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ABSTRACT

A wide-ranging effective Boltzmann approach, originally intended for ionic transport, is applied to the computation of electronic transport
coefficients without modification. Comparisons with datasets that resulted from a recent transport coefficient workshop and molecular
dynamics simulations are made. While this model contains correlation information through its effective potential and strong scattering
through its use of cross sections, it misses details of attractive, possibly quantum, interactions; comparisons with that dataset reveal the rela-
tive importance of these physics inputs. Through comparisons of data for electrical conductivity, thermal conductivity, temperature relaxa-
tion, and stopping power (including a new formula for the energy split due to alpha stopping), we find that the sensitivity to the missing
physics is minor and often negligible. Thus, we have a single transport model that self-consistently provides all ionic and electronic transport
properties in a form with negligible computational cost.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0048162

I. INTRODUCTION

Plasma dynamics are determined in large part by energy trans-
port, which includes thermal conductivity, electrical conductivity, tem-
perature relaxation, and stopping power. Accurate and efficient
models for the transport coefficients associated with these transport
processes are necessary inputs to large-scale hydrodynamic simula-
tions of plasmas; however, this can be quite challenging as energy
transport in plasmas is typically dominated by electronic interactions,
thus requiring more complicated models. The interpretation of many
high energy-density experiments relies on self-consistent knowledge of
multiple plasma properties.1

In this work, we apply the ionic Stanton and Murillo transport
(SMT) model2 to electronic transport phenomena, which was not its
intended purpose; however, the efficiency of the model makes explor-
ing its accuracy for these applications of interest. The SMT model is
based on numerically calculated cross sections that are informed with
effective binary interactions within a Boltzmann equation frame-
work.3–7 In this model, the underlying inter-particle interactions are
assumed to be well-described by a screened Coulomb potential of the
form

uijðrÞ ¼
ZiZje2

r
e�r=keff ; (1)

where r is the distance between particles, and Zie and Zje are the effec-
tive charges of each charged species (CGS units have been used here
and will be used for the remainder of the paper). These effective
charges are formally the mean ionization states of each species that are
determined from an average atom calculation to separate the bound
(localized) and free (continuum) electronic states.8 In doing so, the
bound electrons and nuclei can be well-approximated as point charges
with these mean ionization values, while the remaining free electrons
contribute to the screening. A Thomas-Fermi model and its multi-
component generalization are used to determine the mean ionization
state in the current paper;2,9,10 however, it would be interesting to bet-
ter understand how sensitive the overall results are to the choice in
ionization model.

In the SMT model, the effective binary potential is constrained to
have the Yukawa form (1) to allow for rapid computation and simple
fitting. The many-body physics is included through the effective
screening length keff that includes the total mean-field contribution as
well as correlation information important for strongly coupled
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plasmas. The choice of keff in the SMTmodel has been shown to agree
well with existing simulation data2 and is given by

keff ¼
1

k2e
þ
XN
i¼1

1

k2i

1

1þ 3CIS
i

� �" #�1=2
: (2)

Here, the screening length of each ionic species is given by the relation
k�2i ¼ 4pZ2

i e
2ni=T , where ni is the number density of that species,

and T is the temperature in units of energy. Formulas for the electron
screening length can be found in Ref. 2, but a simple approximation
with minimal error is given by

k�2e �
4pe2ne

T9=5 þ 2
3
EF

� �9=5
 !5=9

; (3)

where ne is the electronic number density, and EF ¼ �h2ð3p2neÞ2=3=2me

is the Fermi energy. Finally, we have introduced the ion-sphere coupling
parameter,

CIS
i ¼
ðZieÞ2

aiT
; (4)

which is expressed in terms of an ion-sphere radius that has been
modified for mixtures as

ai ¼
3Zie
4pqion

� �1=3

; qion ¼
XN
j¼1

Zjenj: (5)

The term CIS
i is included into the total screening length as a phenome-

nological way of accounting for strongly coupled ions. Once the
effective screening length (2) is known, the plasma parameter
gij ¼ ZiZje2=ðkeffTÞ can be calculated, where the relevant collision
integrals KnmðgijÞ associated with each transport process have been fit-
ted to this parameter and can be found in Appendix C-3 of Ref. 2.

The SMTmodel has already been shown to be successful in com-
parison to both experiments and higher fidelity models; however, at
first glance, it would seem inappropriate for Electron–electron and
electron–ion interactions for two reasons:

(i) the interactions are assumed to be repulsive;
(ii) quantum diffraction effects are neglected.

However, we will show that disregarding both of these potential
concerns is reasonable across a large swath of the parameter space for
dense plasmas, thus creating a transport model that self-consistently
provides all ionic and electronic transport properties in a form with
negligible computational cost. The first of these issues is the simplest
to understand as most transport coefficients scale to leading order as
the charge of each species squared, and thus they do not depend on
the sign of the charge of a given species. The breakdown of this scaling
is the Barkas effect.11,12 The latter issue is more complicated, but reso-
nances associated with diffraction effects are often integrated out
within the calculation of a given collision integral.13

The remainder of the manuscript is organized as follows. The
SMT model is applied to both thermal and electrical conductivity in
Sec. II, temperature relaxation in Sec. III, and stopping power in Sec.
IV. Finally, concluding remarks are presented in Sec. V.

II. CONDUCTION

In this section, we discuss electrical and thermal conduction. We
begin by reviewing different definitions of these quantities and the
impact of their use in applications. We write the electronic (only) cur-
rent density and energy flux in terms of Onsager coefficients fLijg as14

�jp ¼ L11
1
T
r~l þ L12r

1
T

� �
; (6)

jE ¼ L21
1
T
r~l þ L22r

1
T

� �
; (7)

which contains thermal gradients rT as well as electrochemical
forces r~l ¼ rl� eE, where l is the chemical potential, and E is
the electric field. These terms would naturally arise in, for example,
a Chapman-Enskog expansion,5 and terms associated with other
generalized forces may also appear (e.g., due to magnetic fields14).
If these equations are used directly in a hydrodynamics model with
known coefficients fLijg, the thermal conductivity coefficient is
simply

jshort ¼
L22
T2

: (8)

This choice is referred to as the “short circuit” thermal conductivity
because the current jp is arbitrary: there is no assumed constraint
among the gradients. Constraints can be imposed, such as isothermal,
isobaric, adiabatic, or isochoric conditions, and the corresponding
conductivities can be obtained accordingly.15,16

A common choice is the “open circuit” constraint that enforces
vanishing current density. We can write the energy current in terms of
the particle current by eliminating the electrochemical force, viz.,

jE ¼ �
L21
L11

jp þ L22 �
L12L21
L11

� �
r 1

T

� �
: (9)

Now, if we have an open circuit that prohibits particle currents
(jp ¼ 0), the thermal conductivity becomes

jopen ¼
1
T2

L22 �
L12L21
L11

� �
: (10)

Note that this choice implies that the flux associated with the tempera-
ture gradient rT is in instantaneous balance with the total electro-
chemical force. Which thermal conductivity is appropriate is, of
course, problem dependent.

The SMT model used in subsequent sections is formulated based
on the Chapman-Enskog expansion, which is detailed in Chapman
and Cowling.5 In subsection IIA, we treat electrical conductivity,
which, if assumed to be isothermal, is given by r ¼ e2L11=T when cur-
rents are driven by the total electrochemical force r~l. The electrical
conductivity in CC is defined not in terms of the electrochemical
potential but solely in terms of the electric field—see their Equation
(19:13; 2). Then, in subsection II B, we turn to thermal conduction. To
connect the convention of Onsager14 with that of Chapman and
Cowling (CC), it can be readily seen that Eqs. (6) and (7) of this docu-
ment are analogous to Eqs. (8.4, 1) and (8.4, 3) in CC, respectively. By
eliminating the diffusive flux (what CC call d12), CC then obtained Eq.
(8.41,3), which is analogous to our Eq. (9); therefore, their expression
(8:41; 4) is equivalent to the “open circuit” expression in Eq. (10).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 082301 (2021); doi: 10.1063/5.0048162 28, 082301-2

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0048162/13644819/082301_1_online.pdf

https://scitation.org/journal/php


Finally, in subsection IIC, we discuss thermal diffusivity, which is
defined by the relation (8:4; 7) from CC.

A. Electrical conductivity

We first turn to electrical conduction, which is the response of
the particle flux to the presence of an electric field. As such, its calcula-
tion within the framework of the Boltzmann equation is similar to that
of the inter-diffusion coefficient. For a system with only electrons and
a single ionic species, it can be shown that the electrical conductivity
will be proportionate to the inter-diffusion coefficient between these
two charged species through the relation

r ¼ neninðmi þmeZiÞ2e2

ðmene þminiÞ2T
Dei �

nene2

niT
Dei; (11)

where n ¼ ne þ ni is the total number density.5 The approximation
here is obtained by exploiting the mass disparity between electrons
and ions. The inter-diffusion coefficient can then be calculated as

Dei ¼
3T5=2

16
ffiffiffiffiffiffiffiffiffiffiffi
2plei
p

nZ2e4K11ðgeiÞ
; (12)

where lei ¼ memi=ðme þmiÞ � me is the reduced mass. Note that
electrons are assumed to have a positive charge in the calculation of
gei ¼ Ze2=ðkeffTÞ, making them effectively positrons.

For comparison, we draw upon the recently published results of
the Charged-Particle Transport Coefficient Code Comparison
Workshop, in which a multitude of contributors submitted transport
coefficient calculations using a variety of methods.17 For brevity, we
have plotted the predictions of the SMT model against a subset of the
results from,17 as shown in Fig. 1. In particular, electrical conductivities
for a hydrogen plasma at the mass densities of q ¼ f0:1; 1; 10g g/cm3

are examined for a range of temperatures. The methods compared to
include Kohn–Sham density functional theory molecular dynamics
(KS-MD),18,19 orbital-free density functional theory molecular dynam-
ics (OF-MD),20,21 pseudo-ion in jellium (PIJ),22 pseudoatom molecu-
lar dynamics (PAMD),23 average atom (AA) models,24,25 and the Lee-
More (LM) formulas based on kinetic theory.26 In each plot, the verti-
cal blue line in the plots indicates the temperature at which T¼ EF.
While the model incorporates degeneracy into the screening effects, it
still uses a Maxwell–Boltzmann velocity distribution, so the prediction
does not have the usual plateau when T < EF . Although it is reason-
able to expect this plateau in the degenerate regime, where the value
would roughly be given by the intersection of the blue and black
curves, more numerical work is needed to verify this conjecture.
Additionally, the SMT model appears to predict systematically lower
values of the electrical conductivity across all temperatures, which is
not the case for the thermal conductivity.

There could be a variety of explanations for the lower values of
the SMT model, and we have proposed several. First, the electrical
conductivity relies on electron-ion interactions as opposed to the ther-
mal conductivity, which relies on electron–electron interactions as
well. As the SMT model assumes repulsive interactions, the electrons
are in fact taken as positrons as mentioned previously. While the lead-
ing order value of transport coefficients are agnostic to the sign of the
charges, a second-order error is still incurred (i.e., the Barkas effect).
This said, these same errors are not observed in other transport

coefficients that rely on electron-ion interactions (see Secs. III and IV),
so the source of the error could be elsewhere. A more likely reason is
that the electrical conductivity probes a lower velocity spectrum than
thermal conductivity does; this is due to the fact that the former is

FIG. 1. Electrical conductivity predictions for H over a range of temperatures from
various computational models: SMT (black, solid curve), PIJ (blue circles), OF-MD
(black x-marks), KS-MD (red diamonds), LM (green triangles), PAMD (brown trian-
gles), and AA (purple pluses, stars and squares). The comparisons are shown for
the three mass densities (a) q ¼ 0:1, (b) q¼ 1, and (c) q¼ 10 g/cm3. In each sub-
plot, the vertical blue line indicates the temperature at which the degeneracy is unity
(i.e., T¼ EF), where T ¼ f2:8; 16; 85g eV for subplots (a)–(c), respectively.
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associated with mass flux and thus depends on the first-order velocity
moment of the phase space distribution, hvi, while the latter is associ-
ated with energy flux and thus depends on the third-order velocity
moment, hv3i. As such, the missing quantum mechanical effects asso-
ciated with a lower distance of classical approach will be more relevant
for electrical conductivity, thus giving rise to a breakdown of the SMT
model.

We have also plotted the SMT prediction of electrical conductiv-
ity for the mixture case in Fig. 2, where the systematically lower values
are observed again. While the generalization to mixtures for thermal
conductivity is trivially captured through the effective screening length
in Eq. (2), the explicit electron-ion interactions of electrical conductiv-
ity require a modification of the overall formula as well. To generalize
Eq. (11) for a system with electrons and N ionic species, the inter-
diffusion coefficient Dei must be calculated between the electrons and
each ionic species, resulting in the relation

r ¼ nee2

T

XN
i¼1

xi
Dei

 !�1
; (13)

where xi is the number fraction out of the total number density
n ¼ ne þ

P
i ni, and we have again exploited the electron-ion mass

disparity.5 Equation (11) will clearly be recovered for the single ionic
component case of N¼ 1. It can also be seen that the contribution of
each ionic species combines additively to the electrical resistance, the
inverse of the conductivity.

B. Thermal conductivity

Ionic thermal conductivity was discussed in Ref. 2, which we
extend here to electronic thermal conductivity. When taking the elec-
trons into account, the plasma must be viewed as a mixture, and the
total thermal conductivity of the electron-ion system can be approxi-
mated as

j ¼ x2iQiijii þ xixeQ0ei þ x2eQeejee

x2iQii þ xixeQei þ x2eQee
; (14)

where xj ¼ nj=ðne þ niÞ are the number density fractions, and the
coefficients Qij are defined in Appendix A. Since ne¼Zni, these den-
sity fractions can also be expressed in terms of the mean ionization as
xe ¼ Z=ð1þ ZÞ and xi ¼ 1=ð1þ ZÞ. Finally, the self-conductivities
are given as

jjj ¼
75T5=2

64
ffiffiffiffiffiffiffiffi
pmj
p ðZjeÞ4K22ðgjjÞ

; (15)

with mj being the electron or ion mass, and gjj ¼ ðZjeÞ2=ðkeffTÞ. The
function K22ðgjjÞ is the dimensionless collision integral, where the fits
from2 have been included again in Appendix B. The reduced conduc-
tivity can also be expressed in dimensionless form as

j� ¼ 25
ffiffiffiffiffi
3p
p

48C5=2K22ðgeeÞ
; (16)

where j� ¼ j=ðnexpa2eÞ. Here, xp ¼ ð4pnee2=meÞ1=2 is the plasma
frequency, and ae ¼ ð3=4pneÞ1=3 denotes the electron sphere radius.
[Note that in Ref. 2, an error was made in writing j� ¼ j=ðmxpa2Þ
instead of j� ¼ j=ðnxpa2Þ.]

Exploiting the disparate mass ratio between the electrons and
ions, the thermal conductivity can be approximated as

j � ZQ0ei
Qii þ ZQei

� 75T5=2

16
ffiffiffiffiffiffiffiffiffiffiffi
2pme
p

e4K
; (17)

where K can be thought of as a Coulomb logarithm-type of quantity
and can be expressed as

K ¼ Z 25K11ðgeiÞ � 20K12ðgeiÞ þ 4K13ðgeiÞ½ � þ
ffiffiffi
8
p
K22ðgeeÞ: (18)

Note that the quantity ½25K11ðgÞ � 20K12ðgÞ þ 4K13ðgÞ� is mono-
tonically decreasing as a function of g and asymptotically approaches
zero without going negative, so there is no possibility of (17) unphysi-
cally diverging in the strongly coupled regime.

We can again compare SMT to the same systems explored in Sec.
IIA as shown in Fig. 3. For these systems, the SMT model appears to
agree well with other models beyond 10 eV, though the results are
worse for higher densities. It should also be noted that at lower tem-
peratures, the variation in model predictions can range by orders of
magnitude although the actual conductivity values are so low that they
are unlikely to affect hydrodynamic simulations.

Thermal conductivity values are also calculated for a 50–50 CH
mixture with a total mass density of q¼ 1 g/cm3 although there are far
fewer simulations to compare to from the dataset in Ref. 17 Results are
shown in Fig. 4 compared to both PIJ and KS-MD calculations with
fairly good agreement. The dearth of results available for comparison
highlights one of the primary advantages of the SMT model, which is
its trivial implementation. Being only a function call, the SMT fits can
be applied to an arbitrary number of species with little to no effect on
the computational cost.

A further comparison can be made through the use of the Lorenz
number, defined as L � j=rT .27–29 For a single ionic species, the
Lorenz number can then be approximated as

FIG. 2. Electrical conductivity predictions for a 50–50 CH mixture over a range of
temperatures at a total mass density of q¼ 1 g/cm3. The SMT model (black, solid
curve) is compared to PIJ (blue circles) and KS-MD (red diamonds).
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L ¼ 25Z
e2K

K11ðgeiÞ; (19)

where K is given in Eq. (18). Comparisons to this expression are
shown in Fig. 5 as a function of temperature. We have additionally

included an analytic expression proposed by Faussurier et al.,28 which
can be seen to agree well with the other simulations. Interestingly, the
SMT model shows the strongest agreement in the degenerate limit,
where the Lorenz number approaches the Wiedemann-Franz law,
given by L ¼ p2k2B=3e

2 � 2:44� 10�8 W X K�2.30 While there is a
bit of scatter among all of the models, the SMTmodel is mostly consis-
tent with the other models. While disagreement might be expected at
lower temperatures, the opposite is in fact true; we speculate that this

FIG. 3. Thermal conductivity predictions for H over a range of temperatures from
various computational models: SMT (black, solid curve), PIJ (blue circles), OF-MD
(black x-marks), KS-MD (red diamonds), LM (green triangles), PAMD (brown trian-
gles), and AA (purple pluses, stars and squares). The comparisons are shown for
the three mass densities (a) q ¼ 0:1, (b) q¼ 1, and (c) q¼ 10 g/cm3. In each sub-
plot, the vertical blue line indicates the temperature at which the degeneracy is unity
(i.e., T¼ EF), where T ¼ f2:8; 16; 85g eV for subplots (a)–(c), respectively.

FIG. 4. Thermal conductivity predictions for a 50–50 CH mixture over a range of
temperatures at a total mass density of q¼ 1 g/cm3. The SMT model (black, solid
curve) is compared to PIJ (blue circles) and KS-MD (red diamonds).

FIG. 5. Lorenz numbers for the case of H at q¼ 10 g/cm3 from various computa-
tional models: SMT (black, solid curve), PIJ (blue circles), OF-MD (black x-marks),
KS-MD (red diamonds), LM (green triangles), PAMD (brown triangles), and AA
(purple pluses, stars and squares). An analytic formula from Faussurier et al.
(black, dashed line) is given as well.
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occurs because quantum mechanical scattering is more important at
high temperatures. This suggests a very straightforward correction to
the SMTmodel for hot plasmas that we intend to add in the future.

C. Other conductivity coefficients

While electrical and thermal conductivity are often the focus of par-
ticle and energy transport, Eqs. (6) and (7) contain contributions to parti-
cle and energy flow beyond those associated with these transport
processes. For example, thermal diffusion is particle flow due to the pres-
ence of temperature gradients, which can be quantified by the L12
Onsager coefficient in Eq. (6) or the thermal diffusion ratio kT � DT=Dei

found in Equation (8:4; 7) of CC, where DT is the thermal diffusion coef-
ficient and Dei is given in Eq. (12). Using again the disparity of the
electron-ion mass ratio, an approximate form for kT is given by

kT �
5Z2

ðZ þ 1ÞK 2K12ðgeiÞ � 5K11ðgeiÞ½ �; (20)

where K is given in Eq. (18). The thermal diffusion ratio can be
expressed in terms of the thermal diffusion factor as kT ¼ xixeaei.
Note that, unlike most other transport coefficients, the thermal diffu-
sion ratio and factor are not symmetric with respect to the species, as
aei ¼ �aie.

III. TEMPERATURE RELAXATION

Plasma experiments are typically multi-temperature as any
plasma-formation process (e.g., radiation or shocks) will create elec-
trons at a different temperature than the ions. Additionally, any mass
disparities between various ion species can lead to distinct ionic tem-
perature fields as well.31 For this reason, it is important to have accu-
rate models for the relevant temperature relaxation times sij between
two species (or equivalently the relaxation rates �ij ¼ 1=sij). This
relaxation timescale can be calculated through the usual collision inte-
grals as

sij ¼
3ðmi þmjÞT3=2

ij

32
ffiffiffiffiffiffiffiffiffiffi
2plij

p
njZ2

i Z
2
j e

4K11ðgijÞ
; (21)

where lij ¼ mimj=ðmi þmjÞ is again the reduced mass, and we have
now introduced the notion of an inter-species temperature Tij.
Multiple models for Tij have been proposed, but for the present work,
we have chosen

Tij ¼
miTj þmjTi

mi þmj
; (22)

which has been shown to be quite successful in modeling two-
temperature systems.32 In the case of electron-ion temperature
relaxation, the mass ratio can be again exploited to obtain the sim-
pler result of

sei �
3miT3=2

e

32
ffiffiffiffiffiffiffiffiffiffiffi
2pme
p

niZ2
i e4K11ðgeiÞ

: (23)

To show the general behavior of this form, we have plotted sei as a
function of Te for various ionic number densities at Z¼ 1 in Fig. 6.
The ionic temperature was set to Ti¼ 100 eV, which was largely an
arbitrary choice, as the electron-ion relaxation time has little

dependence on Ti for most relevant conditions. The ionic densities
chosen were in the range ½1020; 1026�, which is relevant to inertial con-
finement fusion conditions.

For comparison of these results to a higher fidelity model, we
turn to molecular dynamics (MD) simulations of Glosli et al.,33 where
temperature relaxation times of a hydrogen plasma are calculated
using quantum statistical potentials.34 The reported MD values
(denoted by sMD) along with the prediction from the SMT model
(denoted by sSM) are shown in Fig. 1. More specifically, the quantity
sMD ¼ 2=ðs�1ei þ s�1ie Þ from the MD simulations is presented to
account for the asymmetry of the rates (this corresponds to twice the
value of s� shown in Table I of Ref. 33). Cases M2 and M3 were per-
formed at the same conditions as in caseM1; however, they are distin-
guished by using quantum statistical potentials (M2) and bare
Coulomb potentials (M3) for a positron-proton system to demonstrate
the minimal effect of replacing electrons with positrons. From the val-
ues shown in Fig. 1, it can be seen that the SMT prediction was within
30% (though consistently lower than) of most of the MD results.

The largest deviations are associated with the ni ¼ 1024 cm�3

cases; however, these cases are less comparable due to the presence of
degenerate electrons (particularly in cases F and G). The SMT model
incorporates degeneracy through the screened electrons, which has the
effect of decreasing the relaxation times. For a better comparison with
these MD simulations, which do not account for degeneracy, the
SMT model was evaluated with a classical treatment of the electrons.
The resulting relaxation times were sSM ¼ 1:27� 102 fs and sSM
¼ 1:25� 102 fs for cases F and G, respectively, which are within 30%
of the MD results.

IV. STOPPING POWER

The final transport process we consider is stopping power,
defined as the energy loss per unit length of charged particles due to

FIG. 6. Electron-ion temperature relaxation times as a function of Te for various
ionic number densities at Z¼ 1. The ionic temperature was set to Ti¼ 100 eV
although there is little change to the curves when other values of Ti are used. The
ionic densities were in the range ð1020; 1026Þ, which is relevant to inertial confine-
ment fusion conditions.
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scattering by a target material. Accurate stopping power models are of
particular importance to understanding energy deposition in high
energy-density plasmas undergoing fusion reactions.35–37 Unlike other
transport coefficients, stopping power depends on a projectile velocity
(vp) rather than an average over thermal velocities,

SðvpÞ ¼ �
dE
dx
; (24)

which means that the usual collision integrals cannot be used. One
solution is to modify the effective screening length (2) to incorporate
finite-velocity effects. The effective interactions between ions will
become more Coulomb-like at higher velocities as the screening back-
ground is unable to respond quickly. Zwicknagel et al.38 suggested the
following form to modify the ionic screening length:

kiðvÞ ¼ 1þ v

vi

� �2
 !1=2

ki; (25)

where we have introduced the thermal velocity of the ith species as
vi ¼ ð2T=miÞ1=2 although this is not a unique choice. As shown by
Grabowski et al.,39 the modification (25) yields surprisingly good
agreement. The resulting velocity-dependent effective screening length
will then take the form

keff ðvÞ ¼
1

k2e
þ
X
i

1

k2i

1
1þ v2=v2i þ 3Ci

� � !�1=2
: (26)

The underlying binary approximation of the Boltzmann equation
framework allows the stopping power to be decomposed into the
interactions of a given projectile and each species within the target
material,

SðvpÞ ¼
X
k

SkðvpÞ; SkðvpÞ ¼ �
dEk
dx
ðvpÞ; (27)

where the index k sums over all species in the target (including the
electrons). We can thus express the stopping power from each contri-
bution in terms of the projectile velocity as

SkðvpÞ ¼
mknkvk
2
ffiffiffi
p
p

v2p

ð1
0
dv v2rð1Þkp ðvÞðF

k
þ � Fk

�Þ; (28)

Fk
6ðv; vpÞ ¼ 162

vpv

v2k

� �
e�

v6vp
vk

� �2
: (29)

The momentum transfer cross section will now have additional veloc-
ity dependencies through the effective screening length,

rð1Þkp ðvÞ ¼ 2pk2eff ðvÞ/1ðwÞ; w2 ¼ lkeff ðvÞ
2ZkZpe2

v2; (30)

where fits to /nðwÞ can be found in Appendix B. To examine
the validity of the SMT model, we consider the stopping of an
alpha particle in a hydrogen plasma with an ionic number density of
nion ¼ 1:03� 1020 cm�3 and a temperature of 10.9 eV. For compari-
son, we employ both the model of Brown, Preston and Singleton
(BPS)40,41 and MD simulations performed by Surh et al. using quan-
tum statistical potentials.42 The results of this comparison are shown
in Fig. 7 with the SMT model showing good agreement with both BPS
andMD. This particular system is weakly coupled (C � 0:1); however,
the SMT model is not restricted to this regime as many other stopping
power models are. While the SMT model will eventually lose its accu-
racy for sufficiently large coupling, it has the desired feature of staying
bounded across the entire parameter space.

A key quantity of interest that can be extracted from a stopping
power model is the relative amount of energy deposited into each tar-
get species by the projectile. Given the ease of calculating stopping

TABLE I. Comparison of temperature relaxation times between MD simulations from
Ref. 33 and the SMT model for a variety of system parameters. The largest deviations
observed are for cases in which the electron degeneracy is appreciable, and these devia-
tions can be mitigated by neglecting degeneracy effects in the SMT model.

ni Te Ti sMD sSM
Case (cm–3) (eV) (eV) (fs) (fs)

A 1020 10.0 20.0 4:08� 104 4:03� 104

B 1020 30.0 60.0 1:58� 105 1:28� 105

C 1022 10.0 20.0 1:05� 103 1:37� 103

D 1022 30.0 60.0 3:46� 103 2:74� 103

E 1022 100.0 200.0 1:29� 104 8:82� 103

F 1024 10.0 20.0 1:77� 102 7:54� 101

G 1024 30.0 60.0 1:65� 102 1:09� 102

H 1024 100.0 200.0 3:44� 102 2:10� 102

I 1024 300.0 600.0 8:34� 102 5:56� 102

J 1:6� 1024 29.9 80.1 4:04� 102 7:88� 101

K 1:6� 1024 91.47 12.1 2:40� 102 1:38� 102

L 1020 100.0 200.0 7:30� 105 5:39� 105

M1 1020 10.0 40.0 4:10� 104 4:03� 104

M2 1020 10.0 40.0 4:36� 104 4:03� 104

M3 1020 10.0 40.0 4:56� 104 4:03� 104

FIG. 7. Stopping power calculations using the SMT model (black curve), BPS
model (blue curve) and MD (black points) for an alpha particle stopping in a hydro-
gen plasma at ni ¼ 1:03� 1020 cm�3 and T¼ 10.9 eV. Results are expressed as
a function of the projectile velocity reduced by the ion thermal velocity.
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power curves with the SMT model, determining this energy split is
fairly straightforward and obtained by integrating the equations of
motion for the projectile,

dvp
dt
¼ 1

mp

X
k

dEk
dx

; (31)

while tracking the energy deposition into each species along the entire
trajectory. As an example, we consider an alpha particle with an initial
energy of 3.5MeV in a hydrogen plasma having an ionic number den-
sity of nion ¼ 1024 cm�3 and a range temperatures. The results of these
simulations are shown as the percentage of energy deposited into the
ions (hydrogen) for 0 < T < 40 keV in Fig. 8, where we have also
included a dashed line indicating the value T¼ 5 eV, which is the cur-
rent highest reported temperature for an ignition-path shot at the
National Ignition Facility.43

A fit to these results yields the following approximate form for
the fraction of energy deposited into the ions:

fionðTÞ �
T

T þ T0
; (32)

where T0 ¼ 16 keV. The normalized L2-norm of the relative error
between the fit and the data was 0.033 for this value of T0, which is fur-
ther discussed in Appendix C. Interestingly, the functional form of the
fit is identical to the one determined by Fraley et al.;44 however, their
calculations resulted in the value T0 ¼ 32 keV. The numerical values
used to determine (32) are presented in Appendix C for the conve-
nience of the reader.

V. CONCLUSION

It is desirable to have a single, rapid, self-consistent model that
treats a wide range of plasma mixture properties, including both elec-
tronic and ionic, over wide ranges of temperature and density. Toward
this goal, we examined the use of the SMT model,2 which was

originally intended to describe transport processes associated with
classical, repulsive interactions, to a variety of electronic transport
properties. In particular, the utility of the SMT model for thermal con-
ductivity, electrical conductivity, temperature relaxation, and stopping
power was explored.

For thermal and electrical conductivity, we use the recently
published results from the Charged-Particle Transport Coefficient
Code Comparison Workshop,17 which includes simulations from
higher fidelity physics models for a variety of transport coefficients
across the parameter space. Large agreement was observed between
SMT and the available data for thermal conductivity although sys-
tematic deviations are observed for electrical conductivity. It is sus-
pected that the lower velocity spectrum probed by electrical
conductivity necessitates a more quantum mechanical treatment of
the scattering physics.

With regard to temperature relaxation, MD simulation data from
Ref. 33 are used for validation, where most results were within 30% of
the SMT prediction. Due to the multi-temperature nature of these sys-
tems, the SMT model was generalized to allow for cross-temperatures.
The largest deviations occurred for dense systems with degenerate
electrons, and as these particular MD simulations did not account for
degeneracy, the deviations were lessened by neglecting degenerate elec-
tron screening in the SMTmodel.

Finally, stopping power was considered, which precluded the use
of the standard collision integrals in SMT as the cross sections are nec-
essarily velocity-resolved for this process. Instead, a velocity-
dependent screening length was used to construct a more accurate
cross section, and the resulting calculations were compared to both
MD and the BPS model with good agreement. Furthermore, the stop-
ping power calculations enabled the determination of relative energy
deposition into each target species from the projectile as a function of
system temperature, where a simple yet accurate fit to the energy split
was provided.

Despite its simplicity and semi-classical foundations, the SMT
model offers an extremely efficient opinion of electronic transport
coefficients that is fairly accurate across a large range of the parameter
space. Furthermore, there is little to no computational cost associated
with adding multiple ionic components, which makes the SMT model
ideal for many dense plasma applications. Based on the reasonable
accuracy of our results for several electronic transport coefficients, we
propose to use the SMT model to self-consistently compute all trans-
port coefficients. To do this, an equation of state for mixtures is needed
to produce the plasma mixtures ionization states and free electron
density.31,45,46 From the mixture properties, the basic inputs into the
SMT framework can be obtained and then used to evaluate the fits for
each of the independent electronic and ionic coefficients. Future work
would entail a more quantum mechanical treatment of both the cross
sections and the collision integrals as well as generalizing the SMT
model to attractive interactions.
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FIG. 8. Energy split due to alpha stopping with an initial energy of 3.5 MeV in a
hydrogen plasma at ni ¼ 1024 cm�3. The percentage of energy deposited by the
projectile into the ions is shown as a function of target temperature. The vertical
dashed line corresponds to T¼ 5 eV, which is the current highest reported temper-
ature for an ignition-path shot at the National Ignition Facility.43
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APPENDIX A: THERMAL CONDUCTIVITY
COEFFICIENTS

Here, we present the coefficients associated with calculating
the thermal conductivity. For consistency, we use notation similar
to that of CC,5

Qii ¼ Pið6M2
e þ ð5� 4BÞM2

i þ 8MeMiAÞ; (A1)

Qee ¼ Peð6M2
i þ ð5� 4BÞM2

e þ 8MeMiAÞ; (A2)

Qei ¼ 3ðMi �MeÞ2ð5� 4BÞ þ 2PePi þ 4MeMiAð11� 4BÞ ;
(A3)

Q0ei ¼
15TðPe þ Pi þ ð11� 4B � 8AÞMeMiÞ

16ðme þmiÞMeMiX
ð1;1Þ
ei

; (A4)

A ¼ Xð2;2Þei

5Xð1;1Þei

; B ¼ 5Xð1;2Þei � Xð1;3Þei

5Xð1;1Þei

; (A5)

Pi ¼
Xð2;2Þii

5MeX
ð1;1Þ
ei

; Pe ¼
Xð2;2Þee

5MiX
ð1;1Þ
ei

; (A6)

Mi ¼
mi

mi þme
; Me ¼

me

mi þme
: (A7)

Fits to the collision integrals are presented in Ref. 2 and have been
repeated again in Appendix B for completeness. The disparate
electron-ion mass ratio allows l ¼ me=mi to be an expansion
parameter (not to be confused with the reduced mass lij). The lead-
ing order coefficients then become

Qii � Pið5� 4BÞ ¼ Oðl�1Þ; (A8)

Qee � 6Pe ¼ Oð1Þ; (A9)

Qei � 2PePi ¼ Oðl�1Þ; (A10)

Q0ei �
15TPi

16milXð1;1Þei

� 15T5=2Pi

16
ffiffiffiffiffiffiffiffiffiffiffi
2pme
p

Z2e4K11ðgeiÞ
: (A11)

APPENDIX B: NUMERICAL EVALUATION
OF INTEGRALS

Momentum-transfer cross sections and collision integrals are
numerically calculated and fitted in Ref. 2, and to make this docu-
ment self-contained, we have included these same fits here as well.
Each fit is piece-wise and was constructed to maintain C1-continu-
ity, recover the appropriate asymptotic limits, and minimize the rel-
ative error between the fits and the numerical calculations.

The momentum-transfer cross section can be expressed in
terms of a dimensionless cross section and velocity as

rðnÞij ðw; kÞ ¼ 2pk2/nðwÞ; w2 ¼ lk
2ZiZje2

v2: (B1)

Here, the screening length k can be taken as (2) or any other screen-
ing length that might be more appropriate. The function /nðwÞ can
be decomposed into weak- and strong-coupling regimes as

/nðwÞ ¼
/sc
n ðwÞ; w < 1

/wc
n ðwÞ; w > 1;

(
(B2)

where the “strongly coupled” component is approximated by

/sc
n ðwÞ �

c0 þ c1 ln ðwÞ þ c2 ln
2ðyÞ þ c3 ln

3ðwÞ
1þ c4 ln ðwÞ

; (B3)

and the “weakly coupled” component is approximated by

/wc
n ðwÞ �

n
2w4

ln 1þ w2ð ÞPðwÞ; (B4)

PðwÞ ¼ d0 þ d1 ln ðwÞ þ d2 ln
2ðwÞ þ ln3ðwÞ

d3 þ d4 ln ðwÞ þ d5 ln
2ðwÞ þ ln3ðwÞ

" #
: (B5)

The coefficients for (B3) and (B5) are presented for n ¼ f1; 2g in
Table II although only the n¼ 1 is necessary for the stopping power
calculations performed in this work.

Similarly, collision integrals can expressed in terms of dimen-
sionless variables,

Xðn;mÞij ¼
ffiffiffiffiffi
2p
lij

s
ðZiZje2Þ2

T3=2
KnmðgÞ; g ¼ ZiZje2

kT
: (B6)

The function KnmðgÞ can also be decomposed into weak- and
strong-coupling regimes as

KnmðgÞ ¼
Kwc

nmðgÞ; g < 1

Ksc
nmðgÞ; g > 1;

(
(B7)

where the weakly coupled component is approximated by

Kwc
nmðgÞ � �

n
4
ðm� 1Þ! ln

X5
k¼1

akg
k

 !
; (B8)

and the strongly coupled component is approximated by

Ksc
nmðgÞ �

b0 þ b1 ln ðgÞ þ b2 ln
2ðgÞ

1þ b3g þ b4g2
: (B9)

The coefficient values are presented in Table III for the (n, m) pairs
relevant to first-order Chapman–Enskog theory.

APPENDIX C: ENERGY SPLIT DATA AND FIT

The data for the energy split calculations are presented in
Table IV. These data points were then fit to a functional form of the

TABLE II. Coefficients for fits (B3)–(B5) of the reduced cross sections (B1).

n 1 2

c0 0.300 31 0.406 88
c1 –0.691 61 –0.864 25
c2 0.596 07 0.774 61
c3 –0.398 22 –0.344 71
c4 –0.206 85 –0.276 26

d0 0.485 16 0.830 61
d1 1.660 45 1.052 29
d2 –0.886 87 –0.599 02
d3 0.559 90 1.415 00
d4 1.657 98 0.788 74
d5 –1.024 57 –0.481 55
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ratio of two polynomials. While higher polynomials were explored,
a surprising accuracy was found with the ratio of two linear polyno-
mials in the form of Eq. (32). The resulting relative error between
this fit and the data is shown in Fig. 9. However, the reader can use
the data presented to construct a more accurate fit if necessary.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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FIG. 9. Relative error between the data in Table IV and the approximate fit in Eq.
(32). The highest errors can be seen near 1 keV.
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