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ABSTRACT 

The challenge of early damage detection of large complex structures with high dimensional 
features is a determinant factor for structural health monitoring (SHM). The current 
technological advances contribute to the optimization of the data analysis, aiming to make 
Machine learning (ML) strategies more popular due to their capacity to estimate the structural 
behaviour based on the measurements gathered by the SHM systems. In this sense, this work 
proposes a new methodology based on neural networks (NN) for the prediction of structural 
behaviour applied to the 25 de Abril bridge in Lisbon, Portugal, based on data gathered by the 
SHM system. Environmental loads are considered to characterize the observed pattern of the 
structural response, and, in this sense, identify new trends or variations of patterns for future 
observations. 

Keywords: Monitoring, structural behaviour, Ponte 25 de Abril, Artificial neural networks, 
Pattern recognition. 

1. INTRODUCTION 

Structural damage is intrinsic to civil engineering structures and has the tendency to propagate 
due to environmental or mechanical factors. In [1], the authors, considering this premise, define 
damage as a change in an structural system that affects the current or future performance 
concerning both structural safety and serviceability. Thus, while damage occurrence implies a 
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structural novelty, a novelty may not necessarily imply damage that compromises the structural 
performance. Likewise, damage does not always indicate a complete failure, but only a 
comparative deterioration of the system functionality [2]. The monitoring of a structure to detect 
novelties and assess its life cycle consists of a powerful tool for damage assessment and 
performance evaluation of engineering structures. The process involves the observation and 
evaluation of a structure over time using periodically sampled measurements from a sensing 
system. Several civil engineering structures have been provided with structural health 
monitoring (SHM) systems in the last decades, and, according to [3], those systems are 
envisaged to ensure structural and operational safety using real-time information about 
anomalies in loading and response at an early stage.  

SHM techniques can follow inverse or forward approaches for detecting damage. The former 
ones, also called model updating, are based on the fitting of analytical or numerical responses 
to experimental data to infer structural quantities that cannot be directly measured. Forward 
SHM approaches, instead, rely on pattern recognition techniques for extracting sensitive 
information from data acquired on-site [4]. Forward approaches, also called data-driven 
approaches, do not require the development of numerical or analytical models to be fitted with 
in situ data. Instead, these techniques aim at extracting sensitive information from the 
measured time series using statistical learning methods [5]. Because SHM systems are 
operated in harsh and noisy environments, the occurrence of abnormal data is inevitable and 
the large variation in extracted features from massive SHM data could cause conventional 
novelty detection techniques to perform poorly [6]. 

Structural damage identification based on changes in the structural response of the structures 
has been practiced qualitatively for decades since the time tap testing for fault detection 
became common (e.g., on train wheels). Intelligent monitoring systems that can allow 
structures to operate at the margin of safety without involving long periods of inspection, the 
advances in various branches of technology, such as sensing instrumentation, signal 
acquisition, and transmission, data processing and analysis, numerical simulation, and 
modelling, has allowed developing strategies that profit from the technological precision to 
accurately evaluate the structural health of civil structures using real-time monitored data [7]. 

Plenteous improvements in computational power and advancements in chip and sensor 
technology have enabled the use of Machine Learning (ML) techniques in engineering 
applications. ML techniques are focused on the development of intelligent algorithms capable 
of acquiring knowledge automatically from the available data with the objective of providing 
machines with a human-like ability to learn [2]. With recent technological advances, a relatively 
large number of sensors and sensor networks can now measure large volumes of response 
data. In this sense, data-driven ML techniques have been proposed by different authors to 
assess the global health condition of host infrastructures [2], [6], [8], [9] [10] and [11]. The 
powerful capability of ML and pattern recognition (PR) techniques to extract information and 
develop predictive models from large data became predominant approaches for SHM to learn 
the complex interrelation among influencing factors, thus performing predictions without the 
need for empirical models.  
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The present study proposes a structural characterization through the use of a neural network 
model in order to define a reference threshold for novelty identification. The case study is the 
25 de Abril bridge over the Tagus River in Lisbon, Portugal, which is monitored by an SHM 
system capable of measuring different physical quantities corresponding to fast loads such as 
traffic, slow loads such as temperatures, and structural responses such as stresses. The 
prediction model was built with static data, provided by the Portuguese National Laboratory of 
Civil Engineering (LNEC), gathered by the SHM system installed in the bridge, considering five 
years of data with an hourly frequency of measurements. Only semi static loads were taken 
into account for the proposed analysis. 

2. THEORETICAL BACKGROUND 

The transition from traditional methods to ML represented an improvement in (i) damage-
sensitive feature extraction from the monitored response, (ii) modelling the structural 
responses, and (iii) classifying the extracted features of civil structures. In [12], the authors 
state that SHM is a multilevel and multi-faced method dealing with data acquisition to decision 
process from single and multiple sources, to have a more robust and confident decision, 
multiple sensors are installed in the structure to be monitored, thus, data fusion becomes an 
indispensable step. ML-based approaches applied to SHM data require extracting damage-
sensitive features that later will be used as the input of the ML model.  

Two main SHM approaches for response modelling of structures based on ML models are 
cited by the authors in [13]. The protective approach refers to the case when damage-sensitive 
features are used to identify impending failure that led to altering the use of the system to avoid 
catastrophic failure. The predictive approach, instead, is applied to the cases in which trends 
in data are identified to predict when the damage will reach a critical level. In this case, cost-
effective maintenance planning is needed, and ML strategies are useful. To identify such 
patterns, the learning process through the implementation of algorithms is proposed. Such a 
process can follow supervised, unsupervised learning [13] or, lately discussed by the academic 
field, self-supervised learning [14]. 

Within the supervised learning applications in civil SHM, it is common to use simulations to 
generate databases with multiple likely damage scenarios. Artificial neural networks (ANN) in 
this sense, had called the attention of the scientific community since the 1990s. A Neural 
Network (NN) computes a function of the inputs by propagating the computed values from the 
input neurons to the output neurons using different weights as an intermediate parameter [15]. 
According to the same author, the specific architecture of multilayer neural networks, known 
as feed-forward networks, assumes that all nodes in one layer are connected to those of the 
next layer, and the input layer transmits the data to the output layer going through a set of 
hidden layers that perform computations that are not visible to the user, but that can refine the 
weights between neurons over many input-output pairs to provide more accurate predictions. 
If a NN contains 𝑝𝑘 units in each of its 𝑘 layers, then the (column) vector representations of 
these outputs, denoted by ℎ𝑘 have dimensionalities 𝑝𝑘 . 

The weights of the connections between the input layer and the first hidden layer are contained 
in a matrix 𝑊1  with size 𝑑𝑝1 whereas the weights between the 𝑟𝑡ℎ hidden layer and the 
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(𝑟 + 1)𝑡ℎ hidden layer are denoted by the 𝑝𝑟  ×  𝑝𝑟+1 matrix denoted by 𝑊𝑟. If the output layer 
contains o nodes, then the final matrix 𝑊𝑘+1  is of size 𝑝𝑘𝑜. The d-dimensional input vector �̅� 
is transformed into the outputs using the following recursive equations, where Φ denote the 
activation function: 

�̅�𝟏 = 𝚽(𝐖𝟏
𝐓�̅�)             (1) 

�̅�𝐩+𝟏 = 𝚽(𝐖𝐩+𝟏
𝐓 �̅�𝐩)∀𝐩 ∈ [𝟏, … , 𝐤 − 𝟏]          (2) 

𝐨 = 𝚽(𝐖𝐤+𝟏
𝐓 �̅�𝐤)             (3) 

while equation (1) is the one for the transition from the input to the hidden layer, equation (2) 
is the one to pass from the hidden to the hidden layer and equation (3) is the one from the 
hidden to the output layer. NN are known to theoretically be powerful enough to approximate 
any function. However, to avoid overfitting and ensure generalization, a careful architecture 
and learning process are needed even when large amounts of data are available [15].  

In civil engineering structures, changes in the environmental conditions lead to changes in the 
structural behaviour. These changes can be equal or greater than the ones that occurred by 
damage and it is fundamental to interpret them to prevent undesirable consequences [16]. 
Response measurements (e.g., stresses) taken from bridges comprise the effects of several 
types of loads including vehicle traffic and ambient conditions. According to [17], and 
considering the former statement, an important step in measurement interpretation is to 
characterize the influence of the individual load components on the collected measurements. 
Long-term monitoring studies have illustrated that daily and seasonal temperature variations 
have a great influence on the structural response of bridges and can induce changes in modal 
parameters that can be interpreted as a false indication of damage when applying vibration-
based damage detection algorithms[18]. In [19] the authors observed that temperature-
induced stresses on long-span bridges create responses that are very difficult to model due to 
unexpectedly high levels of stress. In [20] the authors, considering at the beginning that the 
daily periodic air temperature change causes the characteristic global thermal deformation of 
a long-span cable-stayed bridge, proposed a damage-sensitive feature extraction method 
through ARIMA models from GPS measurements of those deformations, assuming that they 
have sensitivity to changes in the global structural properties. The design of methodologies to 
improve damage identification including environmental and operational conditions is an area 
of active research interest, motivated by the fact that new designs in civil, aeronautics and 
astronautics include the use of more complex structures subjected to variable environmental 
and operational conditions that need to be assessed [21]. 

Despite the design and maintenance codes and methodologies available, civil structures 
deteriorate over time, and structural health is affected by operational and environmental factors, 
including normal load conditions, and current and future environmental hazards during the 
lifetime [22]. All these factors are variables with uncertainties, and to warrant the safety and 
serviceability of the structure, reliable structural health assessment and continued monitoring 
is essential. 
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3. CASE STUDY 

The case study chosen for application of the proposed methodology is the suspended 25 de 
Abril Bridge located in the estuary of the Tagus River connecting the cities of Lisbon and 
Almada, Portugal. The bridge has a total length of 2277.5m, with three suspended spans: the 
central suspended span of 1012.9m and the two laterals suspended spans of 483.4m each. 
The North access is made through a prestressed concrete viaduct comprising 13 spans while 
the South span is made by a railway tunnel and road access. The bridge deck consists in a 
suspended rigid beam with 1344 vertical hangers that are suspended by four principal cables 
supported at piers P2 and P5 and at pylons P3 and P4. The cross-section of the deck’s 

stiffening truss supports, at the upper chord level, six car lanes, and at the lower chord level, 
a double electrified track railway. The structural monitoring system comprises eight types of 
sensors able to acquire data that would allow the characterization of the structural behaviour 
of the bridge and the imposed loads, such as traffic and environmental loads [23]. 

The statistical features obtained from all quantities measured on the bridge consist of hourly 
maximum and minimum values, hourly medians, and hourly quartiles. The median values 
assume particular importance since they are expected to smooth the extreme values 
introduced by the effect of traffic and other fast effects, thus reflecting slow effects that can be 
analyzed with higher precision, such as temperature. The data acquired continuously on the 
25 de Abril Bridge reflects numerous effects generated by the simultaneous loads acting on 
the structure. 

 

Figure 1. Relative stresses gathered by the strain gauges at the mid span of the rigid beam 
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Regarding the structural responses currently monitored on the 25 de Abril Bridge, 88 points of 
measurement of relative structural stresses in the rigid beam and in the towers are obtained 
using full bridges of strain gauges which, similarly to measurements with a strain gauge, 
measure strain variations caused by structural stresses (see Figure 1). The monitoring system 
installed on the 25 de Abril Bridge also measures the environmental loads of temperature and 
wind. 

For SHM purposes, those data are divided into two subgroups: the imposed loads and the 
structural responses. The information extraction strategy applied in the bridge is based on 
obtaining from the time series at certain predefined time intervals: (i) static structural response 
that can be directly and precisely correlated with the loads imposed on the structure, and (ii) 
vibration information such as natural frequencies and their corresponding damping ratios and 
mode shapes. The proposed methodology was applied to the statistical features extracted from 
the time series corresponding to a period of five years from the mid-span section of the rigid 
beam (see Figure 2). 

 

Figure 2. SHM system installed in Section 0 at the mid-span of the rigid beam [24] 

 

As has been the case since construction, the structural temperature is measured using 
electrical resistance thermometers, while the wind is measured using two three-dimensional 
ultrasonic anemometers. At the mid-span, both wind and temperature loads are measured, as 
well as stresses and accelerations.  

For the purpose of this study, stresses are the structural response considered and 
temperatures are the environmental loads, due to the greater correlation in comparison with 

1916 Lisboa | LNEC | 9-11 novembro 2022



the other physical quantities measured at the mid-span of the rigid beam. A five-year 
monitoring period from 20/04/2016 to 09/11/2021 with hourly measurements is used. 

4. PROPOSED METHODOLOGY 

Real-time monitoring can be effective to control safety and facilitate decision-making regarding 
interventions in the monitored structure. However, real-time diagnosis is usually sensitive to 
environmental and operational effects. In this sense, acquired data need to be processed so 
novelty detection and localization techniques can be employed. In this paper, a methodology 
to process and characterize the structural behaviour through monitored data gathered from the 
sensing system is proposed. Based on the data acquired from the SHM system of the bridge, 
a prediction model is built. Interpretations about the structural behaviour of the structure 
analyzed are inferred from the model itself and from the residual analysis from the model, 
which describes everything that was not explained by the prediction model.  

Moving average and the corresponding standard deviation of the residuals are proposed in 
order to define a pattern behaviour smoothed from the intrinsic randomness of the readings 
(see Figure 3). 

 

Figure 3. Steps of the proposed methodology 

4.1 Prediction model 

This step can follow two approaches: the inverse, the so-called model-based, or the forward, 
also known as a data-driven approach. The proposed methodology follows a data-driven 
approach. This approach does not require the development of numerical or analytical models 
to be fitted with in situ data; instead, it is based on the discipline of machine learning or, often 
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more specifically, the pattern recognition aspects of machine learning. The idea is that one can 
learn relationships from data. In the context of SHM, this means that one can learn to assign 
a damage state, novelty or class to a given measurement vector from the structure or system 
of interest. ML methods had been used to deal with uncertainty problems within the context of 
damage detection and identification. Among the different ML applications in structural 
engineering in the last decade, the preference for artificial neural networks as a supervised 
method for learning, recognition, and perception process over time is considerable [25]. 

As discussed in the previous section, the fully connected architecture of the NN makes the 
predictions more efficient and robust, especially when we are treating data influenced by 
environmental and operational loads. Input data for the network should be selected according 
to the objectives of the analysis, in this case, the temperatures. Learning data must be divided 
into three subsets: the training, the cross-validation, and the testing sets. 

The training subset is used to build the learning model, the NN might use different 
hyperparameters for the learning rate, and the same subset may be trying to build the models 
in multiple ways, in order to allow the estimation of the relative accuracy of different algorithm 
settings and chose the best one. The cross-validation subset is used for model selection and 
parameter tuning in order to test the accuracy of the model. According to [15] the best choice 
of each combination of parameters is determined in this part. The cross-validation subset 
should be viewed as a strategic solution to find the NN with adequate generalization capacity 
allowing to avoid overfitting. Finally, the testing subset is used to test the accuracy of the final 
(tuned) model at the end of the process. In cases of complex and large available data sets, the 
biggest percentage must be dedicated to training and cross-validation subsets.   

The mean squared error (MSE) is proposed to be used in this step in order to determine the 
average loss of the observed data; the deviation from the observed data with the predicted 
data can assess the quality of the NN model. The MSE is defined as,  

MSE =
1

n
∑ (xi − x̂)2n

i=1             (4) 

where 𝑥𝑖 describe the observed values and 𝑥 the predicted values. 

The set of random variables that remains after the outcome of the model, known as residuals, 
carry the residual variances of the predictions, where is possible to detect variations that can 
denote a novelty in the structural behaviour. Therefore, a threshold definition based on a 
residual's analysis is proposed herein. 

4.2 Analysis of the residuals 

Statistical approaches are proposed to characterize the residuals of the NN model. In order to 
reduce the intrinsic randomness of the data, a moving average control is proposed to treat the 
residuals (r) and detect, more clearly, any variation in its trend. A moving average (MA) control 
chart is a type of memory control chart based on an unweighted moving average and it is 
defined as:  
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MA =
ri+ri−1+⋯+ri−w+1

w
=

∑ rj
i
j=i−w+1

w
, i ≥ w         (5) 

where 𝑤 is the width of the moving average at time 𝑗. For periods 𝑖 < 𝑤, we do not have 𝑤 
observations to calculate a moving average of width 𝑤. For these periods, the average of all 
observations up to period 𝑖 defines the moving average. Considering that the measurement 
frequency is hourly, four different MA of size 6, 12, 24 and 168 corresponding to a quarter, a 
half, an entire day, and a week are proposed to be used.  

In order to describe the dispersion of the data, the standard deviation of the MA is presented  
in order to know how much the residuals vary or how disperse they are around the arithmetic 
mean, it is defined as:  

sd = √
1

w
∑ (MAi − MA̅̅̅̅̅

j to i)
2n

j=i−w+1           (6) 

With all the measurements collected, it is possible to proceed with the analysis and detection 
of variations that could be referential for the characterization of the structural behaviour. 

5. RESULTS 

In this section, the results of the application of the proposed methodology to characterize the 
structural behaviour of the 25 de Abril Bridge are described. Section 0 in the mid-span (see 
Figure 2) of the rigid deck is instrumented with eight strain gauges, two per chord, that measure 
the relative stresses and eight thermometers, two per chord, to measure temperatures, as can 
be seen in Figure 4. In order to obtain comparable results for the final characterization, the 
absolute mean value of each pair of sensors, (i.e. strain gauges and thermometers) was 
calculated and used as the value corresponding of each of the chords of the rigid beam, being 
A, B, C and D the average value of the stresses corresponding to each chord of the beam and 
Ta, Tb, Tc and Td the average value of the temperatures measured at each chord of the beam, 
as can be seen in Figure 4. 

In this sense, A, B, C, and D are considered the structural responses (stresses [MPa]), and Ta, 
Tb, Tc, and Td the environmental loads (temperatures [C̊]). Considering that the greater 
correlation between the stresses and temperatures among all the physical quantities measured 
at the mid-span was proven by a correlation analysis previously carried out, both were 
considered as the selected features for the prediction model. 

Following the proposed methodology, a NN was the ML model chosen for the prediction 
process. It was trained in R [26] using the function nnet [25]. Input values correspond to the 
environmental loads: the temperatures, that are used to predict the stresses, the resulting 
outcome of the model, and the structural response to the imposed loads. Hidden values were 
defined based on the input dimensionality, due to the complex relationship between input-
output and the large size data set (see Figure 5). 
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Figure 4. Location of the sensors at the rigid beam  

 

Figure 5. Resulting neural network where: (I) input variables, (B) bias associated with the node, 
(H) hidden values, and (O) outcome variables 

 

The learning set was divided in three subsets: the training, the cross validation and the testing 
sets. The best repetition corresponding to the one with less errors for the cross-validation set 
was programmed to be identified among the iterations in order to ensure a better capacity for 
generalisation. To evaluate the quality of representation of the model, the MSE was calculated. 
The value for the training set is 4.60MPa, for the cross-validation, it is 4.43MPa and for the 
testing set it is 4.90MPa. Being all in the same range, Figure 6 shows the accuracy of the 
model representation. 
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Figure 6. MSE values for each subset of the learning set 

After validating the performance of the model, it is possible to perform the predictions of the 
observed structural behaviour and the proposed residual analysis, in order to check the 
possible variations and characterize the behaviour of the structure. 

The learning data period was established to be represented by 90% of the model outcome, 
while the prediction period was the remaining 10%. The learning data period was then divided 
in three subsets: 80% dedicated to the training set, 15% to the cross-validation and 5% to the 
testing set. 

Figure 7 shows in the top graph, the model results for target B as a reference, the time serie 
is divided by a line, biggest portion at left corresponds to the learning set and smaller one at 
right corresponds to the prediction set. It is possible to see the good fitting of the model values 
with the observed values represented in black on the same graph. 

In the bottom graph of Figure 7, the residuals corresponding to the same target B are shown. 
In red, the residual’s roll mean period of 7 days is represented, overlapping the residuals 
without a moving average application in black. Residuals values are close to zero as expected 
and the standard deviation described in blue, allows to confirm that neither an increase or a 
decrease of the dispersion, nor a significant change in the variability were identified.  

 
Figure 7. Model prediction for target B and residuals of target B 
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Figure 8. Correlation plots between target B and input Td 

The identification of the variation pattern of the structural response to environmental loads 
allows, through a detailed analysis of the predictions and residuals resulting from the model, 
to characterize the structural behaviour of the bridge and established a reference state for 
future analyses or novelty detection. By comparison, the residuals mean roll of 7 days with the 
corresponding standard deviation, has a low dispersion, given that all the data points are close 
to zero, thus allowing to establish it as a precise baseline to use as a reference for future 
analyses.  

Figure 8 show the good correlation among the stresses (target of the prediction model) with 
the temperatures (input of the prediction model) of target B and input Td as referential 
validating in this way the accuracy of the model along the time period under study. 

6. FINAL REMARKS 

This paper presented a new methodology based on neural networks (NN) for the prediction of 
structural behaviour on the 25 de Abril bridge in Lisbon, Portugal. NN was applied to static 
data corresponding to five years of hourly measurements gathered from the SHM system 
installed at the mid-span section bridge. 

Results showed the good performance of the learning algorithm to characterize the structural 
behaviour. The residual analysis, the moving average, and the statistical measurements aimed 
at characterizing the behaviour pattern of the bridge, for both, observed and residual values, 
reducing the intrinsic randomness and allowing to review the information that was not 
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described by the model predictions. With this analysis, it was possible to conclude that the 
proposed methodology can work as an effective strategy for the definition of an accurate 
baseline and reference indicators for further novelty detection analysis and characterization of 
complex critical infrastructures. In order to validate the robustness of the methodology and 
assess the evolution of the predicted responses in regard of the proposed inputs is 
recommended to perform a sensitivity analysis as further task.  
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