
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Faculty Research, Scholarly, and Creative Activity

7-1-2021

Reinforcement learning applied to metamaterial design Reinforcement learning applied to metamaterial design

Tristan Shah
Eastern Michigan University

Linwei Zhuo
San Jose State University

Peter Lai
San Jose State University

Amaris De La Rosa-Moreno
San Jose State University

Feruza Amirkulova
San Jose State University, feruza.amirkulova@sjsu.edu

See next page for additional authors

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca

Recommended Citation Recommended Citation
Tristan Shah, Linwei Zhuo, Peter Lai, Amaris De La Rosa-Moreno, Feruza Amirkulova, and Peter Gerstoft.
"Reinforcement learning applied to metamaterial design" Journal of the Acoustical Society of America
(2021): 321-338. https://doi.org/10.1121/10.0005545

This Article is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in
Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU ScholarWorks. For more
information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F2977&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1121/10.0005545
mailto:scholarworks@sjsu.edu

Authors Authors
Tristan Shah, Linwei Zhuo, Peter Lai, Amaris De La Rosa-Moreno, Feruza Amirkulova, and Peter Gerstoft

This article is available at SJSU ScholarWorks: https://scholarworks.sjsu.edu/faculty_rsca/2977

https://scholarworks.sjsu.edu/faculty_rsca/2977

View

Online

Export
Citation

CrossMark

JULY 14 2021

Reinforcement learning applied to metamaterial designa)
Tristan Shah; Linwei Zhuo; Peter Lai; ... et. al

J Acoust Soc Am 150, 321–338 (2021)
https://doi.org/10.1121/10.0005545

Related Content

Sound manipulation through multi-scattering, gradient-based optimization, deep learning and
reinforcement learning

J Acoust Soc Am (April 2021)

Robot grasping method optimization using improved deep deterministic policy gradient algorithm of deep
reinforcement learning

Rev Sci Instrum (February 2021)

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

https://pubs.aip.org/asa/jasa/article/150/1/321/606639/Reinforcement-learning-applied-to-metamaterial
https://pubs.aip.org/asa/jasa/article/150/1/321/606639/Reinforcement-learning-applied-to-metamaterial?pdfCoverIconEvent=cite
https://pubs.aip.org/asa/jasa/article/150/1/321/606639/Reinforcement-learning-applied-to-metamaterial?pdfCoverIconEvent=crossmark
javascript:;
javascript:;
javascript:;
javascript:;
https://doi.org/10.1121/10.0005545
https://pubs.aip.org/asa/jasa/article/149/4_Supplement/A128/754504/Sound-manipulation-through-multi-scattering
https://pubs.aip.org/aip/rsi/article/92/2/025114/369268/Robot-grasping-method-optimization-using-improved
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2062282&setID=592934&channelID=0&CID=746302&banID=520961806&PID=0&textadID=0&tc=1&adSize=1640x440&matches=%5B%22inurl%3A%5C%2Fjas%22%5D&mt=1683067983356518&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Fasa%2Fjasa%2Farticle-pdf%2F150%2F1%2F321%2F16748316%2F321_1_online.pdf&hc=177770cea9f1e5959d329381dd1aa97c16158636&location=

Reinforcement learning applied to metamaterial designa)

Tristan Shah,1 Linwei Zhuo,2 Peter Lai,2 Amaris De La Rosa-Moreno,2 Feruza Amirkulova,2,b) and Peter Gerstoft3,c)

1Data Science and Analytics, Eastern Michigan University, Ypsilanti, Michigan 48197, USA
2Mechanical Engineering Department, San Jose State University, San Jose, California 95192, USA
3Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA

ABSTRACT:
This paper presents a semi-analytical method of suppressing acoustic scattering using reinforcement learning (RL)

algorithms. We give a RL agent control over design parameters of a planar configuration of cylindrical scatterers in

water. These design parameters control the position and radius of the scatterers. As these cylinders encounter an inci-

dent acoustic wave, the scattering pattern is described by a function called total scattering cross section (TSCS).

Through evaluating the gradients of TSCS and other information about the state of the configuration, the RL agent

perturbatively adjusts design parameters, considering multiple scattering between the scatterers. As each adjustment

is made, the RL agent receives a reward negatively proportional to the root mean square of the TSCS across a range

of wavenumbers. Through maximizing its reward per episode, the agent discovers designs with low scattering.

Specifically, the double deep Q-learning network and the deep deterministic policy gradient algorithms are employed

in our models. Designs discovered by the RL algorithms performed well when compared to a state-of-the-art optimi-

zation algorithm using fmincon. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0005545

(Received 9 March 2021; revised 22 May 2021; accepted 17 June 2021; published online 14 July 2021)

[Editor: James F. Lynch] Pages: 321–338

I. INTRODUCTION

Acoustic metamaterials are sub-wavelength sized struc-

tures that, when formed into a continuous material, can

exhibit unusual mechanical properties, such as negative

effective mass density, negative refraction, high transmis-

sion, or absorption. These unique properties of acoustic

metamaterials enable control over wave propagation energy

within a medium. Many exciting applications have emerged,

such as cloaking,1 sound focusing,2 wave steering,3 and

beam forming.4 However, to achieve unconventional mate-

rial property values required for acoustic wave manipula-

tion, meticulously designed metamaterials are necessary. A

novel approach in designing metamaterials can be found

within the field of machine learning (ML). Review papers

on ML for molecular design,5,6 inverse designs of inorganic

solid materials,7 and inverse designs of nanophotonics8–10

suggest that deep learning (DL), reinforcement learning

(RL), and generative modeling assisted inverse design mod-

els can, by far, exceed human capability.

RL is a sub-field of ML that studies how agents take

actions based on trial and error. RL agents are capable of learn-

ing optimal policies in an environment that maximize a reward.

In previous works, these agents have mastered complex games,

such as chess or go, with the only information supplied being

the rules of the game.11,12 We can use these agents and re-

purpose them to optimize design parameters of a device. By

giving a reward signal to the agent that reflects how well the

design satisfies our criteria, it will produce optimal designs.

Badloe et al.13 used this technique to successfully optimize the

design parameters of a photonic absorption device.

Our motivation is to eventually create an acoustic

cloaking device. Once built, this device will render objects

invisible to incoming waves in the bandwidth for which it is

optimized. The design parameters for our cloaking device

are the positioning of multiple cylindrical scatterers on a

two-dimensional (2D) grid (position adjustment) or the

radius of each cylindrical scatterer on a 2D grid (radius

adjustment). Our aim is to compare the performance of two

different RL algorithms for each of these parameters. One

algorithm chooses from a set of finite discrete actions; the

other chooses from continuous actions. We compare the

optimal designs that the algorithms produced for the posi-

tional and radius design parameters.

A. Related work

In recent years, we have been experiencing the rebirth

of ML. While the most mature works are in computer sci-

ence, we observe the application of innovative data-driven

ML models in genomics, natural sciences, physical sciences,

engineering, and art. The potential that DL14 and RL15 offer

for the discovery of new devices and functionalities is draw-

ing attention from a growing community of researchers.9

1. ML in acoustics

In acoustics, neural networks (NNs) were employed in

the late 1990s and are currently experiencing a revival.16–18

Jenison16,19 used spherical basis function NNs for approxi-

mating the acoustic scattering of a rigid scatterer. Hesham

and El-Gamal20 solved an integral equation of acoustic

a)This paper is part of a special issue on Machine Learning in Acoustics.
b)Electronic mail: feruza.amirkulova@sjsu.edu, ORCID: 0000-0002-6348-4941.
c)ORCID: 0000-0002-0471-062X.

J. Acoust. Soc. Am. 150 (1), July 2021 VC 2021 Acoustical Society of America 3210001-4966/2021/150(1)/321/18/$30.00

ARTICLE...................................

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

https://doi.org/10.1121/10.0005545
mailto:feruza.amirkulova@sjsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1121/10.0005545&domain=pdf&date_stamp=2021-07-14

scattering using wavelet basis and NNs. Bianco et al.21 pro-

vided a review of recent applications of ML in acoustics,

including the applications of support vector machine

(SVM), K-means techniques, dictionary learning, autoen-

coders, and DL. They specifically discussed recent ML

applications in bioacoustics, source localization in ocean

acoustics, speaker localization and tracking, signal process-

ing, speech modeling, source separation and enhancement,

etc. Cueto and Hadithi22 designed acoustic metamaterials by

means of NNs for the correction of skull-induced aberra-

tions on the ultrasonic beam for neurological applications.

Meng et al.23 explored the inverse acoustic scattering prob-

lem that reconstructs the obstacle shape with far-field infor-

mation using NNs. Fan et al.24 studied acoustic scattering

by 2D geometries, including circular and elliptical cylinders,

and convex prisms as an image-to-image regression problem

using convolutional neural networks (CNNs). Fan et al.25

also studied an inverse acoustic scattering problem using

CNNs, which predict the object, given the total acoustic

field. Liu et al.18 proposed indoor sound source localization

algorithm assisted by CNNs for a small-sized microphone

array. Komen et al.26 showed that CNNs trained on syn-

thetic spectrograms have the potential to make predictions

on the seabed type and source parameters. Morgan et al.17

employed convolutional long short-term memory networks

to solve speech emotion regression tasks.

2. DL approaches to inverse design of metamaterials

Various data-driven inverse designs of spinodoid,

mechanical, optical, and acoustic metamaterials were

recently proposed. Kumar et al.27 proposed a data-driven

inverse design of spinodoid metamaterials. Gao and Zhu28

proposed an inverse design method for acoustic metamateri-

als. Finol et al.29 showed that CNNs can massively outper-

form traditional fully connected NNs in solving eigenvalue

problems for one-dimensional (1D) and 2D phononic crys-

tals. Pornaras et al.30 presented a method to simulate acous-

tic multiple scattering by a configuration of cylinders using

NNs, where NNs were trained to approximate the total scat-

tering cross section (TSCS) and to solve inverse problems.

Wu et al.31 optimized bandgaps of mechanical metamateri-

als using NNs and genetic algorithms. Gurbuz et al.32

designed acoustic metamaterials for broadband sound insu-

lation using conditional generative adversarial networks

(GANs) combined with finite element simulations per-

formed in COMSOL. DL has been used in the inverse design of

photonic devices,33–35 waveguides,36 and metastruc-

tures22,28,37–39 and in obstacle shape reconstructions,23 mass

transport cloaking,40 and molecular simulations41 with supe-

rior performance. Deep generative models have been

applied in inverse design of molecular components,5,42–44

metasurfaces,37,45–48 optical cloak,49 filters,50 power split-

ters,51 and material microstructure.52 These generative mod-

els have the undesirable property of only being able

generate parameters within the limits of the training data.

RL is successful in finding the extreme limits of a specific

design53 as discussed next.

3. RL in inverse design

RL has been applied in many disciplines, including

robotics,54 transportation and traffic control,55 multi-agent

systems,56 quantum physics,57 and genetic algorithms.58

Guimaraes et al.59 developed a method (ORGAN) that com-

bines GANs and RL to bias the generation toward desirable

metrics. Putin et al.43 introduced NNs for the design of

novel small-molecule organic structures based on RL and

the GAN paradigm. Sajedian et al.53 studied the colour gen-

eration by dielectric nanostructures and optimized the colour

generation finding geometrical properties predicted by RL,

i.e., Q-learning algorithm. Sajedian et al.60 obtained the

optimal geometrical design parameters and material type for

metasurface holograms using a double deep Q-learning net-

work (DDQN). Badloe et al.13 used a DDQN algorithm to

optimize the parameters of ultra-broadband, moth-eye struc-

ture absorbers for several different metallic materials. By

exploring and exploiting important regions of the parameter

space, their model quickly optimizes the absorption of the

structure and chooses the appropriate materials for the sub-

strate and spacer layers to find the highest average absorp-

tion over the specified wavelength range. In their design,13

the authors considered a simpler model. Their system con-

tains fewer parameters, and the absorption coefficients are

optimized when the device location is fixed.

B. Proposed model

Our model is more complex as the parameter space is

of a higher order. In addition, our model entails a con-

strained non-convex optimization problem such that the cyl-

inders are free to move within a defined planar region while

maintaining a spacing of equal or greater value than the

allowable minimal distance. The source codes are for our

deep RL models are available on GitHub depository at

https://github.com/gladisor/Reinforcement-Learning-Applied-

To-Metamaterial-Design.

We discuss the following in the remaining sections:

Sec. II A introduces RL methods. Section II B gives an over-

view of the environment that we have used for RL and pro-

vides the definition of the multiple scattering problem.

Section II C presents the mechanisms of optimal control.

Section II D outlines our proposed gradient assisted

approach for inverse design. Section II E addresses our

DDQN approach for discrete actions. Section II F discusses

our deep deterministic policy gradient (DDPG) approach for

continuous actions. In Sec. III, we present the application of

the closed form for the gradient of TSCS to acoustic cloak

design. Single and broadband scattering suppression effects

are illustrated using multiple reconfigurable cylinders as the

cloaking mechanism by adjusting positions or radii of each

scatterer. Section IV concludes our study and discusses

related future work.

322 J. Acoust. Soc. Am. 150 (1), July 2021 Shah et al.

https://doi.org/10.1121/10.0005545

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

https://github.com/gladisor/Reinforcement-Learning-Applied-To-Metamaterial-Design
https://github.com/gladisor/Reinforcement-Learning-Applied-To-Metamaterial-Design
https://doi.org/10.1121/10.0005545

II. METHODS AND PROBLEM FORMULATION

A. RL

The main idea of RL is to create a self-improving algo-

rithm that learns an optimal policy in an environment

through its own experience or offline data. The entity that

selects actions and learns is called an agent. The environ-

ment comprises everything outside the agent. As the agent

interacts with the environment, it generates data from which

it can learn to improve its value function or policy. There is

a cycle between policy evaluation and improvement that

continues until an optimal policy is discovered. There are

two branches of RL algorithms: Q-learning12 and policy gra-

dients.61 These two methods differ in the way they represent

the action space (set of all possible actions) in the environ-

ment; however, they are both driven by the Markov decision

process (MDP) described by Sutton and Barto (Ref. 15, pp.

47–71). The MDP provides a mathematical framework for

policy iteration and improvement.

The agent interacts with the environment one step at a

time as shown in Fig. 1. Starting from an initial state St, the

agent selects an action At and based on this receives a

reward Rtþ1 and a state Stþ1. This sequence is repeated until

a terminal state has been reached, resulting in an episode

trajectory15

S0;A0;R1; S1;A1;R2; S2;A2;R3;…: (1)

In this setting, the agent’s goal is maximizing the sum of

rewards received throughout the episode. The sum of

rewards from t onward is defined as Gt

Gt¼: Rtþ1 þ Rtþ2 þ � � � þ RT ; (2)

where T is the time of termination. In the definition above,

the agent values rewards received long after the current time

step t just as much as rewards very close to it. By introduc-

ing a discount factor parameter c, 0 � c � 1, we can control

how much the agent will value future rewards15

Gt¼: Rtþ1 þ cRtþ2 þ c2Rtþ3 þ � � �

¼
XT

k¼tþ1

ck�t�1Rk: (3)

The discounted sum of rewards Gt defines the value of

the state that the agent is in or the value of the action taken

in that state. Most RL algorithms have a value function or

action value function Q� that is trained to estimate Gt.

Below is the Bellman optimality equation for Q�
15

Q�ðs; aÞ ¼ E Rtþ1þc max
a

Q�ðStþ1; aÞjSt ¼ s;At ¼ a
h i

;

(4)

where the expectation is under the distribution of states vis-

ited with the current policy. Thus, the Q� estimates the value

function of the optimal policy when repeatedly applied as an

update.

B. Acoustic multiple scattering

We consider multiple scattering in the context of the

acoustic time harmonic wave equation in two dimensions

following Amirkulova and Norris62 and also Appendix A.

The governing equation for the acoustic pressure

pðxÞ; x 2 R2, is the Helmholtz equation

r2pþ k2p ¼ 0; (5)

where k ¼ x=c is the wavenumber, c is the acoustic speed,

and x is the frequency. The total field pðxÞ is defined as the

sum of incident pinc and scattered psc pressure fields

p ¼ pinc þ psc: (6)

Let r denote the TSCS. The TSCS is directly related by

the optical theorem to the scattering amplitude in the for-

ward direction, i.e., the direction of propagation of the inci-

dent plane wave, here assumed to be e1 or the x direction.

Thus,63

r ¼ �2Re f ð0Þ; (7)

where the far-field amplitude form function f ðhÞ
¼ f ðh; r1; …; rMÞ; h ¼ argðxÞ is defined by the scattered

pressure psc in the far-field given by Eq. (A16), where

r1; …; rM denote the positions of each scatterer depicted in

Fig. 16. We chose these scatterers to be circular rigid cylin-

ders for the simplicity of implementation of model and

cylindrical thin elastic shells as our eventual goal is to

design an acoustic cloaking device made of isotropic materi-

als available in nature. Choosing symmetric shape scatterers

allows the computation of TSCS and its gradients with

respect to the scatterer positions in a closed form. Providing

analytical formulas of gradients to the model enhances the

performance of both gradient-based optimization62 and deep

RL algorithms as will be shown in this work.

The TSCS can then be expressed,62

rðrjm; kaÞ ¼ � 4

k
Rea†b; (8)

where a† is the Hermitian transpose, the vectors a and b are

defined by Eq. (A14), and rjm ¼ rj � rm is a position vector

of multipole Om with respect to multipole Oj depicted in

Fig. 16. The incident field pinc is a plane wave that interacts

with a given configuration of M separate scatterers. The

plane wave is propagating from left to right and directed in

e1 ¼ ð1; 0Þ direction. For simplicity, we take these to beFIG. 1. (Color online) Agent interacting with environment in a MDP.

J. Acoust. Soc. Am. 150 (1), July 2021 Shah et al. 323

https://doi.org/10.1121/10.0005545

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

https://doi.org/10.1121/10.0005545

circularly cylindrical scatterers that may be either rigid cyl-

inders or thin elastic shells. Our objective is to reduce the

scattering by rearranging the scatterers. As a measure of the

scattering, we use TSCS. We define the root mean square

(RMS) of a set of TSCSs over some range of normalized

wavenumbers kia ði ¼ 1; 2; …;NkÞ

rRMSðrjmÞ ¼
1

Nk

XNk

i¼1

ðrðkiaj; rjmÞÞ2
" #1=2

; (9)

where aj is the radius of each cylindrical scatterer.

Specifically, we consider a range of normalized wavenum-

bers kia 2 ½0:35; 0:45�, where i ¼ 1; …; 11. The RL algo-

rithms were able to reduce scattering outside this range at

higher wavenumbers. However, the time needed to train

them increased to unfeasible levels. The critical quantity

that we use in the process is the reward function, which will

be defined next in terms of RMS of TSCS, i.e., rRMS.

C. Optimal control

Our goal is to show that a RL agent can discover design

parameters of M scatterers that suppress TSCS across a range

of wavenumbers from kia 2 ½0:35; 0:45�; ði ¼ 1; 11Þ to an

optimal or near-optimal level. To achieve this goal, we imple-

mented an environment in which an agent can change the

design parameters of M scatterers through selecting an action

at each time step. The x; y plane that contains the scatterers

spans x; y 2 ½�5:0; 5:0�m. To avoid overlapping, the distance

between the centers of cylinders/shells is constrained by the

allowable minimal distance.62 The environment is able to

reset to an initial random configuration of design parameters.

From the starting configuration, the agent selects an action,

which changes the parameters and receives a reward from the

environment. The cycle of state, action, reward repeats until

the terminal state is reached, the episode is complete, and the

environment is reset. In this environment, the terminal state

occurs after a fixed number of actions are taken. To use a NN

to approximate the value of a state-action pair, both must be

represented numerically. The representation of actions

depends on the RL algorithm in question, while the state rep-

resentation of the environment is common between both algo-

rithms we use in this paper.

The state vector consists of L design parameters di of all

the scatterers in the form ½d1;…; dL�T , the TSCS at Nk wave-

numbers, the RMS of the TSCS, and the current time step of

the environment scaled between 0 and 1. The dimension of

the state vector is Lþ Nk þ 2. The final component of the

environment is the reward function, which determines how

our agent is rewarded for taking actions within the

environment

Rt ¼
�rRMSðrjmÞt legal state;

�rRMSðrjmÞt�1 � 1:0 else:

(
(10)

A legal state requires all cylinder centers to lie within the

grid with none overlapping. If the state of the environment

is illegal, it reverts to the previous state with a penalty

deducted from the reward. This reward function incentivizes

the agent to take actions that bring the reward function close

to zero quickly to minimize the accumulation of negative

rewards while also avoiding illegal states.

A tactic to improve sample efficiency of data in RL is

to use a replay buffer to store transition data generated from

the environment.64 Transitions are added to the buffer as the

agent interacts with the environment and are sampled in

batches to perform gradient updates. We used one-step tran-

sitions of the form St;At;Rtþ1; Stþ1. To improve sample

efficiency, we employed a prioritized replay buffer in both

Q-learning and policy gradient algorithms.65 Prioritized

replay buffers function similarly to standard replay buffers,

except the sampling probability is weighted by a priority d
rather than uniformly. The priority for new transitions added

to the buffer is set to the maximum to ensure that they are

sampled. After each batch update, the sampling priority d of

each transition is defined as65

d ¼ jr þ c max
a0

Qðs0; a0Þ � Qðs; aÞj; (11)

where Q is an action value function that predicts the dis-

counted sum of future rewards based on the current state s
and action a, where s0 and a0 correspondingly represent the

next state and the maximum valued action in that state. The

value of d measures the agent’s error in predicting the action

value.

To correct for the change in distribution of gradient

updates due to prioritized sampling, Schaul et al.65 calls for

multiplying each sample update by an importance-sampling

weight wi

wi ¼
1

N
� 1

PðiÞ

� �b

; (12)

where hyperparameter b ð0 < b < 1Þ controls how aggres-

sively to correct for the change in distribution, N is the num-

ber of samples in the replay buffer, and P(i) is the

probability of sampling transition i. Hyperparameters for the

prioritized replay buffer in our experiments come from the

suggested values given by Schaul et al.65 Values of b out-

side the recommended ones were not explored.

We consider three design spaces for the RL algorithms.

The first design space is the positioning of M cylinders/

shells of radius a on a bounded plane. The design parame-

ters in this case are the x and y coordinate of each scatterer.

To represent the design parameter vector, we concatenated

the M coordinates together and allowed the agent to change

the coordinates at each time step. The design parameter vec-

tor is xM ¼ ½x1; y1;…; xM; yM�T .

The second design space is for large numbers of M scat-

terers ðM � 6Þ. It is employed only to the DDPG agent,

since a single action moves all cylinders simultaneously.

The challenge here is the chance of encountering illegal

states, which dramatically increases as the number of scat-

terers grows. This leads to the environment not generating

324 J. Acoust. Soc. Am. 150 (1), July 2021 Shah et al.

https://doi.org/10.1121/10.0005545

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

https://doi.org/10.1121/10.0005545

useful data in the replay buffer. Instead of reverting the ille-

gal state back to the previous state, we propose to recall the

illegal cylinder adjustments only. In this new environment,

we check the condition of each adjustment individually. If

the resulting configuration is legal, we allow it in the action.

This cycle continues until all the adjustments are either

applied or withdrawn. Once this process is complete, we

apply the action to the environment. This method helps the

environment to always output new states for each time step,

improving the convergence for large numbers of scatterers;

the limitation of this method is the increase in computation

time and resources. In our previous environment, only one

loop is required to apply an action, whereas the new envi-

ronment needs one iteration for each cylinder adjustment in

the action. Since the new environment always generates a

legal state, we can replace the penalty by the number of

invalid actions Ninvalid in the reward function. The new

reward function for larger M is defined as

Rt ¼ �rRMSðrjmÞt � wpðNinvalidÞ; for M � 6; (13)

where wp is a tunable parameter that adjusts the weight of

Ninvalid in the reward function.

The third design space is the radii of 19 scatterers in

two concentric rings around a core unchanging scatterer (see

Fig. 15) that is being cloaked. The design parameter for

each scatterer is the current radius a, and the parameter vec-

tor is xM ¼ ½a1; a2;…; aM�T . Under this design space, the x
and y coordinates of each cylinder, including the core, are

held constant. The core radius is also kept constant.

D. Gradient assisted inverse design

The procedure for the gradient assisted inverse design is

as follows: we evaluate the TSCS and its gradients with

respect to the cylinder coordinates and provide them in the

state vector. We define the broadband gradient vectors qj

with respect to position vectors rj
62

qj ¼
@rRMSðrjmÞ

@rj
; j ¼ 1; 2;…M: (14)

The explicit formulas for gradient vectors qj are given by

Eq. (A22). After inserting the gradients qj ðj ¼ 1;MÞ into

the state vector, its dimension becomes 2Lþ Nk þ 2. The

RL agent minimizes the TSCS by evaluating its derivative

with respect to the scatterer coordinates and taking actions

accordingly. The gradient of a function points in the direc-

tion of greatest increase; likewise, the negative gradient

points in the opposite direction. If the scatterer coordinates

were adjusted purely based on the gradients as in standard

optimization methods, there would be a risk of converging

to a local minimal configuration.62 RL systems, however,

consider reward on subsequent actions rather than just the

best action in the current state. This means that they con-

sider the gradient but learn to move the scatterers in a differ-

ent direction, which leads to higher reward in the long term.

E. Q-learning-based formulation

In the Q-learning approach, we use DDQN with several

modifications from the rainbow deep Q-learning network

approach,66 including a prioritized replay buffer, a target Q

NN, and a dueling network architecture. The DDQN uses

two NNs: a Q and a target Q (see Fig. 2). Both of these NNs

take in the state vector defined in Sec. II C as input and out-

put the expected discounted sum of rewards (q value) for

each discrete action by Eq. (3).

Actions are selected by taking an argmax function on

the output of the Q NN, given a state vector. To ensure ade-

quate random exploration of the parameter space, the high-

est valued action is rejected in favor of a randomly selected

FIG. 2. (Color online) Diagram of

DDQN agent interacting with the envi-

ronment by adjusting design parameters.

J. Acoust. Soc. Am. 150 (1), July 2021 Shah et al. 325

https://doi.org/10.1121/10.0005545

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

https://doi.org/10.1121/10.0005545

action with probability � for each time step. After each epi-

sode, we reduce the probability of selecting a random action

� linearly until it reaches a non-zero minimum. This ensures

continued exploration while still taking mostly optimal

actions. This process is known as �–greedy action

selection.66

The QNN selects actions to take in the environment.

After each action, one update to the NN weights is applied.

A single update involves sampling a batch of transitions

from the prioritized replay buffer and minimizing the Huber

loss67 between the predicted q value and the target given by

Eq. (4). The target NN is used to compute the maximum val-

ued action in the next state. At a regular interval, the param-

eters of the Q NN hQ overwrite the parameters of the target

Q NN hQ0 .

DDQNs learn a discrete action space shown in Tables I

and II. When using the positions of scatterers as the design

parameters, we chose to assign each action to moving one

scatterer in one cardinal direction by a distance of 0.5 m.

The 0.5 m for position adjustment was chosen empirically.

The number of actions is 4M, where M is the total number

of scatterers. For the radius adjustment design, there are two

actions for each design parameter: increase or decrease

radii. The radius adjustments are made in increments of

0.04 m. This value is derived by linearly scaling the adjust-

ment from the positional design down to the range of allow-

able radii. The number of actions is fixed at 2ðM � 1Þ ¼ 38,

since M¼ 20 is constant and core cylinder radii are not

changing. All hyperparameters used for the DDQN algo-

rithm are shown in Table V.

F. Policy gradient-based formulation

To give an agent more fine grain control over the envi-

ronment than the DDQN, we used an algorithm that can

learn a continuous action space. When the agent is far from

optimal design, it can make large adjustments and then

make sensitive adjustments to settle into a precise design. A

DDPG61 is a policy gradient algorithm with the ability to

learn multiple continuous actions (see Fig. 3).

The DDPG algorithm uses four NNs: an actor and Q,

and a target NN for each. The actor NN receives the state

vector as input and outputs an action vector. The action vec-

tor is the adjustment made to each design parameter. To

bind the action vector to a reasonable range, the actor NN

has a tanh function on the final layer, which restricts actions

between –1 and 1. We multiplied the output by 0.5 to restrict

the actions to the same range as DDQN. The Q NN takes in

the concatenated state and action vector and predicts the

expected discounted sum of rewards (q value) for that state-

action pair. The Q NN is trained similarly to the DDQN Q

NN by sampling a batch of transitions from the replay buffer

and minimizing the Huber loss67 between the predicted q
values and the target q values given by Eq. (4). As the Q NN

learns accurate q values, it is used to update the actor NN to

output actions that maximize the Q NN output, given a state

vector.

After each gradient update to the base NN, a portion of

the parameters (hl, hQ) are copied over to the target NN

parameters (hl0 ; hQ0) using a soft update,61

h0 shþ ð1� sÞh0. This soft update procedure greatly

improves training stability by having the target networks

slowly track the base networks.61 The value of s used in our

experiments was given in the paper by Lillicrap et al.,61

which introduced the DDPG algorithm. According to the

paper, smaller values of s lead to slower but more stable

training. By increasing s, we may be able to decrease con-

vergence times; however, in this research, we only used the

suggested value.

Exploration of new states is achived by adding a nor-

mally distributed noise to the output of the actor network

during training with l¼ 0 and r¼ 1. The noise injected

action was clipped to be within the proper range. We scaled

the noise by a noise scale factor, which is reduced linearly

over the training process.

The action space for DDPG is shown in Tables III and

IV. When using the DDPG for the positional design, each

action output of the DDPG moves one scatterer along one

axis simultaneously; therefore, the number of actions is 2M.

For the radius adjustment design, there is a single continu-

ous action for each scatterer. With the number of design

scatterers M¼ 19, the total number of outputs is 19. All

hyperparameters for the DDPG algorithm were the same

across all runs and can be found in Table VI.

III. NUMERICAL EXPERIMENTS AND RESULTS

In this section, we present the results of the RL algo-

rithms after training. Numerical simulations are performed

by calling the MATLAB engine from PYTHON libraries. The

environment was run on a central processing unit (CPU),

while the action selection and deep learning updates for the

TABLE I. Design actions of DDQN for the positional adjustment of M scat-

terers. Each row corresponds to one output of the Q network.

Scatterer Action

1 x� 0:5 m

1 yþ 0:5 m

1 xþ 0:5 m

1 y� 0:5 m

M x� 0:5 m

M yþ 0:5 m

M xþ 0:5 m

M y� 0:5 m

TABLE II. Design actions of DDQN for radius adjustment of 19 scatterers.

Each row corresponds to one output of the Q network.

Scatterer Action

1 Radiiþ 0:04 m

1 Radii� 0:04 m

19 Radiiþ 0:04 m

19 Radii� 0:04 m

326 J. Acoust. Soc. Am. 150 (1), July 2021 Shah et al.

https://doi.org/10.1121/10.0005545

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

https://doi.org/10.1121/10.0005545

agents were computed on a graphics processing unit (GPU)

using PyTorch. For M � 4 rigid cylinder environments, an

Nvidia (Santa Clara, CA) GTX 10 606GB was used. Both

algorithms converged in similar times (100 time steps per

episode): for the two scatterer environment 200 episodes

(14 min), three scatterers 1500 (140 min), and four scatterers

8000 (14 h). For the M � 4 thin elastic shells environment,

an Nvidia RTX 20 708GB was used. Similar to the rigid cyl-

inder environments, episodes were 100 time steps. The

agents for thin elastic shells were trained for the same num-

ber of episodes (with similar training times) for each M as

rigid cylinders. For the design space with M � 4 (6, 8, 10,

and 12 scatter) environments, an Nvidia P-100 was used

from the COE HPC cluster68 of San Jose State University.

All training cycles ran with 100 time steps per episode and

wp¼ 0, 0.1, 0.01, and 0.001. After experimenting with dif-

ferent weights, we used the following setup for our results:

(1) for M¼ 6: wp¼ 0 and episodes¼ 7000, (2) for M¼ 8:

wp¼ 0.1 and episodes¼ 6500, (3) for M¼ 10: wp¼ 0.1 and

episodes¼ 7000, (4) for M¼ 12: wp¼ 0 and epi-

sodes¼ 6500. Compared to M � 4, the computation time

increased linearly with changes in M: from 40 h for six

scatterers up to 80 h for 12 scatterers. For the DDPG algo-

rithm, the starting noise scale is an important parameter. For

positional designs, the initial noise scale is set to 1.2 and

decays to 0.02 over the entire training period, while the radii

noise scale starts at 0.25 and decays to 5 � 10–5.

We consider rigid cylinders submerged in a medium

with the acoustic properties of water: q0 ¼ 1000 kg/m3,

c0 ¼ 1480 m/s. Additionally, we consider suppression of

scattering by configuration of empty thin elastic cylindrical

shells situated in the same medium, varying the material

properties of the cylinders to compare the resulting optimal

TSCS. Separate runs of optimization are done for each

material. The material properties we experiment with are

nickel and titanium.

A. Adjusting positions of each scatterer for M £ 4

In this section, we illustrate the effect of suppressing

plane wave scattering from configurations of rigid and elas-

tic scatterers by modifying the position of each scatterer.

We compare the discovered configurations by the DDQN

and DDPG algorithms starting from the same initial configu-

rations. Each algorithm was trained on M¼ 2, 3, and 4 scat-

terer setups. To show the performance of the RL models, we

also optimized the RMS of TSCS rRMS by employing

FIG. 3. (Color online) Diagram of

DDPG agent interacting with the envi-

ronment by adjusting cylinder position.

TABLE III. Design actions of DDPG for positional adjustment of M cylin-

ders. Each row corresponds to one output of the actor network. Each adjust-

ment is bounded [–0.5, 0.5]m per action. The legal range of the axis is

[–5.0, 5.0]m.

Scatterer Action

1 x axis adjustment

1 y axis adjustment

M x axis adjustment

M y axis adjustment

TABLE IV. Design actions of DDPG for radius adjustment of M scatterers.

Each row corresponds to one output of the actor network. Each adjustment

is bounded from ½�0:04; 0:04�m per action. The legal range of each cylinder

radii is ½0:2; 1:0�m.

Scatterer Action

1 Radius adjustment

M Radius adjustment

J. Acoust. Soc. Am. 150 (1), July 2021 Shah et al. 327

https://doi.org/10.1121/10.0005545

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

https://doi.org/10.1121/10.0005545

MATLAB optimization solver fmincon69 with state-of-the-art

sequential quadratic (SQP) algorithms. Both the RL algo-

rithms and fmincon are very sensitive to initial conditions.

Therefore, starting the optimization process from the same

initial configuration is crucial to ensure accurate perfor-

mance evaluation. Computations are performed for a plane

wave incident from left to right starting with the same initial

random configurations. Experiments for rigid cylinders are

presented in Figs. 4–6. Numerical results for elastic thin

shells are depicted in Figs. 7–10 (Figs. 7 and 9 for nickel

shells and Figs. 8 and 10 for titanium shells).

1. Results for rigid cylinders

The benefit of using the gradient assisted inverse design

approach described in Sec. II D is illustrated in Fig. 4 for a

configuration of M¼ 4 rigid cylinders. The performance of

DDQN and DDPG with and without the gradients provided

in the state vectors is demonstrated in Figs. 4(a) and 4(b),

respectively. Each curve is averaged over three runs. In

these runs, a 25 (DDQN) and 5 (DDPG) point rolling

median filter was applied to provide additional smoothing.

As Fig. 4 shows, both DDQN and DDPG algorithms experi-

ence a noticeable increase in their convergence speed and

stability. The optimal configurations discovered by the gra-

dient assisted models and with and without providing gra-

dients are similar. However, the gradient assisted models

converge faster during training. Decreasing the number of

episodes to train is helpful, since training times increase

steeply for larger numbers of scatterers.

The variation of TSCS (r) with the non-dimensional

wavenumber ka is shown in Fig. 5. A comparison of sup-

pression of r curves for configurations of M¼ 2, 3, and 4

rigid cylinders is depicted in Fig. 6 using DDQN and DDPG

algorithms contrasting with fmincon solver using SQP algo-

rithms. Here, we performed a broadband minimization of

TSCS (r) for 11 discrete values of non-dimensional wave-

number ki a 2 ½0:35; 0:45�; i ¼ 1; …; 11. Interestingly, the

reduced TSCS values fall not only within but also outside

the optimized range of wavenumbers as shown in Fig. 5. For

configurations of M¼ 2 and 3 cylinders, performance of all

three algorithms is similar within the range of wavenumbers

TABLE VI. Hyperparameters of DDPG.

Name Value Description

c 0.9 Controls how much the agent values future reward

Initial noise scale Position: 1.2, radii: 0.25 Scale of normally distributed noise

Final noise scale Position: 0.02, radii: 0.00005 Final scale of noise at end of training

s 0.001 Rate at which the target networks are updated

Memory size 1e6 Maximum number of transitions in priority replay buffer

a 0.7 How much to use prioritized sampling

b 0.5 How aggressively to apply importance-sampling weights

Optimizer Adam Optimizer used for both networks

Actor learning rate 1e� 4 Learning rate of actor optimizer

Critic learning rate 1e� 3 Learning rate of critic optimizer

Critic weight decay 1e� 2 Regularization term to prevent overfitting

Actor hidden size 128 Number of neurons in hidden layers

Actor hidden layers 2 Number of hidden layers of neurons

Normalization Layer norm Normalizes inputs across features

Activation ReLU Nonlinear activation function used between layers

Batch size 64 Number of samples per batch of gradient descent

TABLE V. Hyperparameters of DDQN.

Name Value Description

c 0.9 Controls how much the agent values future reward

�-end 0.1 Final exploration rate at end of training

Target update 10 How many gradient updates between syncing weights with policy net

Memory size 1e6 Maximum number of transitions in priority replay buffer

a 0.6 How much to use prioritized sampling

b 0.4 How aggressively to apply importance-sampling weights

Optimizer SGD Optimizer for Q network

Learning rate 5e� 4 Learning rate of optimizer

Momentum 0.9 Momentum of gradient updates

Hidden size 128 Number of neurons in hidden layers

Hidden layers 1 Number of hidden layers of neurons

Activation ReLU Nonlinear activation function used between layers

Batch size 256 Number of samples per batch of gradient descent

328 J. Acoust. Soc. Am. 150 (1), July 2021 Shah et al.

https://doi.org/10.1121/10.0005545

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

https://doi.org/10.1121/10.0005545

at which the configurations are optimized, and beyond this

range RL algorithms reduce TSCS slightly better.

Importantly, for a configuration of M¼ 4 cylinders, both RL

algorithms discover a design that produces lower scattering

and better results than fmincon.

Figure 6 illustrates the final optimal configurations pre-

dicted by DDQN, DDPG, and fmincon algorithms for

M¼ 2, 3, and 4 rigid cylinders. Due to the incident wave

coming in the direction e1 ¼ ð1; 0Þ, configurations shifted

up or down produced similar responses. The final optimal

configurations discovered by both RL algorithms are very

similar to that of fmincon for M¼ 2 and 3. For M¼ 2, the

values of rRMS are 0.22 for DDQN, DDPG, and fmincon.

Likewise, for M¼ 3, values of rRMS are 0.31 for DDQN,

while DDPG and fmincon designs are slightly lower at 0.30.

These optimal configurations share similar design features

in the way the cylinders are positioned as shown in

Figs. 6(a)–6(f). They are structured in a row that is

perpendicular to the incident wave. All algorithms have

determined that the optimal solution is to allow one cylinder

to interact with the incident wave while the others are

shielded behind it. The discovered designs for M¼ 4 are

shown in Figs. 6(g)–6(i). The values of rRMS are 0.35 and

0.34 for DDQN and DDPG, respectively, and 0.43 for fmin-
con. Both RL algorithms split the four cylinders into two

rows parallel to the incident wave at the extremes of the

grid. This mimics the design of M¼ 2 but also pushes the

rows as far apart as possible to minimize scattering. The

fmincon design produces more scattering with a diamond

shaped configuration as more scatterers are exposed to the

plane wave.

2. Results for thin elastic cylindrical shells

Next, we illustrate the TSCS suppression for empty thin

cylindrical shells in water. This type of scatterer is quite dif-

ferent from the rigid cylinder because it can display a differ-

ent scattering pattern compared with rigid cylinders.

Numerical results are demonstrated considering configura-

tions of empty thin elastic cylindrical shells of outer radii

a¼ 1 m and thickness h ¼ 0:1a with the following mechani-

cal properties correspondingly for nickel shells: density

q¼ 8850 kg/m3, and longitudinal wave speed cp¼ 5480 m/

s, and for titanium shells: q¼ 4500 kg/m3, cp ¼ 5046:1 m/s.

We compare optimal discovered configurations of thin elas-

tic shells using DDQN and DDPG RL algorithms to our

chosen baseline: fmincon using SQP algorithms. We varied

the material properties of the thin elastic shells to compare

the resulting optimal TSCS. At these considered values of

wavenumber ka, these curves show lower amounts of scat-

tering for both nickel and titanium; however, the initial ran-

dom configurations are also lower than for rigid cylinders.

Broadband optimization performed for M¼ 2, 3, and 4

is shown in Fig. 7 for thin nickel shells comparing both RL

algorithms and fmincon. The corresponding optimal config-

urations discovered by the DDQN and DDPG algorithms are

shown in Fig. 9. Notably, for M¼ 2, the DDPG algorithm’s

configuration outperforms fmincon for all ka as illustrated in

Fig. 7(a). Figure 7(b) compares the suppression for M¼ 3

thin nickel shells, where DDPG outperforms fmincon for all

ka in the optimization range ka 2 ½0:35; 0:45� with fmincon

FIG. 4. (Color online) Performance of DDQN (a) and DDPG (b) with and

without gradient provided in the state vector for M¼ 4 rigid scatterers.

FIG. 5. (Color online) Variation of TSCS vs non-dimensional wavenumber ka comparing the suppression of curves for M¼ 2, 3, and 4 rigid cylinders shown

in Fig. 6. Since all algorithms discovered similar configurations, the optimal curves for TSCS are overlapping for DDPG and fmincon (Ref. 69).

J. Acoust. Soc. Am. 150 (1), July 2021 Shah et al. 329

https://doi.org/10.1121/10.0005545

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

https://doi.org/10.1121/10.0005545

producing less scattering at the highest ka. Figure 7(c) illus-

trates the suppression curves for M¼ 4 thin nickel shells.

We can see that DDPG and fmincon discover a configuration

with very similar scattering, while the DDQN performs

worse.

Figure 8 illustrates DDQN, DDPG, and fmincon opti-

mized TSCS vs ka for M¼ 2, 3, and 4 titanium thin shells,

and the corresponding optimal configurations obtained by

these algorithms are shown in Fig. 10. The optimal designs

discovered by RL algorithms are very similar to fmincon for

M ¼ 2 and 3 thin titanium shells. For M¼ 2, DDPG and

fmincon designs produce similar levels of scattering, and

DDQN performs slightly worse as shown in Fig. 8(a). All

designs are in a triangular configuration; however, neither

RL algorithm is able to suppress TSCS more than fmincon
as shown in Fig. 8(b). Interestingly, for M¼ 4 thin titanium

shells, unlike for nickel shells, DDPG surpasses fmincon and

is able to produce a design that reduces TSCS more than

one produced by fmincon as shown in Fig. 8(c).

Figure 9 illustrates DDQN and DDPG optimized final

configurations for M¼ 2, 3, and 4 scatterer configurations

using nickel thin shell material properties starting with the

same initial configuration. The configurations discovered by

the RL algorithms and shown in Figs. 9(a) and 9(b) move

the scatterers apart on the y axis rather than the row configu-

rations when using rigid scatterers. The fmincon configura-

tion depicted in Fig. 9(c) maintains the row design. The

configurations generated by the RL algorithms given in

Figs. 9(d) and 9(e) are, once again, different from ones pro-

duced by fmincon given in Fig. 9(f). Both DDQN and

DDPG generate a triangular design with two scatterers in a

row at the top and a single scatterer at the bottom. The fmin-
con discovers a row configuration that produces more scat-

tering than the DDPG. Figure 9(g) shows that the DDQN

configuration is different from the DDPG and fmincon con-

figurations depicted in Figs. 9(h) and 9(i).

Figure 10 presents DDQN and DDPG optimized final

configurations for M¼ 2, 3, and 4 titanium thin shell.

Designs for M¼ 2 are shown in Figs. 10(a)–10(c). The

M¼ 3 designs are also very similar for each algorithm

shown in Figs. 10(d)–10(f). Despite the designs for DDQN

and DDPG being visually similar as shown in Figs. 10(g)

and 10(h), the DDQN design does not perform as well as

fmincon [Fig. 10(i)].

B. Adjusting positions of rigid cylinders for 6 £ M £ 12

Figures 11–13 demonstrate our findings for DDPG fol-

lowing the procedure described in Sec. II C at a larger num-

ber of scatterers M and using the reward function defined by

Eq. (13). In addition, all DDPG runs in this section are done

with gradient assisted design described in Sec. II D.

With the modifications discussed in Secs. II C and II D,

the DDPG algorithm was able to discover configurations on

a similar order to fmincon for M ¼ 6 and 8. The DDQN was

tested but not able to successfully converge for M > 4 scat-

terers. Most importantly, in the M¼ 6 environment, the

DDPG algorithm was able to outperform fmincon as shown

by the TSCS vs ka curves in Fig. 11(a). Although the DDPG

FIG. 6. (Color online) Final optimal configurations proposed by DDQN

(pink color), DDPG (green color), and fmincon (red color) algorithms and

shown in the left, center, and right columns respectively, for M¼ 2, 3, and

4 rigid cylinders.

FIG. 7. (Color online) Variation of TSCS vs ka comparing suppression of curves for M¼ 2, 3, and 4 scatterers for thin nickel shells. For configuration of

M¼ 2 and 3 thin nickel shells, DDPG surpasses fmincon and performs better at the range of wavenumbers at which the configurations are optimized and

beyond this range.

330 J. Acoust. Soc. Am. 150 (1), July 2021 Shah et al.

https://doi.org/10.1121/10.0005545

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

https://doi.org/10.1121/10.0005545

and fmincon algorithms discovered a design in the same

local minimal configuration, minor differences cause the

fmincon design to have a lower TSCS for larger ka shown in

Fig. 11(b). Results from the M¼ 10 environment show that

the DDPG algorithm struggles to compete with fmincon at

this M. Figure 11(c) shows TSCS values for DDPG are

higher than fmincon for all ka, diverging more as ka
increases. Finally, for the M¼ 12 design, the 5.0m grid size

was no longer large enough to ensure adequate exploration

for the DDPG. In this environment, we increased the grid

size to 8.0m. The resulting configurations for DDPG and

fmincon are shown in Figs. 12(k) and 12(l) to be discussed

next.

Figure 12 illustrates initial and final optimized configu-

rations for a larger number of scatterers, M � 6, with the

left column figure panels depicting initial random

configurations for M¼ 6, 8, 10, and 12. Figure 12(b) splits

the six scatterers into two rows of three as far apart as possi-

ble. This design performs better than that of fmincon given

in Fig. 12(c), which splits the cylinders into a row of four

and a row of two. For the M¼ 8 environment, DDPG and

fmincon have very similar designs as illustrated in Figs.

12(e) and 12(f). Due to the larger number of scatterers, clus-

tering them in straight rows no longer appears to be the best

strategy. Comparing the optimized configurations in Figs.

12(h) and 12(i), we see different designs. The design pro-

duced by the DDPG algorithm splits the cylinders into three

rows, with the bottom row containing four staggered cylin-

ders. The fmincon algorithm uses a similar configuration for

the top cluster in M¼ 8 reflected on the x axis. Finally, for

the M¼ 12 design, the 5:0m grid size was no longer large

enough to ensure adequate exploration for the DDPG. In this

FIG. 8. (Color online) Optimized TSCS vs ka results comparing elastic titanium thin shells for M¼ 2, 3, and 4 scatterers. All optimized configurations

exhibit a final suppressed TSCS response. For configuration of M¼ 4 thin titanium shells, DDPG outperforms fmincon within and beyond the range of wave-

numbers at which the structure is optimized.

FIG. 9. (Color online) Optimal configurations for thin elastic nickel shells

discovered by various algorithms for M¼ 2, 3, and 4. The left, center, and

right columns are for DDQN (pink color), DDPG (green color), and fmincon
(red color), respectively. The initial configurations are the same as in Fig. 6.

FIG. 10. (Color online) Final optimal configurations proposed by DDQN,

DDPG, and fmincon algorithms for thin titanium shells for M¼ 2, 3, and 4.

The left, center, and right columns are for DDQN (pink color), DDPG

(green color), and fmincon (red color), respectively.

J. Acoust. Soc. Am. 150 (1), July 2021 Shah et al. 331

https://doi.org/10.1121/10.0005545

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

https://doi.org/10.1121/10.0005545

environment, we increased the grid size to 8:0m. The result-

ing configurations for DDPG and fmincon are shown in Figs.

12(k) and 12(l). Due to the larger grid size, the DDPG con-

figuration is able to cluster cylinders in three straight rows,

while fmincon produces a star-like configuration.

Figure 13 illustrates the total acoustic pressure distribu-

tion, at normalized wavenumber ka¼ 0.45, for different

configurations of M¼ 10 rigid cylinders depicted in Fig.

12(h). Figures 13(a) and 13(b) depict, correspondingly, the

real part of total pressure field p at single value of wavenum-

ber ka¼ 0.45 for a random initial configuration [Fig. 12(g)]

and final optimal configuration [Fig. 12(h)] found by the

DDPG algorithm. The real part of total acoustic pressure

field, Rep, exhibits a suppressed scattering response and a

less disturbed wave propagation for the final optimal config-

uration depicted in Fig. 13(b). Figures 13(c) and 13(d)

show, respectively, the absolute total pressure, jpj, at

ka¼ 0.45 for an initial [Fig. 12(g)] and final [Fig. 12(h)]

optimal configuration predicted by DDPG. Figure 13(c)

exhibits very strong backscattering from the initial configu-

ration. Figure 13(d) illustrates different scattering character-

istics and suppression of backscattering effect as well as

showing the overall reduction of absolute pressure ampli-

tude for the optimized configuration.

C. Adjusting radii of each scatterer

Finally, we show the ability of the RL agents to dis-

cover design parameters of radii that suppress TSCS using

rigid cylindrical scatterers. Initial random radii and opti-

mized radii configurations are demonstrated as well as their

corresponding TSCS curves across wavenumbers

ki a 2 ½0:35; 0:45�; i ¼ 1; 11, where a ¼ amax ¼ maxðajÞ, aj

is the radius of j-cylinder, and j ¼ 1;M. Coordinates of all

scatterers are fixed, and the core cylinder radius is constant

ac ¼ 1:6 ¼ amax. All other cylinder radii besides the core

are allowed to change within the bounds of minimum and

maximum radii defined in Sec. II C.

The TSCS curves in Fig. 14 show that both RL algo-

rithms produce a suppression of r for all wavenumbers for a

configuration of M¼ 20 rigid cylinders. The initial random

configuration and final optimal configurations predicted by

RL models are depicted in Fig. 15. The DDPG produces a

configuration that causes more reduction within the optimi-

zation range, while the DDQN performs slightly worse in

that range. Since the formula for the gradient of rRMS with

respect to each scatterer radius has not yet been derived, we

have not compared the RL algorithms to fmincon, which

will be done elsewhere.

Figure 15 illustrates the real part of total acoustic pres-

sure Rep at normalized wavenumber ka¼ 0.4 (left column)

and ka¼ 0.72 (right column) for different configurations of

M¼ 20 rigid cylinders of various radii, i.e., random initial

and final optimal configurations predicted by the DDPG and

DDQN algorithms. Figures 15(c) and 15(d) show the optimal

design discovered by the DDQN, while Figs. 15(e) and 15(f)

FIG. 11. (Color online) Variation of TSCS vs ka comparing suppression of

curves for M¼ 6, 8, 10, and 12 rigid scatterers following the procedure

described in Sec. II C for DDPG at a larger number of scatterers and using a

reward function defined by Eq. (13).

FIG. 12. (Color online) Initial non-optimized configurations (blue color,

left column) and final optimal configurations of DDPG (green color, center

column) and fmincon (red color, right column) for M¼ 6, 8, and 10 rigid

cylinders. Values of rRMS are within the optimization range:

ki a 2 ½0:35; 0:45�; i ¼ 1; … 11. For M¼ 6, initial, optimal DDPG, and

optimal fmincon rRMS values are 3.65, 0.34, and 0.42, respectively. For

M¼ 8, rRMS values are 6.96, 0.63, and 0.38. For M¼ 10, rRMS values are

12.48, 1.09, and 0.58. Last, for M¼ 12, rRMS values are 10.81, 1.44, and

0.49.

332 J. Acoust. Soc. Am. 150 (1), July 2021 Shah et al.

https://doi.org/10.1121/10.0005545

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

https://doi.org/10.1121/10.0005545

show the discovered optimal design for DDPG. Both algo-

rithms started at the same initial random radii [Figs. 15(a)

and 15(b)]. The DDPG agent discovered a design that is

slightly different and more effective than the DDQN’s.

Interestingly, enlarging the scatterers closest to the incident

plane wave produces better suppression. There are two com-

mon features between the designs discovered by the algo-

rithms. First, the cylinders farthest from the wave are

increased to near the maximum allowable radii. This sug-

gests some wave interaction occurs that is beneficial, rather

than reducing the radii to the minimum and allowing the

wave to pass through. Second, scatterers in the middle of

the x axis are brought close to the minimal allowable radii.

The algorithms have discovered that these cylinders are not

useful in suppressing rRMS.

The initial random radii configuration with M¼ 20 (a)

produced rRMS ¼ 3:13. The DDQN algorithm discovered a

configuration (c) with rRMS ¼ 0:68. Last, the DDPG discov-

ered a configuration (e) with slightly better results with

rRMS ¼ 0:60. Although the optimal radii discovered by the

DDPG produced lower rRMS than the DDQN, there is

evidence to suggest it could suppress it even further.

Figure 18(a) shows the lowest rRMS discovered by the

DDPG algorithm per episode during training. During the

training process, the lowest rRMS decreased to 0.50,

although the convergence was not stable. Attempts to stabi-

lize the performance to that level were unsuccessful.

IV. CONCLUSION AND OUTLOOK

We demonstrated that the RL algorithms DDQN and

DDPG are capable of discovering positional and radius

design parameters of scatterers that suppress the RMS of

TSCS to a local minimum. We also introduced a novel

FIG. 14. (Color online) TSCS against normalized wavenumber ka for ini-

tial, DDQN, and DDPG optimized configurations of M¼ 20 rigid cylinders

of radii aj, where ka ¼ k maxðajÞ and j ¼ 1;…;M.

FIG. 13. (Color online) The real part of total acoustic pressure field, Rep,

and the absolute total pressure jpj at normalized wavenumber ka¼ 0.45 for

different configurations of M¼ 10 rigid cylinders for a random initial con-

figuration [(a) and (c)] and final optimal configuration predicted by the

DDPG algorithm [(b) and (d)]. The Rep for the final optimal configuration

exhibits a suppressed scattering response. It also illustrates a less disturbed

wave propagation for the optimal configuration. (c) and (d) show the reduc-

tion of absolute pressure amplitude jpj for the final optimal configuration.

FIG. 15. (Color online) The real part of the total acoustic pressure for con-

figurations of rigid cylindrical scatterers of different radii. Top, middle, and

bottom rows represent initial, DDQN optimized, and DDPG optimized con-

figurations, respectively. The left column panels (a), (c), and (e) show

results for the wavenumber ka¼ 0.4 at which the configuration was opti-

mized, and the right column figures show Rep for the wavenumber

ka¼ 0.72, which is beyond the range of wavenumbers at which the configu-

ration was optimized, i.e., ka 2 ½0:35; 0:45�.

J. Acoust. Soc. Am. 150 (1), July 2021 Shah et al. 333

https://doi.org/10.1121/10.0005545

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

https://doi.org/10.1121/10.0005545

method for increasing convergence speed and stability of RL

algorithms by using the gradient of the objective function

with respect to design parameters. As far as we know, our

paper is the first description of this approach, and RL algo-

rithms are attempted for the first time to suppress acoustic

scattering. We discovered that DDPG almost always outper-

forms DDQN for any number of scatterers and performed

very well compared to fmincon with SQP algorithms.

Our results show that using RL agents for design

optimization is viable in acoustics and engineering. This

enables new approaches for modeling acoustic devices. A

limitation of these RL algorithms is that as the number of

scatterers increases, the training time increases very

rapidly. It was shown62 that an optimal configuration of 79

scatterers suppressed TSCS at high frequency to near zero;

at lower frequencies, 16 cylinders were sufficient and

produced a reasonable cloaking effect. Perhaps if we were

able to scale RL algorithms to efficiently handle many cyl-

inders, we could achieve a similar result. Additionally, we

can experiment with different frequency ranges. We ini-

tially trained the algorithms at high frequencies; however,

this dramatically increased training times as well. A poten-

tial method of scaling to many cylinders and higher fre-

quencies could involve a multi-agent approach56,70 that

would split the design parameters between agents working

cooperatively to maximize a shared reward while reducing

the complexity.

A solution to the large training times could involve

splitting the inference and training of the model into multi-

ple threads as was shown by Espeholt et al.71 This

approach allowed the training to be paralellized across

multiple CPUs and greatly decreased convergence times

for RL algorithms.

APPENDIX A: MULTIPLE SCATTERING

1. Formulation

Consider acoustic scattering by M obstacles, which for

simplicity are taken to be cylinders SðmÞ ðm ¼ 1;MÞ cen-

tered at rm. A schematic configuration of cylindrical elastic

shells is given in Fig. 16. The incident wave of unit ampli-

tude is in direction e1 ¼ ð1; 0Þ and in the neighborhood of

cylinder SðmÞ, it can be written as

p
ðmÞ
inc ðxÞ ¼

X1
n¼�1

AðmÞn Uþn ðxmÞ; (A1)

with the coefficients AðmÞn ¼ ineikxm and Uþn ðxÞ ¼ JnðkjxjÞ
e inargx, are the regular solutions associated with the radiating

functions Vþn defined as

Vþn ðxÞ ¼ Hð1Þn ðkjxjÞeinargx; (A2)

Vþ
0

n ðxÞ ¼ Hð1Þn

0 ðkjxjÞeinargx: (A3)

Here, argx 2 ½0; 2pÞ, and xm is a position vector of point

P with respect to the centers of multipoles at Om (see Fig.

16): xm ¼ x� rm. The total scattered field psc, considered as

a superposition of the fields scattered by all cylinders, may

be expanded as a sum of multipoles

pscðxÞ ¼
XM

m¼1

pðmÞsc ðxÞ; (A4a)

pðmÞsc ðxÞ ¼
X1

n¼�1
BðmÞn Vþn ðxmÞ; (A4b)

where p
ðmÞ
sc is the wave scattered by cylinder m, and BðmÞn are

unknown coefficients. To apply boundary conditions on the

surface of each cylinder, we express the total field using

Graf’s theorem [Ref. 72, Eq. (9.1.79)]

Vþl ðx� yÞ ¼
X1

n¼�1

Vþn ðxÞU�n�lðyÞ; jxj > jyj;

Uþn ðxÞV�n�lðyÞ; jxj < jyj;

8<
: (A5)

where

U�n ðxÞ ¼ JnðkjxjÞe�inargx ¼ ð�1ÞnUþ�nðxÞ;

V�n ðxÞ ¼ Hð1Þn ðkjxjÞe�inargx ¼ ð�1ÞnVþ�nðxÞ:

The U6
n and V6

n functions therefore satisfy

Wþn ðxÞ ¼ W��nð�xÞ; W ¼ U; V: (A6)

Using Graf’s theorem for jxjj < lj, where lj ¼ minjrjmj,
we obtain the total incident field impinging on the cylinder

SðjÞ in the form62,73

p
ðjÞ
inc þ

XM

m ¼ 1

m 6¼ j

pðmÞsc

¼
X1

n¼�1
AðjÞn þ

XM

m ¼ 1

m 6¼ j

X1
l¼�1

PnlðrjmÞBðmÞl

8>><
>>:

9>>=
>>;

Uþn ðxjÞ;

(A7)FIG. 16. (Color online) An arbitrary planar configuration of M cylinders

SðmÞ with outer radius am and inner radius bm, m ¼ 1;M .

334 J. Acoust. Soc. Am. 150 (1), July 2021 Shah et al.

https://doi.org/10.1121/10.0005545

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

https://doi.org/10.1121/10.0005545

where rjm ¼ rj � rm, and

PqlðrjmÞ ¼ H
ð1Þ
l�qðkrjmÞe iðl�qÞargrjm (A8)

can be identified as Vþl�nðxÞ. Here, Hð1Þn is the Hankel func-

tion of the first kind of order n. The response of cylinder SðjÞ

to the incident field (A7) can be obtained by incorporating

the boundary conditions at the interface and the transition

matrix elements T
ðjÞ
nq of cylinder SðjÞ74,75

p
ðjÞ
sc ¼

X1
n¼�1

X1
q¼�1

TðjÞnq AðjÞq þ
XM

m¼ 1
m 6¼ j

X1
l¼�1

PqlðrjmÞBðmÞl

8><
>:

9>=
>;Vþn ðxjÞ:

(A9)

Equations (A4) and (A9) yield a linear system of equations

for the unknowns B
ðmÞ
l

XM

m¼1

X1
l¼�1

XjnmlB
ðmÞ
l ¼ AðjÞn ; j ¼ 1;M; n 2 Z; (A10a)

Xjnml ¼
T
ðjÞ
nl
�1; j ¼ m;

�PnlðrjmÞ; j 6¼ m0;

(
(A10b)

where T
ðjÞ
nq
�1 are elements of the inverse of the jth T-matrix.

The truncated version of the infinite sum in Eq. (A10a)

yields a finite algebraic system of equations62,71

XM

m¼1

XN

l¼�N

XjnmlB
ðmÞ
l ¼ AðjÞn ; n 2 ð�N;NÞ; (A11)

for j ¼ 1; 2; …M, or in matrix form

X b ¼ a; (A12)

where X; b, and a are of the forms

X¼

Tð1Þ�1 �P1;2 �P1;3 � � � �P1;M

�P2;1 Tð2Þ�1 �P2;3 � � � �P2;M

..

. ..
. ..

. . .
. ..

.

�PM;1 �PM;2 �PM;3 � � � TðMÞ�1

2
666664

3
777775; (A13)

and

a ¼

að1Þ

..

.

aðMÞ

0
BBB@

1
CCCA; b ¼

bð1Þ

..

.

bðMÞ

0
BBB@

1
CCCA; (A14a)

aðjÞ ¼

A
ðjÞ
�N

A
ðjÞ
�Nþ1

..

.

A
ðjÞ
N

0
BBBBBB@

1
CCCCCCA
; bðjÞ ¼

B
ðjÞ
�N

B
ðjÞ
�Nþ1

..

.

B
ðjÞ
N

0
BBBBBB@

1
CCCCCCA
: (A14b)

Figure 17 shows the training curves of M¼ 2 and 3

for DDQN and DDPG for positional adjustment of rigid

cylinders. Each algorithm is compared without gradients

(left column) and with gradients (right column). All the

same hyperparameters were used for corresponding runs.

Using our proposed gradient assisted method results in

faster convergence for each pair of runs. Despite

improving performance for M¼ 3 DDQN in Figs. 17(g)

and 17(h), the algorithm was still not able to converge

nearly as stably as the DDPG algorithm shown in Figs.

17(e) and 17(f).

Finally, the scattered field psc of Eq. (A4) in the far-

field, kjxj 	 1, becomes

psc ¼ f ðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

k

i2pjxj

s
eikjxj 1þ O

1

kjxj

� �� �
; (A15)

where the far-field amplitude function is

f ðhÞ ¼ 2

k

XM

m¼1

e�ikjrmj cos ðh�argðrmÞÞ �
X1

n¼�1
ð�iÞnBðmÞn einh:

(A16)
FIG. 17. (Color online) The lowest rRMS discovered per episode during

training. These are results by varying the algorithms used, number of scat-

terers, and use of gradient assisted inverse design.

J. Acoust. Soc. Am. 150 (1), July 2021 Shah et al. 335

https://doi.org/10.1121/10.0005545

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

https://doi.org/10.1121/10.0005545

2. Analytical form of the gradient vectors sj at
single ka

Define the gradient vectors

sj ¼
@r
@rj

; j ¼ 1; 2;…M: (A17)

Following Eqs. (8) and (A12), the TSCS can be expressed as

r ¼ � 4

k
Rea†X�1

a: (A18)

The gradient of the TSCS, sj, is found by combining the last

equation [Eq. (A18)] for r with the definition [Eq. (A17)]

and may be written as62

sj ¼ �
4

k
Re

@a†

@rj
bþ a†X�1 @a

@rj
� @X

@rj
b

� �" #
; (A19)

where a† is the Hermitian transpose and the vectors a and b

are defined by Eq. (A14),

@Xinml

@rj
¼

Onldij; i ¼ m;

djm
@Pnl

@rj
ðrjiÞ � dji

@Pnl

@rj
ðrjmÞ; i 6¼ m;

8<
: (A20)

and Onl are components of the zero matrix. The gradients in

Eq. (A20) follow from

@Pnl

@rj
ðrjmÞ ¼

k

rjm
Vþ0l�nðrjmÞ rjm

þ iðl� nÞ
r2

jm

Vþl�nðrjmÞ e3 � rjm; (A21)

where Vþn and the derivative function Vþ0n are defined by Eq.

(A2). The gradient of the components of a with respect to

the position of the jth scatterer is @aðmÞ=@rj ¼ djmaðmÞ

ik e1 2 CM�ð2Nþ1Þ � C2.

3. Broadband gradient vectors qj

We defined our cost function to be minimized as the

RMS of a set of TSCSs over some range of normalized

wavenumbers kia ði ¼ 1;…;NkÞ, i.e., rRMSðrjmÞ [Eq. (9)].

Broadband gradient vectors qj are defined by Eq. (14). The

explicit form of gradients can be found in terms of the indi-

vidual single frequency gradients as

qj ¼
1

rRMS

1

Nk
rðk1aÞsjðk1aÞ þ � � � þ rðkNk

aÞsjðkNk
aÞ

� �
;

(A22)where sjðkiaÞ are evaluated at normalized wavenumbers

kia ði ¼ 1;…;NkÞ by using Eq. (A19).

APPENDIX B: TRAINING PROCESS DETAILS

1. Training curves

Figure 18 compares the DDPG and DDQN algorithms’

training curves for radius adjustment of rigid cylinders. The

DDPG algorithm converges in fewer episodes (1400) as

shown in Fig. 18(a), but it is much more unstable than the

DDQN. This is surprising because for most other environ-

ments the DDPG consistently found a better configuration

and converged more reliably than the DDQN. Further tuning

of hyperparameters could potentially help the DDPG dis-

cover better designs.

2. Hyperparameters

In machine learning, hyperparameters are settings of an

algorithm that must be chosen before training a model. They

are usually not learnable parameters like the weights and

biases of the model itself, but rather initial conditions that

influence how the model learns. Tables V and VI show the

hyperparameters used by the DDQN and DDPG algorithms.

These settings were used for all runs of these algorithms.

The only changes made for environments are the size of the

input and output layers of the NNs.

1A. N. Norris, “Acoustic cloaking theory,” Proc. R. Soc. A 464,

2411–2434 (2008).
2A. Climente, D. Torrent, and J. S�anchez-Dehesa, “Sound focusing by gra-

dient index sonic lenses,” Appl. Phys. Lett. 97, 104103 (2010).
3P. Packo, A. Norris, and D. Torrent, “Metaclusters for the full control of

mechanical waves,” arXiv:2009.13376 (2020).
4V. Popov, F. Boust, and S. N. Burokur, “Beamforming with metagratings

at microwave frequencies: Design procedure and experimental demon-

stration,” IEEE Trans. Antennas Propag. 68(3), 1533–1541 (2020).
5K. Butler, D. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine

learning for molecular and materials science,” Nature 559(7715),

547–555 (2018).
6D. Elton, Z. Boukouvalas, M. Fuge, and P. Chung, “Deep learning for

molecular design—A review of the state of the art,” Mol. Syst. Des. Eng.

4(4), 828–849 (2019).
7J. Noh, G. H. Gu, S. Kim, and Y. Jung, “Machine-enabled inverse design

of inorganic solid materials: Promises and challenges,” Chem. Sci.

11(19), 4871–4881 (2020).
8R. S. Hegde, “Deep learning: A new tool for photonic nanostructure

design,” Nanoscale Adv. 2(3), 1007–1023 (2020).
9S. So, T. Badloe, J. Noh, J. Rho, and J. Bravo-Abad, “Deep learning

enabled inverse design in nanophotonics,” Nanophotonics 9(5),

1041–1057 (2020).
10S. Campbell, D. Sell, E. Jenkins, R. Whiting, J. Fan, and D. Werner,

“Review of numerical optimization techniques for meta-device design,”

Opt. Mater. Express 9(4), 1842–1863 (2019).
11D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M.

Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and

D. Hassabis, “Mastering chess and shogi by self-play with a general rein-

forcement learning algorithm,” arXiv:1712.01815 (2017).

FIG. 18. (Color online) The lowest rRMS discovered per episode during

training for a configuration of M¼ 20 rigid cylinders by adjusting the radii

of each scatterer in rings while keeping core cylinder radius unchanged and

varying the algorithms: (a) DDQN and (b) DDPG without using the gradi-

ent information.

336 J. Acoust. Soc. Am. 150 (1), July 2021 Shah et al.

https://doi.org/10.1121/10.0005545

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

https://doi.org/10.1098/rspa.2008.0076
https://doi.org/10.1063/1.3488349
http://arxiv.org/abs/arXiv:2009.13376
https://doi.org/10.1109/TAP.2019.2957729
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1039/C9ME00039A
https://doi.org/10.1039/D0SC00594K
https://doi.org/10.1039/C9NA00656G
https://doi.org/10.1515/nanoph-2019-0474
https://doi.org/10.1364/OME.9.001842
http://arxiv.org/abs/arXiv:1712.01815
https://doi.org/10.1121/10.0005545

12V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.

Wierstra, and M. Riedmiller, “Playing Atari with deep reinforcement

learning,” arXiv:1312.5602v1 (2013).
13T. Badloe, I. Kim, and J. Rho, “Biomimetic ultra-broadband perfect

absorbers optimised with reinforcement learning,” Phys. Chem. Chem.

Phys. 22(4), 2337–2342 (2020).
14I. Goodfellow, Y. Bengio, and, and A. Courville, Deep Learning (MIT,

Cambridge, MA, 2016).
15R. S. Sutton and A. G. Barto, Reinforcement Learning (MIT, Cambridge,

MA, 2018).
16R. Jenison, “A spherical basis function neural network for approximating

acoustic scatter,” J. Acoust. Soc. Am. 99(5), 3242–3245 (1996).
17M. M. Morgan, I. Bhattacharya, R. J. Radke, and J. Braasch, “Classifying

the emotional speech content of participants in group meetings using con-

volutional long short-term memory network,” J. Acoust. Soc. Am. 149(2),

885–894 (2021).
18N. Liu, H. Chen, K. Songgong, and Y. Li, “Deep learning assisted sound

source localization using two orthogonal first-order differential micro-

phone arrays,” J. Acoust. Soc. Am. 149(2), 1069–1084 (2021).
19R. L. Jenison, “Models of direction estimation with spherical-function

approximated cortical receptive fields,” in Central Auditory Processing
and Neural Modeling, edited by P. Poon and J. Brugge (Plenum, New

York, 1998), pp. 161–174.
20M. Hesham and M. El-Gamal, “Neural network model for solving integral

equation of acoustic scattering using wavelet basis,” Commun. Numer.

Methods Eng. 24, 183–194 (2006).
21M. Bianco, P. Gerstoft, J. Traer, E. Ozanich, M. A. Roch, S. Gannot, and

C.-A. Deledalle, “Machine learning in acoustics: Theory and

applications,” J. Acoust. Soc. Am. 146(5), 3590–3628 (2019).
22C. Cueto and B. Hadithi, “Cancelling out skull-induced aberrations:

Analysis of acoustic metamaterials using neural networks,” IEEE Latin

Am. Trans. 15(10), 1948–1959 (2017).
23P. Meng, L. Su, W. Yin, and S. Zhang, “Solving a kind of inverse scatter-

ing problem of acoustic waves based on linear sampling method and neu-

ral network,” Alex. Eng. J. 59(3), 1451–1462 (2020).
24Z. Fan, V. Vineet, H. Gamper, and N. Raghuvanshi, “Fast acoustic scat-

tering using convolutional neural networks,” in Proceedings of ICASSP
2020—2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Barcelona, Spain (May 4–8, 2020).

25Z. Fan, V. Vineet, C. Lu, T. W. Wu, and K. McMullen, “Prediction of

object geometry from acoustic scattering using convolutional neural

networks,” arXiv:2010.10691 (2021).
26D. Komen, T. B. Neilsen, D. B. Mortenson, M. C. Acree, D. P. Knobles,

M. Badiey, and W. S. Hodgkiss, “Seabed type and source parameters pre-

dictions using ship spectrograms in convolutional neural networks,”

J. Acoust. Soc. Am. 149(2), 1198–1210 (2021).
27S. Kumar, S. Tan, L. Zheng, and D. M. Kochmann, “Inverse-designed spi-

nodoid metamaterials,” NPJ Comput. Mater. 6(1), 73–83 (2020).
28H. Gao and J. Zhu, “Inverse design method for acoustic metamaterials,”

J. Acoust. Soc. Am. 146(4), 2828–2828 (2019).
29D. Finol, Y. Lu, V. Mahadevan, and A. Srivastava, “Deep convolutional

neural networks for eigenvalue problems in mechanics,” Numer. Methods

Eng. 118(5), 258–275 (2019).
30D. Pornaras, W.-C. Wang, Y. Chen, G. Kwak, F. Amirkulova, and E.

Khatami, “Broadband suppression of total multiple scattering cross sec-

tion using neural networks,” J. Acoust. Soc. Am. 146(4), 2876–2877

(2019).
31L. Wu, L. Liu, Y. Wang, Z. Zhai, H. Zhuang, D. Krishnaraju, Q. Wang,

and H. Jiang, “A machine learning-based method to design modular meta-

materials,” Extreme Mech. Lett. 36, 100657 (2020).
32C. Gurbuz, F. Kronowetter, C. Dietz, M. Eser, J. Schmid, and S. Marburg,

“Generative adversarial networks for the design of acoustic meta-

materials,” J. Acoust. Soc. Am. 149(2), 1162–1174 (2021).
33Y. Peurifoy, J. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. DeLacy, J.

Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle sim-

ulation and inverse design using artificial neural networks,” Sci. Adv.

4(6), eaar4206 (2018).
34E. Bor, O. Alparslan, M. Turduev, Y. S. Hanay, H. Kurt, S. Arakawa, and

M. Murata, “Integrated silicon photonic device design by attractor selec-

tion mechanism based on artificial neural networks: Optical coupler and

asymmetric light transmitter,” Opt. Express 26(22), 29032 (2018).

35Z. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks

for the inverse design of nanophotonic structures,” ACS Photonics 5,

1365–1369 (2018).
36T. Zhang, J. Wang, Q. Liu, J. Zhou, J. Dai, X. Han, Y. Zhou, and K. Xu,

“Efficient spectrum prediction and inverse design for plasmonic wave-

guide systems based on artificial neural networks,” Photonics Res. 7(3),

368 (2019).
37J. Jiang and J. A. Fan, “Global optimization of dielectric metasurfaces

using a physics-driven neural network,” Nano Lett. 19(8), 5366–5372

(2019).
38S. Inampudi and H. Mosallaei, “Neural network based design of meta-

gratings,” Appl. Phys. Lett. 112(24), 241102 (2018).
39G. Oliveri and J. T. Overvelde, “Inverse design of mechanical metamate-

rials that undergo buckling,” Adv. Funct. Mater. 30(12), 1909033 (2020).
40R. Khodayi and M. Zavlanos, “Deep learning for robotic mass transport

cloaking,” IEEE Trans. Robot. 36(3), 967–974 (2020).
41R. Barrett, M. Chakraborty, D. Amirkulova, H. Gandhi, and A. White, “A

GPU-accelerated machine learning framework for molecular simulation:

HOOMD-blue with TensorFlow,” ChemRxiv:8019527 (2019).
42B. Sanchez-Lengeling and A. Aspuru-Guzik, “Inverse molecular design

using machine learning: Generative models for matter engineering,”

Science 361(6400), 360–365 (2018).
43E. Putin, A. Asadulaev, Y. Ivanenkov, V. Aladinskiy, B. Sanchez-

Lengeling, A. Aspuru-Guzik, and A. Zhavoronkov, “Reinforced adversar-

ial neural computer for de novo molecular design,” J. Chem. Inf. Model.

58(6), 1194–1204 (2018).
44Y. Dan, Y. Zhao, X. Li, S. Li, M. Hu, and J. Hu, “Generative adversarial

networks (GAN) based efficient sampling of chemical composition space

for inverse design of inorganic materials,” NPJ Comput. Mater. 6(1),

84–91 (2020).
45J. Fan, “Freeform metasurface design based on topology optimization,”

MRS Bull. 45(3), 196–201 (2020).
46J. Jiang and J. Fan, “Simulator-based training of generative neural net-

works for the inverse design of metasurfaces,” Nanophotonics 9(5),

1059–1069 (2019).
47J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, and J. Fan, “Free-form dif-

fractive metagrating design based on generative adversarial networks,”

ACS Nano 13(8), 8872–8878 (2019).
48F. Wen, J. Jiang, and J. A. Fan, “Robust freeform metasurface design

based on progressively growing generative networks,” ACS Photonics 7,

2098–2104 (2020).
49A. Blanchard-Dionne and O. Martin, “Successive training of a generative

adversarial network for the design of an optical cloak,” OSA Contin. 4(1),

87–95 (2021).
50X. Han, Z. Fan, Z. Liu, C. Li, and L. J. Guo, “Inverse design of metasur-

face optical filters using deep neural network with high degrees of free-

dom,” InfoMat 3, 432–442 (2021).
51Y. Tang, K. Kojima, T. Koike-Akino, Y. Wang, P. Wu, M. Tahersima, D.

Jha, K. Parsons, and M. Qi, “Generative deep learning model for a multi-

level nano-optic broadband power splitter,” in Proceedings of Optical
Fiber Communication Conference 2020, San Diego, CA (March 8–12,

2020).
52R. Tan, N. Zhang, and W. Ye, “A deep learning–based method for the

design of microstructural materials,” Struct. Multidis. Optim. 61(4),

1417–1438 (2020).
53I. Sajedian, T. Badloe, and J. Rho, “Optimisation of colour generation

from dielectric nanostructures using reinforcement learning,” Opt. Expr.

27(4), 5874–5883 (2019).
54A. Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine, “End-to-end

robotic reinforcement earning without Reward engineering,”

arXiv:1904.07854 (2019).
55B. Abdulhai and L. Kattan, “Reinforcement learning: Introduction to the-

ory and potential for transport applications,” Can. J. Civil Eng. 30(6),

981–991 (2003).
56R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-

agent actor-critic for mixed cooperative-competitive environments,”

arXiv:1706.02275 (2017).
57J. Yao, M. Bukov, and L. Lin, “Policy gradient based quantum approxi-

mate optimization algorithm,” Proc. Machine Learning Res. 107,

605–634 (2020).
58F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J.

Clune, “Deep neuroevolution: Genetic algorithms are a competitive

J. Acoust. Soc. Am. 150 (1), July 2021 Shah et al. 337

https://doi.org/10.1121/10.0005545

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

http://arxiv.org/abs/arXiv:1312.5602v1
https://doi.org/10.1039/C9CP05621A
https://doi.org/10.1039/C9CP05621A
https://doi.org/10.1121/1.414869
https://doi.org/10.1121/10.0003433
https://doi.org/10.1121/10.0003445
https://doi.org/10.1002/cnm.966
https://doi.org/10.1002/cnm.966
https://doi.org/10.1121/1.5133944
https://doi.org/10.1109/TLA.2017.8071240
https://doi.org/10.1109/TLA.2017.8071240
https://doi.org/10.1016/j.aej.2020.03.047
http://arxiv.org/abs/arXiv:2010.10691
https://doi.org/10.1121/10.0003502
https://doi.org/10.1038/s41524-020-0341-6
https://doi.org/10.1121/1.5136799
https://doi.org/10.1002/nme.6012
https://doi.org/10.1002/nme.6012
https://doi.org/10.1121/1.5136982
https://doi.org/10.1016/j.eml.2020.100657
https://doi.org/10.1121/10.0003501
https://doi.org/10.1126/sciadv.aar4206
https://doi.org/10.1364/OE.26.029032
https://doi.org/10.1021/acsphotonics.7b01377
https://doi.org/10.1364/PRJ.7.000368
https://doi.org/10.1021/acs.nanolett.9b01857
https://doi.org/10.1063/1.5033327
https://doi.org/10.1002/adfm.201909033
https://doi.org/10.1109/TRO.2020.2980176
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1021/acs.jcim.7b00690
https://doi.org/10.1038/s41524-020-00352-0
https://doi.org/10.1557/mrs.2020.62
https://doi.org/10.1515/nanoph-2019-0330
https://doi.org/10.1021/acsnano.9b02371
https://doi.org/10.1021/acsphotonics.0c00539
https://doi.org/10.1364/OSAC.413394
https://doi.org/10.1002/inf2.12116
https://doi.org/10.1007/s00158-019-02424-2
https://doi.org/10.1364/OE.27.005874
http://arxiv.org/abs/arXiv:1904.07854
https://doi.org/10.1139/l03-014
http://arxiv.org/abs/arXiv:1706.02275
https://doi.org/10.1121/10.0005545

alternative for training deep neural networks for reinforcement learning,”

arXiv:1712.06567 (2017).
59G. L. Guimaraes, B. Sanchez-Lengeling, C. Outeiral, P. L. C. Farias, and

A. Aspuru-Guzik, “Objective-reinforced generative adversarial networks

(organ) for sequence generation models,” arXiv:1705.10843v3 (2017).
60I. Sajedian, H. Lee, and J. Rho, “Double-deep Q-learning to increase the

efficiency of metasurface holograms,” Sci. Rep. 9(1), 10899 (2019).
61T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.

Silver, and D. Wierstra, “Continuous control with deep reinforcement

learning,” arXiv:1509.02971 (2015).
62F. A. Amirkulova and A. N. Norris, “The gradient of total multiple scat-

tering cross-section and its application to acoustic cloaking,” J. Theor.

Comput. Acoust. 28, 1950016 (2020).
63A. N. Norris, “Acoustic integrated extinction,” Proc. R. Soc. A

471(2177), 20150008 (2015).
64S. Zhang and R. S. Sutton, “A deeper look at experience replay,”

arXiv:1712.01275 (2017).
65T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience

replay,” arXiv:1511.05952 (2015).
66M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,

D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining improve-

ments in deep reinforcement learning,” arXiv:1710.02298 (2017).
67P. J. Huber, “Robust estimation of a location parameter,” Ann. Math.

Statist. 35(1), 73–101 (1964).

68“The College of Engineering high performance computing system,” San

Jose State University, http://coe-hpc-web.sjsu.edu (Last viewed 4 July

2021).
69“When the solver fails. MathWorks MATLAB documentation,” https://www.

mathworks.com/help/optim/ug/when-the-solver-fails.html (Last viewed 4 July

2021).
70M. Wooldridge, An Introduction to MultiAgent Systems (Wiley, New

York, 2009).
71L. Espeholt, R. Marinier, P. Stanczyk, K. Wang, and M. Michalski,

“SEED RL: Scalable and efficient deep-RL with accelerated central

inference,” arXiv:1910.06591 (2019).
72M. Abramowitz and I. Stegun, Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables (Dover, New York,

1974).
73F. A. Amirkulova, “Acoustic and elastic multiple scattering and radiation

from cylindrical structures,” Ph.D. thesis, Rutgers University, Piscataway,

NJ, 2014.
74V. K. Varadan and V. V. Varadan, eds., Acoustic, Electromagnetic and

Elastic Wave Scattering - Focus on the T-Matrix Approach (Pergamon,

New York, 1980).
75F. Amirkulova and A. Norris, “Acoustic multiple scattering using fast

iterative techniques,” in Proceedings of 2017 ASME International
Mechanical Engineering Congress and Exposition (IMECE 2017),
Tampa, FL (November 3–9, 2017), Paper No. IMECE2017/72249.

338 J. Acoust. Soc. Am. 150 (1), July 2021 Shah et al.

https://doi.org/10.1121/10.0005545

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/1/321/16748316/321_1_online.pdf

http://arxiv.org/abs/arXiv:1712.06567
http://arxiv.org/abs/arXiv:1705.10843v3
https://doi.org/10.1038/s41598-019-47154-z
http://arxiv.org/abs/arXiv:1509.02971
https://doi.org/10.1142/S2591728519500166
https://doi.org/10.1142/S2591728519500166
https://doi.org/10.1098/rspa.2015.0008
http://arxiv.org/abs/arXiv:1712.01275
http://arxiv.org/abs/arXiv:1511.05952
http://arxiv.org/abs/arXiv:1710.02298
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1214/aoms/1177703732
http://coe-hpc-web.sjsu.edu
https://www.mathworks.com/help/optim/ug/when-the-solver-fails.html
https://www.mathworks.com/help/optim/ug/when-the-solver-fails.html
http://arxiv.org/abs/arXiv:1910.06591
https://doi.org/10.1121/10.0005545

	Reinforcement learning applied to metamaterial design
	Recommended Citation
	Authors

	tmp.1683828362.pdf.9mpSZ

