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Abstract

We recently determined the exact fixed point equations and the spaces of solutions of the

two-dimensional RPN−1 and CPN−1 models using scale invariant scattering theory. Here

we discuss subtleties hidden in some solutions and related to the difference between ferro-

magnetic and antiferromagnetic interaction.
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1 Introduction

Symmetry plays a fundamental role in the theory of critical phenomena. The common case

is that of criticality induced by the spontaneous breaking of a global symmetry, which also

controls the universality class the statistical system falls into. Less understood has been the

effect that additional local symmetries of the Hamiltonian may induce. The basic case study

has been provided by the lattice RPN−1 model which, besides a global O(N) symmetry, displays

invariance under local spin reversal, thus realizing the head-tail symmetry characteristic of liquid

crystals [1]. While in three dimensions theRPN−1 ferromagnet has a first order transition [2], the

two-dimensional case has offered several reasons of interest. In principle this case could provide

important insight through the exact methods of lattice integrability [3, 4] and conformal field

theory [5, 6], but the model traditionally remained inaccessible to them. It has then been the

object of many numerical studies, which however found difficult to reach conclusions, especially

due to the very large correlation length in the low temperature region of main interest. It

was proposed that, in absence of spontaneous breaking of continuous symmetries [7], finite

temperature criticality may be produced by a topological transition of the Berezinskii-Kosterlitz-

Thouless (BKT) type [8] mediated by disclination defects [9, 10]. While the transition should

definitely occur for RP 1 ∼ O(2), its existence for N > 2 has been debated in numerical studies

[11, 12, 13, 14, 15, 16, 17, 18, 19]. The most likely alternative to a topological transition is that

criticality is limited to zero temperature, and numerical investigations tried to establish if the

local symmetry affects the universality class [20, 21, 22, 23, 24, 25, 26].

In [27] we determined for the first time the exact fixed point equations of the RPN−1 model

in two dimensions. This was achieved in the framework of scale invariant scattering theory

[28] (see [29] for a review) which in recent years provided new information [30, 31, 32, 33,

34, 35, 36, 37] on difficult problems of two-dimensional criticality, including quenched disorder.

The space of solutions of the RPN−1 fixed point equations, containing both ferromagnetic and

antiferromagnetic fixed points, was investigated in [27, 38, 39] for continuous positive values of

N and revealed the following properties:

a. the space of solutions corresponds to an order parameter with MN = 1
2N(N + 1) − 1

components;

b. quasi-long-range order is limited to N = 2, and there is no evidence of a topological

transition above this value;

c. for N ≤ N∗ = 2.24421.. the space of solutions contains several branches of fixed points

which can be relevant for gases of intersecting loops;

d. for N > N∗ there is only one scattering solution;

e. the scattering solution of the previous point describes a zero temperature fixed point in

the O(MN ) universality class, with central charge MN − 1.

After our papers, the RP 2 model was numerically investigated in [40, 41] using the tensor

network renormalization (TNR) method, which has access to the central charge and the degen-

eracies in the spectrum of scaling dimensions. The conclusions of these studies are consistent
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with our exact results up, apparently, to one finding of [40]. More precisely, while seeing sig-

natures of a crossover at finite temperature, both studies concluded for the absence of a true

topological transition, in agreement with our point b. The authors of [40] also investigated the

zero temperature behavior and saw criticality with the most relevant operator possessing 5 com-

ponents, in agreement with our point a. For the central charge of the RP 2 antiferromagnet at

T = 0 they found a value consistent with 4, in agreement with our point e. For the ferromagnet

at T = 0, however, they found central charge 2. They suggested that this latter fixed point could

correspond to an extra scattering solution pointed out in [27, 38] and existing only for N = 3.

Meanwhile, however, we had shown in [39] that this solution is only an alternative realization

of the scattering matrix of point d. It would then appear that the exact fixed point equations

are missing the ferromagnetic fixed point. Here we will argue that this is not the case and that

the above points a-e should be complemented with the following point

f. the scattering solution of point d also describes a zero temperature fixed point in the

RPN−1 universality class, with central charge N − 1.

The fact that a single critical scattering solution can correspond to different universality classes

is not new and had been illustrated in [31] for the Potts model. In the present case it is related

to the features of asymptotic freedom.

In [39] we determined the exact fixed point equations of the CPN−1 model, which provides

the basic lattice realization of a continuous local symmetry. For their space of solutions we

found properties that can again be stated as in points a-e above, provided we define new values

MN = N2 − 1 and N∗ = 2, and in point b we substitute N = 2 with N =
√
3. Here we will

argue that also in this case these findings should be complemented by point f, which now will

refer to the CPN−1 universality class with central charge 2(N − 1).

The paper is organized as follows. In the next section we recall some generalities about

symmetry, central charge and scattering. The RPN−1 and CPN−1 models are then discussed in

sections 3 and 4, respectively, while section 5 contains some final remarks.

2 Symmetry, central charge and scattering

A universality class of critical behavior is identified by a renormalization group fixed point with

its specific field content. This field content, through the associated operator product expansion

(OPE), implements the internal symmetry of the fixed point Hamiltonian. The field with lowest

scaling dimension – i.e. the most relevant field, in the renormalization group sense – carrying a

representation of the internal symmetry is the order parameter field s(x), while the most relevant

field (excluding the identity) invariant under the symmetry transformations is the energy density

field ε(x). Adding to the fixed point Hamiltonian the contribution of ε moves the system away

from the critical temperature Tc. The scaling dimensions Xs and Xε of the order parameter and

energy density fields determine the canonical critical exponents (see e.g. [42]).

Symmetry alone does not identify a fixed point. For example, a system with a given symmetry

can also exhibit a tricritical point, which possesses an additional relevant symmetry-invariant
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field ε′, and a field content larger than that of the critical point. In two dimensions a main

parameter which grows with the size of the space of fields is the central charge c of a fixed

point. A basic illustration is obtained recalling that at critical points of statistical systems scale

invariance is promoted to conformal invariance [6], whose simplest realizations are the minimal

models [5] with central charge

c = 1− 6

p(p+ 1)
, p = 3, 4, . . . , (1)

and scalar primary fields with scaling dimensions

Xm,n =
[(p+ 1)m− pn]2 − 1

2p(p + 1)
, m = 1, 2, . . . , p − 1 , n = 1, 2, . . . , p . (2)

The central charge grows with p, and then with the number of primary fields1, each of which

possesses infinitely many ”descendants” with scaling dimensions exceeding by integers that of

the primary. The critical point of the Ising model corresponds to p = 3, while more generally

the above minimal models describe multicriticality of order (p− 1) in Z2-symmetric systems.

In general, on the other hand, the central charge does not identify a universality class, since

it does not uniquely specify the field content. The simplest illustration is provided by the

minimal model with p = 5, which describes both the tetracritical Z2-symmetric point and the

critical three-state Potts model, which has permutational symmetry S3. While the Z2-symmetric

tetracritical point possesses all the primary dimensions (2) with multiplicity one [5], the Potts

critical point only possesses a subset of them, with a field-dependent multiplicity [44, 45]. In

particular, Xs = X2,2 and Xε = X3,3 for Z2, while Xs = X2,3 and Xε = X2,1 for Potts; in the

latter case X2,3 has multiplicity two, as required for the S3 order parameter.

When looking for fixed points of the renormalization group in the scattering framework

[28, 29], one of the Euclidean dimensions of the statistical system is taken as imaginary time

and conformal invariance is implemented in the basis of the massless particle excitations. It is

crucial that in two dimensions conformal symmetry has infinitely many generators [6], which

provide infinitely many quantities that have to be conserved in a scattering process. As a result,

the initial and final states are kinematically identical (complete elasticity) and the scattering

problem greatly simplifies. An additional simplification is that scale invariance leads to two-

particle amplitudes which do not depend on the center of mass energy, the only relativistic

invariant in (1 + 1)-dimensional scattering. All this results in a particularly simple form of the

crossing and unitarity equations which constrain any relativistic scattering theory [46]. We call

these equations the fixed point equations since, by construction, their solutions correspond to

fixed points of the renormalization group. Since no approximation is involved in the derivation,

the equations are exact.

Within the scattering framework, the information about the universality class comes from

internal symmetry, which determines the particle content and the allowed processes. Since we

recalled how symmetry alone does not identify a fixed point, it follows that in general the fixed

1The role of the central charge in establishing a hierarchy of fixed points is illustrated by the c-theorem [43].
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point equations do not possess a single solution, but rather a space of solutions containing the

different fixed points with the given symmetry. This space of solutions will contain critical and

multicritical points, as well as the fixed points corresponding to ferromagnetic and antiferro-

magnetic interactions. In particular, there may be solutions for which some of the scattering

amplitudes vanish, making possible fixed points with a symmetry larger than that common to

the whole space of solutions. These features have been illustrated in [31] for the q-state Potts

model and in [34] for the O(N) model, and are reviewed in [29].

Another possibility, more subtle to identify, is that a single scattering solution describes

different universality classes. An explicit example is provided by the q-state Potts model [47] with

q ∈ [0, 4] which can be considered as a continuous variable and parametrized as
√
q = 2cos(π/p).

The ferromagnetic model possesses, besides the fundamental critical line, a tricritical line with

central charge (1) [48]. On the other hand, the antiferromagnetic model on the square lattice

possesses a critical line2 with central charge c = 2(p − 3)/p [50]. When the scale invariant

scattering solutions are obtained implementing the permutational symmetry Sq characteristic of

the Potts model, these two critical lines correspond to the same solution [31]. The mechanism

allowing this is conveniently illustrated considering the amplitude of the symmetry invariant

scattering channel, which quite generally can be written as [28, 29]

S = e−2iπ∆η , (3)

where ∆η is the conformal dimension of the chiral field which creates the particles at criticality.

Its value is ∆η = X3,1/2 = 1 + 2/p along the ferromagnetic tricritical line, and ∆η = 2/p along

the square lattice antiferromagnetic critical line [31]. Since the two values differ by an integer,

they give the same amplitude (3).

In the following we will see the relevance of these considerations for the RPN−1 and CPN−1

models, whose spaces of critical scattering solutions were obtained in [27, 38, 39].

3 RPN−1 model

3.1 Scale invariant scattering

The RPN−1 lattice model is defined by the Hamiltonian

HRPN−1 = −J
∑

〈i,j〉
(si · sj)2 , (4)

where si = (s1,i, s2,i, . . . , sN,i) is a N -component unit vector located at site i. The interaction is

ferromagnetic for J > 0 and antiferromagnetic for J < 0. The Hamiltonian differs from that of

the O(N) vector model for the square in the r.h.s., which makes (4) invariant also under local

inversions si → −si (head-tail symmetry). It follows that si effectively takes values on the unit

2This antiferromagnetic line corresponds to nonnegative temperature only up to q = 3 [49].
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Figure 1: Scattering amplitudes entering (6). Time runs upwards.

hypersphere with antipodal points identified, namely the RPN−1 manifold. This is taken into

account by the order parameter variable [1]

Qab,i = sa,isb,i −
1

N
δab . (5)

The derivation of the RPN−1 fixed points equations within the scattering framework has

been performed in detail in [27, 38]; here we simply recall the main steps and results. In the

continuum limit, the order parameter field is the traceless symmetric tensorQab(x). At criticality

the massless particle excitations transform under the symmetries as the order parameter, and

are labeled by a double index ab, with a and b going from 1 to N . The scattering processes

for these particles are shown in figure 1, where each terminal corresponds to an index and each

line connects equal indices. The scattering matrix for particles ab and cd in the initial state and

particles ef and gh in the final state is expressed in terms of the amplitudes S1, . . . , S11 as

Sef,ghab,cd = S1 δ
(2)
(ab),(cd)δ

(2)
(ef),(gh) + S2 δ

(2)
(ab),(ef)δ

(2)
(cd),(gh) + S3 δ

(2)
(ab),(gh)δ

(2)
(cd),(ef)

+ S4 δ
(4)
(ab)(gh),(cd)(ef) + S5 δ

(4)
(ab)(ef),(cd)(gh) + S6 δ

(4)
(ab)(cd),(ef)(gh)

+ S7

[

δabδef δ
(2)
(cd),(gh) + δcdδghδ

(2)
(ab),(ef)

]

+ S8

[

δabδghδ
(2)
(cd),(ef) + δcdδefδ

(2)
(ab),(gh)

]

+ S9

[

δabδ
(3)
(cd),(ef),(gh) + δcdδ

(3)
(ab),(ef),(gh) + δefδ

(3)
(cd),(ab),(gh) + δghδ

(3)
(cd),(ef),(ab)

]

+ S10 δabδcdδef δgh + S11

[

δabδcdδ
2
(ef),(gh) + δefδghδ

(2)
(ab),(cd)

]

,

(6)
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where we introduced the notations

δ
(2)
(ab),(cd) ≡ (δacδbd + δadδbc)/2 , (7)

δ
(3)
(ab),(cd),(ef) ≡ (δaf δbdδce + δadδbf δce + δaeδbdδcf + δadδbeδcf

+ δaf δbcδde + δacδbf δde + δaeδbcδdf + δacδbeδdf )/8 , (8)

δ
(4)
(ab)(cd),(ef)(gh) ≡ (δahδbf δcgδde + δaf δbhδcgδde + δagδbf δchδde + δaf δbgδchδde

+ δahδbeδc,gδdf + δa,eδbhδcgδdf + δagδbeδchδdf + δaeδbgδchδdf

+ δahδbf δceδdg + δaf δbhδceδdg + δahδbeδcfδdg + δaeδbhδcf δdg

+ δagδbf δceδdh + δaf δbgδceδdh + δagδbeδcf δdh + δaeδbgδcfδdh)/4 (9)

to take into account the different possible connections of the particle indices for a given process

in figure 1. Crossing symmetry allows the following parametrizations of the amplitudes

S1 = S∗
3 ≡ ρ1 e

iφ, (10)

S2 = S∗
2 ≡ ρ2, (11)

S4 = S∗
6 ≡ ρ4e

iθ , (12)

S5 = S∗
5 ≡ ρ5 , (13)

S7 = S∗
7 ≡ ρ7 , (14)

S8 = S∗
11 ≡ ρ8e

iψ , (15)

S9 = S∗
9 ≡ ρ9 , (16)

S10 = S∗
10 ≡ ρ10 . (17)

The fact that the field Qab(x) that creates the particles is traceless is taken into account defining

T =
∑

a aa and requiring

S|(ab)T 〉 = S0|(ab)T 〉 , S0 = ±1 (18)

for any particle state |(ab)〉 = |ab〉 + |ba〉. This means that the trace mode T is a decoupled

particle that can be discarded; the sign factor S0 takes into account that the trace mode can

decouple as a free boson or a free fermion. The decoupling condition provides the relations

S2 + S9 +NS7 − S0 = S1 + S9 +NS11 = S3 + S9 +NS8 =

4(S4 + S5 + S6) +NS9 = S7 + S8 + S11 +NS10 = 0 , (19)
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which are used to express the amplitudes Si≥7 in terms of Si≤6, namely

ρ7 = − 1

N
(ρ2 − S0) +

4

N2
(2ρ4 cos θ + ρ5), (20)

ρ8 cosψ = − 1

N
ρ1 cosφ+

4

N2
(2ρ4 cos θ + ρ5), (21)

ρ8 sinψ =
1

N
ρ1 sinφ, (22)

ρ9 = − 4

N
(2ρ4 cos θ + ρ5), (23)

ρ10 =
1

N2

(

2ρ1 cosφ+ ρ2 − S0 −
12

N
(2ρ4 cos θ + ρ5)

)

. (24)

With this information, the requirement of unitarity of the scattering matrix yields the RPN−1

fixed point equations in the form [27]

1 = ρ21 + ρ22 + 4ρ24 , (25)

0 = 2ρ1ρ2 cosφ+ 4ρ24 , (26)

0 =MNρ
2
1 + 2ρ21 cos 2φ+ 2ρ1ρ2 cosφ+ 4

(

1− 2

N
+N

)

ρ1ρ4 cos(φ− θ)

+ 4

(

1− 2

N

)

ρ1ρ4 cos(φ+ θ) +
32

N2
ρ24 cos 2θ + 4

(

1− 2

N
+N

)

ρ1ρ5 cosφ

+ 8

(

1 +
8

N2

)

ρ4ρ5 cos θ + 4

(

1 +
8

N2

)

ρ24 + 4

(

1 +
4

N2

)

ρ25 , (27)

0 = 2ρ2ρ5 + 2ρ1ρ4 cos(φ+ θ)− 8

N
ρ24 + 2

(

1− 4

N

)

ρ24 cos 2θ

+ 2

(

3− 8

N
+N

)

ρ4ρ5 cos θ −
4

N
ρ25 , (28)

0 = 2ρ2ρ4 cos θ +

(

2− 8

N
+N

)

ρ24 + 2

(

1− 4

N

)

ρ24 cos 2θ + 2ρ1ρ5 cosφ

+ 2

(

1− 8

N

)

ρ4ρ5 cos θ +

(

2− 4

N
+N

)

ρ25 , (29)

0 = 2ρ1ρ4 cos(φ− θ) + 2ρ2ρ4 cos θ + 2ρ24 , (30)

where

MN =
1

2
N(N + 1)− 1 (31)

coincides with the number of independent components of the order parameter variable (5).

The solutions of the fixed point equations (25)-(30) were determined in [27, 38], in part

analytically and in part numerically. The numerical solutions consist of branches of fixed points

extending for N ≤ 2.24421.. [38], and will not be rediscussed in the present paper, whose main

focus is on N ≥ 3. The analytic solutions are listed in table 1. The table does not include a

solution defined only at N = 3 and called B3 in [38], which was eventually shown in [39] to yield

the same scattering matrix (6) produced by solution A1 at N = 3.

An important feature of equations (25)-(30) is that for ρ4 = ρ5 = 0 they reduce to the fixed

point equations of the O(M) vector model with M = MN given by (31). This implies that the
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Solution N ρ1 ρ2 cosφ ρ4 ρ5 cos θ

A1± (−∞,∞) 0 ±1 − 0 0 −
A2± [−3, 2] 1 0 ± 1

2

√
2−MN 0 0 −

A3 −3, 2
√

1− ρ22 [−1, 1] 0 0 0 −
B1 2

1−ρ2

2√
1+3ρ2

2

[−1, 1] − 2ρ2√
1+3ρ2

2

|ρ2|
√

1−ρ2

2

1+3ρ2

2

ρ2(1−ρ2

2
)

1+3ρ2

2

−sgn(ρ2)
√

1−ρ2

2

1+3ρ2

2

B2± 2
√

1 + 2xρ2 − ρ22 α±(x)
x√

1+2xρ2−ρ2

2

√

−xρ2

2
−x
2

x+2ρ2

2
√
−2xρ2

Table 1: Inequivalent analytic solutions of the equations (25)-(30). In the expression of B2±,

x ∈
[

− 1√
2

1√
2

]

is a free parameter, and α±(x) ≡ x
2x2−3±

√
2(x2−4)(2x2−1)

2(6x2+1)
.

space of solutions of the RPN−1 fixed point equations contains the O(MN ) space of solutions as

a subspace. The solutions A1, A2 and A3 of table 1 indeed coincide with the three solutions of

the vector model [34, 29]. In particular, A2 corresponds to the solution that in the vector model

describes the dilute and dense critical branches of the gas of nonintersecting loops [42, 4, 51].

Solution A3, on the other hand, possesses ρ2 as a free parameter and describes the line of fixed

points which in the O(2) model accounts for the BKT phase. It appears at N = 2 as it should

in view of the known correspondence RP 1 ∼ O(2), and at N = −3 due to M−3 = M2 = 2.

Also solutions B1 and B2 of table 1 are defined at N = 2 and contain a free parameter; they

correspond to different realizations of the BKT phase in the RPN−1 space of parameters.

3.2 N ≥ 3

We are finally left with A1, which is the only solution existing for N ≥ 3. This means, in

particular, that for N ≥ 3 there are no lines of fixed points at fixed N , and then no BKT-like

topological transitions yielding quasi-long-range order [27]. The possibility of such a transition

driven by disclination defects has been debated in numerical studies for long time [11, 12, 13,

14, 15, 16, 17, 18, 19], and the most recent ones applying the TNR method to the RP 2 model

[40, 41] confirm our result about its absence.

Solution A1− corresponds to MN free fermions3, with central charge MN/2, and is not

expected to play a role for the Hamiltonian (4). We then focus on solution A1+, which completes

the O(MN ) subspace of solutions allowed by the RPN−1 fixed point equations. In the O(MN )

vector model this solution corresponds to the zero temperature critical point at MN > 2 [34,

29]. As we observed in [27, 38], this means that the RPN−1 model with N > 2 allows for

a zero temperature critical point with the O(MN ) central charge MN − 1. Evidence of the

realization of this critical point in the square lattice RP 2 antiferromagnet has recently been given

in [40] through the determination of the central charge. In three dimensions, where continuous

symmetries can break spontaneously, finite temperature criticality in the O(M3 = 5) universality

3The form of crossing and unitarity equation is such that, given a solution, another solution is obtained

reversing the sign of all amplitudes. We also recall that the central charge is 1/2 for a free fermion and 1 for a

free boson [6].
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class has been identified numerically for the RP 2 antiferromagnet on the cubic lattice [52], while

the transition is first order for the ferromagnet [2].

Solution A1+ corresponds to MN noninteracting bosons, and always admits the trivial real-

ization with central charge c = MN . Also this trivial realization possesses O(MN ) symmetry,

but the large distance behavior is ruled by the O(MN ) realization with minimal central charge

c =MN −1. The latter realization is provided by the nonlinear sigma model in which the vector

formed by the MN bosonic fields is constrained to have unit modulus (see e.g. [42, 53]). Away

from criticality, the free and the sigma model realizations have the same particle basis but, of

course, different scattering matrices, since in the latter case the constraint introduces interac-

tion. The O(M) sigma model is integrable and its exactly known off-critical scattering matrix

[54] can be used to obtain the central charge M − 1 through the thermodynamic Bethe ansatz

or the form factor approach (see [55, 56] for M = 3). However, when the critical limit of the

sigma model scattering matrix is taken sending to infinity the center of mass energy, solution

A1+ with M = MN is recovered. This is how the ”asymptotic freedom” of two-dimensional

sigma models manifests itself in the scattering framework; in particular, the critical scattering

amplitudes do not retain memory of the constraint which reduces the central charge and makes

it coincide with the dimensionality of the sigma model target manifold [34, 29].

Extending these considerations we can recognize an additional point. When moving away

from criticality, the parameters ρ4 and ρ5, which vanish in the O(MN )-symmetric scattering

theory (at and away from criticality), will more generally develop nonzero values. In this case

we will have a scattering theory with a different symmetry, but still having A1+ as critical

limit4. The value c = 2 measured in [40] for the central charge of the T = 0 RP 2 ferromagnet

is evidence that solution A1+ is also the critical limit of a sigma model with a target manifold

of dimension smaller than that of the O(MN ) manifold. This should be the RPN−1 manifold

with dimension N − 1, thus setting to c = N − 1 the central charge of the ferromagnetic fixed

point. While this is also the central charge of the O(N) model, the RPN−1 and O(N) sigma

models have different operator content and represent different universality classes. We already

saw that the RPN−1 order parameter field is the N × N traceless symmetric tensor Qab(x),

while the O(N) order parameter field is the vector s(x). The local character of the Z2 head-tail

symmetry of the RPN−1 model causes the vanishing of the correlation functions 〈· · · s(x) · · · 〉,
meaning that the RPN−1 space of fields does not contain the vector field. This was confirmed

by the numerical results of [40] for RP 2, which found M3 = 5 components for the fundamental

field. The energy density field should also differ in the two cases, since ε(x) appears as the

most relevant symmetry-invariant field in the OPE of the order parameter field with itself. One

consequence is that the scaling limit of the off-critical RPN−1 ferromagnet may be nonintegrable,

at variance with O(N).

The numerical results of [40] for the RP 2 central charges are consistent with the conclusion

that the RPN−1 and O(MN ) sigma models (both having solution A1+ as critical scattering

4This point was not sufficiently explored in [27, 38], where the main effort was absorbed by the derivation of

the exact equations and the determination of all the scattering solutions.
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limit) describe the RPN−1 ferromagnet and square lattice antiferromagnet, respectively. The

reason why ferromagnet and antiferromagnet fall into different universality classes is expected

to be the same shown in [57] for the three-state Potts model. In the antiferromagnetic case

nearest neighbors want to take different values, and the lattice structure matters. The order

parameter variable in the square lattice antiferromagnet is defined with an extra sign factor

which distinguishes even and odd sublattices (”staggering”). The fields of the continuum then

inherit an extra parity related to sublattice exchange. The order parameter has odd parity and

cannot produce odd fields in the OPE with itself which determines the energy density field. As a

consequence, the field theory of the antiferromagnet cannot contain three-particle vertices that

are instead allowed for the ferromagnet5. The two field theories are different and the absence

of three-particle vertices in the antiferromagnet allows the symmetry enhancement displayed by

a subspace of the scattering solutions: S3 → U(1) for Potts [57, 31], RPN−1 → O(MN ) for the

Hamiltonian6 (4).

4 CP
N−1 model

The CPN−1 lattice model is defined by the Hamiltonian

HCPN−1 = −J
∑

〈i,j〉
|si · s∗j |2, (32)

where sj = (s1,j , . . . , sN,j) is now a complex N -component vector at site j satisfying sj · s∗j = 1.

The Hamiltonian is invariant under global U(N) transformations (sj → Usj , U ∈ U(N)) and

site-dependent U(1) transformations (sj → eiαjsj , αj ∈ R); these symmetries are represented

through the tensorial order parameter variable

Qab,i = sa,is
∗
b,i −

1

N
δab . (33)

The implementation of scale invariant scattering for the CPN−1 model closely parallels that

seen in the previous section for RPN−1 and has been performed in Ref. [39], to which we refer

the reader for the details; here we recall the main points. In the continuum limit the order

parameter field Qab(x) is now a traceless Hermitian tensor. At criticality the massless particle

excitations are labeled by a double index ab, with a, b = 1, . . . , N , and a state containing a

particle ab transforms under the U(N) symmetry as

|ab〉 −→ |a′b′〉 =
∑

a,b

Ua′,aU
∗
b′,b|ab〉 , (34)

so that the role of the two indices is distinguished by charge conjugation. This is why, while

we still have the 11 amplitudes of fig. 1 parametrized as in (10)-(17), the number of possible

5In their most general form, both Potts and RPN−1 Landau-Ginzburg Hamiltonians allow cubic terms which

make the transition first order at mean field level [1, 47].
6The symmetry enhancement was proposed in three dimensions in [52] within a φ4 description of the RP 2

model. In two dimensions all powers of φ are relevant and normally one needs to deal with exponential fields and

their symmetries, as in [57, 58] for the Potts model.
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connections between the terminals is reduced with respect to the RPN−1 case, and the scattering

matrix takes the form

Sef,ghab,cd = S1 δa,dδb,cδe,hδf,g + S2 δa,eδb,fδc,gδd,h + S3 δa,gδb,hδc,eδd,f

+ S4 (δa,dδb,f δc,gδe,h + δb,cδa,eδd,hδf,g) + S5 (δb,cδa,gδd,fδe,h + δa,dδb,hδc,eδf,g)

+ S6 (δa,eδb,hδd,fδc,g + δb,f δa,gδc,eδd,h) + S7 (δa,bδe,fδc,gδd,h + δc,dδg,hδa,eδb,f )

+ S8 (δc,dδe,fδa,gδb,h + δa,bδg,hδc,eδd,f ) + S9
[

δe,f (δa,dδb,hδc,g + δb,cδa,gδd,h)

+ δc,d (δb,fδa,gδe,h + δa,eδb,hδf,g) δa,b (δd,f δc,gδe,h + δc,eδd,hδf,g)

+ δg,h (δa,dδb,fδc,e + δb,cδa,eδd,f )
]

+ S10 δa,bδc,dδe,fδg,h

+ S11 (δa,bδc,dδe,hδf,g + δe,f δg,hδa,dδb,c) .

(35)

The decoupling condition of the trace mode T =
∑

a aa,

S|T ab〉 = S0|T ab〉 , S0 = ±1 , (36)

now yields relations which are used to express Si≥7 in terms of Si≤6 through

ρ7 =
1
N

(

S0 − ρ2 +
2
N

(

2ρ4 cos θ + ρ5
))

, (37)

ρ8 cosψ = 1
N

(

−ρ1 cosφ+ 2
N

(

2ρ4 cos θ + ρ5
))

, (38)

ρ8 sinψ = 1
N
ρ1 sinφ, (39)

ρ9 = − 1
N

(

2ρ4 cos θ + ρ5
)

, (40)

ρ10 =
1
N2

(

2ρ1 cosφ+ ρ2 − S0 − 6
N

(

2ρ4 cos θ + ρ5
))

. (41)

Unitarity then yields the fixed point equations in the form

1 = ρ21 + ρ22 + 2ρ24 , (42)

0 = 2ρ1ρ2 cosφ+ 2ρ24 , (43)

0 = (N2 − 1)ρ21 + 2ρ21 cos 2φ+ 2ρ1ρ2 cosφ+ 4
(

N − 1
N

)

ρ1 (ρ4 cos(θ − φ) + ρ5 cosφ)

− 4
N
ρ1ρ4 cos(θ + φ) + 8

N2 ρ
2
4 cos 2θ + 2

(

1 + 4
N2

)

ρ4 (ρ4 + 2ρ5 cos θ)

+ 2
(

1 + 2
N2

)

ρ25 , (44)

0 = 2ρ1ρ5 cosφ+ 2ρ2ρ4 cos θ − 4
N
ρ24 cos 2θ +

(

N − 4
N

)

ρ24 − 8
N
ρ4ρ5 cos θ

+
(

N − 2
N

)

ρ25 , (45)

0 = 2ρ1ρ4 cos(θ + φ) + 2ρ2ρ5 − 4
N
ρ24 cos 2θ − 4

N
ρ24 + 2

(

N − 4
N

)

ρ4ρ5 cos θ − 2
N
ρ25 , (46)

0 = 2ρ1ρ4 cos(θ − φ) + 2ρ2ρ4 cos θ . (47)

The solutions of these equations were determined in [39], in part analytically and in part

numerically. The numerical solutions consist of branches of fixed points extending for N < 2

and are expected to be relevant for criticality in gases of intersecting loops, examples of which

have been discussed in [59]. The solutions that we determined analytically are listed in table 2.

The table does not include solutions defined only for N = 2 or N = 3 which were shown in [39]

to yield the same scattering matrix (35) as solution A1 evaluated at those values of N .
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Solutions N ρ1 ρ2 cosφ ρ4 ρ5 cos θ

A1± R 0 ±1 − 0 0 −
A2± [−

√
3,
√
3] 1 0 ±1

2

√
3−N2 0 0 −

A3± ±
√
3

√

1− ρ22 [−1, 1] 0 0 0 −

Table 2: Inequivalent analytic solutions of the CPN−1 fixed point equations (42)-(47).

It must now be observed that when ρ4 = ρ5 = 0 equations (25)-(30) reduce to the fixed

point equations of the O(N2 − 1) model, and that N2 − 1 is the number of independent real

components of the order parameter variable (33). This means that the space of solutions of

the fixed point equations of the CPN−1 model contains a subspace for which the symmetry is

enhanced to O(N2−1). The solutions A1, A2 and A3 of table 2 all have ρ4 = ρ5 = 0 and indeed

correspond to the three solutions of the O(M) model [34, 29] with M = N2 − 1; the fact that

N2 − 1 = 2 when N = ±
√
3 explains the domain of definition of solutions A2 and A3. These

conclusions are also consistent with the fact that CP 1 corresponds to the Riemann sphere, and

then to O(3).

For N ≥ 2 the fixed point equations possess only solution A1. Taking into account that the

fermionic realization A1− should not be not relevant for the Hamiltonian (32), we are only left

with the free bosonic solution A1+, to be associated with zero temperature criticality. Since

the theoretical considerations of the previous section for the RPN−1 model can be entirely

transposed to the present case, we are led to conclude that solution A1+ describes, besides the

O(N2− 1) fixed point with central charge c = N2− 2, an additional nontrivial fixed point. This

will be the fixed point of the CPN−1 sigma model, with central charge equal to the dimension of

the CPN−1 manifold, namely c = 2(N − 1). While the scattering amplitudes of the O(N2 − 1)

and CPN−1 sigma models have the same critical limit A1+, they will differ away from criticality

for N > 2, since for CPN−1 the parameters ρ4 and ρ5 will develop nonvanishing values7.

Also the arguments of the previous section about the difference between the RPN−1 ferro-

magnet and antiferromagnet extend to the present case. As a consequence the expectation is

that as the temperature goes to zero the Hamiltonian (32) realizes the CPN−1 universality class

in the ferromagnetic case, and the O(N2 − 1) universality class in the case of the square lattice

antiferromagnet. In this respect it must be noted that in three dimensions, where the continuous

symmetry can break spontaneously, a finite temperature critical point in the O(8) universality

class has been observed in numerical simulations of the antiferromagnetic CP 2 model [62].

5 Conclusion

In this paper we disentangled subtleties hidden in the space of solutions of the exact fixed

point equations of the two-dimensional RPN−1 and CPN−1 models that we had determined in

7In particular, the CPN−1 sigma model is not expected to be exactly solvable away from criticality [60, 61].

The exception is N = 2, given that CP 1
∼ O(3).
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[27, 38, 39] using scale invariant scattering theory. In particular, we explained why the unique

relevant solution A1+ of critical RPN−1 scattering for N ≥ 3 actually corresponds to two dif-

ferent universality classes with the same number MN = 1
2N(N + 1) − 1 of order parameter

components. These are the O(MN ) universality class with central charge MN − 1, and the

RPN−1 universality class with central charge N − 1. While the scattering amplitudes for the

two universality classes will differ away from criticality, they have the same critical limit A1+

due to the asymptotic freedom of two-dimensional nonlinear sigma models. When the tempera-

ture goes to zero, the RPN−1 lattice Hamiltonian (4) realizes the RPN−1 universality class for

ferromagnetic interaction, and the O(MN ) universality class for antiferromagnetic interaction

on bipartite lattices. The symmetry enhancement in the antiferromagnetic case is due to a

suppression of three-particle vertices analogous to that shown in [57] for the three-state Potts

model.

We also discussed how a similar pattern is expected in the CPN−1 model (32), with the

unique scattering solution for N > 2 corresponding to the critical limit of both the O(N2 − 1)

universality class with central charge N2 − 2 and the CPN−1 universality class with central

charge 2(N − 1).

The fact that a single scale invariant scattering solution may correspond to different renor-

malization group fixed points was already known for the q-state Potts model [31]. In the RPN−1

and CPN−1 models the mechanism is made even more subtle by the fact that it simultaneously

accounts for symmetry enhancement in the antiferromagnetic case for generic values of N .
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