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Abstract In linear algebra, the trace of a square matrix is defined as the sum of elements on the main diagonal. The trace of
a matrix is the sum of its eigenvalues (counted with multiplicities), and it is invariant under the change of basis. This charac-
terization can be used to define the trace of a tensor in general. Trace inequalities are mathematical relations between different
multivariate trace functionals involving linear operators. These relations are straightforward equalities if the involved linear
operators commute, however, they can be difficult to prove when the non-commuting linear operators are involved. Given two
Hermitian tensors H1 and H2 that do not commute. Does there exist a method to transform one of the two tensors such that
they commute without completely destroying the structure of the original tensor? The spectral pinching method is a tool to
resolve this problem. In this work, we will apply such spectral pinching method to prove several trace inequalities that extend
the Araki–Lieb–Thirring (ALT) inequality, Golden–Thompson(GT) inequality and logarithmic trace inequality to arbitrary many
tensors. Our approaches rely on complex interpolation theory as well as asymptotic spectral pinching, providing a transpar-
ent mechanism to treat generic tensor multivariate trace inequalities. As an example application of our tensor extension of the
Golden–Thompson inequality, we give the tail bound for the independent sum of tensors. Such bound will play a fundamental
role in high-dimensional probability and statistical data analysis.

Keywords Tensor, Multivariate, Trace, Golden–Thompson Inequality, Araki–Lieb–Thirring Inequality

AMS 15A69,46B28,47H60,47A30

1 Introduction
Trace inequalities are mathematical relations between different multivariate trace functionals involving linear operators.

These relations are straightforward equalities if the involved linear operators commute, however, they can be difficult to prove
when the non-commuting linear operators are involved [4].

One of the most important trace inequalities is the famous Golden-Thompson inequality [8]. For any two Hermitian matrices
H1 and H2, we have

Tr exp(H1 + H2) ≤ Tr exp(H1) exp(H2). (1)

It is easy to see that the Eq. (1) becomes an identity if two Hermitian matrices H1 and H2 are commute. The inequality in Eq. (1)
has been generalized to several situations. For example, it has been demonstrated that it remains valid by replacing the trace with
any unitarily invariant norm [14, 24]. The Golden-Thompson inequality has been applied to many various fields ranging from
quantum information processing [16, 17], statistical physics [26, 29], and random matrix theory [1, 27].
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The Golden-Thompson inequality can be seens as a limiting case of the more general Araki–Lieb–Thirring (ALT) inequal-
ity [3, 18]. For any two positive semi-definite matrices A1 and A2 with r ∈ (0, 1] and q > 0, ALT states that

Tr
(
A

r
2
1 A

r
2A

r
2
1

) q
r ≤ Tr

(
A

1
2
1 A2A

1
2
1

)q
. (2)

The Golden-Thompson inequality for Schatten p-norm is obtained by the Lie-Trotter product formula by taking limit r → 0. The
ALT inequality has also been expanded to various directions [2, 13, 28].

The following theorem is about logarithmic trace inequality which can be used to bound quantum information divergence [2,
9]. For any two positive semi-definite matrices A1 and A2 with r ∈ (0, 1] and p > 0, logarithmic trace inequality for matrix is

1

p
TrA1 logA

p
2
2 A

p
1A

p
2
2 ≤ TrA1(logA1 + logA2) ≤ 1

p
TrA1 logA

p
2
1 A

p
2A

p
2
1 . (3)

The paper is organized as follows. Preliminaries of tensors are given in Section 2. In Section 3, the method of pinching and
complex interpolation theory will be introduced. Three useful matrix-based trace inequalities are extended to multivariate tensors
in Section 4. The new Golden-Thompson inequality is applied to provide tail bounds for sums of random tensors in Section 5.
Finally, the conclusions are given in Section 6.

2 Tensors Preliminaries
Throughout this paper, we denote scalars by lower-case letters (e.g., d, e, f , . . .), vectors by boldfaced lower-case letters

(e.g., d, e, f , . . .), matrices by boldfaced capitalized letters (e.g., D, E, F, . . .), and tensors by calligraphic letters (e.g., D, E ,
F , . . .), respectively. Tensors are referred to as multiarrays of values which can be deemed high-dimensional generalizations
from vectors and matrices. Given a positive integer N , let [N ]

def
= 1, 2, · · · , N . An order-N tensor (or N -th order tensor) is

represented by A def
= (ai1,i2,··· ,iN ), where 1 ≤ ij ≤ Ij for j ∈ [N ], is a multidimensional array containing I1 × I2 × · · · × IN

entries. Let CI1×···×IN and RI1×···×IN be the sets of order-N I1 × · · · × IN tensors over the complex field C and the real
field R, respectively. For example, A ∈ CI1×···×IN is an order-N multiarray, where the first, second, ..., and N -th orders have
I1, I2, ..., and IN entries, respectively. Thus, each entry of A can be represented by ai1,··· ,iN . For example, when N = 4,
A ∈ CI1×I2×I3×I4 is a fourth-order tensor containing entries ai1,i2,i3,i4 , where ij ∈ [Ij ] for j ∈ [4].

Without loss of generality, one can partition the dimensions of a tensor into two groups, sayM andN dimensions, separately.
Therefore, for two order-(M+N ) tensors: A def

= (ai1,··· ,iM ,j1,··· ,jN ) ∈ CI1×···×IM×J1×···×JN and B def
= (bi1,··· ,iM ,j1,··· ,jN ) ∈

CI1×···×IM×J1×···×JN , according to [15], the tensor addition
A+ B ∈ CI1×···×IM×J1×···×JN is given by

(A+ B)i1,··· ,iM ,j1×···×jN
def
= ai1,··· ,iM ,j1×···×jN

+bi1,··· ,iM ,j1×···×jN . (4)

On the other hand, for tensorsA = (ai1,··· ,iM ,j1,··· ,jN ) ∈ CI1×···×IM×J1×···×JN andB = (bj1,··· ,jN ,k1,··· ,kL) ∈ CJ1×···×JN×K1×···×KL ,
according to [15], the Einstein product (or simply referred to as tensor product in this work) A ?N B ∈ CI1×···×IM×K1×···×KL

is given by

(A ?N B)i1,··· ,iM ,k1×···×kL
def
=∑

j1,··· ,jN

ai1,··· ,iM ,j1,··· ,jN bj1,··· ,jN ,k1,··· ,kL . (5)

This tensor product will be reduced to the standard matrix multiplication as L = M = N = 1. Other simplified situations can
also be extended as tensor–vector product (M > 1, N = 1, and L = 0) and tensor–matrix product (M > 1 and N = L = 1).
In analogy to matrix analysis, we define some typical tensors and elementary tensor-operations as follows.

Definition 1. A tensor whose entries are all zero is called a zero tensor, denoted by O.

Definition 2. An identity tensor I ∈ CI1×···×IN×J1×···×JN is defined by

(I)i1×···×iN×j1×···×jN
def
=

N∏
k=1

δik,jk , (6)

where δik,jk
def
= 1 if ik = jk; otherwise δik,jk

def
= 0.
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In order to define the Hermitian tensor, the conjugate transpose operation (or Hermitian adjoint) of a tensor is specified as
follows.

Definition 3. Given a tensor A def
= (ai1,··· ,iM ,j1,··· ,jN ) ∈ CI1×···×IM×J1×···×JN , its conjugate transpose, denoted by AH , is

defined as

(AH)j1,··· ,jN ,i1,··· ,iM
def
= ai1,··· ,iM ,j1,··· ,jN , (7)

where the overline notion indicates the complex conjugate of the complex number ai1,··· ,iM ,j1,··· ,jN . If a tensor A satisfying
AH = A, then A is a Hermitian tensor.

Definition 4. Given a tensor A def
= (ai1,··· ,iM ,j1,··· ,jM ) ∈ CI1×···×IM×J1×···×JM , if

AH ?M A = A ?M AH = I ∈ CI1×···×IM×J1×···×JM , (8)

then A is a unitary tensor.

Definition 5. Given a square tensor A ∈ CI1×···×IM×I1×···×IM , if there exists X ∈ CI1×···×IM×I1×···×IM such that

A ?M X = X ?M A = I, (9)

then X is the inverse of A. We usually write X def
= A−1 thereby.

We also list other necessary tensor operations here. The trace of a tensor is equivalent to the summation of all diagonal entries
such that

Tr(A)
def
=

∑
1≤ij≤Ij ,j∈[N ]

Ai1,··· ,iM ,i1,··· ,iM . (10)

The inner product of two tensors A, B ∈ CI1×···×IM×J1×···×JN is given by

〈A,B〉 def
= Tr(AH ?M B). (11)

According to Eq. (11), the Frobenius norm of a tensor A is defined by

‖A‖ def
=
√
〈A,A〉. (12)

Definition 6. Given a square tensor A ∈ CI1×···×IM×I1×···×IM , the tensor exponential of the tensor A is defined as

eA
def
=

∞∑
k=0

Ak

k!
, (13)

where A0 is defined as the identity tensor I ∈ CI1×···×IM×I1×···×IM and
Ak = A ?M A ?M · · · ?M A︸ ︷︷ ︸

k terms of A

.

Given a tensor B, the tensor A is said to be a tensor logarithm of B if eA = B

Following definitions are about the Kronecker product and the sum of two tensors.

Definition 7. Given two tensors A ∈ CI1×···×IM×J1×···×JN and
B ∈ CK1×···×KP×L1×···×LQ , we define the Kronecker product of two tensors A⊗ B as

A⊗ B def
= (ai1,··· ,iM ,j1,··· ,jNB)i1,··· ,iM ,j1,··· ,jN . (14)

Definition 8. Given two square tensors A ∈ CI1×···×IM×I1×···×IM and B ∈ CJ1×···×JP×J1×···×JP , we define the Kronecker
sum of two tensors A⊕ B as

A⊕ B def
= A⊗ IJ1×···×JP + II1×···×IM ⊗ B, (15)

where II1×···×IM ∈ CI1×···×IM×I1×···×IM and IJ1×···×JP ∈ CJ1×···×JP×J1×···×JP are identity tensors.

We require the following two lemmas about Kroneecker product which will be used for later proof in Theorem 1.
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Lemma 1. Given tensors A1 and A2 which act on spaces S1 and S2, respectively, we have following identities :

Tr(A1 ⊗A2) = Tr(A1)Tr(A2); (16)

and

exp(A1)⊗ exp(A2) = exp(A1 ⊗ IS2
+ IS1

⊗A2), (17)

where IS1 and IS2 are identity tensors acts on spaces S1 and S2, respectively.

Proof:
We prove Eq. (16) first. Suppose the tensor A1 ∈ CI1×···×IM×I1×···×IM , then its entries will be (ai1,··· ,iM ,j1,··· ,jM ). By

definition of the Kronecker product, we have

Tr(A1 ⊗A2) =
∑

i1,··· ,iM

Tr(ai1,··· ,iM ,i1,··· ,iMA2)

=
∑

i1,··· ,iM

ai1,··· ,iM ,i1,··· ,iMTr(A2) = Tr(A1)Tr(A2). (18)

Next, we will verify the relation provided by Eq. (17). Because we have

exp(A1)⊗ exp(A2) =1 exp(A1 ⊕A2) = exp(A1 ⊗ IS2
+ IS1

⊗A2), (19)

where the equality =1 comes from Theorems 2 and 3 in [19], and the last equality is provided by Definition 8. 2

Lemma 2. Given positive tensors A1 and A2 which act on spaces S1 and S2, respectively, we have following identity :

log(A1 ⊗A2) = (logA1)⊗ IS2
+ IS1

⊗ (logA2), (20)

where IS1
and IS2

are identity tensors acts on spaces S1 and S2, respectively.

Proof:
From the relation (17) and set B1 = log(A1), B2 = log(A2) , we have

exp(B1)⊗ exp(B2) = exp (B1 ⊗ IS2 + IS1 ⊗ B2)

⇔ A1 ⊗A2 = exp (log(A1)⊗ IS2 + IS1 ⊗ log(A2)) (21)

By taking log at both sides, we have desired result

log(A1 ⊗A2) = (logA1)⊗ IS2
+ IS1

⊗ (logA2). (22)

2

3 Tools for Hermitian Tensors
In this section, we will introduce two main techniques used to prove multivariate trace inequalities for tensors. Spectrum

pinching method is discussed in Section 3.1, and complex interpolation theory is presented in Section 3.2.

3.1 Pinching Map
The purpose for studying the pinching method arises from the following problem: Given two Hermitian tensors H1 and H2

that do not commute. Does there exist a method to transform one of the two tensors such that they commute without completely
destroying the structure of the original tensor? The spectral pinching method is a tool to resolve this problem. Before discussing
this method in detail we have to introduce the pinching map.

Given a Hermitian tensorH ∈ CI1×···×IM×I1×···×IM , we have spectral decomposition as [20]:

H =
∑

λ∈sp(H)

λUλ, (23)

where λ ∈ sp(H) ∈ R and Uλ ∈ CI1×···×IM×I1×···×IM are mutually orthogonal tensors. The pinching map with respect toH is
defined as

PH : X →
∑

λ∈sp(H)

Uλ ?M X ?M Uλ, (24)
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where X ∈ CI1×···×IM×I1×···×IM is a Hermitian tensor. The pinching map possesses various nice properties that will be
discussed at this section. For example, PH(X ) always commutes with H for any nonnegative tensor X . Two lemmas are
introduced first which will be used to prove several useful properties about pinching maps.

Lemma 3. Let the tensor A ∈ CI1×···×IM , where |Ii| = N for i ∈ [M ]. The number of distinct eigenvalues of A⊗m , where ⊗
is the Kronecker product defined in Definition 7, grows polynomially with m.

Proof: Let us use the symbol sp(A⊗m) to represent the spectrum space, i.e., the space of eigenvalues. Because the number
of distinct eigenvalues of A⊗m, denoted as |sp(A⊗m)|, is bounded by the number of different types of sequences of N(M −
1)N−1 def

= eA symbols of length m from methods of types [5], then we have

|sp(A⊗m)| ≤
(
m+ eA − 1

eA − 1

)
≤ (m+ eA − 1)eA−1

(eA − 1)!
= O(poly(m)), (25)

where O(poly(m)) represents a function that grows with m polynomially. When m = 1, the number of |sp(A⊗)| is upper
bounded by eA, which is the number of eigenvalues of A, see Theorem 1.1 in [22]. 2

For any probability measure µ be a probability measure on a measurable space (X,Σ) and consider a sequence of nonnegative
tensors {Ax}x∈X , we have following triangle inequality:∥∥∥∥∫ Axµ(dx)

∥∥∥∥
p

≤
∫
‖Ax‖p µ(dx), (26)

due to the convexity of p-norm for p ≥ 1. Quasi-norms with p ∈ (0, 1) are no longer convex. However, we demonstrate in
Lemma 4 that these quasi-norms still satisfy an asymptotic convexity property for Kronecker products of tensors in the sense of
allowing an extra term associated with the number of tensors involving the Kronecker product.

Lemma 4. Let p ∈ (0, 1), µ be a probability measure on a measurable space (X,Σ), and consider a sequence of nonnegative
tensors {Ax}x∈X with Ax ∈ CI1×···×IM having Canonical Polyadic (CP) decomposition, i.e., each Ax can be expressed as
Ax =

∑
kx

λkxa1,kx ⊗ a2,kx ⊗ · · · ⊗ aM,kx , where λkx ≥ 0, and ai,kx ∈ CIi for i ∈ [M ]. Then we have

1

m
log

∥∥∥∥∫
X

A⊗mx µ(dx)

∥∥∥∥
p

≤ 1

m
log

(∫
X

∥∥A⊗mx ∥∥
p
µ(dx)

)
+

log poly(m)

m
. (27)

Proof: Let H be the Hilbert space where the tensor Ax acts on. For any x ∈ X , consider the CP decomposition Ax =∑
kx

λkxa1,kx ⊗ a2,kx ⊗ · · · ⊗ aM,kx . By introducing an isometric space H′ to H, we define the vector vi,kx ∈ H⊗H′ by vi,kx =∑
kx

λ
1
M

kx
ai,kx ⊗ai,kx for i ∈ [M ], i.e., the purification ofAx indicating that TrA′(

∑
kx

λkxv1,kx ⊗v2,kx ⊗· · ·⊗vM,kx) = Ax [12].

Note that the projectors (
∑
kx

λkxv1,kx ⊗v2,kx ⊗· · ·⊗vM,kx)⊗m lie in the symmetric subspace of (H⊗H′)⊗m whose dimension

grows with poly(m) from Lemma 3. Then, we have∫
X

A⊗mx µ(dx) =

∫
X

TrH′⊗m

(∑
kx

λkxv1,kx ⊗ v2,kx ⊗ · · · ⊗ vM,kx

)⊗m
µ(dx). (28)

From Caratheodory theorem (see Theorem 18 in [7]), there exists a discrete probability measure Pr(x), where x ∈ Xd and
Xd ∈ X is the discrete set with the cardinality as poly(m) such that∫

X

A⊗mx µ(dx) =
∑
x∈Xd

Pr(x)A⊗mx , and
∫
X

∥∥A⊗mx ∥∥
p
µ(dx) =

∑
x∈Xd

Pr(x)
∥∥A⊗mx ∥∥

p
.

Therefore, we can get

1

m
log

∥∥∥∥∫
X

A⊗mx µ(dx)

∥∥∥∥
p

=
1

m
log

∥∥∥∥∥ ∑
x∈Xd

Pr(x)A⊗mx

∥∥∥∥∥
p

. (29)

When p ∈ (0, 1), the Schatten p-norm satisfies following triangle inequality for tensors (see [11])∥∥∥∥∥
n∑
i=1

Ai

∥∥∥∥∥
p

p

≤
n∑
i=1

‖Ai‖pp , (30)
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and from Eq. (29), we obtain

1

m
log

∥∥∥∥∫
X

A⊗mx µ(dx)

∥∥∥∥
p

≤ 1

m
log

(∑
x∈Xd

∥∥Pr(x)A⊗mx
∥∥p
p

) 1
p

=
1

m
log

|Xd|
1
p

(
1

|Xd|
∑
x∈Xd

∥∥Pr(x)A⊗mx
∥∥p
p

) 1
p

 . (31)

Since the map s→ s
1
p is convex for p ∈ (0, 1), we have

1

m
log

∥∥∥∥∫
X

A⊗mx µ(dx)

∥∥∥∥
p

≤ 1

m
log

(
|Xd|

1
p−1

∑
x∈Xd

∥∥Pr(x)A⊗mx
∥∥
p

)

=
1

m
log

(∑
x∈Xd

Pr(x)
∥∥A⊗mx ∥∥

p

)
+

1− p
mp

log |Xd|

=
1

m
log

(∫
X

∥∥A⊗mx ∥∥
p
µ(dx)

)
+

log poly(m)

m
,

(32)

where |Xd| = poly(m) is applied at the last step. 2

From Eq. (26) and from Lemma 4, we also have

1

m
log

∥∥∥∥∫
X

A⊗mx µ(dx)

∥∥∥∥
p

≤ log sup
x∈X
‖Ax‖p +

log poly(m)

m
. (33)

for all p > 0.
We need the following definition about a family of probability distribution to represent a pinching map with integration.

Definition 9. We define a family of probability distribution on R, named as µ∆(x), which satisfies following properties:

• µ̃∆(0) = 1, where µ̃∆ is the Fourier transform of the distribution function µ∆.

• µ̃∆(ω) = 0 if and only if |ω| ≥ ∆.

Following lemma will provide an integral representation of the pinching map.

Lemma 5. [Integral Representation of Pinching Map]
Let H,X ∈ CI1×···×IM×I1×···×IM be Hermitian tensors with same dimensions and µ∆H is a probability measure with

properties given in Definition 9. The term ∆H is defined as ∆H
def
= min{|λj − λk| : λj 6= λk} where λj , λk are two distinct

eigenvalues in the spectral decomposition of the tensor H given by Eq. (23), then we have following integral representation for
a pinching map

PH(X ) =

∞∫
−∞

eιsH ?M X ?M e−ιsHµ∆H(s)ds, (34)

where ι is
√
−1.

Proof:
Because the spectral decomposition of tensorH is

H =
∑

λ∈sp(H)

λUλ, (35)

where λ ∈ sp(H) ∈ R and Uλ are mutually orthogonal tensors. For any s ∈ R, we then have

eιsH =
∑

λ∈sp(H)

eιsλUλ, (36)
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and

eιsH ?M X ?M e−ιsH =
∑

λ,λ′∈sp(H)

eιs(λ−λ
′)Uλ ?M X ?M Uλ′ . (37)

If we integrate both sides of Eq. (35) with respect to measure µ∆H , we obtain∫ ∞
−∞

eιsH ?M X ?M e−ιsHµ∆H(s)ds

=

∫ ∞
−∞

 ∑
λ,λ′∈sp(H)

eιs(λ−λ
′)Uλ ?M X ?M Uλ′

µ∆H(s)ds

=
∑

λ,λ′∈sp(H)

Uλ ?M X ?M Uλ′ µ̃∆H(λ− λ′). (38)

By applying the properties in Definition 9 and the definition of the spectral gap ∆H, we finally obtain∫ ∞
−∞

eιsH ?M X ?M e−ιsHµ∆H(s)ds =
∑

λ∈sp(H)

Uλ ?M X ?M Uλ = PH(X ), (39)

which asserts this Lemma. 2

Following lemmas are introduced for those nice properties about pinching maps.

Lemma 6. [commutativity of pinching map] Given a Hermitian tensorH ∈ CI1×···×IM×I1×···×IM and any nonnegative tensors
X ∈ CI1×···×IM×I1×···×IM , we have

PH(X ) ?M H = H ?M PH(X ). (40)

Proof:
Because we have

PH(X ) ?M H =
∑

λ,λ′∈sp(H)

Uλ ?M X ?M Uλ ?M λ′Uλ′ =
∑

λ∈sp(H)

λUλ ?M X ?M Uλ

=
∑

λ,λ′∈sp(H)

λ′Uλ′ ?M Uλ ?M X ?M Uλ = H ?M PH(X ). (41)

2

Lemma 7. [trace identity of pinching map] Given a Hermitian tensor H ∈ CI1×···×IM×I1×···×IM and any nonnegative tensors
X ∈ CI1×···×IM×I1×···×IM , we have

Tr (PH(X ) ?M H) = Tr (X ?M H) . (42)

Proof:
From linearity and cyclic properties of the trace, Lemma 5 and the fact that the tensor e−ιsH commutes with the tensorH for

all s ∈ R, then we have

Tr (PH(X ) ?M H) =

∫ ∞
−∞

Tr
(
eιsH ?M X ?M e−ιsH ?M H

)
µ∆H(s)ds

=

∫ ∞
−∞

Tr (X ?M H)µ∆H(s)ds = Tr (X ?M H) . (43)

2

Lemma 8. [Pinching Inequality] Let ≥Lo be Loewner order for two positive semi-definite tensors, i.e., we say that tensors
A ≥Lo B if A−B is a positive semi-definite tensor. Given a Hermitian tensorH ∈ CI1×···×IM×I1×···×IM and any nonnegative
tensors X ∈ CI1×···×IM×I1×···×IM , we have

PH(X ) ≥Lo
X
|sp(H|

, (44)

where |sp(H)| is the cardinality for the eigenvalues in the space sp(H).
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Proof:
We first define the tensor Vk as following:

Vk
def
=

|sp(H)|∑
j=1

exp

(
ι2πjk

|sp(H)|

)
Uλj . (45)

Then, the pinching map PH(X ) can be expressed as

PH(X ) =
∑

λ∈sp(H)

UλXUλ =1
1

|sp(H)|

|sp(H)|∑
k=1

VkXVHk ≥Lo
X

|sp(H)|
, (46)

where we use following fact in the equality =1:

|sp(H)|∑
k=1

exp

(
ι2k(j − j′)π
|sp(H)|

)
= |sp(H)|1(j = j′). (47)

For the inequality ≥Lo, we use following relations

VkXVHk ≥Lo O, (48)

and

V|sp(H| = I, (49)

where the zero tensor O and the identiy tensor I both are with the same dimensions as X (orH). 2

Theorem 1 (Golden-Thompson inequality for tensors). Given two Hermitian tensors H1 ∈ CI1×···×IM×I1×···×IM and H2 ∈
CI1×···×IM×I1×···×IM , we have

Tr(expH1+H2) ≤ Tr(expH1 ?Me
H2). (50)

Proof:
Let A1 = exp(H1) and A2 = exp(H2), we have

log Tr (exp (logA1 + logA2)) =1
1

m
log Tr

(
exp

(
logA⊗m1 + logA⊗m2

))
≤2

1

m
log Tr

(
exp

(
logPA⊗m2

(A⊗m1 ) + logA⊗m2

))
+

log poly(m)

m

=3
1

m
log
(

Tr
(
PA⊗m2

(A⊗m1 ) ?M A⊗m2

))
+

log poly(m)

m

=4 log Tr (A1 ?M A2) +
log poly(m)

m
. (51)

The equality =1 comes from Lemmas 1 and 2. The inequality ≤2 follows from pinching inequality (Lemma 8), the monotone
of log and Tr exp ( ) functions, and the number of eigenvalues of A⊗m2 growing polynomially with m (Lemma 3). The equality
=3 utilizes the commutativity property for tensors PA⊗m2

(A⊗m1 ) and A⊗m2 based on Lemma 6. Finally, the equality =4 applies
trace properties from Lemmas 1, 2, and Lemma 7. If m→∞, the result of this theorem is established. 2

Theorem 2 (Araki-Lieb-Thirring for tensors). Given two positive semi-definite tensors A1 ∈ CI1×···×IM×I1×···×IM and A2 ∈
CI1×···×IM×I1×···×IM , and q > 0, then

Tr

((
A
r
2
1 Ar2A

r
2
1

) q
r

)
≤ Tr

((
A

1
2
1A2A

1
2
1

)q)
, if r ∈ (0, 1], (52)

with equality if and only if A1 ?M A2 = A2 ?M A1. This inequality holds in the opposite direction for r ≥ 1.
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Proof:
Since we have

log Tr

((
A
r
2
1 Ar2A

r
2
1

) q
r

)
=1

1

m
log Tr

((
(A

r
2
1 )⊗m(Ar2)⊗m(A

r
2
1 )⊗m

) q
r

)
≤2

1

m
log Tr

((
(A

r
2
1 )⊗mPA⊗m1

((Ar2)⊗m)(A
r
2
1 )⊗m

) q
r

)
+

log poly(m)

m

=3
1

m
log Tr

((
PA⊗m1

(
(A

1
2
1 )⊗m(A2)⊗m(A

1
2
1 )⊗m

))q)
+

log poly(m)

m

≤4
1

m
log Tr

((
(A

1
2
1 )⊗m(A2)⊗m(A

1
2
1 )⊗m

)q)
+

log poly(m)

m

=5 log Tr
(
A

1
2
1A2A

1
2
1

)q
+

log poly(m)

m
. (53)

The equality =1 comes from Lemmas 1 and 2. The inequality ≤2 follows from pinching inequality (Lemma 8), the monotone
of X → Tr(Xα) function for α ≥ 0, and the number of eigenvalues of A⊗m1 growing polynomially with m (Lemma 3). The
equality =3 utilizes the commutativity property for tensors PA⊗m1

(A⊗m2 ) and A⊗m1 based on Lemma 6. The inequality ≤4

utilizes Lemma 4, integral representation of the pinching map (see Lemma 5) and the fact that p-norms are unitary invariant
for p ≥ 0. Finally, the equality =5 applies trace properties from Lemmas 1 and 2. If m → ∞, the result of this theorem is
established.

For case r ≥ 1, if we perform following replacements Ar1 ← A1, Ar2 ← A2, qr ← q, and 1
r ← r, the inequality in this

theorem will be reversed. 2

3.2 Complex Interpolation Theory
In this section, we will mention those definitions and theorems about complex interpolation theory which will be used to

prove multivariate tensor trace inequalities in Sec. 4. Complex interpolation theory enable us to control the behaviors of the
complex function defined on the strip S def

= {z ∈ C : 0 ≤ <(z) ≤ 1} by its boundary values, <(z) = 0 and <(z) = 1. We define
a family of probability measure on R as

ρθ(s)
def
=

sin(πθ)

2θ(cosh(πs) + cos(πθ))
for θ ∈ (0, 1). (54)

Moreover, we have following limiting behaviors for ρθ:

ρ0(s)
def
= lim
θ↘0

ρθ(s) =
π

2
(cosh(πs) + 1)−1, (55)

and

ρ1(s)
def
= lim
θ↗1

ρθ(s) = δ(s), (56)

where δ is the Dirac δ-distribution.
We will introduce Stein-Hirschman theorem [10, 25] about complex interpolation theory.

Theorem 3. Let p0, p1 ∈ [1,∞], θ ∈ (0, 1), ρθ(s) defined by Eq. (54), define pθ by 1
pθ

= 1−θ
p0

+ θ
p1

, and S def
= {z ∈ C : 0 ≤

<(z) ≤ 1}. Let F be a map from S to bounded linear operators on a separable Hilbert space that is holomorphic in the interior
of S and continuous on the boundary. If z → ‖F (z)‖p<(z) is uniformly bounded on S, we have

log ‖F (θ)‖p(θ) ≤
∫ ∞
−∞

(
ρ1−θ(s) log ‖F (ιs)‖1−θp0

+ ρθ(s) log ‖F (1 + ιs)‖θp1
)
ds (57)

4 Multivariate Tensor Trace Inequalities
In order to extend Theorems 1 and 2 involving two tensors to multiple tensors, we require the following lemma about Lie

product formula for tensors.

Lemma 9. Let m ∈ N and (Lk)mk=1 be a finite sequence of bounded tensors with dimensions Lk ∈ CI1×···×IM×I1×···×IM , then
we have

lim
n→∞

(
m∏
k=1

exp(
Lk
n

)

)n
= exp

(
m∑
k=1

Lk

)
(58)
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Proof:
We will prove the case for m = 2, and the general value of m can be obtained by mathematical induction. Let L1,L2 be

bounded tensors act on some Hilbert space. Define C def
= exp((L1 +L2)/n), and D def

= exp(L1/n) ?M exp(L2/n). Note we have
following estimates for the norm of tensors C,D:

‖C‖ , ‖D‖ ≤ exp

(
‖L1‖+ ‖L2‖

n

)
= [exp (‖L1‖+ ‖L2‖)]1/n . (59)

From the Cauchy-Product formula, the tensor D can be expressed as:

D = exp(L1/n) ?M exp(L2/n) =

∞∑
i=0

(L1/n)i

i!
?M

∞∑
j=0

(L2/n)j

j!

=

∞∑
l=0

n−l
l∑
i=0

Li1
i!
?M

Ll−i2

(l − i)!
, (60)

then we can bound the norm of C − D as

‖C − D‖ =

∥∥∥∥∥
∞∑
i=0

([L1 + L2]/n)
i

i!
−
∞∑
l=0

n−l
l∑
i=0

Li1
i!
?M

Ll−i2

(l − i)!

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
i=2

k−i
([L1 + L2])

i

i!
−
∞∑
m=l

n−l
l∑
i=0

Li1
i!
?M

Ll−i2

(l − i)!

∥∥∥∥∥
≤ 1

k2

[
exp(‖L1‖+ ‖L2‖) +

∞∑
l=2

n−l
l∑
i=0

‖L1‖i

i!
· ‖L2‖l−i

(l − i)!

]

=
1

n2

[
exp (‖L1‖+ ‖L2‖) +

∞∑
l=2

n−l
(‖L1‖+ ‖L2‖)l

l!

]

≤ 2 exp (‖L1‖+ ‖L2‖)
n2

. (61)

For the difference between the higher power of C and D, we can bound them as

‖Cn −Dn‖ =

∥∥∥∥∥
n−1∑
l=0

Cm(C − D)Cn−l−1

∥∥∥∥∥
≤1 exp(‖L1‖+ ‖L2‖) · n · ‖L1 − L2‖ , (62)

where the inequality ≤1 uses the following fact

‖C‖l ‖D‖n−l−1 ≤ exp (‖L1‖+ ‖L2‖)
n−1
n ≤ exp (‖L1‖+ ‖L2‖) , (63)

based on Eq. (59). By combining with Eq. (61), we have the following bound

‖Cn −Dn‖ ≤ 2 exp (2 ‖L1‖+ 2 ‖L2‖)
n

. (64)

Then this lemma is proved when n goes to infity. 2

4.1 Multivariate Araki-Lieb-Thirring Inequality
In this section, we will provide a theorem for multivariate Araki-Lieb-Thirring (ALT) inequality for tensors.

Theorem 4. Let p ≥ 1, θ ∈ (0, 1], probability distribution ρθ defined by (54), n ∈ N, and consider a finite sequence (A)nk=1 of
positive semi-definite tensors. Then, we have

log

∥∥∥∥∥∥
∣∣∣∣∣
n∏
k=1

Aθk

∣∣∣∣∣
1
θ

∥∥∥∥∥∥
p

≤
∫ ∞
−∞

log

∥∥∥∥∥
n∏
k=1

A1+ιs
k

∥∥∥∥∥
p

ρθ(s)ds. (65)
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Proof:
For θ = 1, the both sides of Eq. (65) are equal to log ‖|

∏n
k=1Ak|‖p. We will prove the cases for θ ∈ (0, 1). We prove the

result for strictly positive definite tensors and note that the generalization to positive semi-definite tensors follows by continuity.
We define the function F (z)

def
=
∏n
k=1Azk =

∏n
k=1 exp(z logAk) which satisfies the conditions of Theorem 3. By selecting

p0 =∞, p1 = p, and pθ = p
θ in Theorem 3, one can obtain

log ‖F (1 + ιs)‖θp1 = θ log

∥∥∥∥∥
n∏
k=1

A1+ιs
k

∥∥∥∥∥
p

, (66)

and

log ‖F (ιs)‖1−θp0
= (1− θ) log

∥∥∥∥∥
n∏
k=1

Aιsk

∥∥∥∥∥
∞

= 0, (67)

since tensors Aιsk are unitary. We also have

log ‖F (θ)‖pθ = log

∥∥∥∥∥
n∏
k=1

Aθk

∥∥∥∥∥
p
θ

= θ log

∥∥∥∥∥∥
∣∣∣∣∣
n∏
k=1

Aθk

∣∣∣∣∣
1
θ

∥∥∥∥∥∥
p

, (68)

and this theorem is proved by putting Eqs. (66), (67), (68) into Eq. (57). 2

4.2 Multivariate Golden-Thompson Inequality
In this section, we will provide a theorem for multivariate Golden-Thompson (GT) inequality for tensors.

Theorem 5. Let p ≥ 1, probability distribution ρ0 defined by (55), n ∈ N, and consider a finite sequence (H)nk=1 of Hermitian
tensors. Then, we have

log

∥∥∥∥∥exp

(
n∑
k=1

Hk

)∥∥∥∥∥
p

≤
∫ ∞
−∞

log

∥∥∥∥∥
n∏
k=1

exp ((1 + ιs)Hk)

∥∥∥∥∥
p

ρ0(s)ds. (69)

Proof: From Theorem 9 and Lie product formula given by Lemma 9, this theorem is proved by taking θ → 0 in Eq. (65). 2

The multivariate Golden-Thompson inequality provided by Theorem 5 is only true for Hermitian tensors. The following
theorem generalizes Theorem 5 to general tensors.

Theorem 6. Let p ≥ 1, probability distribution ρ0 defined by (55), n ∈ N, and consider a finite sequence (A)nk=1 of tensors.
Then, we have

log

∥∥∥∥∥exp

(
n∑
k=1

Ak

)∥∥∥∥∥
p

≤
∫ ∞
−∞

log

∥∥∥∥∥
n∏
k=1

exp ((1 + ιs)<(Ak))

∥∥∥∥∥
p

ρ0(s)ds, (70)

where <(Ak) is the real part of the tensor Ak defined as <(Ak)
def
= 1

2 (Ak +AHk ).

Proof: We also define the imaginary part of the tensor Ak as =(Ak)
def
= 1

2ι (Ak − A
H
k ) and note that the both <(Ak) and

=(Ak) are Hermitian tensors. We define the function F (z)
def
=
∏n
k=1 exp(z<(Ak) + ιθ=(Ak) which satisfies the conditions of

Theorem 3. By selecting p0 =∞, p1 = p, and pθ = p
θ in Theorem 3, one can obtain

θ

∥∥∥∥∥∥
∣∣∣∣∣exp

(
θ

n∑
k=1

Ak

)∣∣∣∣∣
1
θ

∥∥∥∥∥∥
p

= log ‖F (θ)‖pθ

≤
∫ ∞
−∞

log ‖F (1 + ιs)‖θp ρθ(s)ds

= θ

∫ ∞
−∞

log

∥∥∥∥∥
n∏
k=1

exp((1 + ιs)<(Ak) + ιθ=(Ak))

∥∥∥∥∥
p

ρθ(s)ds (71)

where we used that log ‖F (ιs)‖∞ = 0 since F (ιs) is unitary in the inequality step. By dividing θ at both sides of Eq. (71) and
taking θ → 0, the theorem is proved by applying Lie product formula given by Lemma 9 again. 2
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4.3 Multivariate Logarithmic Trace Inequality for Tensors
In this section, we will apply Theorem 5 to prove multivariate logarithmic trace inequality. We have to define relative entropy

between two tensors first.

Definition 10. Given two positive definite tensors A ∈ CI1×···×IM×I1×···×IM and tensor B ∈ CI1×···×IM×I1×···×IM , where the
tensor A has the trace equal to one. The relative entropy between tensors A and B is defined as

D(A ‖ B)
def
= TrA ?M (logA− logB). (72)

Based on this relative entropy definition, we have the following lemma about variational expression of relative entropy.

Lemma 10. Given two positive definite tensors A ∈ CI1×···×IM×I1×···×IM and tensor B ∈ CI1×···×IM×I1×···×IM , where the
tensor A has the trace equal to one. Then, we have

D(A ‖ B) = sup
X

(Tr (A ?M logX )− log Tr(exp(logB + logX ))) , (73)

and

D(A ‖ B) = sup
X

(Tr (A ?M logX ) + 1− Tr(exp(logB + logX ))) , (74)

where X ∈ CI1×···×IM×I1×···×IM is a positive definite tensor.

Proof:
For any HermitianH tensor with dimensionsH ∈ CI1×···×IM×I1×···×IM , we first show that

log Tr(eH+logB) = sup
A

(Tr(AH)−D(A ‖ B)) . (75)

We define a function with tensor argument as g(A) = Tr(AH) − D(A ‖ B), then let A =
∑
λ∈sp(A) λUλ denote the

spectrum decomposition of A. Because the trace of A is one, we have

g

 ∑
λ∈sp(A)

λUλ

 =
∑

λ∈sp(A)

(λTrUλH+ λTrUλ logB − λ log λ) . (76)

By taking derivative with respect to λ for Eq. (76), we have

∂

∂λ
g

 ∑
λ∈sp(A)

λUλ

∣∣∣∣∣∣
λ=0

=∞, (77)

this shows that the minimizer for Eq. (75) is a strictly positive tensors Ã with TrÃ = 1. For any Hermitian tensor Y with
TrỸ = 0, we have

0 =
dg(Ã+ tY)

dt

∣∣∣∣∣
t=0

= Tr
[
Y(H+ logB − log Ã)

]
. (78)

This indicates thatH+ logB − log Ã is proportional to the identity tensor. Then, we will have

Ã =
eH+logB

TreH+logB and g(Ã) = log TreH+logB, (79)

which proves Eq. (75).
We first prove Eq. (73) based on Eq. (75). Because Eq. (75) implies that the functional H → log TreH+logX is convex, then

let H̃ = logA− logB, we can have a concave function

f(H)
def
= TrAH− log TreH+logB. (80)

For any Hermitian tensor Y , we have

df(H̃+ tY)

dt

∣∣∣∣∣
t=0

= 0, (81)
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because TrA = 1 and dTrelogA+tY

dt |t=0 = TrAY . Therefore, the tensor H̃ is the maximizer of function f and

f(H̃) = TrA(logA− logB) = D(A ‖ B). (82)

Since for any any Hermitian tensorH can be expressed asH = logX for some positive semi-definite tensor, we proved Eq. (73).
Now, we are ready to prove Eq. (74). From log x ≤ x−1 for x ≥ 0, we have log TrelogB+logX ≤ TrelogB+logX −1. Hence,

we have

sup
X

(TrA logX − log TrelogB+logX ) ≥ sup
X

(TrA logX + 1− TrelogB+logX ). (83)

Because TrA logX − log TrelogB+logX is invariant under the scaling transform from X to γX for γ ∈ R+, we can assume that
TrelogB+logX = 1. Then, we have

sup
X

(TrA logX − log TrelogB+logX ) = sup
X

(
TrA logX − log TrelogB+logX :

TrelogB+logX = 1
)

≤ sup
X

(TrA logX − 1 + TrelogB+logX ). (84)

From both Eqs (83) and (84), we prove Eq. (74). 2

We are ready to present multivariate logarithmic trace inequality for tensors by the following theorem.

Theorem 7. Let 0 < q ≤ 1, probability distribution ρ0 defined by (55), n ∈ N, and consider a finite sequence (A)nk=1 of positive
semi-definite tensors. Then, we have

n∑
k=1

TrA1 logAk ≥

1

q

∫ ∞
−∞

(
TrA1 logA

q(1+ιs)
2

n · · · A
q(1+ιs)

2
3 A

q
2
2A

q
1A

q
2
2A

q(1−ιs)
2

3 · · · A
q(1−ιs)

2
n

)
ρ0(s)ds, (85)

which the equality will be valid when q → 0.

Proof: Because the inequality given by Eq. (85) is invariant under multiplication of the tensorsA1,A2, · · · ,An with positive
numbers a1, a2, · · · , an, we can add constraints on the norms of tensors without loss of generality. We assume that the TrA1 = 1.

From the relative entropy in Definition 10, we have

n∑
k=1

TrA1 logAk = D(A1 ‖ exp(

n∑
k=2

logA−1
k ))

= sup
X

(
TrA1 logX + 1− Tr exp

(
logX −

n∑
k=2

logAk

))
, (86)

where we apply Lemma 10. From Theorem 6 and setHk = logAqk, we have

Tr exp

(
n∑
k=1

logAk

)
≤

∫ ∞
−∞

Tr

(
A
q(1+ιs)

2
n · · · A

q(1+ιs)
2

3 A
q(1+ιs)

2
2 Aq1A

q(1−ιs)
2

2 A
q(1−ιs)

2
3 · · · A

q(1−ιs)
2

n

) 1
q

ρ0(s)ds (87)

using the concavity of the logarithm and Jesen’s inequality. Applying Eq. (87) to Eq. (86), we get

n∑
k=1

TrA1 logAk ≥ sup
X

(∫ ∞
−∞

(TrA1 logX ) ρ0(s)ds+ 1

−Tr

(
A
−q
2

2 A
−q(1+ιs)

2
3 · · · A

−q(1+ιs)
2

n X qA
−q(1−ιs)

2
n · · · A

−q(1−ιs)
2

3 A
−q
2

2

) 1
q

)
. (88)

If we set the tensor X as

X def
=

(
A
q(1+ιs)

2
n · · · A

q(1+ιs)
2

3 A
q
2
2A

q
1A

q
2
2A

q(1−ιs)
2

3 · · · A
q(1−ιs)

2
n

) 1
q

, (89)
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the tensor X becomes a positive semi-definite tensor. Substituting Eq. (89) into Eq. (88), this theorem is proved for 0 < q ≤ 1.
For q → 0, we wish to prove the equality at Eq. (85). Because logX ≥Lo I − X−1 for any positive tensor X , we have

TrA1 logA
q(1+ιs)

2
n · · · A

q(1+ιs)
2

3 A
q
2
2A

q
1A

q
2
2A

q(1−ιs)
2

3 · · · A
q(1−ιs)

2
n ≥

TrA1

(
I − A

−q(1−ιs)
2

n · · · A
−q(1−ιs)

2
3 A

−q
2

2 A
−q
1 A

−q
2

2 A
−q(1+ιs)

2
3 · · · A

−q(1+ιs)
2

n

)
def
= hq(s), (90)

and we can assume that hq(s) ≥ 0 since we can scale each tensor Ak by a positive number for k ∈ [n]. By Fatou’s lemma, we
have

lim inf
q→0

∫ ∞
−∞

hq(s)

q
ρ0(s)ds ≥

∫ ∞
−∞

lim inf
q→0

hq(s)

q
ρ0(s)ds. (91)

We also have h0(s) = 0 and

lim inf
q→0

hq(s)

q
=

n∑
k=1

TrA1 logAk. (92)

By Eqs (90) and (91), we have the equality at Eq (85) as q → 0. 2

5 Applications: Random Tensors
This section will apply multivariate Golden-Thompson inequality from Theorem 5 to form the tail bound for independent

sum of random tensors.
Consider a random Hermitian tensor X ∈ CI1×···×IM×I1×···×IM , i.e., each entry in this tensor is an independent random

variable with xi1,··· ,iM ,j1,··· ,jM = xj1,··· ,jM ,i1,··· ,iM . We assume that the random tensor X has moments of all order n. We can
construct tensor extensions of the moment generating function (MGF), and the cumulant generating function (CGF):

M(t)
def
= EetX , and C(t)

def
= logEetX , (93)

where t ∈ R. The tensor MGF and CGF can be expressed as power series expansions:

M(t) = I +

∞∑
n=1

tnE(Xn)

n!
, and C(t) =

∞∑
n=1

tnΦn
n!

, (94)

where the coefficients E(Xn) are called tensor moments, and Φn are named as tensor cumulants. The tensor cumpulant Φn has
a formal expression as a noncommutative polynomial in the tensor moments up to order n. For example, the first cumulant is the
mean and the second cumulant is the variance:

Φ1 = EX , and Φ2 = E(X 2)− (EX )2. (95)

5.1 Laplace Transform Method for Tensors
We will apply Laplace transform bound to bound the maximum eigenvalue of a random Hermitian tensor by following lemma.

Lemma ?? help us to control tail probabilities for the maximum eigenvalue of a random tensor by producing a bound for the
trace of the tensor MGF defined in Eq. (93).

Lemma 11. Let Y ∈ CI1×···×IM×I1×···×IM be a random Hermitian tensor and assume that |Ii| = N for 1 ≤ i ≤ M . For
ζ ∈ R, we have

P(λmax(Y) ≥ ζ) ≤ (2M − 1)N inf
t>0

(
e−ζtETretY

)
(96)

Proof:
Given a fix value t, we have

P(λmax(Y) ≥ ζ) = P(λmax(tY) ≥ tζ) = P(eλmax(tY) ≥ etζ) ≤ e−tζEeλmax(tY). (97)

The first equality uses the homogeneity of the maximum eigenvalue map, the second equality comes from the monotonicity of
the scalar exponential function, and the last relation is Markov’s inequality. Because we have

eλmax(tY) = λmax(etY) ≤ (2M − 1)NTretY , (98)

where the first equality used the spectral mapping theorem, and the inequality holds because the exponential of an Hermitian
tensor is positive definite and the maximum eigenvalue of a positive definite tensor is dominated by the trace [21]. From Eqs (97)
and (98), this lemma is established. 2
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5.2 Tail Bounds for Independent Sum
This section contains abstract tail bounds for the sum of independent random tensors. This general inequality can serve as

the progenitor of other random tensors majorization inequality.

Theorem 8. Consider n independent random Hermitian tensors
Xk ∈ CI1×···×IM×I1×···×IM for k ∈ [n], for all ζ ∈ R, we have

P(λmax

(
n∑
k=1

Xk

)
≥ ζ) ≤ (2M − 1)N inf

t>0

{
e−tζ

∫ ∞
−∞

Tr
[
E(etX1)?M(

n−1∏
k=2

E(e
(1+ιs)tXk

2 )

)
?M E(etXn) ?M

(
2∏

k=n−1

E(e
(1−ιs)tXk

2 )

)]
ρ0(s)ds

}
(99)

Proof:
By settingHk = tXk, p = 2 in Theorem 5, we will have

Tre

(
n∑
k=1

tXk
)
≤

∫ ∞
−∞

Tr
[
etX1?M(

n−1∏
k=2

e
(1+ιs)tXk

2

)
?M etXn ?M

(
2∏

k=n−1

e
(1−ιs)tXk

2

)]
ρ0(s)ds. (100)

By taking the expectation of both sides and applying the indepedence property for all random tensors Xk, we obtain

ETre

(
n∑
k=1

tXk
)
≤

∫ ∞
−∞

Tr

[
E(etX1) ?M

(
n−1∏
k=2

E(e
(1+ιs)tXk

2 )

)
?M

E(etXn) ?M

(
2∏

k=n−1

E(e
(1−ιs)tXk

2 )

)]
ρ0(s)ds. (101)

By combining Eq. (101) with Lemma 11, the theorem is proved. 2

6 Conclusions
In this work, we extend Araki–Lieb–Thirring (ALT) inequality, Golden–Thompson(GT) inequality and logarithmic trace in-

equality to arbitrary many tensors. Our proofs utilize complex interpolation theory and asymptotic spectral pinching, providing a
powerful mechanism to deal with multivariate trace inequalities for tensors. We then apply tensor Golden–Thompson inequality
to provide the tail bound for the independent sum of tensors and this bound will play a crucial role in high-dimensional proba-
bility and statistical data analysis. We believe our work can be applied to various science and engineering problems involving
multivariate variables [23, 6].
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