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Abstract: We perform a detailed study of a class of irregular correlators in Liouville
Conformal Field Theory, of the related Virasoro conformal blocks with irregular singu-
larities and of their connection formulae. Upon considering their semi-classical limit,
we provide explicit expressions of the connection matrices for the Heun function and a
class of its confluences. Their calculation is reduced to concrete combinatorial formulae
from conformal block expansions.
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1. Introduction

In this paper we perform a detailed study of irregular correlators in Liouville Conformal
Field Theory (CFT), of the related Virasoro conformal blocks with irregular singulari-
ties and of their connection formulae. Upon considering their semi-classical limit, we
provide explicit expressions of the connection matrices for the Heun function and a
class of its confluences. These result from the semi-classical limit of Virasoro conformal
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blocks for the five-point correlation function of four primaries and a degenerate field
and a class of its coalescence limits to irregular conformal blocks. While the five-point
correlator satisfies a linear PDE, namely the BPZ equation [1], its confluences satisfy
a PDE obtained by an appropriate rescaling procedure. As we will discuss in detail in
the paper, BPZ equations reduce in the semi-classical limit to ODEs. For the partic-
ular five-point correlation function mentioned above, this gets identified with Heun’s
equation upon a suitable dictionary. Let us also mention that the method we use can be
generalised to general Fuchsian equations and their confluences upon considering the
relevant conformal blocks.

Heun’s equation [2] is the most general second order linear differential equation with
four regular singularities on the Riemann sphere. It is the next case in the Fuchsian series
after the hypergeometric equation, which displays three regular singularities [3]. The
Heun equation—along with its confluences—enters many problems in theoretical and
mathematical physics, geometry and other branches of quantitative sciences! (see for
example [4,5]). For this reason, many studies appeared in the literature about it, see for
example [6] for a general introduction and [7,8] for studies on the connection problem.
Let us stress that the approach we follow in this paper allows to provide an explicit
calculation of the local expansions of Heun functions and their connection coefficients
in terms of combinatorial formulae for convergent perturbative series, which derive from
the relation with conformal block expansions.

Let us notice in particular that Heun’s equation enters the computation of surface
operators® [9,10] in N' = 2 SU(2) supersymmetric gauge theory with N r < 4[11].
Moreover, the problem of linear perturbations of cylindrically symmetric black holes,
governed by the Teukolsky equation [12], is solved in terms of the confluent Heun func-
tion. Indeed, the technique that we implement in this paper has already been developed
for the confluent Heun function for linear perturbations of Kerr black holes in [13] and
here it is further refined and generalised. By its very definition, Heun function solves
the classical Poincaré uniformisation problem of a Riemann sphere with four punc-
tures [14,15] We also remind that Heun’s equation arises from the linear system whose
isomonodromic deformation problem is described by the Painlevé VI equation [16—18].

Following a class of coalescences of the singularities and/or specific parameter scal-
ings, from the configuration of four regular points one naturally obtains a set of confluent
irregular blocks satisfying the corresponding confluent BPZ equations. The Heun func-
tions and its confluences are solutions of the resulting semiclassical reduced equations.

According to the Alday—Gaiotto—Tachikawa (AGT) correspondence [19], a precise
gauge theoretical counterpart of Liouville CFT is given by the BPS sector of four di-
mensional ' = 2 SU (2) gauge theory in the so-called Q2-background [20]. In particular
the four-point conformal block of Liouville primary fields on the Riemann sphere gets
identified with the Nekrasov partition function [21] of SU (2) gauge theory with four
fundamental hypermultiplets. In this context, the confluence procedure is interpreted
as the decoupling of massive hypermultiplets [22] or the limit to strongly interacting
Argyres-Douglas theories [23,24] in the SU (2) Seiberg-Witten theory. Degenerate field
insertions in the CFT correlator correspond to surface operator insertions in the gauge
theory [25]. The latter therefore satisfy BPZ equations and their confluent limits. The
importance of the AGT correspondence is that it maps more complicated aspects of
one side to easier ones of the other, basically it provides a proof of gauge theory du-
alities once reinterpreted as modular properties in CFT [1]. Moreover, it provides an

I Fora huge bibliography take a look at https://theheunproject.org.
2 See the following coalescence diagram for a precise dictionary.
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explicit combinatorial expression for Virasoro conformal blocks in terms of Nekrasov
partition function. We exploit this correspondence to provide concrete formulae for the
connection matrices for the relevant conformal blocks and their confluences. The semi-
classical limit of CFT coincides via AGT correspondence with an asymmetric limit in
the Q2-background parameters known as the Nekrasov—Shatashvili (NS) limit [26]. This
provides a quantization procedure of the classical integrable systems associated to the
Seiberg-Witten theory [11]. From this viewpoint Heun equations can be interpreted as
Schrodinger equations for these quantum systems.

All in all, the connection problem for (confluent) Heun equations can be restated as
a connection problem for semi-classical conformal blocks. The latter can be computed
in very explicit terms via AGT correspondence by equivariant localisation in supersym-
metric gauge theory in the NS limit. Let us here notice that the classifying group of the
solutions of the Heun equation [27] is the D4 Coxeter group, generated by the permu-
tations of the four regular singular points and by the swaps of each couple of indices of
the local solutions but a reference one. This concretely realises in the NS limit the action
of the D4 group on the vevs of surface operators in the Ny = 4 SU(2) gauge theory.

As mentioned above, the analysis of the confluences of the BPZ equations involves the
appearance of irregular conformal blocks [22,24,28], which arise from the collision of
regular singularities and suitable rescaling of their parameters. In this paper we perform
a detailed analysis of the irregular conformal blocks involved in the confluence process,
of the related three-point functions and of their connection matrices.

The mathematical interest of Liouville quantum field theory has been highlighted
by Polyakov [29] who proposed to interpret it as a quantum extension of the Poincaré
uniformisation problem. A consequence of the above interpretation is that one can make
use of the classical limit of Liouville theory to obtain new exact solutions of classical
uniformisation [30]. This inspired the work of several authors [31-34] and received a
renewed interest after the discovery of AGT correspondence [35—41].

Open questions:. There is a number of open questions left for further investigation.

e The generalization to n—point conformal blocks can be done along the same lines
as the ones we have been following. This produces explicit connection formulae for
n-point Fuchsian systems in terms of Gamma functions and Nekrasov partition func-
tions of linear quiver gauge theories. Via coalescence, this will provide connection
formulae for higher rank singularities.

o In this paper we considered the class of confluences producing irregular singularities
up to Poincaré rank one. This is implied by the fact that their gauge theory description
can be given in a weakly coupled frame. It would be interesting to extend our analysis
to higher rank singularities. These are related to Argyres-Douglas points in the gauge
theory.

e As already mentioned, Heun functions play a relevant réle in the study of linear
perturbations of spinning black-holes. This topic was recently explored in connection
to quantum Seiberg-Witten geometry in [42-45] and isomonodromic deformation
theory [46-52]. In our viewpoint this intriguing correspondence could be further
clarified in CFT terms, as started in [13], and other massive gravitational sources can
be studied along the same lines by making use of the results of this paper. For related
topics, see also [53-58].

e Our analysis can be extended to irregular blocks on Riemann surfaces of higher
genus. For example the genus one case is related to circular quiver gauge theories
[59,60]
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e By considering BPZ equations corresponding to higher level degenerate vertices,
one can extend our analysis to higher order linear ODEs with rational coefficients.
e The uplift to g-difference equations can also be considered. This corresponds to
consider g-Virasoro blocks and supersymmetric gauge theories in five dimensions

[61]. This is related to g-Painlevé equations and topological strings [62,63]

The paper is organised as follows. In section two, as a warm-up, we recall the relation
between four-point conformal blocks with the insertion of three primary fields and
one level 2 degenerate field and hypergeometric functions and we study in detail the
confluences to irregular conformal blocks and the related special functions. We obtain
the connection formulae for the latter as solutions of the constraints imposed by crossing
symmetry. In section three we systematically study the five point conformal blocks with
the insertion of four primary fields and one level 2 degenerate field. We focus on the
explicit computation of the connection formulae as solutions of the constraints imposed
by crossing symmetry for the regular case and a class of its confluences. In each case, we
also compute the semi-classical limit. In section four we provide a dictionary between
semiclassical CFT data and Heun equations in the standard form, we apply the results
of the previous section identifying the relevant semiclassical CFT blocks with Heun
functions and provide the connection formulae. Few technical points are relegated to the

Appendices. A final list of symbols should help the reader in following our computations
(Fig. 1).

The accompanying table collects the dictionary between (irregular) conformal blocks,
supersymmetric gauge theories and the corresponding Heun functions.

CFT - CB SU(2) gauge theory Heun
Regular Ny=4 HeunG
15 Confluent Ny=3 HeunC
15 Reduced confluent Ny = 2 asymmetric HeunRC
2
191 Doubly confluent Ny = 2 symmetric HeunDC
1€1 Reduced doubly confluent Ny=1 HeunRDC
2
1€ Doubly reduced doubly confluent Np=0 HeunDRDC
2 2
1
1§
QS i — 5 1 Q:, 1
S 13 \ : 2 2 32

191

Fig. 1. Confluence diagram of conformal blocks
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2. Warm-Up: 4-Point Degenerate Conformal Blocks and Classical Special
Functions

We start reviewing standard facts about four-point degenerate conformal blocks on the
sphere and their confluence limits. In particular we review their relation to the hyperge-
ometric function and its confluent limits, namely Whittaker and Bessel functions.

The hypergeometric function is the solution to the most general second-order linear
ODE with three regular singularities. On the CFT side it arises as the four-point conformal
block on the Riemann sphere when one of the insertions is a degenerate vertex operator.

2.1. Hypergeometric functions. Consider the four-point conformal block on the sphere

with one degenerate field insertion ®, ; of momentum az | = — 2b+b™ +2h - (corresponding
2
to A2,1 = —% — %)
(Ao |VI(1D)@2,1(2)[Ao)- (2.1.1)

In the following we will drop the subscript 2, 1 and just denote by ®(z) this degenerate
field. The corresponding BPZ equation takes the form

(b‘282—< ! +l>a +—Al +@+A°°_A]_A2’1_AO>
z =1 z) % @-D2 22 2(z—1)

(A VI(D P (2)|Ag) = 0. (2.1.2)

This equation has regular singularities at0, 1, co. As mentioned above, the corresponding
conformal blocks should therefore be expressed in terms of hypergeometric functions.
Indeed, the above differential equation by definition is solved by the conformal blocks
corresponding to the correlator (2.1.1), which in turn are given in terms of hypergeometric
functions. In particular, the conformal block corresponding to the expansion z ~ 0 is

(03] o1 b0 b0
5 (aooaoe a(; ;Z) =72 +0bao(1 —7)2 +bo¢12F1

1 1
(E +b(Bag+a] — ), 3 +b Bag+a) +ax), 1 +2b0ayg, z> , (2.1.3)
where 0 = 4+ and ap+ = o9 £ _Tb are the two fusion channels allowed by the de-
generate fusion rules. Similar formulae hold for the expansions around z ~ 1 and oo.

Conventionally, this conformal block is denoted diagrammatically by

o1 2.1

ap oo
o iz =
S(aoo 0 o Z)

Qoo

E . (2.1.4)

(200]

00

We now want to expose the interplay between crossing symmetry, DOZZ factors and
the connection formulae for the hypergeometric functions. To this end, let us expand the
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correlator once for z ~ 0 and once for z ~ 1:

(AsclVI(D)®2,1(2)|Ag) = ZC;‘;";% oott1000

ap oo,
3( Qo ; z)
[07%) @0

g %) a2
C, 16 Aa1p el —
Z a1 otooaw/oto S oo 10 o’ Z

(2.1.5)

Here C,g, are the DOZZ three-point functions, and C gy =G, 1 Cypy are the OPE coef-
ficients (see Appendix A.1). Equation (2.1.5) is just the statement of crossing symmetry,
due to the associativity of the OPE. The two expansions are related by the connection
matrix Mg as follows

s(“‘aoe““ ) ZMee/(bao,bal,baoom( oy s 1—z)

Qoo Qo aj
9/
(2.1.6)
Plugging the latter into (2.1.5) determines Mgy to be
[(—20"ba)T (1 + 20bay)

T (L +6bag — 0'bay +baoo) T (4 +0bag — 0'bary — bass)
(2.1.7)

Mg (bag, bay; baso) =

which is indeed the connection matrix for hypergeometric functions. Diagrammatically,
we can express the connection formula as

o] 21

Qoo @0

0o

o7} 21

(2.1.8)

= D Moo
0'=+

oo o]

ae’

2.2. Whittaker functions. Colliding the singularities at 1 and co of the hypergeometric
functions we obtained the Whittaker functions, which are simply related to the confluent
hypergeometric function. They have a regular singularity at 0 and an irregular singularity
of rank 1 at co. To describe the confluence of two regular singularities in CFT we
introduce the rank 1 irregular state, denoted by (u, A|. It lives in a Whittaker module
and it is defined by the following properties

(i, ALy = Adp{u, Al
(, AlL—y = uA(u, Al

A2 2.2.1)
(u, AL = —T(M,AI

(U, AIL_, =0, n>2.
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Note that the action of L is not diagonal, and hence (u, A| makes no reference to any
Verma module. Equivalently, one can describe this state by a confluence limit of primary
operators:

(w, Al o< lim 22 (A|V; (1) (2.2.2)
n—00

with3

0% su+n\2 0> (u-n\* n
A= A== _ (1 =1 22.
4 ( 2 ) Ty 2 IR (2.2.3)

We fix the normalization of the irregular state by giving its overlap with a primary state,
namely

(W, AlA) = |AI*ACpa, (2.2.4)
with
e ITAYL(0 +2a)

Cua = .
Tb<%+u+a>Tb<%+M—a)

(2.2.5)

The A-dependence is fixed by the Lg-action, and C,,, is a normalization function that
only depends on p and «, and is calculated in Appendices A.2, B.1. The notation reflects
the fact that C can be interpreted as a collided three-point function [24]. The correlator

(w, AlP(2)]A) (2.2.6)
satisfies the BPZ equation
1 A uA  A?
<b233 S+ —) (1, A|®(2)|A) = 0, (2.2.7)
z z z 4

that has a rank 1 irregular singularity at z = oo and a regular singularity at z = 0. Cor-
respondingly, we expect this correlator to be given in terms of confluent hypergeometric
functions. Indeed, for z ~ 0 one finds by solving the differential equation that the cor-

responding confluent (or irregular) conformal block is given by a Whittaker function.
2

. . b- . .
In particular, the two solutions are z 2 Mp,, +po (bAz), where the Whittaker M -function
has a simple expansion around z ~ 0:

Mpp b (bAZ) = (bAZ)2T™* (1 + O(bAZ)) . 2.2.8)
We can compute the confluent conformal block as

1 b2
15 (u o O3, Az> =AM (BA) 22T My pa (bA2). (2.2.9)

by expanding the OPE between ®(z) and |A) and projecting on (i, A|. Comparing this
with the expansion of M one obtains the prefactors written above. Here the subscript

3 Note that this procedure mimics the decoupling of a mass in the AGT-dual gauge theory.
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1 indicates the presence of a rank 1 irregular singularity at infinity. We represent this
block diagramatically by

21
'3 <u g “31; Az) = (2.2.10)

w ®

ap

The double line denotes the rank 1 irregular state, and the fat dot the projection onto a
primary state. For z ~ oo we get an intrinsically different kind of confluent conformal
block since we are now expanding z near an irregular singularity of rank 1, dubbed in
[64] confluent conformal block of 2nd kind. We denote such a conformal block by the
letter © and find

1 . b2 .
1@ (/L 21 Wy O _> — AA+A2,le—lﬂb[Lbb,u(AZ)7 Wfb,u,ba(e_lﬂbAZ),

A
¢ 2.2.11)

1 2
D (Maz,l U o A_) — AA*'sz'b*b“(Az)bT Wbu,ba(bAZ),
Z

where W is the Whittaker function with a simple asymptotic expansion around z ~ co.
This block is obtained by doing the OPE between the irregular state and the degenerate
field, which is derived in Appendix B.1, and then projecting on |A). Once again, the
prefactors are fixed by comparing with the expansion of W. We represent this conformal
block diagramatically by

021
1 1
o) <M“271 o —) - ! (2.2.12)
AZ 1
2 . @ o
Mo
Crossing symmetry now implies
021 ?
(. A|P@)IA) = C2 | Cruay |15 (u a2t Az)
o= (2.2.13)

2
Mo/ o)1 1
= Z Bazo.l,ucug/a 19 (/L Wor _)

A
0'=+ <

Here B is the irregular OPE coefficient arising from the OPE between the irregular state
and the degenerate field. We calculate it in Appendices A.2, B.1, and it is given by

iz(1 »?
prs = (), (2.2.14)
As for the hypergeometric function, we can make an Ansatz for the connection formula
for these irregular conformal blocks of the form
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1 ’ 1
b‘”’“lg (u o aé’l; Az) = Z p—2~° bl}'N@@/(bO{, bu) 19 <u 02,1 o' O —) .
0'=+ Az

(2.2.15)

The constraints coming from crossing symmetry (2.2.13) are solved by the irregular
connection coefficients

LA +20ba)  in(52)(4-busoba)

Nog: (bat, b)) = e
0 P = T (L + 0ba — 6'bp)

(2.2.16)

These are just the connection coefficients for Whittaker functions. In fact, in Appendix
B.1 we argue the other way around, namely we determine the normalization function C
and the irregular OPE coefficient Béfzﬁ . by using the known connection coefficients Ny
for Whittaker functions. This shows the consistency of our approach. Let us emphasize
for latter purposes that the functions Nygr solve the constraint (2.2.13), which will appear
later in a different context. We represent this connection formula diagrammatically by

s ] (0%

=2 Now
0'=+

o nw L @ o
7] Mo’

1

----8

(2.2.17)

2.3. Bessel functions. There is a natural limiting procedure which reduces a rank 1
irregular singularity to a rank 1/2 one. To describe the latter in CFT, let us introduce the
rank 1/2 irregular state (A2| via defining properties

(A%|Lo = A%9,2 (A2
A2
(N?|L_, = _T(A2| (2.3.1)

(AN’ |IL_, =0, n>1.

It can be obtained from the rank 1 irregular state via the limit*

20 _ 1 _A2
(A7 = lim (u, | (2.3.2)
L—>00 4n

We see that reducing arank 1 to a rank 1/2 singularity corresponds to further decoupling
a mass in the AGT dual gauge theory. We normalize the rank 1/2 state as

(A2|A) = |A%PACy, Cq =274 TAYL (0 +2a). (2.3.3)

This normalization function is calculated in Appendices A.3, B.2. Consider the following
correlation function involving the rank 1/2 state:

(A?|@(2)|A). (2.3.4)

4 Note that this limit corresponds to the well known holomorphic decoupling limit of a massive hypermul-
tiplet in the AGT dual gauge theory.
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which correspondingly displays a rank 1/2 singularity at infinity. This is reflected in the
BPZ equation

_ 1, A A?

(b 202 — 0+ — 4-) (A2|®(2)|A) = 0. (2.3.5)
Z Z Z

Solving this differential equation one finds that the corresponding rank 1/2 irregular

conformal block is given by a modified Bessel function 7, (x) as

bA

18 (@oni0r AVz) =T(1+ 20ba) A*A <_

—2ba
5 ) 22 Dopa(bAVZ).

(2.3.6)

Here the subscript % indicates the presence of a rank 1/2 singularity at infinity. This
conformal block is obtained by doing the OPE between ® and | A) and then projecting the
result on (AZ|. The prefactors are fixed by comparing this with the following expansion

of the Bessel function

(bAﬁ/z)ZGba

Togpa (bA/2) = (1 + 20ba)

(1+0(bAVD)). (23.7)

We represent this conformal block diagramatically by

21
1§ (g 02,105 AVZ) = (2.3.8)

NANNN@

(S]]

g

Here the wiggly line denotes the rank 1/2 irregular state, and the fat dot represents the
pairing with a primary state. For z ~ oo we get a different kind of irregular conformal
block, since we are now expanding for z near an irregular singularity of rank 1/2. We
denote such a conformal block by the letter &

1 2b _in 2 .
1 ¢ <012,1 o; _Aﬁ> =/ ;e‘T(AZ)A_bTZ% Kopa (e 7"b A7),

2

1 2b 2 bO
=) . _ 2 AL b2
%@ <Olz,1 o; _Aﬁ) — (A7 7272 Kopa (bAV7),

where K is the modified Bessel function of the second kind, which has a nice asymptotic
expansion for z ~ oo. This block is obtained from the OPE between the irregular rank
1/2 state and the degenerate field which we derived in Appendix B.2, and then by taking
the scalar product with |A). We represent this block diagramatically by

(2.3.9)

a2 1
: (2.3.10)

1
@ <a a; ) =
1 2N TZ

[N]

ANNNANNNNAO——
0
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Crossing symmetry implies that

2
(A1P@IA) = D € oCoy |15 (@0 21 Aﬁ)’
6=+
o 1\
= GEBQZJCQ %QE( )<a2,10l§ A_ﬁ> . (2.3.11)

Here By, , is the irregular OPE coefficient arising from the OPE between the irregular
rank 1/2 state and the degenerate field:

By, = 20" 23.12)

These functions are derived in Appendix B.2. We can now make an Ansatz for the
connection formula for these irregular conformal blocks:

' 1
bwha%g(“e a1y AYZ) = 92 b2 Q4 (bar) %6(9) (012,1 o; _Aﬁ> .
(2.3.13)

The crossing symmetry condition (2.3.11) gives constraints on the irregular connection
coefficients, which are solved by

20ba
2

These are of course nothing else than the connection coefficients for Bessel functions,
including the relevant prefactors. Similar constraints of the form (2.3.11) will reappear
later. We represent the connection formula by

Ouer (bat) = ra+ 29ba)e"”(]_70/>(%+29”"). (2.3.14)

21 21
1
1
1
1

F----

a =t ANNNNNNNNO———
[0 72] o’

(2.3.15)

3. 5-Point Degenerate Conformal Blocks, Confluences and Connection Formulae

In this section we consider the relevant CFT correlators obeying the BPZ equations which
reduce to Heun equations in the appropriate classical limit. Notice that for more than
three vertix insertions BPZ equations on the sphere are richer than the corresponding
ODE due to the presence of the corresponding moduli. This implies that a suitable
classical limit (NS limit), engineered to decouple the moduli dynamics, is needed to
recover the corresponding ODE.

We derive explicit connection formulae for the relevant conformal blocks by making
use of crossing symmetry of the CFT correlators. In the classical limit, these generate
explicit solutions of the connection problem for the Heun equations.
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3.1. Regular conformal blocks

3.1.1. General case The five-point function with one degenerate insertion in Liouville
CFT satisfies the BPZ equation

<b_232 Ay _ Ay +10+ A +20;+ A0 1+ Ay — Ax
(z—1)? 2z — 1)
A t 1 Ao
+ Y + P t)at - zaz + Z—2><Aoo|V1(1)Vt(f)d>(Z)|AO) =0.

(3.1.1)

The five-point function can be expanded in the region z < ¢ < 1 as follows

(Aol VIV (0@ Ag) = 3 / da CE%  CE Cp e
==+
% § or O Q2 z 3 o o, az,l,t—é
am 09 ao b ’t am 09 ao 9 ’[_ .

As usual the conformal blocks can be computed via OPEs. The result is naturally an
expansion in the variables ¢ and z/¢. Conformal blocks are usually denoted diagram-
matically as

a1 oy 21
1
1
1
1
1

Qoo
! a0g

(3.1.3)
An explicit combinatorial formula for this conformal block is given in Appendix D. The

same correlator can be expanded for z ~ ¢ and small ¢ after the Mobius transformation

x — =, yielding

(Ao [VI(D Vi (1) P (2)| Ao)

= [(1 = At At B P AV (1) Vo (—t - 1) @ (ﬂ) 1A0)

1 .14
- Z /doz ngglotx ez Conarra & )

(1 = pyAe—di=A—d—tog( @1 @0, ooy T 172
Hoo ot —1 t

Diagramatically, this conformal block is

o1 ) a2 1
1
1
1
1
1

Uoo
o [0 77:]
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o "t —1 t

t t —
_ g(“laaoamall;———,——f). (3.1.5)
Qoo

We notice that the diagrams just represent the order in which the OPEs are performed,
neglecting factors such as Jacobians that arise from the Mobius transformations. By
crossing symmetry the two expansions should agree, so that

o o o Z
%r 1 o t oo 2,1, t e
oo ap’ ¢

—Z/W%%%M%w (3.1.6)

2

o0p o
Z /dOl Cotz 10{0C0t,ol09 Caooala

Aco—A1—Ar—An 1 —A a0, 0. I 11—z
( t) 0 ! ! 2.1 O‘S at@ b )
Oloo o " —1 t

which can be conveniently recast as

2
o o o Zz
] D R R A
oo @0 t

A=A, — _ o (07 o 14 t—z
(1 _ I)Ax A1—Ar—A2 AOS 1 o 00510 2,1; .
Uoo o t—1 t

@09 o
/d(x Coarar Z (Cﬂlz 1060C0l10«)9

0==%

—_Ccu Y

2,10 ~ o0

3.1.7)

By imposing the vanishing of the integrand we get a constraint analogous to (2.1.5),
which analogously to (2.1.6) we solve as’

o] o o1, <
3 o b, =
oo oy’

— Z Mg (bag, bay; ba)e!TA=20=821=A0) (] _ f)Acc—A1=Ai=A21-Ao

0'=+
ap ap  oapy, L 1—2Z
53 a0 T |»
Ao o t—1 t

(3.1.8)

where Mgy are the hypergeometric connection coefficients defined in (2.1.7). Note
indeed that in (3.1.8) the functional form of the connection coefficients depends on the
local properties of the conformal block in the vicinity of the degenerate vertex insertion

5 The phase appearing in the RHS of Eq. (3.1.8) is fixed imposing that the overall leading powers of

Aco—A1—Ar—Ag—Aorf @1 @0 a2y I I—Z
1 — HAco—A1=Ar=Ay 1 =49 %04y Ao ITe
(=0 oo a1 s
~ e ITA=AI =80 1= A0) A= Do —Rrg (f _ ) Br9—B21-B21 (1 4 )

agree with the leading powers of the OPEs of the full correlator, where no explicit phase appears.
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as can be seen form the factorized form of (3.1.7). Diagrammatically, the connection
formula (3.1.8) reads

o1 O (12’ 1

Ao o

o a0

o1 [ 7)) o2 1

(3.1.9)

= Z My
0'==%

Qoo (043

o Ol,g/

Conformal blocks for small z can also be connected to the expansion for z ~ 1,z ~ oo
passing through the region t < z < 1. The conformal block in that region is

o] 21 o
| _ o o1 oy L
! —S(%oa aaao,z,z).
oo : o
o ap
(3.1.10)
Then, crossing symmetry relates this block to the expansion for z ~ 0 via
(Ao VI Vi (1)@ (2)|A0) = (Aco|VI(D P (2) Vi ()] Ao), (3.1.11)
therefore, by comparing (3.1.11) with (3.1.3) we get
o] o o 2\
1 2,1.
Z /dO( ngel(x() a,aogcaocala S<aooa t“()@ o’ t, ;)‘
(3.1.12)

o
- z :/d()l Cotzlag c{,aocaoo‘xla

and following the same argument as for the previous case we find

o o o Z o o o 1
Sl e e 2l T ) =) Mg (bao, bas ba)F( e P e iz - ).
t (02:%)

Qoo @0
0'=%

Uoo (o4} z

o] o o t
S( Doy ’;z,—>

(3.1.13)

Now we can connect expansions in the intermediate region to expansions for z ~ oo
again invoking crossing symmetry. Performing the transformation x — ¢/x on the LHS
of (3.1.11) we get

2
(Do VI @)V (1)| Ag) = |¢ At Arrazi=fomai =28

x (Ao Vi (D) V()P (é) Ao, (3.1.14)
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that implies

o o o 4
‘3 ag o iz, =
oo 0 Z

=y / da Co,a0aCo, Cob oy (3.1.15)
0==%

o o7
Z /da Cataoacaz,laecaooou
0=+

—An— — o o o 1
x tAoo“‘Al"'AZ,l Ag A[Z 2A2,13< tOl 10[009’ a2,1;t’ _)

o

and finally

o o o t
F( o ez, -
(02:%) (e41] z

CAg—A, — a o a 1
= E Mg (ba, baeg; bay)tAetA1+A21=R0=A, ZA“S( "o 105009/ 2’1;1‘, —).
(o4} [07%) z
6/
(3.1.16)

Combining Eqgs. (3.1.13) and (3.1.16) we can write
ol o a1, Z X
%(aoooz to[ogl o i, ;) = (;Melez (bag, ba; o) M (—,)6,
203

% (bO{, baoo’ b()[])tAOO+A1+A2’l_AO_AtZ_2A2’1

o ai oy, 1
X o o et — ).
:S(Olo 6> 0063 oo Z)

(3.1.17)
Diagrammatically, this reads
(23] o 21
oo : o
o 06,
oy o] 2,1
=D Moo, Mo, (3.1.18)
0263 oo L Uoo
723 Uoobs

The diagrams provide a straightforward way to generalize the connection formula to an
arbitrary pair of points. Indeed, writing down the diagram it is immediate to guess the
correct Mgy factors and the conformal blocks that will enter the connection formula.
As an example, the connection formula for the expansions for z ~ 1 and z ~ oo with
t < 1 are given by
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ay Qoo

S
Fo---

200] o]

, (3.1.19)

S
S
]
Fo--- S

= ZMW
0/

o Qoo

o U op’

that is

tAoc+A]+A2_]—A,—A()(1 _ I)AOO+A()+A2,]_AI_AI (Z _ l‘)_ZAZ*IS(O{Oaam a0 C{qu; ‘) = 1)
o o z—t

CAg—A, — o o o 1
= E Mg (bary, bais; ba)tBoetBrthai=Bo=Ar ;=20 [ Fr o ALy O2T. )
oo Qo Z
9/

(3.1.20)

Note that combining all the previous formulae we manage to analytically continue the
expansion in z ~ 0 of the conformal block in all the complex plane for + < 1. It is
straightforward to generalize the previous formulae for r ~ 1, ~ oco. All in all, for any
value of # we can connect all the possible expansions in z. The analytic continuation in
the #—plane is more involved and can be done via the fusion kernel. As a concluding
remark, note that there is a Mobius tranformation in each region of expansions of the
correlator, say z < t < 1 for reference, that only exchanges a« and o and that does
not change the region of validity of the expansion. This transformation is usually called
braiding. This gives, up to a Jacobian,

Ooo oy o)1
1
‘ :
1
aq L @0
o o0+
o o o t zt—1
= a ap P, —, = . (3.1.21)
o] o r—1 tz—1

Braiding changes the expansion variables in the conformal blocks according to the new
positions of the insertions and as such can be used to generate other expansions and the
related connection coefficients.

3.1.2. Semiclassical limit Let us consider the semiclassical limit of Liouville theory,
that is the double scaling limit
b — 0, aj > 00, ba; = a; finite. (3.1.22)

In this limit the conformal blocks and the corresponding BPZ equation greatly simplify.
The divergence exponentiates and the z dependence becomes subleading, namely®

o o o Z
3( D™ g 2’1;1,;)

Qoo (o40]

6 Here and in the following we do not indicate the dependence of F' and W on the rescaled momenta.
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b 1
— (DD Bon  F+0bag [172 (F(t) +PW(z/t,1) + O(b“))} . (3.1.23)

Here F(¢) is the classical conformal block, related to the conformal block without
degenerate insertion via

3 <0l1 o Otz; t> _ tA—At—Aoeb’z(F(tH(’)(bz)). (3.1.24)
Qoo O

The divergences in the conformal blocks can be cured by dividing by the conformal block
without the degenerate insertion. We denote the resulting finite, semiclassical conformal

block by the letter F:

o] o o
%(al a ' ag Of(’)l;t, %)
a a a 4 . 0
FI 5 a®ag 6,2 ) = lim
oo ap t b—0 3 o] Ol;t
o
Ooo O’
1 0
— t—0a0Z§+9aoe_jaaoF(t) (1 + O(I, Z/l)) . (3125)

Note that the conformal block with the degenerate insertion and z, ¢ ~ 0 contains a
classical conformal block depending on agy = ag — 9%. Dividing by the four-point
function without the degenerate insertion, which depends on ag, gives an incremental
ratio that in the limit (3.1.22) becomes the derivative 9,4, F (). The BPZ equation (3.1.1)
simplifies in the semiclassical limit as well. The —derivative acting on the conformal
block gives

1
talg("“ o oop O62’1; t, ;) =p 2 (_Z —a? +al2 +a§ +t0;F(aj,a,t)+ O(b2)>

[045%) [e1))
o] o o1, L
X 3§ o Tag ity -, 3.1.26
<aoo @0 l‘) ( )

therefore the r —derivative becomes a multiplication by a z-independent factor at leading
order in b* and the BPZ equation becomes an ODE. Defining

g’

u® = 1im H29, 1ogg(°‘1a“f- t), (3.1.27)
b—0 (02:%)

where the superscript indicates that the block is expanded for ¢ ~ 0, the BPZ equation
(3.1.1) in the semiclassical limit reads

1_ 2 12 2 2,2 © 1 _ .2 (0) 1_ 2
32+ ) al _ 3 al at (10 +aoo+u + ] at + u +4 ao
b4 2 2 2

(z—=1 72(z—1) (z—1) z2(z—1) Z

a; a a z
< Fl % a " aop 2’1;1‘,— =0.

doo ap t

(3.1.28)
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The solution of the previous ODE for z ~ ¢ is given by the semiclassical block
ar Qo . g g
S(%oa A )

o] oo, ¢
Uoo O

ein(A—Ag—Az_l—A,)(l_t)AOC—AI—A,—AZ‘l—AOS(“laaOa 25N ) t%z)

1 ay a a t r—z . _
t—D2F( M a®ap ™ —— —=) = lim @ — 1)7A
Aoo a t—1 t b—0

10 )
. Ao (023
= lim

b—0 o (o7 '
S( Iy t;t)
Qoo &

(3.1.29)

therefore the connection formula (3.1.8) descends to the semiclassical blocks to be

a a a Z
f( Vaagg “H e, ;)

Ao ao
1 ay ag a1 I r—z
= Moo (ag, as; a)(t — 1)2F a “ag O, ——,—— |.
; oo (@0, ai; )t = DIF( -~ aPa " ol —
(3.1.30)
Note that the intermediate momentum a can be computed as a function of the parameters
appearing in the semiclassical BPZ equation inverting the relation (3.1.27). Similarly,
keeping ¢ ~ 0 we can analytically continue the solution to the other singularities, that is

for z ~ 1 and z ~ oo. In particular, we can directly connect z ~ 0 and z ~ 0o passing
though the intermediate region. The semiclassical block for z ~ oo reads

_1 a a a 1
t 2Zf< (t)a laoog 2’l;t,—)

a oo Z

—Apn— — o o o
tAoo+Al+A2,l Ao Atz 2A2,18~< t o 105009’ 2,1; t, l)
[075%) 4

. o0
=111m
—0 o] O
o it 3.1.31
s(aoo o (3.1.31)
Ao o—200 1 & X1 021, 1
== ) o o N
' z 3<a0 SARLEY
- fm
— o o
o) oo

The connection formula (3.1.17) from z ~ 0 to z ~ oo involves a conformal block with
two shifted momenta, that is

%9 L0ba

o o o 1 AL £\ 2 o0
S ay 10!00(9 2oy — ) =B =D he [
(o 1)) Uoo Z Z

2 2
exp [%F (a - 9/%, t) + W <a - 9’%, t) + O(b2)] ) (3.1.32)

At first order in b2

b2 5 b2 6'b?
F a—97,t +b W a—é’?,t =F(a,t)— > 0, F(a,t)
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+b*W (a, 1) + O(bY), (3.1.33)
therefore in the semiclassical limit
o o ary,, 1 0o~ F) (ar aj a1, 1>
/ =) ~t 7 Ca o=, b 0.
3(0(00[9 oo e Z) e 5 aooz Qood vl 2 as b —
(3.1.34)

This is consistent with the fact that we expect only two linearly independent z behaviors.
The connection formula (3.1.17) simplifies to

a a a <
5"'( " a™ agy M;L;)

oo ag

o 1
=> (Z Mo (a0, a; a) M (o9 (@, aoo; aﬁf”e—zf’a") 172z

9 \o
29 a1, 1

X.7: Ao’ a N
o0 Z

Explicitly, the connection coefficients are

(3.1.35)

Y Moo (ao, a; a) Mgy (@, acos ani e %"
o=+

' = 20a)T(=20a)T(1 +20a0)T (=26 ase)t "%~ T %

B Z [ (L+0ag—ca+a)T (L +0ag—0a—a,)T (§ —0a—0as+a))T (3 —0a—0ax—a)

o=%
(3.1.36)
For future reference, the semiclassical block for small # and z ~ 1 is given by
_1 ap  deo ar.q 1-z2
t(l=1)"2@—-2)F L
(1l =1)2@—-2) <a,“ aw g l—z)
ay o o _
3(03“ Fag it }_—;)
= lim (1(1 — )22 (1 — z)702 . (3.1.37)

oy oo,
Similarly one can obtain the connection coefficients for the other r—expansions. As an

example, let us schematically consider the case r 3> 1. The semiclassical block for z ~ 0
reads

_ o [07 o
1 . ¢ Az,ls(at o 10[09 (5(,)1; %,Z)
1 a a a . ee}
2 F( Y a®agy > =, z) = lim .(3.1.38)
Aoo ao t b—0 3 o o1, q
o
0o Q@ !

Still the r—derivative decouples, leaving behind

1
<°°>—11m b2td, logt2~ Af—AI—AOg(af z(l) t) (3.1.39)
o0
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Note that the semiclassical BPZ equation formally remains the same, with the substi-
tution’ of u©@ with 1. Indeed, the intermediate momentum « is now determined in
terms of #(®. The z ~ 1 expansion gives

, 1
(t— 1)%e’9”“]-"<a’ a® aog az’l; Pt 1- z)

oo a  t —

o oo a1, |
o oy il — z)
Qoo o]

ar 0o, |
S(oc Yar 1-’)
o0 1

= l}in% (t — 1)~ D21 l0mbe ( (3.1.40)

and the corresponding connection formula reads

1 _(a a arq 1
t2]-"< " a agg 2’];—,Z)

oo ap ¢

1 a a a 1
= 3 Moy @ ar; @) (¢ = D3e®mar( 9 a2~y 7).
i oo a "t —1

(3.1.41)
All other connection formulae at # >> 1 can be obtained similarly. The same can be done

when ¢ ~ 1. Note that again the semiclassical BPZ equation looks formally as (3.1.28)
upon the substitution® of #(*) with

O ,}ig;)bsz’r log ((Zia gi 1— z) . (3.1.42)

3.2. Confluent conformal blocks

3.2.1. General case Consider the correlation function
(u, AVI(1)D(2)|Ao). (3.2.1)

It solves the BPZ equation

1 1 AN — ANy 1 — A1 — A
(b—zazz _ <_ N >3z LA —B21 — AL — Ao
z z-—1 z2(z—1)

LA Ao kA A AP ) Vi(1)|Ag) =0
(Z—l)2 - 4 <M’ | (Z)l | O)— s

(3.2.2)

=4
72 z

and can be decomposed into confluent conformal blocks in different ways. They are all
given as collision limits of regular conformal blocks.

7 From the gauge theory viewpoint this amounts to a change of frame from the electric to the monopole
one.

8 This is the dyon frame.
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Small A blocks. We focus first on the case where the conformal blocks are given as an
expansion in A. The block for z ~ 0 is defined as’

o o b9 I~ o o
13(#06 " aop Z’I;A,z>=AAZZ+9b°‘°1S<MG " aop 2’1;A,z>

o7} @0
b0 T e a1 A
= A2z 200 fim F( 7, o e 2t =2 ). (3.2.3)
n—00 = (041} n

This is nothing but the standard collision limit of (As| and V;(¢) as defined in (2.2.3).
The tilde on the conformal block means it has no classical part, i.e. is normalized such
that the first term is 1. This conformal block can also be computed directly by doing the
OPE of ®(z) with |Ap), then the OPE of Vi (1) with the result which we specify to be in
the Verma module A, and then contracting with (u, A|. In the diagrammatic notation
introduced in Sect. 2.2, we represent it by

o] 2.1

o] 21, _
13(#“ Qpg O50,1\,Z>—
1% @

@0
o [e7072]

(3.2.4)

The double line represents the rank 1 irregular state, and the dot the pairing with a
primary state. For z ~ 1, the corresponding block can be expressed as

(07 o
M F (-M a Pag ;il;A, 1 —Z>

%) a2 1

E , (3.2.5)

a1

—u ®
o a1

where the exponential factor and the argument —p arise from the corresponding Mébius
transformation'?. In the intermediate region, where z > 1 but Az < 1, the correspond-
ing block is

A Al o o 1
N (VAP Rl R Vg
[01)) Z

2.1 o]

(3.2.6)

w °

(&00]
(07:] o

9 The argument 'H'T“ should appear with a minus sign as in Appendix A.2. Here and in the following we

don’t write it due to the symmetry of the conformal block. The reader wishing to compare with the Nekrasov
partition function should take this sign into account as in Appendix C.

10 Actually, doing the M6bius transformation one gets —A but since the block depends only on A and A2
except for the classical part, one can trade —A for —pu.
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In the deep irregular region where z > 1 and Az > 1, the conformal block is given by
a different collision limit, proposed in [64]:

1 b2
]@(l,{, 062,1 o o Zl; A, _) — e@bAz/ZAA2,1+A (AZ)—pr,+7 X
0 Az

—P2 65 (u—m -
2 02 . H=n A
« lim (1—-L F(Ma T e L2 ) 327
n—00 Az Gl N Az

Whenever z approaches an irregular singularity of rank 1, we denote the corresponding
conformal block by ©. This conformal block can also be computed directly by doing the
OPE between (i, A| and ®(z), then the OPE of the result with V(1) and contracting
with |Ag). Diagramatically, we write

0 ' ° o
146 o

(3.2.8)

The connection problem between O and 1 is solved in the same way as for the regular
conformal blocks, since we are never near the irregular singularity. The result is

o o
15 (M a age Of(’)l; A,Z>n

= ) Mg (bao, bay: ba)e 1§ (—y, a®ay "211; Al — z) . (3.2.9)

6'=+
Diagrammatically:
o] 2.1
1
|
1
128 @ : [£10]
o 09
o 2.1
1
= Z Mg : . (3.2.10)
_ 1
0=+ — @ L op
o aer

Instead, to solve the connection problem between 1 and oo one has to do two steps: from 1
to the intermediate region, and then to co. At each step we decompose the correlator into
conformal blocks in the different regions and then use crossing symmetry to determine
the connection coefficients. The relevant formulae for the irregular state are reviewed in
Appendix B.1. We have
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(i, A@(2)Vi(1)]|Ao)

— 10 o
- / da Cpy Z CL 4 CE e
0=+

2

(07 (0%
6’“\5(-# aPay ;il;A, 1 —z)

2

A A o o 1
g AR (o S gy Ul Az, -
[01)) Z

- / da Cpy Y Ce 1oy Coleo
0'=+

(3.2.11)

We recognize this condition from the hypergeometric function (2.1.5). Therefore we

can readily solve it in terms of the hypergeometric connection coefficients M and the
connection formula between 0 and the intermediate region is then

eMAIS (_M OlaOOllB 05(511; A1 - Z) = Z Mg (bay, ba; boto)z_szl_Al_AO

0'=+%
1
1g<u a %y 1 Az, —) . (3.2.12)
(e7)) z
Diagrammatically:
o7} 21
—1 ° ' a
o alg
2.1 o]

= Z Mg
0=+

w °

o

(3.2.13)

If one decomposes the correlator into conformal blocks in the intermediate region and
near 0o, one obtains the crossing symmetry condition

(1, AlD(2)Vi(1)|Ao)

2
1
= /da Carao Z Cﬂdang,la gAIT AT g (M Qg o2 Olz:); Az, z) =
==+
I o)1 o1 1 2
_ o o' , . .
_/da CmaoezicﬂmaBaz_m 1©<P« Mo & a()’A’ AZ)
(3.2.14)

This condition is analogous to the one we found for the Whittaker functions (2.2.13) so
that the connection formula between the intermediate region and oo reads

bebaz Az 1—A Aolg (M (o7 21 aa(l); Az, —)
Z
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/ 1
= 3 b7y (e bml@(u g LA, —) (3.:2.15)
ranl 0 Az

with irregular connection coefficients as in (B.1.18):

P(1+20ba)  ix(55)(4-butoba)

Nogr (bor, b)) = e 3.2.16
v I (L +0ba — 0'bp) (-2.10
In diagrams:
2.1 o]
2 ® : @0
[072] o
21 o]
s j ® ao
oy o

(3.2.17)

Let us write explicitly the more interesting connection formula between 1 and oo, which
is obtained by concatenating the two connection formulae above. Since the § block in
the intermediate region has different arguments in formula (3.2.12) and (3.2.15), we
need to rename some of them. In the end we obtain the following connection formula
from 1 directly to oo:

A o) a,
et 13(-#01 o1 O[I,A,l—z>=

_1 _
= Z b 2¥0ben=05bi A o, (bary, bat; batg) N (—a,)0, (batg,, bie) (3.2.18)
6r,03=*%

o o 1
1©<u > g, ag, a(1)2 A, A_z)

Again, in diagrams this is represented by:

%)) 2.1

a1
o 16,

2,1 ol

= D MooNcaw
6r,603=+ n 2 @ o 74}
o3 ag,

(3.2.19)

where we have suppressed the arguments of the connection coefficients for brevity.
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Large A blocks. The conformal blocks considered up to now are expansions in A. One
can however play the same game using expansions in % For example, for large A and
for z ~ 0, we have

23] a3 1

[e44]
’ o

(3.2.20)

One can compute it via OPE as in (B.1.1) or as a collision limit of a regular conformal
block as proposed in [64]:

oar o, 1
D o U —, Az
1 (M Woaop >

= o~ W= p Bog+2u (') ;P +0baxg

) N\ —W=0-1) ~ o Ik g Az
x lim (1 - —) T L. )
7> 00 A n;u 7 tH

(3.2.21)

Similarly, we have a conformal block for large A and z ~ 1, which as usual we can
write in the same form as the one for z ~ 0 by doing a Mobius transformation:

1
e“Al’D(— 1w — ey ¥ — A —Z))

ar’ A
o)) 21
—i ° ' a
r_ o160
W=
(3.2.22)
o
S a1
d19

I ° ag

l/«/

The first line of (3.2.22) is the diagrammatic representation of the conformal block,
while the second line is an equality of two a priori seemingly different conformal blocks,
which can be checked by explicit computation. This is consistent with the fact that the
corresponding DOZZ factors are equal:

Bﬁu_alécu'*u,a]e = Bll:alg C;/.’,ot() s (3.2.23)
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as can easily be proven by using their explicit expressions given in Appendix A.2. The
most exotic block is the one for large A and large z, which by a slight abuse of notation
we still denote by ©:

@21 o]

@)
N
=

Q

J\)
=
e

R
=
=3
5

N——

|

@ (&%)
Mo w

(3.2.24)
This block is fully irregular in the sense that to calculate it, we have to perform two

irregular OPEs as indicated by the diagram. It is more convenient to calculate it as a
collision limit of a regular block:

o o 1 1
1’D<u 21 o IM/ 040;—,—)
Az

2 !
— PPN/ N D21 (7 ) OB (= =) A p Ao+ A2 (0 = p16) o

, p | A2 e (i) 10\ 81— =) (=)= (' = p19) (o — 1)
x lim | 1— Az (1 - —)
z

A
n—K A
o URe3 4
S o 5 uo Mgy 2 222,
wa o A 7

n—>oo

(3.2.25)

Having defined all the necessary conformal blocks we now derive their connection
formulae. Let us start by connecting z ~ 1 with co. Expanding the correlator in these
regions, we get the crossing symmetry condition

(1, AP () Vi(1)|Ag)

/dﬂ ZB—,LLOlo w Mvalﬂcg;g(21
uA _ ., Q0 Olz,l_i _
e 1@( [ VA VN Y 0t1’A’A(1 )

Hor az,1 o 11
/dM Z B;Lgtzl Mg/alcu 0 1’D< Lo o ag; —, g)

2

X

2

A

(3.2.26)

Using the following remarkable identity, which can easily be proven using the explicit
expression of the structure functions given in Appendix A.2,

o' pu/ W—p =g
Buaz,lBugfalcu’ao = B—/WOB;L s ICIL/—P«@MWI , (3.2.27)
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we find that the above crossing symmetry condition (after relabelling the dummy variable
0’ — —8") becomes:

<M,A|d><z>vl(1>|Ao>=/du B ZCM e

1 2
X nA ] @y s azJ;-,Al—, _
e" ( N N 1 1Y a A (1-2)
2
— BH K Brug/ 13 o a1 o ‘ 1 1
- —Hao Z — 1,021 Mg/—u,al 1 I Mo noop; X,z
(3.2.28)

We recognize this constraint from the Whittaker functions (2.2.16), and can readily write
the connection formula from 1 to oo:

Obay A _ @0 ’_ a2,1,l —
b e 1@( A R X3 011’A’A(1 z))

1 1
—Zb +0b(u ;L)JV’Q( 9)(b0€1,b/1, _bﬂ)li)( IMG/ aq /J// (xo;X,E>a

(3.2.29)

where A are the connection coefficients for the Whittaker functions (2.2.16). Diagram-
matically this is clear:

o

(3.2.30)

R
- e S

=Y Noco
o=t

I

Ma/ M/

To connect 0 and co we expand the correlator in the relevant regions. By crossing
symmetry we have:

(e, AVI(D)P(2)| Ag)

7 !
= / du Z Blioy Crans Catrag

0==%

Mg’ I‘Lel
/d'u 2 :B/Wzl Mg/ ,u,,ozo

2

ar oy, 1
D o o —, Az
1 (M s )

1 a1 11
53] ’ / ;o0 —, —
1 <M Mo Mg &0 A Z)

2

’

(3.2.31)
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for later convenience we have labelled the intermediate channel in the second line by
1y, instead of 1. By using an identity similar to (3.2.27):

’ M ’ Ii//
Biiir, Bugjea Culy oy = Blia, By, Co (3.2.32)

Mgy 00 po = pla T g 00
the above crossing symmetry equation then becomes:
(, AVI(DHP(2)|Ao)

2
o] 2.1, 1
/ /B/l:al Z Crrags Canran Z)(H 1w aop 0 A AZ)
M:V 2.1 a ) 1 1 2
du Blwll Z BM’O!Zl JLAT) 19|\ n Mo’ Hgr @0, N Z
0'=%+
(3.2.33)

We recognize this constraint from the Whittaker functions (2.2.13) and can readily write
the connection formula from 0 to oo:

1
b@bao @ al / o az,l; —, AZ
1 (ﬂ n Qo A

_1_ 1 1
=Y b7 Ny (bary, bu/)@(lt 2N g M gy a0 —).

o Az
(3.2.34)

Combining (3.2.34) with the inverse of (3.2.29) we obtain the connection formula from
Oto I:

1
bglba()l@('u o] /J// s, 21, 1 AZ) —

ao b A 9
1 ’ 1_ I
Z b= 270 N o (bag, b )b PP M)+03bo”/\/_ 6205
6h,03==%
A g a1 1
x (bpg, — b, bay)e” 1©< — W Mg, — 1 e S Al —z)) .
(3.2.35)
Diagrammatically:
o] 21
u ® . g
w 08,
ay
-1 Lo_____. o
Z N0192 (—62)603 2,1 . (3236)
02,03=% a16
158 @ @0
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One might expect the existence of conformal blocks expanded in an intermediate region,
as was the case for small A. Indeed, in the case of large A one can define a block expanded
in the intermediate region % « z < 1. However, by the identity (3.2.32), this block
is actually the same as the block (3.2.24) corresponding to z ~ 00, in the sense that
the analytic continuation between the two is trivial. Similarly, one can define another
intermediate block in the region % « 1 —z <« 1 which is also the same as (3.2.24) by
virtue of the identity (3.2.27).

3.2.2. Semiclassical limit In the semiclassical limit » — 0 and «;, 4, A — o0 such
that a; = baj, m = bu, L = bA are finite. We denote the quantities which are finite in
the semiclassical limit by latin letters instead of greek ones.

Small L blocks The conformal blocks in this limit are expected to exponentiate, and the
z-dependence becomes subleading: schematically they take the form

1 2
F(A, 7) ~ ez TDHWLDHOGT (3.2.37)

and they diverge in this limit. The classical conformal block F(L) is related to the
conformal block § without the degenerate field insertion, i.e.

1 2
3 (u o Zé A) = Ao (FIHOGY) (3.2.38)

Normalizing by this block, we obtain finite semiclassical conformal blocks. Consider
for concreteness the block corresponding to the expansion for z ~ 0. We define the
corresponding (finite) semiclassical conformal block by

ar oo
13(/“1 agg ;A,Z>

(200]

1f<m aalaoe a2,1; L,Z> = lim
ap b—0 o, A
15(““0:0’ )

_ e_%a“OFZ%+0a0(l + O(L’ Z)) (3239)

The term exp —%BHOF on the RHS of the above equation comes from the fact that the

leading behaviour of the numerator is exp b~2 F (ags) while the denominator behaves as
exp b~ F (ap). The fact that the z-dependence is subleading means that to leading order,
the A-derivative in the BPZ equation (3.2.2) becomes z-independent, since we have
AIAF(A,z) ~ b"2Adp F(A)F(A, z). Then the BPZ equation in the semiclassical limit
reduces to an ODE. In particular, multiplying (3.2.2) by b2, this semiclassical conformal
block now satisfies the equation

1 2,2 1 2 1 2 2
Uu—5+aj+a T —a T —a mL L a a
8f+ 201, .4 12+4 20+——— WFlma™ap™ L, z)=0.
2(z—=1) z—1 b4 b4 4 aop

(3.2.40)

‘We have introduced

1
U= l}i_r)rbbzAaA log 1§ (,uaz(l); A) =~ a?+0O(L) (3.2.41)
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Similarly, we define the semiclassical block for z ~ 1 to be

e E (—M a® ag Ogil, A1 — z)
1]—'<—m aaoa 9612,1’ L,1 —z) = lim
ai — oy
1§(Maa0;A>
(3.2.42)
1§ (—pa®ap A1 -2

. @1 — 99, F 1464
= lim =e 277 (1 —2)277"(1+O(L, 1 — 7)),

b—0 S _ aO'A

1 po s

and in the deep irregular region:

o o
a a 1 1 lg(“ " Meaa(l);AALZ)
1D\ m> mpa’liL,—) = limb 27"
ap Lz b—0 5 a, .
IS ey

_ efga,,lFeeLz/sz%femZ—em(l +O(L,1/L2)). (3.2.43)

The explicit power of b is needed to combine with A to form L. All these blocks
satisfy the same Eq. (3.2.40). Note that in the connection formula (3.2.18) we have four
different conformal blocks on the right hand side. Since in the semiclassical limit the
BPZ equation becomes a second-order ODE, these four different blocks have to reduce
to the two linearly independent solutions near the irregular singular point. They are given
by

’

1 2 L 2
1©<M NI Z(l) A, A_z>  FPA2 Dok (p iy B F@W @O0

(3.2.44)

where we have suppressed the dependence of F and W on the other parameters. Instead,
in (3.2.18) we have

2,1 o 1
) ’ ag AN, —
1 <M Mo &g o AZ)

_ A2 p\ M1+ (Az)feb;“% o @ WatO®) 35 4o

Since we are taking the limit » — 0, we can safely substitute W (ay’) — W (a). This is
not true for F'(ag’) however, since it multiplies a pole in b2, Instead, in the semiclassical
limit we have

o)1 o 1
D ’ oy AN, —
1 <M Mo o' (o Az)

L e 1
~ AG“e_gzdaF(“)lb(u Y21 a LA, —>, asb — 0, (3.2.46)
a0 Az
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as in (3.1.34). Therefore, we can simplify the connection formula from 1 to co (3.2.18)
in the semiclassical limit and state it as

a a
1f<—m a Oalg ;il;L,l—z>

= Z (Z M90 (ay,a; aO)'/\/-(fo)H/(a, m)LGae—gauF>

o’ o==%

1
< 1D m™ mg a0, — ), (3.2.47)
ao Lz

with connection coefficients

Y Moo (a1, a; a))N oy (a, m)L7"e™ 3%F
o=%+

-y I'(l —20a)T(—20a)l(1 +29a1)ei”(%)(%""‘w)L”“e—%f’u”
_U:i F(%+9a1 —oa+a0)F(%+9a1 —oa—ao)F(% —oa—Q’m)'
(3.2.48)

Note that all the powers of b appearing in (3.2.18) have been absorbed to give finite
quantities.!!
The connection formula from O to 1 trivially reduces to the semiclassical one:

al an ap az
ma a e = ap, dy; a —-ma " a L1 — .
17:< 06 o Z) E Mg (ag, a )1]:( 10 Z)
0'=+

(3.2.49)

Large L blocks For the conformal blocks valid for large A, the story is analogous.
Taking the semiclassical limit, the conformal blocks are expected to exponentiate and
the z-dependence becomes subleading. Schematically we have

L (L] = ?
DA™, 2) ~ e Fp@™ W WpL™.2+0E (3.2.50)

Here Fp is the classical conformal block for large '> A and is related to the conformal
block without the degenerate field insertion, i.e.

1D (Mal w' og; %) = o~ (WA AOHA2 (4= 1)z (FD(LTDHOGD)

(3.2.51)

We use this block as a normalization for large A. For z ~ 0 we have

ar o 021 |
133(# L A,AZ)

1
D m™ m age ' =, Lz) = lim b
ap L b—0 o, 1
10|\ n waos x

' Note also that the Gamma functions in the denominator precisely correspond to the one-loop factors of
the three hypermultiplets of the corresponding AGT dual gauge theory.

12' As the notation suggests, it is nothing else but the dual prepotential of the gauge theory.
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— L@aoe—%agoFDZ%+9a0(1 +O(L_l, L7)).
(3.2.52)

This block and all the other large-L blocks defined in the following satisfy the same Eq.
(3.2.40) as the small-L blocks, with the substitution

1
u — up = lim b>*Ady log | D (u T o —) . (3.2.53)
b—0 A
For z ~ 1 we have the block
1D< —mw —m ay aazll ,L(1 — Z))

o o
e”A1®<—M Y —pwa gl g (l—z)>

— gin})beal
— o
19 (M Y ap; %)
(3.2.54)
01 o
m(—u Cu = ey gt kA —z))
-
— [07
10 (—M O — pay; %)
= [P 5% o (] — )3 (1 L O™, L(1 - 2))),
and for z ~ 00
1 1
1D<m az,1 mey a m’ ag; L )
o
( o ¥ i ao; %, )
— llm b—%+9(m’—m) (3255)
b—0
1D <M 1 ao; %)
9LZ/2 —9L/2 —*3,71FDL +(9(m —m) —Gm(1+O(L— —1)).

In the connection formula from O to 1 for large A (3.2.35), there appear four different
conformal blocks on the right hand side. In the semiclassical limit these four reduce to
two, by the same argument as for small A. Indeed we have

wA % a2,l,l _
; 1@( 1% iy — g, 2 A = 2)
o~ oy~ p Aoy ¥y (i —it) (1 oy B2 40ban 53 F (i )+ W (i)

0 (3.2.56)
-~ e@gL/ZA—92(2m/—m)e—%Bm/FD(m/)euA

(01 o 1
1@<—M OM/—Mam éil;K,A(l—z)), as b — 0.
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The connection formula (3.2.35) from O to 1 in the semiclassical limit then becomes

ar ,  axy. 1
1D{m™ m'ap =" —, Lz

_ Z <Z N@a(aOs m/)./\/—(:ir)e/(m/ —m, al)e‘;LLa(Zm/m)e33,,,/F[)(m/)>

0'=+ \o==%
1
173( —m o —m ayy “ji‘; T L - z)>,
(3.2.57)

where explicitly the connection coefficients read:

Y Noo(ao, mYNZL o (m' —m, ay)eT= L0 @m'=m = 38w i) —
o==%

1o (6ao—6'ay—2m’'+m)

Z ra +29a0)r(—29’a1)e%LL—“@m’—m)e—%Bm’FDO"’)e"”(T)
_o::I: F(%+9a0—am’)F(%—9’a1 —o(m’—m))

(3.2.58)

Again, all the spurious powers of b and A have beautifully recombined to give the finite
combination L.
The connection formula from 1 to oo (3.2.29) on the other hand becomes

a a 1
1D< —mm —m aig ;il; T L(1 — z))
11
=D Nooy(a.m' — m)1D<m Al mg m' ap; - —>, (3.2.59)
0'=+ L <
where N is:

1 (1 +20a;) ein(“'Te/)(%—(m'—mHGal).
r (3 +0a; +6'(m" — m))

Ny—on(ar,m' —m,) =

(3.2.60)
3.3. Reduced confluent conformal blocks
3.3.1. General case Consider the correlation function
(A?[VI(DP(2)|Ag), (3.3.1)

which solves the BPZ equation

1 1 A29,0 — A — Al — A A A A2
(b—zazz _ (_ + )3z LA — A — AL — Ao 1, B0 _)
7z z—1 2(z—1) z—12 2 4z

(A%1®(2)V1(1)|Ag) = 0.
(3.3.2)
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We can decompose it into irregular conformal blocks in different ways. The blocks
corresponding to the expansion of z around a regular singular point can be given as a
further decoupling limit of the confluent conformal blocks. For the blocks corresponding
to the expansion of z around the irregular singular point of rank 1/2, no closed form
expression presently known to us. The block for z ~ 0 can be defined as

2
oar 21, a2 ) g A _ar ang A
ﬁ(a @0 o0 ;A ,z> = UILH;O(4N) 13( e aop o —4n,z)-

(3.3.3)

We multiply by the factor of (47)2 to take care of the leading divergence in the limit.
In the diagrammatic notation of Sect. 2.3, we represent it by

o] 21

ap a1 2
a A =
3( 00 g ,Z>
NANNN@

=

@0
o (e 4y):]

(3.3.4)

As indicated by the diagram, all OPEs are regular in this case. The wiggly line represents
the rank 1/2 irregular state, and the dot the pairing with a primary. The block for z ~ 1
is then simply

; A2 o o
elﬂAe4 13(0{ 0“10 2,
2

1’ e*l‘JTAZ’ 1 _ Z)
231

o)) 21

o]
o o109

(3.3.5)

The overall phase compensates the sign in e~ A2 such that the classical part is still
A?2 . In the intermediate region where 1 < z < ﬁ the corresponding block is

21 o]

1
Ay A a1 o 1 |
AR B gy TR g T A2~ ) = |
2 @0 Z 1

L

[e44]
7 o

(3.3.6)

Instead, in the deep irregular region, where z > # > 1, adecoupling limit of the form
(2.3.2) does not work. Of course one can still calculate this block by solving the BPZ
equation iteratively with a series Ansatz, or directly using the Ward identities determining
the descendants of the OPE with the irregular state (see Appendix B.1). In any case we
will denote the conformal block in this region by
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) ~ (AZ)PUIFA (A f7) 347 OPAVE [1 +0 <A2 L )}

©®) o1, 2
1€ (052,10‘0[071\ AL
3.3.7)

1
’Tﬁ

[N}

The ~ refers to the fact that this expansion is asymptotic. In diagrams we represent this
block by

a2 1 aq
1
1
1
1

1
e® A — ) =
1 214 NNz

(S]]

ANNNNANNNA@
(2] o

(200]

(3.3.8)

The solution of the connection problems goes in the same way as for the (unreduced)
confluent Heun equation (Sect. 3.2). In particular the connection problem between 0 and
1 works in the same way as for the general Heun equation. We have

(07 (0%
%5 (Ot Pagg " 215 A2, z>

200)

[N

= Z Mg (bag, bay; bot)e’-”AeATz 15 <Ot 0 41 02’1; eTTAZ T — z) .
0'=% :

(3.3.9)

To solve the connection problem between 1 and co one has to do two steps: from 1 to

the intermediate region, and then to co. In each step we decompose the correlator into

conformal blocks in the different regions and then use crossing symmetry to determine

the connection coefficients. The relevant formulae for the rank 1/2 irregular state are
reviewed in Appendix B.2. We have

(A|D(2) V1 (1)|Ag)
— / da C, Z Colt o Co e
0=+

(7%}
- / daCy Y CZ o Calay
0=+

2

. a o —
AT 18(06 00510 O?,l;e IJTA2’ 1 —Z)
2 1

2

CAs A % o 1
Z A 1—A AOLS (O[ 2,1 oy 1; 1\2Z7 _)
2 (e 7)) Z

(3.3.10)

This is precisely the same condition as for the hypergeometric functions (2.1.5). The
connection formula between 1 and the intermediate region is then

, 2 ,
elﬂAé‘ATlg (Ol O10051(_) O‘Z,l; e_”TAz, 1 — Z)
2 o1
1
= Z Mg (bay, ba; bag)z 221721780, & (oe @21 Qg 051; Az, —) .
0'==% <
(3.3.11)
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Diagrammatically:
7)) 21
1
|
1
ANNN @ : oy
o a1
2.1 o]
1
- Z Moy : (3.3.12)
0'=% ANNN @ : o
o (6713

Now we decompose the correlator into conformal blocks in the intermediate region and
near 0o, obtaining the crossing symmetry condition

(A2|®(2) Vi ()| Ag)

- / da CS, 4 Z CoyC o
0=+

0 a1, 42 1
0'==+

2

Ay —A— a a 1
z Ar1—A Aolg o 2’101 1;A22,—
2 (044} z

2

(3.3.13)

We recognize this condition from the Bessel functions (2.3.11). We then immediately
find the connection formula between the intermediate region and oco:

Ay —A— a a 1
bz@baz Ay 1—A1—Ag . S oy 2,1 o l; AZZ, -
2 (044} z

_ 1o, ©") ap, 2 1
_9219 2 Qgor (bat) 1 € (az,laao,z\ W

with irregular connection coefficients as in (B.2.15):

) (3.3.14)

220 im (552 ) (44200
Qe (bar) = I'(1+20ba)e 2 /\2 . (3.3.15)
00 /—27_[
In diagrams:
2.1 o]
NANNN® : @0
[072] o

a1 o]
| (3.3.16)

200]
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Let us write explicitly the more interesting connection formulae between 1 and oo, which
is obtained by concatenating the two connection formulae above. Since the § block in
the intermediate region has different arguments in formula (3.3.11) and (3.3.14), we
need to rename some arguments. In the end we obtain the following connection formula
from 1 directly to oo:

i A2 o o —i
elnAe4 18'<a 00[191 (5’1;6 ”ZA2,1—Z>
2 1

- Z Mg, (bary, ba; bog) Q(—6,)05 (botez)b_%wﬂ’“ﬂz

6r,03==%
1
x 1€y« al;Az, . 3.3.17
1 2.1 %6y (0 AVz ( )
o
Diagrammatically we have %0 2,’1
ANANNNO® L aq
o 16,
2.1 o]
= Y Mo Qo :
62,03==% ANNNANNNN0 Qo
63 g,
(3.3.18)

where we have suppressed the arguments of the connection coefficients for brevity.

3.3.2. Semiclassical limit The story works the same way here as for the confluent case.
In the semiclassical limit the BPZ equation becomes

1 2 2 1 2 1 2 2
u—x5+ay+a i—a 1—4a L
<a§+ 21 0,4 1,4 0 );sw:o, (3.3.19)

2z - 1) @-DF 22 4
for any semiclassical block. Here u is given by
1
. o]
u = lim b>A%d,2 log 15 <a w0’ A2> =" a’+O(L? (3.3.20)

by the same argument as before. The finite semiclassical conformal blocks are defined
by normalizing by the same block without the degenerate field insertion, i.e. the semi-
classical block for z ~ 0 is

=

o o
S(Oé " g 03(’)1; A2,2>
a a .
f(a la()g 5(’)1; L2, z) = ;m})
— o
15 <05 0; A2>
2 o1

_ efgaaoFZ%+9a()(l + O(L2, Z)) (3321)

D=
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. _ o
Here F = limy_,¢ b2 log |:A 28 % (oz a(l); A2)i|.
2
a a
|.7:<a Oalg 2’1;—L2,1—Z>
2 ai

i A2 o o
PLAP: 13(0[ 00[19 0?
2

LemmA2 1 — z)
1

-
— 0[1' )
%g (0{ g’ A )
15 (Ol Ol()aw 062,1; eTImAZ ] — Z)
.2 o
- fm
- Q0. —iz A2
%3 (aal, e~iTA )
= e_%aalF(l — Z)%+9al(1 + O(LZ’ 1-2)).
(3.3.22)
In the deep irregular region we define the semiclassical block as
) o1, 42 1
©) ap, o 1 . _1 %QE <a2,1 « ao’A ’Aﬁ>
%5 az’laao;L’ﬁ :gln})bz
Z — oy )
1§ (uaao, A )

_ B ING 2 L
— (LJ2) 21+ O(L TR 432

All these blocks satisfy the same Eq. (3.3.19). As for the confluent case, in the connection
formula between 1 and oo we have four different € blocks appearing, which should
reduce to two in the semiclassical limit. Indeed, we have

1
ED|( o | ay al; Az, —
1 2190 o0 Az

o i
(MY SUF | 6® (OQ,I o % A2 A_), ash— 0, (33.24)
Z

2

[~}

as in (3.1.34). Now that we have defined the semiclassical conformal blocks, we state
the connection formulae. The connection formula from O to 1 (3.3.9) reduces trivially
in the semiclassical limit to

a a a a
;]:(a "agg ;(’)1; L2,z> = Y Mg (ao, ar; a);]:(a % aig ;il; —L*1— z) :
0'==+
(3.3.25)

The connection formula from 1 to oo (3.3.17) becomes

a a
15’:<a Oai “21 12,1 —z)
2 ai

= Zg, (ZJ:iMea (a1, a; ao)Q(fa)e/(a)Lzme_%a"F)
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©") a2 1
X%S <a2,1 a a0 L=, —Lﬁ>, (3.3.26)

with connection coefficients!3

> Moo (ar, a; ap) Qoo (@) L2750

o=+
_y I - 20a)T(—206a)T (1 +zeal)2—20%20%—%%%"”<%)(%‘2"“)
_U:i \/2711"(%+9a1—cm+a0)1"(%+9a1—cm—a0) '

(3.3.27)

3.4. Doubly confluent conformal blocks

3.4.1. General case Via a further collision limit we reach a correlator that solves the
BPZ equation

Z 4 Z

_ 1 n1\ A? Ao0A nalAo A2
292 1 2 2
(b BZ — Zaz + — + 3 + Z3 - @

) (1, AP (2) |2, A2) = 0.
(3.4.1)

This correlator can be expanded in the intermediate region Ay K 7z K Afl and near

the two irregular singularities, that is either z > A;l > lorz < Ay < 1. Note thatin
(3.4.1) one of the three parameters A1, A», z is redundant. Indeed the conformal blocks
will only depend on two ratios. The conformal blocks in these regions can easily be
computed as a collision limit. Explicitly, in the intermediate region A, K z K Al_1

o Ao
151 (Ml a o po; Arz, ?>

b0 .~ o I-H2 As
= A ASZ T Tim 13’(/11 a Pla 2, Mz, — ). (34.2)

This conformal block is the result of the projection of the Whittaker module |2, As)
on a Verma module A and of (1, A1| on Ag. We represent this block by the diagram

2]

1

@] Ar 1

151 (Ml ap auz:/\m?): |
1

1

L J 2

(72} o

(3.4.3)

13" Note that the Gamma functions in the denominator precisely correspond to the one-loop factors of the
two hypermultiplets of the corresponding AGT dual gauge theory.
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The expansion near the irregular singularity at infinity can be obtained by colliding
in (3.2.7) the insertions far from the Whittaker state in the confluent conformal block.
This gives

o 1
1531(11«1 20 g @ po; ArAg, —)
Az

A+A — 2o
— eQbA]Z/ZAl 2,1A2A (AIZ) Obu+ 7 lim
n

— 00
~ n—K2 AA 1
a1 112
x19 ’ QgL —, — . 3.4.4
1 <M1 19 nin A1z> ( )
We represent this block diagrammatically by
o 1
1531<M1 > e o pos A A, —)
Az
2.1
Wi ' ° ° M2
16 o
(3.4.5)

Finally, the expansion near the irregular singularity at zero is easily obtained from (3.4.4)
by exchanging A1 and A; and sending z — 1/z, up to a Jacobian. The corresponding
conformal block is

_ o) 1 Z
z 2A2"1331</L2 29 aMl;AlAz,A—2>

021
- ! . (346

23 ® ® - H2
o 26

Expanding now the correlator first near O and then in the intermediate region, crossing
symmetry implies

(1, M| P (D)2, A2)

= /d(x G;lCMlaG(;l Z B#z%ﬁ,/chﬂzea
6=+
2 (3.4.7)

X

_ o z
b4 2A2"1©1(M2 21 g @ i ArAg, —)
As
2

— ’ o A2
= /dO[ Galcp,la Z ng,lacuzag/ 151 <//L1 o 2’10[0/ no; A1z, 7)
0=+

We recognize this condition from (2.2.13), and we can readily write down the solution
to the connection problem:

o Ar
b 3 (Ml a *lag pa; Az, 7)
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1l g _ o z
= Z b= 27 2 N (bar, b))z 2A2"1©1(M2 2N g @ s ArAs, —)

0=+ Az
(3.4.8)
In diagrams:
ozl
M1 ® . ° W2
o (0 7]
az g
— Z Nogr : . (349
o=+ M1 ° ® : w2
o 2!

A similar argument works for the connection between the intermediate region and in-
finity. We obtain

o Ar
b3 (Ml ap o po Agz, 7)

_1_g o 1
= D 07PNy (b, bm)l@l(m 21 e @ pas AiA, —)

et Az
(3.4.10)
Or, diagrammatically:
a3,
“1 ® L @ 2%
(672} o
21
= 3 A ;
=% I3 : ® ° m2
Ko o
(3.4.11)

Concatenating the previous connection formulae we can connect 0 directly with co as
follows

1 Z
—1og1buy —2A 2,1 .
b2 0bK2, 2’11’)31(“2 M20, @ i1; AAg, —) =

Ar
_ 1 Y
= Y bPPUNG S (o, ba)bT PPNy g (barg, , i)
0,03==+
o 1
1591(/“ 21 Wigy @g, 2; A1A2, —>
Az

(3.4.12)
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In diagrams:

w1 ® ® ' 2

S
---- 8

—1
D Noo N
02,03==+ "1 : o @ Mm2
H165 g,

(3.4.13)

3.4.2. Semiclassical limit Let us now consider the semiclassical limit of the doubly
confluent conformal blocks. Once again, the divergence as b — 0 is expected to expo-
nentiate, that is

_ o z
Z 2A2"1©1(M2 2 lag o s AjAs, A_z)

b2
As > —0bur+5

A+A
_Z2A21e 22 A2 21AA<
Z

xexp (b72F (LiLo) + W (LiLa. 215 ")), (3.4.14)
where F is the classical conformal block defined by
151 (w1 @ 2, A1As) = (A1 A2)™ exp (b_zF + O(b°)> , (3.4.15)

and the 1§ block is given by

(1, Atlpz, Az) = /dot CriraCrne 131 (11 @ 2, A1 A2 (3.4.16)

We define the semiclassical block near zero to be

az Z
21Dy (mz mag a my; L1Ly, L_)
2

Yo o s ArAg, A%)

) 1@1<
= lim b*%*@b/t2+%Z72A2,1

, (3.4.17)
b—0 151 (11 & o, A1A2)
The semiclassical blocks satisfy the equation
miL L% u msz % 1
92 + -t =+ — - ==
< b4 Z 4 72 4 74
az,1 _
721D <m2 mog a my; L1Lo, ) =0, (3.4.18)
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with the u parameter defined as usual to be the leftover of the A, derivative, that is
1 2
u=,-a + Lo0r, F (L1L2) . (3.4.19)

Similarly, the semiclassical block near the irregular singularity at infinity is defined to
be

a 1
1Dy (ml 2V mig a ma; LyLa, —)
Lz

o1
s 1331<M1 T e o po; AAg, A+Z>
— lim b2~ ObmitT ,
b0 151 (1 @ w2, A1A2)

(3.4.20)

and satisfies the same Eq. (3.4.18). In Eq. (3.4.12) 4 different blocks near infinity appear
in the RHS. However they collapse to two of them in the semiclassical limit as in the
previous cases. That is,

o 1
1@1(M1 21 g apr pas A1Ag, —)
Az

/ 0 . 1
~ (A1Ap)? 6_26“F1@1<M1 P21 e @ oz Ay Ay, A_lz) as b — 0,

(3.4.21)

asin (3.1.34). Finally, the connection formula (3.4.12) in the semiclassical limit becomes

ar. | <
b4 1771<m2 " mag a my; L1Ly, L_>
2

=2 (Z Nig! (m2, Ny (@, m1) (L1 L) e‘”if’“F) (34.22)

o’ o=+

a 1
1D1(m1 2 mygr @ ma; Ly Loy, — |,
Lz

where explicitly the connection coefficients read

Z Nyt (ma, )N (oyer(@, my) (L1 Lp)"® e~ 2% F

o=+
_y I'(l —20a)[(=20a) (L1Ly)"¢ e—%"’aFem(#)(_%_mz_aa)
e T (% +6my —aa) r (% —60'my —oa)

/
in(%)(%—nn—aa)
X e ,

(3.4.23)
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3.5. Reduced doubly confluent conformal blocks

3.5.1. General case Consider the correlation function
(. A1]@(2)[A3), (3.5.1)

which solves the BPZ equation

2o, 4+

Z 4 z

2
_ 1 pAi A% A0 A2
<b 292 — 1 2 ﬁ (1, AP (2)|A3) =0. (3.5.2)

One of the parameters among A1, A2, z is redundant and can be set to an arbitrary
value via a rescaling. We keep them all generic for convenience. We have three different
conformal blocks, corresponding to the expansion of z near the two irregular singular
points, and for z in the intermediate region. The block for z ~ oo is given by the
decoupling limit of the corresponding doubly confluent block (3.4.4):

2

az ) 1
1D ’ 906;A1A,—>
(M o 2 A1z

9bA1z/2AA+A2 1 (Az) (A7)~ 9b;¢+ lim
n—0oo

- AAZ 1
xml(u“z" 1o o n; —4—772, A—lz) (3.5.3)

Equivalently, this block can be computed by doing the OPE (i, A1|®(z), projecting

the result onto the Verma module A, and contracting the result with |A%). We denote it
diagrammatically by

1
1@5(M e o; AjA3, N )=

@ ON\NNN
o o

(3.5.4)

Also for the intermediate region A2 Lz K 37 we have a closed form expression, given
by

A2
151 (u ap Pl 1 Az, —2> AL (MDA T fim
5 z n—00
2
P Qs A3
X181 (M ag T n,Alz,——>.
4nz

(3.5.5)
This conformal block can also be computed directly by projecting |A§) onto the Verma

module A, then doing the OPE of ®(z) term by term with the resulting expansion and
then contracting with (i, A1|. In diagrams
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2
F----

ON\NNN~
7 o

(3.5.6)

For the expansion around the irregular singular point of half rank no explicit, closed
form expression is known to us. In any case one can calculate the expansion iteratively
via other methods as for (3.3.7). We denote the corresponding conformal block in this
region, where 7z < A% and A1A% < 1by

_L_ 2
z 2
QE( )(uaaz L A1A2 f) ~ PNV <A£> Z—zAz,lAlA(A%)Az.lm
2

[1 +0 (*/_ A1A2)} (3.5.7)

Diagrammatically,

a |

e )(lwlotz 15 A1A3, f)
N>

124 @ ONNNNNNANNA

(3.5.8)

To connect 0 with the intermediate region we decompose

2
<u,A1|<1><z)|A%>=/daCWG 1200, 105()(Maa21,A1A2 f) =
Ar
A2\[*
/daCMWG 1 Z CO!@/COl210! 1%1 (M a“Z,lae/ s Az, _2>
0=+ <
(3.5.9)
We recognize this constraint from (2.3.11). Its solution is
Qf( )<M060l2 13 A1A3, ;() Z p¥ b“QW(bOl)
CE G T
o A3
i3y (ma ™o s Az 2 ). (3.5.10)
z

In diagrams we write

c (3.5.11)
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Instead, to connect from the intermediate region to co we decompose

2

o1 A3
181 | moa ’a;Alz,72

(1, A |D()[AD) = /da CaG7' Y Cuas €2
0=+
2

_ ’ o 1
:/doeCD,GD(I > CupaBitin 19%@ 20 g o Ay A3, ATz)

0'==%

(3.5.12)

This is just the same constraint as for the Whittaker functions (2.2.13). The solution is

A2
bebals% (M 0[9 a2,la ;A1Z7 _2)
Z

/ 1
= Z bf%fg b“]\/’ger(ba, bu)lg% (Maz’l Mo o AlA%, A_) (3.5.13)
12

0'==%
Diagrammatically
a1
128 L : ON\NNN~
[072] o
az g
- Z Nogr ! (3.5.14)
=% Iz : ° ONNNN-
Ko !

To connect from 0 to oo we just need to concatenate the two connection formulae above
to obtain

2 ﬁ
2> A2

_ Lioba
— z b262bo¢ Q@llgz (ba)b 2+92b0{ 93bHM_92)93 (bagz, bll«)

b_élé(lgl)(uaazJ s A A
2

6r,03=%
a2, . » 1
1@% <,LL Moy oy 3 A1A5, A_lz) (3.5.15)
In diagrams
2.1
n @ ONNNNNANNNNA
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2,1
_1 |
= Z Qelez-/\[(fé’z)@a !
6r,03=% " 2 @ ON\NNN~
o, ag,
(3.5.16)
3.5.2. Semiclassical limit The BPZ equation in this limit becomes
L2 mLi u L?
2 by mLp u Ly _
(8Z 2 + . + iy 13% 0. (3.5.17)

for any semiclassical block. Here u is given by
1
u = lim b*A30,; log 15 (ua; AlA%> =1 —@+0WL).  (518)

where 13 (1w ; A1A3) is the conformal block corresponding to (i, Aj|A3) with inter-

mediate momentum «. The finite semiclassical conformal blocks are defined as before
by normalizing by the same block without the degenerate field insertion, i.e. for z ~ 0

£ (maaz,l s LiL3, ﬁ)
2 Ly
] 16(19) (Maaz,l ;s A1A3, ,‘(—f)
= lim b™2 — .
b—0 151 (mas AA3)
2

_1
N e@Lz/ﬁLz ZZ%(l +(’)(L1L%, Vz/L2)) (3.5.19)

For z ~ oo instead we have

az , 1
Dilm = mga; L L5, —
: ;( ‘ 12LlZ)

1©1<Ma2'1 o a; A1A3, A+Z>
= lim b2
b—0 13% (o; AjA%)

1
—l_g
~ e—%amFeQLIZ/zLI 2 mZ—Gm(l +O(L]L%, 1/LIZ))

Here
F = lim b log [(A]A%)_Als% (,ua; AlAg)] . (3.5.20)

Both these blocks satisfy the same BPZ equation (3.5.17). Analogously to the previous
confluences, in the connection formula between 0 and oo we have four different ® blocks
appearing, which should reduce to two in the semiclassical limit. Indeed, we have

a1 » 1
D ’ ag s A A5, —
1 5(# Mo Qg 1435 A]Z)
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0'a 0 1
~ <A1A%> 8—73111:1@ (I/Laz,l Uo a;A]A%,A—Z>, asb—>0,
1

(3.5.21)

1
2

as in (3.1.34). Now that we have defined the semiclassical conformal blocks, we state
the connection formula. (3.5.15) in the semiclassical limit becomes

15(9)<maa2 1 L1L2 f)

Ly
= Z (Z QGU(a)M U)H’(Cl m) (LIL ) —BuF)
0’ o=+
a 1
1Py (m e @i il LTz) (3522)

With connection coefficients'4

oa o -
Z QG @N oy (a, m) <L1L3> e 20
o=%

Z F(1—26a)F( 20a) L1L% . (3.5.23)
5 — 0'm — aa) 4

~% 3, F % —171(1*2'9)(§+20a) in(%y)(%—m—aa)
e e e .

Note that the factors of b appearing in (3.5.15) precisely combine with all the factors of
A1, Aj to give the finite Ly, L».

3.6. Doubly reduced doubly confluent conformal blocks

3.6.1. General case Decoupling the last mass we land on the last correlator of our
interest, which solves the BPZ equation
1, AT AR A
b2 — -3, — A3
z

72 4 73

1
—p )( o)A =0,  (3.6.1)

4 z
Again, one of the parameters among A1, z, A3 is redundant and can be set to an arbitrary
value via a rescaling. We keep them generic for convenience. We can decompose the
above correlator into conformal blocks in three different regions, that is for 7 < A% <1,
> Afz > 1, or for z in the intermediate region A% <K 71K Afz. The conformal

block in the intermediate region is again a block that can be expressed as a collision
limit

§

D=
D=

A2
(agoezla Afz, ) (AD™ (A2 T4 fim
4

n—0o0

14 Note that the Gamma functions in the denominator precisely correspond to the one-loop factor of the
single hypermultiplet of the corresponding AGT dual gauge theory.
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~ _A2 A2
151 (n ag Pla s —Lg, —2) (3.6.2)
2 47 z

This conformal block can also be computed directly by projecting |A%) onto the Verma
module A, then doing the OPE of ®(z) term by term with the resulting expansion and
then contracting with (A%|. In diagrams we represent it by

]
A2 1
181 (Ote a1 Az, —2> = |
2 2 Z 1
NANNN @ L ON\NNN-
(7] o
(3.6.3)
The block corresponding to the expansion for z > Al_2
1
© 242
1€ ar 1o ATAS, ——
272 ( 2 A1ﬁ>
1
~ (A%)AZ‘H—A(A%)A(Al\/z)%'H’zegbAlﬁ [1 +0 <A%A%, ):|
A7
(3.6.4)
a2,
AN\NNANNNNNAO———ONNNN-
0 o
and similarly for the expansion for z < A%
-2A ®) L A2A2 NME
z 2.1%6% <O[062,1,A]A2,A—2>
—%—hz
~ (A%)A(A%)Az,HAZ—ZAz,l Lz LIS TNE ) AlA%, LE
Ao Ar
2,1
NN\NNO
o 0
(3.6.5)

To connect the intermediate region with z ~ 0 we decompose the correlator as

2\ |2

) A3
1851 |aaz0p; Ajz, —=
2 2 Z

_ 0’
7728 16(] ) <aoz271 ; A%A%,

2 2

(A21(2)]A2) :fda C.G3' Y €%, o Co,
0=+

:/dozCaG‘;l > A_yCa

0'==%

~/_E) ’
Ay '
(3.6.6)
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This is the same constraint as in (2.3.11). Therefore the connection formula is

2

A 1
P F (s Az, =2 ) = ) b7 Qpyr (ba)z 282!
2 2 Z
0'==%
x € ) (aa2 15 A3AS, f) . (3.6.7)
A
Diagrammatically
az
NANNN@ : ON\NNN~
o (0 72]
2,1
- Z Qpyr E (3.6.8)
o'== ANNNO————ONNNNNNNNA
o 9/
Similarly, the connection formula between the intermediate region and oo is
b %, agon A%z, =2 A2 Zb ZQQQ’(bQ)]Q (0{210{‘/\2/\2 ;>
2Y3 1< 7 = 1 s s 4\ s Alﬁ .
(3.6.9)
In diagrams:
az
NANNN@ : ONNNN~
(07:] o
21
= Z Qupr E (3.6.10)
6=+

As in the previous cases, we can easily obtain a connection formula connecting the two
irregular singularities, namely

i

p1z 2020 %e(fl) (o{ a1 A A%, ;\C) E p20abe lee (ba)b™2 L +202ba Qo205 (batey)
2

0r,03=+

1
0,
e (om ag, s A2A2, Tﬁ) . (3.6.11)
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Diagrammatically:
02,1
ONNANANANAN
o 0
02,1
o |
= > 955,900 ;
02,03==+ ANNNNNNNO—————— ONNNN~
63 o,
(3.6.12)
3.6.2. Semiclassical limit The BPZ equation in this limit becomes
poti,e 13 =0 3.6.13
e vl E A A G013

for any semiclassical block. Here u is given by
1
u = lim bA30,; log 1§ (a; A%A%) = —a+OWLiL).  (3614)
where 1 3 1 (a; A%A%) is the conformal block corresponding to (A%lA%) with interme-

diate momentum «. The finite semiclassical conformal blocks are defined as before by
normalizing by the same block without the degenerate field insertion, i.e. for z ~ 0

<
Z %559) (a ai; L%L2 i)
2

2 L2
Z72A2’1 le(f) (a o215 A%A%, }(—22)
— lim p—1/2 2 2 — (3.6.15)
b—0 %S% ((x;AlAz)
~ e@Lz/ﬁL;1/2Z3/4(1 + O(L%L%, ﬁ/Lz)) (3616)
For z ~ oo instead we have
1
£?® (a a; L2L2, —)
1y B
%Qi(f) (062,1 o; A%A%, Allﬁ)
= lim p~'/2 =2 — (3.6.17)
b—0 181 (o5 ATA3)
~ SEVEL TR 2 O3S, 1/L1V7)). (3.6.18)

Here

T 2 2 A2\—A CA2A2
F = lim b log [(AlAz) %7 (a,AIAz)]. (3.6.19)

2 2
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Both these blocks satisfy the same BPZ equation (3.6.13). Analogously to the previous
confluences, in the connection formula between 0 and oo we have four different & blocks
appearing, which should reduce to two in the semiclassical limit. Indeed, we have

) 242 1
1€ azlaf;AA,—>
3 % ( N 0 1432 Alﬁ

9/0 o/ .
~ (A%Ag) T ) (az,l o; A2A
2

1
, , as b — 0,
A1ﬁ>
(3.6.20)

as in (3.1.34). Now that we have defined the semiclassical conformal blocks, we state
the connection formula. (3.6.11) in the semiclassical limit becomes

215(0) <a a; L2L2 \[)

L,
a / 1
— -1 , 20a ,—50,F (D) L7272
_;<[§Q€a(a)g(—a)0 (@) (LiLy)™ % e™2 );% (az‘la’Lle’Llﬁ)'
(3.6.21)
With connection coefficients!’
> Q0 (@) Q—oypr (@) (L1 L2)*“ e 7
o=+
1L2 20a
ZF(1—20a)F( 20a )( . ) (3.6.22)

gt -in(42) (e2ma) in(152)(-20a)

Note that the factors of b appearing in (3.6.11) precisely combine with all the factors of
A1, Aj to give the finite L1, L».

4. Heun Equations, Confluences and Connection Formulae

In this section we derive the explicit connection formulae for Heun functions and its
confluences by identifying the semi-classical conformal blocks with the Heun functions
and using the results so far obtained.

4.1. The Heun equation. In the following we identify the semiclassical BPZ equation
(3.1.28) with Heun’s equation via a dictionary between the relevant parameters. More-
over, we establish a precise relation between the Heun functions and the semiclassical
regular conformal blocks. This is further used to obtain explicit formulae for the rel-
evant connection coefficients. WLOG, we focus on the case + ~ 0. The connection
formulae for r ~ 1, t ~ oo can be easily derived by matching the Heun equation and its
local solutions with the corresponding semiclassical BPZ equations and the associated
semiclassical conformal blocks.

15 Note also that there are no Gamma functions in the denominator corresponding to the fact that we have
no hypermultiplets in the corresponding AGT dual gauge theory.
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4.1.1. The dictionary Let us start giving the dictionary with CFT. The Heun equation

reads

d? F) d -
<_2+<Z+—+ < >—+aﬂz—q>w(z)=0,
dz z z—1 z—t)dz z(z—1D(Ez—1)

a+B+1=y+d5+e¢,

4.1.1)

where the condition @+ 8+ 1 = y +§ +¢ ensures that the exponents of the local solutions
at infinity are given by «, §. Here and in the following we restrict to generic values of
the parameters. Define w(z) = P4(2)¥ (z) with

Pi(z) = 27721 — )72t — z)=¢/2. (4.1.2)

¥ (z) then satisfies the Heun equation in normal form, which is easily compared with
the semiclassical BPZ equation (3.1.28). We get 2* = 16 dictionaries corresponding
to the (Z»)* symmetry associated to flipping the signs of the momenta. We choose the
following:

11—y
ag = ——,
L)
1-6
a) = ——,
T
1—¢
a = 5 (4.1.3)
oa—p
oo = 5
© _ —2q+2taf+ye—1(y +4)e
u"’ = .
2(t —1)
The inverse dictionary is
a=1—ayp—a; —a; +dx,
B=1—ao—a; —a — aco,
y =1 —2ay,
§=1-2a, (4.1.4)
€ =1-—2a,

1
q= 3 +t(a(2)+a,2+a12 —ago) —a —ait+aga; — 1+tQRa; — 1))+ (1 — t)u(())_

The two linearly independent solutions for z ~ 0 of (3.1.28) are related by ag — —ao.
This corresponds to the identification of the two linearly independent solutions of (4.1.1)
for z ~ 0 as

w®(2) = HeunG (¢, ¢, @, B, 7,8, 2), “rs)
w®(2) =z YHeunG (t, g — (y — D8 +€),a+1—p, B+1—p,2—7.8,2),

where by definition

HeunG (t, ¢, @, B, 7,8, 7) = 1 + tiz +O(). (4.1.6)
y
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The Heun function can be identified with the semiclassical conformal blocks introduced
before. In particular comparing with (3.1.25) we get the two solutions

a a a
lat 72,1,

| | 2z
wg))(z) = P4(2) t2_“’_“°e_2a”0F(t).7:( ap i1 —),
oo ap

4.1.7)
1 1 ar a a Z
w®(2) = Py(z) 177 4F et FO F A1 41 gy G214 2
oo ao t
Note that HeunG is an expansion in z, while the semiclassical conformal blocks are
expanded both in z and ¢. To match the two expansions one has to express the accessory
parameter g in terms of the Floquet exponent a as a series in ¢. This can be done
substituting the dictionary as explained in Appendix C.
The solutions for z ~ ¢ are given by

t —lx z—1
wg)(z) = HeunG (z‘__]’ %’ o, ﬂ, €, 8, 1_—1‘) .

w (@) = (t — 2)'~“HeunG (4.1.8)
t q-—taf t z—1t
e —(e—1 s+ ,a+l—€,8+1—€,2—¢€,6, .

(t—l T, )<t—l y)“ “p e 1—t>
Comparing with the semiclassical blocks (3.1.29) we get
w?(2) = Pa() 13707 (1 — )220 O
t t—
((t— 1);]__<a1 a®a_ " —Z>>
oo a t—1 t
1 1 1- (419)
wit)(z) — P4(Z) ti—a0+a,(1 _ t)f_alefdalF([)
1 ay ap ar | t r—z
t—12F i)
<( ) <aooa o a t—1 t ))
The two solutions for z ~ 1 read
w(_1>(z) = <i—:i> HeunG
11—z
(t,q+a(8—ﬂ),a,8+y—/S,S,y,tf),
¢ (4.1.10)

| 72—t —a—1+8
w& )(Z) = <71 — t) 1- z)lfaHeunG

],
(t,q—a(ﬁ+8—2)+(8—1)(oz+,3—l—ty),a+1—8,1+y—/3,2—8,y,tt Z),
-z

and matching with (3.1.37) gives

wg)(z) — P4(Z)e:‘:i7'[((l]+a/)(l _ t)%fa,eféaalF(t)

(([(1 — t))f% (t — Z)]:(ZOaaoo al—az'l;l 1— Z))
t

ar’ -z
1 _ A 4.1.11)
wi )(Z) — P4(Z)e:|:l7'[(—al+a¢)(1 _ t)i—ateiaall:(t)

((r(l - t))—% (t — Z)}-<Zoaaoo an, %21 1- z>> .
t

ar’t—z
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The £ ambuiguity in the overall phase depends on the choice of branch corresponding
to
z

ap a a 1-— .
P4(Z).7:<aoa ooam ;il; t, t ) x (t _ 1)0a1+a, — 6‘:|:171'(0al+a,) (1 _ t)9a1+a, )
t —Z

(4.1.12)

Finally, the two solutions near z ~ oo are given by

w™ (2)
=z_°‘HeunG(t,q7aﬂ(l+t)+01(8+l€),01,(x7y+1,a7,3+1,a+ﬂ+1 —y =34, 2)
w™ (2)
:z_ﬁHeunG<t,q—aﬁ(l +t)+ B +te), p,p—y+1,p—a+l,a+B+1—y -4, 2)
(4.1.13)
Comparing with (3.1.31) we get

. 1.
wioo) (Z) — P4(Z)€:I:171(17a17a,)e§daooF(t)

1
(t%g}'(at aal oot az’]; t, —)) ,
ao (20%) z
4.1.14)

w® (z) = P4(Z)e:|:in(l—a1—a,)e—%aamF(I)

_1 a; a a 1
t72z2F (M a ™ as- TN =) ),
ao doo Z

where again the =+ in the phase depends on the choice of branch corresponding to

1 1 1
Py(z) =z 2701 — )7 27 (1 — )72
— e?in’(l—a]—a,)z—%ﬂzo (Z _ 1)—%+a1 (Z _ t)—%+a,. (4115)
4.1.2. Connection formulae Finally we are in the position to give the connection for-

mulae for the Heun function. Let us start with z ~ 0 and z ~ ¢. The corresponding
connection formula can be read off from (3.1.30), which in the Heun notation reads

(1= o) (y)e (t—0u)F
I (5= +a@) T (25 —a(@)
o T(e= (et Ch )
(=5 v a@) T (292 - a@)

for the other solution one finds

w9 = 1=n"3uw"@)

la-n"wP@,  (4.1.16)

[(1 — T Q2 — y)ed (a+iag) F
F(l T +a(q))F (1 4 lyp=e _a(q))
(e — DI (y)et (~Pu+ia)F
* 1—y+e 1—y+e
r (T +a((1)) r (T —a(q))

w” (@) = A —n ()

A -0 2w Q). (4.1.17)
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Here a(g) has to be computed inverting the relation (3.1.27) and substituting the dic-
tionary as shown explicitly in Appendix C, formula (C.1.13). The result to first order
is

a(q) = 1—16\/3—4q+y2+2y(e—1)+e (e—2)

4(—142g—€(y +€ —2)) (=3 +4q+(a — B) — y> —8(8 —2)—2y(e — 1) — (e — 2)) ) 5
x (8 — +O(t7).
B—4g+y2+2y (e — 1) +€(e —2))(2 — 4q + y2 +2y (€ — D)+e(e — 2))

(4.1.18)

In Appendix C we also explain how to compute the classical conformal block F and its
derivatives (see formula C.1.10). For example, to first order

(4a(q)* —a® +2ap — B> — 28 +82) (1 —€)
2 —8a(q)?

3, F(1) = t+0@%. (4.1.19)

The connection formula for w )(z) can be obtained from (4.1.16) by multiplying by
2177, substituting

q—>q— Wy —-—D@s+¢), a > a+1l—y, B>B+1—y, y >2—y

(4.1.20)
as in (4.1.5), and noting that
—t —t
HeunG | —, 4 aﬂ’a’ﬂ,€’8’ SR
t—1 1—1¢ 1—1¢
z\I-v t g—tla+l—py)B+1—y)—(y —D@Es+¢€)
= (—) HeunG , )
—1 1—1
t
-y, B+1—vy,€3, —1 t) 4.1.21)

Similarly, the connection formula from z ~ 0 to z ~ oo can be read off from (3.1.35),
and gives

w?(z)

Sy

_ (3 D0 = 200@)I C20atg)I (P - a5 o ot )\ e
i T (552 —0a@) T (25— 0a@) T (14 5522 —0a(@) T (552 - 0a()) .

(1 = 20a(g)T(=20a(@)T ()T (@ — B)r 5 ~04@) =3 (0 =tuce soa)F 7 () 00
+ Z €+1 +e—1 a—B—38 a—B+38 w_" ().
o=+ I (y Ua(q)) r (VT - (Ta(q)) r (1 + =5 - Ua(q)) r (T — aa(q))
(4.1.22)

Let us conclude the section by giving the connection formulae from 1 to infinity. This
can be derived from (3.1.20), and gives

T(B — a)T(8)e™ 2 (a1 +das ) F (1)
r (5 a+p +a(q)) (# — a(q))

w(g) = —(1 =2 w®(2) +
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NG /3)F(8)e_%(3a1—3aoo)F(t)
P (et +a(q)> P (b=t a(q))

~(1 - w™ ().

(4.1.23)

The connection formulae involving the other solutions can be read off from the previous
ones, and the formulae involving different pairs of points can be similarly derived by
considering the corresponding semiclassical conformal blocks. We conclude by stress-
ing again that the connection formulae involving different regions in the t—plane are
completely analogous to the previous ones, since all the singularities are regular. This
will not be the case in the following.

4.2. The confluent Heun equation
4.2.1. The dictionary Here we establish the dictionary between our results of Sect.

3.2 on confluent conformal blocks and the confluent Heun equation (CHE) in standard
notation, which reads

2 _
dw+<Z+ 8 +6>d“’+“z 9 w=0. 4.2.1)

dz? z z-—1 dz  z(z—1)

By defining w(z) = P3(z)V (z) with P3(z) = e~€/2777/2(1 — 7)79/2, we get rid of the
first derivative and bring the equation to normal form, which can easily be compared
with the semiclassical BPZ equation (3.2.40). We can read off the dictionary between
the CFT parameters and the parameters of the CHE:

I—y
apg= ——,
0 2
1-36
al = ——,
! 2
L (4.2.2)
2
L =c¢,
1 (y+8—1?* Se
U=-—qg+a — —-— — —,
4 4 2
where
1
= lim b2Ad, 1 YoA)=- a2+ 0L 423
u=lim A0g1$<uaao ;@ +Ow) (4.2.3)

as in (3.2.40). This relation can then be inverted to find a in terms of the parameters of
the CHE: we denote this by a(g). We write the solutions to the CHE in standard form in
the notation of Mathematica, and their relation to the conformal blocks used before. We
focus first on the blocks given as an expansion for small L. Then, near z = 0 we have
the two linearly independent solutions

HeunC(q, o, v, §, €; 2),
I YHeunC (g + (1 — y)(e — &), a+ (1 —y)e,2 — y,8,€:2),  (4.2.4)
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where the confluent Heun function has the following expansion around z = 0:
HeunC(q, , 7,8, €:2) = 1 — %z +O@). 42.5)
Comparing with the semiclassical conformal blocks in (3.2.2) we identify
HeunC(g, oy, €2) = Pr@e 40,7 (g 21: 1.2,
7z 7”HeunC g+ —=py)e—=¥8),a+(1—yp)e,2—y,68,€;2) (4.2.6)
= Pyt F (’” aap ol L, Z) ,
where
F = lim % log [A%g (u o z(‘) A)] . (4.2.7)

Doing a Mébius transformation z — 1 — z we obtain solutions around z = 1, which
being a regular singularity can again be written in terms of HeunC. This amounts to
sending y — §,8 — y, € > —€, ¢ > —a, ¢ — g — «. The two solutions are
therefore

HeunC(g — o, —, 8, v, —€; 1 — 2),
(1—2)'HeunC (g —a — (1 —8)(e+y), —a — (1 —8)e,2—8,y, —e; 1 —2).
4.2.8)

Again, comparing with the semiclassical conformal blocks in (3.2.2), we identify

HeunC(g — o, —¢, 8, y, —€; 1 — 2) = P3(z)e7%a“lF]]-' <—m aao aj— a;’l; L,1— z) ,
1

(1—2)'""HeunC (g —a — (1 = 8)(e +y), —a — (1 = 8)e,2 =8, y, —; 1 —2) =
= P3(z)e%aan1]-'(—m aaoap,aj’]; L,1- z) .
1

(4.2.9)

Around the irregular singular point z = 0o, we write the solutions in terms of a different
function HeunCo:

z_%HeunC Lo, Y, 0, €; 77!
oo(g, oy ) (4.2.10)

e*EZ

26 7 HeunCoo(g — ye,a —e(y +8), 7,8, —€;271),
where the function HeunC, has a simple asymptotic expansion around z = co:

o —(y +68 — Dae + (a — q)€?

3 1+ 0.
€

4.2.11)

HeunCoo(q, @, v, 8, ;271 ) ~ 1+

Comparing with the semiclassical conformal blocks we identify

o ins 1. 1 1
7~ «HeunCx (g, @, ¥, 6, €; z’l) =et 2 P3(z)e7""'FL7+’”1D<ma2‘1 my a a1, L, 7>
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—€Z

z%ﬂ’f‘SHeunCw(q —ye,a—e(y +6),v,8, —¢; zh

ins 1 1_ a a 1
=eT 2 P3y()e 2F L2 mlD(m 2l a a]; L, 7>.
0 Z

e

(4.2.12)
The phase ¢T3 comes from the fact that near 7=00
Pi(z) ~ e~/25 72 (Lg) 782 — B pmez/2,=y/2-8)2, (4.2.13)

The second solution around z = oo can be found by using the manifest symmetry
(m, L) — (—m, —L) of the semiclassical BPZ equation which according to the dictio-
nary gives the symmetry (¢, @, €) — (g — Y€, @ — €(y +6), —€) of the CHE in normal
form.

For the large-L blocks the story is analogous. The dictionary (4.2.2) is the same, up to
the substitution

1
— up = lim b?Adalog 1D [ *' ) ao; —
u Uup bm%) A log (,u wag A

1
=—(m —m)L + i ag +2m'(m' —m)+ O(L™Y.  (4.2.14)

This relation can be inverted to find m’ in terms of the parameters of the CHE. We will
call this m’(g). With this dictionary we can identify solutions of the CHE with conformal
blocks as follows: near z = 0 we have

1
HeunC(g, @, 7,8, € 2) = Py(z)e™ 20 "D 19<ma1 m' a0l 7 LZ>,

z!"YHeunC g+ —=py)e—=¥8),a+(1—y)e,2—y,6,€;2) (4.2.15)

1 a a 1
= P3(z)e2%0 P 1D<m bm' ag. ;E)l? A LZ),

with Fp given in (3.2.51). Near z = 1 we have
HeunC(q — o, —a, 6, y, —€; 1 — 2)
_1 a a 1
— P zaalFD D _ 0 /_ _ 2,1; —,L 1_ ,
3(2)e 1<mmma1 a1L( z)
(1—2)'"°HeunC (g —a— (1 = 8)(e+y), —a— (1 —8)e,2 =8, y, —e; 1 —2) =
1
= Pg(z)eéa"lFD 1D ™ —m ars 612,1; —,L(1-2)).
ar L
(4.2.16)
While near z = oo we have

Z_%Heuncoo(‘b a, V, 85 €; Z_l)

ins 1 L_(n/— a a 11
=eT2 P3(z)eL/2e23mFDL2 (m m)1D<m 2.1 my U aop; I —)
z

¢ “ze " PHeunCo(q — ye, o — €(y +8), 7,8, —€:27 1)
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ixs _Ln 1L Loom/— a a 11
— T3 P3(Z)€ L/2€ 2d,,,FDLz+(m m)1D<m 2,1 m, 1 m/ ap; —, _>.
Z

(4.2.17)

As the careful reader should have noticed, we identify the small- L and large-L conformal
blocks with the same confluent Heun functions. The only difference is in the expansion
of the accessory parameter: in one case it is given in terms of the Floquet exponent a as
an ?xpansion in L, and in the other case in terms of the parameter m’ as an expansion in
L.

4.2.2. Connectionformulae The connectionformulabetweenz = 0, 1 writtenin (3.2.49)
for the semiclassical conformal blocks can now be restated as:

HeunC(q, o, v, 8, €; 2)
1 1
ra-46r =200 F+39, F
= 1+(_(S )T (y)e . HeounC(g — o, —a, 8,7, —¢; 1 — 2)
r (VT +a(q)> r ( }; - a(q))
I'(5 — 1)I(y)e 20 F =30 F
(25 va@) T (257 - a@)

HeunC(g —a — (1 = 8)(e+y), —a— (1 —=68)€,2=6,y,—€;1 —2).

(4.2.18)
(1 _ 2)176

The quantities a(g) and F can be computed as explained in Appendix C.
The connection formula between z = 1, oo written in (3.2.47) reads in terms of confluent
Heun functions:

HeunC(q¢ — o, —, 8, y, —€; 1 — 2)

ind 1

Z F(_zo_a(q))r(l _ 20a(q))F(8)67%7%+VTHS+‘T“(q)eiT*73“I F+%3,,,F*%BGF(11)
= T (2 —oa@)r (15 —0a@) T (52 - £ —oal)

x 2~ <HeunCoo(q, &, ¥, 8, €; 2)

5 [(=20a(g)T(1 — 20a(q))T (§)e~2+& =13 +00(@) o= = 300 F+3inF~F0aF (@)
= (52 —0a@) T (X5 —oa@) T (2 + 2~ 0a@)

x efezz%ﬂ/*aHeunCoo(q —ye,a—e(y +98),y,8, —€;2).

(4.2.19)

Here the phase ambiguity comes from (4.2.12), i.e. corresponds to the choice (—z) %/ =

ei%z’s/ 2. A similar expression can be found connecting z = 0 and co. All connection
coefficients given above are calculated in a series expansion in L. Therefore they are not
valid for large L and in that case one has to use different connection formulae, which are
derived in Sect. 3.2.2 for the large-L semiclassical conformal blocks. Here we restate
those results in the language of Heun functions. The connection formula from z = 0 to
z = 1, valid for large L is given by
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HeunC(g, a, v, 8, €; 2)
ge —o(2m@-2+13) 1, 1 ey in (152 ) (2 -5-20'())
Z LI = 8e3ce D=e™ 7 ) g= 39 Fp+500 FD= 50,/ FD , 7 e q
= X
= PG —om@)r(1-3 -0 (mi@ - £ - 132))

x HeunC(g — o, —a, 8, y, —€; 1 — 2)

y+8

> PTG — Dedee (M @=E412) Loy Fo—yu Fo=a, 7 (157 ) (=20 @=1)
+
= PG =om@)r (3-0 (n@-2-232))
xHeunC (g —a — (1 =8)(e+y),—a— (1 —68)¢,2—-6,y,—€;1 —2),

(4.2.20)
where the quantities m’(q) and Fp are computed as explained in Appendix C.
The connection formula from z = 1 to oo is simpler and reads
HeunC(g — o, —, 8, v, —€; 1 — 2)
i (£—%—m'(g)
_ ei’”5—%3alFo—j?’mFoe—%—%”*s < vm'(q) F((Sjelﬂi L—m'(q)) . o
F(—2+%+5+m'(q)
HeunCy(q, «, v, §, €; zfl)
et B30, FD+%amFDE—%+%—¢—m’(q) I'(d) —ez,¢—y=b
L(¢—5+m9)
HeunCyo(q — ye, ¢ — €(y +98), v, 8, —€; z_l).
(4.2.21)

4.3. The reduced confluent Heun equation

4.3.1. The dictionary Here we establish the dictionary between our results of Sect. 3.3
on reduced confluent conformal blocks the reduced confluent Heun equation (RCHE)
in standard notation, which reads

2 _
d_w+<7” 8 )d_w Piza o 43.1)

—+ + w
dz? z z—1/)dz z(z—-1)

This is of course just the CHE specialized to'® ¢ = 0. The interesting difference with
respect to the CHE is the behaviour for z — oo, which is no longer controlled by € and
the degree of the singularity gets lowered to 1/2. By defining w(z) = P2(z)¥ (z) with
Py(z) = z7V/?(1 — z)7%/2, we pass to the normal form which is easily compared with
the semiclassical BPZ equation (3.3.19). The dictionary between the CFT parameters

16 This corresponds to the usual decoupling limit m — oo, L — 0 such that m L remains finite.
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and the parameters of the RCHE reads:

l1—y
ap = T,
1-6
a] = _7
2 (4.3.2)
L =2i/B,
1 (y +68 —1)?
= - — =+ -,
u=g-a+h 4
where
1
U= g%bzA%AQ log 1§ <a 3(1) A2> =1- a>+O(L? (4.3.3)

as in (3.3.19). This relation can then be inverted to find a@ in terms of the parameters of
the RCHE: we denote this by a(g). We therefore infer the relation between the solutions
of the RCHE in standard form and the conformal blocks defined before. Near z = 0 we
have the following two linearly independent solutions to the RCHE in standard form
(4.3.1):

HeunRC(g, 8, v, 3; 2),
Z'"7HeunRC (¢ — (1 — )8, 8,2 — v, 8, 2) (4.3.4)

where
. 2 —2A A1, 42
F = l}grbb log |:A %3' (a o0’ A ):| . 4.3.5)

Since HeunRC is nothing else than HeunC with € = 0, it has the following expansion
around z = O:

HeunRC(g. B, 7. 8:2) = 1 — L2+ O(?). (43.6)
Y
Comparing with the conformal blocks in (3.3.2) we identify

HeunRC(q, B,v,8;z2) = Pz(z)ef%a“OF 1 F (a Mgy 21,12, Z) ,

2 ap

2

2"V HeunRC (g — (1 — )8, B,2 — v, 8 2) = Pa(x)er™F | F <“ Mg ol L2, Z) ,
(4.3.7)

Doing a Mobius transformation z — 1 — z we obtain the solutions around z = 1. Since
this is a regular singularity the solution can again be written in terms of HeunRC. This
amounts to sending y — §,8 — y, 8 — —fB, ¢ = g — B. The two solutions are
therefore

HeunRC(q — 8, —B8.8,y; 1 —2),

(1—2)'"HeunRC(g — B — (1 —=8)y, —B,2—8,y;1—2).
(4.3.8)
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Comparig with the conformal blocks we identify

HeunRC(q — 8, —8,8,y;1—2) = Pg(z)e_%a“IFlf <a aoal_ aj’ll; —Lz, 1-— Z) ,

[ ]

(1—=2)'"%HeunRC(g — B — (1 = 8)y, —B,2—=8,y;1—2) =
= Pz(z)e%a‘*lF%]-' (a a0a1+ ajil; —L2, 1-— z) .

(4.3.9)

The new behaviour arises for z — 00, where we write the solutions in terms of another
function HeunRC:

. %)
VP57 HeunRC oo (g, B v, 8: 27 2)

Y | s _ 1 (4.3.10)
e~ "/FZZTTHeunRCOO(q, eZ”’,B, y,8,2 2).
The function HeunRC, has a simple asymptotic expansion around z = 00:
+4 3 +4 1
HeunRCa (g, B .8 =4 ~ 1 q—ﬂ+<y7—z)(VT—Z) L eoe
eun q.B,v.8,z272)~1— - 2z 2+0(@z ).
- N
(4.3.11)
Comparing with the conformal blocks we identify
. +8
¥VFiz3~ 5 HeunRCoo(g. B, v. 8127 2)
ind 1 1
— ,F5 2,6 ar. ;2
=e" 2 PQ(Z)LZ%S <a2,1 a ay’ L~ Lﬁ)
(4.3.12)

. +3 .
e72l‘/’37z%7yTHeunRCoo(q, ezm,B, v, 8; zf%)

ins 1L a ,, 1
—eF 2 P (L2 Ear1a "t L2, ——).
2(2) 1 214 0 Iz

Note that due to the nature of the rank 1/2 singularity at infinity, the expansion is in
. ind
inverse powers of ,/z. The phase eT 2 comes from the fact that near z = co

Pa(x) ~ 77V (—g) 782 = 2B /2002, (4.3.13)

The second solution around z = oo can be found by using the manifest symmetry
L — —L of the BPZ equation which according to the dictionary gives the symmetry
B — > B of the RCHE in normal form.
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4.3.2. Connectionformulae The connectionformulabetweenz = 0, 1 writtenin (3.3.25)
for the semiclassical conformal blocks can now be restated as:

HeunRC(Q1 /37 Y, 87 Z)
P(1 — 8)T(y)e~ 20 P+ F

T <1+y 5 +a(q)> (% _a(q)) HeunRC(q — B, —B,8,v; 1 —2)

L — DI (p)e 2ol —3% F

r (2= va@) T (25 - a@)
HeunRC (g — B — (1 —=98)y,—B,2—-6,y;1—12),

(4.3.14)
(1 _ 2)1_8

where the quantities a(q) and F are computed as explained in Appendix C.
The connection formula between z = 1, oo written in (3.3.26) reads

HeunRC(g — B, —8.68,y;1 —2)
_ [(~20a(@)T(1 — 20a(@)T() (7 )79 =5 —bi F=50ur
- ;i 27T (552~ a@) T (B3 - 0a(@)
e2i‘/’37z%_yTMHeunRCoo(q, B,v,8; z_%)

. _1 in a
5 I(—20a(@))T (1 — 20a(g)T'(8) (e=i™ g) 774D ¢£'5 ~ 30 F=F0F
= 27T (552 - a@) T (257 - 0a@)
e‘zimz%_%ﬂsHeunRCw(q, By, 8 z_%).

(4.3.15)

Here the phase ambiguity comes from (4.3.12), i.e. corresponds to the choice (—z) %/ =

imé .. . :
e 77%/2. A similar expression can be found connecting z = 0 and oo.

4.4. The doubly confluent Heun equation

4.4.1. The dictionary The doubly confluent Heun equation (DCHE) reads

d> S+yz+72d az—gq
N a4, —o. 4.4.1
<d22 72 dz z2 > w(e) 441

Again putting the DCHE in its normal form via the substitution w(z) = P, (2)¥ (z) with

Py(z) = RICORY (4.42)

we find the 22 = 4 different dictionaries with (3.4.18) corresponding to the Z3 sym-
metries (m;, L;) — (—m;, —L;) for i = 1, 2. For brevity we only write one of them,
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namely

Ly =1,
L, =3,

1
m1=§(2a—y),

m2=1—§,

(—4q L2y — 2 25) :

(4.4.3)

u =

L

and the inverse dictionary is

a=1+m; —myp,
6 =L,
y =2(1—m), (4.4.4)

1
q= —3 (L2 +2u +2my(my — 1)),
Li=1.
We denote the two solutions of the DCHE near the irregular singularity at zero as

HeunDC (¢, «, ¥, 6, 2),
5 o 4.4.5)
e:z” YHeunDC(§+q+y — 2,0 —y +2,y,—68,2),

where HeunDC has the following asymptotic expansion around z = 0:

q q(@—y)—ad

HeunDC (. @, y,8,2) ~ 1+ <2+ o5 2+0@E). (4.4.6)

Comparing with the semiclassical block (3.4.17) we get
. 1 .
HeunDC (¢, «, ¥, 8,2) = P2(z)L; mze_%asz <z 1Dy <m2 a1 mo_ a my; Lo, %)) ,
2

HeunDC (8 +g+y — 2,0 —y +2,¥,—68,2) “4.4.7)

1
~ s+my 1o a Z
= Py()L; CertmF (ZlDI (mz 2V may a my; Lo, 7 )) .
2

The solutions near the irregular singularity at infinity are given by
_ 1)
z *HeunDC | g —a(e+1—y), 0, 2(¢+ 1) — y, 8, —— |,
z

8
e %z% "7 HeunDC (q +o+(y —a)@—1),y —a, =2(a = D +y, =4, ——) .
z
(4.4.8)
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Comparing with the semiclassical block (3.4.20) we find
)
HeunDC (g —a(x¢+1—y),0,2(x+ 1) —y, 8, ——
Z
- 1
= By(2)er™mF D, <m1 U miy a mos Lo, _>,
< (4.4.9)

HeunDC (q +i+(y—a)a—1),y —a,—2(a—1)+y, -4, ——)
z

~ _1 a 1
= Py(2)e 2"’"’1"1@1<ml 2V my_ a my; Lo, z)'

4.4.2. Connection formulae In this case the only connection formula is the one between
zero and infinity. This can be obtained from Eq. (3.4.22) and reads

HeunDC (¢, «, y, 6, 2)

(x [ (=20a)T (1 — 20a) §~3+5+0a

ST (G- (-5 —oa)r (3 - 257 —oa)

1

P
x 2 (=9m =3y =09)F ;e HeynpC <q —al@+1—p), 0 2@+ 1) —y,8, —->
Z

1+y

¥ I'(—20a)T (1 —20a) 5—%+%+oaei”(7*“*““)
+
o=+ F(%—(l—%)—ﬁa)r<%+2a;y—o‘a)

)
X e %z%* YHeunDC (q +é+(y—a)a—1),y —a, 2@ —-1)+y, =46, ——) ,
<

e%(aml — Oy —0da) F

(4.4.10)

4.5. The reduced doubly confluent Heun equation

4.5.1. The dictionary Here we establish the dictionary between our results of Sect. 3.5
on reduced doubly confluent conformal blocks and the reduced doubly confluent Heun
equation (RDCHE) in the standard form, which reads

d? d —g+ez!
dw _dw pr—g+ez o 4.5.1)
dz2  dz 72

By defining w(z) = ¢¥/2y(z) we get rid of the first derivative and bring the equation to
the normal form which is to be compared with the semiclassical BPZ equation (3.5.17).
The resulting dictionary between the CFT parameters and the parameters of the RDCHE
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is

L =1,

Ly =2ive, (4.5.2)
m_ b 5.
u=-—q.

The fact that L1 = 1 is of course consistent with the fact that it is a redundant parameter.
Here

1
u = lim bA30,; log 1 (M a: A1A§) =1 —@+OLiL)  (453)

as in (3.5.17). This relation can then be inverted to find a in terms of the parameters of
the RDCHE: we denote this by a(g). We can now write the solutions to the RDCHE in
standard form and their relation to the conformal blocks by comparison. Near z = 0 we
denote the two linearly independent solutions to the RDCHE in standard form (4.5.1)
by:

HVel:73/4HeunRDCy (g, B, €: /2),

‘ ' (4.5.4)
e‘2lmz3/4HeunRDCo(q, B, " e /7).
The two solutions are related by the manifest symmetry Ly — —L; of the BPZ equation
which according to the dictionary (4.5.2) gives the symmetry € — ¢>"¢ of the RDCHE
in normal form. The function HeunRDCj has the following asymptotic expansion around
z=0:

HeunRDCy(q, B, €; /2) ~ 1 —

455
\/_ 4.5.5)

Note again that due to the presence of a rank 1/2 singularity, the expansion is in powers
of 4/z. Comparing with the semiclassical conformal blocks in (3.5.2) we identify

e¥Velz3/*HeunRDCy(q, B, €; /) —ez/2L215(+)(maa21,L2 ‘L[)
2

e 2Vel2 34 HeunRDCy (g, B, ¢ ' €; /Z) —ez/sz E( )<maa21,L2 {)
2
4.5.6)

For z ~ oo instead we have the two solutions

z?HeunRDCoo(q, B, €: 27 1),

- . 4.5.7)
eZZ HeunRDCOO(Q1 _ﬁs —€; —Z )

The function HeunRDCoo (g, B, €; z~ 1) has the following asymptotic expansion around
=00

HeunRDCoo(q, B, ;2 ) ~ 1+ (g + B — Bz 1+ 0O (1_2) . (458)
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Comparing with the semiclassical conformal blocks we identify
1. 1
’HeunRDCoo(q. B, €:271) = /2”2 D, (m “lm_a: L3, _),
z

1
¢z PHeunRDCoo (¢, —B, —€; 2z 1) = ¢?/2e3inF ID% (m ! my a; L%’ Z)
(4.5.9)

These solutions are related by the symmetry (m, L1) — (—m, —L1) of the semiclassical
BPZ equation. Notice that one can rescale the BPZ equation such that it only depends
on the combination L1z and the coefficient of the cubic pole is —L1L% /4. By setting
L1 = 1 according to the dictionary with the RDCHE, the above symmetry descends to
the symmetry (8, €, z) — (—fB, —€, —z) of the RDCHE in normal form. Furthermore,
in the equation above

2 2 —A . 2
F = lim b log [(AlAz) i3 (ua, A1A2>] (4.5.10)
as in (3.5.20).

4.5.2. Connection formulae The connection formula between z = 0 and oo written in
(3.5.22) for the semiclassical conformal blocks can now be restated as:

Vel 3" HeunRDCy (g, B, € v/Z)

=L VAT (348~ oa(q)
PHeunRDCwo (g, B, €; 27 1)

_ (Z ra- zaa(q))r(_zaa(q))El.;.ga(q)e;ampfzfgapeiﬂ(lﬂya(q))ein(;ﬂaa(q)))

. Z ra- 20?(‘]))”_20“@))e%J"’“(q)e%amF‘%3«%_"”(%“’“("))
i VAT (3 - B —oale)

¢?z PHeunRDCo (g, — B, —¢; —2 1),
4.5.11)

where the quantities a(q) and F are computed as explained in Appendix C.

4.6. The doubly reduced doubly confluent Heun equation

4.6.1. The dictionary Here we establish the dictionary between our results of Sect. 3.6
on doubly reduced doubly confluent conformal blocks and the corresponding Heun
equation (DRDCHE) which reads
d*w z—q+ez!
dz? 22
This already takes the normal form of the semiclassical BPZ equation (3.6.13) and we
immediately read off the dictionary:

Ly =2i,
Ly = 2i4/e€, (4.6.2)

u=-—-d4q,

w=0. 4.6.1)
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where
1
u = lim b2A20,; log 1 31 (a; A%A%) = - —a’+ O3} (463)
b—0 2 272 4

as in (3.6.13). This relation can be inverted to find a in terms of the parameters of the
DRDCHE: we denote this by a(g). Near z = 0 we denote the two linearly independent
solutions to (4.6.1) by

2Vl 34 HeunDRDC (g, €; +/2),

, _ (4.6.4)
e 2Velz 34 HeunDRDC(q, €2 €; /7).
The DRDC Heun function has a simple asymptotic expansion around z = 0:
3 4yq
HeunDRDC(q, €; v/2) ~ 1 — 1— /7 + O(2). (4.6.5)

ive

Note that in the expansion, z appears with a square-root, and therefore mapping z —
e?7i 7 gives another solution. Comparing with the semiclassical conformal blocks in
(3.6.2), we identify

*IVelz 3" HeunDRDC(q, €; /2) = zLé/2 L EW (a az1; —4L3, 2/_2) ,
2 2

(S]]

efzimzs/‘LHeunDRDC(q, e J7) = ZLé/z%EE_) (a al; —412 ﬁ) .
2

>
(4.6.6)
Around z = co we have the two linearly independent solutions
2V /AHeunDRDC(q, €; (€2)2),
_1
e‘2iﬁzl/4HeunDRDC(q, €; (62”i62> 2), 4.6.7)
which we identify with the conformal blocks
; 1
¥V M HeunDRDC(q, €; (€2)2) = v/2i  £{” (az,l a:—4L3, _) ,
2 3 21\/2
1
_ CN—% _ 1
e72’ﬁ11/4HeunDRDC(q, €; (ezmez) 2) = «/Z;Si ) a1 a; —4L%, - -
2 2 Zlﬁ

(4.6.8)
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4.6.2. Connection formulae The connection formula (3.6.21) from O to oo in terms of
the DRDC Heun functions is

Vel 3/ HeunDRDC (g, €; /2)

= % Y ra- 20a(q)T(—20a(q))ei*oa@e=50F | 2ivi 1/4
=+

HeunDRDC(q, €; (ez)*%)

l g - . .
+ 20 Z IO zoa(Q))F(—QGa(q))E%+U”(‘1)e*70a1’ef2maa(q) eizlﬁzl/éx
o=%

_1
HeunDRDC(q, €; (e2”" ez) )
(4.6.9)

where the quantities a(q) and F are computed as explained in Appendix C.
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A. DOZZ Factors and Irregular Generalizations

A.l. Regular case. We use conventions where A = QTZ — a2, i.e. physical range of the

momentum is o € iR*. The formula proposed by DOZZ for the Liouville three-point
function is then [65,60]

<AI|V2(1)|A3> = Ca1a2a3
B Y, (0) Y5 (0 +2a1)Yp(Q +202) Vp(Q + 2a13)
'Y“b(% +op+or +a3)'Y‘b(% +op+oay — a3)Tb(% +op —a +a3)'Y“b(% —a)+oay+a3)

(A.1.1)

We neglect the dependence on the cosmological constant since its value is arbitrary and
is not needed for the following discussion. We will not define the special function Y}, and
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state all its remarkable properties, instead we refer to [67]. The most important property
for us is the functional relation

Yp(x +b) = y(bx)b' 22" (x), y(x) = % (A.1.2)

The normalization of the states is obtained from the three-point function by taking
the operator in the middle to be the identity operator, i.e. with A = 0 which in our
conventions means o = —%. One finds

imC o,  =2w8(c; — 02)Gay. (A.1.3)

e—0 LT 7tE0
with the two-point function G given by

_ TpQa+ Q) ALd)
T T(2a) o

We use it to raise and lower indices: For example, OPE coefficients are given by

CYy = Gy Coranas- (A.1.5)

03

We will be interested in the case where one of the fields is the degenerate field ®; |

. -1 . 2 . .
withap 1 = — 2b"2b , corresponding to Az | = —% — %. The fusion rules in this case

impose that only two Verma modules appear in the OPE of this field with a primary:

bQo
O21()|A) = ) 22 CE | L 180) (14 0(2), (A.1.6)
0=+
with
b b?
oy =a* -5 ) AizAaizAiba—Z. (A.1.7)

Since the degenerate field is not in the physical spectrum, i.e. a1 ¢ iR*, the OPE
coefficients Cg |  have to be computed by analytic continuation of the DOZZ formula.
This is tricky and is most easily performed by considering a four-point function, where the
intermediate momentum is integrated over. During the analytic continuation one picks
up residues of poles that cross the integration contour, and this in fact automatically
imposes the fusion rules. In any case, the result is [68]:

2b
Co =1, Cly =0 YN
y(bQ +2ba)

21,0

(A.1.8)
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A.2. Rank 1. In Sect. 2.2 we introduced the rank 1 irregular state, which can be given
as a confluence limit of primary operators (here we consider only the chiral half):

(s Al oc lim 1M R ALV (1) (A2.1)
with
o> n+u o> n—u n
A== —a*, a=-— , A== —q, gy=——\, t=—.
4 2 4 2 A
(A2.2)

This reproduces the desired Ward identities for the irregular state. To determine its nor-
malization, we perform the collision limit on a (chiral+antichiral) three-point function,
keeping track of the DOZZ factors. Although irrelevant for the Ward identities, the signs
of a, oy in (A.2.2) are crucial now. We find

(A.2.3)

ap’

lim (D)2 2 (AIV (1, D] Ag) = (AA)RC lim n™22C_pp you
n— 00 n— 00 2 072
Note that consistently with the main text, we consider the chiral and antichiral parts
formally as independent and distinguish them by letting the "complex conjugation” for-
mally act only on the coordinates #, A and not on the momenta «, i, . The asymptotic
behaviour of the Y}, function, valid for large imaginary x is:

2

1 1+ 3
log Y <9 +x) = —5Aclog A+ Q log A+ J A + 0(x%. (A2.4)

2

We therefore find the following asymptotic behaviour of the DOZZ factor:

~ (_n2)A0*M(Q*M) Tp(Q +20) . (A25)
“ Yp(§ +p+a0)Yp(§ + 1 — )

C_Mu
20 2

This suggests that we get a finite limit in (320) if we substract the factor of (—n?)~H@-w
by hand. This can also be achieved by changing the power of ¢ that we substract in the
definition (A.2.1), but this would change the Lg-action on the irregular state, which we
avoid. It is however precisely what is done in [24]. In any case, we find the following
normalization of the irregular state:

(1, Al Ao} = Tim (=" @7 PAT2 AV, (1, D] Ao) = AP Cray,
(A2.6)

with normalization function

_ e TAYL(0 + 2)
Tb(% + 1 +a)Tb(% +p—a)

Cua (A.2.7)

The choice of the branch for the phase is consistent with the result found in B.1.

In the text we also consider a different kind of collision limit, which reproduces the OPE
between a primary operator and the irregular state. Performing this collision limit while
keeping track of the DOZZ factors, we can extract the corresponding irregular OPE
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coefficient. In particular, consider the following correlation function, which we expand

for large A:
o1y 1
D ; —
1 (u Jre) A)

Here B,’f(;l is the OPE coefficient corresponding to the OPE between the irregular state
and V1, C /4, is the normalization function defined above and {® is just the correspond-
ing conformal block. Following [64], we can express an irregular three-point function
equivalently as a limit of a regular four-point function:

2

(i, AlVi(D)]Ag) = fdu/g;;;lcwo (A2.8)

(1. AIVI(D)|Ag) = lim (—*)"(@~) f di' g Cartom.a (.o X

oo (n),a1
A=W~ —u Ao EAY} ’ /
y e*(u’fu)A (_ﬁ) 1= (' =) (n—u) (ﬁ) )] () (1 ~ E)Al_(u —W =)
n n A
az(n) n
(A.2.9)
with
n+u n—Hu n—u
Aoo(n) = - ar(n) = — a(n) = 5~ w.  (A2.10)

Several comments are in order: First, notice that in line with the definition of the irregular

state we have multiplied by the same factors of (—n?)*(¢~*) and (A A /n?) Booln) =4 ()
as in (A.2.6). Second, the remaining factors which we have put by hand are equal to 1
in the limit:

. —(u’—u)A( A>A1—(M’—M)(7]—H/) <1 n)Al—(u’—u)(n—u/)
m e —

n—o0

n A

, AN\ A=W =)=
= lim e~ W —WA (1 — —> =1. (A2.11)

n—00 ]’]

Therefore all the factors that we put by hand are the same as if we had computed (A.2.9)
by doing the OPE between V| and |A) instead of between (i, A| and V;. This ensures
crossing symmetry of the irregular three-point function. Furthermore, the factors inside
the modulus square in the limit give the irregular conformal block up to an overall
divergence, i.e.:

A= =) (n—p") Ao (1) —Ar () i — ) (—1d)
o= (WA (_é) (A) ! (1_ n)Al (W' =) (n=p)

n n A

“t(") n A2.12
s (a (7 A) (A212

e 1
— r;_AO_AI_Z“ W=, 9 (u o1 w oo X) , asn — oo.
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This leaves us with

. 2 - 2 —Ag—A1 =2/ (W — a(n)
Jim (=2 OT0 () TR AR CEI o) Catm.ant .o

| e Ao, (0 + 2a) e” TR0 (Q + 2a0)
To(F+u —p—a)Tp(5+w — +an) Yp(§ + 1 +a0) Vo ($ + 1 — o)
(A.2.13)

which remarkably has a finite limit. We recognize C 4, and therefore we can identify

, =i (A1 20 (W =) +2
Bl = Qe ”Q(Q 1) . (A2.14)
Tp(5+u —p—a)Vp(5 + 0/ — p+o)

Specializing this formula to the case when V] is a degenerate field is again tricky and
involves analytic continuation. It is simpler to perform the collision limit again. The
fusion rules now imply that (1) = @ao(n) & (=b/2), ie. w' = put = pu = (=b/2).
Performing the collision limit using the degenerate OPE coefficients A.1.8 one finds

. (1 b2
zn(—+6bu+—)
B;fgtz.l =e \? e

(A.2.15)

in agreement with the result (B.1.17).

A.3. Rank 1/2. Unfortunately, for the rank 1/2 state the situation is not as nice. It is clear
that if we decouple another mass, the normalization function C,, will diverge badly,
since there are no Yj-functions in the numerator to compensate the divergence of the
denominator. Indeed, it behaves as

_ e TAYL(Q + 2a)
Tp(§+n+a)Tp(§+p—a)

Cua —> const.

1402

X63“2(—M2)_ 3 —M2+Ae_i”ATb(Q+2a), as u — o0, (A.3.1)

The constant comes from the @ (x°) term in the expansion of the Yj-function (A.2.4).
We neglect it in the following/consider it substracted by hand. This suggests we define

1402 2 A2

(A21A) = [A2PAC, = lim e ¥ (=) "6+ (2 |a)
n—00 41
= [A2PA2748 e 2TIAY (0 + 2a), (A3.2)
where the factor of _le is needed to reproduce the Ward identity (A%|L; = —ATZ (A2].

This gives the normalization function for the rank 1/2 state as
Cy = 27427 2mAY (0 + 20), (A3.3)

in agreement with the result (B.2.13). Since no collision limit is known that reproduces
the OPE between a primary and the rank 1/2 state, we cannot determine the corresponding
OPE coefficient in the way we did in the previous section for the rank 1 state. For the
case of a degenerate field however, we determine the OPE coefficient in Appendix B.2.
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B. Irregular OPEs

B.1. Rank 1. The form of the (chiral) OPE of a general vertex operator with the irregular
state introduced in Sect. 2.2 is fixed by the Ward identities to be:

o
(1 AIVE(2) = Y Wk AA =i o= G =S () A k| (BL1L1)
k=0

Here VMA W (z) is a vertex operator of weight A which maps from the Whittaker module

specified by (1, A), to the module specified by (u’, A). Furthermore (u’, A; k| are the
("generalized") descendants of the irregular state. They take the form

(', Akl =) eijy A 95 (', AlLy, (B.1.2)

where ¢;y are coefficients fixed by the Ward identities and the sumruns overi, j > Oand
all Young tableaux Y such thati + j + |Y| = k. Furthermore we normalize (', A; 0] =
(u', A|. We then write the full (chiral+antichiral) OPE between the irregular state and a
degenerate field as

2
»2 2 -
(. Al () = EﬁBm. §l P2\ OIS O R (g, A3 K K,
k=0
(B.1.3)

where B[f ?az’l are the corresponding irregular OPE coefficients. We have anticipated the

fact that for the OPE with the degenerate field W' = m+ = u=+ %b as will be shown later
from the BPZ equation. Furthermore we now have both chiral and antichiral descendants
which we label by k and k, respectively.

We want to determine the irregular OPE coefficients B and the normalization function
C introduced in (2.2.4). To this end consider the correlation function

(1, AP (2)|A). (B.1.4)

We can decompose it into irregular conformal blocks doing the OPE left or right as

o
(1, Al (2)|A) = anmcm, 1S</we gl;Az)

Mg o 1
- Z BO‘Zel nwCpga 1D (M 21 Mo O A_Z>

Here ng 1.« 18 just the usual (regular) OPE coefficient given in terms of the DOZZ
formula, B is the irregular OPE coefficient to be determined, and C 4 is the normalization
function of the irregular state, to be determined also. It is defined by

2

5 (B.1.5)

(w, AIA) = |[A]PAC g (B.1.6)

To determine B and C we use the BPZ equation

1 A A A2
= 232 . _3 S+ g8 A (1, A (2)]A) = 0. (B.1.7)
Z Z 4
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. . . b2
This equation can be solved exactly and has the two solutions z Z My, +p (bAz), where
M denotes the Whittaker function. It has a simple expansion around z ~ 0:

Mpp b (bAZ) = (bAZ)T™* (1 + O(bAZ)) . (B.1.8)

Comparing this expansion with the leading term in the OPE between ®(z) and |A) we
can identify

b2 1
15 (u o *21; Az) = A™z7 (bA) 27" My gpa (DA2). (B.1.9)

On the other hand, there exist two other solutions to the BPZ equation which have a
simple expansion around z ~ 0o, namely the Whittaker W functions Wap; po (DA Z).
They have an asymptotic expansion at oo given by

Wi pa (bAZ) ~ ePD2 (b AZ)oH (1 + 0((bAz)—1)) , (B.1.10)

valid in the Stokes sector |arg(bAz)| < 37” An important fact is that this function is
invariant under « — —a. We see that the expansion of the Whittaker W function (times

the factor z2°/ 2) has exactly the form of the OPE between the irregular state and the
degenerate field, with

b

M’:,uizuzlz(—§>. (B.1.11)

(Note that with this convention, w4 corresponds to Wepy po (FbAZ). This may seem
confusing but we like to keep the expression 4 analogous to the fusion rules with a
regular state which give oy = o £ _Tb).

Comparing the expansion of the W function with the irregular OPE (B.1.3), we can
identify

1 . > .
- <“ e A_> = ARV AL T Wty pae™ DA,
f i (B.1.12)
b
o) (u P21 a; A—) = AN (A DT Wy, o (DAZ).
Z

For simplicity we focus on the branch specified by —A = ¢~ A and use the asymp-

totic expansion (B.1.10) for both bAz and e "bAz — oo. This is valid for —% <

arg(bAz) < 37” The modulus squared has to be understood as acting by sending
Az — AZ and correspondingly e " Az — ¢*'™ AZ. Since we have assumed —% <

arg(bAz) < 37”, we also have —7 < arg(e!"hA7) < 37”, so all the asymptotic expan-

sions are in their domain of validity. Similar expressions hold in the other Stokes sectors.
We can now restate the crossing symmetry condition (B.1.5) in terms of Whittaker func-
tions and use the known connection formulae for them (see https://dlmf.nist.gov/13.14)
to determine the normalization function C and the OPE coefficient B. We have

I'(1+2p) I'(1+2p)

F(%+K+/¢L) 1

in(%ﬂ(ﬂl) W
e T )

M, (2) = eTTEW e (e 7).

(B.1.13)
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Plugging this into (B.1.5) using the identifications of the conformal blocks with the
Whittaker functions we obtain the condition

(e, AlD(D)|A) =|APA2A2 N7 = 1=2bacss € T(1+20ba)>x

az1,a
0==+

eizr(%—b;u&ba) %W oAz
X% bu,b Z
F(%+bu+9ba) Hobe
e*inbu b2 ) 2
z7 W—bu,ba(eilﬂbAZ)

. (B.1.14)
r (% — b+ 6ba)

2
| A |2A+2A2,1+b Bp;l’ C o le tnbubbuz TW_p b ((3 im g A Z)

2

’

2
2A2A) 1 +b% pit— _pp B2
+|A] 20 B 1.uCu o |D77H 22 Wiy ba (DAZ)

where we have used the fact that W _,(z) = W, ,(z). Using the expression (A.1.8) for
the coefficients Cg} | o the cancellation of the cross-terms in the modulus squared gives
the following functional equation for C4:

1
Cuay _ o—2iba 2 0 +4ba y(=2ba)y (5 +bu +ba)

: , (B.1.15)
Cro_ y(bQ +2ba)y (5 +bu — ba)
which is solved in terms of the usual Yj-function:
—imTA
T +2
Cpua ¢ b(Q + 20) , (B.1.16)

Tb<%+,u+a)Tb<%+/L—a)

up to normalization and a periodic function of @ with period b. We see however that the
minimal choice is consistent with the result obtained by the collision limit in A.2. Once
we know the expression for C,,,we can compute the irregular OPE coefficients Bf;;l "
from the diagonal terms in (B.1.14). The result is
i1+ 23

Bis 1 ) (B.1.17)
Again, we find that this is in agreement with the result found by the collision limit in
A.2. For completeness, let us write the connection formula for the conformal blocks §
and ®, which solves the crossing symmetry constraint (B.1.5). Using the identification
of the conformal blocks with the Whittaker functions with the correct prefactors we find

/ 1
Lt (/we “ﬁ;l; Az) = Y b7 NGy (bt b D (uo‘“ po @ —) ,

frat Az
(B.1.18)
with irregular connection coefficients
I'(1+26b i (1500) (1
Nopor (bat, bs) = ( O (1) (3-buroba) (B.1.19)

r (% +60ba — Q/bu)
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The inverse relation is

1 1 /
b2 (M 21 g A—) = D BNy (b ba)iF (u g aé’l; Az) ,
Z
0'=+

(B.1.20)
with

I'(—20'ba) ein(%)(—%—bu—&’ba).
I (§+6bu — 0'ba)

Nyl (b, ba) = (B.1.21)

As a final remark, note that the Whittaker W-functions have a non-trivial monodromy
around oco. However, since for the correlator we considered, the monodromy around 0 and
oo is the same, and by construction we have no monodromy around 0, the combination
of W-functions appearing in the correlator expanded for large Az is precisely such that
the monodromy cancels. This can be checked also purely locally by carefully using the
asymptotic expansions of the W-functions and its Stokes sectors. In particular, any other
correlator involving this irregular state will have the same asymptotic behaviour and
thus the normalization function C,, ensures also the absence of monodromies for any
other correlator.

B.2. Rank 1/2. Let us repeat the same arguments for the rank 1/2 irregular state intro-
duced in Sect. 2.3. The (chiral) OPE between the irregular state and the degenerate field
is fixed by the Ward identities to be:

k
(N21Pp (@) = Y (A4 T2 E 2V A ), (B.2.1)

Here (A?; §| are the ("generalized") descendants of the irregular state. They take the
form

k L
(A2;§|=Zc,~ij 94 (A%|Ly, (B.2.2)

where c;;y are coefficients fixed by the Ward identities and the sum runs over i, j > 0
and all Young tableaux Y such that i + j + 2|Y| = k. In particular, note that only the
integer descendants (i.e. k € 27Z) can contain Virasoro generators Ly. Furthermore we
normalize (AZ; 0] = (AZ2]. Since both z-behaviours in (B.2.1) given by =+ live in the same
Bessel module specified by A, there is no canonical way of choosing a basis of solutions,
in contrast to the rank 1 case. This ambiguity does not affect the physical correlator, since
we have to sum over both solutions with the corresponding OPE coefficients. Changing
the basis of conformal blocks changes the OPE coefficients in a way that the physical
correlator is invariant. Consider the following correlation function involving the rank
1/2 state:

(A%|®(2)|A). (B.2.3)

We can decompose it into conformal blocks by doing the OPE left and right:

(A*|D(R)|A) =) €2, Cuy
0=+

‘ 2

15 (g 22,1 03 AVTZ)
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2
QZ Buy, Ca | 1€ (az 1o A\/_) (B.2.4)
Here C, is the normalization function of the irregular state, defined by
(A%]A) = |A%PACa, (B.2.5)

which is to be determined. We also want to determine the irregular OPE coefficient By, , .
To do so, consider the BPZ equation that the correlator obeys:

1 A A?
(zﬂag - EaZ =i E) (A2|®(2)|A) = 0. (B.2.6)

Solving this differential equation one identifies the conformal block corresponding to
the expansion near O with a modified Bessel function:

bA 20ba 0
1§ (@i as AVZ) =T(1 +20ba) A2 (7> 27 hgpa(bANZ). (B.2.7)

The prefactors are fixed by looking at the OPE between ® and |A) and using the expan-
sion of the Bessel function:

(bAﬁ/Z)ZGba (

Dopa (A7) = Il 1 2060)

1+0(bAVZ)). (B.2.8)

On the other hand there are two other solutions to the BPZ equation given by the modified
Bessel functions of the second kind K3pq (b A+/7). They have a nice behaviour at oo,
given by the asymptotic formula

Kopo (bAV/Z) N‘/ZbAf eV + O((bAVD ). (B.2.9)

Furthermore Kapo (bA/Z) = K_2po (bA /7). This expansion has precisely the form of
the OPE between the irregular state and the degenerate field (B.2.1). We can therefore
identify the necessary prefactors and defilne the irregular conformal blocks for z ~ co

1 2b i 2 .
W <a2,1 a; ) =,/ 2 e F (A2 2% Kopa (e THAV),
T

lﬁ) = @(Az)ﬁ—hjzﬁg&mwz\ﬁ).

We can now restate the crossing symmetry condition (B.2.4) in terms of Bessel func-
tions and use the known connection formulae for them (see e.g. dlmf.nist.gov/10.27) to
determine the normalization function C and the OPE coefficient By, ;. We have

(B.2.10)

I,(2) = n —e™K,(2) — —K (e772). (B.2.11)

Plugging this formula into (B.2.4) using the identifications between the conformal blocks
and Bessel functions, one finds that the vanishing of the cross-terms gives the condition

Co, — 9—8bay2bQ+8ba ,—driba y (=2ba) ' (B.2.12)
Co y (b0 +2ba)
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We take the simplest solution, namely
Cy = 27420 (0 + 2a). (B.2.13)

This is in agreement with the result found in A.3. Once we have the expression for Cy,
we can compute the irregular OPE coefficients from the diagonal terms of the crossing
symmetry condition. The result is

Bay, = 20?772 (B.2.14)

We see that the OPE coefficients are independent of 4, which is a reflection of the fact
that we have a symmetry rotating the basis of conformal blocks into each other and
leaving the physical correlator invariant.

For completeness, let us write also the connection formula for the irregular conformal
blocks:

bzebo‘%g(ae g a; AVz) = Z b2 Quer (ba) s (G )(012 'S —)

o AVz
(B.2.15)
with irregular connection coefficients
2201)0{ 1—0’ 1 20b
Qe (bar) = \/2_F(1 +29ba)e ( )<2+ a). (B.2.16)

The inverse relation is

SN . 1 _ 20'ba —1 .
b72 €0 an10 2 ) = > 0 Q0 (ba) 1§ (o a2 @ AVE).
0=+
(B.2.17)
with irregular connection coefficients
—260'ba 140
Q; ) (ba) = F(=26'bae " ('5) (2702), (B.2.18)

V2

C. Classical Conformal Blocks and Accessory Parameters

In this Appendix we give explicit combinatorial expressions for the classical conformal
blocks used in the main text.

C.1. The regular case. Let us start with the case of regular conformal blocks. Via the
AGT correspondence [19] the four-point regular conformal block is given by

3 (O[l @ t) _ A= A—B0() L py—205 (S o

Qoo Q0

X ZtlleveC <&’ Y) l_[ Zhyp <&7 Y, Oy +9(X0) Zhyp <&, Ya o] +9a00) ’
% 0=+

Y
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~1
1/2 e e e s o0 o e 1/6

Z
BOEEE
vs [ Joi 1T
L [e]
[ [o] | NE
Vo s|e|e| ------ Dy
m| | ]| it
/ / /

Fig. 2. Arm length A};(s) = 4 (white circles) and leg length Ly (s) = 2 (black dots) of a box at the site
s = (2, 2) for the pair of superimposed diagrams Y (solid lines) and Y (dotted lines)

(C.1.1)

where the sum runs over all pairs of Young tableaux (Y7, Y2). We denote the size of the
pair |Y| = |Y1] + |Y2]|, and [69,70]

zhyp<&,)7,,u): H H (ak+u+b_1<i—%>+b(j—%>),

k=12 (i, j)eYs

Zvec (&’ ?): l_[ l—[ E_l (ak_al’ Yk5Yla(l7.]))

k=12 (i,j)eYy
o -1
1_[ (Q_E((X]_ak, Yls ka(l/a ]/))) )
i@, jhey;
E @Y1, Y2 (i, ) =& = b7 Ly, (GG, ) +b (Ay, (G, ) + 1)
(C.12)

Here Ly ((i, j)), Ay ((i, j)) denote respectively the leg-length and the arm-length of the
box at the site (i, j) of the tableau Y. If we denote a Young tableau as ¥ = (v] > vj >

...) and its transpose as YT = (vi = vy >...), then Ly and Ay read (Fig. 2)
Ay(i, j) =v{—j, Ly(i,j) =v; —i. (C.1.3)

Note that they can be negative if the box (7, j) are the coordinates of a box outside the
tableau. Also, the previous formulae has to be evaluated at & = (o, ap) = (o, —).
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Comparing (C.1.1) with (3.1.24) we find the explicit expression for the classical confor-
mal block F:

Qo Qo v 5 2
F(t) = lim b?log | (1 — ) 230G 57 V1z (G, ¥)
7

[T 2t (& 7. et + 60) 2nyp (& ¥ 1 + ano>:| . (C14)
This turns into a combinatorial expression of the u parameter defined as

1
u® = lim b1, log § (5;05 2‘; z) =~ — @ +al +ai+14F () (C.15)
in terms of the intermediate momentum «. After substituting the dictionary with the
Heun equation this gives a combinatorial expression of the accessory parameter g in
terms of the Floquet exponent a = ba. Inverting this relation order by order in ¢ allows
us to compute the connection coefficients in terms of the accessory parameter. Let us
carry out explicitly a first order computation for the sake of clarity. At one instanton the
relevant pairs of Young tableaux are Y = (1), (0)) and Y = ((0), (1)). The various
contributions give

Zhyp (@, (1), (0)), ) = % o+,
(C.1.6)

Zhyp (@, ((0), (1), p) = % —a+ L,

and since A(O)(i = l,j = 1) = L(())(i = l,j = 1) = —1 and A(l)(i = l,j = 1) =
Lai=1j=1)=0,

EQO, (D), (M), =1,j=1)=0b,

E Qa, (1),(0),(=1,j=1)=0+2«, CL7
therefore
Zyee (@, (1), (0))) = ]_[ E N a—a,(),Y,G=1j=1)
1=1,2
x [T(@-E(@—an (). Y (" =1, ) =D))"
k=1,2
B 1
T 20(0 +20)] C.18)

Zvee (@, ((0), (1)))

1_[ E N (—a—a, (), Y, (=1,j=1)

=1,2
x [T (@—E(~a—ar. (), Y. (' =1, j = 1))
k=1,2
B 1
T 20 (0 —=2a)
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Note that and that every time (7, j) have to run into an empty tableau, the corresponding
term contributes with 1. Finally, substituting the previous results in (C.1.4) we get

1 2 2, ,.2)\/(1 2 2,2
;—a’—aj+a)(; —a® —af +aj)

1 _ 9,2
22a

F(t) = ( t+0(?). (C.1.9)

In the main text we will need the derivatives of F expressed in terms of Heun parameters.
For example,

(4a? —a® +20f — B* — 28 +82) (1 — ¢)

_ 2
0q, F(t) = 82 t+0@°). (C.1.10)
Moreover,
1 L2 22V (2 — a2+ a2
N SN SR B (3-a*—ai+al)(z—a’—gq; aO)t+O(t2).
4 1 0 1 2
5—261
(C.1.11)

Note that the relation between 4@ and a is quadratic at t = 0, therefore we will have
two solutions for a(u©):

1
a =:|:\/———u(0)+a,2+a§
4

( (-1+2a} +2a] — 24, +2a] — 2u) (=1 +4a} — 2u"?)

r+0@) ).
2 (—1+4a} +4a} — 4u®) (=1 +2a} +2a? — 2u®) ( ))

(C.1.12)
Substituting the dictionary (4.1.3) we obtain

1
a::ti,/(a+ﬂ—8)2—4q

t(8(qa+B+1) —y@B+q)+(q—af)2qg —y(@+p — 1) +8(—q)) +O (tz)

Va+B—82—4qdg — @+ -5 —D(a+p—38+1)

(C.1.13)

Note that that all the connection formulae near the various singularity are all symmetric
under a — —a. The sign has to be carefully chosen only when connecting to the
intermediate region. Finally, we are in the position to expand the connection coefficients.
For example, one would have, choosing the lower sign in a,

I,<1+7;—e"_a):F<1+y—e—\/—4q+(oc+/3—6)2>

2

(s B+ 1) — y (@ +a) + (g — aB)2q — e+ — 1)) +5(—0) Yo (””— W)
Va+p—082—4g(4g — @+B—-8—D@+p—-5+1))

x| 1+

(C.1.14)

where v is the Digamma function.
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C.2. The confluent case. In order to discuss the confluent classical conformal block, let
us write the four-point conformal block appearing in (3.1.39), that is

3(“’ o l) — AR (] t—l)—2(%+a1)(%+a,)x

Uoo 0 ¢
% Zt“y‘zvec (5,, y) 1‘[ Zhyp (&, Y, +0aoo) Zhyp (&, Y, +9ao) :
2 0=+
(C.2.1)

Note that in the decoupling limit (3.2.3), that is

A
QU+ Qoo = —[h, Qf — Qoo =1, t = —, (C22)
n

where then n — o0,

. 217
=~ 7 7 (A
Zhyp |, Y, 0 — 0o ) ~ (0 — o)™~ " ,

Zhyp (&, ?, o + Oloo) = Zhyp <(-1), ?’ —M) s (C23)

(1— ,—1)2(%+a1)(%+a,> - e—(%ﬂn)/\

Therefore the confluent 3-point function (3.2.38) has the following combinatorial ex-
pression

(Xl'
15 (/wlao, A)

4 2 - - -
_ AAe(zﬂxl)A ZA‘Y‘ZVEC (&, Y) Zhyp <&, Y, —u> 1_[ Zhyp (&, Y,op + 9a0> .
f/ 0=+
(C2.4)

As for the previous case, this turns into a combinatorial expression of the u parameter de-
fined in equation 3.2.41 in terms of the intermediate momentum a, that after substituting
the dictionary with the CHE gives a combinatorial expression for the accessory parame-
ter in terms of the Floquet exponent. Again, inverting this relation is useful for computing
the explicit connection coefficients. Similarly we can give an explicit expression of the
classical conformal block for big A appearing in (3.2.51), that is

(04 ] 1
D ;—
1 (M oo A)

’ ’ 0
— Lim AB0+AR2L (W =p) p= (1 ) A (1 - Q)Al_(“ R )_<7+a')(Q+n_m

X
7—>00 A
Y| -
X Z (%) Zvec <O{(7’]), Y)
Y
I (&(n), v, ! . i eao) Zhyp <&(n), Y, a1 +0 _”2_ “) : (C.2.5)

0=+
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where

&<n)=(—”;“—u’,";“+u/>. (C.2.6)

Again, this gives an explicit expression of the classical conformal block Fp(L™!) re-
calling that

1 ’ 1ot 1 -1 2
) <M0l1 i @ K) — o~ WA A Do+ A2 (W~ 1) , ;2 (Fp(L=H+O(@® )). (C.2.7)

C.3. The reduced confluent case. To obtain the reduced confluent classical block we
decouple the momentum u starting from (C.2.1) as follows
A1Ag

A= , as ;L — 00. (C3.1)
du

This gives

A2 |?| = .
S (T) tvee (@ 7) T 2yp (@ 7. +600) . (€3.2)
Y o=+

This gives for the classical conformal blocks

2

17|
. A - o -
F(L?) = Jim b log ) (T) tvee (@ ) T 2nyp (& 7.1 + 60 .
7

o=+
(C3.3)

C.4. The doubly confluent case. Let us consider the following decoupling limit of
(C.2.1):

AN

ay+ag=—pu2, ay —ag =17, A — , as n — oo. (C4.1)
n
This gives
151 (1 a o, A1A2)
AAy 5 L = L= L -
= (WA ™Y (MiAD) 2y (8, F ) znyp (& ¥, —pt1) 2mgp (@ 7, =112
4
(C4.2)
and
F(LiL»)
. 2 AAy % . = L o= L o
= [}1_1}})19 log |:e 2 Z (A A Zyec (a, Y) Zhyp (a, Y, —pu) Zhyp (a, Y, —MZ):| .
v

(C4.3)
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C.5. The reduced doubly confluent case. We now decouple u; in (C.4.2) as follows

A2
Ay > ——2 as up — oo. (C.5.1)
dpo
Again,

A2 A 7] - -
15 (ua;A1f>=(A1A§) > (8183) " zvee (@ 7) 2nyp (8, ¥, —1t).

Y
(C5.2)
Therefore the corresponding classical conformal block gives
o\ 171
. A2 . .
F(L1L}) = lim b? logZ (A17> Zvee (a, Y) Zhyp (a, Y —u) . (C.5.3)
Y

C.6. The doubly reduced doubly confluent case. Decoupling the last momentum p in
(C.5.2) by setting

A2
Al —> ——L as u— o0 (C.6.1)
4

gives

D=

51 (o5 a303) = (A%A%)A ) (Aié\ﬁ)m tee (@ 7). (€62)

Y

The corresponding classical conformal block gives

Y|

. A?A3 -

F(L}L}) = lim b7 log Z( 162> Zve (a,Y) . (C.6.3)
7

D. Combinatorial Formula for the Degenerate 5-Point Block

As for the four-point blocks in the previous Appendix, we give an explicit combinatorial
expression for the degenerate 5-point conformal block introduced in Sect. 3.1 via the
AGT correspondence. It can be computed as the partition function of N = 2 gauge theory
with four flavours and a surface operator, or equivalently as a quiver gauge theory with
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specific masses fixed by the fusion rules of the degenerate field. Using the representation
as a quiver gauge theory we find

o o o Z
A R A
Ao @0 t

A—Ar—Aop

t

=1

_2(2 9
ZbTQJf@bOCO(] _ t)—2(%+a1)(%—at) (1 _ Z) 2Gran)(Frazy)

(1 — 7) 2 FranF+aan

W] L = L -
X Z |Y| ( ) Zvec (O[, Y) Zvec <a09s W)

Y,w

Zhyp ( ,op + Uaoo) Zhyp (0609, W, a1 +0’0l0) Zbifund ( Y, app, W, Ott) ,
o=+
(D.0.1)

where the sum runs over two pairs of Young tableaux Y = (Y1, Y») and W= (Wq, Wy).

. —1
ap has to be understood as (agg, —otgg) and we recall thatay | = — % Furthermore
Zvec and znyp are defined as in (C.1.2). The new ingredient is the contribution of a

bifundamental, defined as
Zbifund (&7 ?v Bv W’ a[) =

[T II [Emk—ﬂz,Yk,wl,(i,j))—(%m,)}

ki=1,2 G, j)eY;

I1 [Q—E(ﬂl—ak,Wz,Yk,aﬁj’))—(%w,)], (D.0.2)

(".jhew

with E asin (C.1.2).

Since all other conformal blocks are defined in terms of this degenerate 5-point block,
the expression (D.0.1) can be used to compute any other block. In particular one can
verify explicitly that the various confluence limits are finite.

E. List of Symbols

CFT symbols

b Liouville coupling constant
Q Liouville background charge Q = b+ b~!

oo, O, 0, &g Liouville momenta of non-degenerate primary insertions
. . . . . . 2
Aso, A1, Ay, Ag Scaling dimensions of non-degenerate primary insertions, A; = QT —

a?
1
o Intermediate momentum, with corresponding scaling dimension A
- -1
a2,1 Degenerate Liouville momentum oz | = — 2b +2h , with correspond-

ing scaling dimension Aj
ojp Momentum shifted by —9% with 6 = £1, namely ojp = o; — 0%’
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ny

xQEy
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o
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Cua

Cu
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’
o
B
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Primary operator of momentum «; inserted at x

Primary state, corresponding to a primary operator of dimension A;
inserted at zero (at infinity if (Ax|)

Li—momentum of an irregular insertion of rank 1

Intermediate L | —momentum

L1—momentum shifted by —9%’ with 6 = £1

Irregular state of rank 1 with eigenvalues nA, —ATZ inserted at zero
(at infinity if (1, A|])

Irregular state of rank % with eigenvalues —ATZ inserted at zero (at
infinity if (A2])

Conformal block (CB) expanded around regular insertions, with an
insertion of rank!” x resp. y at oo resp. 0

CB with at least one variable expanded around an irreg. singularity
of rank 1, with an insertion of rank x resp. y at oo resp. 0

CB with at least one variable expanded around an irreg. singularity
of rank %, with an insertion of rank x resp. y at oo resp. 0

CB without classical part, i.e. normalized as 1 +. ..
Liouville two point function

Liouville three point function

Pairing of a primary and a rank 1 irregular state
Pairing of a primary and a rank % irregular state
OPE coefficient involving three primaries

OPE coefficient involving one primary and two irregular vertices of
rank 1

OPE coefficient involving a degenerate field and two irregular vertices
of rank 1/2

CFT symbols—semiclassics

oo, Ay, dr, Ao
a
aig

m/

F

Semiclassical Liouville momenta

Semiclassical intermediate momentum

Semiclassical momentum shifted by —9}’7 with 6 = £1
Semiclassical L{—momentum

Semiclassical intermediate | —momentum

Semiclassical L1 —momentum shifted by —9% with 6 = +£1
Semiclassical highest eigenvalue of irregular states

Semiclassical CB expanded around regular insertions, with an in-
sertion of rank x resp. y at oo resp. 0

Semiclassical CB with at least one variable expanded around an
irreg. singularity of rank 1, with an insertion of rank x resp. y at co
resp. 0

Semiclassical CB with at least one variable expanded around an
irreg. singularity of rank %, with an insertion of rank x resp. y at
oo resp. 0

Logarithm of a classical conformal block

17 Here and in the following, if x or y are zero we drop the label for simplicity.
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w Logarithm of a semiclassical conformal block
u Log-derivative of a classical CB, up to constants
Ey Semiclassical CB rescaled so that they startas 1 +. ..

Heun symbols

o, B, y, 8, € Parameters of the Heun equations
q Accessory parameter of the Heun equations
w(z) Solutions of the Heun equations in standard form
Pfl (QQw(z) Solutions of the Heun equations in normal form
HeunG General Heun function
HeunC Confluent Heun function expanded near a regular singularity
HeunC, Confluent Heun function expanded near the irregular singularity
HeunRC Reduced confluent Heun function expanded near a regular singu-
larity
HeunRC, Reduced confluent Heun function expanded near the irregular sin-
gularity
HeunDC Doubly confluent Heun function expanded near an irregular singu-
larity
HeunRDCy Reduced doubly confluent Heun function expanded near the irreg-

ular singularity at zero

HeunRDC, Reduced doubly confluent Heun function expanded near the irreg-

ular singularity at infinity

HeunDRDC Doubly reduced doubly confluent Heun function expanded near an

iregular singularity
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