
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Faculty Research, Scholarly, and Creative Activity 

1-1-2021 

Multifidelity approaches for uncertainty estimation in wildfire Multifidelity approaches for uncertainty estimation in wildfire 

spread simulators spread simulators 

Mario Miguel Valero 
San Jose State University, mm.valero@sjsu.edu 

Lluís Jofre 
Center for Turbulence Research 

Ricardo Torres 
Universitat Politècnica de Catalunya 

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca 

Recommended Citation Recommended Citation 
Mario Miguel Valero, Lluís Jofre, and Ricardo Torres. "Multifidelity approaches for uncertainty estimation 
in wildfire spread simulators" World Congress in Computational Mechanics and ECCOMAS Congress 
(2021): 1-8. https://doi.org/10.23967/wccm-eccomas.2020.210 

This Conference Proceeding is brought to you for free and open access by SJSU ScholarWorks. It has been 
accepted for inclusion in Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F2502&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.23967/wccm-eccomas.2020.210
mailto:scholarworks@sjsu.edu


14th World Congress on Computational Mechanics (WCCM)
ECCOMAS Congress 2020)

Virtual Congress: 11-–15 January 2021
F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

MULTIFIDELITY APPROACHES FOR UNCERTAINTY ESTIMATION
IN WILDFIRE SPREAD SIMULATORS
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Abstract. A variety of wildfire models are currently used for prescribed fire management, fire behaviour
studies and decision support during wildfire emergencies, among other applications. All these applica-
tions are based on predictive analysis, and therefore require careful estimation of aleatoric and epistemic
uncertainties such as weather conditions, vegetation properties and model parameters. However, the
large computational cost of high-fidelity computaional fluid dynamics models prohibits the straightfor-
ward utilization of traditional Monte Carlo methods. Conversely, low-fidelity fire models are several
orders of magnitude faster but they typically do not provide enough accuracy and they do not resolve
all relevant phenomena. Multifidelity frameworks offer a viable solution to this limitation through the
efficient combination of high- and low-fidelity simulations. While high-fidelity models provide the re-
quired level of accuracy, low-fidelity simulations are used to economically improve the confidence on
estimated uncertainty. In this work, we assessed the suitability of multifidelity methodologies to quantify
uncertainty in wildfire simulations. A collection of different multifidelity strategies, including Multilevel
and Control Variates Monte Carlo, were tested and their computational efficiency compared. Fire spread
was predicted in a canonical scenario using popular simulators such as the Wildland-Urban Interface Fire
Dynamics Simulator (WFDS) and FARSITE. Results show that multifidelity estimators allow speedups
in the order of 100× to 1000× with respect to traditional Monte Carlo.

1 INTRODUCTION

A variety of wildfire models have been developed with the aim of simulating forest fire behaviour and
effects. Exiting models range from completely empirical correlations to detailed physics-based simula-
tion frameworks [1, 2, 3]. Among other applications, these models are currently used for prescribed fire
management, fire behaviour studies and decision support during wildfire emergencies. Tools designed to
be used operationally for decision support need to be computationally fast and provide easy-to-interpret
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information regarding macroscopic variables. Conversely, the detailed study of fire dynamics requires
additional insight into the physical and chemical phenomena involved in fire spread, which can only
be achieved by means of computational fluid dynamics (CFD). CFD approaches typically require in-
tense computing resources that are several orders of magnitude larger than what operational simulators
demand.

All these applications are based on predictive analysis, and therefore require careful estimation of the
aleatoric and epistemic uncertainties, such as weather conditions, vegetation properties and model pa-
rameters. However, little to no information is available at present about wildfire simulation uncertainties.
Although current simulators have been sporadically validated against experimental fire behaviour data,
there has been no systematic analysis of their behaviour in terms of uncertainty propagation. One of the
main reasons for this is the large computational cost of high-fidelity models, which prohibits the straight-
forward utilization of traditional Monte Carlo (MC) methods. Conversely, low-fidelity fire models are
several orders of magnitude faster, but they typically do not provide enough accuracy.

Multifidelity (MF) frameworks offer a viable solution to this limitation through the efficient combina-
tion of high- and low-fidelity simulations. While high-fidelity (HF) models provide the required level of
accuracy, low-fidelity (LF) simulations are used to economically improve the confidence on estimated
uncertainty. Different MF UQ strategies exist in the literature; see, for example, the reviews by Pe-
herstorfer et al. [4] and Fernández-Godino et al. [5, 6].

The objective of this work is to explore the potential of MF techniques to reduce the computing require-
ments of performing uncertainty quantification and sensitivity analysis in wildfire spread computational
predictions. Due to the high-dimensional input space and the complexity of the conservation equations
involved, this study is restricted to a reduced subset of acceleration strategies appertaining to surrogate-
based MC type sampling approaches.

2 METHODOLOGY

In this study, we applied two state-of-the-art multifidelity modeling techniques to a canonical wildfire
spread simulation problem. The required fidelity levels were built using two popular fire spread models
of different typology: WFDS and FARSITE. HF simulations were produced using the Wildland-Urban
Interface Fire Dynamics Simulator (WFDS) [7], a full-physics CFD model currently incorporated into
the broader Fire Dynamics Simulator (FDS) [8, 9]. Increasingly coarser discretizations of the domain
were used to generate lower fidelity levels from the HF scenario. Furthermore, an additional low fidelity
representation of the problem was introduced through a semiempirical fire spread model. One of the most
popular solutions among operational wildfire simulators is the Rothermel model [10]. Based on semi-
empirical relationships between the parameters that determine the heat emitted by the fire and the energy
needed by the unburned fuel to ignite, the Rothermel model provides a well-balanced combination of
physical insight and operational capabilities. Rothermel’s model constituted the base of FARSITE [11],
a 2D fire spread simulator widely used for practical applications.

The analyzed scenario (Fig. 1) belongs to a set of medium-scale field fire experiments conducted by
the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in the Northern Territory
of Australia in 1986 [12]. These tests were monitored to measure the fire rate of spread and evaluate its
correlation with fuel and weather variables such as fuel height, fuel moisture content, fuel load, fuel bulk
density, and wind speed. Two of the experiments had been simulated using WFDS [7] and incorporated
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into the FDS test suite as validation examples [13]. Furthermore, the fact that the experiments were
conducted on horizontal grassland fields facilitates the application of Rothermel’s model for surface fire
spread. In particular, this study considers the CSIRO grassland F19 experiment, which burned a square
field of 200m× 200m using a 175-meter long ignition line. This type of experiment design is very
frequent in wildfire behavior studies.

240 m

240 m

20 m

Figure 1: Canonical wildfire spread scenario used to test MF modeling techniques. The CSIRO grassland
F19 experiment [12, 7, 13] was reproduced using WFDS and FARSITE. This image is a snapshot out-
putted from WFDS for a sample run and displayed using Smokeview [14]. The yellow surface represents
the field, the black dots correspond to the grass particles, the red line is the ignition line, and the orange
region indicates the location of the fire as it spreads.

The two multifidelity techniques explored are Multilevel Monte Carlo and Control Variates Monte Carlo.
As their name indicate, MC-type approaches are derived from the original Monte Carlo method, in which
the expectation of the quantity of interest (QoI) as a function of the stochastic inputs ξ, Q = Q(ξ), is
estimated via a sample average. Let E [Q] and V [Q] denote the mean and variance of Q. Given N
independent realizations of the stochastic input, denoted ξ(i), the MC estimator of E [Q] is defined as
Q̂MC

N = N−1
∑

N
i=1 Q(i), where Q(i) = Q(ξ(i)). Although unbiased, the precision of Q̂MC

N , measured by its
standard deviation

√
V [Q]/N, decays slowly as a function of N. Therefore, for a fixed computational

budget (∝ N), a viable alternative to increase the MC precision is to possibly replace Q with other
quantities with smaller variances.

2.1 Multilevel Monte Carlo

The multilevel (ML) method [15, 16], inspired by the multigrid solver idea in linear algebra, is based
on evaluating realizations of Q from a hierarchy of models with different levels `, ` = 0, . . .L, with L
the most accurate model, in which Q is replaced by the sum of differences Y` = Q`−Q`−1; to simplify
the notation for level 0, the expression is redefined to Y0 = Q0. As a result, the QoIs of the original and
new ML problems have the same mean E [Q]. An example of a level is the grid resolution considered
for solving the system of equations, so that a LF (or HF) model can be established by simulating Q on a
coarse (or fine) grid. Then, E [Q] can be computed using the ML QoI and an independent MC estimator
on each level ` as

Q̂ML =
L

∑
`=0

Ŷ MC
` =

L

∑
`=0

1
N`

N`

∑
i=1

Y (i)
` . (1)
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This approach is referred to as multilevel Monte Carlo (MLMC), or simply ML, and the resulting esti-
mator has a variance equal to

V
[
Q̂ML]= L

∑
`=0

V [Y`]
N`

. (2)

Consequently, if the level definition is such that Q`→Q in mean square sense, then V [Y`]→ 0 as `→∞,
and therefore fewer samples are required on the finer level L. In particular, it is possible to show that the
optimal sample allocation across levels N` is obtained in closed form given a target variance of the ML
estimator equal to ε2/2, and resulting in [15]

N` =
∑

L
k=0

√
CkV [Yk]

ε2/2

√
V [Y`]

C`
, (3)

where the computational cost of the individual Y` evaluations is denoted by C`, and ε2 represents the mean
squared error (MSE) of the estimator. It is important to note that the variance decay can be proven to be
satisfied only for levels based on a numerical discretization (spatial/temporal meshes), and not for general
hierarchies of models, such as 2-D versus 1-D, large-eddy simulation (LES) versus Reynolds-Averaged
Navier Stokes (RANS), etc.

To apply MLMC, the HF CFD scenario was resolved using decreasing levels of resolution in (i) flow cell
size, (ii) integration time-step (∆t), and (iii) number of discrete angles utilized to resolve the radiative heat
transport. Based on preliminary tests, we designed three different levels named LF-2x, LF-5x and LF-
10x, which are 25×, 250× and 2500× cheaper to compute than the HF level, respectively. The different
resolution levels for (i) and (iii) are specified in Table 1. The integration time-step was automatically
adjusted at every iteration based on the CFL constraint with CFL < 1; approximately, a cell-size increase
of 2× corresponds to a two-fold increase of ∆t.

Table 1: Resolution levels used for MLMC

.

Level Cell size (m) # Discrete angles HF-equivalent sample cost
HF 0.50 100 1
LF-2x 1.00 50 1/25
LF-5x 1.25 20 1/250
LF-10x 2.00 10 1/2500

2.2 Control variates Monte Carlo

To accommodate LF representations that are not obtained directly from coarsening the HF models, a
common approach is to utilize LF realizations as a control variate [4, 17, 18]. In statistics, the control
variates approach replaces a generic quantity q by q+α(E [g]−g), where g is a function chosen for its
high correlation with q and for which the value of E [g] is readily available. However, in the problem
of interest here the LF correlations and expected values are not available a priori, and consequently
need to be established during the computations along with the HF calculations. As a consequence, the
expected values of the LF models are generally approximated by means of MC estimators requiring a set
of additional (independent) LF computations. The control variates (CV) MC estimator is defined as

Q̂CV = Q̂MC
HF +α

(
E [QLF]− Q̂MC

LF
)
, (4)
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where Q̂MC
HF = N−1

HF ∑
NHF
i=1 Q(i)

HF, E [QLF] ≈ (NLF−NHF + 1)−1
∑

NLF
i=NHF+1 Q(i)

LF, Q̂MC
LF = N−1

HF ∑
NHF
i=1 Q(i)

LF, NHF
and NLF are the number of HF and LF samples, respectively, and α = C [QHF,QLF]/V [QLF] is the con-
trol variates coefficient chosen to minimize the variance of Q̂CV. C [QHF,QLF] denotes the covariance
between QHF and QLF. The optimal α selection leads to

V
[
Q̂CV]= V [QHF]

(
1−ρ

2 r
r+1

)
, (5)

with −1≤ ρ = C [QHF,QLF]/
√
V [QHF]V [QLF]≤ 1 the Pearson correlation coefficient between the HF

and LF models, and r is used to parameterize the additional rNHF LF realizations with respect to HF. As
described by Geraci et al. [18], the optimal control variates is obtained for

r =

√
CHF

CLF

ρ2

1−ρ2 −1, (6)

where CHF and CLF are the costs of a HF and LF sample, respectively. A comprehensive description of
the control variates MC estimator, including the derivation of optimal coefficients and number of samples
per fidelity, can be found in Peherstorfer et al. [4].

In this study, we introduced the output of the Rothermel fire spread model as a control variate. This was
accomplished through the execution of FARSITE simulations in an scenario similar to the one displayed
in Fig. 1. This fidelity is referred to as LF-CV, and is 2500× faster to compute than the HF level.

3 RESULTS

The performance of various candidate MF estimators constructed by means of CV and ML strategies
was analyzed by utilizing a set of 32 pilot samples generated following a design of experiment (DoE)
based on the KDOE approach [19, 20]. KDOE is an iterative method that introduces stochasticity in
the sampling process by means of a variable kernel density estimation to optimize the uniformity of the
DoE. This approach provides a more homogeneous exploration of the input parameter space, especially
when the number of samples is relatively small. Five input variables were allowed to vary during pilot
sampling: wind speed, fuel load, fuel bed depth, fuel moisture content and fuel particle surface area to
volume ratio. Fire rate of spread (ROS), averaged over the complete simulation domain, was used as QoI
for this demonstration.

As discussed in Section 2, the speedup obtained by the ML and CV approaches is function, respectively,
of the variance of Y` (V [Y`]) in Eq. 2 and the Pearson correlation coefficient (ρ) between fidelities in Eq. 5.
Consequently, V [Y`] and ρ for all potential combinations are listed in Table 2. In the case of CV-based
MF estimators, which are constructed utilizing HF information and LF samples as a control variate, the
best LF candidates are LF-2x and LF-5x as they present correlations of ρ = 0.995 and ρ = 0.990 with
speedups of approximately 25× and 250×, respectively. Instead, LF-CV and LF-10x are slightly less
correlated with HF as their values are ρ = 0.884 and ρ = 0.869. If considering ML strategies, in which
HF and different LF are combined forming a telescopic sum, a good hierarchical structure is composed
by the lower fidelities LF-2x, LF-5x and LF-10x as their V [Y`] values decay orders of magnitude, 0.002,
0.017 and 0.224 specifically, while becoming 25×, 250× and 2500× faster to compute than HF.

The extrapolated performances of a straightforward MC approach and the CV and ML estimators pro-
posed above are reported in Fig. 2. The horizontal logarithmic-scale axis corresponds to the total cost of
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Table 2: Pearson correlation coefficient ρ (elements below diagonal) and variance of levels V [Y`] (ele-
ments above diagonal) for all the potential combinations of fidelities.

ρ \ V [Y`] HF LF-CV LF-2x LF-5x LF-10x
HF 1.0 \ 0.0 0.303 0.002 0.024 0.312

LF-CV 0.884 1.0 \ 0.0 0.300 0.284 0.539
LF-2x 0.995 0.885 1.0 \ 0.0 0.017 0.291
LF-5x 0.990 0.889 0.993 1.0 \ 0.0 0.224
LF-10x 0.869 0.784 0.877 0.901 1.0 \ 0.0

each estimator normalized by the cost of a HF sample. The total costs are evaluated as C MC = NHFCHF,
C CV = NHF (CHF + rCLF) and C ML = ∑

L
`=0 N`C` for the MC, CV and ML, respectively. On the vertical

logarithmic-scale axis, target estimators’ MSE, ε2 ≡ V
[
Q̂
]
, normalized by a reference MC value εMC

0
2

obtained from the 32 pilot samples, are shown for MC and ML estimators through evaluating Eq. 3, and
for the CV estimators utilizing the expression [4]

ε2

εMC
0

2 =

[√
1−ρ2 +

√
CLF

CHF
ρ2

]2

. (7)

The results depicted in Fig. 2 show that the speedups of the MF estimators with respect to MC are
in the order of 100× to 1000× for the best-performant CV (constructed with HF and LF-5x) and ML
(generated by levels Y0: LF-10x, Y1: LF-5x−LF-10x, Y2: LF-2x−LF-5x and Y3: HF−LF-2x) strategies,
respectively. For example, to reduce ε2 by an order of magnitude with respect to εMC

0
2, the MC approach

requires computing 320 HF runs, while the CV (composed by 1 HF and 493 LF-5x samples) and ML
(composed by 1 HF, 19 LF-2x, 222 LF-5x and 1556 LF-10x samples) demand only 3.0 and 2.8 equivalent
HF runs.

The results shown in Fig. 2 also highlight the better performance of the ML with respect to the CV
estimators in the case of LF models/levels that present small bias and moderate CoV. However, in a
more general problem involving very complex, non-linear fire spreads, in which such “good” LF models
are more challenging to design and/or discover, the CV approach may be a more robust option. Thus,
hybridization strategies, like for example the bi-fidelity (BF) approximation [21, 22, 23, 24] and the
multilevel multifidelity (MLMF) approach [18, 25], are promising extensions of the standard ML and
CV methods for accelerating the convergence rate of statistical estimators in challenging wildfire spread
scenarios.

4 CONCLUSIONS

Performing uncertainty quantification in wildfire modeling studies is usually challenging due to the ex-
pensive high-fidelity calculations required and the large number of uncertainties typically encountered.
By constructing and using multifidelity estimators, we were able to notably accelerate the propagation
of aleatoric uncertainty through a CFD framework.

Multilevel Monte Carlo performed slightly better than Control Variates Monte Carlo due to the small
bias and moderate variability of the low-fidelity data generated. However, in a more general problem
involving very complex fire behavior, in which “good” low-fidelity models are challenging to design
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(a) CV estimators with different LF models
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(b) ML estimators considering 2, 3 and 4 levels

Figure 2: Extrapolated MSE (normalized by the pilot εMC
0

2 value) of the MC and potential combinations
of MF estimators as function of the overall computational cost in terms of equivalent number of HF runs.
Solid black lines correspond to plain MC with HF samples.

and/or discover, the control variates approach may be a more robust option.

This proof of concept opens an avenue of further research. Future work includes the quantification of
aleatoric and epistemic uncertainties, the study of multiple quantities of interest, and the analysis of
model sensitivity to input variables as well as internal parameters.
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