 9, 2022. [Online]. Available: https://lxml.de/

[38] L. Richardson. (2007). Beautiful Soup Documentation. Accessed:
Jul. 7, 2018. [Online]. Available: https://www.crummy.com/software/
BeautifulSoup/bs4/doc/

[39] Gunicorn—Python WSGI HTTP Server for UNIX. Accessed: Feb. 9, 2022.
[Online]. Available: https://gunicorn.org

[40] Kong. Accessed: Feb. 9, 2022. [Online]. Available: https://konghq.com/
[41] C. Nedelcu, Nginx HTTP Server, vol. 75. Birmingham, U.K.: Packt

Publishing, 2010.
[42] C. Jin, A. Srivastava, and Z.-L. Zhang, ‘‘Understanding security group

usage in a public IaaS cloud,’’ in Proc. 35th Annu. IEEE Int. Conf. Comput.
Commun. (IEEE INFOCOM), Apr. 2016, pp. 1–9.

[43] M. Brown, Learning Apache Cassandra. Birmingham, U.K.: Packt
Publishing, 2015.

[44] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta, ‘‘Comparison of
JSON and XML data interchange formats: A case study,’’ Caine, vol. 9,
pp. 157–162, Nov. 2009.

[45] L. Dalessandro, D. Dice, M. Scott, N. Shavit, andM. Spear, ‘‘Transactional
mutex locks,’’ in Proc. Eur. Conf. Parallel Process. Ischia, Italy: Springer,
2010, pp. 2–13.

[46] Y. Yao and M. V. Kothare, ‘‘Model predictive control of selective vagal
nerve stimulation for regulating cardiovascular system,’’ in Proc. Amer.
Control Conf. (ACC), Jul. 2020, pp. 563–568.

[47] B. Balachandran, T. Kalmár-Nagy, and D. E. Gilsinn, Delay Differential
Equations. Berlin, Germany: Springer, 2009.

[48] E. F. Camacho and C. Bordons, Model Predictive Control. Berlin,
Germany: Springer-Verlag, 1999.

[49] M. Kamrunnahar, N. S. Dias, and S. J. Schiff, ‘‘Toward a model-based
predictive controller design in brain–computer interfaces,’’ Ann. Biomed.
Eng., vol. 39, no. 5, pp. 1482–1492, May 2011.

[50] Python Software for Convex Optimization. Accessed: Feb. 9, 2022.
[Online]. Available: https://cvxopt.org

[51] P. D. Vouzis, M. V. Kothare, L. G. Bleris, and M. G. Arnold, ‘‘A system-
on-a-chip implementation for embedded real-time model predictive con-
trol,’’ IEEE Trans. Control Syst. Technol., vol. 17, no. 5, pp. 1006–1017,
Sep. 2009.

[52] M. Abadi et al., ‘‘TensorFlow: A system for large-scale machine learning,’’
in Proc. 12th USENIX Symp. Operating Syst. Design Implement. (OSDI),
2016, pp. 265–283.

[53] E. Roxin, ‘‘Stability in general control systems,’’ J. Differ. Equ., vol. 1,
no. 2, pp. 115–150, 1965.

[54] P. Tabuada, ‘‘Event-triggered real-time scheduling of stabilizing con-
trol tasks,’’ IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1680–1685,
Sep. 2007.

[55] S. Yan, S. K. Nguang, and Z. Gu, ‘‘H∞ weighted integral event-triggered
synchronization of neural networks with mixed delays,’’ IEEE Trans. Ind.
Informat., vol. 17, no. 4, pp. 2365–2375, Apr. 2021.

VOLUME 10, 2022 36285

	CONTROL-CORE: A Framework for Simulation and Design of Closed-Loop Peripheral Neuromodulation Control Systems
	Recommended Citation
	Authors

	tmp.1684265043.pdf.2Q6Jz

