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Scale Comparisons of Microbiome Dynamics and Ecological
Consequences
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bData Science Initiative, University of Oregon, Eugene, Oregon, USA
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ABSTRACT Coupling remote sensing with microbial omics-based approaches pro-
vides a promising new frontier for scientists to scale microbial interactions across
space and time. These data-rich, interdisciplinary methods allow us to better under-
stand interactions between microbial communities and their environments and, in
turn, their impact on ecosystem structure and function. Here, we highlight current and
novel examples of applying remote sensing, machine learning, spatial statistics, and
omics data approaches to marine, aquatic, and terrestrial systems. We emphasize the
importance of integrating biochemical and spatiotemporal environmental data to
move toward a predictive framework of microbiome interactions and their ecosystem-
level effects. Finally, we emphasize lessons learned from our collaborative research
with recommendations to foster productive and interdisciplinary teamwork.

KEYWORDS geographic information systems, machine learning, metabolomics,
microbiome, modeling, remote sensing, spatial ecology, unmanned aerial vehicle

Exploring Earth's microbial diversity provides a deeper understanding of microbial
interactions that structure ecosystems and shape biodiversity (1, 2). For example, the

discovery of the most abundant photosynthetic organism on Earth, Prochlorococcus (3),
redefined our understanding of the microbial contribution to global primary productivity
and marine trophic dynamics (4). Found in oligotrophic oceans, Prochlorococcus pro-
duces an estimated 4 gigatons of fixed carbon annually (4, 5). Similarly, in host-symbiont
systems, microbial primary productivity fuels ecosystems by feeding habitat-forming
hosts; corals that house intracellular microalgal symbionts and cover ,1% of the ocean
floor create habitat for;25% of marine biodiversity (6, 7). Use of microscopy and careful
laboratory experiments led to some of the great microbial discoveries of the 20th cen-
tury; omics-based molecular tools expand our capacity to study the ecology and evolu-
tion of microbes in the 21st century (8).

For (microbial) research, the future is big—and small. Scientists can leverage power-
ful, cross-disciplinary approaches that pair omics tools with remote sensing and spatial
statistics to study spatiotemporal variation in microbiome interactions. For example, by
studying Vibrio-plankton interactions, climate, and genomics, researchers understand
how humans facilitate Vibrio cholerae dispersal and how rising sea surface tempera-
tures and heavy rainfall promote Vibrio cholerae outbreaks (9–12). Leveraging remote
sensing for monitoring and predicting pathogen outbreaks or spread in natural and
agricultural systems, like tracking the emerging infectious pathogen Phytophthora
ramorum, which causes sudden oak death, or detecting presymptomatic leaf stripe dis-
ease in grapevines (13–15), illustrates the power of creative, collaborative science.
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Here, we discuss the use of remote sensing and machine learning with omics-based
technologies to create an atlas of host-associated and free-living microbes and their
diverse ecologies. We highlight ecosystems where scaling microbial interactions
through space and time may be particularly fruitful for understanding consequences
for populations and communities.

NEW FRONTIERS FOR REMOTE SENSING OF MICROBIAL DYNAMICS AND
DYSBIOSIS

Advances in remote sensing technologies provide new opportunities to understand
microbial dynamics. Global-scale observations from satellites enable spatial resolution
of 10 m to 1 km with a revisit cycle of days to weeks (16). More recently, unmanned
aerial vehicles (UAVs) provide more flexible methods with up to 1 cm spatial resolution
and on-demand mapping capabilities (17). UAVs can detect changes in plant micro-
biomes and phytoplankton communities through spectral signatures (Fig. 1) (13, 18,
19). These applications may be adapted to other habitat-forming species and their
microbiomes, like those in grasslands, kelp forests (20), or coral reefs (21), as hyper-
spectral sensors become more affordable (18). Importantly, UAVs fly at low altitudes,
circumventing cloud interference that can result in incomplete data sets from satellites.

FIG 1 Remote sensing in aquatic and marine ecosystems can reveal how microbiome dynamics
cascade across scales to impact ecosystem functions. (A) In freshwater ecosystems, cyanobacterial
blooms impact drinking water and human and wildlife health (23); composition and persistence of
these blooms may be linked to nutrient cycling by heterotrophic bacteria in the phycosphere of
microalgae or cyanobacteria (22, 27). (B) In seagrass meadows, the infectious pathogen Labyrinthula
zosterae causes seagrass wasting disease by invading plant tissue and attacking chloroplasts, with severe
outbreaks causing shoot mortality and meadow decline (58); aerial images can detect changes in
meadow extent (17) and may detect damage to seagrass tissue (18). (C) Intertidal and subtidal coral reefs
are another system where remote sensing of microbial dynamics underpinning ecosystem disturbance
(e.g., coral bleaching) may be possible as algorithms advance and hyperspectral sensors become more
affordable (18, 21, 32). Figure created by Lillian R. Aoki, with feedback and contributions from all authors.
Symbols provided courtesy of the Integration and Application Network (ian.umces.edu/media-library).

Perspective

November/December 2021 Volume 6 Issue 6 e01106-21 msystems.asm.org 2

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 1

3 
A

pr
il 

20
23

 b
y 

98
.4

5.
22

0.
27

.

http://ian.umces.edu/media-library
https://msystems.asm.org


Thus, UAV imagery provides a novel avenue for correlating ecological observations
with microbial dynamics over space and time. Rich environmental data sets from satel-
lite remote sensing can supplement fine-scale UAV imagery (e.g., temperature, precipi-
tation, and turbidity in Fig. 2). We present two case studies that illustrate how remote
sensing—when coupled with omics approaches—can improve monitoring and predic-
tion of macroscale phenomena.

CASE STUDY: PHYTOPLANKTON BLOOMS

Combining microbiome and remote sensing methods can advance our understanding
of phytoplankton bloom dynamics (Fig. 1). Harmful algal blooms (HABs) are of critical con-
cern, as they impact human and wildlife health (22, 23). However, complex bloom dynam-
ics—formation, composition, persistence, and toxicity—are challenging to predict (24,
25). Manual probe measurements are slow and provide limited coverage. In contrast, sat-
ellites, aerial flights, and on-demand UAVs can collect spectral imagery (chlorophyll-a and
phycocyanin pigments) (Fig. 2) to quantify spatial and temporal bloom dynamics rapidly
and across large areas (19, 26). These methods measure cyanobacteria or algal biomass
and can evaluate potential environmental drivers (auxiliary remotely sensed data prod-
ucts) (Fig. 2) but cannot detect toxin presence or differentiate species within blooms.

Interactions within plankton communities and among heterotrophic bacteria and
bloom-forming species (22, 27) indicate that omics approaches (e.g., 16S metabarcoding,

FIG 2 Overview of process linking remote sensing and microbial approaches. (A) Images collected from UAV, aerial, and satellite, coupled with auxiliary
remotely sensed and publicly available data products, provide spectral and environmental site characteristics. Researchers collect in situ microbial samples
in tandem with identifying macroorganism diversity and composition. (B) Use of a geographic information system (GIS) to process remote sensing data
into raster data and paired auxiliary and in situ data into vector data with geographical coordinates. Derivation of spectral signature, normalized difference
vegetation index (NDVI), leaf area index (LAI), green leaf index (GLI), and other metrics from remote sensing imagery and characterization of metabolomic
and microbial diversity with established protocols (8, 42, 43) allow connections between remotely sensed ecosystem traits and microbial dynamics to be
discerned. (C) Assimilation and fusion of multisource data with spatial statistics, including spatial sharpening and temporal prediction, increases coverage
and resolution of data sets (44, 45). Random forest regression algorithms and ensemble methods predict microbial and metabolomic dynamics with
remotely sensed and in situ data. (D) By coupling multisource data from remote sensing and environmental and in situ sampling, calibrated models
generate environmental characteristics, predict microbial and metabolomic diversity, and disentangle multiple stressors with uncertainty estimates. Figure
created by Bo Yang, with feedback and contributions from all authors. Symbols provided courtesy of the Integration and Application Network (ian.umces
.edu/media-library) or reprinted from TogoTV (© 2016 DBCLS TogoTV) with permission.
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metagenomics, and metabolomics) (Fig. 2) coupled with remotely sensed algal or cyano-
bacterial biomass (26) would be a powerful approach to predict bloom dynamics. For
example, comparisons between microbial community composition, concentrations of the
cyanobacterial toxin microcystin, and microcystin biosynthesis genes suggest that algici-
dal and microcystin-degrading bacteria may control toxicity of cyanobacterial blooms
(28). With the advent of UAV imaging technology, biomass and high-resolution spatial
measurements of cyanobacteria (19) can be paired with metabolomic surveys targeting
toxins, allelopathic compounds (25), or vitamins and nutrients within bloom communities
(22). Repeated measures at flexible and relevant temporal scales (e.g., days to months for
bloom formation and persistence) and spatial scales (e.g., across salinity, temperature, or
turbidity gradients) can reveal linkages between macroscale and microbial dynamics and
environmental drivers. We can develop a predictive framework of toxic bloom formation
and persistence by synthesizing these approaches.

CASE STUDY: SEAGRASS DISEASE

Disease outbreaks in seagrass meadows present another promising case study for
applying remote sensing to understand microbial dynamics. Seagrasses create habitat
that supports biodiversity but are declining globally due to multiple stressors, includ-
ing disease (29, 30). Meadows grow in shallow coastal waters; intertidal seagrass can
be mapped at low tide by UAVs (17, 31), and water correction algorithms allow map-
ping of subtidal meadows (32, 33). We can derive ecosystem-level characteristics such
as plant biomass and above-ground carbon stocks from UAVs and satellite measure-
ments in response to disease outbreaks (34, 35). Further, UAVs (1-cm resolution)
(Fig. 2) can detect foliar plant pathogens that alter leaf spectral signatures; these
advances are currently implemented to manage pathogens in agricultural systems (13,
18) and have the potential to detect wasting disease lesions on seagrass leaves (Fig. 1).

Despite widespread occurrences of seagrass wasting disease outbreaks and vast
consequences for marine ecosystems (29, 30), causes of disease are not well under-
stood (30). Multiple stressors may interact to suppress plant immune function and/or
photosynthesis and may also promote pathogen growth or virulence (29, 30, 36, 37).
Remotely sensed data (Fig. 2) can be used to test for interactive effects of stressors,
such as light-limiting algal blooms from chlorophyll-a and phycocyanin, warming from
thermal sensors, and freshwater discharge events (13, 19, 26, 38) on disease outbreaks.
Indeed, remotely sensed thermal anomalies were recently linked to wasting disease se-
verity (L. R. Aoki, B. Rappazzo, D. S. Beatty, L. K. Domke, G. L. Eckert, M. E. Eisenlord, O. J.
Graham, L. Harper, T. L. Hawthorne, M. Hessing-Lewis, K. Hovel, Z. L. Monteith, R.
Mueller, A. M. Olson, C. Prentice, C. Ritter, J. J. Stachowicz, F. Tomas, B. Yang, J. E. Duffy,
C. Gomes, and C. D. Harvell, submitted for publication). By collecting geospatially
paired omics data such as root metabolomes, foliar microbiomes, or quantitative abun-
dances (qPCR) of pathogens (Fig. 2), we can obtain a more holistic understanding of
how stressors may interact to disrupt beneficial microbiomes (39) or promote patho-
genic microbiomes (40). Thus, by coupling high-resolution UAV-based detection of
foliar diseases and satellite-sensed biotic and abiotic stressors, we can move toward a
synthetic understanding of the ecological consequences of microbial dysbiosis.

APPLICATIONS FOR REMOTE SENSING, MACHINE LEARNING, SPATIAL STATISTICS,
AND OMICS DATA

We can model, monitor, and predict ecological change by pairing UAV, aerial, and
satellite remote sensing with in situ surveys. From sensors that detect visible (red, blue,
and green), near-infrared, microwave, and thermal bands, we can derive variables such
as chlorophyll-a levels, spectral signatures for green leaf index (GLI), normalized differ-
ence vegetation index (NDVI) for above-ground plant biomass, phycocyanin for cyano-
bacterial biomass, and temperature (13, 16, 18, 26). Discussions on sensors and derived
products can be found in detail elsewhere (13, 16, 18, 41). Additional data from mete-
orological and hydrological stations and other publicly available data sets provide

Perspective

November/December 2021 Volume 6 Issue 6 e01106-21 msystems.asm.org 4

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 1

3 
A

pr
il 

20
23

 b
y 

98
.4

5.
22

0.
27

.

https://msystems.asm.org


environmental site characteristics. Remote sensing data are processed into raster data
(e.g., gridded pixel matrix in Fig. 2) within a geographic information system (GIS, such
as ArcGIS or ENVI) and validated against in situ data using geographical coordinates
(i.e., vector data) (Fig. 2). In situ sampling enables ground-truthing aerial images with
microbial indicators from 16S metabarcoding, metagenomics, and targeted or untar-
geted metabolomics (Fig. 2) processed with established protocols (8, 42, 43). Further,
spatial statistics can fuse remotely sensed data collected at varied spatial resolutions
and temporal frequencies from satellites, planes, and UAVs for better coverage (44, 45).
With machine learning and statistical modeling, implemented with training data and
model validation, we can predict microbial dynamics and their ecological consequen-
ces. For example, georeferenced data sets may indicate microbial or chemical predic-
tors of remotely sensed environmental change like algal blooms (19, 26), plant produc-
tivity or biomass (34, 35, 46), and disease (13, 14, 18). These approaches can be applied
to aquatic, marine, and terrestrial ecosystems.

LEVERAGING CROSS-SYSTEM COMPARISONS

Between-system comparisons reveal shared knowledge gaps in understanding how
microbial interactions influence ecosystem-level change. Microbes underpin ecosystem
function (2, 47), partially due to their diverse metabolisms and ability to respond rap-
idly to environmental perturbations, including global change stressors (48, 49).
Microbiome metrics may be particularly suited to identify and predict large-scale shifts
in ecosystem structure and function (46, 50). This requires integrating knowledge of
how stressors impact hosts, microbes, and host-microbe interactions through time and
space (51), a challenge for aquatic ecosystems, where chemical and microbial diversity
—and their dynamics—remain underexplored (52).

A deeper understanding of host-microbe interactions can help identify microbial signs
of ecosystem perturbations. For example, commensal nutrient cycling bacteria are critical
to productivity of seagrasses (53), corals (54), and phytoplankton (22, 27); disruption of
nutrient exchange between heterotrophic bacteria and primary producers is linked to
coral bleaching (55), harmful algal blooms (56, 57) and seagrass disease (58). Yet the fac-
tors that disrupt nutrient cycling within these complex communities are not always clear,
leaving the likelihood, timing, and spatiotemporal extent of large-scale ecosystem change
uncertain. In seagrass rhizospheres, environmental stress can shift dominant methylotro-
phic, nitrogen-fixing, and iron-cycling bacteria to sulfur-cycling bacteria, but the conse-
quences of these changes for seagrass and ecosystem health remain unclear (59). A better
understanding of host-microbe chemical interactions—including nutrient, vitamin, and
substrate exchange, growth and virulence factors, and predation and defense (27, 60)—is
key to identifying appropriate microbial indicators of ecosystem change.

Synthesizing omics data with physiochemical environmental drivers can address im-
portant knowledge gaps. In some cases, microbial data can be early warning indicators,
revealing ecosystem impacts like disease outbreaks or microbial dysbiosis prior to mac-
roscale observations (40, 48, 50). For instance, under warming conditions, changes in
coral mucus bacterial community and sugar composition can precede visible bleaching
symptoms that occur when corals expel their photosymbionts (61). Understanding mi-
crobial change requires baseline data from a healthy or undisturbed state and consid-
eration of multiple potential triggers, including factors such as host resistance and
local and global environmental stressors (40, 48). New approaches can leverage
machine learning to identify relevant predictors from microbial community data (46,
50) and apply spatial statistics to connect discrete in situ samples to continuous,
remotely sensed data (62). Coupling these methods to develop predictive models can
expand the spatiotemporal scales across which we understand ecosystem-level micro-
bial impacts. Failure of predictive models can also indicate ecologically significant
interactions that warrant further investigation (63).

The need for predictive ecological modeling is accelerating in tandem with global
environmental change (64). Microbiomes are increasingly recognized as foundational

Perspective

November/December 2021 Volume 6 Issue 6 e01106-21 msystems.asm.org 5

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 1

3 
A

pr
il 

20
23

 b
y 

98
.4

5.
22

0.
27

.

https://msystems.asm.org


to ecosystem services, underscoring the need to assess the influence of multiple stres-
sors on microbial and ecosystem change (49). Synthesizing microbial and remotely
sensed data through time and space is resource-intensive and interdisciplinary; collab-
orative networks are critical to illuminate the cascade of cross-scale interactions that
lead to disease outbreaks, changes in biodiversity, and other shifts in ecosystem status
and function.

CONCLUSION

What can we learn from an interdisciplinary approach of integrating microbial, remote
sensing, and machine learning methods? Coupling microbial and remote sensing data
may allow more accurate predictions about how microbiomes may shift in future climate
change scenarios (9, 11, 14, 56) and, in turn, better estimate the biogeochemical, ecosys-
tem-level impacts of such microbial shifts, like carbon and nutrient cycling. We suggest
that these approaches will enable more precise predictions of where and when harmful
algal blooms (56) or disease outbreaks (13, 18) are likely to occur and their effects on car-
bon storage or losses across variable landscapes (34, 35). Such knowledge may improve
conservation and management of natural resources by informing the timing and location
of plant restoration activities, coastal development projects, or recreational use of land
and waterways. Additionally, microbial indicators from omics data could inform adaptive
management strategies to reduce disease incidence or severity. Albeit somewhat contro-
versial, manipulating microbiomes with probiotics (65) or antibiotics (66) could reduce
disease severity in corals and other foundation species. Remote sensing may be able to
help identify and prioritize disease-susceptible populations for probiotic treatment (13–
15). Because climate change rapidly creates novel environmental conditions, we urgently
need better predictors of nonlinear ecosystem change to develop adaptive management
plans.

Successful implementation of paired geospatial and omics research approaches will
require collaboration among ecologists, microbiologists, computer scientists, and geogra-
phers. To push our fields forward, we need structured workshops to foster connections,
develop skills, and infuse expertise and creativity into our shared research initiatives. For
example, training workshops that bring together users of geospatial, machine learning,
and omics tools to brainstorm unique data use, storage, and analyses are needed to cre-
ate efficient data pipelines and promote novel findings. Importantly, teams should
include and support individuals from historically excluded and marginalized groups, dis-
parate research fields, and career stages. Doing so will create more equitable opportuni-
ties to engage in research (67). We advocate that teams also participate in training on
best practice for working in large, interdisciplinary groups (68). By applying these
approaches, together we can advance the field of microbiome research, connecting mi-
crobial interactions to dynamic ecosystem functions across time, space, and disciplines.
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