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Abstract: Producing high-resolution near-real-time forecasts of fire behavior and smoke impact that
are useful for fire and air quality management requires accurate initialization of the fire location. One
common representation of the fire progression is through the fire arrival time, which defines the time
that the fire arrives at a given location. Estimating the fire arrival time is critical for initializing the
fire location within coupled fire-atmosphere models. We present a new method that utilizes machine
learning to estimate the fire arrival time from satellite data in the form of burning/not burning/no
data rasters. The proposed method, based on a support vector machine (SVM), is tested on the
10 largest California wildfires of the 2020 fire season, and evaluated using independent observed data
from airborne infrared (IR) fire perimeters. The SVM method results indicate a good agreement with
airborne fire observations in terms of the fire growth and a spatial representation of the fire extent. A
12% burned area absolute percentage error, a 5% total burned area mean percentage error, a 0.21 False
Alarm Ratio average, a 0.86 Probability of Detection average, and a 0.82 Sørensen’s coefficient average
suggest that this method can be used to monitor wildfires in near-real-time and provide accurate fire
arrival times for improving fire modeling even in the absence of IR fire perimeters.

Keywords: machine learning; fire monitoring; active fires satellite data; support vector machine

1. Introduction

Wildfires burn millions of hectares of forest every year across the globe. Global trends
in wildfires are strongly linked to climate change, which has caused fires to become more
frequent and destructive, especially across the western United States [1–4]. Wildfires and
smoke have a number of impacts, including creating long periods of unhealthy air quality,
economic damage to individuals and communities from the loss of life and property,
and damage to ecosystems with cascading hazards to watersheds [5–8].

As fire activity continues to increase in the coming decades [9], so does the importance
of developing modeling tools that can assist fire and air quality managers in forecasting
fire growth, smoke production, and downwind smoke transport. More intense fires have a
bigger potential to modify local meteorological conditions and “create their own weather”
as a consequence of strong convective updrafts associated with strong heat released during
combustion. The importance of the fire-atmosphere interactions has been recognized in
fire-atmosphere simulations [10–13], observed during experimental fires [14–16], as well as
observed during wildfire events [17,18]. Over the years, several coupled fire-atmosphere
models have been developed [19–23], in an effort to better capture the dynamics of fire-
atmosphere interactions often observed in large wildfires. The continuing increase in
computational capabilities over the years has made it feasible to run high-resolution
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coupled fire-atmosphere models in an operational setting [24], resulting in operational
deployment of several coupled-atmosphere models [25–27].

Propagation of fronts can be modeled on a spatial grid by prescribing the propagation
time between adjacent nodes and then computing the first arrival time along the fastest
path from an initial node to every other node, which can be done, e.g., by the Fast Marching
Method [28]. Finney [29] proposed modeling fire propagation by the first fire arrival time,
calling it the minimum travel time. Mandel et al. [25,30] recognized the fire arrival time
(called array of ignition times in Reference [30]) as an encapsulation of the state of a fire
spread model and proposed manipulating it for the purposes of data assimilation and
gradual ignition artificial fire arrival time created by interpolating between perimeters.
Interpolating between airborne infrared fire perimeters at different times was used suc-
cessfully in Kochanski et al. [31] and Mallia et al. [32]. Both studies found that smoke
predictions saw the largest improvement when utilizing this methodology. However, it
should be emphasized that infrared fire perimeters are only available for select wildfires
and are often available once a day. In addition, these perimeters are often posted with
a significant time delay and at irregular time intervals, which limits their usefulness for
forecasting applications.

Our previous efforts estimating the fire arrival time from satellite data include data
assimilation by penalization of the difference between the model result (the prior) and fire
pixels in norms on spaces of functions involving fractional derivatives (Sobolev norms
H1+ε, ε > 0 or W1,p, p > 1), with the orders chosen to assure that point constraints
presented by the satellite fire pixels affect the fire arrival time globally instead of just in
their immediate vicinity [33]. This approach, however, did not take the rate of spread into
account. Therefore, we considered minimizing the residual of a differential equation model
of fire propagation (the eikonal equation ‖∇u‖ = 1

R , where the R = R(u, x, y) is the rate
of spread, and u is the fire arrival time [34]) subject to constraints given by data, but we
have encountered significant numerical difficulties. Finally, we considered estimation
under the prior assumption that the fire propagation does not change in the absence of
other information: ∇u ≈ const, thus minimizing ∇2u in suitable functional norms subject
to upper and lower bounds on the fire arrival time u given by the fire detection pixels
and clear-ground detection pixels, with penalization for violations [35]. That method,
however, exhibited artifacts because the condition ∇2u ≈ 0 is too strong, and even with
weak functional norms and soft bounds allowing violations, it cannot accommodate quick
changes of the spatial gradient of the fire arrival time when the fire slows down abruptly
or stops, e.g., in response to fire suppression. The present machine learning method was
devised to overcome those disadvantages.

Unlike uncoupled models, which can be simply initialized in the middle of a fire event
by defining the fire area, coupled models generally require a more careful initialization,
assuring that the fire and atmospheric states are in sync at the beginning of the simulation
or after the fire is modified by data assimilation. A method for a smooth initialization
within a coupled fire-atmosphere model was proposed in Reference [30], where a spin-up
period was used to prescribe the initial fire growth from a given fire arrival time. During the
spin-up period, the fire model is bypassed, and fire progression and fire heat release is
computed from the fire history described by the fire arrival time field. Subsequently,
the atmospheric model responds to the prescribed fire heat and develops a convective
smoke plume, which modifies the local meteorology. Once the fire-induced circulation has
been established, and the atmospheric and fire state are consistent, the model switches from
the prescribed fire growth to forecast mode. Here, the fire growth is fully coupled with
the atmosphere, where the fire propagation is based on the local rate of spread computed
by the fire model. Data assimilation with spin up after the fire arrival time is modified in
response to satellite data was then proposed in Reference [33].

Thermal imaging sensors on polar-orbiting satellites, such as the Moderate Resolution
Imaging Spectroradiometer (MODIS) Terra and Aqua [36,37] satellites, Visible Infrared
Imaging Radiometer Suite (VIIRS) S-NPP, and NOAA-20 [38], typically provide two im-



Remote Sens. 2021, 13, 2203 3 of 24

ages for fire detection per day, with more frequent scans at higher latitudes. The spatial
resolution of these images ranges from 375 m to 1 km. As new satellites are launched, there
will be additional opportunities to track wildfires across the globe at a high spatiotemporal
resolution. In addition, these satellites can be combined with information from geosta-
tionary satellites, like Geostationary Operational Environmental Satellite (GOES) [39], that
view a fixed area of the world at much coarser spatial resolution (1–2 km) but a higher
temporal frequency (1–15 min). The availability of different satellite data sources is one
of the main reasons fire perimeters derived from satellite fire detection pixels has recently
been of great interest. However, satellite data is still at a much coarser spatiotemporal
resolution than the computational grids used in simulation models (30 m and seconds).
A high temporal frequency is needed due to the fire’s rapid progression combined with
the fact that the fire arrival time needs to be defined with a temporal resolution as close as
possible to the model’s integration time (time resolution of the fire spread model) to spin-up
the atmosphere. In addition, to accurately depict the fire line, one needs a resolution of tens
of meters. Therefore, interpolating satellite data spatiotemporally is critical for prescribing
the fire progression during the spin-up of coupled atmosphere-fire models. Besides, fire
emission inventories usually only provide daily estimates, and for cases where emissions
are available at a higher temporal frequency, they are scaled using an idealized diurnal
profile [40]. We suspect that the SVM method presented here could potentially be used to
identify active burn areas at sub-daily time scales, while providing an estimate of sub-daily
emission estimates that do not rely on assumptions about fire activity.

All of the aforementioned satellite instruments can provide categorical masks, where
every pixel is classified as either unknown, non-fire, or fire, and may be further accompa-
nied by a confidence level. Spaceborne remote sensing of fire may have missing information
due to various reasons, including clouds, smoke, or topography obscuring the satellite’s
view [41]. In addition, those different satellite sources can sometimes provide inconsistent
data when compared with each other [42]. Due to these limitations, satellite observations
should not be used as ground truth for interpolating and prescribing fire progression.
Instead, using statistical learning techniques in conjunction with confidence levels from
the data is desired to reduce the uncertainty in estimating fire progression from those
observations. Furthermore, combining other independent sources, like fire perimeters and
ignition sources, can improve estimations of fire progression.

Several methods for interpolating the fire progression from available observations have
been proposed in the literature. They use different geospatial interpolation schemes, such
as: ordinary kriging [43,44], inverse distance weighted [44,45], natural neighbor [44,45],
and empirical Bayesian kriging [44], among other interpolation methods [45]. However,
none of these methods use the clear ground detection pixels to reduce false alarms from
incorrectly classified fire detection pixels and to provide an estimate that can distinguish
between an area that is not burning and a contiguous fire that may be partially obscured.
Furthermore, the above sources do not generally utilize the confidence level associated
with each fire detection, provided by active fires products.

In this paper, we first review the analyzed fire events (Section 2.1), describe the
satellite data (Section 2.2), describe the airborne fire observations used to validate our
method (Section 2.3), and review the weighted support vector machine learning method
(Section 2.4). The core of the paper is Section 2.5, where we propose a new method for
the estimation of the fire progression from fire and clear ground satellite detection pixels,
and their confidence levels. Results of the deployment of the method for the 10 largest
California fires during the 2020 fire season compared with airborne fire observations, shown
in Section 3, suggest that this method can be used to monitor wildfires in near-real-time.
Finally, Section 4 is the conclusion, with a discussion of the results.
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2. Materials and Methods
2.1. Study Cases

The summer and fall of 2020 was the most extensive and extreme wildfire season
recorded in California history, according to the California Department of Forestry and Fire
Protection (CALFIRE) [46]. Many of these fires were started by cloud-to-ground lightning
flashes from remnants of Tropical Storm Fausto around August 2020. During this historic
fire season, more than 9000 incidents burned over 4 million acres, causing numerous
fatalities and damaging or destroying more than 10,000 structures [47]. The abundance,
size, and complexity of the fire events make this past wildfire season in California a
good testbed for our proposed method. The fire progression histories presented in this
paper were processed with the intention of providing fire initialization for subsequent fire
modeling studies. The wildfire incidents were filtered by (1) time (2020), (2) space (ONCC
and OSCC NIFC GACCs), and (3) burned area (larger than 100 thousand acres), which
resulted in the top 10 largest fires of 2020 California wildfire season (Table 1). Figure 1
shows the study domain, along with the location of each wildfire analyzed in this study.

Table 1. Top 10 largest wildfires of 2020 in California. For each fire, start date, end date, and the AOI is defined for SVM
experiments. Dates are from the year 2020, defined as “Month-Day” at 12 am UTC. The area of interest (AOI) format is “min
longitude, max longitude, min latitude, max latitude” in WGS84 degrees.

Wildfire Abbreviation Acres Burned Start Date End Date AOI

August Complex AC 1,032,648 08-15 10-24 −123.520, −122.507, 39.389, 40.578
SCU Lightning Complex SCU 396,624 08-15 09-05 −121.900, −121.050, 37.070, 37.650

Creek CK 379,895 09-03 11-05 −119.520, −118.900, 36.950, 37.680
LNU Lightning Complex LNU 363,220 08-16 08-31 −123.300, −121.930, 38.260, 38.990

North Complex NC 318,935 08-16 09-29 −121.540, −120.720, 39.500, 39.960
SQF Complex SQF 174,178 08-18 10-15 −118.920, −118.230, 36.040, 36.570
Slater/Devil SD 166,127 09-06 10-03 −123.830, −123.140, 41.700, 42.150

Red Salmon Complex RSC 144,698 07-26 11-01 −123.625, −123.180, 40.960, 41.280
Dolan/Coleman DC 124,924 08-17 09-21 −121.720, −121.200, 35.910, 36.230

Bobcat BC 115,997 07-29 09-25 −118.130, −117.750, 34.150, 34.500

Figure 1. AOI location for the top 10 largest wildfires of 2020 in California. Abbreviations are
described in Table 1.
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2.2. Satellite Data

For the research, we used satellite Active Fire (AF) products to estimate the progression
of wildfires. These products detect thermal anomalies based on the brightness temperature
response from spectral bands with wavelengths 4- and 11-µm. A moving window method
characterizes neighboring non-fire background pixels, and fire pixels are further improved
using contextual refinement in space and time. The Level-2 (L2) is preferred over the Level-
3 (L3) AF products for science use [37]. L2 data is already corrected for cloud and water
cover but at the same time maintains important information from the raw products and
provides granules with a categorical mask, which classifies every pixel either as missing,
clear ground, or fire (Figure 2). On the other hand, L3 data, commonly used operationally
and by the public, consists of hotspots only, combined from multiple granules. L3 data
is much easier to use and the volume of data is much less, but the distinction between
no fire and no data is lost. Finally, in AF data, for every pixel classified as fire, additional
information is provided, such as position on the granule, longitude and latitude, fire
radiative power, and detection confidence. The last piece of information is essential for the
machine learning technique proposed in Section 2.5, since it provides a way to weigh the
importance of the data when using a statistical learning method. Unfortunately, unlike fire
pixels, clear ground detection pixels are not accompanied by a confidence level. Finally,
to process L2 data, one needs to acquire a separate geolocation product, used to define the
location of the L2 products from a particular satellite data source. Geolocation of the pixels
is defined at their centers.

Figure 2. L2 AF MODIS fire mask granule overlapping a fire simulation domain for 2015 Cougar
Creek fire, WA. Green squares are clear ground detection pixels, red squares are fire detection pixels,
and transparent regions are missing data.

Moderate Resolution Imaging Spectroradiometer (MODIS) on-board of the Terra and
Aqua satellites provides L2 AF products, MOD14 and MYD14 respectively, with four
overpasses a day at 1 km resolution [48,49]. In order to geolocate the complete fire mask,
geolocation products MOD03 and MYD03 for each satellite [50,51] need to be obtained and
associated with every fire mask granule. Visible Infrared Imaging Radiometer Suite (VIIRS)
on-board of the Suomi-NPP satellite provide two additional L2 AF products, VNP14 and
VNP14IMG, with two overpasses a day at moderate and high spatial resolution (750 m
and 375 m), respectively [52,53]. The complete fire mask for these products needs to be
geolocated using the VNP03 and VNP03IMG products, respectively [54,55].
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2.3. Infrared Fire Perimeters

For large events, National Infrared Operations (NIROPS) provides fire extent data
derived from infrared sensors flew on-board aircraft, surveying wildfires, typically at night.
These infrared (IR) fire perimeters provide the most accurate representation of the fire front
position during the time of the overflight. They are generally accurate at the order of meters,
which makes them very useful for situational awareness. However, IR fire perimeters can
sometimes be delayed several days after the fire ignition time, and are typically captured
at intervals equal to a day or more, assuming that the fire and weather conditions and
availability of the resources permit these flights. Although infrared perimeters provide a
superior depiction of the spatial fire extent, their temporal frequency is problematic for
forecasting applications.

The IR fire perimeters were retrieved from the National Interagency Fire Center (NIFC)
Archived Wildfire Perimeters [56] and Wildfire Perimeters [57] databases using ArcGIS API
for Python. The perimeter selection was based on the bounding box and time of interest
for each incident. Pulling all of the data from both databases ensures that all available
IR fire perimeters for each incident are acquired. However, some of these perimeters
are duplicated; thus, assessing their acquisition time can be problematic. The databases
include three different time definitions: CreateDate, DateCurrent, and PolygonDateTime.
Sometimes, inconsistencies exist within this database, likely due to human errors during
data entry. The main priority is to use the PolygonDateTime. However, in many cases, this
field is not provided. Therefore, the second priority is to use the CreateDate time. Using the
CreateDate time may generate inconsistencies where perimeters from different times have
the same creation day and time assigned. For those cases, the field DateCurrent is used.
To summarize, fire perimeters from the NIFC GIS portal may need manual adjustment,
and that each perimeter’s temporal assignment can be quite uncertain.

2.4. Support Vector Machines

The support vector machine (SVM), introduced in Reference [58,59], is a supervised
machine learning algorithm. Training an SVM consists of finding a separating surface
between two sets of points in a finite dimensional vector space (the training set). The surface,
now called a decision surface, is then used to classify other points as belonging to one set
or the other, depending on which side of the surface they are.

2.4.1. Linear Separation

In order to solve the separation problem, Vapnik [60] formulated an optimization
problem. Consider the two-dimensional example in Figure 3 to explain the idea. Two
different sets of points xi, shown as green and red squares, should be separated using a
straight line wx + b = 0, e.g., wxi + b > 0 for the red points and wxi + b < 0 for the green
points. The same reasoning applies in higher dimension. Suppose we are given column
vectors xi ∈ Rn and labels `i = 1 if xi is a red point and `i = −1 if xi is a green point. We
are looking for w ∈ Rn and b ∈ R such that the sets of red points and the green points are
separated by the hyperplane wTxi + b = 0, i.e.,

wTxi + b > 0 if `i = 1, and wTxi + b < 0 if `i = −1.

Now, scale the coefficients w and b so that wTxi + b ≥ 1 for all red points, and
wTxi + b ≤ −1 for all green points. Then, we can write both inequalities in a common form
as `i(wTxi + b) ≥ 1. Since the distance of the point x and the hyperplane wTx + b = 0 is
‖wx + b‖/‖w‖, the distance of the separating hyperplane from each set is at least 1/‖w‖,
and it equals to 1/‖w‖ if the equality `i(wTxi + b) = 1 is attained for at least one point in
that set. Thus, the optimal hyperplane wTx + b = 0 that separates the sets and maximizes
the distance from each is given by the solution of the quadratic optimization problem

min
w,b

1
2

wTw subject to `i

(
wTxi + b

)
≥ 1, i = 1, . . . , n. (1)
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The distance of the hyperplanes wTx + b = 1 and wTx + b = −1, which equals to
d = 2/‖w‖, is called the margin of the separation. The points xi on these hyperplanes are
the closest to the separating hyperplane, and they are called support vectors, naming the
algorithm after them.

Figure 3. Two-dimensional example of the optimal linear separating hyperplane using SVM classification.

2.4.2. Soft Margins

The constraints `i(wTxi + b) ≥ 1 ensure separation without errors. When the training
data cannot be separated without error, one can separate them approximately, minimizing
the total error. Thus, we relax the inequalities `i(wTxi + b) ≥ 1 to `i(wTxi + b) ≥ 1− ζi,
ζi > 0. Geometrically, the point xi is allowed to violate the separation and lie at the distance
ζi/‖w‖ on the opposite side of the hyperplane. Adding a sum of the violations ζi with
weights Ci > 0 to the objective function results in the soft-margin SVM,

min
w,b

1
2

wTw +
n

∑
i=1

Ciζi subject to `i

(
wTxi + b

)
≥ 1− ζi, i = 1, . . . , n. (2)

We will use the weights Ci to model the confidence level of the data points (xi, `i).

2.4.3. Kernels and Non-Linear Separation

Since linear separation is neither feasible nor desirable in many applications, a kernel
technique is used to map the data xi to vectors φ(xi) in an infinite dimensional vector space,
called feature space, where a separating hyperplane is found. Upon mapping back into the
input space, the separating hyperplane becomes a non-linear decision surface. The feature
space is equipped with an inner product, denoted by · , such that φ(x) · φ(x) = K(x, y),
where K(x, y) is a suitable function, called kernel. In an implementation, vectors in the
feature space, its inner product, or the non-linear mapping φ, do not need to be used
explicitly; rather, the computations are performed on vectors in the input space, with the
inner product xTy on replaced by K(x, y). In this work, the kernel is chosen to be a Gaussian
radial basis function K(xi, xj) = e−γ||xi−xj ||2 . The soft-margin optimization problem (2) in
the feature space is

min
w,b

1
2

w · w +
n

∑
i=1

Ciζi subject to `i(w · φ(xi) + b) ≥ 1− ζi. i = 1, . . . , n. (3)
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The solution of (3) is found by solving the dual problem for the vector of Lagrange
multipliers α = (αi) ∈ Rn,

min
α

1
2

αTQα− eTα subject to `Tα = 0, 0 ≤ αi ≤ Ci, i = 1, . . . , n, (4)

where Qij = `i`jK(xi, xj) is an n× n positive semi-definite matrix, e is the vector of all ones,
and ` = (`i). Once the dual problem (4) is solved, α is found. Then, b is computed from
the KKT conditions on Equation (3) as

b =

−
∑i:0<αi<Ci

yi∇i f (α)
|{i | 0<αi<Ci}|

, if |i | 0 < αi < Ci| > 0

−m(α)+M(α)
2 , otherwise

,

where f (α) = 1
2 αTQα− eTα, m(α) = min{yi∇i f (α) | αi = 0, yi = 1 or αi = Ci, yi = −1},

and M(α) = max{yi∇i f (α) | αi = 0, yi = −1 or αi = Ci, yi = 1}. Then, the decision
function is mapped into the input space as

F(x) =
n

∑
i=1

`iαiK(xi, x) + b,

which can be used to classify yet unseen input data x as

`(x) =

{
−1, if F(x) < 0
1, if F(x) ≥ 0.

See Reference [58,59] for more details on the method, and see Reference [61,62] for the
specific implementation used.

2.5. Estimation of Fire Arrival Time
2.5.1. Preprocessing

In the initial step, all AF satellite data intersecting the bounding box and time interval
of interest are retrieved. The information stored from every clear ground and fire detection
pixel includes its latitude, longitude, satellite acquisition time, and confidence level. While
clear ground detection pixels do not have a confidence level, they do tend to have higher
confidence [36,38]; thus, a sufficient high constant value of 95% is assigned to them (a
100% value can lead to overfitting). All the fire pixels with less than 70% confidence were
treated as false alarms and discarded. Every dimension of the data (longitude, latitude,
and satellite acquisition time) was then normalized using the min-max feature scaling to
have values set between [0, 1]. This pre-processing part is critical to avoid the impact of
different data ranges on the final solution. The AF satellite data is significantly imbalanced
due to a massive amount of clear ground detection pixels. Therefore, a simple under-
sampling technique is performed on the clear ground detection pixels. The acquisition and
techniques used to pre-process the data as described above can be found in the repository
and the code provided in the Supplementary Materials section at the end of the paper.

2.5.2. SVM Deployment

From Section 2.5.1, a three-dimensional training set of points (longitude, latitude,
and time) are labeled as ground or fire detection with a confidence level attached to them.
The main goal is to find the best separation between these two sets to find the best fire
arrival time for any latitude-longitude point in the domain based on these satellite detection
data. So, this new approach is not only considering the fire detection pixels but also the clear
ground detection pixels, which play an important role, as well. Moreover, the confidence
associated with each fire detection contributes to the estimate. Therefore, a generalization
of the problem can be defined as a given training set of points xi ∈ Rp, i = 1, . . . , n with
associated labels `i ∈ {−1, 1}n and confidence levels ci ∈ [0, 100]. This separation problem
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can be solved using a machine learning classification method called support vector machine
(SVM) described on Section 2.4.

The optimization problem (4) is very sensitive of the value of the parameters Ci and
γ. Therefore, these optimal hyperparameters need to be tuned so that they capture the

properties of the data without over-fitting. These parameters are defined as Ci =
c3

i
kC

,
where ci is the confidence level associated with detection xi and kC is a scalar factor; and
γ =

√
n

kγ pSx
, where n is the number of training data points, p = 3 is the dimension of the

training data, Sx is the population standard deviation of the training data, and kγ is a scalar
factor. From these hyperparameters, kC and kγ need to be tuned, since smaller values of
kC and kγ, more possibility of over-fitting but less flexibility to follow the data. Therefore,
a k-fold cross-validation on an exhaustive grid search on kC and kγ is performed for each
experiment using the sklearn.model_selection.GridSearchCV, and k is selected to be
5, which is the most common option. This procedure consists of, for each combination
of values kC and kγ, split the training set into k smaller sets and select all combinations
between k − 1 of these subsets for training purposes and the remaining one subset to
validate the results computing the error with independent data. Then, all the errors from
the different splits are averaged in order to estimate the final error of prediction for every
combination of hyperparameters. Finally, all averaged errors for all combinations of kC
and kγ are compared, and the combination of hyperparameters with less error is chosen
to retrain the model with all the training data. Since the data is extremely imbalanced,
the same proportion of fire and ground detection pixels is maintained in all the splits of
the data.

For the purpose of this article, the optimization problem (4) is solved using the
python interface with weights for data instances implementation [62] of support vector
classification C-SVC from libsvm C++ library [61]. This library is used in the code included
in the Supplementary Materials section at the end of the paper.

2.5.3. Postprocessing

Using the SVM method, the L2 AF satellite data from Section 2.2 can be separated
using a non-linear hyperplane which can be defined as all the points x such that the
decision function is 0, i.e., F(x) = 0. However, a unique fire arrival time value at each
location is desired and not ensured. As one can observe in Figure 4, a location (x1, x2) can
have different temporal values t where F(x1, x2, t) = 0. Therefore, the fire arrival time at a
location (x1, x2) is defined as

T(x1, x2) = min{t ∈ R | F(x1, x2, t) = 0}.

However, the existence of such a time t in a location (x1, x2) such that F(x1, x2, t) = 0
is not ensured either. Moreover, the resolution of the volume mesh grid, which the decision
function F is evaluated on, can affect the existence of such a time t, as well. Therefore,
for all (x1, x2) ∈ R2, the decision function is approximated using a piecewise polynomial
approximation, which is twice continuously differentiable by cubic splines interpolation as

F(x1, x2, t) ≈ s(t).

So, interpolate.CubicSpline method of SciPy [63] python package is used to find
a piecewise polynomial approximation at each location (x1, x2). In Figure 4, an example
of the piecewise polynomial approximation (blue line) of the vertical profile values of
the decision function at a fixed location (orange crosses) is showed. Then, the real roots
of this piecewise polynomial approximation can be found easily using roots method of
scipy.interpolate.PPoly element as

Rx1x2 = {t ∈ R | s(t) = 0}.

Then, the final definition of the fire arrival time at a location (x1, x2) can be formulated as
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T(x1, x2) =

{
M, if Rx1x2 = ∅
min Rx1x2 , otherwise

,

where M is a maximum fire arrival time value associated with a fire arrival time never
acquired in the simulation. Finally, one can ensure this maximum value at each location
(x1, x2) doing

T(x1, x2) = min(T(x1, x2), M).

Figure 4. Example of a vertical profile of the decision function when using inverse interpolation.

Figure 4 shows an example of the three roots of the piecewise polynomial approxima-
tion of the vertical profile values of the decision function at a fixed location (green circles)
and the minimum t root of the same approximation (red circle). This minimum t is what
will be defined as the fire arrival time at this fixed location. This process is repeated for
each point in the domain. The fire arrival time estimation described in this section is part of
the python code included in the Supplementary Materials section at the end of the paper.

Finally, the results are transformed back to original scales using the same scale param-
eters as were used in the pre-processing in Section 2.5.1.

3. Results

The fire arrival time estimation using the machine learning method from satellite data
described in Section 2 is applied to the top 10 largest wildfires in California this past fire
season 2020 (Table 1). The evaluation of the results is focused on two main analyses (1)
L2 AF satellite data assessment to identify where the spatial resolution and temporal
frequency from satellite detection pixels could impact the SVM estimation, and (2) the
validation of fire arrival time estimation where the resulting fire arrival time is compared
to IR observed fire perimeters considering two commonly used metrics: area burned and
spatial discrepancy.

3.1. L2 AF Satellite Data Assessment

L2 AF satellite data is compared to IR fire perimeters in order to assess the spatiotem-
poral correlation between the IR fire perimeters and the fire detection pixels. For every
IR fire perimeter, the fire pixels detected between the previous and the current perimeter
times are identified. Then, the percentage of fire detection pixels falling spatially between
the IR perimeters is calculated. Figure 5 shows an example of that computation for the
August Complex between 2 September and 15 September 2020. The blue and green filled
areas represent the observed IR fire perimeters, and scatter empty circles are L2 AF fire
detection pixels sensed between perimeter times. The green circles show detection pix-
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els falling spatially inside the two consecutive perimeters, and the red ones otherwise.
The fire detection pixels falling inside the earliest perimeter could be associated to some
smoldering happening at those locations so they are not considered to be a satellite error.
The percentage of the green circles or fire detection pixels between the perimeters estimates
the spatiotemporal correlation between L2 AF fire detection pixels and IR fire perimeters.
When the earliest IR perimeter is considered, the fire detection pixels are filtered, and the
percentage is calculated from the start of the fire event as specified in Table 1.

Figure 5. L2 AF satellite data assessment between two IR fire perimeters for the August Complex
wildfire (score of 93%).

The variability of the percentages varies among analyzed cases. The fewer IR perime-
ters, the larger percentage because more fire detection pixels are likely to fall in between
the perimeters. For instance, the LNU Complex (LNU) has percentages all >80% with 91%
average, while the Red Salmon Complex (RSC) has most of the percentages <70% with 69%
average. In addition, for the same reason, the less spaced out in time the IR perimeters
are, the smaller the correlations were between the satellite data and airborne perimeters
(smaller percentages). Finally, we can observe that all the transparent circles happened at
the beginning or the end of the fire event (LNU, SD, and RSC). Sometimes, at the beginning
of the fire, IR fire perimeters are captured before the fire is big enough to be sensed by the
AF satellite data. Moreover, at the end of the fire, when the intensity of the fire is very low,
the satellites are not capable of detecting fire detection pixels.

Percentages on the first row of Table 2 shows how almost all the cases have a percent-
age larger than 70%, and a total average of 81%. Therefore, the fire detection pixels are
mostly correlated to the IR fire perimeters, indicating a good opportunity to predict the
fire evolution from this source of data. Simultaneously, these results proves the necessity
of using a method that considers implicit errors in the data since we have an error on
every 2 out of 10 pixels. We believe the major source in this analysis of error comes from
the temporal misspecification of IR perimeters. Errors in satellite fire detection pixels are
likely due to relatively low spatial resolution and large spatial inhomogeneity, which make
it difficult for processing algorithms to separate the hot spots from the background. In
addition, satellite data can have geolocation errors caused by the fact that every pixel’s
location is defined to be a point at the center of the pixel, which is a crude assumption.



Remote Sens. 2021, 13, 2203 12 of 24

Table 2. Summary of metrics calculated for each wildfire comparing L2 AF satellite data and SVM estimation against
observed IR fire perimeters: Mean Percentage (MP) Fire Pixels, Mean Absolute Percentage Error (MAPE) Burned Area,
Mean Percentage (MP) Overpredicted, Percentage Error (PE) Total Burned Area, Mean False Alarm Ratio, Mean Probability
of Detection, and Mean Sørensen’s Coefficient. Average values are calculated as the absolute mean of all the fires. Fire
abbreviations are described in Table 1.

Metrics AC SCU CK LNU NC SQF SD RSC DC BC Average

MP Fire Pixels 88% 89% 77% 91% 77% 81% 80% 69% 85% 73% 81%
MAPE Burned Area 16% 12% 9% 20% 14% 11% 3% 7% 16% 13% 12%
MP Overpredicted 79% 60% 68% 59% 69% 68% 44% 55% 68% 58% 63%

PE Total Burned Area 13% −1% 7% 8% 2% 8% −2% −1% 3% 4% 5%
Mean Probability of Detection 0.94 0.87 0.92 0.68 0.92 0.91 0.82 0.81 0.91 0.82 0.86

Mean False Alarm Ratio 0.19 0.19 0.15 0.37 0.19 0.18 0.13 0.22 0.20 0.24 0.21
Mean Sørensen’s Coefficient 0.87 0.83 0.89 0.65 0.86 0.86 0.85 0.79 0.85 0.78 0.82

3.2. Evaluation of the Fire Arrival Time Estimation

As described in Section 2.5.3, the fire progression is parameterized as a fire arrival
time, which is a real-valued function defining for each location x ∈ R2 the time that the fire
arrives at that location T(x). Note that by defining the fire progression in such a way, fire
perimeters can be constructed at any temporal interval by computing contours at different
times. For evaluations utilizing observed IR fire perimeters, hourly contours are computed
from the fire arrival times estimated by the machine learning technique for the 10 largest
wildfires in California during the summer of 2020. The evaluation is performed at IR
perimeter times using two common metrics: burned area and spatial discrepancies.

3.2.1. Burned Area

For each hourly contour, the burned area is computed and plotted as solid blue lines
in Figure 6. These results can then be compared to burned area estimates from observed
IR fire perimeters represented as colored circles. In most cases, the colored circles lie
close to the blue lines indicating good agreement between observed IR fire perimeters
and resulting fire arrival time from the proposed machine learning method. For each
fire, the mean absolute percentage error between the burned area from the SVM method
and IR fire perimeters is calculated to quantify their agreement, showing values between
3–20%, with an average of 12% (Table 2). In addition, most of the increases in burned
area are represented by the fire arrival time estimation. However, the burned area from
SVM estimation tends to overestimate relative to the observed IR fire perimeters. For each
fire, the mean percentage of overprediction on the errors (Table 2) is calculated as the
area overpredicted over the area wrongly classified (expressed on percentage), showing
that, on average, 63% of the area burned wrongly estimated by the SVM method is by
overprediction. In fact, the only case that underestimated more than overestimated is the
Slater/Devil (SD) wildfire. This result is caused by the fact that, in the SVM estimation,
the fire and clear ground pixels are integrated as spatiotemporal points located at the
pixel center. However, the algorithm classifies pixels using the whole extent of the pixel,
which can be more than 1 km2 depending on the scan angle and product resolution.
For future work, a non-convex optimization could be applied to overcome this limitation.
Furthermore, as one can observe in the results from Slater/Devil (SD) and LNU Lightning
Complex (LNU) wildfires, the machine learning method can successfully estimate burnt
area during the initial stage of fire progression before satellite fire detection pixels by
interpolating between the clear ground detection pixels and the earliest fire detection pixels.
In both cases, the IR fire perimeter circles are transparent, indicating the absence of fire
detection pixels prior to the perimeter time. Before the first fire detection pixel, the clear
ground detection pixels inform where the fire is not burning to the machine learning
method, allowing the capture of fire progression prior to the appearance of fire detection
pixels. In general, final burned areas estimated from the SVM method are also very close
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to the final burned areas reported for each fire in Table 1. Table 2 reports, for each fire,
the percentage error between total burned areas from the machine learning method and
reported by CALFIRE showing total burned areas overestimated by the SVM method in
positive values (AC, LNU, CK, NC, SQF, DC, and BC) and underestimated in negative
values (SCU, SD, and RSC). The percentage errors are between −2% and 13%, with an
absolute average of 5% for all the fires.
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Figure 6. Fire area comparison between machine learning estimation (blue line) and IR fire perimeters (colored points)
for the top 10 largest wildfires of 2020 in California (Table 1). Circle colors represent the percentage of satellite L2 AF fire
detection pixels falling between consecutive IR fire perimeters. Dashed black vertical line indicates the time snapshot of the
example showed in Figures 5 and 7.

3.2.2. Spatial Discrepancies

For each top 10 wildfires, spatial discrepancies at every observed IR fire perimeter
time are computed. In this work, we estimate spatial discrepancies using the Sørensen’s
coefficient (SC) [64], calculated as:

SC =
2A

2A + B + C
,

where A is the area burned for both IR and SVM estimated perimeters representing matches
(true positives), B is the area burned by IR perimeter and unburned by SVM (false nega-
tives), and C is the area indicated as burned by SVM estimated perimeter and unburned by
IR perimeter (false positives). So, in other words, A is the area burned with an agreement
between both perimeters, B the area burned underpredicted by the SVM method, and C
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the area burned overpredicted by the SVM method. SC ranges between 0 and 1, where
values close to 1 represent a high spatial agreement between the observed IR perimeter
and the SVM estimated one. Figure 7 shows an example of how the SC can be computed
for the August Complex fire on 15 September 2020. The spatial discrepancy between an IR
perimeter (discontinuous blue polygon) and an SVM estimated perimeter (discontinuous
red polygon) is computed using burned areas A (green area), B (blue area), and C (red
area). The SC value for this example is 0.915, proving a high spatial agreement between
both perimeters.

Figure 7. Example of spatial discrepancy using Sørensen’s coefficient for the August Complex
wildfire (value of 0.915).

Two other scalar attributes for characterizing the contingency table of SVM versus IR
perimeters [65] are the Probability of Detection (POD) and the False Alarm Ratio (FAR),
calculated as

POD = A
A+B and FAR = C

A+C , (5)

which range between 0 and 1. The POD, commonly known as the hit rate or sensitivity, is
the ratio of fire burned area predicted using the SVM method that is also burned by the IR
fire perimeters. Therefore, values close to 1 indicate that the SVM method detects where
the fire is happening effectively. The FAR is the ratio of fire burned area predicted using
the SVM method that is not burned by the IR fire perimeters. It has a negative orientation;
values close to 0 indicate that the SVM method is not burning erroneous regions.

Table 2 shows for each fire, the POD, FAR, and SC averaged at all the times that IR fire
perimeters were provided. All the mean POD values are greater than 0.8, except for LNU.
The value of 0.68 in the LNU fire is caused by the fact that only three IR fire perimeters
were provided, and the first of those was measured before any fire detection pixel was
sensed (Figure 6). However, an average POD value of 0.86 indicates that if the SVM method
characterizes a location as having fire, the IR perimeters also indicate fire 86% of the time.
All the mean FAR values are around 0.2 with the same previous exception of LNU because
of the same reason. An average FAR value of 0.21 indicates that, 21% of the time, SVM is
predicting fire where IR perimeters show none. Appendix A provides a more extensive
analysis of POD and FAR values and their relation to the SVM overprediction of the fire
extent. Finally, all the mean SC values are around 0.8 with the same previous exception of
LNU because of the same reason. The average for all the wildfires is 0.82, proving that the
SVM method can provide an accurate spatial representation of the fire extent.

Figure 8 depicts the SC (black line with dots) for the top 10 largest wildfires of 2020
in California at every IR fire perimeter time. The dashed black vertical line represents the
time of the August Complex (AC) wildfire snapshot showed in Figures 5 and 7. Overall, SC
values are close to 1, indicating a high spatial agreement between the fire extent estimated
by SVM and derived from IR fire perimeters. The SC tends to increase over time as it is
gradually easier for the SVM method (based on relatively coarse satellite data) to accurately
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capture the fire area as the number of fire detection pixels increases. Consequently, some
of the lowest agreement values occur at the time of the first IR fire perimeter when the
number of fire pixels is low due to the small fire extent (see initial fire burned areas for
LNU, RSC, and BC fires in Figure 6). Furthermore, in Red Salmon Complex (RSC) fire,
there are sudden and abrupt changes in the SC value. These fluctuations are caused by
the abundance of observed IR fire perimeters for this particular case, which provided very
frequent fire perimeter scans.
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Figure 8. Spatial discrepancies using the Sørensen’s coefficient between machine learning estimation and IR fire perimeters
(black lines with filled circles on perimeter times) for the top 10 largest wildfires of 2020 in California (Table 1). The areas
necessary to calculate the discrepancies are plotted in dash lines. Dashed black vertical line indicates the time snapshot of
the example showed in Figures 5 and 7.

To better understand the observed SC variability, the matching area A (dotted green
line), false-negative area B (dotted blue line), and false-positive area C (dotted red line) are
plotted in the same Figure 8. Plotting these areas allows us to identify the impact of over
and under-prediction on the SC values. For instance, as mentioned in the previous section,
the SVM method tends to overestimate burned area as the dotted red lines are generally
over the dotted blue lines. In fact, on average, the dotted red lines are over the dotted blue
lines by 63% (Table 2). In addition, the increases in the under and overpredicted areas
are generally associated with significant fire growth as indicated by the corresponding
increases in the intersecting areas (dotted green lines), which can be used as a proxy for the
fire size.

Figure 9 shows a comparison between L2 AF fire detection pixels, results from SVM
estimation, and observed IR fire perimeters for five special cases out of the top 10 largest
wildfires of 2020 in California, one per row. This figure allows for a visual assessment
of spatial discrepancies. All the plots are colored using a rainbow colormap with the
range depending on the event start and end times from Table 1. The first column shows
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a scatter plot of the L2 AF fire detection pixels plotted in different sizes depending on
their confidence level, the second column depicts the continuous fire arrival time from
the machine learning method, the third column plots the same previous fire arrival time
but only at the IR perimeter times, and the fourth column shows the observed IR fire
perimeters. The rest of the 10 cases can be found in Appendix B.

DC

SD
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SCU

AC

L2 AF SVM IRSVM at IR
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End
Time

[a] [b] [c] [d]

[e] [f] [g] [h]

[i] [j] [k] [l]

[m] [n] [o] [p]

[q] [r] [s] [t]

Figure 9. Special cases (one per row) chosen from the top 10 largest wildfires of 2020 in California (Table 1). L2 AF satellite
fire detection pixels (first column, a,e,i,m,q), continuous fire arrival time from SVM (second column, b,f,j,n,r), perimeters
from SVM at IR perimeters time (third column, c,g,k,o,s), and observed IR fire perimeters (fourth column, d,h,l,p,t). Circles
depict where the satellite data captured fire detection pixels that are not part of the IR fire perimeters. Red circles depict
where the SVM method filtered out those pixels, and green circles show where the method detected smaller fires not
captured by the NIROPS operations. The rest of the cases can be found in Appendix B.

The first two columns of Figure 9 visualize how the SVM method integrates the satellite
data into a continuous fire progression. For instance, looking at the August Complex (AC)
and SCU Lightning Complex (SCU) wildfires (Figure 9a–h), it can be seen that this method
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ignores fire detection pixels of low confidence level (red circles) while preserving small
fires for cases where the confidence level of those detection pixels are high (green circles).
The two isolated dark blue detection pixels in the north-center and center-west surrounded
by a red circle in Figure 9a are filtered out and are not present in the SVM results shown
in the next column (Figure 9b). However, at the same time, the SVM still preserves small
fires, like the south-west cyan one (surrounded by a green circle in Figure 9a), as long as
the confidence of the detection pixels is high. A closer examination of the fire detection
pixels in this region revealed that these pixels correspond to the much smaller Oak fire
that was not mapped by NIROPS focused on the August Complex fire. A similar situation
happens with the SCU wildfire, where the method is able to distinguish a much smaller
fire not mapped by NIROPS, the Coyote fire (detection pixels surrounded by a green circle
in Figure 9e).

The last two columns illustrate spatial discrepancies between SVM-estimated and
observed fire extent at the time of IR perimeters. While the level of details provided by
the SVM method is not as high as in the IR perimeters in terms of spatial representation,
the SVM method does still provided a very good representation of the overall fire progres-
sion. Since the SVM method is based on satellite detection pixels, it is particularly valuable
in situations where the number of available IR perimeters is low (SCU, LNU, and SD) or
non-existent. For these cases, the method proposed in this article provides a continuous
near-real-time representation of the fire progression not available from other data sources.

To summarize, the SVM method proposed here is sometimes sensitive to false alarms
from the L2 AF satellite data. For instance, in the DC wildfire (Figure 9q–t), false positive
detection pixels over the ocean resulted in unrealistic offshore fire progression. This
problem could be potentially rectified by increasing the threshold of the confidence level
below which fire detection pixels are filtered out or use ancillary data to generate a mask
correcting false positive detection pixels over nonburnable areas corresponding to water
bodies. The LNU wildfire (Figure 9i–l) is a good example illustrating that the proposed
method can estimate the fire progression of three concurrent fires. However, the accuracy
of the method may be limited by sparse fire detection pixels. The white holes produced at
the start of the SD wildfire illustrates this problem (Figure 9m–p). A higher spatiotemporal
resolution in the L2 AF satellite data or/and further refinement of the method would be
required to overcome this problem.

4. Discussion and Conclusions

The proposed SVM method integrates MODIS and VIIRS active fire data to estimate
fire progression using a machine learning method. Both datasets are provided by polar-
orbiting satellites and deliver global coverage. Therefore, the presented method can be
applied globally. The method incorporates both fire and clear ground detection pixels in a
spatiotemporal space and can integrate additional data to overcome potential problems
associated with limited temporal and spatial resolutions of the current satellite products.
For instance, while, in this study, the airborne IR fire perimeters were used for validation
only, the method can also integrate both the satellite data and airborne IR observations for
improved accuracy.

In lieu of a typical spatial interpolation, the presented SVM method identifies fires
spatiotemporally, integrating fire and clear ground detection pixels using the fire arrival
time concept. The fire arrival time is calculated as the minimal time separating areas burn-
ing and not burning by using a cubic splines interpolation at each location. The satellite
observations, which are discrete in time, are used to train the machine learning method pre-
sented here, which provides a continuous description of the fire progression. The fire extent
can then be estimated at any given time in contrast with the similar studies mentioned in
the introduction, which are designed to provide a daily estimate of the fire extent given the
satellite data. Moreover, this novel method was proven to deal with false alarms or outliers
by utilizing the confidence level associated with each fire detection pixel. The method
also handles better small-scale irregularities since it provides a smooth estimation of the
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fire evolution for its kernel mathematical properties. Finally, the proposed method pro-
vides good quality estimates between satellite overpasses since it uses a weighted learning
process not only utilizing the fire detection pixels but also the clear ground ones.

Even though, on average, 81% of the L2 AF fire detection pixels were spatiotemporally
correlated to the observed IR fire perimeters, the need for a statistical learning method
was proven to limit the overfitting of the data. The method presented deals with that
by utilizing the confidence levels provided with satellite fire detection pixels. This strat-
egy allows the fire progression to be primarily driven by high-confidence fire detection
pixels, while low-confidence pixels are filtered out, thus having a limited impact on the
estimated fire progression. This feature allows this method to deliver robust results even
when the input satellite data suffer from errors associated with obstructions of satellite
view by dense smoke or clouds, oblique scan angles, terrain shading, or other factors,
without compromising the representation of small fires.

The resulting SVM-based fire arrival time estimates were evaluated using independent
observed IR fire perimeters for 10 different fires. Both the time progression of the burned
area and the spatial fire extent at the perimeter times matched well IR observations proving
the method’s ability to provide a continuous near-real-time estimation of the fire progres-
sion not available from other data sources. On average, 12% mean absolute percentage
error of burned area, 5% percentage error of total burned area, 0.21 False Alarm Ratio, 0.86
Probability of Detection, and 0.82 Sørensen’s coefficient indicated a high spatiotemporal
agreement between estimated fire arrival time and airborne IR perimeters.

The SVM method does have some limitations that should be considered. The SVM
method generally tended to overestimate the fire area. On average, 63% of the errors
between the SVM method and IR fire perimeters are caused by an overestimation. This
problem is believed to be associated with the fact that fire and clear ground detection pixels
are integrated as spatiotemporal points located at the pixel center. However, the detection
algorithm classifies pixels using the whole extend of the pixel, which can be much larger
than one square kilometer, especially for oblique scan angles. Therefore, for future work,
we propose to deploy a non-convex optimization to overcome this limitation. In addition,
the SC representing the level of agreement between the SVM and IR derived perimeters
tends to be lower at the beginning of the fire events, when the number of satellite detection
pixels was low and when the size of the fire was small. We believe that future data sources
with higher spatial and temporal resolutions may alleviate this problem. Future work
could also include a systematic study focused on better representation of the confidence
threshold used to filter out false fire detection pixels, as well as exploration of more
meaningful ways to tune hyperparameters. The method could also benefit from the use of
ancillary data allowing to avoid false fire detection pixels over unburnable regions, as well
as incorporating other satellite data sources, like GOES or burn scar data, among others.

Supplementary Materials: The Python code acquiring L2 AF satellite data intersecting an AOI and
a time interval as mentioned on Section 2.2, running the SVM method described on Section 2.4,
and estimating fire arrival time as proposed on Section 2.5.3 is available online at https://github.
com/openwfm/JPSSdata (accessed on 1 June 2021).
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Appendix A. Performance Analysis

To further assess the performance of the SVM method using IR fire perimeters, this
appendix includes a more concise analysis of some metrics averaged and shown in Table 2,
Probability of Detection (POD) and False Alarm Ratio (FAR). These metrics were initially
described and analyzed in Section 3.2.2. For every fire and at every IR fire perimeter time,
we computed A or the area burned for both IR and SVM (true positives), B or the area
burned by IR and unburned by SVM (false negatives), and C or the area burned by SVM
and unburned by IR (false positives). These three parameters computed at every fire and
IR fire perimeter time are then used to compute POD and FAR using equations in (5).
Figure A1 plots every case as a function of 1-FAR or success ratio on the independent axis
and POD on the dependent axis using a 2D scatter plot colored by the wildfire. This kind
of plot is commonly called performance diagram [65] and provides another way to analyze
differences between perimeters extracted from the SVM method and the observed IR fire
perimeters. The plot shows two new metrics, the critical success index using black dashed
curves and the bias represented as gray dotted lines. The critical success index is the
proportion of area correctly burned (value between 0 and 1) and represents the accuracy
of the SVM method. The bias is the ratio of area burned estimated by SVM over the area
burned by the IR fire perimeters. Therefore, a bias of 1 indicates that the SVM method is
unbiased with respect to IR fire perimeters. The SVM method overestimates the fire extent
if the bias is greater than 1 and underestimating if less than 1.
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Figure A1. Performance diagram of the top 10 largest wildfires of 2020 in California (Table 1). Each colored star depicts the
performance of the SVM method compared to the IR fire perimeters at one specific IR fire perimeter time. The color of the
star indicates the wildfire case. The black dashed curves are critical success index, and the gray dotted lines are bias.

The first thing that one can notice in Figure A1 is the red outlier. This point corresponds
to the first perimeter of the LNU fire, which was emphasized in Section 3.2.2 to be a problem
due to the fact that the IR fire perimeter was measured prior to any fire detection pixel. In
addition, one can observe that most of the points have a bias slightly greater than 1 proving
the SVM overprediction of the fire extent observed in Section 3.2.2. However, there is one
pink point clearly underpredicting the fire extent which corresponds to the first perimeter
of the SD fire, which was shown in Table 2 to be the only case which SVM underpredicted
more than overpredicted with MP Overpredicted of 44%. Finally, one can observe that
most of the points have a critical success index close to 1 proving that the SVM method can
provide accurate fire arrival times for improving fire modeling.

Appendix B. Rest of the Cases

For reference, Figure A2 in this appendix includes all the cases missing in Figure 9.
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Figure A2. The rest of the cases (one per row) from the top 10 largest wildfires of 2020 in California (Table 1). L2 AF satellite
fire detection pixels (first column), continuous fire arrival time from SVM (second column), perimeters from SVM at IR
perimeters time (third column), and observed IR fire perimeters (fourth column).
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