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Malware Classification with Word Embedding Features

Aparna Sunil Kale a, Fabio Di Troia b and Mark Stamp c

Department of Computer Science, San Jose State University, San Jose, California, U.S.A.

Keywords: Malware, Machine Learning, Word2Vec, HMM2Vec, CNN.

Abstract: Malware classification is an important and challenging problem in information security. Modern malware
classification techniques rely on machine learning models that can be trained on features such as opcode se-
quences, API calls, and byte n-grams, among many others. In this research, we consider opcode features. We
implement hybrid machine learning techniques, where we engineer feature vectors by training hidden Markov
models—a technique that we refer to as HMM2Vec—and Word2Vec embeddings on these opcode sequences.
The resulting HMM2Vec and Word2Vec embedding vectors are then used as features for classification algo-
rithms. Specifically, we consider support vector machine (SVM), k-nearest neighbor (k-NN), random forest
(RF), and convolutional neural network (CNN) classifiers. We conduct substantial experiments over a variety
of malware families. Our experiments extend well beyond any previous related work in this field.

1 INTRODUCTION

Malware is a software that is created with the intent to
cause harm to computer data or otherwise adversely
affect computer systems (Aycock, 2006). Detecting
malware can be a challenging task, as there exist a
wide variety of advanced malware that employ vari-
ous anti-detection techniques.

Modern malware research often focuses on ma-
chine learning, which has shown better performance
as compared to traditional methods, particularly in
the most challenging cases. Machine learning mod-
els for malware classification can be trained on a
wide variety of features, including API calls, opcodes
sequences, system calls, and control flow graphs,
among many others (Dhanasekar et al., 2018).

In this research, we focus on hybrid techniques,
in the sense that we perform sophisticated feature
engineering based on hidden Markov models and
Word2Vec embeddings. In both of these cases, we
consider a variety of classifiers. For each of the re-
sulting hybrid techniques, extensive malware classifi-
cation experiments are conducted over a set of seven
challenging malware families. Again, our experi-
ments are based on engineered features derived from
opcode sequences.
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The remainder of this paper is organized as fol-
lows. In Section 2 we provide a discussion of relevant
background topics, with a focus on the machine learn-
ing techniques employed in this research. We also
provide a selective survey of related work. Section 3
covers the novel hybrid machine learning techniques
that are the focus of this research. In this section, we
also provide information on the dataset that we have
used. Section 4 gives our experimental results and
analysis. Finally, Section 5 summarizes our results
and includes a discussion of possible directions for
future work.

2 BACKGROUND

In this section, we introduce the machine learning
models used in this research. We also provide a se-
lective survey of relevant previous work.

2.1 Machine Learning Techniques

A wide variety of machine learning techniques are
considered in this research. We train hidden Markov
models and generate Word2Vec embeddings, which
are subsequently used as features in various classifi-
cation algorithms. The classification algorithms con-
sidered are random forest, k-nearest neighbor, support
vector machines, and convolutional neural networks.

Kale, A., Di Troia, F. and Stamp, M.
Malware Classification with Word Embedding Features.
DOI: 10.5220/0010377907330742
In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 733-742
ISBN: 978-989-758-491-6
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

733



Due to space limitations, each of these techniques is
introduced only very briefly in this section.

2.1.1 Hidden Markov Models

A hidden Markov model (HMM) is a probabilistic
machine learning algorithm that can be used for pat-
tern matching applications in such diverse areas as
speech recognition (Rabiner, 1989), human activity
detection (Shaily and Mangat, 2015), and protein se-
quencing (Krogh et al., 1994). HMMs have also
proven useful for malware analysis.

A discrete HMM is defined as λ = (A,B,π),
where A is the state transition matrix for the underly-
ing Markov process, B contains probability distribu-
tions that relate the hidden states to the observations,
and π is the initial state distribution. All three of these
matrices are row stochastic.

In this research, we focus on the B matrix of
trained HMMs. These matrices can be viewed as rep-
resenting crucial statistical properties of the observa-
tion sequences that were used to train the HMM. Us-
ing these B matrices as input to classifiers is an ad-
vanced form of feature engineering, whereby infor-
mation in the original features is distilled into a po-
tentially more informative form by the trained HMM.
We refer to the process of deriving these HMM-based
feature vectors as HMM2Vec. We have more to say
about generating HMM2Vec features from HMMs in
Section 4.2.

2.1.2 Word2Vec

Word2Vec has recently gained considerable popular-
ity in natural language processing (NLP) (Mikolov
et al., 2013b). This word embedding technique is
based on a shallow neural network, with the weights
of the trained model serving as embedding vectors—
the trained model itself serves no other purpose.
These embedding vectors capture significant relation-
ships between words in the training set. Word2Vec
can also be used beyond the NLP context to model
relationships between more general features or obser-
vations.

When training a Word2Vec model, we must spec-
ify the desired vector length, which we denote as N.
Another key parameter is the window length W ,
which represents the width of a sliding window that
is used to extract training samples from the data. Al-
gebraic properties hold for Word2Vec embeddings;
see (Mikolov et al., 2013a) for further information.

In this research, we train Word2Vec models on
opcode sequences. The resulting embedding vectors
are used as feature vectors for several different clas-
sifiers. Analogous to the HMM feature vectors dis-

cussed in the previous section, these Word2Vec em-
beddings serve as engineered features that may be
more informative than the raw opcode sequences.

2.1.3 Random Forest

Random forest (RF) is a class of supervised machine
learning techniques. A random forest is based on de-
cision trees, which are one of the simplest and most
intuitive “learning” techniques available. The primary
drawback to a simple decision trees is that it tends to
overfit—in effect, the decision tree “memorizes” the
training data, rather than learning from the it. A ran-
dom forest overcomes this limitation by the process
of “bagging,” whereby a collection of decision trees
are trained, each using a subset of the available data
and features (Stamp, 2017).

2.1.4 k-Nearest Neighbors

Perhaps the simplest learning algorithm possible is k-
nearest neighbors (kNN). In this technique, there is
no explicit training phase, and in the testing phase,
a sample is classified simply based on the nearest
neighbors in the training set. This is a lazy learning
technique, in the sense that all computation is deferred
to the classification phase. The parameter k specifies
the number of neighbors used for classification. Small
values of k tend to results in highly irregular decision
boundaries, which is a hallmark of overfitting.

2.1.5 Support Vector Machine

Support vector machines (SVM) are popular super-
vised learning algorithms (Cortes and Vapnik, 1995)
that have found widespread use in malware analy-
sis (Kolter and Maloof, 2006). A key concept be-
hind SVMs is a separating hyperplane that maximizes
the margin, which is the minimum distance between
the classes. In addition, the so-called kernel trick in-
troduces nonlinearity into the process, with minimal
computational overhead.

Several popular nonlinear kernels are used in
SVMs. In this research, we experiment with linear
kernels and nonlinear radial basis function (RBF) ker-
nels.

2.1.6 Convolutional Neural Network

Neural networks are a large and diverse class of learn-
ing algorithms that are loosely modeled on structures
of the brain. A deep neural network (DNN) is a neural
network with multiple hidden layers—such networks
are state of the art for many learning problems. Con-
volutional neural networks (CNN) are DNNs that are
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optimized for image analysis, but have proven effec-
tive in many other problem domains. The architecture
of a CNN consists of hidden layers, along with input
and output layers. The hidden layers of a CNN typi-
cally include convolutional layers, pooling layers, and
a fully connected output layer (Mikolov et al., 2013b).

2.2 Selective Survey of Related Work

Machine learning has been widely used in malware
research. This section introduces representative ex-
amples from the literature that are directly related to
the work considered in this paper.

The literature is replete with hybrid machine
learning techniques for malware classification. For
example, in (Sethi, 2019), the author proposes a hy-
brid machine learning technique that uses HMM ma-
trices as the input to a convolutional neural network
to classify malware families. Researchers in (Sethi,
2019) use SVMs to classify trained HMMs. In (Lo
et al., 2019), the authors consider an ensemble model
that combines predictions from asm and exe, files
together—the predictions are stacked and fed to a
neural network for classification. In (Popov, 2017),
the authors use Word2Vec to generate embeddings
from machine instructions. Moreover, they propose
a proof of concept model to train a convolutional neu-
ral network based on the Word2Vec embeddings.

The research in this paper builds on the work
in (Popov, 2017; Sethi, 2019; Vemparala et al.,
2016). We propose hybrid machine learning tech-
niques for malware classification using HMM2Vec
and Word2Vec engineered features which are de-
rived from opcode sequences. Four different classi-
fiers are considered, giving us a total of eight dis-
tinct experiments that we refer to as HMM2Vec-
kNN, HMM2Vec-SVM, HMM2Vec-RF, HMM2Vec-
CNN, Word2Vec-kNN, Word2Vec-SVM, Word2Vec-
RF, and Word2Vec-CNN. As far as the authors are
aware, only one of these eight combinations, namely,
Word2Vec-CNN, has been considered in previous
work. Moreover, we experiment with a much wider
array of window sizes and vector lengths for our
Word2Vec models as compared to prior related work.
In the next section, we discuss our eight proposed
techniques in detail.

3 IMPLEMENTATION

In this section, we first give information about the
dataset used in this research. Then we discuss the var-
ious hybrid machine learning techniques that are the
focus of the experiments reported in Section 4.

3.1 Dataset

The raw dataset used for our experiments in-
cludes 2793 malware families with one or more sam-
ples per family (Kim, 2018). We selected seven of the
families from this dataset that have more than 1000
samples, and randomly selected 1000 samples of each
type, giving us a total of 7000 samples. Specifically,
the following seven families were selected for this re-
search.

BHO: can perform a wide variety of malicious ac-
tions, as specified by an attacker (Microsoft Secu-
rity Intelligence, 2020b).

CeeInject: is designed to conceal itself from detec-
tion, and hence various families use it as a shield
to prevent detection. For example, CeeInject can
obfuscate a bitcoin mining client, which might
have been installed on a system without the user’s
knowledge or consent (Microsoft Security Intelli-
gence, 2020d).

FakeRean: pretends to scan the system, notifies the
user of nonexistent issues, and asks the user to
pay to clean the system (Microsoft Security In-
telligence, 2020a).

OnLineGames: steals login information and cap-
tures user keystroke activity (Microsoft Security
Intelligence, 2020c).

Renos: will claim that the system has spyware and
ask for a payment to remove the nonexistent spy-
ware (Microsoft Security Intelligence, 2020e).

Vobfus: is a family that downloads other malware
onto a user’s computer and makes changes to the
device configuration that cannot be restored by
simply removing the downloaded malware (Mi-
crosoft Security Intelligence, 2020f).

Winwebsec: is a trojan that presents itself as an-
tivirus software—it displays misleading messages
stating that the device has been infected and at-
tempts to persuade the user to pay a fee to free
the system of malware (Microsoft Security Intel-
ligence, 2020g).

For each sample, we train an HMM and a Word2Vec
model using opcode sequences. The raw dataset
consists of exe files, and hence we first extract the
mnemonic opcode sequence from each malware sam-
ple. We use objdump to generate asm files from which
we extract opcode sequences. For each opcode se-
quence we retain the M most frequent opcodes and
remove all others. We experiment with the M most
frequent opcodes for M ∈ {20,31,40}, where “most
frequent” is based on the opcode distribution over the
entire dataset. The number of hidden states in each
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HMM was chosen to be N = 2, and the number of out-
put symbols is given by M. For the Word2Vec models,
we experiment with additional parameters.

Experiments involving M ∈ {20,31,40} are dis-
cussed at the start of Section 4. Based on the results
of such experiments, we selected M = 31 for all sub-
sequent HMM2Vec and Word2Vec experiments. We
note that opcodes outside of the top 31 accounts for
less that 0.5% of the total. Since we are considering
statistical-based feature engineering techniques, these
omitted opcodes are highly unlikely to affect the re-
sults to any significant degree.

3.2 Hybrid Classification Techniques

In this section, we discuss the hybrid machine
learning models that are the basis for the re-
search in this paper. Specifically, we con-
sider HMM2Vec-SVM, HMM2Vec-RF, HMM2Vec-
kNN, and HMM2Vec-CNN. We then briefly dis-
cuss the analogous Word2Vec techniques, namely,
Word2Vec-SVM, Word2Vec-RF, Word2Vec-kNN,
and Word2Vec-CNN.

To train our hidden Markov models, we use the
hmmlearn library (Gael, 2014), and we select the
best HMM based on multiple random restarts. For
all remaining machine learning techniques, except for
CNNs, we used sklearn (Pedregosa et al., 2011).
To train our CNN models, we use the Keras li-
brary (Chollet, 2015).

3.2.1 HMM Hybrid Techniques

For our HMM2Vec-SVM hybrid technique, we first
train an HMM for each sample, using the extracted
opcode sequence as the training data. Then we use an
SVM to classify the samples, based on the B matri-
ces of the converged HMMs. Each converged B ma-
trix is vectorized by simple concatenating the rows.
Since N = 2 is the number of hidden states and M
is the number of distinct opcodes in the observation
sequence, each B matrix is N ×M. Consequently,
the resulting engineered feature vectors are all of
length NM. When training the SVM, we experiment
with various hyperparameters and kernel functions.

Our HMM2Vec-RF, HMM2Vec-kNN, and
HMM2Vec-CNN techniques are analogous to
the HMM2Vec-SVM hybrid technique. For the
HMM2Vec-CNN, we use a one-dimensional CNN.
In each case, we tune the relevant parameters.

3.2.2 Word2Vec Hybrid Techniques

As mentioned above, Word2Vec is typically trained
on a series of words, which are derived from sen-
tences in a natural language. In our research,
the sequence of opcodes from a malware exe-
cutable is treated as a stream of “words.” Anal-
ogous to our HMM2Vec experiments, we concate-
nate the Word2Vec embeddings to obtain a vector of
length NM, where M is the number of distinct op-
codes in the training set and N is the length of the
embedding vectors.

Once we have trained the Word2Vec models to ob-
tain the engineered feature vectors, the classification
process for each of Word2Vec-SVM, Word2Vec-RF,
Word2Vec-CNN, and Word2Vec-kNN is analogous to
that for the corresponding HMM-based technique. As
with the HMM classification techniques, we tune the
parameters in each case.

4 EXPERIMENTS AND RESULTS

In this section, we present the results of several hy-
brid machine learning experiments for malware clas-
sification. As discussed above, these experiments are
based on opcode sequences, with feature engineer-
ing involving HMM and Word2Vec models. We con-
sider four classifiers, giving us a total of eight dif-
ferent experiments, which we denote as HMM2Vec-
SVM, HMM2Vec-RF, HMM2Vec-kNN, HMM2Vec-
CNN, Word2Vec-SVM, Word2Vec-RF, Word2Vec-
kNN, and Word2Vec-CNN.

Before discussing our hybrid multiclass results,
we first consider binary classification experiments us-
ing different numbers of opcodes. The purpose of
these experiments is to determine the number of op-
codes to use in our subsequent multiclass experi-
ments.

4.1 Binary Classification

In this section, we classify samples from the
Winwebsec and Fakerean malware families, both of
which are examples of rogue security software that
claim to be antivirus tools. We compare the ac-
curacies when using the M most frequent opcodes,
for M ∈ {20,31,40}.

For each of these binary classification experi-
ments, we generate a Word2Vec model for each sam-
ple in both families, using a vector size of N = 2
and window sizes of W ∈ {1,5,10,30,100}. Thus,
we conduct 15 distinct experiments, each involv-
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ing 2000 labeled samples. In each case, we use a 70-
30 training-testing split. The results of these experi-
ments are summarized in Figure 1.
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Figure 1: Binary classification using Word2Vec-SVM
model (Winwebsec vs Fakerean).

From Figure 1, we see that good results are obtained
for window size W = 5 and 31 or 40 opcodes. Both of
these cases yield an accuracy in excess of 99%. But,
the improvement when using 40 opcodes over 31 op-
codes is relatively small, and with 40 opcodes, feature
extraction and training times are greater. Therefore, in
all of the multiclass experiments discussed in the next
sections, we use 31 opcodes.

4.2 HMM2Vec Multiclass Experiments

For all of our multiclass experiments, we consider
the seven malware families that are discussed in
Section 3.1, namely, BHO (Microsoft Security Intel-
ligence, 2020b), Ceeinject (Microsoft Security Intel-
ligence, 2020d), Fakerean (Microsoft Security Intel-
ligence, 2020a), OnLineGames (Microsoft Security
Intelligence, 2020c), Renos (Microsoft Security In-
telligence, 2020e), Vobfus (Microsoft Security Intel-
ligence, 2020f), and Winwebsec (Microsoft Security
Intelligence, 2020g). We extracted opcodes from 50
malware families and use the 31 most frequent to train
HMMs for each sample in each of the seven fami-
lies under consideration. For all HMMs, the number
of hidden states is selected to be N = 2. Since we
are considering 31 distinct opcodes, we have M = 31,
giving us engineered HMM2Vec feature vectors of
length 62.

As mentioned above, we train HMMs using the
hmmlearn library (Gael, 2014) and we select the high-
est scoring model based on multiple random restarts.
The precise number of random restarts is determined
by the length of the opcode sequence—for shorter se-
quences in the range of 1000 to 5000 opcodes, we
use 100 restarts; otherwise we select the best model
based on 50 random restarts. The B matrix of the

highest-scoring model is then converted to a one-
dimensional vector.

To obtain the HMM2Vec features, we convert
the B matrix of a trained HMM into vector form. A
subtle point that arises in this conversion process is
that the order of the hidden states in the B matrix need
not be consistent across different models. Since we
only have N = 2 hidden states in our experiments, this
means that the order of the rows of the correspond-
ing B matrices may not agree between different mod-
els. To account for this possibility, we determine the
hidden state that has the highest probability with re-
spect to the mov opcode and we deem this to be the
first half of the HMM2Vec feature vector, with the
other row of the B matrix being the second half of
the vector. Since mov is by far the most frequent op-
code, this will yield a consistent ordering of the hid-
den states.

4.2.1 HMM2Vec-SVM

Table 1 gives the results of a grid search over var-
ious parameters and popular SVM kernel functions.
As with all of our multiclass experiments, we use
a 70-30 split of the data for training and testing. For
the multiclass SVM, we use a one-versus-other tech-
nique. From the results in Table 1, we see that the
RBF kernel performs poorly, while the linear ker-
nel yields consistently strong results. Our best re-
sults are obtained using a linear kernel with C = 100
and C = 1000.

Table 1: HMM2Vec-SVM accuracies.

Kernel Parameters Accuracy
C γ

linear 1 N/A 0.83
linear 10 N/A 0.87
linear 100 N/A 0.88
linear 1000 N/A 0.88

RBF 1 0.001 0.13
RBF 1 0.0001 0.13
RBF 10 0.001 0.42
RBF 10 0.0001 0.13
RBF 100 0.001 0.69
RBF 100 0.0001 0.34
RBF 1000 0.001 0.83
RBF 1000 0.0001 0.70

Figure 2 gives the confusion matrix for our
HMM2Vec-SVM experiment, based on a linear ker-
nel with C = 100. We see that BHO and Vobfus
are classified with the highest accuracies of 94.2%
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and 96.6%, respectively. On the other hand,
Winwebsec and Fakerean are the most challenging,
with 9% and 7% misclassification rates, respectively.
We also note that OnLineGames samples are fre-
quently misclassified as Fakerean.
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Figure 2: Confusion matrix for HMM2Vec-SVM with lin-
ear kernel.

4.2.2 HMM2Vec-kNN

Recall that in kNN, the parameter k is the number of
neighbors that are used to classify samples. We ex-
perimented with kNN classifiers using our engineered
HMM2Vec features for each k ∈ {1,2,3, . . . ,50}. We
find that as the accuracy declines as k increases. How-
ever, small values of k result in a highly irregular de-
cision boundary, which is a sign of overfitting. As a
general rule, we should choose k ≈

√
S , where S is

the number of training samples. For our experiment,
this gives us k = 70, for which we obtain an accuracy
of about 79%.

4.2.3 HMM2Vec-RF

There are many hyperparameters to consider when
training a random forest. Using our HMM engineered
features, we performed a randomized search and ob-
tained the best results with the parameter in Table 2.

Table 2: Randomized search parameters for HMM2Vec-RF.

Hyperparameter Value

n-estimators 1000
min samples split 2
min samples leaf 1

max features auto
max depth 50
bootstrap false

Using the hyperparameters in Table 2, our
HMM2Vec-RF classifier achieves an overall accu-
racy of 96%. In Figure 3, we give the results of
this experiment in the form of a confusion matrix.
From this confusion matrix, we see that BHO and
Vobfus are classified with high accuracies of 97%
and 99%, respectively. The misclassifications be-
tween OnLineGames and Fakerean are reduced, as
compared to the SVM classifier considered above,
as are the misclassifications between Winwebsec and
Fakerean.
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Figure 3: Confusion matrix for HMM2Vec-RF using grid
parameters.

4.2.4 HMM2Vec-CNN

Next, we consider classification based on CNNs.
There are numerous possible configurations and many
hyperparameters in such models. Due to the fact that
our feature vectors are one-dimensional, we use one-
dimensional CNNs.

We split the data into 80% training, 10% valida-
tion, and 10% testing. With this split, we have 5600
training samples, 700 validation samples, and 700
testing samples. We train each model using the rec-
tified linear unit (ReLU) activation function and 200
epochs. To construct these models, we used the Keras
library (Chollet, 2015).

For our first set of experiments, we train CNNs us-
ing one input layer of dimension 200, a hidden layer
with 500 neurons, and our output layer has seven neu-
rons, since we have seven classes. We use a mean
squared error (MSE) loss function.

Using stochastic gradient descent (SDG) as the
optimizer, we obtained an accuracy of about 50%.
Switching to the Adam optimizer (Zhang, 2018), we
achieve a training accuracy of 97% and a testing ac-
curacy of 92%. Consequently, we use Adam for all
further experiments.

We train a CNN with two hidden layers, one input
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layer, and an output layer, with 20, 200, and seven
neurons, respectively. In this case, using categorical
cross-entropy (CC) as the loss function, we achieved a
testing accuracy of 88%, but the model showed a 40%
loss.

Next, we expand the hidden layer to 500 neurons
and perform a grid search to identify the best hy-
perparameters. We experimented with various loss
functions, we use 200 neurons in the input layer,
one hidden layer with 500 neurons, ReLU activa-
tion functions, and an output layer with seven neu-
rons, followed by a softmax activation. In this setup,
we achieved a testing accuracy of 93.8% using the
CC loss function. However, the training accuracy
reached 100%, which indicates overfitting.

There are several possible ways to mitigate
overfitting—we employ regularization based on a
dropout layer. Intuitively, when a neuron is dropped
at a particular iteration, it forces other neurons to be-
come active, which reduces the tendency of some neu-
rons to dominate during training. By spreading the
training over more neurons, we reduce the tendency
of the model to overfit the data.

When we set the dropout rate to 0.5, we achieve
a testing accuracy of 94.2% with a training accuracy
of 98%. In this case, we have eliminating the overfit-
ting that was observed in our previous models.

4.3 Word2Vec Multiclass Experiments

The experiments in this section are analogous to the
HMM2Vec experiments in Section 4.2. However,
Word2Vec includes more parameters that we can eas-
ily adjust, as compared to HMM2Vec, and hence we
experiment with these parameters. Specifically, for
our Word2Vec models, we experiment with different
window sizes W and different lengths N of the em-
bedding vectors. Since we are considering feature
vectors with 31 distinct opcodes, for the N = 2 case,
we will have Word2Vec engineered feature vectors of
length 62, which is the same size as the HMM2Vec
feature vectors considered above. However, for N >
2, we have larger feature vectors. Also, the win-
dow size allows us to consider additional context in
Word2Vec models, as compared to our HMM2Vec
features.

4.3.1 Word2Vec-SVM

Here, we generate feature vectors using Word2Vec,
and apply an SVM classifier. As mentioned above,
Word2Vec gives us the flexibility to choose the vector
embedding and window sizes, and hence we experi-
ment with these parameters. As in all of the multi-
class cases, we consider 1000 malware samples from

each of seven families. In all cases, we split the in-
put data 70-30 for training and testing. For the SVM
experiments, we use a one-versus-other technique.

As with our HMM2Vec-SVM experiments, we
first perform a grid search over the parameters for lin-
ear and RBF kernels. For these experiments, we use
vectors size of N = 2 and a window of size W = 30.
Table 3 summarizes the results of these experiments.
We observed that the RBF kernel achieves the highest
accuracy.

Table 3: Word2Vec-SVM grid search accuracies (N = 2 and
W = 30).

Kernel Parameters Accuracy
C γ

linear 1 N/A 0.86
linear 10 N/A 0.85
linear 100 N/A 0.85
linear 1000 N/A 0.85

RBF 1 0.001 0.87
RBF 1 0.0001 0.70
RBF 10 0.001 0.91
RBF 10 0.0001 0.84
RBF 100 0.001 0.92
RBF 100 0.0001 0.88
RBF 1000 0.001 0.92
RBF 1000 0.0001 0.90

For our next set of Word2Vec-SVM experiments, we
consider a linear kernel. For the Word2Vec fea-
tures, we use vector lengths M ∈{2,31,100} and win-
dows of size W ∈ {1,5,10,30,100}, giving us a total
of 15 distinct Word2Vec-SVM experiments using lin-
ear kernels.

The results of these Word2Vec-SVM experiments
are summarized in the form of a bar graph in
Figure 4 (a). Note that our best accuracy of 95%
for the linear kernel was achieved with input vec-
tors of size N = 31 and, perhaps surprisingly, a win-
dow of size W = 1. These results show that the ac-
curacies significantly improve for embedding vector
sizes N > 2.

Next, we consider the RBF kernel in more detail.
Based on the results in Table 3, we select C = 1000
and γ = 0.001. We generate Word2Vec vectors of
sizes N ∈ {2,31,100} and we also consider window
sizes W ∈ {1,5,10,30,100}. The results of these 15
experiments are summarized in Figure 4 (b). In this
case, we achieve a best accuracy of 95% with a vector
length of N = 31 and a window size of either W = 1
or W = 10. Note that the results improve when the
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(a) Linear kernel (b) RBF kernel
Figure 4: Word2Vec-SVM experiments.

vector size N is increased from 2 to 31, but the accu-
racy does not improve for N = 100.

4.3.2 Word2Vec-kNN

For our Word2Vec-kNN experiments, we again con-
sider the 15 cases given by vector lengths N ∈
{2,31,100} and window sizes W ∈{1,5,10,30,100}.
In each case, we consider k ∈ {1,2,3, . . . ,100}. We
find that for all cases with vectors with sizes N ∈
{2,31,100} and window sizes W ∈{1,5,10,30,100},
we achieve about 94% classification accuracy. As
in our HMM2Vec-kNN experiments, to avoid over-
fitting, we choose k = 70, which in this case gives us
an accuracy of about 89%.

4.3.3 Word2Vec-RF

In this set of experiments, we consider the same 15
combinations of Word2Vec vector sizes and window
sizes as in the previous experiments in this section. In
each case, the number of trees in the random forest is
set to 1000. We find that the best result for Word2Vec-
RF occurs with a vector size of N = 100 and a win-
dow size of W = 30, in which case we achieve an
accuracy of 96.2%. The confusion matrix for this
case is given in Figure 5. The worst misclassification
is that Winwebsec is misclassified as Fakerean for a
mere 3% of the samples tested.

We also conduct experiments on the RF parame-
ters, using a Word2Vec vector size of N = 100 and
a window size of W = 30. Table 4 lists the best pa-
rameters obtained based on a grid search. With these
parameters, we obtain an accuracy of 93.17%.
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Figure 5: Confusion matrix for Word2Vec-RF.

Table 4: Randomized search parameters for Word2Vec-RF.

Hyperparameter Value

n-estimators 1400
min samples split 2
min samples leaf 1

max features auto
max depth 40
bootstrap false

4.3.4 Word2Vec-CNN

Using the same parameters as in the previous
Word2Vec experiments, that is, vector lengths N ∈
{2,31,100} and window sizes W ∈{1,5,10,30,100},
we consider the same CNN architectures as in the
HMM2Vec-CNN experiments, above.

To deal with the overfitting that was evident in our
initial experiments, we reduce the number of epochs
and we tune the learning rate. Specifically, we reduce
the number of epochs to 50, we set the learning rate
to 0.0001, and we let β1 = 0.9 and β2 = 0.999, as
per the suggestions in (Zhang, 2018). In this case, we
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achieve 94% testing accuracy, and the loss is reduced
significantly. The loss has been reduced, and there is
no indication of overfitting in this improved model.

Figure 6 summarized the 15 experiments we con-
ducted using Word2Vec-CNN. For these experiment,
as we increase the window size, generally we must
decrease the number of epochs to keep the model loss
within acceptable bounds.
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Figure 6: Accuracies for Word2Vec-CNN experiments.

From Figure 6, we see that our best accuracy achieved
using a Word2Vec-CNN architecture is 94%. Figure 7
gives the confusion matrix for this best Word2Vec-
CNN model. We see that the Fakerean family is
relatively often misclassified as OnLineGames or
Winwebsec. In our previous experiments, we have
observed that Fakerean is generally the most challeng-
ing family to correctly classify.

BH
O

O
nL

in
eG

am
es

Re
no

s

Ce
eI

nj
ec

t

Fa
ke

Re
an

Vo
bf

us
W

in
w

eb
se

c

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.959 0.010 0.010 0.010 0.010

0.947 0.032 0.011 0.011

0.020 0.911 0.020 0.030 0.020

0.020 0.940 0.010 0.010 0.020

0.030 0.010 0.911 0.050

1.000

0.020 0.050 0.931

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Confusion matrix for Word2Vec-CNN.

5 CONCLUSION AND FUTURE
WORK

In this paper, we considered engineered features for
malware classification. These engineered features
were derived from opcode sequences via a technique
we refer to as HMM2Vec, and a parallel set of exper-
iments was conducted using Word2Vec embeddings.
We experimented with a diverse set of seven malware
families. We also used four different classifiers with
each of the two engineered feature sets, and we con-
ducted a significant number of experiments to tune the
various hyperparameters of the machine learning al-
gorithms.

Figure 8 summarizes the best accuracies for our
Word2Vec and HMM2Vec hybrid classification tech-
niques. From Figure 8 we see that that HMM2Vec-RF
and Word2Vec-RF attained the best results, with 96%
accuracy when classifying a balanced set of samples
from seven families. All of the hybrid machine learn-
ing techniques based on Word2Vec embeddings per-
formed well, while the HMM2Vec results were more
mixed. This may be due to the relatively limited num-
ber of options considered when training HMMs in our
experiments, as compared to Word2Vec.
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Figure 8: Best accuracies for HMM2Vec hybrid machine
learning.

Almost all our hybrid machine learning techniques
classified samples from BHO, Vobfus, and Renos
with very high accuracy. We observed that the
Winwebsec and OnLineGames samples were of-
ten misclassified as Fakerean. The percentage of
these misclassification was higher in HMM2Vec than
Word2Vec, and accounts for most of the difference
between these classification techniques.

A major advantage of Word2Vec was its
faster training time. We found that generating
HMM2Vec features was slower than training compa-
rable Word2Vec models by a factor of about 15. This

Malware Classification with Word Embedding Features

741



vast difference between the two cases was primarily
due to the need to train multiple HMMs (i.e., mul-
tiple random restarts) in cases where the amount of
training data is relatively small. Word2Vec can be
trained on short opcode sequences, since a larger win-
dow size W effectively inflates the number of training
samples that are available.

As future extension of this research, similar exper-
iments could be performed on a larger and more di-
verse set of malware families. Also, here we only con-
sidered opcode sequences—analogous experiments
on other features, such as byte n-grams or dynamic
features such as API calls would be interesting. In
addition, other word embedding techniques could be
considered, such as those based on principal com-
ponent analysis (PCA), as considered, for example,
in (Chandak et al., 2021).

Further experiments involving the many parame-
ters found in the various machine learning techniques
considered here would be worthwhile. To mention
just one of many such examples, additional combina-
tions of window sizes and feature vector lengths could
be considered in Word2Vec. Finally, other machine
learning paradigms would be worth considering in the
context of malware detection based on vector embed-
ding features. Examples of other machine learning
approaches that could be advantageous for this prob-
lem include adversarial networks and reinforcement
learning.
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