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1 Introduction

The modular theory of Tomita and Takesaki [1–5], developed within the context of the
algebraic quantum field theory, provides important rigorous tools to understand various
aspects of the bipartite entanglement in quantum field theories.

Considering a von Neumann algebra A of observables localised in a spacetime region
and in standard form (meaning that it acts on a Hilbert space H containing a cyclic and
separating vector Ω), the conjugate linear operator S : AΩ→ AΩ is such that SOΩ = O∗Ω,
for any operator O ∈ A. The unique polar decomposition of S reads S = J ∆1/2, where ∆
is a self adjoint, positive (unbounded in general) operator called modular operator of (A,Ω)
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and J is an antiunitary operator called modular conjugation of (A,Ω). It turns out that the
vector Ω is invariant, i.e. ∆Ω = Ω and JΩ = Ω, and also that J = J∗ = J−1. The modular
operator ∆ can be written as ∆ = e−K where K is the (full) modular Hamiltonian, a self
adjoint operator whose real spectrum extends in general over R and such that Ω is one of
its eigenvectors with eigenvalue equal to zero. A crucial role is played by the one-parameter
group made by the unitary operators ∆iτ with τ ∈ R. The theorem of Tomita and Takesaki
tells us that ∆−iτA∆iτ = A and ∆−iτA′∆iτ = A′ for A and its commutant A′ for any
τ ∈ R, and that JAJ = A′. This theorem leads to introduce the group of the modular
automorphisms of the state Ω on A, whose generic element is the map στO ≡ ∆iτO∆−iτ ,
for any O ∈ A, which determines the modular evolution (flow) of O generated by K.

For a local relativistic quantum field theory in its ground state whose space is bipartite
by a region A and its complement B in a non trivial way, the theorem of Tomita and
Takesaki can be applied and K = KA⊗1B−1A⊗KB, where KA and KB are the modular
Hamiltonians of A and B respectively. Typically, στ and J do not have a geometric
action; indeed, a direct geometric meaning for στ and J has been found only in very
few special cases [2]. The most important one corresponds to the theorem of Bisognano
and Wichmann [6, 7], which considers the bipartition associated to half space for a local
relativistic quantum field theory in its ground state. In this case the geometric action of
στ is given by the Lorentz boosts in the direction preserving the wedge and the geometric
action of J by a reflection of the time coordinate and of the spatial coordinate orthogonal
to the entangling hyperplane. Another important example is described in the theorem of
Hislop and Longo [8, 9], which considers a conformal field theory (CFT) in its ground state
and the bipartition determined by a sphere, providing also the geometric actions for the
corresponding στ and J . Instead, the action of στ and J is non geometric e.g. for a free
massive field theory in its ground state when the space bipartite by a sphere [4, 10, 11].

We consider a local CFT in 1 + 1 spacetime dimensions (2D). The modular operator
∆ in these models has been largely studied and various explicit expressions of modular
Hamiltonians have been found, both when the entire system is in its ground state [6–9, 12–
22] and in the thermal case [16, 17, 23–32]. Instead, the modular conjugation J and its
geometrical action have been less explored [2, 8]. It is worth remarking that the Tomita-
Takesaki modular theory provides insightful results when the 2D CFT is in a thermal state,
already when the space is the real line. Indeed, the occurrence of a non trivial commutant
naturally leads to consider also a second world which inherits the structure of the real
word through the modular conjugation, as highlighted by Borchers [24], by Schroer and
Wiesbrock [25] (who called it virgin spacetime or thermal shadow world) and by Longo et
al. [26, 28, 29] (who formalise this idea through the thermal completion).

In this manuscript we study the geometric action of some modular conjugations in 2D
CFT by employing the results in the Euclidean spacetime discussed in [17]. They include
the case of a 2D CFT in a thermal state on the line bipartite by an interval and the massless
Dirac fermion in the ground state on the line bipartite by the union of two disjoint intervals.

In the context of the gauge/gravity (holographic) correspondence, the prescription
proposed by Ryu an Takayanagi (RT) [33, 34] to evaluate the holographic entanglement
entropy in asymptotically Anti de Sitter (AdS) gravitational backgrounds has provided a
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very important tool to explore quantum gravity through quantum information concepts
in certain models. Focussing on static gravitational backgrounds, this formula claims that
the entanglement entropy SA of a region A in the dual CFT on the boundary of the
asymptotically AdS spacetime can be computed in such dual gravitational background
as SA = Area(γA)/(4GN), where GN is the Newton constant and γA (often called RT
hypersurface) is the codimension-two minimal area hypersurface belonging to the same
constant time slice of A, anchored to the boundary of A and homologous to A.

An insightful reformulation of the RT prescription has been suggested by Freedman
and Headrick in terms of the holographic bit threads [35]. Consider the bulk vector fields V
which are divergenceless ∇·V = 0 and norm bounded as |V | 6 1. By applying the Rieman-
nian geometry version of the max-flow/min-cut theorem, it turns out that Area(γA) is equal
to the maximum flux of one of these vector fields through the spatial region A in the bound-
ary of the asymptotically AdS background. The integral curves (or flow lines) of this vector
field are called (holographic) bit threads. In this setting, the RT hypersurface γA is the bot-
tleneck of the flow of a vector field satisfying this extremization condition. It is important
to remark that, while such vector field is uniquely fixed on γA, it is infinitely degenerate on
A. Further properties of the holographic bit threads at some fixed time slice have been dis-
cussed in [36–40] and also a covariant generalisation has been recently proposed [41]. Some
holographic bit threads configurations have been explicitly constructed in [38] by imposing
further reasonable requirements in order to reduce the above mentioned degeneracy.

Among the explicit holographic bit threads constructions proposed in [38], in this
manuscript we consider the geodesic flows (where the integral lines of the holographic bit
threads are also geodesics), showing that, for simple three dimensional gravitational back-
grounds and for some bipartitions given by an interval, they provide the same inversion
relation obtained from the geometric action of the modular conjugation for the correspond-
ing setup in the dual CFT.

The outline of the paper is as follows. In section 2 the main quantities considered
throughout our analyses are introduced. The CFT analysis for the simplest case, which
involves the bipartition of the line given by a single interval when the entire system is in the
ground state, is carried out in section 3. In section 4 the results of the previous section are
related to the geodesic bit threads in a constant time slice of Poincaré AdS3. In section 5 we
discuss the geometric action of the modular conjugation for a CFT in a thermal state and
on the line bipartite by an interval. In section 6, the resulting inversion map is related to the
geodesic bit threads in the BTZ black brane geometry. In section 7 we propose an inversion
map for the free massless Dirac field in the ground state and on the line bipartite by the
union of two disjoint intervals. Some conclusions are drawn in section 8. In appendix A we
explore the inversion map for a CFT on a circle bipartite by an interval and in its ground
state, and in appendix B we discuss the corresponding holographic construction through
geodesic bit threads in a constant time slice of global AdS3.

2 Single interval: modular flow of a chiral field

In this section we summarise some basic results about the modular Hamiltonians in 2D
CFT and their modular flows employed in the rest of the paper [8, 9, 12, 15–17, 21, 30].
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In the 1 + 1 dimensional Minkowski spacetimeM described by the coordinates (x, t),
we consider the light ray coordinates

u± ≡ x± t (2.1)

and a right (+) and a left (−) primary chiral field φ±(u±) of dimension h. Such fields
satisfy the following commutation relation [42]

[
T±(u±) , φ±(v±)

]
= i

(
δ(u± − v±) (∂φ±)(v±)− hφ±(v+) δ′(u± − v±)

)
(2.2)

where T± are the chiral components of the energy-momentum tensor. For the cases we are
interested in, the right and left modular Hamiltonians of a single interval A = [a, b] can be
written in terms of T± as follows

K±A = ± 2π
∫ b

a
β0(u±)T±(u±) du± (2.3)

with
β0(u) ≡ 1

w′(u) (2.4)

where the explicit form of the function w depends on the state of the entire system. For
instance, in the ground state we have

w(u) = log
(
u− a
b− u

)
β0(u) ≡ (b− u)(u− a)

b− a
. (2.5)

At finite temperature 1/β, we consider a thermal state for which the mean energy density
satisfies the Stefan-Boltzmann law [43]

〈Ttt(t, x)〉 ≡ 1
2 〈T+(x+ t) + T−(x− t)〉 = c π

12β2 (2.6)

where c is the central charge of the 2D CFT. According to [28, 29], for 0 < c < 1 this state
is unique, while for c > 1 the condition (2.6) selects a specific (geometric) thermal state.
In this case

w(u) = log
(sinh[π(u− a)/β]

sinh[π(b− u)/β]

)
β0(u) ≡ β

π

sinh[π(b− u)/β] sinh[π(u− a)/β]
sinh[π(b− a)/β] .

(2.7)
The modular evolution (flow) of φ±, generated by (2.3), reads

φ±(τ, u±) ≡ eiτK±
A φ±(u±) e−iτK±

A (2.8)

=
[
β0
(
ξ(±τ, u±)

)
β0(u±)

]h
φ±
(
ξ(±τ, u±)

)
=
[
∂u±ξ(±τ, u±)

]h
φ±
(
ξ(±τ, u±)

)
(see e.g. the appendix B of [21]), where τ ∈ R is the modular parameter and the function
ξ(τ, u) is fully determined by the function w as follows

ξ(τ, u) = w−1(w(u) + 2π τ
)

(2.9)
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where u ∈ A. Since ξ(0, u) = u for any u ∈ A by construction, the fields in (2.8) satisfy
the initial condition φ±(0, u±) = φ±(u±).

In our analyses we also employ the modular evolution in Euclidean spacetimes de-
scribed in [17], which is given by a complex function related to (2.9) as follows

z(θ, x) = ξ

( iθ
2π , x

)
= w−1(w(x) + iθ

)
(2.10)

where x ∈ A and θ ∈ [0, 2π).
A fundamental characteristic feature of any modular flow is the Kubo-Martin-

Schwinger (KMS) condition [2]. In order to check that the flow (2.8) satisfies this condition,
consider the two-point functions

W±(τ1, t1, x1; τ2, t2, x2) ≡ 〈φ±(τ1, x1 ± t1)φ±(τ2, x2 ± t2)〉 (2.11)

where x1 and x2 belong to A. The KMS condition implies

W±(τ1 + i, t1, x1 ; τ2, t2, x2) = W±(τ1, t1, x1; τ2 + i, t2, x2, t2) = W±(τ2, t2, x2; τ1, t1, x1)
(2.12)

which can be verified deriving the expectation values (2.11) in explicit form. To deal with
the left and right movers simultaneously, let us adopt the notation

φ(u) =

 φ+(u) u = u+

φ−(u) u = u− .
(2.13)

From (2.8), for the two-point function along the modular flow one obtains

〈φ(τ1, u1)φ(τ2, u2)〉 =
[
∂u1ξ(τ1, u1) ∂u2ξ(τ2, u2)

]h 〈φ(ξ(τ1, u1)
)
φ
(
ξ(τ2, u2)

)
〉 (2.14)

where the expectation value in the r.h.s. is determined by the choice of representation for
φ. In the ground state and in the thermal state, we have respectively

〈φ(u1)φ(u2)〉 = 1
2πi (u1 − u2 − iε)2h 〈φ(u1)φ(u2)〉 = 1

2πi
[β
π sinh

(
π
β (u1 − u2 − iε)

)]2h .
(2.15)

Combining these expressions with (2.8), in the ground state one finds

〈φ(τ1, u1)φ(τ2, u2)〉 = 1
2πi

[
1

u1 − u2 − iε
ew(u1) − ew(u2)

ew(u1)+πτ12 − ew(u2)−πτ12 − iε

]2h

(2.16)

with τ12 ≡ τ1 − τ2 and w given by (2.5). Instead, at finite temperature one has

〈φ(τ1, u1)φ(τ2, u2)〉 = 1
2πi

 1
β
π sinh

(
π
β (u1 − u2 − iε)

) ew(u1) − ew(u2)

ew(u1)+πτ12 − ew(u2)−πτ12 − iε

2h

(2.17)
with w defined by (2.7). By using the explicit expressions (2.16) and (2.17), one can directly
verify the KMS condition (2.12).
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We observe also that, in addition to (2.12), the thermal two-point function (2.17)
satisfies the KMS condition in the physical time

W±(τ1, t1 + iβ, x1; τ2, t2, x2) = W±(τ1, t1, x1; τ2, t2 + iβ, x2) = W±(τ2, t2, x2; τ1, t1, x1)
(2.18)

which involves β.
In the 1 + 1 dimensional Minkowski spacetime in the coordinates (x, t), let us consider

the domain of dependence DA of the interval A = [a, b] ∈ R (also known as diamond
or double cone). A modular trajectory in DA is made by the points whose spacetime
coordinates are

x(τ) = ξ(τ, u+,0) + ξ(−τ, u−,0)
2 t(τ) = ξ(τ, u+,0)− ξ(−τ, u−,0)

2 (2.19)

in terms of (2.9), where τ ∈ R and u±,0 are the light ray coordinates of the point at τ = 0.
It is often convenient to describe a modular trajectory in terms of the point x ∈ A at t = 0.
Setting τ = 0 at this point, this modular trajectory is given by (x(τ), t(τ)) ∈ DA with

x(τ) = ξ(τ, x) + ξ(−τ, x)
2 t(τ) = ξ(τ, x)− ξ(−τ, x)

2 (2.20)

in terms of (2.9), where τ ∈ R.

3 Single interval: ground state

In this section we focus on a CFT in the ground state and on the line bipartite by an
interval A = (a, b) ⊂ R and its complement.

3.1 Internal modular evolution

The function w to consider in this case is given in (2.5) [8, 12, 15–17]. Specifying (2.9) to
this function, for each chirality we obtain the following geometric action of the modular
operator [2, 8, 9]1

ξ(τ, u) = a+ b ew(u) e2πτ

1 + ew(u) e2πτ = (b− u) a+ (u− a) b e2πτ

b− u+ (u− a) e2πτ ξ(τ = 0, u) = u (3.1)

which is also known as the geometric action of the modular automorphism group of the
diamond DA induced by the vacuum state. The expression (3.1) must be employed for both
the chiralities and it provides the modular trajectories in the diamond DA through (2.19),
or (2.20) equivalently.

For any assigned x ∈ (a, b), from (3.1) we have that the functions in (2.20) satisfy
x(τ = 0) = x and t(τ = 0) = 0, as expected. Notice that ξ(±τ, x) take all real values for
τ ∈ R, with ξ(τ, x) → a as τ → −∞ and ξ(τ, x) → b as τ → +∞. Moreover, ξ(τ, a) = a

and ξ(τ, b) = b for any τ ∈ R. In the left panel of figure 1, the solid curves in the grey
region correspond to ξ(τ, x) and ξ(−τ, x), with τ ∈ R. These curves intersect at x ∈ (a, b),
when τ = 0.

1The eq. (V.4.33) of [2] is obtained by setting b = − a = 1 and τhere = − τthere in (3.1).
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0

Figure 1. Left: the curves for ξ(τ, x) and ξ(−τ, x) (solid lines) and for ξ(τ, zinv(x)) and
ξ(−τ, zinv(x)) (dot-dashed lines), obtained from (3.1), (3.8) and (3.4). Right: modular trajectory
(solid line) in the diamond DA (grey region) and its image under the inversion (3.3) (dot-dashed
line) in WA. The dot-dashed segment in DA provide the partition (3.2). The modular parameter τ
grows along the curves as indicated by the arrows. The modular trajectory and its inversion provide
the hyperbola (3.10).

Given a generic c ∈ (a, b), from (2.9) we have that ξ(τc, x) = c when τc =
1

2π [w(c) − w(x)]. This value splits the range of the modular parameter τ ∈ R into three
sets (−∞,−|τc|), (−|τc|, |τc|) and (|τc|,+∞), as highlighted by the darker grey horizontal
dashed lines in the left panel of figure 1. A special role is played by the mid-point of the
interval a+b

2 (see section 3.2)), which corresponds to the value τm = 1
2π [w(a+b

2 )− w(x)] of
the modular parameter, that provides the lighter grey horizontal lines in the left panel of
figure 1.

The important case considered by Bisognano and Wichmann [6, 7] corresponds to the
limiting regime where the subsystem A becomes the semi-infinite line x > 0. Setting a = 0
first and then taking b → +∞ in (3.1), one finds ξ(τ, x) = x e2πτ with x > 0, i.e. the
dilations of the semi-infinite line parameterised by τ .

The action of the modular operator and of the modular conjugation in the Minkowski
space can be found by combining the corresponding actions for the two chiralities. In the
right panel of figure 1, the grey region is the domain of dependence DA of the interval
A = [a, b] ∈ R, which is also called diamond or double cone. The null rays departing from
its central point (a+b

2 , 0) (dot-dashed segments in DA) provide the following partition of
DA into four smaller diamonds

DA ≡ DR ∪ DL ∪ DF ∪ DP (3.2)

where in the r.h.s. the letter in the subindex stands for either right (R) or left (L) or future
(F) or past (P), depending on the position of the corresponding diamond with respect to
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the central point (a+b
2 , 0) of DA. The latter point is the only one which provides a partition

of DA in four diamonds; indeed, the partitions of DA induced by the other points include at
least two rectangular regions. The solid line inside DA is the modular trajectory obtained
from (2.20), with ξ(τ, x) and ξ(−τ, x) given by the solid lines shown in left panel of the same
figure (an arc having certain colour in the left panel provides the arc with the same colour
in the right panel). The different arcs of the modular trajectory in DA can be identified
through their intersections with the light rays departing from (c, 0) (dotted segments in
DA) and from the mid-point of the interval at t = 0 (dot-dashed segments in DA). The
modular parameter τ grows along the modular trajectory as indicated by the arrows.

When A becomes the semi-infinite line x > 0 (i.e. for a = 0 and b→ +∞), the modular
trajectory obtained from (3.1) and (2.20) simplifies to (x(τ), t(τ)) = (x cosh(τ), x sinh(τ)).

3.2 Geometric action in Minkowski spacetime

For a CFT in the ground state and on the line bipartite through an interval, the geometric
action of the modular conjugation is the following inversion map (x, t)→ (xinv, tinv) [2, 8]2

xinv(x, t) ≡ a+ b

2 −
(
b− a

2

)2 x− a+b
2

t2 −
(
x− a+b

2
)2 tinv(x, t) ≡

(
b− a

2

)2 t

t2 −
(
x− a+b

2
)2

(3.3)
which is idempotent, as expected.

In terms of the light ray coordinates (2.1), the geometric action (3.3) leads to define
the inversion map zinv as follows

u±,inv(u±) ≡ xinv(x, t)± tinv(x, t) = a+ b

2 +
( b−a2 )2

u± − a+b
2
≡ zinv(u±) (3.4)

which allows to write (3.3) as

xinv(x, t) = zinv(x+ t) + zinv(x− t)
2 tinv(x, t) = zinv(x+ t)− zinv(x− t)

2 . (3.5)

Another insightful form of the geometric action of the modular conjugation can be
written in terms of the distance from the mid-point of A. Indeed, by introducing

x̃ ≡ x− a+ b

2 x̃inv ≡ xinv −
a+ b

2 (3.6)

from (3.3) one finds that

x̃inv ± tinv = (`/2)2

x̃± t
(3.7)

where ` ≡ b− a is the length of the interval A, whose endpoints are the entangling points.
When t = 0, the inversion map (3.3) simplifies to

xinv(x, t = 0) = zinv(x) tinv(x, t = 0) = 0 (3.8)

which sends A into its complement on the line, and viceversa. In particular, zinv(x) < a

when x ∈ (a, a+b
2 ) and zinv(x) > b when x ∈ (a+b

2 , b). We remark that zinv(x) in (3.8) sends
2The two dimensional case of eq. (V.4.34) in [2] corresponds to (3.3) for b = −a = 1.
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a point in A close to an entangling point into a point in B close to the same entangling
point, and viceversa.

In the left panel of figure 1 the dot-dashed curves correspond to ξ(τ, zinv(x)) and
ξ(−τ, zinv(x)), with τ ∈ R, which intersect at τ = 0 and zinv(x) ∈ B. These curves and the
corresponding ones for ξ(τ, x) and ξ(−τ, x) in the grey region are partitioned into five arcs
(indicated with different colours) at the values τ = ∓|τc| and τ = ∓|τm| of the modular
parameter. Notice that, while |ξ(τ, x)| remains finite, we have that

∣∣ξ(τ, zinv(x))| → +∞
as |τ | → |τm|; hence, in the left panel of figure 1 the value τm provides the asymptotes
τ = ±|τm| (lighter grey horizontal lines) for the red dot-dashed lines.

In the right panel of figure 1, the light blue region WA can be partitioned into four
infinite triangular domains as follows

WA ≡ WR ∪WL ∪ VF ∪ VP (3.9)

(the notation introduced in (3.2) has been adopted also here) where the subindex indicates
the position of the vertex of the corresponding infinite triangle with respect to the center of
DA. The vertices of the left spacelike wedgeWL and the right spacelike wedgeWR are (a, 0)
and (b, 0) respectively, while the forward light cone VF and backward light cone VP have
vertices in (a+b

2 , b−a2 ) and (a+b
2 ,− b−a

2 ) respectively. The geometric action of the modular
conjugation given by (3.3), or equivalently by (3.4) in the light ray coordinates, maps DA
into the light blue region and viceversa (see also figureV.4.1 of [2]). The mid-point (a+b

2 , 0)
is sent to infinity by this map. Considering the geometric action (3.3) separately on each
element of the partitions of DA and WA introduced in (3.2) and (3.9), one finds that it
relates domains that share a vertex (hence with the same subindex).

The modular trajectory
{(
x(τ), t(τ)

)
; τ ∈ R

}
corresponding to the solid curve in DA,

which passes through (x, 0) when τ = 0 and has been obtained from (3.1) and (2.20),
is mapped through the inversion (3.3) into the dot-dashed curve

{(
x̃(τ), t̃(τ)

)
; τ ∈ R

}
in

WA. The latter trajectory can be also constructed by combining (3.1), (2.20) and (3.8)
and passes through

(
zinv(x), 0

)
when τ = 0. The modular parameter τ grows along

these curves as indicated by the arrows. Hence, both the modular trajectory in DA and
its dot-dashed image in WA originate in the lower vertex of DA as τ → −∞ and end
in the upper vertex of DA as τ → +∞. Each arc in the modular trajectory having a
certain colour is sent by (3.3) to the arc on the dot-dashed curve having the same colour
and they both correspond to the same range of the modular parameter τ . As already
remarked, the partition of the modular trajectory into the five arcs with different colours
is determined by its intersections with the light rays departing from the mid-point of the
interval Pm = (a+b

2 , 0) (black dot-dashed segments in DA) and from the generic point
Pc = (c, 0) in the interval (black dotted segments in DA) at t = 0. The same holds for
the image of the modular trajectory under (3.3) in the light blue region, with the obvious
difference that its partition is determined by the light rays departing from the images of
Pm and Pc under the same map. Since this map sends Pm to infinity, the red, purple
and magenta dot-dashed arcs in the light blue region reach infinity in WR, VP and VF

respectively. In particular, the red dot-dashed arc in WA entirely belongs either to WR or
to WL, depending on whether x > a+b

2 or x < a+b
2 respectively, and (3.8) tells us that it
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passes through the point (zinv(x), 0) when τ = 0. Any arc in the right panel of figure 1 is
obtained through (2.20), by using the arcs denoted by the same kind of line and the same
colour in the left panel of the same figure.

Merging all the solid and the dot-dashed arcs in the right panel of figure 1, for x 6= a+b
2

one obtains the hyperbola given by3

[
x(τ)− x0

]2 − t(τ)2 = κ2 [
x̃(τ)− x0

]2 − t̃(τ)2 = κ2 (3.10)

in DA and WA respectively, with

x0 ≡
x2 − a b

2
(
x− a+b

2
) κ ≡ (b− x) (x− a)

2
(
x− a+b

2
) . (3.11)

The semi-axes of the hyperbola (3.10) are both equal to κ and its center is (x0, 0), where
x0 = 1

2 [x+ zinv(x)]; hence its asymptotes have slopes equal to ±1 and pass through (x0, 0).
Since x0 − b = (b− x)2/

[
2(x− a+b

2 )
]
when x ∈ (a+b

2 , b) and a− x0 = (a− x)2/
[
2(a+b

2 − x)
]

when x ∈ (a, a+b
2 ) are both positive, the center of the hyperbola (3.10) belongs to WA for

any initial value x ∈ A different from the middle point a+b
2 .

It is worth considering two special bipartitions of the line. When a = − b, the interval
A is centered in the origin of the x-axis and the inversion map (3.3) becomes [2]4

xinv = − b2 x

t2 − x2 tinv = b2 t

t2 − x2 (3.12)

which further simplifies for t = 0 to the following suggestive form

xinv = b2

x
tinv = 0 . (3.13)

When b → +∞, the interval A and its diamond DA become respectively the half line
x > a and the right Rindler wedge with vertex in (a, 0). The inversion map (3.3) simplifies
to the modular conjugation for such Rindler wedge, which reads [2]5

xinv(x, t)− a = − (x− a) tinv(x, t) = − t . (3.14)

In terms of the light ray coordinates (2.1), taking b → +∞ in (3.4), for this map one
obtains

u±,inv − a = −
(
u± − a

)
(3.15)

which is consistent with (3.14), as expected.
The above results can be extended in a straightforward way to the case in higher

dimensions where the subsystem is a spatial sphere in the Minkowski spacetime [2, 8], by
employing the light cone coordinates r ± t, being r the radial coordinate when the origin
coincides with the center of the sphere.

3We are grateful to an anonymous referee for a comment that led us to this observation.
4The eq. (V.4.34) of [2] corresponds to (3.12) for b = 1.
5The case a = 0 of (3.14) is discussed in section V.4.2 of [2].
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3.3 Geometric action in the Euclidean spacetime

In [17] the modular evolution in the Euclidean spacetime for a 2D CFT in its ground state
and on a line bipartite by an interval A = (a, b) has been described in terms of the function
w(x) given in (2.5) through the following complex function

z(θ, x) ≡ w−1(w(x) + iθ
)

= a (b− x) + b (x− a) eiθ

b− x+ (x− a) eiθ θ ∈ [0, 2π) x ∈ A (3.16)

which can be obtained also by replacing 2πτ with iθ in (3.1). This complex function can
be equivalently written in the form

z(θ, x) = C +R eiγ (3.17)

where

C ≡ x2 − a b
2
(
x− a+b

2
) R ≡ (b− x)(x− a)

2
(
x− a+b

2
) γ ≡ π − θ − i log

(
x− a+ eiθ(b− x)
x− a+ e−iθ(b− x)

)
.

(3.18)
Hence, in the complex plane described by the complex coordinate z, the curve z(θ, x)
corresponding to an assigned value x ∈ A and parameterised by θ ∈ (0, 2π) is a circle with
radius R centered in the point (C, 0) on the real axis. From (3.16), notice that z(θ, a) = a

and z(θ, b) = b for any allowed value of θ, despite the fact that w(x) in (2.5) is not defined
when either x = a or x = b.

In figure 2, considering the complex plane described by the complex variable z (grey
plane), we show the half circles obtained from (3.16) (or (3.17) equivalently) for various
assigned x ∈ A and parameterised either by θ ∈ (0, π) (solid arcs) or by θ ∈ (π, 2π) (dot-
dashed arcs). In the same complex plane, it is useful to explore also the curves given
by (3.16) (or (3.17) equivalently) parameterised by x ∈ A for some fixed θ ∈ (0, 2π). For
these curves we have that ∂xz(θ, x)→ eiθ as x→ a and ∂xz(θ, x)→ e−iθ as x→ b; hence,
the curve that intersects orthogonally the real axis at x = a and x = b corresponds to
θ = π/2. From (3.16) one finds that such curve is the half circle centered in the mid-point
of A (see also section 4 and figure 3).

The inversion map (3.4) naturally provides the complex map zinv : C→ C given by

zinv(ζ) = a+ b

2 +
( b−a2 )2

ζ − a+b
2

(3.19)

which is a rational function with real parameters. By introducing the real variable tE ∈ R
and exploiting (3.5), we can relate (3.19) to the inversion map (3.3) by replacing t with
itE, finding

Re
[
zinv(x+ itE)

]
= zinv(x+ itE) + zinv(x− itE)

2 = xinv(x, itE) (3.20)

i Im
[
zinv(x+ itE)

]
= zinv(x+ itE)− zinv(x− itE)

2 = tinv(x, itE) . (3.21)
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Figure 2. Euclidean modular evolution in the complex plane: the curves are half circles obtained
from (3.16) (or (3.17) equivalently) with θ ∈ (0, π) (solid arcs) or θ ∈ (π, 2π) (dotted arcs), for some
x ∈ A. They map a point in A (red segment) to a point in its complement (blue half lines) and
viceversa, which are related by (3.22).

The inversion on the real line given in (3.8) can be obtained by restricting (3.19) to
the real line or by evaluating (3.16) at θ = π, which is equivalent to (2.9) evaluated at
τ = i/2, namely

zinv(x) = z(π, x) = ξ(i/2, x) x ∈ R . (3.22)

This tells us that, in figure 2, the endpoints of a black solid half circle in the upper half
plane (or of the corresponding black dotted half circle in the lower half plane) belong to the
real axis and are related through the inversion map (3.8). Hence, any point in the interval
A (red segment) is uniquely mapped into a point in its complement on the line (union of
the blue half lines), and viceversa. From (3.22), we also observe that (3.16) e (3.19) are
related as follows

zinv(ζ) = z(π, ζ) ζ ∈ C . (3.23)

Finally, by combining (3.22) with (3.5) and (3.16) (or (2.9)), one observes that the geometric
action of the modular conjugation (3.3) can be expressed through w(x) in (2.5).

4 Geodesic bit threads in Poincaré AdS3

In this section we relate the geodesic bit threads in Poincaré AdS3 for the RT curve corre-
sponding to an interval on the line to the results discussed in section 3.2 and section 3.3.

The Poincaré AdS3 can be described by the coordinates (t, x, ζ), where ζ > 0 parame-
terises the holographic direction, hence its boundary corresponds to ζ = 0. A t = const slice
of Poincaré AdS3 is the upper half plane described by the coordinates (x, ζ) and equipped
with the following metric (yellow region in figure 3)

ds2 = dx2 + dζ2

ζ2 ζ > 0 . (4.1)
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Figure 3. Geodesic bit threads (green dashed curves) in a fixed time slice of Poincaré AdS3 (yellow
region) associated to an interval on the line (red segment), whose RT curve is the red solid half
circle anchored to its endpoints.

In this Euclidean manifold, the set of geodesics having both the endpoints on the boundary
is the two-parameter family of half circles centered on the x-axis, namely

(x− xs)2 + ζ2 = R2
s . (4.2)

The vertical lines orthogonal to the boundary provide the remaining set of geodesics. Ac-
cording to the AdS/CFT correspondence, on the boundary of the Poincaré AdS3 we have
a dual 2D CFT on the real line and in its ground state.

In order to recover the same situation investigated in section 3, the spatial direction
on the boundary is bipartite by an interval of length ` ≡ 2b (red segment in figure 3)
and its complement (union of the blue half lines in figure 3). The interval can be placed
symmetrically with respect to the origin (i.e. A = {x ; |x| 6 b}) without loss of generality.
The RT formula [33, 34] provides the holographic prescription to evaluate the holographic
entanglement entropy through a bulk computation. For static three dimensional gravita-
tional spacetimes and a single interval A in the dual CFT, the RT prescription requires
the minimal length curve anchored to the endpoints of A (the RT curve, denoted by γA in
section 1) because its regularised length multiplied by 1/(4GN) provides the holographic en-
tanglement entropy. In a fixed time slice of Poincaré AdS3 and for the interval A = (−b, b),
the RT curve is the half circle of radius b centered in the origin (red solid curve in figure 3),
whose generic point Pm (that must not be confused with the point indicated in the same
way in section 3.2) have coordinates (xm, ζm) satisfying

x2
m + ζ2

m = b2 . (4.3)

It is worth reminding that also the curve z(θ = π/2, x) for x ∈ A obtained from (3.16) is
the half circle centered in the mid-point of A in the complex plane, as already noticed in
section 3.3.

Among the holographic bit threads introduced in [35], let us consider the specific con-
figuration given by the geodesic bit threads discussed in [38]. A geodesic bit thread for a RT
curve is a geodesic such that it connects a point x ∈ A to a point that does not belong to A
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and intersects the RT curve orthogonally. At such intersection point, its unit norm tangent
vector coincides with the unit norm outward-pointing vector normal to the RT curve.

For the RT curve (4.3), the generic geodesic bit thread is (4.2) with [38]

Rs = b
√
b2 − x2

m

|xm|
xs = b2

xm
(4.4)

where (xm, ζm) are the coordinates of the intersection point between the geodesic bit thread
and the RT curve, hence they are constrained by (4.3). Some geodesic bit threads obtained
by combining (4.2), (4.3) and (4.4) are shown in figure 3 (green dashed half circles).

We find it more convenient to parameterise a geodesic bit thread in terms of the
coordinate xA ∈ A of its endpoint in A. The coordinate xm of the intersection point
between the geodesic bit thread and the RT curve is related to xA as follows6

xm = 2 b2 xA
b2 + x2

A

|xA| 6 b (4.5)

which leads to write (4.4) as

Rs = b2 − x2
A

2 |xA|
xs = b2 + x2

A

2xA
(4.6)

implying that (Rs, xs) = (0,±b) when xA = ±b, as expected. From (4.6), one obtains

xs +Rs =

 b2/xA xA > 0
xA xA < 0

xs −Rs =

 xA xA > 0
b2/xA xA < 0 .

(4.7)

Plugging (4.6) into (4.2), we find that the geodesic bit thread anchored to xA ∈ A reads

ζ =
√

(x− xA)
(
b2

xA
− x

)
|xA| 6 b . (4.8)

From (4.7) or (4.8), we have that the geodesic bit thread intersects the AdS boundary in A
at x = xA, as expected by construction, and in the complement of A on the line at x = xB,
where

xB = b2

xA
. (4.9)

This relation between the endpoints of a geodesic bit thread coincides with the inversion re-
lation on the real axis for t = 0 provided by the geometric action of the modular conjugation
for the interval A = (−b, b), which has been reported in (3.13). Furthermore, let us observe
that a geodesic bit thread anchored at xA ∈ A (see (4.8) and the green dashed curves in
figure 3) and the trajectory corresponding to the Euclidean modular evolution for θ ∈ (0, π)
that starts at the same xA when θ = 0 (see (3.17) and the black solid curves in figure 2) are
described by the same curve. Indeed, they are both half circles whose endpoints are related
in the same way. However, these two curves belong to different Euclidean manifolds.

6The expression (4.5) can be obtained by inverting the relation reported in eq. (2.10) of [38].
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Finally, comparing (4.4) and (4.9), we find it worth remarking that the same inversion
relation occurs between xA and xB and between xm and xs.

We remind that the contour function for the entanglement entropies [44, 45] can be
associated holographically to the restriction on the boundary of the norm bounded and
divergenceless vector field providing the holographic bit threads [46]. In particular, from
the vector field for the geodesic bit threads in Poincaré AdS3 found in [38], the function
β0(x) for a CFT in the ground state (see (2.4) and (2.5)) is obtained [47].

A straightforward extension of the above analysis allows to address the case of a CFT
in the ground state and in the higher dimensional Minkowski spacetime bipartite by a
sphere of radius b. For this bipartition it is convenient to adopt the polar coordinates in
the Minkowski spacetime with the origin in the center of the sphere. In this case, the
geodesic bit threads are obtained from the expressions discussed above restricted to x > 0,
which corresponds to the radial coordinate.

5 Single interval: thermal state

In this section we consider a CFT in a thermal state at temperature 1/β and on the line
bipartite by an interval A = (a, b) and its complement. This thermal state is the geo-
metric one within the analysis performed in [28, 29], which satisfies the Stefan-Boltzmann
law (2.6). In this case the function w(u) to employ is reported in (2.7) [16, 17]. The
KMS condition is fulfilled, both in the modular time and in the physical time (see (2.12)
and (2.18) respectively).

The geometric action of the modular automorphism group of the diamond induced by
the thermal state can be found by specialising (2.9) to (2.7) and the result is [21]

ξ(τ, u) = β

2π log
(eπ(b+a)/β + e2πb/β ew(u)+2πτ

eπ(b−a)/β + ew(u)+2πτ

)
(5.1)

where u ∈ A and τ ∈ R.
In the Euclidean spacetime, by specialising (2.10) to (2.7), one finds [17]

z(θ, x) = w−1(w(x) + iθ
)

= β

2π log
(eπ(b+a)/β + e2πb/β ew(x)+iθ

eπ(b−a)/β + ew(x)+iθ

)
(5.2)

= β

2π log
((

e2πb/β − e2πx/β)e2πa/β +
(
e2πx/β − e2πa/β) e2πb/β eiθ

e2πb/β − e2πx/β +
(
e2πx/β − e2πa/β) eiθ

)
(5.3)

where x ∈ A and θ ∈ [0, 2π). In the zero temperature limit β → +∞, the expressions (5.1)
and (5.2) become (3.1) and (3.16) respectively, as expected.

In the limiting regime where A becomes the half line, i.e. when a = 0 and b → +∞,
one finds that (5.1) simplifies to [23]7

ξ(τ, x) −→ β

2π log
[
1 + e2πτ (e2πx/β − 1)

]
. (5.4)

In the Euclidean spacetime, by taking the same limit in (5.2), we obtain (5.4) with 2πτ
replaced by iθ.

7See eq. (4.14) in [23], with uthere = τhere and fthere(x) = x.
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5.1 Inversion on the real line

By adapting the observation (3.22), made for the ground state, to a CFT at finite tempera-
ture and on the bipartite line, from (5.1) or (5.2) we introduce the following inversion map

zinv(x) ≡ ξ(τ = i/2 , x) = z(θ = π, x) = β

2π log
(eπ(b+a)/β − e2πb/β ew(x)

eπ(b−a)/β − ew(x)

)
. (5.5)

In this expression the argument of the logarithm becomes negative for some values of
x ∈ A. The range of these values can be found by observing that the denominator and the
numerator of the ratio in the argument of the logarithm in (5.5) vanish when x is equal
respectively to

aβ ≡ a+ `−`β
2 = a+ `

2

(
1− log[cosh(π`/β)]

π`/β

)
= − β

2π log
[(
e−2πa/β+e−2πb/β)/2] (5.6)

bβ ≡ b−
`−`β

2 = b− `2

(
1− log[cosh(π`/β)]

π`/β

)
= β

2π log
[(
e2πa/β+e2πb/β)/2] (5.7)

where

`β ≡ bβ − aβ = β

π
log
[
cosh(π`/β)

]
= `+ β

π
log
[(

1 + e−2π`/β)/2] < ` . (5.8)

The argument of the logarithm in (5.5) is negative when x ∈ Aβ , where Aβ ≡ (aβ , bβ),
which is a proper subinterval of A of length `β . From (5.6) and (5.7), one observes that
Aβ and A have the same mid-point. Thus, when a = −b, also aβ = −bβ .

From (5.8), we have that `β → 0 as β → +∞ and `β → ` as β → 0; namely Aβ
disappears at zero temperature while it coincides with A in the large temperature regime.

In the limit where A becomes the half-line, which is obtained by setting b = a + `

first and then taking ` → +∞, for the endpoints of Aβ in (5.6) and (5.7) we find that
aβ → a + β

2π log(2) and bβ → +∞ respectively. Now, taking a → −∞ in this result, Aβ
becomes the whole line. This is found also by taking b→ +∞ and a→ −∞ simultaneously
in (5.6) and (5.7).

Let us stress that Aβ has been introduced through the inversion map (5.5). It would
be insightful to find a footprint of Aβ without invoking the modular conjugation.

Since the argument of the logarithm in (5.5) is negative when x ∈ Aβ , the inver-
sion (5.5) is a complex map that can be written as follows

zinv(x) = β

2π log
( ∣∣∣∣eπ(b+a)/β − e2πb/β ew(x)

eπ(b−a)/β − ew(x)

∣∣∣∣ )± i β2 ΘAβ (x) (5.9)

=



β

2π log
(eπ(b+a)/β − e2πb/β ew(x)

eπ(b−a)/β − ew(x)

)
x ∈ A \Aβ

β

2π log
(e2πb/β ew(x) − eπ(b+a)/β

eπ(b−a)/β − ew(x)

)
± i β2 x ∈ Aβ

(5.10)

where ΘAβ (x) it the characteristic function8 of Aβ . It is worth remarking that the real
functions zinv(x) : A \ Aβ → B and Re[zinv(x)] : Aβ → R are both bijective. They are

8The characteristic function ΘR(x) of a region R is equal to one when x ∈ R and zero otherwise.
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Figure 4. The real part of the inversion map (5.10). The green segment corresponds to Aβ , the
red segments to A \Aβ and the blue half lines to B.

shown in figure 4 through the solid curves and the dashed curve respectively. The latter
one tells us that Re[zinv(x)] : Aβ → R is strictly increasing.

Combining the two chiralities, in section 5.3 we will see that the imaginary part oc-
curring in the complex map zinv(x) : Aβ → R cancels and therefore naturally provides a
second Minkowski space M̃, which has been called second world in [24] or shadow (virgin)
world in [25]. We remark that this second world M̃, differently from the real one M, is
not bipartite.

In the special case of A = (−b, b), the inversion map (5.10) simplifies to

zinv(x) =



β

2π log
(e2πx/β cosh(2πb/β)− 1

e2πx/β − cosh(2πb/β)

)
x ∈ A \Aβ

β

2π log
(e2πx/β cosh(2πb/β)− 1

cosh(2πb/β)− e2πx/β

)
± i β2 x ∈ Aβ .

(5.11)

This result will be re-obtained holographically also through the geodesic bit threads in the
BTZ black brane background in section 6.

In the zero temperature limit β → +∞, we have that Aβ → ∅, as remarked above;
hence only the first expression in (5.10) must be considered, which becomes (3.8) in this
limit, as expected.

In the limiting regime b→ +∞, the interval A becomes the half-line (a,+∞) and, by
using also the above results aβ → a+ β

2π log(2) and bβ → +∞, one finds that the map (5.10)
simplifies to

zinv(x) =


a+ β

2π log
(
2− e2π(x−a)/β

)
a < x < a+ β

2π log(2)

a+ β

2π log
(
e2π(x−a)/β − 2

)
± i β2 x > a+ β

2π log(2)

(5.12)
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which is real in A \Aβ = (a, a+ β
2π log(2)) and sends this limited interval onto the half line

B = (−∞, a) complementary to A in a bijective way. By employing the exponential map
characterising the thermal state, we can write (5.12) in the following suggestive form

e2π[zinv(x)−a]/β = 2− e2π(x−a)/β (5.13)

which becomes (3.15) in the zero temperature limit, as expected. In the non negative
variable y ≡ e2π(x−a)/β , this map becomes to the reflection y → 2 − y with respect to 1.
The reflection (5.13) suggests to continue this real positive variable y by including also
the semi-axis made by the negative real numbers y < 0, which corresponds to the second
world [24, 25]. Indeed, such reflection maps the points y > 2 into the negative real semi-axis
in a bijective way.

In order to explore the meaning of the sub-interval Aβ , we find it worth exploiting the
contour function for the entanglement entropies [44, 45]. For a CFT at finite temperature
on the line bipartite by an interval, this function reads [45]9

s
(n)
A (x) ≡ c

12

(
1 + 1

n

)
w′(x) + C

`
(5.14)

where w(x) is given by (2.7) and C is a non universal constant such that s(n)
A (x) > 0 for

every x ∈ A. The main feature of the positive function (5.14) is that the entanglement
entropies of A found in [48] are obtained by integrating it on Aε ≡ (a + ε, b − ε), where ε
is the UV cutoff, i.e.

S
(n)
A =

∫ b−ε

a+ε
s

(n)
A (x) dx = c

12

(
1 + 1

n

)
log
[
β

πε
sinh(π`/β)

]
+O(1) (5.15)

up to O(1) non universal contributions as ε→ 0. In [48] it has been remarked that, when
` � β, the entanglement entropy obtained from (5.15) becomes extensive and provides
the Gibbs entropy SA ' π c `/(3β) of an isolated system of length ` coming from the
Stefan-Boltzmann law for a 2D CFT (see (2.6)) [43, 49, 50].

It is sometimes insightful to integrate the contour function for the entanglement en-
tropies in (5.14) over a subsystem properly included in A (see e.g. [51]). In the case that
we are exploring, the integration of (5.14) over Aβ gives∫ bβ

aβ

s
(n)
A (x) dx = c

12

(
1 + 1

n

) [
w(bβ)− w(aβ)

]
+ C

`
`β = c

6

(
1 + 1

n

)
π `

β
+ `β

`
C . (5.16)

where `β has been introduced in (5.8). When n = 1 and C = 0, the expression (5.16)
provides the above mentioned Gibbs entropy π c `/(3β) for any value of ` and β.

Considering the sub-interval Aβ , from (2.7) and its endpoints (5.6) and (5.7), one finds

w(bβ)− w(aβ) = 2π (b− a)
β

≡ τβ (5.17)

which can be interpreted through the modular parameter τ . Indeed, by considering (2.9)
for x = aβ , the expression (5.17) corresponds to the value τβ of the modular parameter
such that ξ(τβ , aβ) = bβ . As a consequence, also (5.16) can be interpreted through the
modular parameter τ because it is proportional to (5.17) when C = 0.

9See eqs. (65) and (71) of [45].
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Figure 5. Euclidean modular evolution for a CFT at finite temperature 1/β on the bipartite line,
obtained from (5.2), with θ ∈ (0, π) (solid arcs) or θ ∈ (π, 2π) (dotted arcs), for some x ∈ A. The
green segment corresponds to Aβ . The solid black curves (or the dotted black ones equivalently)
map A \ Aβ into B in a bijective way, while the solid yellow curves (or the dotted yellow ones
equivalently) map Aβ into the horizontal dashed black line at Im(z) = +β/2 (which is identified
with the horizontal dashed black line at Im(z) = −β/2) in a bijective way.

5.2 Geometric action in Euclidean spacetime

In the finite temperature case that we are investigating, the geometric action of the modular
conjugation can be studied by adapting the observations made in section 3.2 and section 3.3
for the ground state. It is more instructive to discuss first the Euclidean spacetime.

For a CFT at finite temperature 1/β on the line, the Euclidean spacetime to consider is
the infinite cylinder whose section along the compactified direction is a circle having length
equal to β. It can be equivalently represented by the horizontal strip {z ∈ C; |Im(z)| 6 β/2}
in the complex plane (parameterised by z) with vertical width equal to β (grey region in
figure 5), where the horizontal lines at Im(z) = ±β/2 delimiting the strip (horizontal black
dashed lines in figure 5) are identified. The space where the CFT is defined corresponds
to the real axis Im(z) = 0, which is bipartite by the interval A and its complement. This
bipartition is characterised by the entangling points x = a and x = b on the real axis,
which correspond to the points where a red segment and a blue segment join in figure 5;
hence A is the union of the two red segments and the green segment, while B corresponds
to the union of the blue half lines.

The curves shown in figure 5 are obtained from (5.2) for some values of x ∈ A: the
solid ones have θ ∈ (0, π), while θ ∈ (π, 2π) for the dotted ones. Any black solid arc
(or equivalently the dotted one having the same endpoints) associates a point in the red
segments to a point in B in a unique way. Instead, any yellow arc (or equivalently the
dotted one having the same endpoints) associates a point in the green segment to a point
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on the horizontal black dashed lines at Im(z) = ±β/2 (which are identified). This map
is (5.10) and the green segment in figure 5 denotes the sub-interval Aβ . The two orange
curves in figure 5 intersect the real axis at x = aβ or x = bβ and connect these points to
−∞ or +∞ respectively; hence they provide the extremal lines separating the set of the
black curves and the set of the yellow curves, whose behaviours are qualitatively different.
In this Euclidean setup, the horizontal black dashed lines at Im(z) = ±β/2 corresponds to
the space of the second world [24, 25] introduced in section 5.1.

In this Euclidean strip, it is useful to consider also the curves obtained from (5.2) at
fixed θ ∈ (0, 2π), parameterised by x ∈ A. For these curves, we find that ∂xz(θ, x)→ eiθ as
x→ a and ∂xz(θ, x)→ e−iθ as x→ b; hence the curve corresponding to θ = π/2 intersects
orthogonally the real axis at x = a and x = b. This result is independent of β and for the
ground state it has been already remarked in section 3.3.

5.3 Geometric action in Minkowski spacetime

In the Minkowski spacetime M parameterised by the coordinates (x, t), let us consider
the diamond DA (see section 3.1). The occurrence of the sub-interval Aβ introduced in
section 5.1, whose endpoints on the spatial line are (5.6) and (5.7), naturally leads to the
following partition

DA = DAβ ∪ D̃A ∪RA (5.18)

identified by the null rays departing from the points (aβ , 0) and (bβ , 0) (see figure 6).
In (5.18), DAβ is the domain of dependence (diamond) of Aβ (green region in figure 6),
while D̃A and RA are defined as follows

D̃A ≡ D̃R ∪ D̃L ∪ D̃F ∪ D̃P RA ≡ R++ ∪R−+ ∪R−− ∪R+− . (5.19)

The domains D̃k with k ∈ {R,L,F,P} are the dark grey diamonds in figure 6 and the letters
for the subindex, which stand for right, left, future and past respectively (see also (3.2)),
indicate their position with respect to DAβ . Each of these diamonds shares a vertex with
DAβ . The domains Rrs with r, s ∈ {+,−} are the light grey rectangles in figure 6 and the
subindices indicate their position with respect to DAβ (e.g. ++ and +− correspond to the
top right and top left light grey rectangle respectively).

In the limit where A becomes the half line, DA and DAβ become the right wedges with
vertex in (a, 0) and (a + β

2π log(2), 0) respectively. Furthermore, only D̃L remains a finite
diamond in this limit, while the other dark grey regions D̃k with k 6= L disappear at infinity.

In the zero temperature limit β → +∞, we have that DAβ andRA become zero measure
regions in Minkowski space and D̃A → DA. Moreover, considering the partitions of DA
introduced in (3.2) and (5.19), in this limit we have that D̃k → Dk for each k ∈ {R,L,F,P},
up to zero measure domains.

A modular trajectory in Minkowski space is obtained by combining (5.1) and (2.20).
It depends on the assigned value x ∈ A at τ = 0 and it entirely belongs to DA. The
partition (5.18) of DA induces a partition of a modular trajectory into (at most) five arcs
corresponding to its intersections with DAβ , D̃A andRA (arcs denoted with different colours
that partition each solid curve in figure 6). The only exception is the modular trajectory
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Figure 6. Modular trajectories (solid lines) in DA passing at some x ∈ A when t = 0 and their
images (dot-dashed and dashed lines) under (5.23). Left: two values of x ∈ A \ Aβ . Right: three
values of x ∈ Aβ . The arcs denoted through different kind of lines but having the same colour
are related through (5.23). While the dot-dashed lines span WA (light blue region, see (3.9)) as
x ∈ A\Aβ , the dashed lines span the entire Minkowski spacetime (the second world M̃) as x ∈ Aβ .

corresponding to x = a+b
2 , which is the vertical segment connecting the top and bottom

vertices of DA; indeed, its partition is made only by three vertical segments because it
does not intersect RA. The five arcs partitioning the modular trajectory can be found also
through the corresponding values of the modular parameter. The ranges of τ that provide
the different arcs are identified by ±|τaβ | and ±|τbβ |, where

τaβ ≡
w(aβ)− w(x)

2π τbβ ≡
w(bβ)− w(x)

2π . (5.20)

A modular trajectory is characterised by its point (x, 0) with x ∈ A at τ = 0. At finite
temperature, we have either x ∈ A \ Aβ (left panel in figure 6) or x ∈ Aβ (right panel in
figure 6). Considering the partition (5.18), notice that, while all the modular trajectories
have non vanishing intersections with D̃A ad RA, only those ones corresponding to x ∈ Aβ
intersect also DAβ .

In order to adapt to the thermal case the results discussed in section 3.2 for the ground
state (see (3.3) and (3.5)), we introduce the geometric action of the modular conjugation
as follows

xinv(x, t) = zinv(x+ t) + zinv(x− t)
2 tinv(x, t) = zinv(x+ t)− zinv(x− t)

2 (5.21)

where the function zinv(x) is given by (5.9). In terms of the light ray coordinates (2.1), it
is convenient to introduce u±,inv ≡ xinv ± tinv, finding that

u±,inv = zinv(u±) . (5.22)
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From (5.21) we obtain



xinv(x, t) = β

4π log
[(

eπ(b+a)/β − e2πb/β ew(x+t))(eπ(b+a)/β − e2πb/β ew(x−t))(
eπ(b−a)/β − ew(x+t))(eπ(b−a)/β − ew(x−t))

]

tinv(x, t) = β

4π log
[(

eπ(b+a)/β − e2πb/β ew(x+t))(eπ(b−a)/β − ew(x−t))(
eπ(b−a)/β − ew(x+t))(eπ(b+a)/β − e2πb/β ew(x−t))

]
.

(5.23)

This map satisfies some consistency relations. For t = 0 we have tinv(x, t = 0) = 0, as
expected, and, interestingly, xinv(x, t = 0) = Re[zinv(x)], which is shown in figure 4. In the
zero temperature limit β → +∞, the inversion map (3.3) is recovered, as expected. We
remark that (5.23) has been obtained by merging the two logarithmic functions coming
from zinv(x+ t) and zinv(x− t) into a single logarithmic function and that such seemingly
innocent simplification leads to interesting consequences, as discussed below.

Consider the partitions in (5.18) and (5.19), together with the partition (3.9) for the
light blue region in both panels of figure 6. When (x, t) ∈ D̃A, the inversion map (5.21) is
equivalent to (5.23) and it defines the four bijective maps D̃R →WR, D̃L →WL, D̃F → VF

and D̃P → VP.
The action of the map (5.23) in DAβ and RA is very interesting. When (x, t) ∈ DAβ ,

the arguments of the logarithm in zinv(x+ t) and zinv(x− t) are both negative; hence (5.21)
gives Im(tinv) = 0 and |Im(xinv)| = β/2. Instead, in (5.23) the arguments of the logarithms
remains positive; hence (5.23) is a real map from DAβ to the entire Minkowski spacetime
M̃, which is identified with the second world. This is an interesting consequence of the
combination of the two different chiralities; indeed, they separately provide results with
non vanishing imaginary parts. Notice that, differently fromM, the space direction of M̃
is not bipartite. In the right panel of figure 6, a dashed curve of certain colour is the image
under (5.23) of the solid arc in DAβ having the same colour. As x ∈ Aβ , these dashed
curves span the entire Minkowski spacetime M̃ (the second world). Hence, the structure
of the “real world” is transported with the help of the conjugation J to the “second world”,
as Borchers observed in [24].

The above discussion tells us that the full modular Hamiltonian in M∪M̃ reads

K = KA ⊗ 1
B∪M̃ − 1A ⊗ JKAJ . (5.24)

In the zero temperature limit β → +∞, we have that the second world M̃ disappears
and (5.24) tends to K = KA ⊗ 1B − 1A ⊗KB, where KB = JKAJ , being J the modular
conjugation whose geometric action has been described in section 3.

Instead, the image of a point (x, t) ∈ RA under (5.21) or (5.23) has |Im(tinv)| =
|Im(xinv)| = β/4; hence the reality condition suggest to consider this result unphysical. In
figure 6, this implies that the cyan arcs do not have a dot-dashed or dashed counterpart.
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When A becomes the half line, i.e. in the limit b→ +∞, the inversion (5.23) simplifies
to 

xinv(x, t) = a+ β

4π log
[(

e2π(x−a+t)/β − 2
)(

e2π(x−a−t)/β − 2
)]

tinv(x, t) = β

4π log
(e2π(x−a+t)/β − 2

e2π(x−a−t)/β − 2

) (5.25)

whose zero temperature limit gives (3.14), as expected.
In terms of the light ray coordinates u± and of u±,inv ≡ xinv ± tinv, the map (5.25) can

be written in the form (5.12) or (5.13), as expected.

6 Geodesic bit threads in BTZ black brane

In this section we show that the inversion map on the real line discussed in section 5.1 can be
found through the geodesic bit threads in the BTZ black brane geometry described in [38].

The BTZ black brane is a three dimensional gravitational background solving the Ein-
stein equations with negative cosmological constant and without matter term. A horizon
occurs and it is a two dimensional plane. This geometry can be described in terms of
the coordinates (t, x, ζ), where t is the time coordinate and ζ > 0 is the holographic co-
ordinate. The boundary at ζ = 0 is a 1 + 1 dimensional Minkowski spacetime M in the
coordinates (x, t). A constant time slice of the BTZ black brane geometry is equipped with
the following induced metric

ds2 = 1
ζ2

(
dx2 + dζ2

1− (ζ/ζh)2

)
ζ > 0 (6.1)

where ζh denotes the position of the horizon. This two dimensional geometry is considered
in figure 7, where the yellow region corresponds to 0 < ζ < ζh and the grey region to
ζ > ζh. The AdS/CFT correspondence relates ζh to the temperature 1/β of the dual 2D
CFT in the Minkowski spacetime at the boundary of the BTZ black brane as follows

ζh = β

2π . (6.2)

Consider the bipartition of the spatial line of the dual CFT given by an interval, which
can be set to A = (−b, b) ⊂ R without loss of generality (see the union of the red segments
and of the green segment in figure 7, while the union of the blue half lines is the complement
of A on the line), as already done in section 4. In the geometry (6.1), the minimal length
curve anchored to the endpoints of A (the RT curve) is made by the points Pm (that must
not be confused with the point indicated in the same way in section 3.2) whose coordinates
(xm, ζm) satisfy the following constraint

ζm =

√
ζ2
h + ζ2

∗
2 −

ζ2
h − ζ2

∗
2 cosh(2xm/ζh) = ζh

√
cosh(2b/ζh)− cosh(2xm/ζh)√

2 cosh(b/ζh)
(6.3)

where ζ∗ denotes the maximum depth of this geodesic, which can be expressed in terms of
ζh and b as follows

ζ∗ = ζh tanh(b/ζh) . (6.4)
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Figure 7. Geodesic bit threads in BTZ black brane geometry for an interval on the line. The red
solid curve is the RT curve (6.3). The green segment corresponds to Aβ (see section 5.1).

In figure 7, the RT curve (6.3) corresponds to the red solid curve in the yellow region. This
RT curve does not coincide with the one discussed in the last paragraph of section 5.2.
These two curves overlap in the zero temperature limit, as remarked in section 4.

The geodesic bit threads for the BTZ black brane geometry (6.1) and the RT curve (6.3)
have been found in [38]. In the following we report some of their results, trying to keep
their notation wherever it is possible.

Some geodesic bit threads (dashed lines) are shown in figure 7 (see also the left panel
of figure 4 in [38]). A crucial feature of these geodesic bit threads is that those ones whose
intersection with the RT curve (6.3) has xm such that xm,max < |xm| < b with

xm,max ≡ ζh arccoth
(
ζ2
h/ζ

2
∗
)

(6.5)

have both the endpoints on the boundary at ζ = 0; hence they connect a point A to
a point in its complement B on the line (green dashed curves in figure 7). Instead, the
geodesic bit threads intersecting the RT curve (6.3) in a point whose coordinate xm satisfies
|xm| 6 xm,max reach the horizon; hence they connect a point in A to a point on the horizon
(grey dashed curves in figure 7).

A convenient parameterisation for the geodesic bit threads connecting A to its com-
plement on the real axis is

ζ =
√
C1 + C2 cosh

[
2(x− xm)/ζh

]
+ C3 sinh

[
2(x− xm)/ζh

]
(6.6)

where the constants C1, C2 and C3 are defined respectively as

C1 ≡
(ζ2
h + ζ2

m)(ζ2
h − ζ2

m) + ζ2
h ζ

2
m s

2
m

2 (ζ2
h − ζ2

m)
C2 ≡ −

(ζ2
h − ζ2

m)2 + ζ2
h ζ

2
m s

2
m

2 (ζ2
h − ζ2

m)
C3 ≡ ζh ζm sm

(6.7)
being sm the slope of the outward-pointing normal vector at a given point (xm, ζm) of the
RT curve (6.3), that reads

sm ≡
ζm
ζh

coth(xm/ζh) = ± ζm
ζh

√
ζ2
h − ζ2

m

ζ2
∗ − ζ2

m

. (6.8)
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As for the geodesic bit threads connecting a point in A to a point of the horizon, they can
be written also as

x = xm + σ ζh log


√
ζ2
h − ζ2 +

√
D2

1 + ζ2
m − ζ2√

ζ2
h − ζ2

m − σD1

 (6.9)

being the constants D1 and σ defined as follows

D1 ≡
ζh ζm sm√
ζ2
h − ζ2

m

σ ∈ {+1,−1} (6.10)

where σ and sm must have opposite signs. Both the parameterisations (6.6) and (6.9)
can be adopted to describe each one of the two different types of geodesic bit threads, by
employing two branches if necessary.

In figure 7 we show some geodesic bit threads (dashed lines in the yellow region): the
green dashed lines connect a point in A to a point in B, hence both these points are on
the boundary; instead, the grey ones connect a point in A to a point on the horizon. The
magenta dashed curves denote the geodesic bit threads corresponding to the transition
between these two different behaviours, hence they intersect the horizon (or the boundary)
at infinity.

The thermal sub-interval Aβ ⊂ A introduced in section 5.1, whose endpoints are (5.6)
and (5.7), can be found also through the geodesic bit threads in the BTZ black brane
geometry described above. Consider the transition geodesic bit thread given by (6.9) with
σ = −1 (hence sm > 0) and having xm = xm,max in (6.5), which corresponds to the magenta
dashed curve on the right in figure 7. Setting ζ = 0 in the resulting expression, we recover
bβ in (5.7) in the special case of a = − b. Because of the symmetry of A, the magenta
dashed curve on the left in figure 7 provides aβ in (5.6) when a = − b. Thus, the green
segment on the boundary in figure 7, obtained holographically through the geodesic bit
threads corresponding to the magenta dashed curves, can be identified with Aβ , which is
also the green segment on the real line in figure 5 and the segment on the real axis providing
the green diamond in figure 6.

Plugging the expression for ζ∗ in (6.4) into (6.5) and comparing the result with bβ
in (5.7) specialised to the case a = −b, we observe that

xm,max = bβ
2
. (6.11)

This interesting holographic relation deserves some interpretation.
Also the inversion map (5.11) can be interpret through the geodesic bit threads.
Consider first a point on the boundary at xA ∈ A \ Aβ , which is therefore connected

through a geodesic bit thread described by (6.6) to another point on the boundary at some
xB ∈ B. In order to find xB in terms of xA, notice that (6.6) vanishes for x = x± given by

x± = xm + ζh
2 log

(
C1 ±

√
C2

1 − C2
2 + C2

3

−C2 − C3

)
(6.12)
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Figure 8. Comparison between geodesic bit threads (green dashed curves) connecting a point
xA ∈ A \Aβ to a point xB ∈ B (see also figure 7) and the corresponding lines (starting at the same
xA’s) for the modular evolution in the Euclidean spacetime described in section 5.2 (black solid
curves, see also figure 5).

where, from (6.7), we have

−C2−C3 =
(
ζ2
h − ζh ζm sm − ζ2

m

)2
2 (ζ2

h − ζ2
m)

C2
1−C2

2 +C2
3 =

ζ2
h ζ

2
m

[
(1 + s2

m) ζ2
h − ζ2

m

]
ζ2
h − ζ2

m

. (6.13)

Since ζh > ζm, the constant C1 and both the expressions in (6.13) are positive quantities;
hence one concludes that x+ > x−, from (6.12). The symmetric choice of A with respect
to the origin allows us to assume xA > bβ > 0 without loss of generality; hence xA = x−
and xB = x+ (see figure 8).

To express xm in terms of xA = x−, first employ (6.8) and then (6.3) into x− given
by (6.12); and finally invert the resulting expression. This gives different solutions, but the
one providing (4.5) when ζh → +∞ reads

xm = ζh
2 log

(
e2xA/ζh

(
e4b/ζh + 1

)
+ 2 e2b/ζh − 2 e(b+xA)/ζh

(
e2b/ζh + 1

)
2 e2(xA+b)/ζh + e4b/ζh + 1− 2 e(b+xA)/ζh

(
e2b/ζh + 1

) )
. (6.14)

Now xB can be written in terms of xA by first using (6.8) and (6.3) into x+ = xB given
by (6.12), and then employing (6.14) in the resulting formula. After some algebra, we obtain

e2xB/ζh =
(exA/ζh cosh(b/ζh)− 1

exA/ζh − cosh(b/ζh)

)2
(6.15)

where the ratio within the round brackets in the r.h.s. is positive when xA ∈ A\Aβ . Thus,
the CFT result (5.11) in A \ Aβ has been obtained holographically through the geodesic
bit threads. As consistency check, notice that the limit ζh → +∞ of the expression for xB
obtained from (6.15) when xA ∈ A \Aβ leads to (4.9), as expected.

In figure 8, considering only the positive half real axis without loss of generality, we
show some geodesic bit threads having both the endpoints on the boundary (green dashed
curves). These bit threads are compared with the corresponding curves (black solid lines)
starting at the same values of xA ∈ A \ Aβ obtained from the CFT expression (5.2) for
the same value of β, which have been shown also in figure 5. We remark that these two
sets of curves belong to two different Euclidean manifolds. These geodesic bit threads
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Figure 9. Comparison between geodesic bit threads (grey dashed curves) connecting a point xA ∈
Aβ to a point on the horizon (see also figure 7) and the corresponding lines (starting at the same
xA’s) of the modular evolution in the Euclidean spacetime (yellow solid curves, see also figure 5).

share the same endpoints with the corresponding CFT lines, as expected from the analytic
result discussed above, but they do not coincide for the other points in general. There
is no reason to expect such overlap. However, the overlap approximatively occurs for the
geodesics bit threads close to the boundary, which connect points close to the entangling
point b. Indeed, since these geodesics bit threads are weakly influenced by the occurrence
of the horizon, they become approximatively half circles, i.e. geodesics in Poincaré AdS3.

The inversion map (5.11) obtained from CFT can be recovered holographically through
the geodesic bit threads also when xA ∈ Aβ . The geodesic bit thread starting at this point
on the boundary reaches the horizon at some point (xh, ζh) (grey dashed curves in figure 7
and figure 9). We observe that this bit thread is tangent to the horizon; indeed, from (6.9)
one obtains ∂ζx = −σ ζhζ

[(
ζ2
h − ζ2)(D2

1 + ζ2
m − ζ2)]−1/2, which diverges as ζ → ζh. Such

observation suggests us to merge this geodesic bit thread with the geodesic starting at
(xh, ζh) tangentially to the horizon and ending at some point (x̃, 0) on the boundary (cyan
dashed curves in figure 9). The latter geodesic can be obtained by reflecting the geodesic
bit thread starting at (xA, 0) with respect to the vertical axis at x = xh. This construction
implies that x̃ = xA + 2(xh−xA). We remark that, because of the singular behavior of the
metric in the limit ζ → ζh, the flux of the geodesic bit threads through the whole horizon
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does not vanish; indeed, it must be equal to the flux of the geodesic bit threads through
(aβ , bβ) at the boundary.

The same procedure described above to obtain xB from xA ∈ A \Aβ can be employed
to find x̃ in terms of xA ∈ Aβ (in particular, (6.14) holds also in this case), obtaining (6.15)
with xB replaced by x̃. The crucial difference is that the ratio in the r.h.s. of (6.15) is
negative when xA ∈ Aβ ; hence the proper sign must be introduced taking the square root
of (6.15). This leads to x̃ = Re[zinv(xA)], where zinv(xA) is given in (5.11) with xA ∈ Aβ .
We remind that x̃(xA) is a bijective function from Aβ onto R.

In figure 9, considering only the positive half real axis without loss of generality, we
display some geodesic bit threads that start at various xA ∈ Aβ , and therefore reach the
horizon (grey dashed curves). Each geodesic bit thread of this kind is merged smoothly at
the horizon with the corresponding geodesic (cyan dashed curves) that connects the horizon
to the point (x̃, 0) on the boundary, where x̃ = Re[zinv(xA)], as discussed above. The curves
obtained from these geodesics are compared with the corresponding CFT curves described
in section 5.2 (yellow solid curves, shown also in figure 5), that start at the same values of
xA ∈ Aβ , grow in the strip {z ∈ C ; |Im(z)| 6 β/2} according to (5.2) with θ ∈ (0, π) and
end at Re[zinv(xA)] + iβ2 when θ = π. The relation x̃ = Re[zinv(xA)] is highlighted by the
vertical dotted lines in figure 9.

7 Two disjoint intervals: massless Dirac field, ground state

In this section we consider the massless Dirac fermion in its ground state on the line
bipartite by the union A = A1∪A2 of two disjoint intervals A1 = (a1, b1) and A2 = (a2, b2).

7.1 Internal modular evolution

The modular Hamiltonian of two disjoint intervals for a CFT in its ground state and on
the line depends on the model. For the massless Dirac field, this modular Hamiltonian and
the corresponding modular flow for the Dirac field have been described in [12, 13]. Casini
and Huerta [12] found that this operator can be written as KA = K loc

A +Kbi-loc
A , where

K loc
A = 2π

∫
A
βloc(x)Ttt(t, x) dx (7.1)

is a local operator determined by the energy density Ttt(t, x). For the massless Dirac field,
the energy density reads10

Ttt(t, x) ≡ i
2 :
[(
ψ∗1 (∂xψ1)− (∂xψ∗1)ψ1

)
(x+ t)−

(
ψ∗2 (∂xψ2)− (∂xψ∗2)ψ2

)
(x− t)

]
: (7.2)

in terms of the chiral components ψ1 and ψ2 of the massless Dirac field. The bi-local term
Kbi-loc
A is

Kbi-loc
A = 2π

∫
A
βbi-loc(x)Tbi-loc(t, x, xc) dx (7.3)

10See the decomposition in eqs. (2.22)-(2.23) of [21].
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where the bi-local operator Tbi-loc(t, x, y) is the following quadratic operator

Tbi-loc(t, x, y) ≡ i
2

{
:
[
ψ∗1(x+ t)ψ1(y + t)− ψ∗1(y + t)ψ1(x+ t)

]
:

+ :
[
ψ∗2(x− t)ψ2(y − t)− ψ∗2(y − t)ψ2(x− t)

]
:
}
. (7.4)

The weight functions in (7.1) and (7.3) can be written as

βloc(x) = 1
w′(x) βbi-loc(x) = βloc(xc(x))

x− xc(x) (7.5)

where
w(x) = log

[
−(x− a1)(x− a2)

(x− b1)(x− b2)

]
(7.6)

which is the crucial function of our analysis throughout this section. This function naturally
leads to introduce the point xc(x) conjugate to x ∈ A through the condition w(xc(x)) =
w(x). The explicit expression for xc(x) is [12, 20]

xc(x) ≡ (b1b2 − a1a2)x+ (b1 + b2) a1a2 − (a1 + a2) b1b2
(b1 − a1 + b2 − a2)x+ a1a2 − b1b2

= x0 −
R2

0
x− x0

(7.7)

where

x0 ≡
b1b2 − a1a2

b1 − a1 + b2 − a2
R2

0 ≡
(b1 − a1)(b2 − a2)(b2 − a1)(a2 − b1)

(b1 − a1 + b2 − a2)2 . (7.8)

Notice that a point x and its conjugate point xc(x) belong to different intervals in A.
Furthermore, xc(x) in (7.7) is invariant under a cyclic permutation of the sequence of
endpoints (a1, b1, a2, b2). It is sometimes convenient to write these expressions in terms of
the lengths of the intervals `j ≡ bj − aj with j ∈ {1, 2} and of the distance d ≡ a2 − b1
separating them. The conjugate point xc(x) in (7.7) should not be confused with the image
of the geometric action of the modular conjugation. Indeed, for a given x ∈ A, while the
former one still belongs to A, the latter one lies in the complement of A on the line.

The function providing the geometric action of the modular group of automorphisms
induced by the vacuum reads [12, 13, 21]

ξ(τ, x) ≡ ΘA1(x) ξ−(τ, x) + ΘA2(x) ξ+(τ, x) (7.9)

where ΘAj (x) is the characteristic function of Aj with j ∈ {1, 2}, and

ξ±(τ, x) ≡ w−1
±
(
w(x) + 2πτ

)
(7.10)

satisfying ξ(0, x) = x for any x ∈ A. The functions in (7.10) are written in terms of the
inverse functions w−1

± of (7.6), which are

w−1
± (x) = a1 + a2 + (b1 + b2) ex

2(1 + ex) ±

√(
a1 + a2 + (b1 + b2) ex

)2 − 4(1 + ex) (a1a2 + b1b2 ex)
2(1 + ex)

(7.11)
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where the expression under the square root is a quadratic polynomial in the variable ex,
whose discriminant is −16(b1 − a1)(b2 − a2)(b2 − a1)(a2 − b1); hence it is positive for any
x ∈ R when a1 < b1 < a2 < b2.

The map sending a generic configuration A of two intervals on the line into the sym-
metric configuration Asym ≡ (−b,−a) ∪ (a, b), with 0 < a < b, reads

f(x) ≡
a
[
a1a2 − 2a1b2 + a2b2 + (a1 − 2a2 + b2)x

]
+ b (b2 − a1)(x− a2)

b
[
a1a2 − 2a1b2 + a2b2 + (a1 − 2a2 + b2)x

]
+ a (b2 − a1)(x− a2)

b (7.12)

where

b

a
= a1b1 + a2b2 + b1b2 + a1a2 − 2(a1b2 + a2b1) + 2

√
(b1 − a1)(b2 − a2)(a2 − a1)(b2 − b1)

(b2 − a1)(a2 − b1) .

(7.13)
Considering a point x ∈ A and its conjugate xc(x) ∈ A given by (7.7), we observe that (7.12)
satisfies

f(x) f(xc(x)) = − a b . (7.14)

Let us introduce the points cj ∈ Aj with j ∈ {1, 2} such that

f(xc(cj)) = − f(cj) . (7.15)

Combining this definition with (7.14), one finds that f(cj)2 = a b for these two points.
From (7.15), their explicit expressions are

c1 ≡
a2b2 − a1b1

a2 + b2 − a1 − b1
−
√

(a2 − a1)(a2 − b1)(b2 − a1)(b2 − b1)
a2 + b2 − a1 − b1

(7.16)

= a1 +
√

(`1 + d)(`1 + `2 + d)
`1 + `2 + 2d

(√
(`1 + d)(`1 + `2 + d)−

√
(`2 + d)d

)
(7.17)

and

c2 ≡
a2b2 − a1b1

a2 + b2 − a1 − b1
+
√

(a2 − a1)(a2 − b1)(b2 − a1)(b2 − b1)
a2 + b2 − a1 − b1

(7.18)

= a2 +
√

(`1 + d) d
`1 + `2 + 2d

(√
(`2 + d)(`1 + `2 + d)−

√
(`1 + d)d

)
. (7.19)

We also notice that xc(ci) = cj with i 6= j and that

w(c1) = w(c2) = log
(
a2 − a1
b2 − b1

)
. (7.20)

In the case of the symmetric configuration Asym, the function f in (7.12) is the iden-
tity map and the expression (7.7) for the conjugate point simplifies to xc(x) = −ab/x,
consistently with (7.14) for this configuration. In this case the condition (7.15) becomes
c2
j = ab, which is the square of the geometric mean of a and b; hence c2 =

√
ab ∈ (a, b) and

c1 = −
√
ab ∈ (−b,−a).

In the limit of large separation, i.e. when d → +∞, from (7.17) and (7.19) we have
that cj = aj+`j/2+O(1/d), with j ∈ {1, 2}. In the opposite limit of adjacent intervals, i.e.
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Figure 10. The curves ξ(τ, x) and ξ(−τ, x) (solid lines) and their images under the inversion map
(dot-dashed lines) in the plane (ξ, τ), obtained from (7.9) and (7.26). The vertical dotted lines in
the grey strips correspond to (7.16) and (7.18). The bottom panel illustrates the limiting regime of
adjacent intervals.
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when d→ 0 and the two intervals become the single interval (a1, b2), from (7.17) and (7.19)
one finds that both c1 and c2 converge to the point a2 = b1 inside the final single interval.

In the top panel of figure 10 we consider the plane R2 parameterised by the coordinates
(ξ, τ). The subsystem A = A1∪A2 provides the two grey vertical strips where ξ ∈ A, which
contain the solid curves corresponding to ξ(τ, x) and ξ(−τ, x), obtained from (7.9) for a
generic point x ∈ A and its conjugate xc(x) at τ = 0. The points (7.16) and (7.18) give the
dotted vertical lines in these two grey strips. For any choice of x ∈ A at τ = 0, the intersec-
tion of these vertical lines with the solid curves is characterised by the condition ξ(τc, x) = cj
with j ∈ {1, 2}, which identifies the following value τc of the modular parameter

τc(x) ≡ w(cj)− w(x)
2π j ∈ {1, 2} (7.21)

where w(cj) is given by (7.20). From (7.20) and (7.21), we have that both c1 and c2
lead to the same value for τc(x) for any x ∈ A. This value naturally induces a partition
of the solid curves obtained from (7.9) into three arcs corresponding to the partition
R = (−∞,−|τc|) ∪ (−|τc|, |τc|) ∪ (|τc|,+∞) for the domain of τ , which are indicated
through different colours in figure 10. The bottom panel of figure 10 displays the limit of
adjacent intervals, identifying the arcs that remain non trivial and the ones that collapse
either to vertical segments or to vertical half lines in this limit.

In the Minkowski spacetime parameterised by the coordinates (x, t), we have to con-
sider the bipartition given by the union of two disjoint intervals A1 and A2 and its
complement along each light ray direction (2.1). This leads to the spacetime domain
DA ≡ D1 ∪ D2 ∪ D+

12 ∪ D
−
12, made by the union of the four grey regions shown in each the

panels of figure 11: Dj are the diamonds corresponding to Aj , with j ∈ {1, 2}, and the two
regions D±12, which are symmetric with respect to the x-axis, are made by points of the
spacetime where a light ray from A1 and a light ray from A2 intersect, travelling either in
the future for D+

12 or in the past for D−12.
A modular trajectory in DA can be obtained by using (7.9) for each light ray coordi-

nate. This leads to the following spacetime coordinates for the generic point of a modular
trajectory

x(τ) = ξ(τ, p0,+) + ξ(−τ, p0,−)
2 t(τ) = ξ(τ, p0,+)− ξ(−τ, p0,−)

2 τ ∈ R (7.22)

where (u+, u−) = (p0,+, p0,−) are the light ray coordinates of the initial point at τ = 0.
Denote by P = (u+,0, u−,0) the light ray coordinates of the initial point of the mod-

ular evolution at τ = 0, which must be both different from (7.16) and (7.18) to explore
the most generic case. The light ray coordinates of the point Pc conjugate to P are
(xc(u+,0), xc(u−,0)). In figure 11, two examples for P are shown: P ∈ D2 (black filled
circle) and P ∈ D+

12 (blue filled circle). The corresponding Pc’s are indicated with empty
circles of the same colour. In order to obtain the expected modular trajectories for the
single interval in the limit of adjacent intervals, beside the initial point P and its con-
jugate point Pc, we introduce also the two auxiliary points Pc,− ≡ (u+,0, xc(u−,0)) and
Pc,+ ≡ (xc(u+,0), u−,0), denoted by empty squares and empty rhombi in figure 11.
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Figure 11. Spacetime domain DA for the union of two disjoint intervals A1 and A2 on the line,
whose lengths are `1 = ` and `2 = 2` respectively. The distance d between the intervals changes
in the different panels, while ` is kept fixed: d/` = 1 (top left), d/` = 1/5 (top right), d/` = 1/20
(bottom left) and d/` = 1/1000 (bottom right). The modular trajectories corresponding to following
two choices of the initial point P are displayed: the black filled circle in D2 and the blue filled circle
in D+

12. The empty symbols having the same colour denote the conjugate point Pc (empty circle)
and the auxiliary points Pc,± (empty square and empty rhombus) obtained from P .

The occurrence of the four points, which are the initial point P and its associated
points Pc, Pc,+ and Pc,−, comes from the combination of the two different chiralities. Each
region among D1, D2, D+

12 and D−12 contains one and only one of these points. Choosing one
of these four points at τ = 0 and plugging its coordinates into (7.22), a modular trajectory
is obtained in the corresponding region as τ ∈ R. Thus, we can associate four disjoint
modular trajectories in DA to any point P ∈ DA, which are in one-to-one correspondence
with the four regions D1, D2, D+

12 and D−12.
In figure 11 we show DA for two disjoint intervals having assigned lengths, while the

various panels correspond to different values of the distance separating them. The two
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choices for P mentioned above are performed and each panel displays the four curves
corresponding to each P . For a given P , the solid curve, the dashed curve, the dotted and
the dot-dashed curves pass through P , Pc and Pc,± respectively.

We find it instructive to consider also the four points C1, C2, C+
12 and C−12 whose light

ray coordinates are obtained by combining (7.16) and (7.18) in all the four possible ways.
These points correspond to the intersections of the black dotted segments in each panel
of figure 11 and are in one-to-one correspondence with the regions D1, D2, D+

12 and D−12;
hence they are denoted in the same way. The null rays departing from each one of these
four points (black dotted segments in figure 11) partition the corresponding grey region
into four subregions. As a consequence, each one of the four points C1, C2, C+

12 and C−12
induces a natural partition of any modular trajectory belonging to the same region, which
can be found by plugging its coordinates into (7.21) first and then partitioning the range
R of the modular parameter accordingly. In figure 11, the components of the partition of
each curve are indicated through different colours. The dashed black curves in figure 11
correspond to the modular trajectories passing through the points C1, C2, C+

12 and C−12.
In figure 11, the sequence of panels shows the domain DA of two disjoint intervals A1

and A2 with given lengths `1 and `2 for four decreasing values of the distance d separat-
ing them. This sequence illustrates how the four modular trajectories corresponding to a
generic initial point P are deformed by the limiting procedure and finally provide the single
modular trajectory in the final diamond of a single interval of length `1 +`2, obtained when
A1 and A2 are adjacent and therefore share one endpoint. Various arcs of the different
modular trajectories do not contribute to the final modular trajectory in the diamond of the
adjacent intervals because they collapse to segments along null rays. In particular, taking
d→ 0 in (7.16) and (7.18), one finds that all the points C1, C2, C+

12 and C−12 collapse to the
shared endpoint. This implies that, considering the partition of each one of the four regions
D1, D2, D+

12 and D−12 identified by these points, only one component of the partition of each
one of these four regions is non vanishing after the adjacent intervals limit. As for the four
modular trajectories contained in DA, since each of them is partitioned accordingly to the
partition induced by either C1 or C2 or C+

12 or C−12 of the region it belongs to, at most one
component of their partition contributes to the final modular trajectory in the diamond of
the adjacent intervals. The other arcs collapse on the light rays of the final shared endpoint,
as shown in the bottom panels of figure 11. Notice that, beside the modular trajectory pass-
ing through the initial point P , only two other modular trajectories among the ones passing
through Pc or Pc,± contribute to the final modular trajectory after the limit d → 0. It is
instructive to compare the bottom right panel of figure 11 with the right panel of figure 1.

7.2 Geometric action in Euclidean spacetime

In order to explore the geometric action of the modular conjugation, we adapt to this case
the analyses presented in section 3 and section 5. This leads us first to write an inversion
map zinv(x) on the real axis at t = 0 for A = A1 ∪ A2 and its complement B on the line,
and then to its extension to an inversion map on DA.

An inversion map for A = A1 ∪ A2 and its complement B on the line can be con-
structed by exploiting the analysis in the Euclidean spacetime carried out in [17]. In the
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

Figure 12. Euclidean modular evolution for the union A = A1∪A2 of two disjoint intervals (red seg-
ments), from (7.23) with either θ ∈ (0, π) (solid lines) or θ ∈ (π, 2π) (dotted lines), which lead to the
inversion map (7.29) on the line. Curves having the same colour correspond to conjugate points in A.

complex plane parameterised by the complex variable z, the union of two disjoint intervals
is identified through the endpoints of A1 and A2 (the entangling points) on the real axis.
In figure 12, the subsystem A corresponds to the union of the two red segments and its
complement B to the union of the blue ones; hence the four entangling points separate
the red and blue segments, partitioning the real line. From the function w(x) in (7.6) and
its inverse functions (7.11), one constructs the following geometric action in the imaginary
time [17]

z±(θ, x) ≡ w−1
±
(
w(x) + iθ

)
θ ∈ [0, 2π) x ∈ A (7.23)

which can be also obtained by replacing 2πτ with iθ in (7.10).
For any x ∈ A, the complex maps (7.23) allow to find a closed curve in the complex

plane which intersects only once the real axis in B, when θ = π in (7.23). Similarly to
the cases studied in section 3 and section 5, this observation provides a natural way to
construct an inversion map zinv,A(x) sending A to its complement B on the real axis at
t = 0. We require that a point close to an entangling point in A is mapped by this inversion
to a point close to the same entangling point in B, and viceversa. In figure 12 we show
the curves obtained from (7.23) for some x ∈ A and for their conjugate points xc(x) given
by (7.7) (the curves with the same colour intersect A in x and xc(x)), as done in figure 9
of [17] for the special case of Asym.

In order to write zinv,A(x), let us consider the points (7.16) and (7.18) (green points in
figure 12). As observed in [17], these points can be found from the points in the complex
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plane where w′(z) = 0, which are

z0,± ≡ c0 ± i
√

(b1 − a1)(a2 − b1)(b2 − a1)(b2 − a2)
b1 + b2 − a1 − a2

c0 ≡
b1b2 − a1a2

b1 + b2 − a1 − a2
. (7.24)

The points z0,± (black dots in figure 12) are the intersections of the circles Ca and Cb
whose centers are on the real axis, in (a1 + a2)/2 and (b1 + b2)/2 respectively. In z0,±,
the straight lines tangent to Ca and Cb provide two supplementary angles whose bisectors
allow to identify in a unique way two circles among the ones passing through z0,±. One of
these two circles (red dashed circle in figure 12) intersects the real axis at c1 and c2 given
by (7.16) and (7.18) (green points), while the other one (blue dashed circle) intersects
the real axis at d1 and d2 (cyan points in figure 12), obtained respectively from (7.16)
and (7.18) modified through the cyclic shift of the ordered sequence of the endpoints
(a1, b1, a2, b2)→ (b1, a2, b2, a1).

In [17] it has been argued that the points (7.24) induce the occurrence of two critical
values for θ ∈ (0, 2π) whose sum is 2π. One of these angles is θ0 ≡

∣∣Im[w(z0,±)]
∣∣; hence

∣∣ tan θ0
∣∣ =

∣∣∣∣ Im
[
ew(z0,±)]

Re
[
ew(z0,±)]

∣∣∣∣ = 2
√

(b1 − a1)(b2 − a2)(a2 − b1)(b2 − a1)∣∣2(a1a2 + b1b2)− (a1 + a2)(b1 + b2)
∣∣ . (7.25)

From (7.23), (7.16) and (7.18) we construct the following inversion map on the line
bipartite by the union of two disjoint intervals

zinv,A(x) ≡

 z−(π, x) x < c1

z+(π, x) x > c1
x ∈ A1

zinv,A(x) ≡

 z+(π, x) x < c2

z−(π, x) x > c2
x ∈ A2

(7.26)

which is one-to-one from A to B and maps points close to an entangling point into points
close to the same entangling point.

At this stage let us introduce

ξ(τ, x) ≡ ΘB1(x) ξ−(−τ, x) + ΘB2(x) ξ+(−τ, x) x ∈ B1 ∪B2 (7.27)

which has been employed to draw the dot-dashed curves in figure 10, obtained from (7.27)
with x given by the image under (7.26) of the initial point in A providing the solid curves
in the grey strips through (7.9).

In order to construct an inversion map zinv(x) on the entire line, we have to describe
also the one-to-one map inversion map zinv,B(x) : B → A as the inverse of (7.26). This
can be done by employing again the curves defined through (7.23), but now in the range
θ ∈ (π, 2π). This leads to the curves in the lower half plane shown in figure 12 (dotted
lines). Since the complement B = B1∪B2 ∈ R of A on the line is the union of B1 ≡ (b1, a2)
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and B2 ≡ (b2,+∞) ∪ (−∞, a1), we find that zinv,B(x) reads

zinv,B(x) ≡

 z−(π, x) x < d1

z+(π, x) x > d1
x ∈ B1

zinv,B(x) ≡

 z−(π, x) x < d2

z+(π, x) x > d2
x ∈ B2

(7.28)

where the points dj ∈ Bj with j ∈ {1, 2} on the line introduced above (cyan points in
figure 12).

Combining (7.26) and (7.28), we obtain the following inversion map on the line

zinv(x) : R→ R zinv(x) ≡

 zinv,A(x) x ∈ A

zinv,B(x) x ∈ B
(7.29)

which is idempotent, as expected.

7.3 Geometric action in Minkowski spacetime

The idempotent map (7.29) allows to introduce the following inversion map for DA

xinv(x, t) = zinv(x+ t) + zinv(x− t)
2 tinv(x, t) = zinv(x+ t)− zinv(x− t)

2 (7.30)

which has the same structure of (3.5) and (5.21), explored in the previous analyses.
In figure 13, the map (7.30) sends DA = D1 ∪ D2 ∪ D+

12 ∪ D
−
12 (grey region, like in

figure 11) into WA (light blue region), and viceversa. Moreover, considering the vertices
shared by DA and WA, this map sends a point close to a vertex in the grey region into a
point close to the same vertex in the blue region, and viceversa.

The four points labelled by black filled markers in DA are obtained by combining (7.16)
and (7.18) in all the four possible ways. Each one of these black points, which provides a
natural partition of the rhombus it belongs to in four subregions (as already discussed in
section 7.1 for figure 11) is mapped through the inversion (7.30) to the point in the light
blue region labelled by the same marker coloured in red. Such red point induces a partition
of the connected light blue region it belongs to in four subregions through the null rays
departing from it. Anyone of the four subregions partitioning one of the four grey regions
D1, D2, D+

12 and D−12 is mapped by (7.30) into the subregion in the light blue domain that
shares a vertex with it.

In figure 13 we display the modular trajectories corresponding to two initial points in
DA labelled by the blue and purple filled circles, as also done in figure 11 and by adopting
the same conventions. In this figure we also show the images of these modular trajectories
under the inversion map (7.30), that belong toWA. The images of the blue (purple) points
are the green (yellow) points, labelled by the same kind of marker. The points labelled by
empty markers are obtained from the one corresponding to the filled circle having the same
colour, as discussed above for the points Pc and Pc,± of figure 11. In figure 13 the image of
each arc in DA under (7.30) is the arc in WA having the same colour and the same kind of
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Figure 13. Modular trajectories in DA1∪A2 and their images under the inversion map (7.30). The
bottom panel shows the limiting regime of adjacent intervals (see the right panel of figure 1).
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line. The modular parameter τ grows along the curves as indicated by the arrows; hence
the upper and lower vertices in D1, D2, D+

12 and D−12 correspond to τ → +∞ and τ → −∞
respectively.

In figure 13 the black markers in DA correspond to the four points C1, C2, C+
12 and

C−12 introduced in section 7.1 and the red markers in WA to their images under the in-
version (7.30). The modular trajectories in DA and their images under (7.30) in WA are
denoted by the grey dashed curves in the figure and we find it worth remarking that they
do not display oscillations.

The bottom panel of figure 13 considers the curves displayed in the top panel of the
same figure in the limit of adjacent intervals, showing that the right panel of figure 1 is
recovered in this limiting regime.

We stress that the results described in this section hold for the massless Dirac field.

8 Conclusions

In this manuscript we have studied a holographic relation between the geometric action of
some modular conjugations in 2D CFT and the geodesic bit threads considered in [35, 38] in
a constant time slice of the corresponding dual gravitational backgrounds. This comparison
has been performed for three cases and in all of them the bipartition of the space is given by
a single interval: for a CFT in the ground state, either on the line (section 3 and section 4)
or on the circle (appendices A and B), and in the thermal state on the line (section 5 and
section 6).

When the CFT is in the ground state and on the line bipartite by an interval, the
geometric actions of the modular operator and of the modular conjugation are described
by the theorem of Hislop and Longo [2, 8, 9] and are given by (3.1) and (3.3) respectively.
Considering for simplicity and without loss of generality the interval A = (−b, b) on the
line, the geometric action for the modular conjugation at t = 0 simplifies to (3.13). In the
context of the gauge/gravity correspondence, this inversion relation is obtained between
the endpoints of a geodesic bit thread on a constant time slice of Poincaré AdS3 (see figure 3
and (4.9)). The case of a CFT in its ground state and on the circle bipartite by an interval
is a straightforward generalisation whose geometric actions for the modular operator and
the modular conjugation are (A.3) and (A.5) respectively. The corresponding holographic
dual description of the geometric action of the modular conjugation is obtained through
the geodesic bit threads in a constant time slice of global AdS3 (see figure 15).

For a CFT in a thermal state at temperature 1/β and on the line bipartite by an
interval, the geometric action of the modular conjugation is more insightful. In each chi-
ral sector, the inversion map (5.5) on the bipartite line (see also (5.10)) obtained from
the modular evolution in the Euclidean spacetime [17] naturally leads to introduce the
subinterval Aβ ⊂ A, whose endpoints are (5.6) and (5.7). Interestingly, denoting by `

the size of the interval A, we find that the integration over Aβ of the corresponding con-
tour function for the entanglement entropy [45] (see (5.16)) provides the Gibbs entropy
π c `/(3β) of an isolated system of length ` coming from the Stefan-Boltzmann law for a 2D
CFT [43, 49, 50] for any value of ` and β. The inversion map (5.5) for a given chirality is a
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complex function which acquires a constant non vanishing imaginary part on Aβ and whose
real part maps Aβ into the second world (see figure 4). The occurrence of such spacetime
is induced by the non triviality of the commutant for a thermal state, as discussed in [24–
26, 28, 29]. The combination of the two different chiralities allows to extend this picture
to the Minkowski spacetime M (see figure 6), where the geometric action of the modular
conjugation is (5.23). Interestingly, this map is real also on the domain of dependence of
Aβ (green region in figure 6) and sends this diamond onto the entire Minkowski spacetime
M̃ (which is interpreted as the second world) in a bijective way.

In the gauge/gravity correspondence, the restriction to the real line at t = 0 of this
inversion map obtained for a 2D CFT in the (geometric) thermal state coincides with the
relation between the endpoints of the geodesic bit threads on a constant time slice of the
BTZ black brane geometry (see figure 8 and figure 9 for the geodesic bit threads anchored in
A\Aβ and in Aβ respectively). The geodesic bit threads anchored in Aβ reach the horizon.

It is instructive to compare the modular conjugation for the thermal case derived in
section 5 with the thermo-field dynamic (TFD) setting of [52]. Both constructions are
based on the Gibbs state generated by the Hamiltonian H of the system and adopt [53]
the Tomita-Takesaki modular theory. In the TFD case one applies this theory to the whole
system and the modular Hamiltonian is H−JHJ . Instead, in our case the modular Hamil-
tonian (5.24) is induced by the bipartition of the system in two parts A and B. For this
reason the modular evolution and the modular conjugation in the two settings are different.
Heuristically, our construction approaches the TFD setting when the interval A becomes
the whole system. The TFD setup has been largely explored in AdS/CFT following [54],
and, furthermore, the role of J in this context has been investigated in [55, 56].

Finally, for the massless Dirac fermion in the ground state and on the line bipartite by
the union of two disjoint intervals, in section 7.2 we have proposed the inversion map (7.26),
obtained by following [17] (see figure 12) and adapting the procedure established in the pre-
vious cases. This inversion map can be extended to the Minkowski spacetime through (7.30)
(see figure 13). It is not difficult to realise that a holographic description of this inversion
map on the real line cannot be found only through the geodesic bit threads in Poincaré
AdS3, as discussed in [38]. However, it could be insightful to find an explicit construction
of holographic bit threads in Poincaré AdS3 that reproduces the inversion map (7.26) holo-
graphically. We remark that, for a generic CFT in its ground state and the bipartition of
the line given by the union of two disjoint intervals, a geometric action for the modular
conjugation is not expected.

The analyses discussed in this manuscript can be extended in various directions. In
1 + 1 spacetime dimensions, more complicated configurations can be investigated by con-
sidering e.g. a CFT at finite temperature and finite volume when the subsystem is still an
interval [30–32, 57, 58] or a CFT in the ground state on the line when the bipartition is
given by the union of an arbitrary number of disjoint intervals [12, 13, 59–61]. In higher
dimensional CFT, it would be interesting to explore the action of the modular operators
and of the modular conjugations for subregions having different shapes, comparing the re-
sults with the corresponding configurations of geodesic bit threads (see e.g. [62–68] for the
shape dependence of the holographic entanglement entropy). Finally, we find it worth men-

– 40 –



J
H
E
P
1
2
(
2
0
2
2
)
1
4
9

tioning that various modular Hamiltonians in free models have been studied by taking the
continuum limit of the corresponding operators (often called entanglement Hamiltonians)
on the lattice [18, 69–80]. It would be insightful to study also other operators occurring in
the Tomita-Takesaki modular theory in quantum many-body systems.
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A Single interval on the circle: ground state

In this appendix we consider a CFT in its ground state and on a circle of length L bipartite
by an interval A = (a, b) and its complement. The circle can be represented by the interval
[−L/2 , L/2] whose endpoints ±L/2 are identified.

In this case, the function w(u) in the light ray coordinate u to employ in section 2
reads [16, 17]

w(u) = log
(sin[π(u− a)/L]

sin[π(b− u)/L]

)
(A.1)

hence the weight function (2.4) for the entanglement Hamiltonian (2.3) is

β0(u) ≡ L

π

sin[π(b− u)/L] sin[π(u− a)/L]
sin[π(b− a)/L] . (A.2)

Specialising (2.9) to (A.1), one finds the geometric action of the modular automorphism
group of the diamond induced by the ground state [21]

ξ(τ, u) = L

2π i log
(
eiπ(b+a)/L + ei2πb/L ew(u)+2πτ

eiπ(b−a)/L + ew(u)+2πτ

)
(A.3)

where x ∈ A and τ ∈ R. In the Euclidean spacetime, the modular evolution (2.10) for this
case becomes [17]

z(θ, x) = L

2π i log
(
eiπ(b+a)/L + ei2πb/L ew(x)+iθ

eiπ(b−a)/L + ew(x)+iθ

)
(A.4)

where x ∈ A and θ ∈ [0, 2π). In the limit L → +∞, the expressions (A.3) and (A.4)
become (3.1) and (3.16) respectively, as expected.

By adapting (3.22) and (5.5) (that hold for the CFT on the line at zero and finite
temperature respectively) to this case, from (A.3) and (A.4) we introduce the inversion
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Figure 14. Euclidean modular evolution for a CFT in the ground state and on the circle bipartite
by an interval (the dashed vertical line are identified). The curves are obtained from (A.4) for some
x ∈ A, with either θ ∈ (0, π) (solid arcs) or θ ∈ (π, 2π) (dotted arcs). They map a point in A to a
point in its complement on the circle (and viceversa), related by (A.5).

map for the CFT in the ground state and on the bipartite circle as follows

zinv(x) ≡ ξ(τ = i/2 , x) = z(θ = π , x) = L

2π i log
(
eiπ(b+a)/L − ei2πb/L ew(x)

eiπ(b−a)/L − ew(x)

)
(A.5)

= b+ L

2π i log
(
ew(x) − e−iπ(b−a)/L

ew(x) − eiπ(b−a)/L

)
. (A.6)

This function is real (see (A.6), where the argument of the logarithm is purely imaginary)
and maps the interval A into its complement B ≡ [−L/2 , L/2] \A.

In figure 14 the Euclidean spacetime {z ∈ C; |Re(z)| 6 L/2} is considered (grey region),
where the two black vertical dashed lines at |Re(z)| = L/2 are identified. The red segment
corresponds to the interval A and the blue segments to its complement B. The curves have
been obtained from (A.4) for some x ∈ A, with either θ ∈ (0, π) (black solid curves) or θ ∈
(π, 2π) (black dotted curves). Their endpoints are related through the inversion map (A.5).

Let us discuss a consistency condition between the inversion map on the line (3.8) and
the one (A.5) for the circle. The upper half plane in the complex coordinate µ and the
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unit disk in the complex coordinate ν are related by the Cayley map

ν(µ) = − µ− i
µ+ i µ(ν) = i 1− ν

1 + ν
. (A.7)

This map relates also the boundaries of these two domains in the complex plane, i.e. the
real line Re(µ) and the unit circle

{
ν = eiθ; θ ∈ (−π, π]

}
(notice that µ = 0 is sent to θ = 0

and µ → ±∞ to θ → ±π). More precisely, a point p ∈ R is sent to eiθp on the circle such
that

cos θp = 1− p2

1 + p2 sin θp = 2 p
1 + p2 . (A.8)

Then, the map ν → L
2πi log(ν) can be used to send the unit circle onto the segment

[−L/2, L/2] whose endpoints are identified. Composing this transformation with the Cay-
ley map, one finds a function that sends a point p ∈ R to a point s ∈ [−L/2, L/2] in the
above segment as follows

s(p) = L

2πi log[ν(p)] = Lθp
2π . (A.9)

Considering the inversion map zinv(x) on the line (see (3.4) and (3.8)) for x ∈ (a, b) ⊂ R
and denoting (A.5) by z̃inv(L, a, b;x) to avoid confusion, one finds that

s
(
zinv(x)

)
= z̃inv

(
L, s(a), s(b); s(x)

)
(A.10)

which tells us that the inversion maps at t = 0 discussed in section 3.2 and in this appendix
can be related through conformal mappings.

B Geodesic bit threads in global AdS3

In this appendix we show that the inversion map discussed in the appendix A can be
obtained also through the geodesic bit threads in a constant time slice of global AdS3.

The metric on a fixed time slice of AdS3 in global coordinates reads

ds2 = dρ2 + (sinh ρ)2dθ2 = 4
(1− r2)2

(
dr2 + r2dθ2) ρ = log

(1 + r

1− r

)
(B.1)

where ρ > 0 and θ ∈ [0, 2π). The last expression in (B.1) is written in terms of the polar
coordinates (r, θ), with 0 6 r < 1, and corresponds to the Poincaré disk (yellow unit disk in
figure 15). The Cayley map (A.7) relates the upper half plane, in the complex coordinate
µ = x + iζ and equipped with the hyperbolic metric (4.1), to the Poincaré disk with the
metric (B.1) in the complex coordinate ν = r eiθ.

The geodesics in the Poincaré disk having their endpoints on the boundary are circular
arcs that intersect the boundary orthogonally. In a disk of radius R in polar coordinates
(r, θ), where 0 6 r 6 R, the orthogonality condition for the intersection of two circles
provides the following second order equation

(
r2 +R2) cosα− 2 r R cos(θ − θ0) = 0 (B.2)
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Figure 15. Geodesic bit threads (green dashed circular arcs) in a fixed time slice of global AdS3
(yellow unit disk, see (B.1)) for an arc of the boundary circle (red arc), whose RT curve is the red
solid arc anchored to its endpoints.

where the intersections occur at (R, θ+) and (R, θ−) in polar coordinates, with θ± ≡ θ0±α.
Solving (B.2), for the arc inside the disk one finds

r = R
cos(θ − θ0)−

√
[cos(θ − θ0)]2 − (cosα)2

cosα θ ∈ (θ− , θ+) (B.3)

where R = 1 for the Poincaré disk.
Consider the interval (−b, b) ⊂ R, as done in section 4. The corresponding arc on the

boundary of the Poincaré disk (red arc on the boundary of the unit disk in figure 15) is
given by |θ| 6 αRT, where cosαRT = (1 − b2)/(1 + b2) = Re[ν(b)], from (A.8). Hence the
RT curve in the Poincaré disk is given by (B.3) specialised to R = 1, θ0 = 0 and α = αRT.
In figure 15, it corresponds to the red curve in the bulk of the Poincaré disk.

The geodesic bit threads in the Poincaré disk for this RT curve can be also found
through the Cayley map. The angular coordinates θ± of the endpoints are obtained
from (A.8) with p = xs ± Rs. These coordinates give the parameters α an θ0 (in terms
of xA ∈ (−b, b)) to employ in (B.3) with R = 1 in order to find the geodesic bit threads.
Some of them are shown in figure 15 (green dashed circular arcs).

Finally, by employing also the map ν → L
2πi log(ν) introduced in the appendix A, we

have checked that the angular distance between the endpoints of a geodesic bit thread
agrees with the CFT expression (A.5), as expected.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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