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Type Assignment in Logic Programming

by João Lúıs Alves Barbosa

The goal of this thesis is to describe a type discipline for logic program-

ming, where one can dynamically and statically define well-typed programs,

automatically infer useful type information, and use it to detect type errors.

Types play an important role in the verification and debugging of pro-

gramming languages, and have been the subject of significant research in

the logic programming community. However, most Prolog compilers usually

do not include any formal static type verification, and the dynamic type

verification for some built-in predicates lacks a typed semantics as basis.

The following are the contributions of this work:

• a three-valued declarative semantics for logic programming, where the

third value corresponds to a type error;

• a typed operational semantics for logic programming, where we define

exactly what is meant by a type error in a program and in a query,

and show how the semantics can dynamically detect type errors;

• a type system that defines which programs are well-typed with which

types through type rules, and a proof that the type system is sound;

• a type inference algorithm that, through type constraint generation fol-

lowed by constraint solving, automatically infers types from programs,

and a proof that the algorithm is sound;

• a closure operation that given input types returns closed types that are

instances of the input types, and that are closer to the programmer’s

intention.

HTTP://SIGARRA.UP.PT/UP/PT/WEB_BASE.GERA_PAGINA?P_PAGINA=HOME
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O objetivo desta tese é definir uma disciplina de tipos para programação

em lógica, onde se pode definir, tanto estatica como dinamicamente, pro-

gramas bem tipados, inferir tipos úteis e usar essa informação para detetar

erros de tipos.

Tipos são essenciais na verificação e desenvolvimento de programas em

várias linguagens de programação. Por isso, foram o alvo de bastante inves-

tigação na comunidade de programção em lógica. Contudo, a maioria dos

compiladores de Prolog não inclui nenhuma verificação de tipos estática e a

verificação de tipos dinâmica para alguns built-ins não tem base semântica.

As contribuições desta tese são as seguintes:

• uma semântica declarativa de três valores para programação em lógica,

onde o terceiro valor corresponde a um erro de tipos;

• uma semântica operacional tipada para programação em lógica, onde

definimos exatamente o que corresponde a um erro de tipos num pro-

grama e numa chamada ao programa, e mostramos como a semântica

pode ser usada para detetar erros de tipos;

• um sistema de tipos que define que programas estão bem tipados e

com que tipos e uma prova de que o sistema está correto;

• um algoritmo de inferência que, através da geração e resolução de res-

trições de tipos, automaticamente infere tipos para programas, assim

como uma prova de que o algoritmo está correto;

• uma operação de fecho que dados tipos de input retorna tipos fechados

que são instâncias dos tipos originais mais próximos da intenção do

programador.

HTTP://SIGARRA.UP.PT/UP/PT/WEB_BASE.GERA_PAGINA?P_PAGINA=HOME
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http://sigarra.up.pt/fcup/pt/web_page.inicial
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Chapter 1

Introduction

Types play an important role in the verification and debugging of program-

ming languages, and have been the subject of significant research in the logic

programming community [2, 3, 6–16]. Most research has been driven by the

desire to perform compile-time type checking.

One important line of this work views types as approximation of the

program semantics [6, 7, 9, 10, 17]. This kind of approaches use descriptive

types, which are types that try to, in some way, describe a program prop-

erty. In order to describe the semantics of a program, tuple distributive

closures of regular types are usually used [6, 7, 9, 10, 17, 18]. Regular types

are types that can be described by regular term grammars [6], and they have

decidable intersection, union, subset, and unification operations. The tuple

distributive closure assures that type inference is decidable [8]. However,

type inference in these approaches sometimes results in overly broad and

uninteresting types, that end up not being useful for type error detection.

This is mostly due to the way logic programmers write their programs.

Example 1: Let append be the predicate where the the third argument is

a list corresponding to the concatenation of the lists in the first two argu-

ments, defined traditionally. The following example shows its types as an

approximation of the program semantics. Let ti be the type of the i-th

argument of append, “+” mean type disjunction and “A” and “B” be type

variables:

t1 = [] + [A | t1]

t2 = B

t3 = B + [A | t3]

The goal in this previous line of research was either to infer types from

programs that are over approximations of the program semantics - type

inference [6, 7, 17, 19–22]-, or to verify, given a program and types, that the

types are an over approximation of the program semantics - type verification

[23,24].
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Another type of approach used prescriptive types as in Mycroft and

O’Keefe type system [11], later reinterpreted by Lakshman and Reddy [12].

Some of the advantages come from having a more strict type discipline,

therefore more type errors can be detected at compile-time, and type infor-

mation is much closer to the programmer’s intention as defined by Naish

[25]. These approaches, however, tend to limit the expressiveness of logic

programs. This limitation of expressive power can be a turn off for a class of

programmers that wants to use logic programming for real world applications

which require some complex properties that were lost.

There was also an approach to infer well-typings of a program by Schri-

jvers, Bruynooghe, and Gallagher [26, 27]. These types do not describe the

success set of predicates, but instead describe conditions for which the pro-

gram succeeds. This type information was used in termination analysis [27].

In practice, static type-checking is not widely used in actual Prolog sys-

tems, with the notable exception of the CIAO-Prolog system that uses an

assertion language in order to provide pre and post type conditions, that are

verified at compile-time and run-time [28–33]. A more in depth survey on

all Prolog implementations and the type information that each one uses can

be found in [5] and in Section 2.3.

Note that, Prolog systems do rely on dynamic type checking to ensure

that system built-in parameters are called with acceptable arguments, such

as is/2. In fact, the Prolog ISO standard defines a set of predefined types

and typing violations [34].

Dynamic type checking has the major disadvantage that the program

needs to run in order to detect type errors. In contrast, static typing allows

for the static detection of type errors, which in turn allows for a faster

development of programs and a bigger confidence in the program correctness.

1.1 Contributions

In the type discipline we describe in this thesis, we allow for the dynamic and

static detection of type errors. The goal is to define a semantically sound

type discipline that pragmatically is able to infer useful type information.

With this goal in mind, we have the following contributions.

Three-Valued Semantics

Our first contribution is a three-valued semantics where the third value,

wrong, corresponds to a type error. The semantics of a logic program given

some interpretation for symbols is no longer either true or false, but it can

also be wrong.
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Example 2: One example of a program that has a wrong semantic value,

and therefore a type error, assuming a different type for integers and atoms,

is:

p(1).

q(a).

r(X) :- p(X), q(X).

Example 3: One example of a program that does not have a wrong semantic

value, even though the result for any query for predicate r is false:

p(1).

q(2).

r(X) :- p(X), q(X).

Note that in the first example one unifies terms of different types, while

in the second example unification is applied to terms of the same type.

Dynamic Typing

Our second contribution is a dynamic type checker. We extend the Martelli-

Montanari unification algorithm [35] to be interpreted in a three-valued logic

called Weak Kleene Logic, where the third value wrong corresponds to a

type error. After that, we define a new operational semantics for logic pro-

gramming called TSLD-resolution, based on SLD-resolution, which is the

de facto operational semantics of logic programming, extending it with a

typed unification algorithm. In this semantics, we define what is a type er-

ror in a program and what is a type error in a query. Moreover, we prove

that TSLD-resolution is sound with respect to the three-valued declarative

semantics. This work was published in [4].

Static Typing

We then present a type system that describes which programs are well-typed.

Firstly, we present a type language that corresponds to regular types that

uses type symbols defined by (possibly recursive) type definitions. We pro-

vide a semantics for types, both ground and polymorphic. We then present

the rules of our type system, which define which programs are well-typed

and with which types. The type system uses several important auxiliary
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definitions, such as subtyping and type equivalence. Finally, we prove that

the type system is sound with respect to the semantics, in the sense that,

for proper interpretations with tuple distributive domains, if there is a type

derivation in the type system, then the types are semantically correct.

This work was published in [2] and slightly modified for presentation in

this thesis.

Type Inference

We also present a type inference algorithm that given a program infers types

that can be derived by the type system. This algorithm uses type constraint

generation followed by constraint solving. We prove termination, and cor-

rectness of the algorithm with respect to the type system. This work was

published in [3] and was modified for presentation in this thesis.

Through this thesis, we follow the seminal Milner’s work [36] on types

for programming languages, where we have:

Semantics TypeSystem Inference

Soundness Soundness

Completeness?

Figure 1.1: An overview of our approach

Closed Types

Finally, we define a heuristic that can be applied to the types resulting

from type inference in order to get types that are closer to the programmer’s

intention in the sense defined by Naish in [25]. Although it is a heuristic, it is

based on some fundamental principles. We provide some examples of how the

application of the algorithm can improve the resulting types. Furthermore,

we introduce the concept of data type definitions and show how they can be

added to programs to considerably improve type inference. This notion is

based on data definitions in functional programming and drastically reduces

the extra amount of work that is involved in providing type signatures for

every predicate. We also show the results we got on some example programs.

This work was originally published in [1], and extended for this thesis.
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Both the type inference algorithm and the closure operation were imple-

mented in Prolog and are available in

https://github.com/JoaoLBarbosa/TypeInferenceAlgorithm

1.2 Outline

The rest of this thesis is organized as follows:

Chapter 2: Background

In Chapter 2, we provide the basis for the rest of this thesis. We provide

a brief description of logic programming syntax and semantics, both declar-

ative and operational. We also provide a detailed description of the most

influential approaches to introduce types in logic programming, including

prescriptive types, descriptive types, well-typings, amongst others. Finally,

we compare other approaches to the one presented in the rest of this thesis,

including parts that are similar, but most importantly where they differ.

Chapter 3: Dynamic Typing

In Chapter 3, we present a typed operational semantics which uses a novel

typed unification algorithm, based on a three-valued logic that uses type

information in order to unify terms.

We then describe how to dynamically detect type errors in programs,

and in queries. We also prove the correctness of the operational semantics

with respect to a typed declarative semantics.

Chapter 4: Static Typing

In Chapter 4, we present present a type system that describes which pro-

grams are well-typed. We prove correctness of the type system with respect

to a three-valued declarative semantics. The types used in the type system

are tuple distributive closures of regular types.

Chapter 5: Type Inference

In Chapter 5, we present a type inference algorithm that uses type constraint

generation followed by constraint solving in order to automatically infer

types for logic programs. We prove that our algorithm is sound in the sense

that types inferred by the algorithm can be derived in the type system.

Both in this chapter and in the previous one we provide extensions to

the type system and the algorithm to deal with arithmetic built-ins that are

common in most Prolog compilers.

https://github.com/JoaoLBarbosa/TypeInferenceAlgorithm
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Chapter 6: Closed Types

In Chapter 6, we describe a heuristic, the closure operation, that is applied

to the types resulting from type inference, in order to solve the problem of

overly-broad types, and show the results we got from applying it to several

examples. We also describe how we enable optional data type declarations,

not in the form of type signatures for predicates, but on the form of data type

definitions that can be used during type inference, and show some interesting

results we got.

Chapter 7: Conclusions and Further Work

In Chapter 7, we summarize our results, and discuss some of the limitations

of dynamic type checking, type inference, and the closure operation. We then

provide several possible lines of future work, based on the work presented in

this thesis.
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Chapter 2

Background

Logic programming is a programming paradigm with a long history. In

logic programming, programs are represented by Horn clauses, and Selective

Linear Definite(SLD)-resolution is used as a computational procedure to ex-

ecute such programs [37–39]. One of the advantages of logic programming is

its declarative nature that provides an easy semantic interpretation of logic

programs. This semantics can be described operationally, in terms of how

programs compute answers, or declaratively, in terms of what answers pro-

grams compute [40]. The SLD-resolution, chosen as the de facto operational

semantics for logic programming, is proven sound, and complete for a large

class of programs.

On the other hand, types are one of the key components in most pro-

gramming languages. They allow for control, documentation, and program

verification. Logic programming was initially thought of and designed with-

out types, but, since then, several authors have tried to introduce types in

logic programming to take advantage of the huge benefits they could provide

in the verification and debugging of programs.

In this chapter, we will describe the basics of syntax and semantics of

logic programming, as well as give a walk-through several previous works on

types for logic programming languages.

2.1 Logic Programming

The way programs are represented in logic programming is through Horn

clauses. Queries, which are calls to programs, are represented by logic for-

mulas. The goal of computation, via SLD-resolution, in a logic program,

given a query, is to find a refutation to the query, by finding a substitution

to the variables in it such that the query is a logical consequence of the

program.

This computation, via resolution, can have several obstacles, such as

non-termination, inefficient code, etc. In this section, we will not worry with

the implementation of the concepts but instead give the formal definitions

behind them, in order to present the work that has been done.



8 Chapter 2. Background

2.1.1 Syntax of Logic Programming

Logic programs assume an alphabet composed of symbols from disjoint

classes. We assume an infinite set of variables Var, an infinite set of function

symbols Fun, parenthesis and the comma. Using this alphabet we are able

to define terms [40,41].

Terms are defined as follows:

• a variable is a term,

• if f is an n-ary function symbol and t1, . . . , tn are all terms, then

f(t1, . . . , tn) is a term,

• if f is a function symbol of arity zero, then f is a term and it is called

a constant.

We will call ground terms to terms that have no variables, and complex

terms to terms that start with a function symbol of arity > 1.

We can now extend this alphabet in order to create a language for pro-

grams. We start by adding an infinite set of predicate symbols Pred and

the reverse implication symbol ← [40, 41]. The definition of atoms, queries

and programs is as follows:

• an atom is a predicate symbol p associated with an arity n, applied to

terms t1, . . . , tn, which we write as p(t1, . . . , tn);

• a query is a finite conjunction of atoms;

• a clause is of the form H ← B̄, where H is an atom and B̄ is a query;

• a program is a finite set of clauses, which we will represent by P .

All variables in clauses are universally quantified while all variables in

queries are existentially quantified.

Example 4: The following is the definition of a common logic program,

called append that represents the concatenation of two lists. We replaced←
with :- for implication, since it is the notation used in logic programming

languages. The meaning remains the same.

append([ ], X, X).

append([H|T], Y, [H|Z]) :- append(T, Y, Z).

Throughout the rest of this thesis, whenever we refer to the predicate

append, we are referring to this definition.
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2.1.2 Semantics of Logic Programming

Here we will give a brief overview of the semantics of logic programs. For a

detailed description, the reader may use [40,41].

Operational Semantics

Logic programming uses logic formulas as representation of programs and a

refutation procedure, based on the resolution inference rule, for computation.

This resolution method is the SLD-resolution, first proposed by Kowalski

[42].

The main computational mechanism at work in SLD-resolution is unifi-

cation. Unification between two logic terms consists of finding a substitution

such that when applied to both terms makes them equal. A substitution is

a set of pairs of the form X 7→ t, and it is interpreted as variable X being

replaced by term t. The most used unification algorithms were initially de-

fined by Robinson [43], and later redefined by Martelli and Montanari [35].

Both these algorithms output most general unifiers (MGU) of the terms they

are applied to. Most general unifiers of two terms are such that every other

unifier is less general, i.e., either a renaming or an instance.

The main goal of SLD-resolution is, given a program P and a query Q,

to find a computed answer substitution (CAS) θ, i.e., a substitution for the

variables in Q, such that θ(Q) is a logical consequence of the program.

For this we will apply a SLD-derivation step several times until we reach

the empty query.

Definition 1 - SLD-derivation step: Given a program P and a query

Q = A1, . . . , An, we select an atom Ai from Q, and a clause H ← B1, . . . , Bm

from P . Suppose Ai and H unify and let θ be an MGU. Then we can replace

Ai by B1, . . . , Bm in Q and apply θ to the query. We will represent an SLD-

derivation step by A1, . . . , Ai, . . . , An =⇒ θ(A1, . . . , B1, . . . , Bm, . . . , Am).

Now an SLD-derivation corresponds to successive applications of the

SLD-derivation step.

There are some choices we need to make for applying each SLD-derivation

step. We need to choose the selected atom from the query, the selected clause

from the program, the MGU, and the renaming of the clause that may need

to be performed to make sure that the clause and the selected atom share

no variables. It is proven that the choice of the selected atom does not

change the success of an SLD-derivation [40]. Also, the choice of MGU is

not important so as long as it is idempotent [40], and the choice of renaming
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is irrelevant [40]. The choice of the selected clause from the program gives

rise to the concept of an SLD-tree.

An SLD-tree is a tree where the root is the query Q, and each child of

each node corresponds to a different clause applied in the SLD-derivation

step for the selected atom. Note that here we assume a fixed selection rule

of an atom in Q, since the results are independent from the selected atom.

Example 5: Let us see the SLD-tree for a program consisting of the append

predicate and query append(X,[1],Y). We will call c1 the first clause in the

program, and c2 the second.

append(X,[1],Y)

□

c1, θ1

append(X1,[1],Y1)

□

c1, θ3

append(X2,[1],Y2)

. . . . . .

c2, θ4

c2, θ2

The labels θi in the SLD-tree correspond to the MGU at each step: θ1 =

{X 7→ [ ], Y 7→ [1]}, θ2 = {X 7→ [H | X1], Y 7→ [H | Y 1]}, θ3 = {X 7→
[H], Y 7→ [H, 1]}, and θ4 = {X 7→ [H | [H1 | X2]], Y 7→ [H | [H1 | Y 2]]}. If

the MGU labels a branch that ends in success, it is the CAS.

As we can see, this SLD-tree is successful an infinite number of times,

corresponding to the different possibilities of lists we can append the list [1],

in order to obtain another list.

Declarative Semantics

Since logic programming uses logic formulas, one can reason about the truth

values of those formulas. First, we need to give meaning to the symbols of the

program. To every function symbol we associate a mapping from terms to

terms, such that each complex term builds a semantic value that corresponds

to a tree, where the root is the function symbol that starts the term, and the

children are the values of the terms in the tuple. To every predicate symbol

we associate a set of accepted tuples of semantic values, corresponding to

the tuples in the relation represented by the predicate symbol.

Then, an interpretation can be seen as a particular set of accepted tuples

of terms for each predicate symbol occurring in a program. Some of these

interpretations can result in clauses having the value true, and other clauses

having the value false.
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If an interpretation I is such that for any substitution for variables in a

program, every clause in the program has the value true, then that interpre-

tation is called a model of the program.

There are several interpretations that are models of a program P , and

it is proven in [40, 41] that the intersection of these interpretations is the

minimal model of the program.

Whenever all models of the set of formulas P are also models of the set

of formulas Q, we say that P |= Q.

We can then use the definition of models to prove the soundness of SLD-

resolution. The theorem is as follows [40,41].

Theorem 1 - Soundness of SLD-resolution: Given a program P and

a query Q. If there is a successful derivation of P ∪ {Q} with CAS θ, then

P |= θ(Q).

SLD-resolution is also proven complete for a large set of programs.

Theorem 2 - Strong Completeness of SLD-resolution: Given a pro-

gram P , a query Q, and a substitution θ suppose that P |= θ(Q). Then

for every selection rule there is a successful SLD-derivation of P ∪ {Q} with

CAS η, such that η(Q) is more general than θ(Q).

Fix-point Semantics

The immediate consequence operator TP [40, 41] takes a set of atoms and

calculates the consequence of such set of atoms in the program P . The

application of this operator n number of times is represented by TP ↑ n.

We represent by TP ↑ ω(∅) the least fix-point of the TP operator. It is also

proven that TP ↑ ω(∅) corresponds to the minimal model for the program P

[40, 41].

This completes the classical semantics of logic programming, both oper-

ational and declarative. There has also been some work done on a denota-

tional semantics for logic programming [44], where clauses are interpreted as

functions from substitutions to substitutions. This interpretation was proven

equivalent to the SLD-resolution and was used to interpret Prolog programs,

arguing that the traditional declarative, model-theoretical, semantics is not

appropriate to reason about the behavior of Prolog programs.

2.2 Types in Logic Programming

Types are used in programming languages for several reasons. Besides im-

proving documentation of programs and making programs clearer to read
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and develop, they also provide some confidence on the program correctness,

help in termination analysis, and in the process of debugging during program

development.

Logic programming was initially defined as an untyped programming

paradigm and Prolog, in particular, was designed with only one type in

mind, the term. For this reason, pure Prolog has no type checking or type

information.

Due to the utility provided by types in program development and ver-

ification, several authors have proposed type disciplines for logic program-

ming. Some of these approaches are based on strict type disciplines and

use prescriptive types, where they become part of the syntax and semantics

of programs, and restrict the class of programs accepted by the language

to those well-typed. Other approaches follow a descriptive approach where

types are properties that follow from the program and describe its semantics.

2.2.1 Type Language

One of the first steps towards introducing types into an untyped program-

ming language is to define the language of types. Several authors [6, 8, 9,

20,22,23,45,46] use regular types as the language of types in logic program-

ming. Regular types can be described by regular term grammars [6, 20, 47],

and comparison and intersection of regular types is decidable. Regular types

may be tuple distributive [6,8,20] and can also be described by regular unary

logic programs [9, 10, 22, 23, 45], meaning they can be translated into logic

programs and integrated easily in the program itself for type verification at

run-time.

Tuple distributive types are types for which the following condition holds:

Definition 2 - Tuple Distributive Types: Let τ be a type, containing

the set of semantic values S. We say that τ is a tuple distributive type if

for every pair f(t11, . . . , t
1
n) ∈ S and f(t21, . . . , t

2
n) ∈ S, we know that S ⊇

{f(ti11 , . . . , t
in
n ) | 1 ≤ i1, . . . , in ≤ 2}.

It is easier to understand the definition through an example.

Example 6: Let τ be a tuple distributive type containing the values f(a, 1)

and f(2, b). Then we know that τ also contains f(a, b) and f(2, 1).

Types with this property were first described by Mishra in [20] and are

called cartesian closed types. Zobel included this property as a condition for

types to be deterministic [6]. Other authors [9,45] also use tuple-distributive

regular types.
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Some other authors, such as Naish, define types as arbitrary sets of terms

[24] that can be described by full logic programming. This is different from

approaches that use regular unary logic programs, since it includes a larger

class of programs, and therefore, of types.

Mycroft and O’Keefe [11,12] described a type language, where types can

be formed using type variables and type constructors with rank (arity) ≥ 0.

This approach is closer to functional programming types.

2.2.2 Well-Typedness

After a type language has been defined, the goals of introducing types in

logic programming can be several.

Prescriptive Types

In a prescriptive system, types are part of the semantics of programs and,

therefore, well-typed programs correspond to programs that are well-formed

with respect to the type rules defined by the system. This is the case of

Mycroft and O’Keefe system [11]. There, a polymorphic type system is de-

scribed for Prolog. For this, type declarations are added to the language,

where types are declared for function symbols (including constants), predi-

cate symbols and variables. These declarations are built using type variables

and type constructors. Then, a definition of well-typed programs is given,

based on the well-formedness of programs with respect to the types of each

symbol.

The lack of semantics for this approach was later solved by Lakshman

and Reddy [12]. There, the authors redefine the language of well-typed

programs and give the semantics for this language, which they call Typed

Prolog. Typed Prolog is a prescriptive typed language, where a type sys-

tem characterizes well-formed Typed Prolog programs. Then, both a typed

model-theoretic semantics and a fix-point semantics are described for Typed

Prolog, and they are proven equivalent.

In Typed Prolog, the language of programs for logic programming is

extended with an infinite set of type constructors T, where every type con-

structor is associated with an arity, and an infinite set of type variables Λ.

Then, given a finite set of unique type assertions to variables Γ, the type

rules are in Figure 2.1, taken from [12]. A well-formed expression can be

derived from these rules.

Example 7: Consider the following alphabets:

T = {list1}

F = {nil : list(α), [ | ] : α× list(α)→ list(α)}



14 Chapter 2. Background

Γ ⊢ X : τ if (X : τ) ∈ Γ

Γ ⊢ t1 : θ(τ1) . . . Γ ⊢ tk : θ(τk)
Γ ⊢ f(t1, . . . , tk) : θ(τ ′) if f : τ1 × · · · × τk → τ ′

Γ ⊢ t1 : θ(τ1) . . . Γ ⊢ tk : θ(τk)
Γ ⊢ p(t1, . . . , tk)Atom

if p : Pred(τ1 × · · · × τk)

Γ ⊢ ϵ Formula

Γ ⊢ A Atom
Γ ⊢ A Formula

Γ ⊢ t1 : τ Γ ⊢ t2 : τ
Γ ⊢ (t1 = t2)Formula

Γ ⊢ ϕ1 Formula Γ ⊢ ϕ2 Formula
Γ ⊢ (ϕ1, ϕ2) Formula

Γ ⊢ t1 : θ(π1) . . . Γ ⊢ tk : θ(πk) Γ ⊢ ϕ Formula
⊢ [∀X1 : τ1, . . . , Xn : τn](p(t1, . . . , tk) : −ϕ) Clause

if Γ = {X1 : τ1, . . . , Xn : τn}
p : Pred(π1 × · · · × πk), and
θ is a renaming substitution

⊢ C1 Clause . . . ⊢ C2 Clause
(C1 . . . C2) Program

Figure 2.1: Type Rules for Typed Prolog

P = {append : Pred(list(α)× list(α)× list(α))}

Then, the following is a version of a well-formed Typed Prolog program,

defining append:

[∀Y : list(α)] append(nil, Y, Y )←
[∀A : α,X : list(α), Y : list(α), Z : list(α)]

append([A|X], Y, [A|Z]])← append(X,Y, Z).

It is obviously bothersome for the programmer to declare types for every

single symbol in the program, so type reconstruction can be performed if

part of the declarations for variables and predicates are missing [12].

One big limitation of this type system is the fact that predicate symbols

only have one type, and as we can see in the rule for a clause, every occurrence

of a predicate in the head of a clause must be equivalent to the type of the

predicate, up to renaming. The authors call this restriction definitional

genericity. This limitation prevents predicates to work on more than one

type as illustrated in the following example from [12].

Example 8: Given the alphabets T = {man0, woman0}, F = {john :

man,mary : woman}, and P = {married : Pred(man × woman)}, the

following is a well-typed program:
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married(john, mary).

However, we can never define a predicate that works on man and woman at

the same time, for example:

person(john).

person(mary).

since now the type signature for this predicate needs to include a sum of the

two types, which is not allowed as it goes against the definitional genericity

restriction.

Other logic programming and functional logic programming languages

use prescriptive types [48–50]. Mostly all of them are based on similar con-

cepts as the approach presented above, with more expressive type construc-

tors based on functional programming language such as Haskell-style data

declarations.

Descriptive Types

In descriptive systems for logic programming, well-typedness is usually more

difficult to describe. For instance, if we assume that the type of a predicate

is the set of tuples of terms for which the predicate succeeds, what does it

mean for a program to be well-typed?

Several authors assume that the only way to know is for the programmer

to declare the types for the predicate and then check if the success set of the

predicate falls within the declaration [10,15,24].

Mishra and Zobel argue that if a clause never succeeds, so it does not

contribute to the success set of the predicate, then the clause has a type error

[6, 20]. They also argue that if the empty type is inferred for a predicate

argument, then the predicate is ill-typed [6, 20]. Zobel [6] also argues that

the notion of well-typedness applies only to programs and queries together

and says that if P ∪ {Q} is well-typed, then at every step of the derivation

the atoms are well-typed. This is undecidable in general [6].

Schrijvers, Bruynooghe, and Gallagher define well-typings for programs

[26,27,51]. A well-typing for a predicate is defined given types for variables

and can be smaller, or larger, than the success set of the predicate. By defi-

nition a well-typing of a program gives some guarantees about the program,

but very little information about the true intention of the programmers or

the semantics of the program.

One other alternative is the one given by Naish [24], where the types for

a predicate come from the theoretical and intended specification thought by

the programmer. Naish argues that logic programs are not consequences of

the specifications intended by the programmer. As an example, the append
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predicate has a specification “append(A,B,C) is true if and only if the list

C is the concatenation of list B onto list A”. But the usual definition of

append accepts the atom append([ ], 2, 2).

As a solution, Naish proposes the addition of type declarations to the

program. Through program transformation, we would get a program that

includes type information and programs would only accept atoms that are

correct and type correct.

Example 9: Given a program defining the predicate append and the fol-

lowing type declaration and type signature:

append type(A, B, C) :- list(A), list(B), list(C).

list([]).

list([A|B]) :- list(B).

We get the following transformed program for append:

append([], A, A) :- append type([], A, A).

append([A|B], C, [A|D]) :- append(B, C, D),

append type([A|B], C, [A|D]).

Note that the predicate definition in the transformed program includes

the type verification for each argument. Naish discussed the inefficiency of

this process and points to possible improvements [24].

Naish also argues that this model does not exclude most of the well-

defined and bug-free programs, but does not prove so. An algorithm that

outputs a list of the clauses from the transformed program that always fail

is described. It is recognized that “a compromise between the time spent

and the number of possible errors detected” [24] must be made.

In a later paper, Naish [52] describes a three-valued semantics for logic

programming, where the third value represents “inadmissible” or “ill-typed”

atoms. A predicate is well-typed when it accepts terms from the intended

types, while the behavior for inadmissible terms, meaning terms that are not

of the intended types for the predicate, is uncertain [25,52,53].

2.2.3 Type Inference

In order to avoid type declarations, there has been a lot of research into

type inference [6, 9, 17, 18, 20, 22, 27, 54]. Several of these works infer types

[6, 55], or well-typings [27], from programs using constraint generation and

solving. Several others use abstract interpretation [17–19,23,54]. Other lines

of research use program transformation [9, 22].
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In particular, Zobel’s approach [6] was a very influential one. There, Zo-

bel builds an algorithm that can infer regular types for predicate arguments.

Zobel argues that programs have implicit types that can be defined in terms

of the program’s success set. The goal of his type inference algorithm is to

compute approximations to those implicit types, which may have no relation

to the programmers intended types. He also argues that the inferred types

are often crude approximations and, therefore, type inference is not a very

useful tool [6]. Type inference is performed through an iterative function

application, that starts with the universal type for each predicate argument

and refines the definitions of those types at each iteration, until a fix-point

is reached. At each iteration, constraints are generated and solved from the

predicate definition.

In [26, 27], the authors infer well-typings for the program, through con-

straint generation and solving. A normal form and a solved form are defined

and constraints are solved until those forms are reached. This process is de-

cidable, so it always finishes. This approach results in very different types,

as can be seen in the example below, since they do not try to approximate

the success set of the predicates.

Example 10: Zobel describes type rules as: α → {τ1, . . . , τn}, where

τ1, . . . , τn are type terms, constructed from type constants, base types, type

variables, type symbols, and type function symbols applied to type terms.

The resulting types from type inference as presented in [6] for the predicate

append are:

T = {αappend
1 → {[ ], [µ|αappend

1 ]},
αappend
2 → {µ},

αappend
3 → {µ, [µ|αappend

3 ]}}

where µ is the universal type, and αappend
i is the type for the i-th argument

of the predicate.

In [27], the inference of well-typings for the append predicate results

in the following type signature for append(a1(T),a2(T),a2(T)), where the

types are defined as:

a1(T) → [ ]; [T|a1(T)]

a2(T) → [T|a2(T)]

We can clearly see that the types obtained from the inference of well-

typings are much more informative and closer to the programmer’s intention

according to Naish [25], however, the well-typings are not a conservative
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approximation of the success set. In particular, they do not even include the

atom append([],[],[]).

In any approach, there are some restrictions to the results of type infer-

ence we can possibly get. For instance, when inferring polymorphic types for

recursive predicates, we know that, in general, type inference with polymor-

phic recursion reduces to semi-unification, which is known to be undecidable

[56]. There are however some works on types that argue that even thought

that is the case, the results in practice are decidable for every tested program

[56,57]. Another restriction is the language of types. Checking if a type term

belongs to a type, when types are not tuple distributive is not decidable in

general [8, 20].

2.2.4 Type Checking

After we infer types from a program, or we have declared types for the

predicates, so we have a type signature for the predicates, the approaches

for how to use this information vary.

On the one hand, one can use this information statically to help in the

more efficient compilation of code, or to analyse characteristics of the pro-

gram, such as termination [18]. Also, during type inference, at compile-time,

type errors can be detected, which leads to early bug-detection and more ef-

ficient programming.

On the other hand, one can also use this information to check that given

a query, the query is well-typed, meaning that it will call a predicate with

arguments that are of its type, with respect to the program [6, 45]. One

typical problem, in the approaches where types are approximations to the

success set of a predicate, is to be able to distinguish between (intentional)

failure due to the lack of solutions and (unintentional) failure due to type

errors [6].

We can use the type information at run-time to check calls from untyped

code to typed code, or vice versa [15].

In fact, the definition of type error has not been consistent throughout

the literature on logic programming. As said before, some can argue that

a type error exists if a predicate has no success set, but in practice some

programmers define such predicates and do not want to change neither their

old programs nor their programming style. Because of this, some authors

proposed optional type checking [15], or gradual type systems [55].

Some other authors believe that the semantics of logic programming has

been assumed as being a two-valued logic, when, in fact, it is a three-valued

one [2,53], where the third-value corresponds to nonsensical or inadmissible

uses of predicates.
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2.3 Applications in Prolog Compilers

Ciao Prolog is a Prolog dialect that uses type information [5]. Using its

assertion language that extends the language semantics with pre-conditions,

post-conditions, and several other properties of programs, Ciao does a form

of type verification. If the programmer declares some assertions about types

for some predicate, they are then checked at compile- and run-time. The

type system can be based on Hindley-Milner types (in package hmtypes), on

regular types (in package regtypes), or on types defined by the programmer

as a prop. An example of a programmer defined type is the type for sorted

lists given in Figure 6 in [58], that we show below.

Example 11: A programmer can define a type for a sorted list using the

following piece of code:

:- prop sorted/1. sorted := [] | [_].

sorted([X,Y|Z]) :- X @< Y, sorted([Y|Z]).

Vaucheret and Bueno present a type inference strategy based on abstract

interpretation [59]. They present a new widening operator, implement it in

Ciao, and show some results in terms of efficiency. However, termination is

not guaranteed so the implementation needs to enforce a limit which can be

paid in loss of precision.

Several authors also present a combination of techniques to improve type

analysis in [60]. The authors incentivize type declarations provided by the

programmer. The experimental results suggest that this strategy improves

on the efficiency of type analysis. Some of the advantages of declared types

are pointed out, such as readability (since inferred types often have automat-

ically generated names) of types and type signatures, and better precision

in terms what the programmer intended for the program.

Schrijvers, Santos Costa, Wielemaker, and Demoen also implemented the

type system defined by Mycroft and O’Keefe [61] as an add-on library for

SWI-Prolog and YAP [15]. The type system is optional for each predicate,

which allows for a gradual migration from untyped to typed code. Special

care was put into the interface from typed code to untyped code and vice-

versa. The types in the system are tuple distributive regular types and the

programmer needs to provide both type declarations and type signatures for

the predicates.

2.4 Comparison with our Approach

Our work is the first one to fully encompass types in logic programming

from a semantic basis for types, to a type system, and to a type inference
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algorithm with practical applications. Our semantics differs from previous

ones because it is a three-valued semantics. Previous work on declarative

semantics for logic programming is based on model theory, where some inter-

pretation function either makes clauses true or false in a certain domain [62].

In our work, we extend this model theory approach by using a three-valued

logic, using a specific semantic value for denoting erroneous programs. This

approach goes back to early work on declarative debugging in logic program-

ming [63]. In these early works whether inadmissible atoms succeed or fail

was not important.

This idea was further formalized in logic programming through making

explicit use of the third semantic value, in a previously defined three-valued

semantics [53]. Naish’s third value [52, 53] represents inadmissible calls to

predicates, which Naish argued had unimportant results, meaning they could

be either true or false. The semantics was based on a generalization of

the TP operator for the strong Kleene logic, which captured inadmissibility

with respect to a specification containing mode and type information. The

main difference to our work is that we use the weak Kleene logic [64, 65]

to denote the propagating effect of type errors, which enables us to use our

semantics to establish the semantic soundness of a type system for logic

programming, using the third semantic value as the interpretation of ill-

typed atoms. For us, the third-value corresponds to a wrongful use of a

predicate in the program and therefore it is wrong. This wrong usage of a

predicate is not permitted, so this information needs to propagate and not

disappear.

Previous semantics for typed logic programming, based on different do-

mains of interpretation, were defined before using many-sorted logics [12,48].

These semantics were defined for languages where type declarations formed

an integral part of program syntax and were also used to determine their

semantics. Our work differs from these approaches by defining separate

semantics for untyped programs and types. Three-valued domains of inter-

pretation revealed to be crucial in this separation of both semantics.

While other authors defined a Typed SLD-resolution [25], using a tradi-

tional unification algorithm, we used a typed unification algorithm, which

means the procedure itself returns three possible values. In [25], Typed

SLD-resolution just corresponds to normal SLD-resolution of transformed

programs that contain type information.

In our work, dynamic type checking is possible due to the new typed

unification algorithm, that can be used during resolution, resulting in three

possible answers – true, false, and wrong. In [15], type checking is performed

only on calls from untyped to typed code using program transformation, and

on calls to untyped code from typed code to check whether the untyped code
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satisfies previously made type annotations. In this previous work, type an-

notations for predicates were necessary in both scenarios and the semantic

soundness of these run-time checks was not studied. Here we do a semantic

study of dynamic typing and use it to show that a new operational mech-

anism detecting run-time errors is sound. For this we use predefined types

only for constants and function symbols.

In several previous works, types approximated the success set of a pred-

icate [6,7,9,17]. This approach often leads to overly broad and even useless

types, because the way logic programs are written can be very general and

accept more than what was initially intended. Due to this, several of the

authors recommend the declaration of type signature for predicates as an

alternative [6,45]. These approaches differ from ours in the sense that in our

work types can filter the set of terms accepted by a predicate. Furthermore,

we do not incentivize declarations of type signatures. Instead, programmers

are incentivized to declare either data type definitions, or to declare nothing

and rely on heuristics to obtain more informative types.

Our type system is also new and different from the previous ones in

several ways. A rather influential type system was Mycroft and O’Keefe type

system [61], which was later reconstructed as Typed Prolog by Lakshman

and Reddy [12]. This system has types declared for the constants, function

symbols and predicate symbols used in a program. Besides the difference

in the language of types, one major difference is that in the Mycroft and

O’Keefe type system, each clause of a predicate must have the same type.

We lift this limitation extending the type language with sums of types (union

types), such as in regular type languages, where the type of a predicate is the

sum of the types of its clauses. The semantics of the Typed Prolog system

and our semantics are quite different. The semantics of Typed Prolog was

itself typed, while our semantics uses an independent semantics for programs

and types.

Although we also perform type inference through constraint generation

and solving, the algorithms for these procedures are new and different from

previous ones. In [27], the constraints are generated from the entire pro-

gram, meaning that calls to a predicate could affect the type inferred for

that predicate, which is not true in our algorithm. In [26], the constraints

are generated and solved from stratified strongly connected components, but

the algorithm is different and results in different types for the same predi-

cates. Besides, in these previous works, the inference of well-typings never

fails, while that is not the case in our algorithm, where for some programs,

inference will detect ill-typed programs and fail.

Other relevant works on type systems and type inference in logic pro-

gramming include types used in the logic programming systems Ciao Prolog

[58,59,66], SWI-Prolog and YAP [15]. These systems were dedicated to the
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type inference problem and are not based on a declarative semantics with

an explicit notion of type error. We plan to integrate our system into YAP

as an optional feature.

Furthermore, our definition of closed types is new and, although it follows

from a similar intuition to the ones in [25, 45, 57], it is based on different

principles and results in different types.
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Chapter 3

Dynamic Typing

Logic programming uses logic formulas, in particular Horn clauses, to rep-

resent both programs and calls to programs, i.e., queries. This enables us

to describe the program’s semantics in terms of models for its correspond-

ing logic formulas. The logic underlying all these concepts is first-order logic

(FOL) and it has been shown that we can describe the semantics of logic pro-

grams using concepts of FOL. This is not without limitations, for instance,

non-termination is not a part of the semantics for first-order logic, and the

choice for the order of formulas, or atoms in a query, which is irrelevant in

logic, can affect the result of computation. Besides that, as soon as we try to

make the logic programming language useful in terms of expressiveness and

efficiency, we have to resort to features whose semantics is often not related

to FOL.

One other problem that immediately occurs when going from the concept

of logic programming to a logic programming language is the idea of an error.

The most widespread logic programming language, Prolog, defines a number

of errors, such as instantiation errors, type errors, evaluation errors, among

others. It is not clear what is the correspondence of errors with logic, since

formulas can either evaluate to true or false, while errors stop execution of

programs without returning any solution, which ends up being a different

behavior from both true and false.

We argue that the logic that best describes this behavior is a three-

valued logic. We will be focusing on type errors, and for us the third value

will represent a type error. We then build a three-valued semantics for logic

programming using the three-valued logic called weak Kleene logic [64]. The

first change to the untyped semantics is in unification. We describe a new

typed unification algorithm and build the operational semantics from there.

We prove that the operational and the declarative semantics are equivalent,

and clearly define what we mean by type errors, both in the program and in

the query. The results presented in this chapter were partially presented in

our previous paper [4].
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3.1 Three-Valued Logic

The three-valued logic we chose is the weak Kleene Logic [64], where the third

value, wrong propagates through connectives. This logic, initially introduced

by Kleene, was later reinterpreted by Bochvar [67] and Beall [65], so that

the third value represents nonsensical information. This is the reason why

whenever a connective joins nonsense with any formula, the result is always

nonsense. This is akin to the behavior and the propagation of run-time errors

in a programming language. Particularly in logic programming, the use of

this third semantic value for run-time type errors allows one to distinguish a

program that simply fails from a program that erroneously uses its function

and predicate arguments. This change in the semantics of logic programming

from a two-valued semantics to a three-valued semantics captures the notion

of type error and well-typedness and thus it will be the key in establishing

the precise meaning of what is a semantically sound type system for logic

programming. We will consider that the semantics of our programs follows

a three-valued logic, where the values are true, false and wrong.

In Figure 3.1 we can see the behavior of the wrong value in the ∧ and

∨ connectives. The negation of logic values is defined as: ¬true = false,

¬false = true and ¬wrong = wrong. The connective for implication is such

that a→ b ≡ ¬a ∨ b.

∧ true false wrong

true true false wrong

false false false wrong

wrong wrong wrong wrong

∨ true false wrong

true true true wrong

false true false wrong

wrong wrong wrong wrong

Figure 3.1: Connectives of the three-valued logic - con-
junction and disjunction

3.2 Typed Unification

In order to describe a typed unification algorithm, we will first introduce our

language of types.

3.2.1 Types

We fix the set of base types int, float, atom and string, an enumerable set

of compound types f(σ1, · · · , σn), where f is a function symbol and σi are

types, and an enumerable set of functional types of the form σ1×· · ·×σn → σ,

where σi and σ are types.

We use this specific choice of base types because they correspond to types

already present, to some extent, in Prolog. Some built-in predicates already

expect integers, floating point numbers, or atoms.
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3.2.2 From Traditional Unification to Typed Unification

Solving equality constraints using a unification algorithm [35,43] is the main

computational mechanism in logic programming. Logic programming usu-

ally uses an untyped term language and assumes a semantic universe com-

posed of all semantic values: the Herbrand universe [40,68].

However, in our work, we assume that the semantic values are split among

several disjoint semantic domains and thus equality only makes sense inside

each domain. Moreover each type will be mapped to a non-empty semantic

domain. To reflect this, unification may now return three different outputs.

Besides being successful or failing, unification can now return the wrong

value. This is the logical value of nonsense and reflects the fact that we are

trying to perform unification between terms with different types correspond-

ing to a type error during program evaluation.

Since the goal of unification is to find a substitution, we will start by

describing substitution and some of their properties.

3.2.3 Substitutions

A substitution is a mapping from variables to terms, which binds each vari-

able X in its domain to a term t. We will represent bindings by X 7→ t,

substitutions by symbols such as θ, η, δ . . . , and applying a substitution θ to

a term t will be represented by θ(t). We say θ(t) is an instance of t.

Substitution composition is represented by ◦, i.e., the composition of the

substitutions θ and η is denoted θ ◦ η and applying (θ ◦ η)(t) corresponds to

θ(η(t)). We can also calculate substitution composition, i.e., δ = θ ◦ η as

defined below [40].

Definition 3 - Substitution Composition: Suppose θ and η are substi-

tutions, such that θ = [X1 7→ t1, . . . , Xn 7→ tn] and η = [Y1 7→ t1′, . . . , Ym 7→
tm′]. Then, the composition η ◦ θ is calculated by following these steps:

• remove from the sequence X1 7→ η(t1), . . . , Xn 7→ η(tn), Y1 7→ t1′, . . . ,
Ym 7→ tm′ the bindings Xi 7→ η(ti) such that Xi = η(ti) and the

elements Yi 7→ ti′ for which ∃Xj .Yi = Xj

• form a substitution from the resulting sequence.

A substitution θ is called a unifier of two terms t1 and t2 if and only if

θ(t1) = θ(t2). If such a substitution exists, we say that the two terms are

unifiable. In particular, a unifier θ is called a most general unifier (MGU)

of two terms t1 and t2 if for every other unifier η of t1 and t2, η = δ ◦ θ, for

some substitution δ.
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3.2.4 Typed Unification Algorithm

First order unification [43] assumes an untyped universe, so unification be-

tween any two terms always makes sense. Therefore, it either returns an

MGU of the terms, if it exists, or halts with failure.

We argue that typed unification only makes sense between terms of the

same type. Here we will extend a previous unification algorithm by Martelli

and Montanari [35] to define a typed unification algorithm, where failure will

be separated into false, where two terms are not unifiable but may have the

same type, and wrong, where the terms cannot have the same type.

Definition 4 - Typed Unification Algorithm: Let t1 and t2 be two

terms, and F be a flag that starts true. We create the starting set of equal-

ities as S = {t1 = t2}, and we will rewrite the pair (S, F ) by applying the

following rules until it is no longer possible to apply any of them, or until

the algorithm halts with wrong. If no rules are applicable, then we output

false if the flag is false, or output the solved set S, which can be seen as a

substitution.

1. ({f(t1, . . . , tn) = f(s1, . . . , sn)} ∪Rest, F )→ ({t1 = s1, . . . , tn = sn} ∪
Rest, F )

2. ({f(t1, . . . , tn) = g(s1, . . . , sm)}∪Rest, F )→ wrong, if f ̸= g or n ̸= m

3. ({c = c} ∪Rest, F )→ (Rest, F )

4. ({c = d} ∪ Rest, F ) → (Rest, false), if c ̸= d, and c and d have the

same type

5. ({c = d} ∪ Rest, F ) → wrong, if c ̸= d, and c and d have different

types

6. ({c = f(t1, . . . , tn)} ∪Rest, F )→ wrong

7. ({f(t1, . . . , tn) = c} ∪Rest, F )→ wrong

8. ({X = X} ∪Rest, F )→ (Rest, F )

9. ({t = X} ∪Rest, F )→ ({X = t} ∪Rest, F ), where t is not a variable

and X is a variable

10. ({X = t} ∪ Rest, F ) → ({X = t} ∪ [X 7→ t](Rest), F ), where X does

not occur in t and X occurs in Rest

11. ({X = t} ∪Rest, F )→ (Rest, false), where X occurs in t and X ̸= t

In order to clarify some of these steps we will present three examples for

the three possible results of the algorithm.
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Example 12: Let t1 be f(X, a) and t2 be f(g(a), Y ). We generate the pair

({f(X, a) = f(g(a), Y )}, true) and proceed to apply the rewriting rules.

({f(X, a) = f(g(a), Y )}, true)→1 ({X = g(a), a = Y }, true)→9

({X = g(a), Y = a}, true)→ {X = g(a), Y = a}
Now we can see {X = g(a), Y = a)} as the substitution [X 7→ g(a), Y 7→ a].

This example illustrates that for terms that are unifiable the algorithm

behaves like the untyped version of Martelli and Montanari [35], as the rules

that can be applied to reach an MGU are equal to the ones in the untyped

algorithm.

Example 13: Let t1 be g(X, a, f(1)) and t2 be g(b, Y, f(2)). We generate

the pair ({g(X, a, f(1)) = g(b, Y, f(2))}, true), and proceed to apply the

rewriting rules.

({g(X, a, f(1)) = g(b, Y, f(2))}, true)→1

({X = b, a = Y, f(1) = f(2)}, true)→10

({X = b, Y = a, f(1) = f(2)}, true)→1

({X = b, Y = a, 1 = 2}, true)→5

({X = b, Y = a}, false)→ false.

In the previous example, the terms are not unifiable. In fact, the untyped

algorithm would simply fail. However, if we take the substitution θ = [X 7→
b, Y 7→ a], the terms θ(t1) and θ(t2) have the same type.

Example 14: Let t1 be f(g(X, 1, a), h(1)) and t2 be f(h(2), g(4, b, Y )).

We generate the pair ({f(g(X, 1, a), h(1)) = f(h(2), g(4, b, Y ))}, true) and

proceed to apply the rewriting rules.

({f(g(X, 1, a), h(1)) = f(h(2), g(4, b, Y ))}, true)→1

({g(X, 1, a) = h(2), h(1) = g(4, b, Y )}, true)→2 wrong

The previous example illustrates a case where a wrong is reached and it

also would result in failure in the Martelli and Montanari algorithm [35].

The previously mentioned fact that successful cases of this algorithm are

the same as for untyped first order unification [35] is proved by the following

theorem.

Theorem 3 - Conservative with respect to term unification: Let t1

and t2 be two terms. If we apply the Martelli-Montanari algorithm (MM

algorithm) to t1 and t2 and it returns a set of solved equalities S, then the

typed unification algorithm applied to the same two terms is also successful

and returns the same set of equalities.
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Proof: The proof follows from induction on S.

Base cases:

• Suppose we have an equality of the form f(t1, . . . , tn) = g(s1, . . . , sm)

in S. Then the MM algorithm halts with failure, and our algorithm

halts with wrong.

• Suppose we have an equality in S of the form c = d. Then the MM

algorithm halts with failure, and our algorithm either halts with wrong

or changes F to false, depending on the types of c and d. In either

case, it will not be successful.

• Suppose we have an equality in S of the form c = f(t1, . . . , tn) or,

reversely, f(t1, . . . , tn) = c. Then the MM algorithm halts with failure,

and our algorithm halts with wrong.

• Suppose we have an equality in S of the form X = t, where X occurs

in t. Then, the MM algorithm halts with failure and our algorithm

changes F to false, so it is never successful.

Inductive cases:

• Suppose we have an equality of the form f(t1, . . . , tn) = f(s1, . . . , sn)

in S. Both algorithms generate the same new equalities and replace

the selected one with those in S. Then, by the induction hypothesis, if

the MM algorithm succeeds and outputs a set of solved equalities S′,
so does our algorithm.

• Suppose we have an equality in S of the form c = c. Both algorithms

delete this equality from S. Then, by the induction hypothesis, if the

MM algorithm succeeds and outputs a set of solved equalities S′, so

does our algorithm.

• Suppose we have an equality in S of the form X = X. Both algorithms

delete this equality from S. Then, by the induction hypothesis, if the

MM algorithm succeeds and outputs a set of solved equalities S′, so

does our algorithm.

• Suppose we have an equality in S of the form t = X, where t is not

a variable and X is a variable. Both algorithms replace this equality

from S with the same new one. Then, by the induction hypothesis, if

the MM algorithm succeeds and outputs a set of solved equalities S′,
so does our algorithm.

• Suppose we have an equality in S of the form X = t, where X does

not occur in t and X occurs somewhere else in S. Both algorithms

apply the same substitution to S \ {X = t}, therefore resulting in the
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same set of equalities. Then, by the induction hypothesis, if the MM

algorithm succeeds and outputs a set of solved equalities S′, so does

our algorithm.

In any other case, none of the algorithms apply. ⊓⊔

The new typed unification algorithm always terminates. We prove this

in the following theorem and use it to prove a later property.

Theorem 4 - Termination of the Typed Unification Algorithm: For

any two terms t1 and t2, the typed unification algorithm terminates.

Proof: We define the following metric for the algorithm:

• NV: number of variables that occur more than once on the set of

equalities and that occurrence is as the left-hand side of some equality

• NS: number of occurrences of non-variable symbols

• NX: number of equalities of the form X = X or t = X, where X is a

variable and t is not a variable.

We prove termination by showing that NX reduces to zero. Termination

of the algorithm is proven by a measure function that maps the set to a tuple

(NV, NS, NX). The following table shows that each step decreases the tuple

w.r.t. the lexicographical order of the tuple.

NV NS NX

1. ≤ <

2. 0 0 0

3. = <

4. = <

5. 0 0 0

6. 0 0 0

7. 0 0 0

8. ≤ = <

9. ≤ = <

10. <

11. <
⊓⊔

The following theorem proves typed unification detects run-time type

errors, in the sense that if we try to perform typed unification on terms with

no possible type in common, then the algorithm returns wrong.
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Theorem 5 - Ill-typed unification: If the output of the typed unification

algorithm is wrong, then there is no substitution θ such that θ(t1) and θ(t2)

have the same type.

Proof: The proof follows induction on the number of steps of the algorithm

from the starting t1 and t2, that are represented in each case by t1 = t2. The

number of steps is finite from Theorem 4.

Base cases:

• Suppose we have c = d and c has the same type as d. Then the

algorithm outputs false, not wrong.

• Suppose we have c = d and c has a different type from d. Then the

algorithm outputs wrong, but there is no θ such that θ(c) has the same

type as θ(d), since θ(c) = c and θ(d) = d, and c has a different type

from d.

• Suppose we have X = t, where X occurs in t. Then the algorithm

outputs false, not wrong.

• Suppose we have f(t1, . . . , tn) = g(s1, . . . , sm). Then the algorithm

outputs wrong, but we know there is no θ such that θ(f(t1, . . . , tn))

and θ(g(s1, . . . , sm)) have the same type, since terms starting with

different function symbols always have a different type.

• Suppose we have c = c, then the algorithm outputs the empty substi-

tution, not wrong.

• Suppose we have X = t, where X does not occur in t, or X = X. Then

the algorithm ends with success, and does not output wrong.

• Suppose we have t = X, where t is not a variable. Then, in one step

the constraint set becomes {X = t} and we know, from above, that in

this case our algorithm never outputs the value wrong.

Inductive step:

• Suppose we have f(t1, . . . , tn) = f(s1, . . . , sn). Then, by the induc-

tion hypothesis, if the algorithm outputs wrong for the input ({t1 =

s1, . . . , tn = sn}, true), we know that there is no θ such that ∀i.θ(ti)

and θ(si) have the same type. Therefore, no θ such that θ(f(t1, . . . , tn))

and θ(f(s1, . . . , sn)) have the same type exists either, by the properties

of substitution.

So, we prove that whenever the typed unification algorithm halts with wrong

for some pair of terms t1 and t2, then there is no substitution θ such that

θ(t1) and θ(t2) have the same type. ⊓⊔
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Example 15: Let t1 = f(1, g(h(X, 2)), Y ) and t2 = f(Z, g(h(W,a)), 1).

The typed unification algorithm outputs wrong. We can see in Figure 3.2

that there is no substitution θ such that θ(t1) = θ(t2), nor any substitution

θ such that θ(t1) has the same type as θ(t2), since the highlighted terms

cannot have the same type for any substitution.

f

1 g

h

X 2

Y

f

Z g

h

W a

1

Figure 3.2: Tree representation of terms t1 and t2

3.3 Typed SLD-resolution

The operational semantics of logic programming describes how answers are

computed. Here we define Typed SDL(TSLD)-resolution which returns the

third value wrong whenever it finds a type error. We start by defining a

TSLD-derivation step, which is a variation on the basic mechanism for com-

puting answers to queries in the untyped semantics for logic programming,

the SLD-derivation step. The major difference is the use of the typed unifi-

cation algorithm. Then we create TSLD-derivations by iteratively applying

these singular steps. After this, we introduce the concept of TSLD-trees

and use it to represent the search space for answers in logic programming.

Finally, we interpret the contents of the TSLD-tree.

3.3.1 TSLD-derivation

To compute in logic programming, we need a program P and a query Q.

We can interpret P as being a set of statements, or rules, and Q as being a

question that will be answered by finding an instance θ(Q) such that θ(Q)

follows from P . The essence of computation in logic programming is then

to find such θ, CAS [40].

In our setting the basic step for computation is the TSLD-derivation

step. It corresponds to having a non-empty query Q and selecting from Q

an atom A. If A unifies with H, where H ← B̄ is an input clause, we replace

A in Q by B̄ and apply an MGU of A and H to the query.

Definition 5 - TSLD-derivation step: Consider a non-empty query Q =

Ā1, A, Ā2 and a clause c of the form H ← B̄. Suppose that A unifies (using
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typed unification) with H and let θ be an MGU of A and H. A is called the

selected atom of Q. Then we write

Ā1, A, Ā2 =⇒
c

θ(Ā1, B̄, Ā2)

and call it a TSLD-derivation step. H ← B̄ is called its input clause. If

typed unification between the selected atom A and the input clause c outputs

wrong (or false) we write the TSLD-derivation step as Q =⇒ wrong (or

Q =⇒ false, Ā1, Ā2).

In this definition we assume that A is variable disjoint with H. It is

always possible to rename the variables in H ← B̄ in order to achieve this,

without loss of generality.

Definition 6 - TSLD-derivation: Given a program P and a query Q a

sequence of TSLD-derivation steps from Q with input clauses of P reaching

the empty query, false, or wrong, is called a TSLD-derivation of Q in P .

If the program is clear from the context, we speak of a TSLD-derivation

of the query Q and if the input clauses are irrelevant we drop the reference

to them. Informally, a TSLD-derivation corresponds to iterating the process

of the TSLD-derivation step. We say that a TSLD-derivation is successful

if we reach the empty query, further denoted by □. The composition of

the MGUs θ1, . . . , θn used in each TSLD-derivation step is the CAS of the

query. A TSLD-derivation that reaches false is called a failed derivation and

a TSLD-derivation that reaches wrong is called an erroneous derivation.

In a TSLD-derivation, at each TSLD-derivation step we have several

choices. We choose an atom from the query, a clause from the program,

and an MGU. It is proven in [40] that the choice of MGU does not affect

the success or failure of an SLD-derivation, as long as the resulting MGU is

idempotent. Since for TSLD-derivations the success set is the same as the

ones in a corresponding SLD-derivation, then the result still holds for TSLD.

The selection rule, i.e, how we choose the selected atom in the consid-

ered query, does not influence the success of a TSLD-derivation either [40],

however if you stop as soon as unification returns false, it could prevent us

from detecting a type error, in a later step. Let us show this in the following

example.

Example 16: Consider the logic program P consisting of only one fact,

p(X,X), and the selection rule that chooses the leftmost atom at each step.

Then, if we stopped when reaching false, the query Q = p(1, 2), p(1, a)

would have the TSLD-derivation Q =⇒ false, since typed unification
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between p(X,X) and p(1, 2) outputs false. However, the query Q′ =

p(1, a), p(1, 2) has the TSLD-derivation Q =⇒ wrong, since typed uni-

fication between p(X,X) and p(1, a) outputs wrong.

In fact, as the comma stands for conjunction, and since wrong∧false =

false ∧ wrong = wrong, we have to continue even if typed unification out-

puts false in a step, and check if we ever reach the value wrong. In general,

for any selection rule S we can construct a query Q such that it is neces-

sary to continue when typed unification outputs false for some atom in Q.

Therefore, when we reach the value false in a TSLD-derivation step, we

continue applying steps until either we obtain a value wrong from typed

unification or we have no more atoms to select. In this last case, we can

safely say that we reached false. This guarantees independence of the se-

lection rule. For the following example we use the selection rule that always

chooses the leftmost atom in a query, which is the selection rule of Prolog.

Example 17: Let us continue Example 16. The TSLD-derivation for Q

is Q =⇒ false, p(1, a) =⇒ wrong. Let Q′′ = p(1, 2), p(1, 1). Then the

TSLD-derivation is Q′′ =⇒ false, p(1, 1) =⇒ false.

Note that when we get to false for a typed unification in a TSLD-

derivation, we can only output false or wrong, so either way it is not a

successful derivation.

The selected clause from the program is another choice point we have at

each TSLD-derivation step. We will discuss the impact of this choice in the

next section.

3.3.2 TSLD-tree

When we want to find a successful TSLD-derivation for a query, we need to

consider the entire search space, which consists of all possible derivations,

choosing all possible clauses for a selected atom. We are considering a fixed

selection rule here, so the only thing that changes between derivations is the

selected clause. We say that a clause H ← B̄ is applicable to an atom A if

H and A have the same predicate symbol with the same arity.

Definition 7 - TSLD-tree: Given a program P and a query Q, a TSLD-

tree for P∪{Q} is a tree where the branches are TSLD-derivations of P∪{Q}
and every node Q has a child for each clause from P applicable to the selected

atom of Q.

We will present some terms to classify a TSLD-tree based on what occurs

in its branches.
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Definition 8 - TSLD-tree classification:

• If a TSLD-tree contains the empty query, we call it successful.

• If a TSLD-tree is finite and all its branches are erroneous TSLD-

derivations, we call it finitely erroneous.

• If a TSLD-tree is finite and it is not successful nor finitely erroneous,

we say it is finitely failed.

Example 18: Let program P be:

p(1).

p(2).

q(1).

q(a).

r(X) :- p(X),q(X).

and let query Q be r(1). The TSLD-tree for Q and P is the following

successful TSLD-tree:

r(1)

p(1), q(1)

q(1)

□ wrong

false, q(1)

false wrong

We will now present some auxiliary definitions which are needed to clearly

define the notion of a type error in a program.

Definition 9 - Generic Query: Let Q be a query and P a program. We

say that Q is a generic query of P iff Q is composed of an atom of the form

p(X1, . . . , Xn) for some predicate symbol p that occurs in the head of at least

one clause in P , where X1, . . . , Xn are variables that occur only once in the

query.

Example 19: Let P be the program defined as follows:

p(X,X).

q(X) :- p(1,a).
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Then, given the generic query Q2 = q(X1), we have the following TSLD-

derivation: q(X1) =⇒ p(1, a) =⇒ wrong.

Definition 10 - Blamed Clause: Given a program P and a query Q, a

clause c is a blamed clause of the TSLD-tree for P ∪ {Q} if all derivations

where c is an input clause are erroneous.

The blamed clause is a clause in the program which causes a type error.

A similar notion was first defined for functional programming languages with

the blame calculus [69].

Example 20: Let P be the following program, with clauses c1, c2, and c3,

respectively:

p(1).

q(a).

q(X) :- p(a).

Then for the query Q = p(2), q(b), we have the following TSLD-tree:

p(2), q(b)

false, q(b)

false

c2

false, p(a)

wrong

c1

c3

c1

In this case, c3 is a blamed clause, since every derivation that uses it

eventually reaches wrong. Note that c1 is not a blamed clause, because the

leftmost branch of the TSLD-tree uses c1 but is false.

Definition 11 - Blamed Set: Suppose we have a program P . We call the

blamed set of P the set of blamed clauses of each generic query of P .

Definition 12 - Type Error in the Program: Suppose we have a pro-

gram P . We say that P has a type error if at least one clause c in the blamed

set of P is a blamed clause in every TSLD-tree where it occurs for P ∪{Q},
where Q is any generic query. We call c an erroneous clause of P .
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Note that if a program does not have a type error, then there is no blamed

clause in the blamed set of P that always leads to erroneous derivations.

Example 21: Assume the same program from Example 8. Let Q1 = p(X1)

and Q2 = q(X1) be generic queries of P . The TSLD-trees for P ∪ {Q1} and

P ∪ {Q2} are:

p(X1)

□

c1

q(X1)

□

c2

p(a)

wrong

c1

c3

As we can see, the blamed set of P is {c1, c3}, and c3 is an erroneous

clause of P . Note that c1 is not an erroneous clause of P since in the leftmost

TSLD-tree, it is used but not a blamed clause.

Intuitively, having a type error in the program means that somewhere in

the program we will perform typed unification between two terms that do

not have the same type.

Consider a generic query Q = p(X1, . . . , Xn). For some derivation, after

one step, we will have θ(B̄), where H ← B̄ is a clause in P and θ is a

unifier of p(X1, . . . , Xn) and H. Since θ, or any other idempotent MGU

of p(X1, . . . , Xn) and H, is a renaming of {X1 7→ t1, . . . , Xn 7→ tn}, where

H = p(t1, . . . , tn), and since the variables X1, . . . , Xn do not occur in B̄

because the clause is variable disjoint from the query by definition, then

θ(B̄) = B̄.

After selecting the erroneous clause c, every TSLD-derivation is such

that Q0 =⇒ · · · =⇒ Qn =⇒ wrong. Thus, at step Qn, the selected atom

comes from the program and every MGU applied up to this point is from

substitutions arising from the program itself and not the query. Therefore,

the type error was in the program.

Definition 13 - Type Error in the Query: Let P be a program and

Q be a query. If there is no type error in P and the TSLD-tree is finitely

erroneous, then we say that there is a type error in the query Q with respect

to P .

If there is no type error in the program P but the TSLD-tree is finitely

erroneous, then that error must have occurred in a unification between terms

from the query and the program. We then say that the type error is in the

query.
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Example 22: Now suppose we have the following program:

p(1).

q(a).

q(X) :- p(X).

Let us name the clauses c1, c2, and c3, respectively. The following trees

are the TSLD-tree for generic queries, and the TSLD-tree for the query

Q = q(1.1).

p(X1)

□

c1

q(X1)

□

c2

p(X1)

□

c1

c3

q(1.1)

wrong

c2

p(1.1)

wrong

c1

c3

From the two leftmost TSLD-trees, we can conclude that the program

has no erroneous clause, which means that there is no type error in the

program. The rightmost tree is finitely erroneous, therefore there is a type

error in query Q.

3.4 Typed Interpretations

The declarative semantics of logic programming is, in opposition to the op-

erational one, a definition of what the programs compute. The fact that

logic programming can be interpreted this way supports the fact that logic

programming is declarative [40]. In this section, we will introduce the con-

cept of interpretations, which takes us from the syntactic programs we saw

and used so far into the semantic universe, giving them meaning. With this

interpretation we will redefine a declarative semantics for logic programming

first defined in [2] and prove a connection between both the operational and

the declarative semantics.

3.4.1 Domains

Instead of interpreting the universe of semantics values in a single set con-

taining every term, we will divide the universe into domains. Let U be a non-

empty set of semantic values, which we will call the universe. We assume that

the universe is divided into domains such that each ground term is mapped

to a semantic value in a non-empty domain. Thus, U is divided into domains

as follows: U = Int+Float+Atom+String+A1+ . . .+An+F +Bool+W ,

where Int is the domain of integer numbers, Float is the domain of float-

ing point numbers, Atom is the domain of non-numeric constants, String
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is the domain of strings, Ai are domains for trees, where each domain has

trees whose root is the same functor symbol and its n-children belong to n

domains and F is the domain of functions. Moreover, we define Bool as the

domain containing true and false, and W as the domain with the single

value wrong, corresponding to a run-time error. We will call Int, Float,

Atom, and String the base domains, and A1, . . . , An the tree domains.

In particular, we can see that constants are separated into several pre-

defined base domains, one for each base type, while complex terms, i.e.

trees, are separated into domains depending on the principal function sym-

bol (root) and the n-tuple inside the parenthesis (n-children).

3.4.2 Interpretations

Every constant of some type T is associated with a semantic value in one of

the base domains, Int, Float, Atom, or String, corresponding to T . Every

function symbol f of arity n in our language is associated with a mapping

fU from any n-tuple of base or tree domains δ1 × · · · × δn to the domain

F (δ1, . . . , δn), which is the domain of trees whose root is f and the n-children

are in the domains δi.

To define the semantic value for terms, we will first have to define states.

States, Σ, are bindings from variables into values of the universe. We also

define a function domain that when applied to a semantic value returns the

domain it belongs to. The semantic value of a term is defined as follows:

[[X]]Σ = Σ(X)

[[c]]Σ = cU

[[f(t1, . . . , tn)]]Σ = fU ([[t1]]Σ, . . . , [[tn]]Σ)

An interpretation I associates every predicate symbol p with a single

function I(p) in F , such that the output of the function I(p) is the domain

Bool and the input is a union of tuples of domains. For each tuple that is

in its domain, the function I(p) either returns true or false. We will use

[[ ]]I,Σ to denote the semantics of an expression E, which can be an atom, a

query, or a clause, in an interpretation I, and define it as follows:

[[p(t1, . . . , tn)]]I,Σ = if (domain([[t1]]Σ), . . . , domain([[tn]]Σ)) ⊆ domain(I(p))

then I(p)([[t1]]Σ, . . . , [[tn]]Σ)

else wrong

[[A1, . . . , An]]I,Σ = [[A1]]I,Σ ∧ . . . ∧ [[An]]I,Σ
[[q(t1, . . . , tn) : −B̄]]I,Σ = ([[B̄]]I,Σ −→ ([[q(t1, . . . , tn)]]I,Σ))

Note that if the clause is of the form H ←, then its semantics is equiva-

lent to that of H. Also note that interpretations can differ both on the type



3.4. Typed Interpretations 39

of I(pi) for some pi or on the set of terms that is accepted by I(pi), even if

the type of the function is the same.

3.4.3 Models

The term language and their semantic values are fixed, thus each interpre-

tation I is determined by the interpretation of the predicate symbols. Inter-

pretations differ from each other only in the functions I(p) they associate to

each predicate p defined in P .

We now define a context as a set Γ of pairs of the form X : D, where X

is a variable that occurs only once in the set, and D is a domain. We say

that Σ complies with Γ if every binding X : v in Σ is such that (X : D) ∈ ∆

and v ∈ D.

An interpretation I is a model of E in the context Γ iff for every state

Σ that complies with Γ, [[E]]I,Σ = true. We will denote this as Γ |= [[E]]I .

Given a program P , we say that an interpretation I is a model of P in

context Γ if I is a model of every clause in P in context Γ. Here we assume,

without loss of generality, that all clauses are variable disjoint with each

other.

If two expressions E1 and E2 are such that every model of E1 in a context

Γ is also a model of E2 in the context Γ, then we say that E2 is a semantic

consequence of E1 and represent this by E1 |= E2.

Suppose two interpretations I1 and I2 are models of program P in some

context Γ. Suppose, in particular, that for some predicate p of P the associ-

ated function is I1(p) for I1 and I2(p) for I2. Let us call Ti the set of tuples

of terms for which Ii(p) outputs true, and Fi to the set of tuples of terms

for which Ii(p) outputs false. We say that I1 is smaller than I2 if T1 ⊆ T2

and, if T1 = T2, then F1 ⊆ F2.

We say that a model I of P in context Γ is minimal if for every other

model I′ of P in context Γ, I is smaller than I′.

Example 23: Consider the program P defined below:

father(john,mary).

father(phil,john).

grandfather(X,Y) :- father(X,Z), father(Z,Y).

Suppose that interpretation in I1, I1(p) is associated with grandfather and

I1(p) :: Atom × Atom → Bool. Also, suppose that I2(p) is associated with

grandfather in I2, with the same domain. Suppose that I3(p), associated in

I3 with grandfather, is such that I3(p) :: Atom×Atom∪ Int× Int→ Bool.

Let the sets T1 = {(phil,mary)}, T2 = {(phil,mary), (john, caroline)}, and

T3 = {(phil,mary)} be the sets of accepted tuples for I1(p), I2(p), and I3(p),

respectively.
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Thus, if these interpretations associate the same function I(q) :: Atom×
Atom → Bool to father, and T = {(john,mary), (phil, john)} the set of

accepted tuples for I(q), then all Ii are models of P in context Γ = {X :

Atom, Y : Atom,Z : Atom}. In fact, all states Σ that comply with Γ are

such that [[grandfather(X,Y ) : −father(X,Z), father(Z, Y )]]Ii,Σ is true,

for all i = 1, 2, 3.

But note that T1 ⊆ T2, and T1 = T3, but F1 ⊆ F3. In fact, any smaller

domain or set Tk would not model P . Therefore I1 is the minimal model of

P .

3.4.4 Type Errors

We can calculate the atoms accepted by a program, using the immediate

consequence operator, TP . The TP operator is traditionally used in logic

programming to iteratively calculate the minimal model of a logic program

as presented in [40, 41, 70]. The minimal model is defined as the least fixed

point of this operator in the untyped semantics for logic programming.

Suppose we have a program P and we apply the TP operator to the

empty set of tuples once. Then TP (∅) = S, where S contains all atoms

that are instances of heads of clauses that have no body. We can now

apply the TP operator again to this set, represented by TP (S). In order

to present this iterative process, we will represent successive applications of

the operator by TP ↑ (n + 1) = TP (TP ↑ n). Using this representation,

TP (S) = TP (TP (∅)) = TP ↑ 2(∅).
If we keep applying this operator, eventually, the application TP ↑ ω(∅)

will be such that TP ↑ (ω + 1)(∅) = TP ↑ ω(∅). So, we reached a fixed point

of this operator, which corresponds to the minimal model of program P in

the untyped semantics of logic programming.

Since for us interpretations for predicates are typed, TP ↑ ω(∅) does not

generate an interpretation. Instead it generates a set of atoms S. Then we

say that any interpretation I derived from S is such that for all predicates p

occurring in S, I(p) :: (D(1,1)×· · ·×D(1,n))∪· · ·∪(D(k,1), . . . , D(k,n))→ Bool,

where for all i = 1, . . . , k there is at least one atom p(v1, . . . , vn) ∈ S such

that v1 ∈ D(i,1), . . . , vn ∈ D(i,n). Note that these interpretations may not be

models of P using our new definition of a model. We are now able to define

the notion of ill-typed program.

Definition 14 - Ill-typed Program: Let P be a program. If no interpre-

tation derived from TP ↑ ω(∅) is a model of P , we say that P is an ill-typed

program.
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Example 24: Let P be the program defined as:

p(1).

p(a).

q(X) :- p(1.1).

Then S = TP ↑ ω(∅) = {p(1), p(a)}. So any interpretation I derived from

S is such that I(p) :: Int ∪ Atom → Bool. Therefore for any context Γ, for

every Σ that complies with Γ, [[q(X) : −p(1.1)]]I,Σ = wrong. Therefore no

such I is a model of P .

The reason why TP ↑ ω(∅) is always a minimal model of P in the untyped

semantics, comes from the fact that whenever a body of a clause is false

for all states, then the clause is trivially true for all states. However in

our semantics, since we are separating these cases into false and wrong,

the wrong ones do not trivially make the formula true, making it wrong

instead. These are the ill-typed cases.

Lemma 1 - Erroneous Clause Type Error: Suppose there is a type

error in the program with erroneous clause H ← A1, . . . , Am. Then, ∃Ai =

p(t1, . . . , tn) such that ∀p(s1, . . . , sn) ∈ TP ↑ ω(∅).∀Σ.∃j.domain([[tj ]]Σ) ̸=
domain([[sj ]]Σ).

Proof: We will prove this by contradiction. Suppose that for all Ai there

is some p(s1, . . . , sn) ∈ TP ↑ ω(∅) such that there is a Σ for which, ∀i ∈
[1, . . . , n].domain([[ti]]Σ) = domain([[si]]Σ). Then, there would be a deriva-

tion of the form A1, . . . , Am, B̄ =⇒ · · · =⇒ B̄ or A1, . . . , Am, B̄ =⇒
· · · =⇒ false, B̄ in the TSLD-tree for P ∪{Q}, where Q is a generic query,

since the output for the unification between Ai and p(s1, . . . , sn) would not

return wrong. But then c would not be an erroneous clause. Therefore we

proved the lemma. ⊓⊔

Effectively what this means is that if there is a type error in the program,

then the erroneous clause is such that it will not be used to calculate the

TP ↑ ω(∅), since at least one of the atoms in its body will never be able to

be used in an application of TP . We can also have a ill-typed query, and we

define it as follows.

Definition 15 - Ill-typed Query: Let P be a program. If any interpreta-

tion I derived from TP ↑ ω(∅), such that I models P in some context Γ, is

such that I is not a model of Q in the context Γ, then we say that Q is an

ill-typed query with respect to P .
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Even if the program is not ill-typed, if the query is ill-typed then we

still are going to get a type error. A parallel can be made with functional

programming languages, where even if a program is well-typed, we can call

it with an ill-typed application of a function in the program and get a type

error.

3.4.5 Soundness of TSLD-resolution

In this section we will prove that TSLD-resolution is sound, i.e., if there

is a successful derivation of a query Q in program P with a CAS θ, then

every model of P is also a model of θ(Q); if there is a type error in the

program, then the program is ill-typed; and if there is a type error in the

query, the query is ill-typed with respect to the program. To prove this we

will introduce the following auxiliary concept.

Definition 16 - Resultant: Suppose we have a TSLD-derivation step

Q1 =⇒ θ(Q2). Then we define the resultant associated with this step as

θ(Q1)← Q2.

Lemma 2 - Soundness of resultants: Let Q1 =⇒ θ(Q2) be a TSLD-

derivation step using input clause c and r be the resultant associated with

it. Then:

1. c |= r;

2. for any TSLD-derivation of P ∪{Q} with resultants r1, . . . , rn, P |= ri

(for all i ≥ 0).

Proof of this lemma for the SLD-resolution is in [40]. Since for unifiable

terms the typed unification algorithm behaves like first-order unification, the

proof still holds.

Theorem 6 - Soundness of TSLD-resolution: Let P be a program and

Q a query. Then:

1. Suppose that there exists a successful derivation of P ∪ {Q}, with the

correct answer substitution θ. Then P |= θ(Q).

2. Suppose there is a type error in the program. Then P is ill-typed.

3. Suppose there is a type error in the query. Then Q is an ill-typed

query with respect to P .
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Proof: (1) Let θ1, . . . , θn be the MGUs obtained in a successful derivation.

Therefore, θ = θn ◦ . . . ◦ θ1. The proof follows directly from lemma 2 applied

to P |= θn ◦ · · · ◦ θ1(Q)← □.

(2) If there is a type error in the program, then there is an erroneous

clause c in the TSLD-tree for P ∪ {Q}, where Q is any generic query

that uses c. Then by lemma 1 we know that there is at least one Ai =

p(t1, . . . , tn), in the body of c, such that ∀p(s1, . . . , sn) ∈ TP ↑ ω(∅).∃i ∈
[1, . . . , n].domain([[ti]]) = domain([[si]]). Any interpretation I derived from

TP ↑ ω(∅) is such that for any Σ, [[Ai]]I,Σ = wrong. This implies that no

such I is a model of c and, therefore, no such I is a model of P , which means

P is ill-typed.

(3) This is the case where there is a type error in the query Q. Now,

consider program P ∪ {p() ← Q}, where p is a predicate that does not

occur in P . Then note that every TSLD-derivation for a generic query

with input clause p() ← Q leads to wrong, so this is an erroneous clause.

Therefore, from (2), no interpretation I derived from TP ↑ ω(∅) models this

clause. Since the set of atoms for p in TP ↑ ω(∅) is empty, we can give any

interpretation to p in any interpretation derived from TP ↑ ω(∅). So we can

choose an interpretation I derived from TP ↑ ω(∅) such that I models p()

in some context Γ. Therefore, as no interpretation derived from TP ↑ ω(∅)
models P ∪ {p()← Q} in any context Γ and we can build an interpretation

which models predicate p in some context, no interpretation can model Q.

Thus, by the definition of ill-typed query, Q is ill-typed with respect to P .

⊓⊔

A short note about completeness. As for untyped SLD-resolution, com-

pleteness is related to the search for answers in a TSLD-tree. If we use

Prolog sequential, top-down, depth-first search with backtracking, then it

may result in incompleteness for same cases where the TSLD-tree is infinite,

because the exploration of an infinite computation may defer indefinitely

the exploration of some alternative computation capable of yielding a cor-

rect answer.

3.5 Extensions and Discussion

The major limitation of the semantics presented in this chapter is the fact

that types are still far from what programmers would expect from a pro-

gramming language. Functors are uninterpreted, such as in Prolog, in the

sense that they are just symbols used to build new trees.

An obvious extension of this work is to extend the system to dynamically

detect type errors relating to the semantic interpretation of some specific

functors, for instance the list constructor. For this, we would have for the
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list constructor not the Herbrand-based interpretation [ | ] :: ∀A,B.A×B →
[A|B], but the following interpretation [ | ] :: ∀A.A × list(A) → list(A).

Moreover, we would have the empty list [ ] with type ∀D.list(D). This

would necessarily change the typed unification algorithm by introducing a

new kind of constraints. As an example, consider the unification [1|2] =

[1|2], where the second argument in both terms is not a list: considering a

specially interpreted list constructor the result should be wrong, although

the traditional untyped result is true. The same issues appear for arithmetic

expressions. Arithmetic interpretations of +,−,×, and / can be introduced

in the typed unification algorithm, so that in this context, unifications such

as a + b = a + b would now return wrong instead of true. These extensions

are left for future work.

One very relevant consequence of this change is the fact that type errors,

until now, occurred in the unification of terms from different types, but

with a special interpretation of functors, we could have a type error in the

term itself. For instance the term [1|2] in the interpretation where [ | ] ::

∀A.A × list(A) → list(A), has a type error on itself, without performing

unification. This dramatically changes the semantics and it is something we

are going to discuss further in the next chapter.

Another limitation is the fact that TSLD-derivations cannot stop when

reaching a value false for a unification. In practical terms, this would dras-

tically decrease the efficiency in certain cases, when comparing to SLD-

resolution. What we argue is that a compromise could be reached in order

to improve efficiency, where execution could stop when reaching the value

false, without continuing, but there were no guarantees that there was no

type error, it just was not detected. This would mean that only some type

errors would be detected, both in the program and in the query, but it would

be a more efficient approach for dynamic typing in logic programming.

The same could be said about unification, where we also continue when

we reach the value false in order to detect a type error further in the term.

The effects on efficiency of this continuation are less significant than the

TSLD-derivations. Even so, a compromise could be reached where unifica-

tion halts with false as soon as we reach that value, but in this case not all

type errors would be detected.

There is a balance between making type checking complete and efficient

that needs to be further analysed. However, a lot of these issues would go

away if we could have type information at compile-time (statically), instead

of dynamically. In the next chapter we present a type system where we can

check if a program is well-typed, or detect type errors, statically.
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Chapter 4

Static Typing

In the previous chapter, we presented and discussed a typed semantics that

allows for the dynamic type checking of logic programs. In this chapter we

present a static type system. A type system consists of a set of rules, through

which we define which programs are well-typed at compile-time. Our type

rules were first presented in [2], and later reformulated in [3]. We then prove

that our type system is sound.

Note that when the type system was presented in [2], the semantics was

slightly different and, because of that, new proofs for soundness are presented

here.

4.1 Semantics

The declarative semantics we present here is based on the one presented in

the previous chapter but with the following alterations: first of all, the basic

domains are the same, but we include tree domains built from a set of con-

structors; secondly, the interpretations also interpret the function symbols,

in addition to the predicate symbols, allowing for more interesting functions,

other than the ones that build trees of some form.

We start by assuming that the Universe is divided into disjoint primitive

domains as follows: U = Int + Float + String + Nil + Atom + Cons +

F + Bool + W.

Int is the domain composed of all integer numbers, Float is the domain

composed of all floating-point numbers, String is the domain composed

of all strings, Nil is the domain composed of a single value representing an

empty list, and Atom is the domain matching all symbolic constants. These

are called basic domains and are the domains of constant values. Cons is

the domain of constructors, each with some arity n. F is the domain of

functions, such that each function maps values from a tuple of domains to

another domain. W is the domain that contains the value wrong, standing

for a type error. Bool is the domain which contains the values true and

false. A domain will be represented throughout the rest of the thesis by D

or Di, for some i.
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Definition 17 - Simple Domains: Simple domains are defined by the

following rules:

• A basic domain is a simple domain.

• If D1 and D2 are disjoint simple domains, then D = D1 +D2 is also a

simple domain, that contains all values in D1 and all values in D2.

• If D1, . . . , Dn are simple domains and F is a constructor from Cons

with arity n, then D = F (D1, . . . , Dn) is also a simple domain that

contains all trees with root as the functor F and the n-children being

values from D1, . . . , Dn.

We allow any solution to these equations to be a domain, as long as the

solution is not empty. For instance if we have D = Nil + F (Int,D), this

corresponds to the domain of lists of integers, where F is the list constructor,

which is defined recursively. On the other hand, D = F (D) has the empty

domain as a solution, so it is not considered a simple domain.

Each ground term in our language is associated with a semantic value,

contained in a simple domain, by an interpretation function. Let Var be an

infinite and enumerable set of variables, Func be an infinite and enumer-

able set of function symbols and Pred be an infinite and enumerable set of

predicate symbols.

There is an interpretation function I :: Func ∪ Pred → Val which

associates each constant to their semantic value in a basic domain and each

function symbol to a function f from a tuple of simple domains into a simple

domain. Predicate symbols are associated with functions from a tuple of

simple domains into the domain Bool. By definition, whenever a function

is applied to a value outside its domain, the result is wrong.

Note that I is a function, thus for a given I, each constant, function

symbol and predicate symbol can only be associated with one semantic value.

In particular, since basic domains are disjoint, meaning ∀i, j.i ̸= j =⇒
Di ∩ Dj = ∅, each semantic value for constants belongs to a unique basic

domain. Complex terms can be associated with some value that is built

from constructors, which we will call trees. These trees, can belong to several

simple domains (consider the + operand), however, if we take the intersection

of all simple domains, we get the smallest domain to which the tree belongs.

We define domain(v) as the smallest domain which contains v, if v is constant

or a tree. We will use the same notation domain(v) to denote the tuple with

the domains of the arguments of v, if v is a function.

We shall now reintroduce the concept of a state, first introduced in the

previous chapter. A state binds variables with semantic values. Each state

Σ specifies a value, written Σ(X), for each variable X of Var.
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We assume that logic programs are normalized. In this representation,

each predicate is defined by a single clause (H : −B), where the head H

contains distinct variables as arguments and the body B is a disjunction

(represented by the symbol ;) of queries. There are no common variables

between queries, except for the variables that occur in the head of the clause,

without loss of generality.

Example 25: Let add be a predicate defined by:

add(0,X,X).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

The normal form of this predicate is:

rules

add(X1,X2,X3) :- ( X1 = 0, X2 = X, X3 = X ) ;

( X1 = s(X’), X2 = Y, X3 = s(Z),

X4 = X’, X5 = Y, X6 = Z, add(X4,X5,X6) ) .

Note that it is always possible to normalize a program using program

transformation [71]. We will assume that predicate definitions are always in

normal form.

Also note that in clauses in normal form q(X1, . . . , Xn) : −b1; . . . ; bm., the

same variable symbols X1, . . . , Xn are used in the body b1; . . . ; bm but denote

possible different values in the different queries b1; . . . ; bm. Thus, to define

the semantics of queries and clauses, we will need a list of possible different

states. Each of the states Σ1, . . . ,Σm in the definition of the semantics for a

clause will correspond to different variants of variables X1, . . . , Xn, one for

each query bi, for 1 ≤ i ≤ m.

For simplicity of presentation, throughout the rest of this paper we will

use Σ for a list with a single state Σ, and
−→
Σ for a list with several states,

which can also appear explicitly
−→
Σ = [Σ1, . . . ,Σn]. The semantics of a term,

given an interpretation I and a list of states is defined as follows:

[[X]]I,Σ = Σ(X)

[[k]]I,Σ = I(k)

[[f(t1, . . . , tn)]]I,Σ = if (domain([[t1]]I,Σ, . . . , domain([[tn]]I,Σ) ⊆ domain(I(f))

then I(f)([[t1]]I,Σ, . . . , [[tn]]I,Σ)

else wrong

Note that the domain check performed to the arguments of the complex

term is necessary since we are not assuming the same interpretation for

function symbols from the previous chapter, i.e., they do not accept any



48 Chapter 4. Static Typing

value. Instead, they have a certain input which is a subset of the Universe,

such that some values are outside of this domain. And by definition, the

application of a function to a value outside its domain returns wrong. This

is exactly what we mean by having type errors in logic terms.

Example 26: Suppose we have the term [1|2], and in an interpretation

I, I(1) = 1 and domain(1) = Int, I(2) = 2 and domain(2) = Int, and

I([ | ]) = f and domain(f) = Int × List Int → List Int, where Int is a

basic domain containing all integers and List Int is the tree domain of all

lists of integers.

Then we have a type error, since the second argument belongs to a do-

main that is not the domain expected by the function. This would be re-

flected in the semantics of this term, since for any Σ, [[[1|2]]]I,Σ = wrong.

The semantics for a predicate p with arity n corresponds to a function

I(p), given by I, that given values from simple domains D1 × · · · ×Dn out-

puts values in Bool, or in case the values do not belong to the domains of

the function, returns the value wrong.

[[p]]I,Σ = I(p), where I(p) :: D1 × · · · ×Dn → Bool.

Given this, the semantics for programs is given as follows:

[[t1 = t2]]I,Σ =

if ([[t1]]I,Σ = [[t2]]I,Σ ∧ [[t1]]I,Σ ̸= wrong)

then true

else

if (domain([[t1]]I,Σ) = domain([[t2]]I,Σ) ∧ [[t1]]I,Σ ̸= wrong )

then false

else wrong

[[p(t1, . . . , tn)]]I,Σ =

if (domain([[t1]]I,Σ), . . . , domain([[tn]]I,Σ)) ⊆ domain([[p]]I,Σ)

then [[p]]I,Σ([[t1]]I,Σ, . . . , [[tn]]I,Σ)

else wrong

[[g1, . . . , gn]]I,σ = [[g1]]I,σ ∧ . . . ∧ [[gn]]I,Σ
[[b1; . . . ; bm]]I,[Σ1,...,Σm] = [[b1]]I,Σ1

∨ . . . ∨ [[bm]]I,Σm

[[q(X1, . . . , Xn) : −b1; . . . ; bm.]]I,[Σ1,...,Σm] = [[b1; . . . ; bm]]I,[Σ1,...,Σm] =⇒
([[q(X1, . . . , Xn)]]I,[Σ1]

∧ . . . ∧ [[q(X1, . . . , Xn)]]I,[Σm]))

Note that conjunction, disjunction and implication in the previous defi-

nitions are interpreted in the three-valued logic defined by the truth tables
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presented in Chapter 3. Also note that, as different states are only needed

for disjunctions, in the previous rules, the number of states in the list of

states is one, except for the last two cases.

Example 27: Let I be an interpretation function such that I(1) = 1, and

I(a) = a, where domain(1) = Int, and domain(a) = Atom. Also, let

I(p) = f , such that f :: D → Bool, where D = Int + Atom. Let our

program be defined as follows:

p(X) :- X = a ; X = 1.

Then, for Σ1 = [X 7→ a] and Σ2 = [X 7→ 1], we have the following semantics:

[[p(X) : −X = a;X = 1]]I,[Σ1,Σ2]
=

[[X = a;X = 1]]I,[Σ1,Σ2]
=⇒ [[p(X)]]I,Σ1

∧ [[p(X)]]I,Σ2
=

[[X = a]]I,Σ1
∨ [[X = 1]]I,Σ2

=⇒ [[p(X)]]I,Σ1
∧ [[p(X)]]I,Σ2

=

true ∨ true =⇒ true ∧ true = true

The next function, called or degree, gives the number of states needed

for the semantics of disjunctions.

Definition 18 - or degree: Let M be a term, an atom, a query, or a clause.

Its or degree is defined as follows:

• or degree(M) = k, if M = b1; . . . ; bk or M = p(X1, . . . , Xn) : −b1; . . . ; bk.

• or degree(M) = 1, otherwise.

Example 28: or degree(X = 1) = 1

or degree(p(X) : −X = 1) = 1

or degree(p(X) : −X = 1;X = a) = 2

We have defined a three-valued semantics for logic programming. In

order to determine which programs are well-typed (or ill-typed) we need to

describe a type language and relate it to the semantics. That is what we

will do in the next section.

4.2 Types

Types as they were described in the previous chapter had a major limitation

of having a mandatory interpretation for function symbols that is not enough

to describe a lot of interesting and widely used data structures, such as
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lists and trees. We now define domains in a different way and we keep the

property that every type for a term is associated with a simple domain, while

functional types are associated with a subset of the domain of functions F.

Since simple domains are not disjoint in general, then we can have types

that have non-empty intersections with other types.

4.2.1 Syntax of Types

We now define a new class of expressions, which we shall call types. We first

define the notion of type term built from an infinite set of type variables

TV ar, a finite set of base types TBase, an infinite set of function symbols

TFunc, and an infinite set of type symbols, TSymb.

Type terms can be:

• a type variable α ∈ TV ar

• a base type bs ∈ TBase

• a type function symbol f ∈ TFunc associated with an arity n (n > 0)

applied to an n-tuple of type terms

• a type symbol σ ∈ TSymb associated with an arity n (n ≥ 0) applied

to an n-tuple of type terms.

A ground type term is a type variable-free type term. Type symbols are

defined in a type definition. Type definitions are of the form:

σ(α1, . . . , αk) = τ1 + . . . + τn,

where each τi is a type term and σ is the type symbol being defined. In

general these definitions are polymorphic, which means that type variables

α1, . . . , αk, for k ≥ 0, are the type variables occurring in τ1 + . . . + τn, and

are called type parameters. If we instantiate one of those type variables, we

can replace it in the parameters and everywhere it appears on the right-hand

side of the definition. The sum τ1+ . . .+τn is a union type, describing values

that may have one of the types τ1, . . . , τn, called the summands. The ‘+’

is an idempotent, commutative, and associative operation. Throughout the

rest of the thesis, to condense notation, we will use the symbol τ̃ to denote

union types. We will also use the notation τ ∈ τ̃ to denote that τ is a

summand in the union type τ̃ .

Note that type definitions may be recursive. A deterministic type defi-

nition [6] is a type definition where, on the right-hand side, none of τi starts

with a type symbol and if τi is a type term starting with a type function

symbol f , then no other τj starts with f .
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Example 29: Assuming a base type int for the set of all integers, the type

list of integers is defined by the type definition list = [ ] + [int | list]1.

Let −→τ stand for a tuple of types τ1 × · · · × τn. A functional type is

a type of the form −→τ → τ . A predicate type is a functional type from a

tuple of the type terms defining the types of its arguments to bool, i.e.,

τ1× . . .× τn → bool. A type can be a type term, a union type, or a functional

type.

Our type language enables parametric polymorphism through the use

of type schemes. A type scheme is defined as ∀α1 . . . ∀αnT , where T is a

predicate type and α1, . . . , αn are the type variables that occur in T . In

logic programming, there have been several authors that have dealt with

polymorphism with type schemes or in a similar way [6,9,10,51,54,56,72–74].

Type schemes have type variables as generic place-holders for ground type

terms. Parametric polymorphism comes from the fact these type variables

can be instantiated with any type. We say that a type σ1 is an instance of

a type scheme σ2 and write σ1 ⪯ σ2 iff either σ2 is of the form ∀α1 . . . αn.τ

and there are types τ1, . . . , τn such that σ1 = τ [α1 7→ τ1, . . . , αn 7→ τn], or

σ1 = σ2.

Unless it is relevant in a particular situation, we will omit the ∀αi in type

schemes and the parameters of type symbols, for simplicity of presentation.

Example 30: A polymorphic list is defined by the following type definition:

list(α) = [ ] + [α | list(α)]

Now that we have a detailed description of the syntax of our type lan-

guage, we need to know the semantics of types, meaning, which domain is

associated with each type term and union type, and which subset of F is

associated with each functional type.

4.2.2 Semantics of Types

We assume that each base type bs is associated with a basic domain. There-

fore, there are exactly as many base types as there are basic domains, and

we also know the association between them. Let ∼ denote the association

between types and domains. If a base type bs is associated with a basic

domain Bi, we will denote this by bs ∼ Bi. The association between base

types and basic domains is considered to be predefined.

The same is true for type function symbols and constructors. Every type

function symbol f ∈ TFunc is associated with a constructor F ∈ Cons.

1Type definitions will use the user friendly Prolog notation for lists instead of the list
constructor ‘.′
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We can now expand the ∼ relation to include all ground type terms

and ground union types, given the set of type definitions ∆ defining type

symbols, in the following way:

• bs ∼ D is predefined.

• τ1 + . . . + τn ∼ D1 ∪ . . . ∪Dn ⇐⇒ τ1 ∼ D1 ∧ . . . ∧ τn ∼ Dn.

• f(τ1, . . . , τn) ∼ F (D1, . . . , Dn) ⇐⇒ f ∼ F ∧ ∀i.τi ∼ Di.

• σ ∼ D ⇐⇒ ∆(σ) ∼ D, where σ ∼ D and ∆(σ) is the definition for

the type symbol σ.

Note that our type language allows us to write type terms that are asso-

ciated with empty domains. Consider, for instance, σ = f(σ), which would

be associated with a domain D = F (D). Since we disallow empty domains

and types are associated with a domain, we will also disallow such types.

For the rest of this thesis, we assume all type terms are not associated with

the empty domain.

Given the relation ∼, an interpretation I, a set of type definitions ∆

defining type symbols, and a substitution for type variables S that binds

each type variable in its domain to a ground type term, the semantics for

types is given by the following rules. T[[ ]] defines the semantics of types of

terms, which are type terms and union types, as well as tuples of types and

the type bool, which is the type of the output of a predicate. This function

uses an auxiliary function GT[[ ]] that defines the semantics of ground types

for terms.

T[[τ ]]∆ =
⋃

∀S GT[[S(τ)]]∆

GT[[bool]]∆ = {true, false}
GT[[bs]]∆ = D, where bs ∼ D

GT[[τ1 + . . . + τn]]∆ = D, where τ1 + . . . + τn ∼ D.

GT[[f(τ1, . . . , τn)]]∆ = F (D1, . . . , Dn), where f(τ1, . . . , τn) ∼ F (D1, . . . , Dn)

GT[[σ]]∆ = D, where σ ∼ D and ∆(σ) is the definition of type symbol σ

GT[[τ1 × · · · × τn]]∆ = {(v1, . . . , vn) | v1 ∈ GT[[τ1]]∆ ∧ . . . ∧ vn ∈ GT[[τn]]∆}.

P[[ ]] defines the semantics of functional types, including predicate types.

The semantics of these types is a subset of the domain F .

P[[∀α1, . . . , αm.τ1×· · ·×τn → τ ]]∆ =
⋂

∀S GP[[S(τ1)× . . .×S(τn)→ S(τ)]]∆

GP[[τ1 × · · · × τn → τ ]]∆
= {f | ∀(v1, . . . , vn).(v1, . . . , vn) ∈ GT[[τ1 × . . .× τn]]∆ =⇒
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f(v1, . . . , vn) ∈ GT[[τ ]]∆}

Note that for ground types, both T[[τ ]]∆ = GT[[τ ]]∆ and P[[τ ]]∆ =

GP[[τ ]]∆, since S(τ) = τ for every S.

We need to explain the rule for the semantics of a type symbol. Since

type definitions can be recursive, then the domain associated with a type

symbol may be a recursive one.

Example 31: Assume the type symbol σ, defined by the following definition

σ = [ ] + [int | σ]. Then we get the following association:

σ ∼ D ⇐⇒ [ ] + [int | σ] ∼ D ⇐⇒
D = Nil + D′ ∧ [ ] ∼ Nil ∧ [int | σ] ∼ D′ ⇐⇒
D = Nil + list(Int, D) ∧ [ ] ∼ Nil ∧ [ | ] ∼ list ∧ int ∼ Int ∧ σ ∼ D,

which finally means that D = Nil+ list(Int, D), which is the domain of lists

of integers.

Example 32: Now consider the predicate type for a predicate defining

polymorphic lists: ∀α.
[
list(α)→ bool

]
. The semantics of this type is the set

of functions (in this case predicates) which define lists of elements of type

τ , for every ground instance of α. Therefore its semantics is the set of all

functions that have polymorphic lists as the argument.

Tuple Distributivity

Most type languages in logic programming use tuple distributive closures of

types. The notion of tuple distributivity was given by Mishra [20]. Here we

recall the definition of tuple distributive types presented in Chapter 2.

Definition 19 - Tuple Distributive Types: Let τ be a type, correspond-

ing to the set of semantic values V . We say that τ is a tuple distributive

type if for every pair of values f(v11, . . . , v
1
n) ∈ V and f(v21, . . . , v

2
n) ∈ V , we

know that V ⊇ {f(vi11 , . . . , vinn ) | 1 ≤ i1, . . . , in ≤ 2}.

Example 33: Let τ be a tuple distributive type containing the values

f(a, 1, c) and f(2, b, d). Then we know that τ contains f(a, b, c), f(a, 1, d),

f(a, b, d), f(2, b, c), f(2, 1, c), and f(2, 1, d) too.
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Type inference is decidable for tuple distributive types, and it was proven

in [6], that types defined by deterministic type definitions are tuple distribu-

tive.

However, some operations that are performed to sets of deterministic

type definitions may change type definitions in a way so that they are no

longer deterministic. We define an operation to transform a set of type

definitions into a set of deterministic type definitions.

Definition 20 - Tuple Distributive Closure (TDC): Let ∆ be a set of

type definitions. We define ∆ as a set of type definitions such that ∀σ.(σ =
−→τ ) ∈ ∆, (σ =

−→
τ ′) ∈ ∆, and σ =

−→
τ ′ is a deterministic type definition.

The algorithm to calculate the TDC of a set of type definitions is as

follows.

Definition 21 - TDC Operation: Let ∆ be a set of type definitions. Let

H be the set of all type definitions in ∆. We apply the following rules:

1. ({σ = σ +
−→
τ ′} ∪∆′, H)→ ({σ =

−→
τ ′} ∪∆′, H ∪ {σ =

−→
τ ′})

2. ({σ = σ′+−→τ ′} ∪∆′, H)→ ({σ = ∆′(σ′) +
−→
τ ′} ∪∆′, H ∪{σ = ∆′(σ′) +

−→
τ ′})

3. ({σ = f(τ11 , . . . , τ
1
n) + . . . + f(τk1 , . . . , τ

k
n) +

−→
τ ′} ∪ ∆′, H) → ({σ =

f(σ′1, . . . , σ′n) +
−→
τ ′} ∪∆′′, H ∪ {σ = f(σ′1, . . . , σ′n) +

−→
τ ′ , σ′j = τ1j +

. . .+ τkj }), where either (σ′i = τ1i + . . .+ τki ) ∈ H, or for all j such that

(σ′j = τ1j + . . . + τkj ) /∈ H, ∆′′ = ∆′ ∪ {σ′j = τ1j + . . . + τkj }.

Let us show an example of how to calculate the TDC of a set of type

definitions.

Example 34: Let ∆ = {σ1 = [ ] + [int | σ2], σ2 = [float | σ1], σ3 = σ1 +σ2}
be a set of type definitions. We can see that the definition for the type rule

defining σ3 is not deterministic. Applying the TDC operation, step-by-step,

is shown below:

({σ1 = [ ]+[int | σ2], σ2 = [float | σ1], σ3 = σ1+σ2}, {σ1 = [ ]+[int | σ2], σ2 =

[float | σ1], σ3 = σ1 + σ2})→

({σ1 = [ ]+[int | σ2], σ2 = [float | σ1], σ3 = [ ]+[int | σ2]+[float | σ1]}, {σ1 =

[ ] + [int | σ2], σ2 = [float | σ1], σ3 = σ1 + σ2, σ3 = [ ] + [int | σ2] +

[float | σ1]})→
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({σ1 = [ ] + [int | σ2], σ2 = [float | σ1], σ3 = [ ] + [σ4 | σ3], σ4 = int +

float}, {σ1 = [ ] + [int | σ2], σ2 = [float | σ1], σ3 = σ1 + σ2, σ3 = [ ] +

[int | σ2] + [float | σ1], σ4 = int + float})

This final set of type definitions only contains deterministic type definitions.

We will prove that the resulting set of type definitions contains only

deterministic type definitions that include the tuple distributive closure of

the original types.

Theorem 7 - Correctness of the TDC Operation: Let ∆ be a set of

type definitions. Then the TDC operation outputs ∆.

Proof: We suppose that TDC operation always terminates.

Now suppose the algorithm has terminated and output the set of type

definitions ∆′. Then all type definitions for type symbols in ∆′ are deter-

ministic because if they were not, then either a) there is a type symbol as

a summand on a type definition, and rules 1 or 2 would still apply; or b)

there are two type terms starting with the same function symbol on a type

definition and rule 3 would still apply.

Since no type definition is deleted from the initial set of type definitions

∆, then for all (σ = τ̃) ∈ ∆ there is (σ = τ̃ ′) ∈ ∆′ and τ̃ ′ is deterministic,

therefore ∆′ = ∆. ⊓⊔

Because the TDC operation calculates exactly the TDC ∆ of a set of

type definitions ∆, we will abuse notation and represent the operation itself

by ∆.

Suppose we have a domain D associated with a type symbol σ defined by

a deterministic type definition in ∆. Then D is in a sense tuple distributive,

since D = D1 + . . .+Dn, and all Di are either base domains or a constructor

applied to an n-tuple of domains, such that no Di and Dj start with the

same constructor, for i ̸= j. We will call these tuple distributive domains.

4.2.3 Semantic Typing

We shall now define what is meant by a value v semantically having a type

represented by σ, defined in the set of type definitions ∆. Note that values

may have many types, or have no type at all. For example, the value wrong

has no type.

Using T[[ ]] we can define, for each state Σ, a relation between the value

associated with a variable in Σ and a type τ , by:
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Definition 22 - Semantics of Assumptions: Let X be a variable and

σ a type symbol defined in the set of type definitions ∆. Then for some

interpretation I, X :I,Σ,∆ σ ⇐⇒ [[X]]I,Σ ∈ T[[σ]]∆.

An assumption is a type declaration for a variable, written X : σ, where

X is a variable and σ is a type symbol. Variable X is called the subject of

the assumption.

We define a context Γ as a set of assumptions with distinct variables as

subjects (alternatively contexts can be defined as functions from variables to

type symbols). We call def(Γ) to the set of variables used as subjects in Γ.

We can extend the above relation to contexts.

Definition 23 - Context Semantics: Given a context Γ, [[Γ]]I,Σ,∆ ⇐⇒
∀(X : σ) ∈ Γ. X :I,Σ,∆ σ

One operation that we can perform on contexts is the sum of contexts.

Basically, we sum the definitions of the type symbols associated with each

variable. Note that by performing the union of two type definitions, the

resulting type definition may end up not being deterministic. However, the

sum of contexts is guaranteed to return a set of deterministic type definitions,

since it performs the TDC operation.

Definition 24 - Sum of n Contexts: Let Γ1, . . . ,Γn be contexts and

∆1, . . . ,∆n be sets of type definitions, each ∆i defining the types in Γi, such

that no two type symbols are in common amongst the different ∆s. Let V

be the set of variables that occur in more than one context.

⊕
(
(Γ1, . . . ,Γn), (∆1, . . . ,∆n)

)
= (Γ,∆), where:

Γ(X) = σ′, where σ′ is a fresh type symbol, for all X ∈ V , and Γ(X) =

Γi(X), for all X /∈ V ∧X ∈ def(Γi);

∆(σ) = Γi1(X) + . . . + Γik(X), for all type symbols σ /∈ ∆1 ∪ · · · ∪ ∆n,

such that Γij are the Γs where X ∈ def(Γij ) occurs, and ∆(σ) = ∆i(σ),

otherwise.

We will show an example of the sum of contexts.

Example 35: Let:

Γ1 = {X : σ1, Y : σ2},
Γ2 = {X : σ3, Z : σ4},
∆1 = {σ1 = f(int), σ2 = atom},
∆2 = {σ3 = f(α) + g(σ3), σ4 = float}.
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Then ⊕((Γ1,Γ2), (∆1,∆2)) = (Γ,∆), where

Γ = {X : σ5, Y : σ2, Z : σ4}
∆ = {σ1 = f(int), σ2 = atom, σ3 = f(α) + g(float), σ4 = float, σ5 =

f(σ6) + g(σ3), σ6 = int + α}.

Finally we give a semantic meaning to assertions of the form Γ,∆ |=I

M : τ stating that if the assumptions in Γ hold, with type definitions ∆,

then M yields a value of type τ .

Definition 25 - Semantic Typing: Let Γ be a context, ∆ a set of type

definitions, I an interpretation, M either a term, an atom, a query or a

clause, and τ a type.

Γ,∆ |=I M : τ ⇐⇒ ∃[(Γ1,∆1), . . . , (Γn,∆n)].∀
−→
Σ = [Σ1, . . . ,Σn].[

[[Γ1]]I,Σ1,∆1
∧ . . . ∧ [[Γn]]I,Σn,∆n

=⇒ [[M ]]
I,
−→
Σ
∈ T[[τ ]]∆

]
,

where ⊕
(
(Γ1, . . . ,Γn), (∆1, . . . ,∆n)

)
= (Γ,∆) and n = or degree(M). If

n = 1, then the only sum possible is (Γ,∆) itself.

Example 36: Let p be a predicate with the following predicate definition:

p(X) :- X = 1 ; X = a.

Let interpretation I be such that I(1) = 1 and I(a) = a and B1 and B2 be

two basic domains such that 1 ∈ B1 and a ∈ B2. Let I(p) = fp, such that

fp :: D → Bool, and D = B1 + B2.

Lets assume we have Γ = {X : σ} and ∆ = {σ = int + atom}, where

int ∼ B1 and atom ∼ B2. We will show that Γ,∆ |=I (p(X) : −X = 1;X =

a.) : bool. This corresponds to showing that ∃[(Γ1,∆1), (Γ2,∆2)].∀
−→
Σ =

[Σ1,Σ2].∀S.[[Γ1]]I,Σ1,∆1,S
∧ [[Γ2]]I,[Σ2]

=⇒ [[p(X) : −X = 1;X = a.]]
I,
−→
Σ
∈

T[[bool]]∆,S .

Suppose Γ1 = {X : σ1}, ∆1 = {σ1 = int}, Γ2 = {X : σ2}, and ∆2 =

{σ2 = atom}. Then ⊕
(
(Γ1,Γ2), (∆1,∆2)

)
= (Γ,∆). If Σ1(X) ∈ B1 and

Σ2(X) ∈ B2, the left-hand side of the implication is true. The right-hand

side is also true, since applying I(p) to any of the Σi(X) does not return

wrong and neither does any of the unifications on the bodies of the clause.

Therefore the semantic value of the clause is either true or false. If one of

the Σi(X) does not yield a value in the previous domains, the left-hand side

of the implication is false, since [[X]]I,Σ1
/∈ T[[int]]∆ or [[X]]I,Σ2

/∈ T[[atom]]∆,

thus the whole implication is trivially true.

We want to interpret programs as being a set of predicate definitions,

where the clauses define what is accepted by a predicate. Therefore, it does

not make sense to have interpretations where the body of a clause is true, or
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false, but the head is wrong. We also want to have only tuple distributive

types, so we require the domains involved in types for function symbols, or

predicate symbols to be tuple distributive as well. We include the following

property.

Definition 26 - Proper Interpretation: Let I be an interpretation and P

be a program, we say that I is a proper interpretation of P , iff for every clause

p(X1, . . . , Xn) : −body. in P , we have that ∀
−→
Σ [[p(X1, . . . , Xn) : −body.]]

I,
−→
Σ

=

wrong =⇒ [[body]]
I,
−→
Σ

= wrong, and all domains in I(f) for all function

symbols and predicate symbols are tuple distributive domains.

The interpretation of the previous example is a proper interpretation. In

fact, if we go back to the previous chapter and reason about the TP operator,

if the body of a clause is true, then we are assuming the head is too in any

model for I. This is the intuition that led to this restriction.

Every type in our type language is inhabited, therefore, we also have the

following property:

Lemma 3 - State Existence: Given an environment Γ, a set of type

definitions ∆, there exists at least one state Σ, such that [[Γ]]I,Σ,∆ is true.

Proof: From the fact that every type is inhabited, for all (Xi : σi) ∈ Γ, there

is at least one vi ∈ T[[σi]]∆. Let Σ = [Xi 7→ vi]. Then for this Σ, we have

that [[Γ]]I,Σ,∆. ⊓⊔

So it will never be the case where a statement is trivially true because

the left-hand side of an implication is trivially false.

Now that we have defined a semantics for logic programming, a type

language, and we related the types with the semantics, we are ready to

finally present the type system, that determines under which conditions a

program is well-typed.

4.3 Type System

In this section we define a type system which, statically, relates logic pro-

grams with types. The type system defines a relation Γ,∆ ⊢P M : τ , where

Γ is a context as defined in the previous section, ∆ is a set of deterministic

type definitions, M is a term, an atom, a query, or a clause, and τ is a type.

This relation should be read as expression M has type τ given the context

Γ and the set of type definitions ∆, in program P .

We will write Γ ∪ {X : σ} to represent the context that contains all

assumptions in Γ and the additional assumption X : σ (note that because
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each variable is unique as a subject of an assumption in a context, in Γ ∪
{X : σ}, Γ does not contain assumptions with X as subject). Similarly

∆ ∪ {σ = τ̃} will represent the set of type definitions that contains all type

definitions in ∆ and the additional one σ = τ̃ , such that σ is not already

defined in ∆. We will write a sequence of variables X1, . . . , Xn as
−→
X , and

a sequence of types as −→τ . We assume that clauses are normalized and,

therefore, every call to a predicate in the body of a clause contains only

variables.

The type system also uses a function type which gives the type of con-

stants and function symbols. We assume that type is defined for all constants

and function symbols that occur in P and types given by type never include

bool and always have the right arity, i.e. for a function symbol of arity n it

will be of the form τ1× · · · × τn → τ ′. If n = 0, i.e., for a constant, then the

output is a type term τ .

Since predicate definitions can be parametrically polymorphic or we can

have several queries in the body of a clause assuming different types for some

variables, in general calls to predicates will use a subtype of the whole type

for the predicate.

We will define a subtyping relation, which will be used in the type system.

Definition 27 - Subtyping: Let ∆ be a set of type definitions, S1 and S2

be substitutions for type variables, and Λ be a set of equations of the form

τ ⊑∆ τ ′. A statement of the form τ ⊑∆ τ ′ is true iff ∀S1.∃S2.∅,∆ ⊢ S1(τ) ⊑
S2(τ ′), where Λ,∆ ⊢ τ1 ⊑ τ2 is given by the rules in Figure 4.1.

Note that the rules are only applicable to ground types.

Subtyping of functional types is contravariant in the argument type,

meaning that the order of subtyping is reversed. This is standard in func-

tional languages and guarantees that when a functional type −→τ1 → τ2 is a

subtype of another
−→
τ ′1 → τ ′2 it is safe to use a function f of type −→τ1 → τ2

in place of a function g of type
−→
τ ′1 → τ ′2, since f accepts as input all values

that g does, and possibly more, returning values in τ2 which are also in τ ′2.
For example, predicates of type int+ float→ bool can be used wherever an

int→ bool was expected.

Lemma 4 - Soundness of the Subtyping Rules: Let ∅,∆ ⊢ τ1 ⊑ τ2, then

either, GT[[τ ]]∆ ⊆ GT[[τ ′]]∆ if τ and τ ′ are types of terms, or GP[[τ ]]∆ ⊆
GP[[τ ′]]∆ if τ and τ ′ are functional types.

Proof: The proof follows from induction on the rules for subtyping.

• [Reflexivity]: It is trivially true, from set theory.
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[Reflexivity] Λ,∆ ⊢ τ ⊑ τ

[Transitivity]
Λ,∆ ⊢ τ ⊑ τ ′ Λ,∆, S ⊢ τ ′ ⊑ τ ′′

Λ,∆ ⊢ τ ⊑ τ ′′

[Assumption] Λ ∪ {τ ⊑ τ ′},∆ ⊢ τ ⊑ τ ′

[+ Introduction]
Λ,∆ ⊢ τ1 ⊑ τ . . . Λ,∆ ⊢ τn ⊑ τ

Λ,∆ ⊢ τ1 + · · ·+ τn ⊑ τ

[+ Elimination]
Λ,∆ ⊢ τ ∈ τ̃

Λ,∆ ⊢ τ ⊑ τ̃

[Complex]
Λ,∆ ⊢ τ1 ⊑ τ1′ . . . Λ,∆ ⊢ τn ⊑ τn′
Λ,∆ ⊢ f(τ1, . . . , τn) ⊑ f(τ1′, . . . , τn′)

[Left Symbol]
Λ ∪ {σ ⊑ τ},∆ ⊢ τ̃ ⊑ τ ∆(σ) = τ̃

Λ,∆ ⊢ σ ⊑ τ

[Right Symbol]
Λ ∪ {τ ⊑ σ},∆ ⊢ τ ⊑ τ̃ ∆(σ) = τ̃

Λ,∆ ⊢ τ ⊑ σ

[Both Symbol]
Λ ∪ {σ1 ⊑ σ2},∆ ⊢ τ̃1 ⊑ τ̃2 ∆(σ1) = τ̃1 ∆(σ2) = τ̃2

Λ,∆ ⊢ σ1 ⊑ σ2

[Tuple]
Λ,∆ ⊢ τ1 ⊑ τ ′1 . . . Λ,∆ ⊢ τn ⊑ τ ′n
Λ,∆ ⊢ τ1 × · · · × τn ⊑ τ ′1 × · · · × τ ′2

[Contravariance]
Λ,∆ ⊢ τ ′1 ⊑ τ1 Λ,∆ ⊢ τ2 ⊑ τ ′2

Λ,∆ ⊢ τ1 → τ2 ⊑ τ ′1 → τ ′2

Figure 4.1: Subtyping relation rules (Γ,∆ ⊢ τ ⊑ τ ′)

• [Transitivity]: It is trivially true, from set theory.

• [Assumption]: Since we are assuming Λ to be true, then it is trivially

true.

• [+ Introduction]: Suppose that we have, for i = 1, . . . , n, ∅,∆ ⊢ τi ⊑ τ .

Then by the induction hypothesis, ∀i.GT[[τi]]∆ ⊆ GT[[τ ]]∆. So, it is

also true that GT[[τ1]]∆ ∪ . . . ∪GT[[τn]]∆ ⊆ GT[[τ ]]∆, from set theory.

Therefore GT[[τ1+ . . .+τn]]∆ = GT[[τ1]]∆∪ . . .∪GT[[τn]]∆ ⊆ GT[[τ ]]∆.

• [+ Elimination]: Suppose that we have τ ∈ τ̃ . Then we know that

τ̃ = τ + . . . . So, GT[[τ̃ ]]∆ = GT[[τ ]]∆ ∪ . . . . Therefore, we can then

conclude that GT[[τ ]]∆ ⊆ GT[[τ̃ ]]∆.
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• [Complex]: Suppose that ∀i.∅,∆ ⊢ τi ⊑ τi′. Then, by the induction

hypothesis we also know that ∀i.GT[[τi]]∆ = Di ⊆ Di′ = GT[[τi′]]∆.

Let f ∼ F , τi ∼ Di and τi′ ∼ Di′. Then GT[[f(τ1, . . . , τn)]]∆ =

F (D1, . . . , Dn) contains all trees with root F and n-children with val-

ues from D1, . . . , Dn, but since Di ⊆ Di′, all of these trees are also

in F (D1′, . . . , Dn′), so F (D1, . . . , Dn) ⊆ F (D1′, . . . , Dn′). But, since

GT[[f(τ1′, . . . , τn′)]]∆ = F (D1′, . . . , Dn′), we can finally conclude that

GT[[f(τ1, . . . , τn)]]∆ ⊆ GT[[f(τ1′, . . . , τn′)]]∆.

• [Left Symbol]: Suppose that {σ ⊑ τ},∆ ⊢ τ̃ ⊑ τ , where ∆(σ) = τ̃ .

By the induction hypothesis, we know that ∅ ∪ {σ ⊑ τ} ⊢ τ̃ ⊑ τ ,

so GT[[τ̃ ]]∆ = D ⊆ D′ = GT[[τ ]]∆ if we assume that σ ⊑ τ . But

GT[[σ]]∆ = D, since σ ∼ D ⇐⇒ ∆(σ) ∼ D. Therefore we can

conclude that ∅,∆ ⊢ σ ⊑ τ . So we conclude that GT[[σ]]∆ = D ⊆
GT[[τ ]]∆.

• [Right Symbol]: The proof for the Right Symbol rule is similar to the

previous one.

• [Both Symbol]: Suppose that {σ1 ⊑ σ2},∆ ⊢ τ̃1 ⊑ τ̃2, where ∆(σ1) =

τ̃1 and ∆(σ2) = τ̃2. Then, by the induction hypothesis, we know that

GT[[τ̃1]]∆ = D1 ⊆ D2 = GT[[τ̃2]]∆. But, since σ1 ∼ D1 ⇐⇒ ∆(σ1) ∼
D1 and σ2 ∼ D2 ⇐⇒ ∆(σ2) ∼ D2, we have GT[[σ1]]∆ = D1 ⊆
D2GT[[σ2]]∆.

• [Tuple]: Suppose that ∀i.∅,∆ ⊢ τi ⊑ τ ′i. By the induction hypothesis,

we know that ∀i.GT[[τi]]∆ ⊆ GT[[τ ′i]]∆, so by the definition of GT[[ ]]∆,

we know that GT[[τ1 × . . .× τn]]∆ ⊆ GT[[τ ′1 × . . .× τ ′n]]∆.

• [Contravariance]: Suppose that ∅,∆ ⊢ τ ′1 ⊑ τ1 and ∅,∆ ⊢ τ2 ⊑
τ ′2. Then we know that GT[[τ ′1]]∆ ⊆ GT[[τ1]]∆ and GT[[τ2]]∆ ⊆
GT[[τ ′2]]∆. Also, from the semantics we have GP[[τ1 → τ2]]∆ =

{f1 | ∀v1 ∈ GT[[τ1]]∆ f1(v1) ∈ GT[[τ2]]∆}, and P[[τ ′1 → τ ′2]]∆ =

{f2 | ∀v2 ∈ GT[[τ ′1]]∆ f2(v2) ∈ GT[[τ ′2]]∆}. But, since all v2 are also

in GT[[τ1]]∆, then for all v2, f1(v2) ∈ GT[[τ2]]∆. Also, since GT[[τ2]]∆ ⊆
GT[[τ ′2]]∆, all f1(v2) ∈ GT[[τ ′2]]∆, which means that all f1 are also in

GP[[τ ′1 → τ ′2]]∆. Therefore GP[[τ1 → τ2]]∆ ⊆ GP[[τ ′1 → τ ′2]]∆.

⊓⊔

Now that we have proven that subtyping in sound for ground types, we

will prove it is also sound for types that contain variables.

Theorem 8 - Soundness of Subtyping: Let τ1 and τ2 be types. If

τ1 ⊑∆ τ2 then either T[[τ1]]∆ ⊆ T[[τ2]]∆, if τ1 and τ2 are types of terms, or

P[[τ1]]∆ ⊆ P[[τ2]]∆, if τ1 and τ2 are functional types.
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Proof: Suppose τ1 and τ2 are types of terms. We know that τ1 ⊑∆ τ2

implies ∀S1.∃S2.∅,∆ ⊢ S1(τ1) ⊑ S2(τ2). We also know that T[[τ1]]∆ =⋃
∀S GT[[S(τ1)]]∆. But from Lemma 4, since for all S there is a substitution

S′ such that ∅,∆ ⊢ S(τ1) ⊑ S′(τ2), then GT[[S(τ1)]]∆ ⊆ GT[[S′(τ2)]]∆. So,⋃
∀S GT[[S(τ1)]]∆ ⊆

⋃
∀S′GT[[S′(τ2)]]∆, which ultimately implies T[[τ1]]∆ ⊆

T[[τ2]]∆.

The proof is similar for functional types. ⊓⊔

Some type symbols may be representing the same set of values, having

similar, but not equal definitions. We define a property of types that deals

with this.

Definition 28 - Type Equivalence: Let τ1 and τ2 be types, and ∆ be a

set of type definitions. We say τ1 and τ2 are equivalent and represent it by

τ1 ≡∆ τ2, if for every S, S(τ1) ⊑∆ S(τ2) and S(τ2) ⊑∆) S(τ1).

Lemma 5 - Equivalent Types: If τ1 ≡∆ τ2, then T[[τ1]]∆ = T[[τ2]]∆.

Proof: Since τ1 ≡∆ τ2, then for every S, S(τ1) ⊑∆ S(τ2) and S(τ2) ⊑∆ S(τ1).

Since S(τ1) ⊑∆ S(τ2), then we know that T[[S(τ1)]]∆ ⊆ T[[S(τ2)]]∆. Since

S(τ2) ⊑∆ S(τ1), then we know that T[[S(τ2)]]∆) ⊆ T[[S(τ1)]]∆. Therefore

for every S, T[[S(τ1)]]∆ = T[[S(τ2)]]∆, and GT[[S(τ1)]]∆ = GT[[S(τ2)]]∆, be-

cause S(τ1) and S(τ2) are ground. Therefore, T[[τ1]]∆ =
⋃

∀S GT[[S(τ1)]]∆ =

T[[S(τ1)]]∆ = T[[S(τ2)]]∆ =
⋃

∀S GT[[S(τ12)]]∆ = T[[τ2]]∆, so T[[τ1]]∆ =

T[[τ2]]∆. ⊓⊔

Equivalent types represent the same set of values as proven in Lemma

5. Moreover, they have the same type variable in the same position of the

syntactic tree of the type. This means that either they are both type symbols

that have equal definitions up to the unfolding of type definitions (due to

recursion), or one of them is a type symbol and the other is the definition of

that type symbol, or a combination of the two.

Now we present a type system (see Figure 4.2) defining the typing re-

lation, which relates terms, atoms, queries, and predicate definitions with

types. If there is a context Γ, a set of type definitions ∆, and a type τ

such that Γ,∆ ⊢P M : τ we say that M is (statically) well-typed. This type

system can be implemented to type check programs. For that, one would

provide the required sets: Γ and ∆, p and the type τ , and you would fol-

low the rules in the type system to see if a derivation can be constructed.

We will later define a type inference algorithm, and for the algorithm to be

decidable, the following property must be ensured.
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VAR
Γ ∪ {X : σ},∆ ∪ {σ = τ̃} ⊢P X : σ

CST
type(c) = τ ′ τ ⪯ τ ′

Γ,∆ ⊢P c : τ
CPL

type(f) = σ
τ ′1 × · · · × τ ′n → τ ⪯ σ

τ1 ≡∆ τ1 . . . τn ≡∆ τ ′n
Γ,∆ ⊢P t1 : τ1 . . . Γ,∆ ⊢P tn : τn

Γ,∆ ⊢P f(t1, . . . , tn) : τ

UNF

τ1 ≡∆ τ2
Γ,∆ ⊢P t1 : τ1 Γ,∆ ⊢P t2 : τ2

Γ,∆ ⊢P t1 = t2 : bool

CLL

−→
σ′ → bool ⊑

∆∪{−→σ′=
−→
τ̃ ′ ,−→σ=

−→
τ̃ }
−→σ → bool p(

−→
X ) : −body. ∈ P

Γ ∪ {
−→
Y : −→σ ′},∆ ∪ {−→σ ′ =

−→
τ̃ ′} ⊢P (p(

−→
Y ) : −body.) : bool

Γ′ ∪ {
−→
X : −→σ },∆′ ∪ {−→σ =

−→
τ̃ } ⊢P p(

−→
X ) : bool

CON
Γ,∆ ⊢P g1 : bool . . . Γ,∆ ⊢P gn : bool

Γ,∆ ⊢P g1, . . . , gn : bool

CLS(a)

⊕((Γ1, . . . ,Γm), (∆1, . . . ,∆m)) = (Γ,∆)
Γ1,∆1 ⊢P b1 : bool . . . Γm,∆m ⊢P bm : bool

Γ,∆ ⊢P (p(
−→
X ) : −b1; . . . ; bm.) : bool

RCLS(b)
Γ ∪ {

−→
X : −→τ ,

−→
Yi : −→τ },∆ ⊢P p(

−→
X ) : −b1; . . . ; bm+n. : bool

Γ ∪ {
−→
X : −→τ , ref

−→
Yi : −→τ },∆ ⊢P (p(

−→
X ) : −b1; . . . ; bm;

bm+1, p(
−→
Y 11), . . . , p(

−→
Y 1k1); bm+n, p(

−→
Y n1), . . . , p(

−→
Y nkn).) : bool

(a) This rule is for non-recursive predicates only.
(b) This rule is for recursive predicates. Note that all variables in recursive calls in a certain

sequence of goals have the same type as the variables in the head in that clause. Also
−→
Yi represents

all i = 1, . . . , kn

Figure 4.2: Type System

Definition 29 - Monomorphism Restriction: Let p be a recursive pred-

icate of arity n, typed with type τ1× · · · × τn → bool using a context Γ, and

a set of type definitions ∆. Then, the types of the variables X1, . . . , Xn for

all recursive calls of p are τ1, . . . , τn, respectively, in Γ.

It is well-known that type inference in the presence of polymorphic re-

cursion is not decidable [56,75], thus we do not allow polymorphic recursion

in the system. This is achieved by the previous restriction on recursive

predicates. We choose to define this restriction locally in each predicate def-

inition for the sake of simplicity of presentation. The alternative would be

to define a new syntax for logic programming to group together mutually

recursive predicates as a single syntactic entity (in functional programming
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this would correspond to nested letrec expressions). The monomorphism re-

striction (Definition 29) holds in our type system by rule RCLS for typing

recursive predicates. In this rule we use the same type for the variables in

the head of the clause in its recursive calls in the body.

Let us describe the other rules of the type system. Rule Var types a

variable with the type it has in the context.

Rule CST says that we can type a constant with any instance of its type.

In general, types for constants are base types, so the only instance is the

type itself. However, a constant can be the base case in some polymorphic

recursive type (such as [ ] in lists). In that case, we can say that the constant

has any instance of its type.

Rule CPL types complex terms with any type that is equivalent with an

instance of the type for the function symbol. So a complex term f(t1, . . . , tn)

has any type that is equivalent to an instance of type(f) and the output type

is the output type of that instance.

Rule UNF types an equality as bool if the types for both sides of the

equality are equivalent.

Rule CLL types predicate (non-recursive) calls: for a call to a predicate p

to be well typed, the type for each variable in the call needs to be a subtype

of the type of the variables in the definition of p in program P . Note that

the rest of the context and set of type definitions have nothing in common,

since we just require that the types for the call are a subtype for the types

of the predicate in the definition.

Rule CON just checks that every goal is bool using the same context and

set of type definitions.

Rule CLS types non-recursive clauses: if we type each body of a clause

using some context and some set of type definitions, then we can type the

entire clause with the sum of all those contexts.

Note that, from rules CLS and RCLS, the type of a clause is bool. How-

ever, the interesting type information is the type for a predicate, determined

by the types of its arguments which, in the end of the type derivation, are

in context Γ.

Example 37: Here we give an example of a type derivation. Let p be a

predicate defined by p(X) :- X = 1; X = a.. Let type be such that type(1) =

int and type(a) = atm. For simplicity of presentation let: Γ1 = {X : σ1},
∆1 = {σ1 = int},
Γ2 = {X : σ2}, ∆2 = {σ2 = atm},
Γ3 = {X : σ3}, and ∆3 = {σ3 = int + atm}.

Note that ⊕
(
(Γ1,Γ2), (∆1,∆2)

)
= (Γ3,∆3).

By two applications of rule UNF followed by an application of rule CLS

we have:
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UNF
σ1
∼= int

VAR
Γ1,∆1 ⊢P X : σ1

CST
type(1) = int int ⪯ int

Γ1,∆1 ⊢P 1 : int

Γ1,∆1 ⊢P X = 1 : bool

UNF
σ2
∼= atm

VAR
Γ2,∆2 ⊢P X : σ2

CST
type(a) = atm atm ⪯ atm

Γ2,∆2 ⊢P a : atm

Γ2,∆2 ⊢P X = a : bool

CLS
Γ1,∆1 ⊢P X = 1 : bool Γ2,∆2 ⊢P X = a : bool

Γ3,∆3 ⊢P p(X) : −X = 1;X = a. : bool

From the type of X in the final context, the type of p is int + atom→ bool.

The function type corresponds to type declaration for constants and func-

tion symbols. Constant, in general are in base types, but some constants are

used as the base case in some (possibly polymorphic) recursive type. For

instance, if we have the list type list(α) = [ ] + [α | list(α)] then in the type

system the function type assigns the type list(α) to the constant [ ] and the

type α× list(α)→ list(α) to the function symbol [ | ].

These declaration are defined in type, thus the correctness of the type

system, which we will prove in the next section, is ultimately connected to

the definition of the type function.

4.3.1 Type Preservation by Substitution

One property of the type system is that if a clause, query, or term M is well-

typed with some type τ , given a context Γ and a set of type definitions ∆,

then every instance of ∆ also types M with some type τ ′ that is an instance

of τ . We prove this property in Lemma 7. First, we need the following

auxiliary lemma.

Lemma 6 - Equivalent Instances: Let τ and τ ′ be types, such that

τ ≡∆ τ ′, ∆ a set of type definitions, and S be a substitution for type

variables. Suppose S(τ) = τ ′′. Then S(τ ′) = τ ′′′, and τ ′′′ ≡∆ τ ′′.

Proof: Let us describe how τ and τ ′ can be such that τ ≡∆ τ ′. Either:

• τ = τ ′: if this is the case, clearly S(τ ′) ≡∆ S(τ), since S(τ) = S(τ ′);

• τ is a type symbol and τ ′ is a union type: then since τ ≡∆ τ ′, we know

that ∆(τ) = τ ′ and therefore S(τ) ≡∆ S(τ ′).

• τ and τ ′ are two different type symbols: then since τ ≡∆ τ ′, we know

that ∆(τ) and ∆(τ ′) are equal up to the renaming of type symbols.

Therefore, S(∆(τ)) ≡∆ S(∆(τ ′)).
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In any case, we get the result we wanted. ⊓⊔

We are now ready to prove the substitution lemma.

Lemma 7 - Substitution Lemma: Let Γ be a context, ∆ a set of type

definitions, P a program, M a clause, a query, or a term, and τ a type.

If Γ,∆ ⊢P M : τ , then, for any substitution S, we have a derivation for

Γ, S(∆) ⊢P M : S(τ).

Proof: The proof follows from induction on the size of the derivation.

• Suppose we have Γ ∪ {X : σ},∆ ∪ {σ(−→α ) = τ̃} ⊢P X : σ(−→α ). Then,

for any substitution S, we would get S(∆ ∪ {σ(−→α ) = τ̃}) = S(∆) ∪
S({σ(−→α ) = τ̃}). By one application of rule VAR we would get Γ∪{X :

σ}, S(∆) ∪ {S(σ(−→α )) = S(τ̃)} ⊢P X : S(σ(−→α )).

• Suppose we have Γ,∆ ⊢P c : τ , where τ ⪯ type(c). Since for any S,

either S(τ) = τ , if τ is ground, and therefore S(τ) ⪯ type(c), or S(τ)

is an instance of τ , which implies S(τ) ⪯ type(c). Then the derivation

would still be true for Γ, S(∆) ⊢P c : S(τ), and trivially S(τ) ⪯ τ .

• Suppose we have Γ,∆ ⊢P f(t1, . . . , tn) : τ , where type(f) = σ, τ ′1 ×
· · · × τ ′n → τ ⪯ σ, ∀i.τi ≡∆ τ ′i, and Γ,∆ ⊢P ti : τi. By the induction

hypothesis, we know that ∀i.Γ, S(∆) ⊢P ti : S(τi). Since τi ≡∆ τ ′i,
then by Lemma 6, we know that for any S, S(τi) ≡∆ S(τ ′i). Since

S(τ ′i) ⪯ τ ′i, then S(τ ′1)×· · ·×S(τ ′n)→ S(τ) ⪯ σ. By one application

of rule CPL we get Γ, S(∆) ⊢P f(t1, . . . , tn) : S(τ).

• Suppose we have Γ,∆ ⊢P t1 = t2 : bool, where Γ,∆ ⊢P t1 : τ1 and

Γ,∆ ⊢P t2 : τ2, where τ1 ≡∆ τ2. By the induction hypothesis, we have

that Γ, S(∆) ⊢P t1 : S(τ1) and Γ, S(∆) ⊢P t2 : S(τ2). Since τ1 ≡∆ τ2,

then by Lemma 6, we know that for any S, S(τ1) ≡∆ S(τ2). Therefore,

in one application of rule UNF, we get Γ, S(∆) ⊢P t1 = t2 : bool.

• Suppose we have Γ ∪ {
−→
X : −→σ },∆ ∪ {−→σ =

−→
τ̃ } ⊢P p(

−→
X ) : bool, where

−→
σ′ → bool ⊑∆

−→σ → bool. Since −→σ ⊑ −→σ′, then for any S, we know that

S(−→σ ) ⊑∆
−→
σ′, by the definition of ⊑. Therefore we can have the same

derivation Γ′∪{
−→
Y :
−→
σ′},∆′∪{−→σ′ =

−→
τ̃ ′} ⊢P p(

−→
Y ) : −body. : bool, and in

one application of rule CLL, we get Γ∪{
−→
X : −→σ }, S(∆ ∪ {−→σ = −→τ }) ⊢P

p(
−→
X ) : bool.

• Suppose we have Γ,∆ ⊢P g1, . . . , gn : bool, where Γ,∆ ⊢P gi : bool,

for all i. By the induction hypothesis, we have Γ, S(∆) ⊢P g1, . . . , gn :

bool, for all i, therefore we can apply rule CON, we get Γ, S(∆) ⊢P
g1, . . . , gn : bool.
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• Suppose we have Γ,∆ ⊢P (p(
−→
X ) : −b1; . . . ; bm.) : bool, where Γi,∆i ⊢P

bi : bool, for i = 1, . . . ,m, and ⊕
(

(Γ1, . . . ,Γm), (∆1, . . . ,∆m)
)

=

(Γ,∆). By the induction hypothesis, we know for any S, Γi, S(∆i) ⊢P
bi : bool, for i = 1, . . . ,m.

Suppose that for all X ∈ def(Γi), X /∈ def(Γj). Then ∆i(Γi(X)) =

∆(Γ(X)). In that case, we have S(∆i(Γi(X))) = S(∆(Γ(X))). Now

suppose there is some variable Y such that Y ∈ def(Γi) ∧ · · · ∧ Y ∈
def(Γj), for some 1 ≤ i, j ≤ m. Then ∆(Γ(X)) is the TDC of

∆i(Γi(X)) + . . . + ∆j(Γj(X)), therefore S(∆(Γ(X))) is the TDC of

S(∆i(Γi(X))) + . . .+S(∆j(Γj(X))). In whichever case, we prove that

⊕
(

(Γ1, . . . ,Γm), (S(∆1), . . . , S(∆m))
)

= (Γ, S(∆)). By one applica-

tion of the CLS rule, we have that Γ, S(∆) ⊢P (p(
−→
X ) : −b1; . . . ; bm.) :

bool.

• Suppose we have that Γ,∆ ⊢P (p(
−→
X ) : −b1; . . . ; bm; bm+1, p(

−→
Y11), . . . ,

p(
−−→
Y1k1); . . . ; bm+k, p(

−→
Yn1), . . . , p(

−−→
Ynkn)) : bool, where Γ,∆ ⊢P (p(

−→
X ) :

−b1; . . . ; bm.) : bool. By the induction hypothesis, we have Γ, S(∆) ⊢P
(p(
−→
X ) : −b1; . . . ; bm.) : bool. Since we do not require any extra con-

dition, with one application of RCLS rule, we get Γ, S(∆) ⊢P (p(
−→
X ) :

−b1; . . . ; bm; bm+1, p(
−→
Y11), . . . , p(

−−→
Y1k1); . . . ; bm+k, p(

−→
Yn1), . . . , p(

−−→
Ynkn)) :

bool.

⊓⊔

4.3.2 Soundness of the Type System

The type system allows for type verification, but we need to know that, in

fact, if we have some derivation in the type system then that derivation is

semantically correct. The soundness of the type system is shown by proving

that every derivation of the form Γ,∆ ⊢P M : τ implies that semantically

Γ,∆ |=I M : τ . To prove this, we need a few auxiliary definitions.

Definition 30 - Consistency of I and type: Given a function type and

an interpretation I, we say I is consistent with type if the following holds:

• for any constant c: type(c) = τ , and for any ∆, I(c) ∈ T[[τ ]]∆

• for any function symbol f : type(f) = τ1 × . . . × τn → τ , and for any

∆, I(f) ∈ P[[τ1 × . . .× τn → τ ]]∆.

If an interpretation I is not consistent with our function type we can

assume that that interpretation does not follow the lines of the programmer’s

intention. Similarly to proper interpretations, where it would not make sense
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to have interpretations that, for a type error-free body of a clause, would still

give that clause the value wrong because of the interpretation of the head,

it does not make sense to have an interpretation that interprets constants

and function symbols differently than the programmer does.

Example 38: Let us consider again the interpretation I described in Exam-

ple 27. I(1) = 1, and I(a) = a, where domain(1) = Int, and domain(a) =

Atom. Also, I(p) = f , such that f :: D → Bool, where D = Int + Atom.

Let our program be defined as follows:

p(X) :- X = a ; X = 1.

One type function that would be consistent with I is a type function such

that type(a) = atom and type(1) = int. One type function that would not

be consistent with I is a type function such that type(a) = type(1) = atom.

We have an important property of constants used in polymorphic types,

for proper interpretations.

Lemma 8 - Polymorphically Typed Constants: Let c be a constant and

σ a type symbol defining a polymorphic type. For any proper interpretation,

if type(c) = σ, we know that for any S, I(c) ∈ T[[S(σ)]]∆.

Proof: Since type(c) = σ, then σ = c+ τ̃ . For any S, we know that S(c) = c,

since c is a constant. Therefore S(σ) = S(c)+S(τ̃) = c+S(τ̃). So, for every

S, I(c) ∈ T[[S(σ)]]∆. ⊓⊔

What this lemma says is that a constant that has a polymorphic type

has every instance of that type.

One important thing we need to know is that is a clause is well-typed

with some type, then a call to the predicate being defined in that clause is

well-typed with the same type. This is proven by the following lemma.

Lemma 9 - Model for a Query: For any proper interpretation I, if

Γ,∆ |=I p(X1, . . . , Xn) : −body. : bool, then Γ,∆ |=I p(X1, . . . , Xn) : bool.

Proof: We know that ∃[(Γ1,∆1), . . . , (Γn,∆n)].∀
−→
Σ = [Σ1, . . . ,Σm].[

[[Γ1]]I,Σ1,∆1
∧ . . . ∧ [[Γm]]I,Σm,∆m

=⇒ [[p(X1, . . . , Xn) : −body.)]]
I,
−→
Σ
∈

T[[bool]]∆

]
, where ⊕((Γ1, . . . ,Γm), (∆1, . . . ,∆m)) = (Γ,∆).

Therefore ∀
−→
Σ = [Σ1, . . . ,Σm].

[
[[Γ1]]I,Σ1,∆1

∧ . . . ∧ [[Γm]]I,Σm,∆m
=⇒

[[p(X1, . . . , Xn)]]I,Σ1
∈ T[[bool]]∆1

∧ . . . ∧ [[p(X1, . . . , Xn)]]I,Σm
∈ T[[bool]]∆n

]
.
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This means that I(p) ∈ P[[Γi(X1) × . . . × Γi(Xn) → bool]]∆1
, for all i.

Let Di
1, . . . , D

i
n be the domains associated with Γi(X1) × · · · × Γi(Xn), for

each i. Since I is a proper interpretation, domain(I(p)) ⊇ (D1, . . . , Dn),

where Di are the tuple distributive closure of Di
1 + . . . + Di

n. We can sup-

pose f(v1, . . . , vn) and f(v′1, . . . , v′n) are in a Di, then Di must include

{f(vi11 , . . . , vinn ) | 1 ≤ i1, . . . , in ≤ 2}, because I is a proper interpretation.

But since ⊕((Γ1, . . . ,Γm), (∆1, . . . ,∆m)) = (Γ,∆), then Γ(Xi) is the

tuple distributive closure of Γ1(Xi) + . . . + Γn(Xi). This means that I(p) ∈
P[[Γ(X1)× . . .× Γ(Xn)→ bool]]∆.

Therefore, we conclude that ∀Σ.[[Γ]]I,Σ,∆ =⇒ [[p(X1, . . . , Xn)]]I,Σ ∈
T[[bool]]I,Σ,∆, so Γ,∆ |=I p(X1, . . . , Xn) : bool. ⊓⊔

Finally, our main result shows that the type system is semantically sound,

meaning that if a program has a type in our type system, then the program

and its type are related by the semantic typing relation defined in Definition

25.

Theorem 9 - Semantic Soundness: Let P be a program, Γ a context, ∆

a set of type definitions, and I a proper interpretation consistent with type,

then Γ,∆ ⊢P M : τ =⇒ Γ,∆ |=I M : τ .

Proof: The proof of this theorem follows by structural induction on M .

• VAR: We know that (X : σ) ∈ Γ and (σ = τ) ∈ ∆ and we want

to prove that for any proper interpretation I consistent with type,

then Γ,∆ |=I X : τ , which corresponds to proving ∀Σ.
[
[[Γ]]I,Σ,∆ =⇒

[[X]]I,Σ ∈ T[[τ ]]∆

]
, since or degree(X) = 1. For any I, suppose for

some Σ [[Γ]]I,Σ,∆ is false, then the implication is true and we get the

result we wanted. Suppose for some other Σ, [[Γ]]I,Σ,∆ is true. Then it

follows by Definitions 22 and 23 that the right side of the implication

is true, which means the whole implication is also true.

• CST: We know that type(c) = τ ′, and we want to prove that, for any

proper interpretation I consistent with type, Γ,∆ |=I c : τ , which

corresponds to proving ∀Σ.
[
[[Γ]]I,Σ,∆ =⇒ [[c]]I,Σ ∈ T[[τ ]]∆

]
, since

or degree(c) = 1. From Definition 30, we know that if type(c) = τ ′,
then for any ∆, we have that I(c) ∈ T[[τ ′]]∆. We know that τ ⪯ τ ′,
so either τ = τ ′, or there is a substitution S, such that S(τ ′) = τ . If

the types are equal, then I(c) ∈ T[[τ ]]∆, trivially. If S(τ ′) = τ , then by

Lemma 8, we know that I(c) ∈ GT[[τ ]]∆ = T[[τ ]]∆. So, since for any

Σ, [[c]]I,Σ = I(c), we know that the right-hand side of the implication

is true. Therefore the implication is true for any Σ.
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• CPL: We want to prove that, for any proper interpretation I consistent

with type, Γ,∆ |=I f(t1, . . . , tn) : τ , which corresponds to proving

∀Σ.
[
[[Γ]]I,Σ,∆ =⇒ [[f(t1, . . . , tn)]]I,Σ ∈ T[[τ ]]∆

]
, since we know that

or degree(f(t1, . . . , tn)) = 1. By the induction hypothesis, we know

that Γ,∆ |=I ti : τi, for i = 1, . . . , n. We also know that type(f) = σ.

From Definition 30, we know that for any ∆, I(f) ∈ P[[σ]]∆. We know

that τ ′1×· · ·×τ ′n → τ ⪯ σ, so either τ ′1×· · ·×τ ′n → τ = σ, or there is

a substitution S, such that S(σ) = τ ′1×. . .×τ ′n → τ ⪯ σ. If both types

are equal, then I(f) ∈ P[[τ ′1× . . .× τ ′n → τ ]]∆ trivially. If for some S,

S(σ) = τ ′1× . . .×τ ′n → τ ⪯ σ, then, since P[[σ]]∆ =
⋂

∀S GP[[S(σ)]]∆,

we know that I(f) ∈ GP[[τ ′1× . . .× τ ′n → τ ]]∆ = P[[τ ′1× . . .× τ ′n →
τ ]]∆. Since for all i = 1, . . . , n τi ≡ τi′, then T[[τ1 × . . . × τn]]∆ =

T[[τ ′1× . . .×τ ′n]]∆, which implies that I(f) ∈ P[[τ1× . . .×τn → τ ]]∆,S .

So, for any Σ, Γ,∆ |=I f(t1, . . . , tn) : τ .

• UNF: We want to prove that for any proper interpretation I consis-

tent with type, Γ,∆ |=I t1 = t2 : bool, which corresponds to proving

∀Σ.∀S.
[
[[Γ]]I,Σ,∆ =⇒ [[t1 = t2]]I,Σ ∈ T[[bool]]∆

]
, since or degree(t1 =

t2) = 1. By the induction hypothesis, we know that for any I con-

sistent with type, Γ,∆ |=I t1 : τ1 and Γ,∆ |=I t2 : τ2. Therefore we

know that for any Σ, [[t1]]I,Σ ∈ T[[τ1]]∆ and [[t2]]I,Σ ∈ T[[τ2]]∆. Since

τ1 ≡ τ2, T[[τ1]]∆ = T[[τ2]]∆. Therefore, for any Σ, [[t1 = t2]]I,Σ = true

or [[t1 = t2]]I,Σ = false, so ([[t1 = t2]]I,Σ ∈ T[[bool]]∆) = true.

• CLL: Let Γ′ = Γ1∪{X1 : σ1, . . . , Xn : σn}, Γ′′ = Γ2∪{Y1 : σ1′, . . . , Yn :

σn′}, ∆′ = ∆1 ∪ {σ1 = τ̃1, . . . , σn = τ̃n}, and ∆′′ = ∆2 ∪ {σ1′ =

τ̃1′, . . . σn′ = τ̃n′}, and we want to prove that for any proper interpre-

tation I consistent with type, Γ′,∆′ |=I p(X1, . . . , Xn) : bool, which

corresponds to proving ∀Σ.
[
[[Γ′]]I,Σ,∆′ =⇒ [[p(X1, . . . , Xn)]]I,Σ ∈

T[[bool]]∆′

]
, since or degree(p(X1, . . . , Xn)) = 1. By the induction

hypothesis, we know that Γ′′,∆′′ |=I p(Y1, . . . , Yn) : −body. : bool.

By Lemma 9, we also know that Γ′′,∆′′ |=I p(Y1, . . . , Yn), there-

fore [[p(Y1, . . . , Yn)]]I,Σ ∈ T[[bool]]∆′′, for any Σ such that [[Γ′′]]I,Σ,∆′′,

which means that ∀(v1, . . . , vn).Σ(Y1, . . . , Yn) = (v1, . . . , vn) ∈ T[[σ′1×
. . . × σ′n]]∆′′, we have that I(p)(v1, . . . , vn) ∈ T[[bool]]∆′′. Note that

we can replace Γ2 by Γ1 in Γ′′ and the condition would still hold,

since the variables in Γ2 are irrelevant for p(Y1, . . . , Yn). Since σ′1 ×
· · · × σ′n → bool ⊑

∆′′∪{−→σ=
−→
τ̃ } σ1 × · · · × σn → bool, we know that

σi ⊑∆′′∪{−→σ=
−→
τ̃ } σ′i, then all (v1, . . . , vn) ∈ T[[σ1 × . . . × σn]]∆ are also

such that (v1, . . . , vn) ∈ T[[σ1 × . . . × σn]]∆′′. We can therefore see

that ∀Σ.([[Γ1 ∪ {Y1 : σ1, . . . , Yn : σn}]]I,Σ,∆′ =⇒ [[p(Y1, . . . , Yn)]]I,Σ ∈
T[[bool]]∆′. Now if we replace the variables Yi for Xi both in the atom

p(Y1, . . . , Yn) and in Γ1∪{Y1 : σ1, . . . , Yn : σn}, the condition still holds
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trivially. Therefore we have ∀Σ.[[Γ′]]I,Σ,∆′ =⇒ [[p(X1, . . . , Xn)]]I,Σ ∈
T[[bool]]∆′, which means, Γ′,∆ |=I p(X1, . . . , Xn) : bool.

• CON: We want to prove that for any proper interpretation I consistent

with type, Γ,∆ |=I b1, . . . , bn : bool, which means ∀Σ.[[Γ]]I,Σ,∆ =⇒
[[b1, . . . , bn]]I,Σ ∈ T[[bool]]∆, since or degree(b1, . . . , bn) = 1. By the

induction hypothesis, we know that for any I consistent with type,

Γ,∆ |=I bi : bool, for all i = 1, . . . , n. Therefore for any Σ and S such

that [[Γ]]I,Σ,∆, we know that [[bi]]I,Σ ∈ T[[bool]]∆, so [[b1, . . . , bn]]I,Σ =

([[b1]]I,Σ∧. . .∧[[bn]]I,Σ) ∈ T[[bool]]∆. Therefore Γ,∆ |=I b1, . . . , bn : bool.

• CLS: We want to prove that for any proper interpretation I consis-

tent with type, Γ,∆ |=I p(X1, . . . , Xn) : −b1; . . . ; bm : bool, which

means ∃[(Γ1,∆1), . . . , (Γm,∆m)].∀Σ′ = [Σ1, . . . ,Σm].∀S.[[Γ1]]I,Σ1,∆1
∧

. . . ∧ [[Γm]]I,Σm,∆m
=⇒ [[p(X1, . . . , Xn) : −b1; . . . ; bm]]I,Σ′ ∈ T[[bool]]∆,

since or degree(b1, . . . , bn) = m, and ⊕((Γ1, . . . ,Γm), (∆1, . . . ,∆m)) =

(Γ,∆). By the induction hypothesis, we know that for any proper

interpretation I consistent with type, Γi,∆i |=I bi : bool, for all i =

1, . . . , n. Which means that ∀
−→
Σ = [Σ1, . . . ,Σm].[[Γ1]]I,Σ1,∆1

∧ . . . ∧
[[Γm]]I,Σm,∆m

=⇒ [[b1; . . . ; bm]]
I,
−→
Σ
∈ T[[bool]]∆. Since I is a proper

interpretation, ∀
−→
Σ = [Σ1, . . . ,Σm].[[b1; . . . ; bm]]

I,
−→
Σ
∈ T[[bool]]∆ =⇒

∀i.[[p(X1, . . . , Xn)]]I,Σi
∈ T[[bool]]∆. Therefore, ∀

−→
Σ .[[Γ1]]I,Σ1

∧ . . . ∧
[[Γm]]I,Σm

=⇒ [[p(X1, . . . , Xn) : −b1; . . . ; bm]]
I,
−→
Σ
∈ T[[bool]]∆.

• RCLS: Let Γ′ = Γ ∪ {
−→
X : −→τ ,

−→
Y11 : −→τ , . . . ,

−−→
Ynkn : −→τ }, and body =

b1; . . . ; bm; bm+1, p(
−→
Y 11), . . . , p(

−→
Y 1k1); bm+n, p(

−→
Y n1), . . . , p(

−→
Y nkn). We

want to prove that for any proper interpretation I consistent with

type Γ′,∆ |=I (p(
−→
X ) : −body.) : bool, which can also be written

as ∃[(Γ1,∆1), . . . , (Γm+n,∆m+n)].∀Σ′ = [Σ1, . . . ,Σm+n].[[Γ1]]I,Σ1,∆1,S
∧

. . .∧ [[Γm+n]]I,Σm+n,∆m+n
=⇒ [[p(

−→
X ) : −body.]]

I,
−→
Σ
∈ T[[bool]]∆. By the

induction hypothesis, Γ′,∆ |=I p(
−→
X ) : −b1; . . . ; bm+n : bool. So for any

−→
Σ = [Σ1, . . . ,Σm+n], such that [[Γ1]]I,Σ1,∆1

∧ . . . ∧ [[Γm+n]]I,Σm+n,∆m+n

we know that [[p(
−→
X )]]I,Σ1

∈ T[[bool]]∆∧ . . .∧ [[p(
−→
X )]]I,Σm+n

∈ T[[bool]]∆.

Let the values for
−→
X in any such

−→
Σ be called

−→
V1, . . . ,

−→
Vl . Then, since

the types for
−→
Yi , for any i = 11, . . . , nkn are the same as the types for

−→
X , the values possible for each

−→
Yi will be −→v1 , . . . ,−→vl . But we know that

for those values, I(p)(−→vj ) ∈ T[[bool]]∆, therefore for any
−→
Σ and any S,

such that [[Γ1]]I,Σ1,∆1
∧ . . . ∧ [[Γm+n]]I,Σm+n,∆m+n

, we know that ∀i =

11, . . . , nkn.[[p(
−→
Yi)]]I,Σ1

∈ T[[bool]]∆ ∧ . . . ∧ [[p(
−→
Yi)]]I,Σm+n

∈ T[[bool]]∆.

So we prove what we wanted, that Γ′,∆ |=I (p(
−→
X ) : −body.) : bool.

⊓⊔
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Note that the value wrong has no type, thus, as a corollary of the sound-

ness theorem, we have that if a predicate is statically well-typed, then for

any proper interpretation I consistent with type, following Milner’s motto

“well-typed programs can not go wrong” [36], the predicate semantics is not

wrong.

4.4 Arithmetic

Some of the main built-ins in any programming language are arithmetic and

relational operators. In Prolog, the main logic programming language, the

common arithmetic operations have built-in operators. The binary arith-

metic operations (binOp) +, −, ∗, /, //, ˆ, and max, and the unary arith-

metic operations (unOp) −, sin, cos, abs, and sqrt are specially interpreted.

In fact, the term 1 + 3 has two interpretations: as the tree with root + and

children 1 and 3, and as the sum of 1 and 3. The latter is only used when

using built-in arithmetic predicates. This is called overloading of function

symbols. Overloaded function symbols have multiple types, one for each of

the possible interpretations. For the rest of this section, we will only de-

scribe the special interpretation of these operators as arithmetic operators,

to simplify presentation.

4.4.1 Semantics

Let D = Int + Float. The semantics for terms that start with these opera-

tors, for any I is:

[[binOp(t1, t2)]]I,Σ =if (domain([[t1]]I,Σ, domain([[t2]]I,Σ) ⊆ (D,D))

then binOp([[t1]]I,Σ, [[t2]]I,Σ)

else wrong

[[unOp(t)]]I,Σ =if (domain([[t]]I,Σ ⊆ D)

then unOp([[t]]I,Σ)

else wrong

Note that we have two rules since some operators are unary and some

are binary.

These function symbols can only be interpreted as arithmetic operators if

used inside an arithmetic predicate. The arithmetic predicates for the main

relational operators (relOp) are : =:=, >, <, >=, = / =, and =<, and for

the arithmetic equality it is is. The interpretation for these predicates, in

any program, for any interpretation I, is as follows:

[[is(t1, t2)]]I,Σ =if (domain([[t1]]I,Σ, domain([[t2]]I,Σ) ⊆ (D,D))

then if [[t1]]I,Σ = [[t2]]I,Σ



4.4. Arithmetic 73

then true

else false

else wrong

[[relOp(t1, t2)]]I,Σ =if (domain([[t1]]I,Σ, domain([[t2]]I,Σ) ⊆ (D,D))

then if relOp([[t1]]I,Σ, [[t2]]I,Σ)

then true

else false

else wrong

Let us show one example that uses some arithmetic built-ins.

Example 39: Let len be a predicate that calculates the length of a list,

defined as follows:

len([],0).

len([X|Xs],N) :- len(Xs,N1), N is N1 + 1.

The normalized predicate definition is:

len(L,S) :- L = [], S = 0;

L = [X | Xs], S = N, N is M, M = N1 + 1, len(Xs,N1).

Let I be the interpretation for which I(0) = 0 and domain(0) = Int, I(1) =

1 and domain(1) = Int, I([]) = [ ], and domain([ ]) = D, where D =

Nil + List(Int,D), and I([|]) = [ | ] and domain([ | ]) = D. Also let

I(len) be such that I(len) :: D× Int→ Bool Then, for any Σ1 and Σ2 that

attribute integers to S, M , N , N1, and X, and lists of integers to L and

Xs, the semantics of this predicate is not wrong.

[[len(L, S) : −L = [ ], S = 0;L = [X|Xs], S = N,N is M,M = N1 +

1, len(Xs,N1).]]I,[Σ1,Σ2]

=

[[L = [ ], S = 0;L = [X|Xs], S = N,N is M,M = N1+1, len(Xs,N1)]]I,[Σ1,Σ2]

=⇒ [[len(L, S)]]I,Σ1
∧ [[len(L, S)]]I,Σ2

=

[[L = [ ], S = 0]]I,Σ1
∨ [[L = [X|Xs], S = N,N is M,M = N1 + 1,

len(Xs,N1)]]I,Σ2
=⇒ [[len(L, S)]]I,Σ1

∧ [[len(L, S)]]I,Σ2

=

([[L = [ ]]]I,Σ1
∧[[S = 0]]I,Σ1

)∨([[L = [X|Xs]]]I,Σ2
∧[[S = N ]]I,Σ2

∧[[N isM ]]I,Σ2
∧

[[M = N1+1]]I,Σ2
∧ [[len(Xs,N1)]]I,Σ2

) =⇒ [[len(L, S)]]I,Σ1
∧ [[len(L, S)]]I,Σ2

Now note that in the expression S = N , both S and N have the same

type (integers), so the result is boolean. In the expression N is M , M and

N are integers, so the result is also boolean. Same for every expression,

including M = N1 + 1, where M , N1, and 1 are all integers. Therefore,

the result is either true or false, but never wrong.
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As we can see from the example above, the introduction of the arithmetic

built-ins does not really complicate the semantics. In fact, the only change

is the overloading of function symbols. In this section, we assume that the

arithmetic operators are only interpreted as such, but in reality, we could

think of the semantics as having a choice point, where we would decide which

interpretation for the function symbol we could use.

4.4.2 Type System Rules

Now that we have the semantics for these symbols, we can present the rules

that extend the type system in order to type these special predicates and

function symbols.

BinOP1

σ1 ≡∆ int σ2 ≡∆ int
Γ,∆ ⊢ t1 : σ1 Γ,∆ ⊢ t2 : σ2

Γ,∆ ⊢P binOp(t1, t2) : int

BinOP2

σ1 ≡∆ int σ2 ≡∆ float
Γ,∆ ⊢ t1 : σ1 Γ,∆ ⊢ t2 : σ2

Γ,∆ ⊢P binOp(t1, t2) : float

BinOP3

σ1 ≡∆ float σ2 ≡∆ int
Γ,∆ ⊢ t1 : σ1 Γ,∆ ⊢ t2 : σ2

Γ,∆ ⊢P binOp(t1, t2) : float

BinOP4

σ1 ≡∆ float σ2 ≡∆ float
Γ,∆ ⊢ t1 : σ1 Γ,∆ ⊢ t2 : σ2

Γ,∆ ⊢P binOp(t1, t2) : float

UnOP
Γ,∆ ⊢ t : σ σ ⊑∆ int + float

Γ,∆ ⊢ unOp(t) : σ

RelOp/Is

σ1 ⊑∆ int + float σ2 ⊑∆ int + float
Γ,∆ ⊢ t1 : σ1 Γ,∆ ⊢ t2 : σ2

Γ,∆ ⊢ relOp/is(t1, t2) : bool

Figure 4.3: Arithmetic Extension to the Type System

Example 40: Let us continue with the previous example, and show the type

rules being applied to some of the sub-expressions. We assume type([ ]) =

l(α) and type([ | ]) = α× l(α)→ l(α), where l(α) = [ ] + [α | l(α)]. We also

assume Γ = {X : σ,M : σ,N : σ,N1 : σ,Xs : σ2, L : σ2}, and ∆ = {σ =



4.5. Discussion 75

int, σ2 = [ ] + [int | σ2]} in what follows:

σ ∼= int Γ,∆ ⊢P M : σ
BinOp1

σ ∼= int

Γ,∆ ⊢P N1 : σ

type(1) = int

int ⪯ int

int ∼= int

Γ,∆ ⊢P 1 : int

Γ,∆ ⊢P N1 + 1 : int

Γ,∆ ⊢P M = N1 + 1 : bool

RelOp/Is
σ ∼= σ Γ,∆ ⊢P M : σ Γ,∆ ⊢P N : σ

Γ,∆ ⊢P is(N,M) : bool

σ2 ∼= l(int) Γ,∆ ⊢P L : σ2

type([ | ]) = α× l(α)→ l(α)

int× l(int)→ l(int) ⪯ α× l(α)→ l(α)

σ ∼= int

Γ,∆ ⊢P X : σ

σ2 ∼= l(int)

Γ,∆ ⊢P Xs : l(int)

Γ,∆ ⊢P [X | Xs] : σ2

Γ,∆ ⊢P L = [X | Xs] : bool

The examples above show how we can expand our semantics, and the type

system to introduce some arithmetic built-ins. We argue that some extension

are also possible to allow for more built-ins that are based on different data

structures. In order to do so, we would follow a similar process as we did for

arithmetic built-ins.

4.5 Discussion

Statically typing programs has several advantages such as ease of debugging,

guarantees about properties of programs, and better program documenta-

tion. However, static typing cannot be a perfect process. Whenever we try

to get more specific and cover the largest number of programs possible, we

always lose some information.

For instance, the interpretation of a predicate is seen as a set of tuples

that are accepted by the predicate. As soon as we have typed interpreta-

tions, some regularity is demanded by the types, and as a consequence some
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information is lost. Take as an example a predicate with two arguments,

defined as follows:

p(1,a).

p(a,1).

Any function f that is a typed interpretation for this predicate has, at least,

the type f :: D ×D → Bool, where D = Int + Atom. Any smaller domain

would make one of the clauses wrong. Therefore, we now included tuples

such as (1, 1) as part of the domain of this predicate, which probably is not

the programmer’s intention, since dynamically, it would always lead to type

errors.

More information is lost when dealing with tuple-distributive closures of

types [8, 20], which we use in order to have decidability. Take the following

predicate:

p(f(1,a)).

p(f(a,1)).

If we have a typed interpretation f :: D → Bool, where D = F (Int, Atom)+

F (Atom, Int), then the actual type inferred would be σ1 = f(σ2, σ2), where

σ2 = int + atom, since we need type definitions to be tuple distributive.

Therefore calls such as p(f(1, 1)) would not be considered type errors, even

though they are probably intended to be.

This loss of information is inevitable and can be improved by limiting

the expressiveness of programs or the language itself, having optional types,

or dropping some important operations such as type inference.

This last option is not considered here because decidable type inference

is mandatory in our approach. This is the subject of the next chapter.
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Chapter 5

Type Inference

We now present a type inference algorithm that automatically infers types

for programs and prove that the types inferred are sound, i.e., they can

be derived by the type system. The type inference algorithm allows for an

automatic type verification without any input from the programmer. It was

first published in [3], but some changes have been made since, which we

present here, with the new corresponding proofs for soundness.

5.1 Type Inference

Input Program Term Expansion

Constraint
Generation

Type
Declarations/List
and Basetype Flag

Constraint Solving

Closure

Pretty PrinterOutput Types

Inference

Figure 5.1: Type Inference Algorithm Flowchart

We have seen how to define the notion of well-typed program using a

set of rules which assign types to programs. Here we will present a type

inference algorithm which, given an untyped logic program, is able to infer

types which make the program well-typed.

Our type inference algorithm is composed of several modules, as de-

scribed in Figure 5.1. On a first step, when consulting programs, we apply

term expansion to transform programs into the internal format that the rest

of the algorithm expects. Secondly, we have the type inference phase itself,

where constraint generation is performed, and a type constraint solver out-

puts the inferred types for a given program. To assure that at every step the
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type definitions remain deterministic, TDC is performed during type infer-

ence, as described in Definition 21. After this, we either directly run a type

pretty printer, or go through closure before printing the types. The closure

operation will be described in the next chapter. For now, we will assume

that after constraint solving, we immediately print our results.

Thus the type inference algorithm is composed of four main parts with

some auxiliary steps:

• Term expansion

• Constraint generation

• Constraint solving

• Closure (optional)

5.1.1 Stratification

We assume that the input program of our algorithm is stratified. To un-

derstand the meaning of stratified programs, let us define the dependency

directed graph of a program as the graph that has one node representing

each predicate in the program and an edge from q to p for each call from a

predicate p to a predicate q.

Definition 31 - Stratified Program: A stratified program P is such that

the dependency directed graph of P has no cycles of size more than one.

This means that our type inference algorithm deals with predicates de-

fined by direct recursion but not with mutual recursion. Note that stratified

programs are widely used and characterize a large class of programs which

is used in several database and knowledge base systems [76].

We discuss an extension of the algorithm to deal with mutually recursive

predicates at the end of this chapter.

5.1.2 Constraints and Constraint Generation

The type inference algorithm starts by generating type constraints from a

logic program which are solved by a constraint solver in a second stage of

the algorithm. There are two different kinds of type constraints: equality

constraints and subtyping constraints. An equality constraint is of the form

τ1
.
= τ2 and a subtyping constraint is of the form τ1 ≤ τ2. Ultimately, we

want to determine if a set of constraints C can be instantiated affirmatively

using some substitution S, that substitutes types for type variables. For this

we need to consider a notion of constraint satisfaction S |= C, in a first order

theory with equality [77] and the extra axioms in definition 27 for subtyping.
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Definition 32 - Constraint satisfaction: Let = mean syntactic type

equality, ⊑ the subtyping relation defined in definition 27, and ∆ be a set of

type definitions. S |=∆ C is defined as follows:

1. S |=∆ τ1
.
= τ2 if and only if S(τ1) = S(τ2);

2. S |=∆ τ1 ≤ τ2 if and only if S(τ1) ⊑∆ S(τ2);

3. S |=∆ C if and only if S |=∆ c for each constraint c ∈ C.

The constraint generation step of the algorithm will output two sets of

constraints, Eq (a set of equality constraints) and Ineq (a set of subtyping

constraints), that need to be solved during type inference.

Let us first present an auxiliary function to combine contexts. Contexts

can be obtained from the disjunction, or conjunction, of other contexts.

Previously, we have defined an auxiliary function ⊕ that results in the tuple

distributive closure of summing the types for each variable. We will now

define another auxiliary function ⊗ defined as follows:

Definition 33 - Product of Contexts: Let Γ1, . . . ,Γn be contexts, and

∆1, . . . ,∆n be sets of type definitions defining the type symbols in each Γi,

respectively, such that no to ∆s define the same type symbol. Let V be the

set of variables that occur in more than one context.

⊗
(
(Γ1, . . . ,Γn), (∆1, . . . ,∆n)

)
= (Γ,∆, Eq), where:

Γ(X) = σ′, where σ′ is a fresh type symbol, for all X ∈ V , and Γ(X) =

Γi(X), for all X /∈ V ∧X ∈ domain(Γi);

∆(σ) = α, where α is a fresh type variable, for all type symbols σ /∈ ∆1 ∪
· · · ∪∆n, and ∆(σ) = ∆i(σ), otherwise;

Eq = {α .
= Γi1(X), . . . , α

.
= Γik(X)}, for all fresh α, for each Γij , such that

X ∈ def(Γij ).

We can interpret the product of contexts operation as a way of making

sure the types for each variable are the same in every context. That may

not be possible.

Example 41: Let

Γ1 = {X : σ1, Y : σ2}, ∆1 = {σ1 = int, σ2 = α},
Γ2 = {X : σ3, Y : σ4}, and ∆2 = {σ3 = float, σ4 = float}.
Then:

⊗
(
(Γ1,Γ2), (∆1,∆2)

)
= (Γ3,∆3, Eq), where

Γ3 = {X : σ5, Y : σ6},
∆3 = {σ5 = β, σ6 = γ},
Eq = {β .

= int, β
.
= float, γ

.
= α, γ

.
= float}).
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As we can see in the previous example, the type for variable X in the

resulting context is σ5, defined as σ5 = β. For β, we have β
.
= int and

β
.
= float. There is no substitution that satisfies these constraints, since we

consider basic types are disjoint. However, if we just consider the variable Y ,

the constraints generated {γ .
= α, γ

.
= float} can be satisfied, in particular

by the substitution [γ 7→ float, α 7→ float].

We are now ready to present the constraint generation algorithm. Let P

be a term, an atom, a query, a sequence of queries, or a clause. generate(P )

is a function that outputs a tuple of the form (τ,Γ, Eq, Ineq,∆), where τ

is a type, Γ is an context for variables, Eq is a set of equality constraints,

Ineq is a set of subtyping constraints, and ∆ is a set of type definitions. The

function generate, which generates the initial type constraints, is defined

case by case from the program syntax. Its definition follows:

generate(P ) =

• generate(X) = (α, {X : σ}, ∅, ∅, {σ = α}), X is a variable,

where α is a fresh type variable and σ is a fresh type symbol.

• generate(c) = (basetype(c), ∅, ∅, ∅, ∅), c is a constant.

• generate(f(t1, . . . , tn)) = (f(τ1, . . . , τn),Γ, Eq, ∅,∆), f is a function

symbol,

where generate(ti) = (τi,Γi, Eqi, ∅,∆i),

(Γ,∆, Eq′) = ⊗
(
(Γ1, . . . ,Γn), (∆1, . . . ,∆n)

)
,

and Eq = Eq1 ∪ . . . ∪ Eqn ∪ Eq′.

• generate(t1 = t2) = (bool,Γ, Eq, ∅,∆)

where generate(ti) = (τi,Γi, Eqi, ∅,∆i),

(Γ,∆, Eq′) = ⊗
(
(Γ1,Γ2), (∆1,∆2)

)
, and

Eq = Eq1 ∪ Eq2 ∪ {τ1
.
= τ2} ∪ Eq′.

• generate(p(X1, . . . , Xn)) = (bool, ({X1 : σ1, . . . , Xn : σn}, ∅, {σ1 ≤
τ1, . . . , σn ≤ τn},∆′), p is a predicate symbol,

where generate(p(Y1, . . . , Yn) : −body) = (bool,Γ, Eq, Ineq,∆),

{Y1 : τ1, . . . Yn : τn} ∈ Γ

∆′ = ∆ ∪ {σi = αi}, and σi and αi are all fresh.

• generate(c1, . . . , cn) = (bool,Γ, Eq, Ineq1 ∪ . . . ∪ Ineqn,∆), a query,

where generate(ci) = (bool,Γi, Eqi, Ineqi,∆i),
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(Γ,∆, Eq′) = ⊗
(
(Γ1, . . . ,Γn), (∆1, . . . ,∆n)

)
, and

Eq = Eq1 ∪ . . . ∪ Eqn ∪ Eq′.

• generate(p(X1, . . . , Xn) : −b1; . . . ; bn.) = (bool,Γ, Eq, Ineq,∆), a non-

recursive clause,

where generate(bi) = (bool,Γi, Eqi, Ineqi,∆i),

Eq = Eq1 ∪ . . . ∪ Eqn,

Ineq = Ineq1 ∪ . . . ∪ Ineqn, and

(Γ,∆) = ⊕
(
(Γ1, . . . ,Γn), (∆1, . . . ,∆n)

)
.

• generate(p(X1, . . . , Xn) : −body) = (bool,Γ, Eq, Ineq′,∆), a recursive

clause,

where generate(p(X1, . . . , Xn) : −body′) = (bool,Γ, Eq, Ineq,∆), such

that body′ is body after removing all recursive calls,

and Ineq′ = Ineq ∪{−→σ1 ≤ −→τ , . . . ,−→σk ≤ −→τ ,−→τ ≤ −→σ1, . . . ,−→τ ≤ −→σk}, such

that τ are the types for the variables in the head of the clause in Γ and

σi are the types for the variables in each recursive call.

The function basetype used in the constant case corresponds to the func-

tion type in the type system, but it is assumed to only output base types for

constants. For the complex case, we assume that the type for every function

symbol or arity n is α1 × · · · × αn → f(α1, . . . , αn). In the next chapter, we

will discuss the modifications necessary to the algorithm in order to have a

different interpretation of function symbols.

We can see that inside a single query, we perform the ⊗ operation to

the contexts from each call and unification, to make sure the types for each

variable inside a query are the same. However, for different queries, we

perform the ⊕ operation, since the types need not be the same, and instead

we need to consider the union of all possibilities.

Let us illustrate constraint generation for a simple example bellow.

Example 42: Consider the following predicate:

list(X) :- X = []; X = [Y|YS], list(Ys).

the output of applying the generate function to the predicate is:

generate(list(X) : −X = [ ];X = [Y |Y s], list(Y s)) =

{bool, {X : σ1, Y : σ2, Y s : σ3}, {α
.
= [ ], β

.
= [δ | ϵ]}, {σ3 ≤ σ1, σ1 ≤

σ3}, {σ1 = α + β, σ2 = δ, σ3 = ϵ}}
The set {σ3 ≤ σ1, σ1 ≤ σ3} comes from the recursive call to the predicate,

while α
.
= [ ] comes from X = [ ], and β

.
= [δ | ϵ] comes from X = [Y |Y s].

The definition σ1 = α + β comes from the application of the ⊕ operation.
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Now that we have presented the algorithm that generates constraints

for each predicate definition, we will present the algorithm that solves the

constraints, in order to obtain a substitution for type variables, such that

when applied to the set of type definitions gives us the types for the predicate.

5.1.3 Constraint Solving

Let Eq be a set of equality constraints, Ineq be a set of subtyping constraints,

and ∆ a set of type definitions. Function solve(Eq, Ineq,∆) is a rewriting

algorithm that solves the constraints, outputting a pair of a substitution and

a new set of type definitions. Note that the rewriting rules in the following

definitions of the solver algorithm are assumed to be ordered.

Definition 34 - Solved Form: A set of equality constraints Eq is in solved

form if:

• all constraints are of the form αi
.
= τi;

• there are no two constraints with the same αi on the left hand side;

• no type variables on the left-hand side of the equations occur on the

right-hand side of equations.

A set of equality constraints in solved form can be interpreted as a sub-

stitution, where each constraint αi
.
= τi corresponds to a substitution for the

type variable αi, [αi 7→ τi].

A configuration is either the term fail (representing failure), a pair of a

substitution and a set of type definitions (representing the end of the al-

gorithm), or a triple of a set of equality constraints Eq, a set of subtyping

constraints Ineq, and a set of type definitions ∆. The following rewriting

algorithm consists of the transformation rules on configurations.

solve(Eq, Ineq,∆) =

1. ({τ .
= τ} ∪ Eq, Ineq,∆)→ (Eq, Ineq,∆)

2. ({α .
= τ} ∪ Eq, Ineq,∆) → ({α .

= τ} ∪ Eq[α 7→ τ ], Ineq[α 7→ τ ],

∆[α 7→ τ ]), if type variable α occurs in Eq, Ineq, or ∆

3. ({τ = α} ∪Eq, Ineq,∆)→ ({α .
= τ} ∪Eq, Ineq,∆), where α is a type

variable and τ is not a type variable

4. ({f(τ1, . . . , τn)
.
= f(τ ′1, . . . , τ ′n)}∪Eq, Ineq,∆→ ({τ1

.
= τ ′1, . . . , τn

.
=

τ ′n} ∪ Eq, Ineq,∆)
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5. ({f(τ1, . . . , τn)
.
= g(τ ′1, . . . , τ ′m)} ∪ Eq, Ineq,∆)→ fail

6. (Eq, {τ ≤ τ} ∪ Ineq,∆)→ (Eq, Ineq,∆)

7. (Eq, {f(τ1, . . . , τn) ≤ f(τ ′1, . . . , τ ′n)}∪Ineq,∆)→ (Eq, {τ1 ≤ τ ′1, . . . ,
τn ≤ τ ′n} ∪ Ineq,∆)

8. (Eq, {α ≤ τ1, α ≤ τ2} ∪ Ineq,∆)→ (Eq ∪ Eq′, {α ≤ τ} ∪ Ineq,∆′),
where α is a type variable, and intersect(τ1, τ2,∆, I) = (τ ′, Eq′,∆′)

9. (Eq, {α ≤ τ} ∪ Ineq,∆)→ (Eq ∪ {α = τ}, Ineq,∆),

where α is a type variable and no other constraints exist with α on the

left-hand side

10. (Eq, {τ1 + . . . + τn ≤ τ} ∪ Ineq,∆) → (Eq, {τ1 ≤ τ, . . . , τn ≤ τ} ∪
Ineq,∆)

11. (Eq, {σ ≤ τ} ∪ Ineq,∆)→ (Eq, Ineq,∆),

if (σ,τ) are on the store of pairs of types that have already been com-

pared

12. (Eq, {σ ≤ τ} ∪ Ineq,∆)→ (Eq, {∆(σ) ≤ τ} ∪ Ineq,∆),

where σ is a type symbol defined in ∆. Also add (σ, τ) to the store of

pairs of types that have been compared

13. (Eq, {τ1 ≤ α, . . . τn ≤ α} ∪ Ineq,∆) → (Eq[α 7→ σ], Ineq[α 7→ σ],

∆ ∪ {σ = τ1 + · · ·+ τn}),
where σ is a fresh type symbol

14. (Eq, {τ ≤ τ1 + . . . + τn} ∪ Ineq,∆)→ (Eq, {τ ≤ τi} ∪ Ineq,∆),

where τi is one of the summands

15. (Eq, {τ ≤ σ} ∪ Ineq,∆)→ (Eq, Ineq,∆),

if (σ,τ) are on the store of pairs of types that have already been com-

pared

16. (Eq, {τ ≤ σ} ∪ Ineq,∆)→ (Eq, {τ ≤ ∆(σ)} ∪ Ineq,∆),

where σ is a type symbol defined in ∆. Also add (σ, τ) to the store of

pairs of types that have been compared

17. (Eq, ∅,∆)→ (Eq,∆)

18. otherwise → fail.

Note that an occur check is required in steps 2, 9, and 13. This rewriting

algorithm is based on the one described in [77] for equality constraints, and

an original one for the subtyping constraints. Also note that a store is used.

This is to ensure termination, since we are dealing with possibly recursive

types. The pairs of types that are introduced into the store, correspond to
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assumptions we are making that can later be used as facts, as happens in

Definition 27, when unfolding type symbols.

We will now show an example of the execution of the algorithm on the

output of the constraint generation algorithm, showed in example 42.

Example 43: Following Example 42, we can apply solve to the tuple

(Eq, Ineq,∆), corresponding to ({X : σ1, Y : σ2, Y s : σ3}, {α
.
= [ ], β

.
=

[δ | ϵ]}, {σ3 ≤ σ1, σ1 ≤ σ3}, {σ1 = α + β, σ2 = δ, σ3 = ϵ}):
({α .

= [ ], β
.
= [δ | ϵ]}, {σ3 ≤ σ1, σ1 ≤ σ3}, {σ1 = α + β, σ2 = δ, σ3 = ϵ})→2

({α .
= [ ], β

.
= [δ | ϵ]}, {σ3 ≤ σ1, σ1 ≤ σ3}, {σ1 = [ ] + β, σ2 = δ, σ3 = ϵ})→2

({α .
= [ ], β

.
= [δ | ϵ]}, {σ3 ≤ σ1, σ1 ≤ σ3}, {σ1 = [ ] + [δ | ϵ], σ2 = δ, σ3 =

ϵ})→12

({α .
= [ ], β

.
= [δ | ϵ]}, {ϵ ≤ σ1, σ1 ≤ σ3}, {σ1 = [ ]+[δ | ϵ], σ2 = δ, σ3 = ϵ})→9

({α .
= [ ], β

.
= [δ | ϵ], ϵ .

= σ1}, {σ1 ≤ σ3}, {σ1 = [ ]+[δ | ϵ], σ2 = δ, σ3 = ϵ})→2

({α .
= [ ], β

.
= [δ | σ1], ϵ

.
= σ1}, {σ1 ≤ σ3}, {σ1 = [ ] + [δ | σ1], σ2 = δ, σ3 =

σ1})→s

({α .
= [ ], β

.
= [δ | σ1], ϵ

.
= σ1}, {σ1 ≤ σ1}, {σ1 = [ ] + [δ | σ1], σ2 = δ})→6

({α .
= [ ], β

.
= [δ | σ1], ϵ

.
= σ1}, ∅, {σ1 = [ ] + [δ | σ1], σ2 = δ})

Note that the resulting set of constraints only contains constraints in solved

form, that can be seen as a substitution. Step →s, stands for the simplifi-

cation step. Therefore, the resulting context Γ is {X : σ1, Y : σ2, Y s : σ1}.

We can see that the algorithm uses intersection of types on case 8. This

intersection algorithm tries to find the type that corresponds to the intersec-

tion of several types. Below, we present the algorithm. Note that intersect

of type variables is not defined in general. We use unification for the inter-

section of variables.

Type intersection represented by intersect(τ1, τ2,∆, I) = (τ, Eq′,∆′), is

calculated as follows:

• if both τ1 and τ2 are different type variables, then τ = τ2,∆′ =

∆, Eq′ = {τ1
.
= τ2}.

• if τ1 = τ2, then τ = τ1,∆′ = ∆, Eq′ = ∅.
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• if (τ1, τ2, τ3) ∈ I, then τ = τ3,∆′ = ∆, Eq′ = ∅.

• if τ1 is a type variable, then τ = τ2,∆′ = ∆, Eq′ = {τ1
.
= τ2}.

• if τ2 is a type variable, then τ = τ1,∆′ = ∆, Eq′ = {τ2
.
= τ1}.

• if τ1 = σ1, τ2 = σ2, and (τ̃ , Eq,∆2) = cpi(τ̃1, τ̃2,∆, I ∪ {(σ1, σ2, σ3)}),
then τ = σ3,∆′ = ∆2 ∪ {σ3 = τ̃}, Eq′ = Eq, where σ1 = τ̃1, σ2 = τ̃2 ∈
∆ and σ3 is fresh.

• if τ1 = σ1, τ2 = f(t1, . . . , tn), and given (τ̃ , Eq,∆2) = cpi(τ̃ , τ2,∆, I ∪
{(σ1, τ2, σ3)}), then τ = σ3,∆′ = ∆2 ∪ {σ3 = τ̃}, Eq′ = Eq, where

σ1 = τ̃1 ∈ ∆ and σ3 is fresh. Same for τ2 = σ1 and τ1 = f(t1, . . . , tn).

• if τ1 = f(τ1, . . . , τn), τ2 = f(τ ′1, . . . , τ ′n), and given ∀i.(τ ′′i, Eqi,∆i) =

intersect(τi, τ ′i,∆, I), then τ = f(τ ′′1, . . . , τ ′′n),∆′ = ∆1 ∪ . . . ∪ ∆n,

Eq′ = Eq1 ∪ . . . ∪ Eqn.

• otherwise fail.

cpi(τ̃1, τ̃2,∆, I) is a function that applies intersect(τ, τ ′,∆, I) to every pair

of types τ, τ ′, such that τ ∈ τ̃1 and τ ′ ∈ τ̃2, and gathers all results as the

output.

Example 44: Let ∆ = {σ1 = f(α, α), σ2 = f(int, float)}. Then:

intersect(σ1, σ2,∆, ∅)
cpi(f(α, α), f(int, float),∆, I = {(σ1, σ2, σ3)})

intersect(f(α, α), f(int, float),∆, I)

intersect(α, int,∆, I) = (int,∆, {α .
= int})

intersect(α, float,∆, I) = (float,∆, {α .
= float})

= (f(int, float),∆, Eq = {α .
= int, α

.
= float})

= (f(int, float),∆, Eq)

= (σ3,∆ ∪ {σ3 = f(int, float)}, Eq)

Now note that the set of generated constraints, when solved, will fail. There-

fore the intersection of σ1 and σ2 is empty.

This intersection algorithm is based on the one presented in [6], with a

few minor changes. The difference is that our types can be type variables,

which could not happen in Zobel’s algorithm, since intersection was only

calculated between ground types. To deal with this extension, in our algo-

rithm type variables are treated as Zobel’s any type, except that for type

variables, we also unify them with whichever type they are being intersected

with. Termination and correctness of type intersection for a tuple distribu-

tive version of Zobel’s algorithm was proved previously in [8] and replacing

the any type with type variables maintains the same properties, because our
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use of type intersection considers types where type variables occur only once,

thus they can be safely replaced by Zobel’s any type. Note that we deal with

type variables which occur more than once with calls to type unification.

5.1.4 Decidability

One important property of the type inference algorithm is that its execution

halts for any input, and if it halts with success, then the resulting set of

equalities is in solved form.

The following theorem shows that the constraint solver terminates at

every input set of constraints.

Theorem 10 - Termination: solve always terminates, and when solve

terminates, it either fails or the output is a pair of a substitution and a new

set of type definitions.

Proof: We will define the following metrics for solve:

• NPC: number of possible comparisons between types, that have not

been made yet.

• NVRS: number of variables on the right-hand side of constraints.

• NSC: number of symbols in the constraints.

• NI: number of subtyping constraints.

We will prove termination by showing that NI reduces to zero. Termina-

tion of solve is proven by a measure function that maps the constraint set

to a tuple (NPC,NVRS,NSC,NI). The following table shows that each step

decreases the tuple w.r.t. the lexicographical order of the tuple.
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NPC NVRS NSC NI

1. = ≤ <

2. = <

3. = <

4. = = <

5. 0 0 0 0

6. = ≤ <

7. = = <

8. = ≤ ≤ <

9. = = = <

10. = = <

11. = ≤ <

12. <

13. = <

14. = ≤ <

15. = = <

16. <

17. = = = <

18. 0 0 0 0
⊓⊔

The proof for this theorem follows a usual termination proof approach,

where we show that a carefully chosen metric decreases at every step.

To guarantee that the output set of equality constraints is in solved form,

in order to be interpreted as a substitution, we also prove the lemma below.

Lemma 10: If solve(Eq, Ineq,∆)→∗ (S,∆′), then S is in solved form.

Proof: Suppose S was not in solved form. Then, either:

1. there is more than one constraint with the same variable on left-hand

side,

2. a variable on the left-hand side of a constraint occurs somewhere on

the right-hand side of a constraint,

3. some constraint has something that is not a variable on the left-hand

side.

In this case, either we can apply rule 2, for the first two cases, or rule 3, 4,

or 5, for the last case. Either way, the algorithm, would not have finished

executing and output S. ⊓⊔
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By proving the following lemma, we prove that the output set of equality

constraints is in solved form and therefore can be interpreted as a substitu-

tion.

5.1.5 Soundness

Here we prove that the type inference algorithm is sound, in the sense that

inferred types are derivable in the type system, which defines well-typed

programs. For this we need the following auxiliary definitions and lemmas

which are used in the proofs of the main theorems.

The following lemmas state properties of the constraint satisfaction re-

lation |=, the ⊗ operation, and the type intersection operation.

Lemma 11 - Distribution of Constraints: If we have S such that S |=∆

C ∪ C′, then S |=∆ C and S |=∆ C′.

Proof: If S |=∆ C ∪ C′, then for all constraints ci ∈ C ∪ C′, S(ci) is true,

meaning if ci is an equality constraint t1
.
= t2, then S(t1) = S(t2), and if

ci is a subtyping constraint s1 ≤ s2, then S(s1) ⊑∆ S(s2). In particular,

for all constraints c′i ∈ C, and for all constraints c′′i ∈ C′, the same holds.

Therefore S |=∆ C and S |=∆ C′. ⊓⊔

This lemma guarantees that any substitution that models some con-

straints, also models any subset of that set of constraints.

The following lemma relates syntactic equality with the concept of equiv-

alence.

Lemma 12 - Syntactic Equality and Equivalence: Suppose τ1 = τ2,

then τ1 ≡∆ τ2, for any ∆.

Proof: Since τ1 = τ2 then τ1 and τ2 are equal syntactically. Let τ1 = τ

and τ2 = τ . For any ∆, T[[τ1]]∆ = T[[τ ]]∆ and T[[τ2]]∆ = T[[τ ]]∆. There-

fore T[[τ1]]∆ = T[[τ2]]∆. So we can conclude that for any S, T[[S(τ1)]]∆ =

T[[S(τ2)]]∆, which means τ1 ≡∆ τ2. ⊓⊔

This allows us to prove the following property.

Lemma 13 - ⊗ Property: Let (Γ,∆, Eq) = ⊗((Γ1, . . . ,Γn), (∆1, . . . ,∆n)),

S |=∆ Eq, and ∀i.Γi, S(∆i) ⊢ Mi : τi, then ∀i.Γ, S(∆) ⊢ Mi : τ ′i, where

τ ′i ≡∆ τi.
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Proof: If there are no common variables between two different contexts then

this is trivially true, since Γ = Γ1 ∪ . . . ∪ Γn and ∆ = ∆1 ∪ . . . ∪∆n, and we

can freely add irrelevant information to the rules in the type system.

Let us assume there is some common variable X between two contexts

Γi and Γj . Then, there will be constraints α = τ1 and α = τ2 in Eq, where

X : σ1 ∈ Γi and X : σ2 ∈ Γj , (σ1 = τ1) ∈ ∆i and (σ2 = τ2) ∈ ∆j , while

X : σ ∈ Γ and (σ = α) ∈ ∆.

Since S |=∆ Eq, by lemma 11, it also models the constraints above,

which means that S(α) = S(τ1) and S(α) = S(τ2), which implies, from

Lemma 12, S(α) ≡∆ S(τ1) ≡∆ τ2. But since, by definition, S(σ1) ≡∆ S(τ1),

S(σ2) ≡∆ S(τ2), and S(σ) ≡∆ S(τ), we know that S(σ) ≡∆ S(σ1) ≡∆ S(σ2).

Therefore, the type for M in derivation Γ, S(∆) ⊢ Mi : τ ′i is such that

Γi, S(∆i) ⊢Mi : τi, and τ ′i ≡ ∆τi.

We can follow a similar argument for all other variables that occur in

more than one context.

Therefore the types for all variables in a context Γi using definitions

S(∆i) will be the same using the context Γ and definitions S(∆), and if we

have Γi, S(∆i) ⊢Mi : S(τi) we can use Γ, S(∆) ⊢Mi : S(τi), for all i. ⊓⊔

This property guarantees that we can extend contexts and sets of type

definitions with respect to the ⊗ operation and get equivalent results.

Lemma 14: If intersect(τ1, τ2, I,∆) = (τ, Eq,∆′) and S |=∆′ Eq, then

S(τ) ⊑∆′ S(τ1), and S(τ) ⊑∆′ S(τ2).

Proof: The proof follows by induction on the number of steps until the

intersect function finishes.

• Suppose τ1 and τ2 are different type variables. Then (τ, Eq,∆′) =

(τ2, {τ1 = τ2},∆). For any S, such that S |=∆ τ1
.
= τ2, then S(τ1) =

S(τ2). By Lemma 12, we know that S(τ1) ≡∆ S(τ2). Therefore,

S(τ2) ⊑∆ S(τ1) from the definition of ≡∆′, and S(τ2) ⊑∆ S(τ2), triv-

ially.

• Suppose τ1 and τ2 are equal. Then (τ, Eq,∆′) = (τ1, ∅,∆). Any S

models the empty set of constraints. But since τ1 = τ2, we know that

for any S, S(τ1) = S(τ2). By Lemma 12, we know that S(τ1) ≡∆ S(τ2).

Therefore, S(τ2) ⊑∆ S(τ1) from the definition of ≡∆, and S(τ2) ⊑∆

S(τ2), trivially.

• Suppose the tuple (τ1, τ2, τ3) is in I. Then we are assuming that

intersect(τ1, τ2, I \ {(τ1, τ2, τ3)},∆) = (τ3, ∅,∆). By the induction hy-

pothesis, if this is true, then by the induction hypothesis, we know

that for any S, S(τ3) ⊑∆ S(τ1) and S(τ3) ⊑∆ S(τ2).
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• Suppose τ1 is a type variable and τ2 is not. Then (τ, Eq,∆′) =

(τ2, {τ1
.
= τ2},∆). If some S is much that S |=∆ τ1

.
= τ2, then

S(τ1) = S(τ2). By Lemma 12, we know that S(τ1) ≡∆ S(τ2). There-

fore, S(τ2) ⊑∆ S(τ1) from the definition of ≡∆, and S(τ2) ⊑∆ S(τ2),

trivially.

• Same as the previous case, replace τ1 by τ2 and vice-versa.

• Suppose both τ1 and τ2 are type symbols. Then (τ, Eq,∆′) = (σ3, Eq,

∆2 ∪ {σ3 = τ̃}), where cpi(τ̃1, τ̃2,∆, I ∪ {(τ1, τ2, σ3)}) = (σ3, Eq,∆2}).
By the induction hypothesis, since cpi corresponds to multiple appli-

cations of the intersect function, we assume that S(τ̃) ⊑∆2 S(τ̃1)

and S(τ̃) ⊑∆2 S(τ̃2), for all S such that S |=∆2 Eq. Since: 1)

S(τ̃) ≡∆′ S(σ3), by definition; 2) S(τ̃) ⊑∆′ S(τ̃1) and S(τ̃) ⊑∆′ S(τ̃2)

is still true, since σ3 is a fresh type symbol that does not occur in τ1 nor

in τ2; and 3) any S such that S |=∆2 Eq is such that S |=∆′ Eq, since σ3

is a fresh type symbol that does not occur in Eq, then S(σ3) ⊑∆′ S(τ̃1)

and S(σ3) ⊑∆′ S(τ̃2) for any S such that S |=∆′ Eq.

• Suppose τ1 is a type symbol and τ2 = f(τ1′, . . . , τn′). Then (τ, Eq,∆′) =

(σ3, Eq,∆2 ∪ {σ3 = τ̃}), where cpi(τ̃1, τ2,∆, I∪{(τ1, τ2, τ3)}) = (σ3, Eq,

∆2). By the induction hypothesis, we know that for any S such that

S |=∆2 Eq, S(τ̃) ⊑∆2 S(τ̃1) and S(τ̃) ⊑∆2 S(τ2). Following a similar

argument to the previous case, we prove that for any S, such that

S |=∆′ Eq, we have that S(σ3) ⊑∆′ S(τ1) and S(σ3) ⊑∆′ S(τ2). The

proof still holds for τ2 being a type symbol and τ1 a complex term.

• Suppose τ1 = f(τ ′1, . . . , τ ′n) and τ2 = f(τ ′′1, . . . , τ ′′n). Then we

have (τ, Eq,∆′) = (f(τ ′′′1, . . . , τ ′′′n), Eq1 ∪ · · · ∪Eqn,∆1 ∪ · · · ∪∆n}),
where intersect(τi′, τi′′,∆, I) = (τi′′′, Eqi,∆i). By the induction hy-

pothesis, we know that any S such that S |=∆i Eqi, S(τi′′′) ⊑∆i

S(τi′) and S(τi′′′) ⊑∆i S(τi′′). In each of the previous statements

we can replace ∆i with ∆′, since all new definitions in each ∆i are

defining fresh type symbols that do not occur in τ ′j , τ ′′j nor Eqj ,

for j ̸= i. Then, since S |=∆′ Eqi, then S |=∆′ Eq1, . . . , Eqn. If

S(τ ′′′) ⊑∆′ S(τi′), and S(τ ′′′) ⊑∆′ S(τi′′), we hope it is clear to realize

that f(τ ′′′1, . . . , τ ′′′n) ⊑∆′ f(τ ′1, . . . , τ ′n) and f(τ ′′′1, . . . , τ ′′′n) ⊑∆′

f(τ ′′1, . . . , τ ′′n).

• The last case does not apply, since we do not get a tuple (τ, Eq,∆′) as

a result.

⊓⊔
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A set of equality constraints can be interpreted as a substitution. The

following lemma states that such substitution models the constraints them-

selves.

Lemma 15 - Self-Satisfiability: If Eq is a set of equality constraints in

solved form, then for any ∆, Eq |=∆ Eq.

Proof: If Eq is in solved form, then every equality in Eq is of the form α
.
= τ ,

such that no α that occurs on the left-hand side of any equality occurs in

any right-hand side of any equality. Therefore, we can interpret Eq as a

substitution S, such that for every equality α
.
= τ we have a substitution

α 7→ τ . Suppose we apply this substitution to the set of equalities Eq, then

for each constraint α
.
= τ we would have S(α) = S(τ). But S(τ) = τ , since

no variable that has a substitution in S occurs in any right-hand side of any

equality. Since S(α) = τ , then for any ∆, we get τ = τ , so Eq |=∆ Eq. We

prove the lemma. ⊓⊔

Now we have a theorem for the soundness of constraint generation which

states that if one applies a substitution which satisfies the generated con-

straints to the type obtained by the constraint generation function, we get

a well-typed program.

Theorem 11 - Soundness of Constraint Generation: For a program

P , given a clause, a query, or term M , if generate(M) = (τ,Γ, Eq, Ineq,∆),

then for any S |=∆ Eq, Ineq, and assuming basetype and type give the same

types for constants and function symbols, we have Γ, S(∆) ⊢P M : τ ′, where

τ ′ ≡
S(∆)

S(τ).

Proof: The proof will follow by induction on M.

• M is a variable.

generate(X) = (α, {X : σ}, ∅, ∅, {σ = α}). Then, for any S, we can

derive {X : σ}, S({σ = α}) ⊢P M : σ in the type system with one

application of rule VAR, and, trivially, σ ≡
S({σ=α} S(α).

• M is a constant.

generate(c) = (basetype(c), ∅, ∅, ∅, ∅). Since basetype(c) = type(c),

which is a base type τ ′, then S(τ ′) = τ ′. Since the only instance

τ ⪯ τ ′ is τ ′ itself, then we can use rule CST to derive ∅, ∅ ⊢P c : τ ′,
and τ ′ ≡∆ τ ′, trivially.

• M is a complex term.

generate(f(t1, . . . , tn)) = (f(τ1, . . . , τn),Γ, Eq, Ineq,∆), where for all

i, generate(ti) = (τi,Γi, Eqi, Ineqi,∆i). We know that basetype(f) =
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type(f) = α1 × . . . × αn → f(α1, . . . , αn). Then we know that τ1 ×
. . . τn → f(τ1, . . . , τn) ⪯ α1 × · · · × αn → f(α1, . . . , αn). For any S,

such that S |=∆ Eq, then, by lemma 11, we know that ∀i.S |=∆ Eqi,

and S |=∆ Eq′. Since S |=∆ Eqi, by the induction hypothesis we

know that Γi, S(∆i) ⊢P ti : τ ′i, where τ ′i ≡∆i S(τi). Also, since

S |=∆ Eq′, then, by lemma 13, we know that we can replace Γi by

Γ and ∆i by ∆ in the previous rules. Therefore Γ, S(∆) ⊢P ti : τ ′′i,
where τ ′′i ≡∆ τ ′i ≡∆ τi. Therefore we can derive in the system, using

rule CPL, Γ, S(∆) ⊢P f(t1, . . . , tn) : f(τ ′′1, . . . , τ ′′n), where τ ′′i ≡∆ τi.

• M is an equality.

generate(t1 = t2) = (bool,Γ, Eq, ∅,∆), where for all i, generate(ti) =

(τi,Γi, Eqi, ∅,∆i), (Γ, D,Eq′) = ⊗((Γ1,Γ2), (∆1,∆2)), and Eq = Eq1∪
Eq2 ∪ {τ1

.
= τ2} ∪ Eq′. For any S, such that S |= Eq, then, by lemma

11, we know that ∀i.S |=∆ Eqi, S |=∆ τ1
.
= τ2, and S |=∆ Eq′. Since

S |=∆ Eqi, by the induction hypothesis we know that Γi, S(∆i) ⊢P
ti : τ ′i, where τ ′i ≡∆ τi. Also, since S |=∆ Eq′, then, by lemma 13,

we know that we can replace Γi by Γ and ∆i by ∆ in the previous

rules. Therefore Γ, S(∆) ⊢P ti : τ ′′i, where τ ′′i ≡∆ τ ′i ≡∆ τi, and

since S |=∆ τ1
.
= τ2, then S(τ1) = S(τ2), and therefore S(τ1) ≡∆

S(τ2). Finally, we can apply UNF rule of the type system to obtain

Γ, S(∆) ⊢P t1 = t2 : bool.

• M is a call.

generate(p(X1, . . . , Xn)) = (bool, {X1 : σ1, . . . , Xn : σn}, Eq, Ineq ∪
{α1 ≤ τ1, . . . , αn ≤ τn},∆′), where we have generate(p(Y1, . . . , Yn) :

−body.) = (bool,Γ, Eq, Ineq,∆), {Y1 : τ1, . . . , Yn : τn} ∈ Γ, and

∆′ = ∆ ∪ {σ1 = α1, . . . , σn = αn}. For any S such that S |=∆′

Eq, Ineq, {α1 ≤ τ1, . . . , αn ≤ τn}, then, by lemma 11, we know that

S |=∆′ Eq, Ineq and S |=∆′ {α1 ≤ τ1, . . . , αn ≤ τn}. Since, S |=∆′

Eq, Ineq, by the induction hypothesis, Γ, S(∆) ⊢P p(Y1, . . . , Yn) :

−body. : bool. Also, since S |= {α1 ≤ τ1, . . . , αn ≤ τn}, we know

that ∀i.S(σi) ⊑∆′ S(τi). Therefore, we can derive by the rule CLL

that Γ ∪ {X1 : τ1, . . . , Xn : τn}, S(∆ ∪ {σ1 = α1, . . . , σn = αn}) ⊢P
p(X1, . . . , Xn) : bool.

• M is a query.

generate(c1, . . . , cn) = (bool,Γ, Eq, Ineq,∆), where generate(ci) =

(bool,Γi, Eqi, Ineqi,∆i), (Γ,∆, Eq′) = ⊗((Γ1, . . . ,Γn), (∆1, . . . ,∆n)),

Eq = Eq1 ∪ . . . ∪ Eqn ∪ Eq′, and Ineq = Ineq1 ∪ . . . ∪ Ineqn. For

any S such that S |=∆ Eq, Ineq, then, by lemma 11, S |=∆ Eqi and

S |=∆ Ineqi for all i. As a result, Γi, S(∆i) ⊢P ci : bool for all i. Since

S |=∆ Eq′, by lemma 13, we can replace all Γi and ∆i by Γ and ∆.
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Therefore we have Γ, S(∆) ⊢P ci : bool for all i. We can then use rule

CON of the type system to obtain Γ, S(∆) ⊢P c1, . . . , cn : bool.

• M is a clause.

generate(p(X1, . . . , xn) : −body.) = (bool,Γ, Eq, Ineq,∆), where we

have generate(bi) = (bool,Γi, Eqi, Ineqi,∆i), (Γ,∆) = ⊕((Γ1 ∪ . . . ∪
Γn), (∆1 ∪ . . . ∪ ∆n)), Eq = Eq1 ∪ . . . ∪ Eqn, and Ineq = Ineq1 ∪
. . . ∪ Ineqn. For any S such that S |=∆ Eq, Ineq, then, by lemma 11,

S |=∆ Eqi, Ineqi for all i. By the induction hypothesis, Γi, S(∆i) ⊢P
bi : bool. Therefore we can then use rule CLS of the type system to

obtain Γ, S(∆) ⊢P p(X1, . . . , Xn) : −b1; . . . , bn : bool.

• M is a recursive clause.

generate(p(X1, . . . , Xn) : −body) = (bool,Γ, Eq, Ineq′,∆), where we

have generate(p(X1, . . . , Xn) : −body′) = (bool,Γ, Eq, Ineq,∆), such

that body′ is body after removing all recursive calls, and Ineq′ =

Ineq ∪ {−→σ1 ≤ −→τ , . . . ,−→σk ≤ −→τ }, such that τ are the types for the

variables in the head of the clause in Γ and σi are the types for the

variables in each recursive call.

For any S such that S |=∆ Eq, Ineq′, then by lemma 11 S |=∆

Eq, Ineq. By the induction hypothesis, Γ, S(∆) ⊢P p(X1, . . . , Xn) :

−body′. : bool. Since S |=∆
−→σi ≤ −→τi ,−→τ ≤ −→σi , then −→σi ⊑∆

−→τi and
−→σi ⊑∆

−→τi , which means −→σi ≡ ∆−→τi . Therefore, by rule RCLS in the

type system, we obtain Γ, S(∆) ⊢P p(X1, . . . , Xn) : −body. : bool.

⊓⊔

We also proved the soundness of constraint solving, which basically shows

that the solved form returned by our constraint solver for a set of constrains

C satisfies C.

Theorem 12 - Soundness of Constraint Solving: Let Eq be a set of

equality constraints, Ineq a set of subtyping constraints, and ∆ a set of type

definitions. If solve(Eq, Ineq,∆)→∗ (S,∆′) then S |=∆ Eq, Ineq.

Proof: The proof will follow by induction of the number of steps until the

algorithm is finished.

• Case 1. By the induction hypothesis, (Eq, Ineq,∆) →∗ (S,∆′), such

that S |=∆ Eq, Ineq. The same S also models t
.
= t, since S(τ) = S(τ)

for any S. Therefore ({τ .
= τ} ∪ Eq, Ineq,∆) →∗ (S,∆′), such that

S |=∆ (τ
.
= τ), Eq, Ineq.

• Case 2. By the induction hypothesis, ({α .
= τ}∪Eq[α→ τ ], Ineq[α→

τ ],∆[α→ τ ]) →∗ (S,∆), such that S |=∆ (α
.
= t), Eq[α → τ ], Ineq.
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By the lemma 11 S |=∆ α
.
= τ , which means that, S(α) = S(τ).

Because of that, S |=∆ (α = τ), Eq, Ineq, because for every occurrence

of α in Eq, it will be replaced by S(α) = S(τ), so having α in place of

τ in Eq or in Ineq will not change anything.

• Case 3. By the induction hypothesis, ({α .
= τ}∪, Ineq,∆)→∗ (S,∆′),

such that S |=∆ (α
.
= τ), Eq, Ineq. By the lemma 11, S |=∆ α

.
= τ ,

which means that S(α) = S(τ). Therefore S |=∆ τ
.
= α, and S |=∆

τ
.
= α,Eq, Ineq.

• Case 4. By the induction hypothesis, ({τ1
.
= τ1′, . . . , τn

.
= τn′} ∪

Eq, Ineq,∆)→∗ (S,∆′), where S |=∆ τ1
.
= τ1′, . . . , τn

.
= τn′, Eq, Ineq.

By the lemma 11, S |=∆ τ1
.
= tau1′, . . . , τn

.
= τn′, which means

that S(τ1) = S(τ1′), . . . , S(τn) = S(τn′). Therefore S(f(τ1, . . . , τn)) =

S(f(τ1′, . . . , τn′)), so S |=∆ (f(τ1, . . . , τn)
.
= f(τ1′, . . . , τn′)), Eq, Ineq.

• Case 5. The proof does not apply, since the output is not a pair of a

substitution and a set of type definitions. and trivially τ ≡∆ τ

• Case 6. By the induction hypothesis, (Eq, Ineq,∆) →∗ (S,∆′), such

that S |=∆ Eq, Ineq. The same S also models t ≤ t, since S(t) = S(t)

for any S and for any S(t), S(t) ⊑∆ S(t), by Reflexivity. Therefore

(Eq, {t ≤ t} ∪ Ineq,∆)→∗ (S,∆′), such that S |=∆ (t ≤ t), Eq, Ineq.

• Case 7. By the induction hypothesis, (Eq, {τ1 ≤ τ1′, . . . , τn ≤ τn′} ∪
Ineq,∆) →∗ (S,∆′), such that S |=∆ τ1 ≤ τ1′, . . . , τn ≤ τn′, Eq, Ineq.

By the lemma 11, S |=∆ τ1 ≤ τ1′, . . . , τn ≤ τn′, which means that

S(τ1) ⊑∆ S(τ1′), . . . , S(τn) ⊑∆ S(τn′). Therefore, S(f(τ1, . . . , τn)) ⊑∆

S(f(τ1′, . . . , τn′)), and S |=∆ (f(τ1, . . . , τn) ≤ f(τ1′, . . . , τn′)), Eq, Ineq.

• Case 8. By the induction hypothesis, (Eq∪Eq′, {α ≤ τ}∪Ineq,∆′)→∗

(S,∆′′), such that S |=∆ Eq ∪ Eq′, {α ≤ τ} ∪ Ineq. By the lemma

11, S |=∆ α ≤ t, so S(α) ⊑∆ S(t). By lemma 14, we know that since

intersect(τ1, τ2, ∅,∆) = (τ, Eq,∆′), then ∀i.S(τ) ⊑∆ S(τi), by lemma

14 and the fact that S |=∆ Eq. This means that ∀i.S(α) ⊑∆ S(ti).

Therefore, S |=∆ Eq, (α ≤ t1), (α ≤ t2), Ineq.

• Case 9. By the induction hypothesis, ({α .
= τ} ∪ Eq, Ineq,∆) →∗

(S,∆′), such that S |=∆ (α
.
= τ), Eq, Ineq. By the lemma 11, S |=∆

α
.
= τ , which means S(α) = S(τ). As a consequence, S(α) ⊑∆ S(τ).

Therefore, S |=∆ α ≤ τ , so S |=∆ Eq, (α ≤ τ), Ineq.

• Case 10. By the induction hypothesis, (Eq, {τ1 ≤ τ, . . . , τn ≤ τ} ∪
Ineq,∆)→∗ (S,∆′), such that S |=∆ Eq, (τ1 ≤ τ), . . . , (τn ≤ τ), Ineq.

By the lemma 11, S |=∆ (τ1 ≤ τ), . . . , (τn ≤ τ), which means that

∀i.S(τi) ⊑∆ S(τ). Then by the definition of ⊑∆ we know that S(τ1 +

. . . + τn) ⊑∆ S(τ). Therefore S |=∆ Eq, (τ1 + . . . + τn ≤ τ), Ineq.
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• Case 11. By the induction hypothesis, (Eq, Ineq,∆)→∗ (S,∆′), such

that S |=∆ Eq, Ineq. Since σ and τ have been compared before, we can

assume σ ⊑∆ τ , since that is what is intended by the store. Therefore,

it is true that S |=∆ Eq, (σ ≤ τ), Ineq.

• Case 12. By the induction hypothesis, (Eq, {∆(σ) ≤ τ}∪ Ineq,∆)→∗

(S,∆′), such that S |=∆ Eq, (∆(σ) ≤ τ), Ineq. By the lemma 11,

S |=∆ ∆(σ) ≤ τ . Therefore, from the definition of the subtyping

relation, using the left unfolding rule, we know that S |=∆ σ ≤ τ .

Therefore S |=∆ Eq, (σ ≤ τ), Ineq.

• Case 13. By the induction hypothesis, ({α = τ1+. . .+τn}∪Eq, Ineq,∆)

→∗ (S,∆′), such that S |=∆ (α = τ1+. . .+τn), Eq, Ineq. By the lemma

11, S |=∆ α = τ1+. . .+τn, which means S(α) = S(τ1+. . .+τn). If they

are equal, then S(τ1 + . . . + τn) ⊑∆ S(α), therefore it is obvious that,

∀i.S(τ1) ⊑∆ S(α). As a consequence, S |=∆ (τ1 ≤ α), . . . , (τn ≤ α).

Therefore S |=∆ Eq, (τ1 ≤ α), . . . , (τn ≤ α), Ineq.

• Case 14. By the induction hypothesis, (Eq, {τ ≤ τi} ∪ Ineq,∆) →∗

(S,∆′), such that S |= Eq, (τ ≤ τi), Ineq. By the lemma 11, S |=∆ τ ≤
τi, which means S(τ) ⊑ S(τi). Now, by the definition of ⊑∆, we have

that S(τ) ⊑∆ S(τ1+· · ·+τi+. . . τn), which means S |=∆ t ≤ τ1+. . .+τn.

Therefore S |=∆ Eq, (τ ≤ τ1 + . . . + τn), Ineq.

• Case 15. By the induction hypothesis, (Eq, Ineq,∆)→∗ (S,∆′), such

that S |=∆ Eq, Ineq. Since τ and σ have been compared before, we can

assume τ ⊑∆ σ, since that is what is intended by the store. Therefore,

it is true that S |=∆ Eq, (τ ≤ σ), Ineq.

• Case 16. By the induction hypothesis, (Eq, {τ ≤ σ11 ≤ σ13}, {σ4 =

α4, σ5 = α5, σ7 = α7, σ9 = α9, σ11 = α11, σ12 = α1 + α3, σ13 = α2 +

α6, σ = int + float})

• Case 17. By Proposition 15 and Lemma 10, we know that Eq is in

solved form, and, since it is in solved form, it can be interpreted as a

substitution, such that Eq |=∆ Eq, so Eq |=∆ Eq ∪ ∅.

• Case 18. The proof does not apply, since the output is not a pair of a

substitution and a set of type definitions.

⊓⊔

Finally, using the last two theorems we prove the soundness of the type

inference algorithm. The soundness theorem states that if one applies the

substitution corresponding to the solved form returned by the solver to the

type obtained by the constraint generation function, we get a well-typed

program.
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Theorem 13 - Soundness of Type Inference: Given M , if generate(M) =

(τ,Γ, Eq, Ineq,∆) and solve(Eq, Ineq,∆)→∗ (S,∆′), then Γ, S(∆′) ⊢P M :

S(τ).

Proof: The proof follows from using theorems 11 and 12 directly. ⊓⊔

5.1.6 Arithmetic

We extend the type inference algorithm to deal with some of the traditional

arithmetic built-ins, as described in Section 4.4. We extend our constraint

generation algorithm to include the following cases:

• generate(binOp(t1, t2)) = (σ,Γ, Eq, Ineq,∆ ∪ {σ = int + float})
where generate(ti) = (τi,Γi, Eqi, Ineqi,∆i),

(Γ,∆, Eq′) = ⊗
(
(Γ1,Γ2), (∆1,∆2)

)
,

Eq = Eq1 ∪ Eq2 ∪ Eq′, and

Ineq = Ineq1 ∪ Ineq2 ∪ {τ1 ≤ int + float, τ2 ≤ int + float}.

• generate(unOp (t)) = (τ,Γ, Eq, Ineq ∪ {τ ⊑ int + float},∆)

where generate(t) = (τ,Γ, Eq, Ineq,∆).

• generate(is(t1, t2)) = (bool,Γ, Eq, Ineq,∆)

where generate(ti) = (τi,Γi, Eqi, Ineqi,∆i),

(Γ,∆, Eq′) = ⊗
(
(Γ1,Γ2), (∆1,∆2)

)
,

Eq = Eq1 ∪ Eq2 ∪ Eq′, and

Ineq = Ineq1 ∪ Ineq2 ∪ {τ1 ≤ int + float, τ2 ≤ int + float}.

• generate(relOp(t1, t2)) = (bool,Γ, Eq, Ineq,∆)

where generate(ti) = (τi,Γi, Eqi, Ineqi,∆i),

(Γ,∆, Eq′) = ⊗
(
(Γ1,Γ2), (∆1,∆2)

)
,

Eq = Eq1 ∪ Eq2 ∪ Eq′, and

Ineq = Ineq1 ∪ Ineq2 ∪ {τ1 ≤ int + float, τ2 ≤ int + float}.

We will now illustrate with an example what the results for the constraint

generation would be.

Example 45: Let len be a predicate that calculates the length of a list,

defined as follows:

len([],0).

len([X|Xs],N) :- len(Xs,N1), N is N1 + 1.
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The normalized predicate definition is:

len(L,S) :- L = [], S = 0;

L = [X | Xs], S = N, N is M, M = N1 + 1, len(Xs,N1).

The exact trace of generate for the predicate len as defined previously is as

follows:

generate(len(L, S) : −L = [ ], S = 0;L = [X|Xs], S = N,N is M,M =

N1 + 1, len(Xs,N1).) =

generate(len(L, S) : −L = [ ], S = 0;L = [X|Xs], S = N,N is M,M =

N1 + 1.) =

generate(L = [ ], S = 0) =

generate(L = [ ]) = (bool, {L : σ1}, {α1
.
= [ ]}, ∅, {σ1 = α1})

generate(S = 0) = (bool, {S : σ2}, {α2
.
= int}, ∅, {σ2 = α2})

(bool, {L : σ1, S : σ2}, {α1 = [ ], α2 = int}, ∅, {σ1 = α1, σ2 = α2})

generate(L = [X|Xs], S = N,N is M,M = N1 + 1) =

generate(L = [X|Xs]) = (bool, {L : σ3, X : σ4, Xs : σ5}, {α3
.
=

[α4 | α5]}, ∅, {σ3 = α3, σ4 = α4, σ5 = α5})
generate(S = N) = (bool, {S : σ6N : σ7}, {α6

.
= α7}, ∅, {σ6 =

α6, σ7 = α7})
generate(N is M) = (bool, {N : σ8,M : σ9}, ∅, {α8 ≤ int +

float, α9 ≤ int + float}, {σ8 = α8, σ9 = α9})
generate(M = N1 + 1) = (bool, {M : σ10, N1 : σ11}, {α10

.
=

σ}, {α11 ≤ int + float}, {σ10 = α10, σ11 = α11, σ = int + float})
(bool, {L : σ3, X : σ4, Xs : σ5, S : σ6, N : σ7,M : σ9, N1 : σ11}, {α3

.
=

[α4 | α5], α6
.
= α7, α10

.
= σ, α7

.
= α8, α9

.
= α10}, {α8 ≤ int + float, α9 ≤

int + float, α11 ≤ int + float}, {σ3 = α3, σ4 = α4, σ5 = α5, σ6 = α6, σ7 =

α7, σ9 = α9, σ11 = α11, σ = int + float})

(bool, {L : σ12, X : σ4, Xs : σ5, S : σ13, N : σ7,M : σ9, N1 : σ11}, {α1
.
= [ ], α2

.
= int, α3

.
= [α4 | α5], α6

.
= α7, α10

.
= σ, α7

.
= α8, α9

.
= α10}, {α8 ≤

int + float, α9 ≤ int + float, α11 ≤ int + float}, {σ4 = α4, σ5 = α5, σ7 =

α7, σ9 = α9, σ11 = α11, σ12 = α1 + α3, σ12 = α2 + α6, σ = int + float})

(bool, {L : σ12, X : σ4, Xs : σ5, S : σ13, N : σ7,M : σ9, N1 : σ11}, {α1
.
=

[ ], α2
.
= int, α3

.
= [α4 | α5], α6

.
= α7, α10

.
= σ, α7

.
= α8, α9

.
= α10}, {α8 ≤

int + float, α9 ≤ int + float, α11 ≤ int + float, σ5 ≤ σ12, σ12 ≤ σ5, σ13 ≤
σ11, σ11 ≤ σ13}, {σ4 = α4, σ5 = α5, σ7 = α7, σ9 = α9, σ11 = α11, σ12 =

α1 + α3, σ13 = α2 + α6, σ = int + float})
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Although the presentation becomes quite unreadable due to the large

number of variables and type definitions, the resulting sets of equations can

then be introduced into the solve algorithm.

For the sake of readability, we simply present some intermediate steps:

solve({α1
.
= [ ], α2

.
= int, α3

.
= [α4 | α5], α6

.
= α7, α10

.
= σ, α7

.
= α8, α9

.
=

α10}, {α8 ≤ int + float, α9 ≤ int + float, α11 ≤ int + float, σ5 ≤ σ1, σ1 ≤
σ5, σ2 ≤ σ11, σ11 ≤ σ2}, {σ4 = α4, σ5 = α5, σ7 = α7, σ9 = α9, σ11 =

α11, σ12 = α1 + α3, σ13 = α2 + α6}))→∗

solve({α1
.
= [ ], α2

.
= int, α3

.
= [α4 | α5], α6

.
= α8, α10

.
= σ, α7

.
= α8, α9

.
=

σ}, {α8 ≤ int + float, σ ≤ int + float, α11 ≤ int + float, σ5 ≤ σ1, σ1 ≤
σ5, σ2 ≤ σ11, σ11 ≤ σ2}, {σ4 = α4, σ5 = α5, σ7 = α8, σ9 = int + float, σ11 =

α11, σ12 = [ ] + [α4 | α5], σ13 = int + α8}))→∗

solve({α1
.
= [ ], α2

.
= int, α3

.
= [α4 | α5], α6

.
= α8, α10

.
= σ, α7

.
= α8, α9

.
=

σ}, ∅, {σ4 = α4, σ12 = [ ] + [α4 | σ12], σ13 = int + float}))

The interesting types, corresponding to the argument of len predicate,

are σ12 and σ13, respectively. Therefore the type inferred for the predicate

is len :: σ12×σ13 → bool, where σ12 = [ ] + [α4 | σ12] and σ13 = int+ float.

In the next chapter we discuss the introduction of data structures de-

clared by the programmer and explain the changes necessary to the type

inference algorithm in order to obtain reasonable results.

5.1.7 Discussion

In this thesis, we recognize the limitations of static typing as discussed in

Section 4.5. The limitations discussed there are necessary in order to have

decidable type inference. In this chapter, we presented a type inference algo-

rithm that outputs types that may be more general than the actual types of

the interpretation function intended by the programmer. This interpretation

may itself have more tuples accepted (either true or false) than intended

as well.

As discussed in Section 4.5, we are inferring over approximations of pro-

grams. As a result, the types inferred for a program may be very general

and uninformative, in fact even correspond to the entire Herbrand universe,

in some cases. In order to infer types that are closer to the programmer’s

intention, in the next chapter we present an algorithm that closes the types

we get from type inference, based on some fundamental principles, such

that, for some predicates, the resulting types are closer to the programmer’s

intention.
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We also allow for the declaration of algebraic data types, that can be

used during type inference, in order to improve the result obtained from it.

One other limitation of the work presented in the previous two chapters

is that we deal with recursive predicates, but not with mutually recursive

predicates. First of all, we argue that the class of programs we already

cover, excluding mutually recursive predicates, is still significant. Secondly,

if we consider every strongly connected component (SCC) of the dependency

graph of the program to be a mutually recursive definition of several predi-

cates, we could extend this work in two ways:

• We could define the semantics for each SCC; add a rule in the type

system for SCCs; and define an extra case for type inference where we

infer the types for each SCC.

• In alternative, we could compile logic programs to an intermediate lan-

guage where mutually recursive definitions are defined in a single syn-

tactic element, such as a letrec in functional programming languages,

and then do the steps described previously, i.e., define the semantics for

that syntactic element; and add a rule in the type system for it; define

an extra case for type inference of types of that syntactic element.
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Chapter 6

Closed Types

In the previous chapter, we described a type inference algorithm to infer

types for an untyped program, and proved that the types inferred can be

derived in the type system presented in Chapter 4.

However, as discussed in Section 4.5, the types resulting from type in-

ference are often too general to be useful or informative. This is not due to

limitation in the type inference algorithm itself, but by virtue of how logic

programs are written, and how logic variables are used.

In this chapter, we present a class of types called closed types, that cor-

respond to a subset of the types described by our type language. Types that

are inferred from our type inference algorithm can be closed, but normally

they are not, in which case we will call them open types. Closed types are

much more informative and often closer to the programmer’s intention [25].

The restriction on the type language in order to obtain closed types is the

same that functional logic programming uses for the types allowed.

We also present an algorithm that given some open types inferred by the

type inference algorithm, returns closed types.

In addition to that, we present an optional process for declaring data

types, in order to use them during inference. We show the effects of declaring

simple data types, such as lists or trees, on the resulting types returned by

the algorithm. We force the use of closure when data types are declared so

that the inferred types are clearer.

The content of this chapter was partially presented in [1] and in [3].

6.1 Motivation

Types are sets of objects that share some characteristic and are used to

either document a program, help in the development of programs, or describe

some properties of programs. Therefore, having types that correspond to the

whole Herbrand Universe is not very helpful. Unfortunately, as said in the

previous section, types inferred by our type inference algorithm sometimes

are exactly like that. They are often crude, uninformative, and not the

intended type for the program.
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This problem is known since the early beginning of research on types for

logic programming. Zobel [6] said about type inference algorithms “inferred

types may have no relation to a predicate’s “intended” types, and are simply

cartesian products, of sets of ground terms, that contain all tuples of ground

terms that can occur in the predicate’s success set” [7].

Of course one may say that the definition of intended interpretation is

not known in advance, but we argue that the intended interpretation of a

program is the interpretation any programmer would have when program-

ming the same specification in a typed programming language. This view is

implicit in previous work by Naish [78] and explicit in type systems which

make it mandatory to explicitly declare type definitions of program functors

[11,12]. Let us take as an example the append predicate as defined in several

libraries.

append([ ],X,X).

append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

The type inferred by our type inference algorithm for (a normalized version

of) this predicate is σ1 × σ2 × σ3 → bool, where:

σ1 = [ ] + [α | σ1],
σ2 = β,

σ3 = β + [α | σ3].

This type accepts more terms than the “intended” interpretation of

append which is relating three lists as arguments, for example calls such

as append([ ], 1, 1) are accepted by the predicate. If we take a look at the

types in [25], specifications for programs always describe some behavior de-

sired by the programmer and some structured set of terms for which that

behavior should be satisfied.

In fact, Naish argues that types need to be part of the specification, in

order for the specification to be correct and complete. An example of a

specification presented in [25] for append is shown below:

Specification: append(A,B,C) is true iff C is the list B concate-

nated onto the list A.

Obviously if this is the specification we want for our predicate, then

the type inferred above is not the one “intended”, but instead it would be

σ1 × σ1 × σ1 → bool, where:

σ1 = [ ] + [α | σ1].
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Note that this type does not over-approximate the predicate model, but,

somehow, it corresponds to the most general accepted intended interpreta-

tion of the predicate append as a program which appends two lists of ele-

ments of some type α. This is also a well-typing of append by the most strict

systems [11,12] based on an Hindley-Milner style of type system definition.

The motivation behind closed types is to have a restriction on the type

language such that types inferred for predicates are closer to the program-

mer’s intention, without a requirement for any information given by the

programmer. In the next section, we explain the fundamental principles on

which we base our definition for closed types.

6.2 Principles

Having union types as part of your type syntax, as in this work, can lead

to types that have useless information, for instance, if we have the type

σ = [ ] + [int | σ] + α, even though we can see some structure that might

be interpreted as a list, any term can be typed with this type, due to the

presence of type variable α as a summand on the definition.

The concept of algebraic data types is relevant here, where all summands

in a sum must be disjoint. This is in fact a restriction in functional program-

ming languages, such as in data declarations in Haskell. So we introduce the

following principle:

Principle 1: Types should be strictly smaller than the set of all possible

terms.

Example 46: Let p be defined as:

p(1).

p(a).

p(X).

The type for the argument of p would be inferred as σ = int+atom+α.

This is probably not the intended type for p.

A second motivation stems from deductive databases [79, 80]. Consider

the following Datalog program:

i(X,Y) :- e(X).

e(1).



104 Chapter 6. Closed Types

This program is not allowed in Datalog because Y matches any object in the

database. Datalog implementations address this problem by explicitly dis-

allowing unconstrained head free variables as they match the full Herbrand

base.

In fact, we can have the following program:

id(X,X).

Which is the identity predicate, or equality predicate, and we can reason

about what is so different about the two.

The types for i would be σ1 × σ2 → bool, where σ1 = int, and σ2 = β,

while the types for id would be σ3×σ3 → bool, where σ3 = γ. The difference

is that there is some restriction on what is accepted by id. If we think about

the type for the predicate id we have ∀γ.γ× γ → bool, so now the semantics

of this type are all functions that accepted pairs of objects of the same type.

Therefore there is some type restriction.

In order to distinguish from the cases like id and i, we introduce the

following principle:

Principle 2: All type variables should be constrained.

Example 47: Let us consider the following definition for predicate p:

p(1, X).

The type we get for the second argument is σ2 = α, where α is a type

variable that appears only once in the types for the predicate. This makes

the type for the second argument open to be anything.

Even if we are willing to accept this principle, there are still some dif-

ficulties. Do we want to exclude the predicates that do not follow these

principles? Or could it be that there is a type for the predicate that fol-

lows the principles, and the general way that logic programs are written on

meant we could not infer it? If so, is there an operation we can perform

to transform the open types into closed types, such that the principles are

followed?

We believe some operation exists and it must be based on the following

principle:

Principle 3: Types are based on self-contained definitions.

This means that all the information we need to close the types resulting

from type inference is in the type themselves.
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In the rest of this chapter we present the definition of closed types and

the closure operation, that given some set of types that are possibly open,

transforms them into closed types, if possible. We also present data type

declarations and a comparison of the results we get on several predicates

when performing type inference without any extra step, when using closure,

and when using data type declarations for relevant data structures.

6.3 Closed Types

Closed types are, intuitively, types that are constrained in some way. If the

definition for a type symbol is open, then it may type any term, including

terms that use function symbols not present in the program. This is exactly

what we want to avoid with closed types. There are two main issues that

motivate closed types: unconstrained type variables and closed composite

types. We will hereon name composite types to union types that have more

than one summand.

Definition 35 - Unconstrained Type Variable: A type variable α is

unconstrained with respect to a set of type definitions ∆, which we denote

by unconstrained(α,∆), if and only if it occurs exactly once in ∆.

These type variables are inferred for logic variables in the program that

are used only once.

Example 48: Let ∆1 = {σ1 = α, σ2 = β}. In this case, both α and β are

unconstrained type variables.

Let ∆2 = {σ3 = [ ] + [γ | σ3]}. In this case, γ is an unconstrained type

variable.

As we can see in the previous example, if there is an unconstrained

type variable it does not mean that the type is open, as σ3 is actually not

an open type. In fact, unconstrained type variables are only a problem in

certain cases, so we need to distinguish those cases in the definition of closed

types.

Definition 36 - Closed Composite Type: A composite type τ̃ is a closed

composite type, notation closedComposite(τ̃), if and only if it has no type

variables as summands.

Example 49: Let ∆ = {σ1 = int, σ2 = int + float, σ3 = f(int) + α}. In

this case, σ1 is not a composite type, σ2 is a closed composite type, and σ3
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is an open composite type.

The definition for closed types uses these two previous auxiliary defini-

tions.

Definition 37 - Closed Types: A type symbol σ is closed with respect to

a set of type definitions ∆, notation closed(σ,∆), if and only if the following

holds:

closed(σ,∆) =


closedComposite(∆(σ)) if ∆(σ) is a composite type

¬unconstrained(∆(σ), T ) if ∆(σ) is a type variable

True otherwise

Informally, a closed type is either a closed composite type or, if it is a

type term, then that type term cannot be an unconstrained type variable.

The first case of this definition avoids open data types while the second

case avoids unconstrained type variables which could be instantiated by the

whole Herbrand universe.

Example 50: σ1 = α + f(β) is not a closed type with respect to any set

of type definitions ∆, since the right-hand side of the definition is an open

composite type.

τ2 = int + f(α) is a closed type with respect to any set ∆, since it does not

have variables as summands.

6.4 Closure Operation

Using our type inference algorithm which infers regular (open) types for a

given logic program, we now define a closure operation which, given a set

of regular types, closes them, if possible. This operation follows Principle 3,

i.e., types are based on self-contained definitions.

We first define the proper type domain of a type symbol σ with respect

to a set of type definitions ∆ as the set of non-variable summands in the

definition for σ itself and in the type definitions of all the type symbols that

share at least one type constructor with σ.

A precise definition of the proper type domain of a type τ with respect

to set of type definitions ∆, notation properType(τ,∆), is that it is the set

of types computed by the function in pseudo-code, in Figure 6.1.

We then define the proper variable domain of a type variable α with

respect to a set of type definitions ∆ as the union of all proper domains for

the types whose definition includes α as a summand.
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function properType(σ,∆)
P = the set of non-variable summands of σ;
for each type function symbol f ∈ σ do

for σ′ ∈ T do
if f ∈ σ′ then

s = set of non-variable summands of σ′;
P = P ∪ S;

end

end

end
return P

end function

Figure 6.1: Proper Type Domain function

A precise definition of the proper variable domain of a type variable α

with respect to a set of type definitions ∆, notation properV ar(α,∆), is that

it is the set of types computed by the function in pseudo-code, in Figure 6.2.

function properV ar(α,∆)
V = ∅;
for each σ ∈ ∆ do

if α ∈ ∆(σ) then
P = properType(σ,∆);
D is the set of type terms in P that contain α;
V = V ∪ P \D;

end

end
return V

end function

Figure 6.2: Proper Variable Domain function

Note that the definitions for the proper type domain and the proper

variable domain are based on principles 2 and 3, since they are self-contained

in the sense that the information used is defined in the lexical components

of the program and closure will forbid unconstrained type variables.

Using these algorithms we can now define a closure operation given a set

of type definitions T , notation closure(T ), as the set of types computed by

the function, in pseudo-code, in Figure 6.3.

The auxiliary function makeSum transforms a set of type terms into a

union type of those type terms. Also note that if the proper variable domain

of some type variable in a given set of type definitions is empty, this indicates

that we have no information to use for the closure. In these cases the variable

is either just “ignored” if the type symbol where it occurs has some other

type terms or the algorithm halts with failure because there is no way to

obtain a closed type for this predicate.
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function closure(∆,Γ)
while some σ ∈ ∆ is open do

for each α that occurs only once in ∆ do
if σ = α ∈ ∆ then

fail
else

we have (σ = α + X) in ∆; ∆ = ∆[α 7→ X];
end

end
for each α ∈ ∆(σ), for some σ do

P = properV ar(α,∆);
if P = ∅ then

if σ = α ∈ ∆ then
fail

else

we have (σ = α + X) in ∆; ∆ = ∆[α 7→ X];
end

else
S = makeSum(P );
∆ = ∆[α 7→ S];

end

end

end
return ∆

end function

Figure 6.3: Closure operation

Informally, the algorithm to compute the closure of a set of type defini-

tions T consists of the following steps:

• get all open types σ ∈ ∆ with respect to ∆ \ {σ};

• for each variable α that makes these types open, get their proper vari-

able domain;

• substitute every occurrence of those variables as summands in the def-

initions in ∆ by their proper variable domain, and simplify.

Theorem 14 - Closure Termination: Given a set of type definitions ∆,

closure(∆) always terminates.

A draft of the proof for this theorem is to notice that every variable is

substituted by a union type composed of type terms constructed from the

symbols present in ∆. Since the set of symbols is finite, so are the possible

union types. Since at every step we reduce the number of type variables by

at least one, we eventually either exhaust all possible union types, eliminate

every type variable, or halt with failure. Therefore the algorithm terminates.
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Example 51: Let the predicate gcd calculate the greatest common divisor

between two integers and be defined as follows:

gcd(X,0,X).

gcd(X,J,K) :- R is (X mod J), gcd(J,R,K).

If we assume that the type inference algorithm attributes int to all vari-

ables involved in an is goal, then the types inferred for this predicate is

σ1 × σ2 × σ1 → bool, where:

σ1 = α + int

σ2 = int

σ3 = α + int

Applying the closure to the set ∆ = {σ1 = α+int, σ2 = int, σ3 = α+int},
we get the set of closed types {σ1 = int, σ2 = int, σ3 = int}. Following

execution step-by-step:

• types σ1 and σ3 will be detected as open;

• the proper variable domain of α will be calculated;

• the proper type domain of σ1 and σ3 will be calculated;

• the result for the proper variable domain will be obtained (int);

• after substituting the variable for the proper domain, the resulting set

of type definitions will be {σ1 = int, σ2 = int, σ3 = int}.

A final note about closed types has to do with their relation to untyped

programs. Note that closed types filter the set of admissible queries to a

program as the ones which are typed by the closed type. This has an imme-

diate consequence which is that we may have a ground query for which the

answer in an untyped version is “yes” and the answer in the same program

but typed by a closed type is wrong. The example on Section 6.1 for the

append predicate shows this: the query append([], 1, 1) has answer “yes” in

the untyped version of append and wrong in the version typed by the closed

type in the example.

The opposite does not happen, i.e., if the answer to a query to a predicate

typed by a closed type is “yes”, then the answer to the same query to the

untyped version of the predicate still is “yes”. This holds because closed

types are instances of an (open) type for the predicate which we assume

over-approximates the program semantics.
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6.4.1 Soundness

One important property of the closure operation is that the resulting types

still type the program, in the sense that we can derive the types in the type

system. We will prove this property by showing types resulting from closure

are instances of the original types, and then, by Lemma 7, have a derivation

in the type system.

Lemma 16 - Closed Types as Instances: Let ∆ be a set of type

definitions. If closure(∆) = ∆′, then there is a substitution S such that

S(∆) = ∆′.

Proof: Suppose there is some type variable α that occurs only once in ∆.

Then either we have (σ = α) ∈ ∆ and we fail, so the theorem does not apply,

or we get ∆ = ∆[α 7→ X]. In this case S = [α 7→ X] is the substitution

applied to ∆ such that S(∆) = ∆′. Suppose instead we have there is some

type variable α that occurs more than once, but its proper domain is empty.

Then, either we have (σ = α) ∈ ∆ we fail, so the theorem does not apply, or

we get ∆ = ∆[α 7→ X]. In this case S = [α 7→ X] is the substitution applied

to ∆ such that S(∆) = ∆′. Suppose there is a type variable that occurs

more than once, but its proper domain is P , corresponding to the union

type τ̃ . Then in the end we get ∆′ = (S(∆)), where S = [α 7→ τ̃ ]. Now note

that the algorithm is iterative and one of the previous options applies at

every step, until no type is open. Also note that none of the steps introduce

any new type variable. Since the algorithm always terminates, in the end,

let the substitutions S1, . . . , Sn be the substitutions applied at every step.

S = S1 ◦ . . . ◦ Sn will be such that closure(∆) = ∆′ and S(∆) = ∆′. ⊓⊔

Theorem 15 - Closure Soundness: Let ∆ be a set of type definitions, Γ

be a context, P a program, M a clause, a query, or a term, and τ a type.

Suppose we have closure(∆) = ∆′, and there is a derivation Γ,∆ ⊢P M : τ .

Then, there is a derivation Γ,∆′ ⊢P M : τ ′ and τ ⪯ τ ′.

Proof: We know that if closure(∆) = ∆′, then, there is a substitution S,

such that S(∆) = ∆′, by lemma 16. Also, by lemma 7, we know that there

is a derivation Γ, S(∆) ⊢P M : S(τ). Since S(τ) ⪯ τ , and S(∆) = ∆′, then

we can replace it in the derivation to get Γ,∆′ ⊢P M : τ ′, where τ ′ ⪯ τ ,

which is what we wanted to prove. ⊓⊔



6.5. Examples 111

6.5 Examples

In this section we show some practical examples of applications for closed

types, where they become useful, unlike their open counterpart. We also

present some results for type inference for some predicates using the closure

operation post-inference.

6.5.1 Bug Detection

Closed types, being less permissive that open types, may detect more bugs

during program development. This is a pragmatic motivation for the use of

closed types. Let us now present an illustrating example.

Example 52: Let max be a predicate that finds the largest number of a

list.

max([ ], Max, Max).

max([H|L], Max0, Max) :- Max0 < H, max(L, H, Max).

max([H|L], Max0, Max) :- max(L, Max0, Max).

The type inferred by our type inference algorithm is σ1 × σ2 × σ3 → bool,

where:

σ1 = [ ] + [σ4|σ1]
σ2 = α + int + float + β

σ3 = α + γ + η

σ4 = int + float + δ

Clearly, types σ2, σ3, and σ4 are open. The closed types returned by our

closure operation are the following:

σ1 = [ ] + [σ2|σ1]
σ2 = int + float

with the type for the predicate σ1 × σ2 × σ2 → bool.

One common bug when defining this predicate can be defining the first

clause as:

max([ ], Max, M).

In this case closure fails, since σ3 would be defined as a union type of three

type variables that occur nowhere else, so they have an empty proper variable

domain, and therefore that type becomes empty and thus the closure fails.

This is an example of how closed types, being less permissive, avoid the

debugging process at run-time, by catching more bugs at compile time.
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6.5.2 Datatype-centric Programming

Programs in functional programming languages (such as Haskell and ML)

and in imperative and object-oriented languages (such as C and Java) are

often datatype-centric, in the sense that they are based on and make an

intensive use of algebraic data types. Usually it is considered that the same

happens in Prolog, using terms as a notation for data type definitions. We

argue that this is not always the case due to the use of unconstrained logical

variables. In these pathological cases the types we would get for programs

are open types. Closed types play an important role on the use of a truly

datatype-centric style of programming in logic programming. Let us consider

the following example:

Example 53: Let flatten be the standard Prolog predicate whose first

argument is a nested list of lists and the second is the flat version of that

nested list, defined as follows:

flatten([],[]).

flatten([L|R],Flat) :-

flatten(L,F1), flatten(R,F2), append(F1,F2,Flat).

flatten(L,[L]).

The type inferred would be σ1 × σ2 → bool, where:

σ1 = [ ] + [σ1 | σ1] + α

σ2 = [ ] + [α | σ2]

Note that the type for the first argument is open. The problem here is

that in the implicit data type definition of the first argument of the predi-

cate, includes single elements of lists (here processed by the third clause of

the predicate definition) and those do not have an associated constructor

which distinguishes them from any other terms, such as lists. Moreover,

closure of these types would wield results that are not the ones intended:

σ1 = [ ] + [σ1 | σ1]
σ2 = [ ] + [σ1 | σ2]

The proper variable domain of α is {[ ], [σ1 | σ1]}, which is σ1. Note that

this does not include the term [α | σ2], since α occurs in it.

This problem can be solved by changing the predicate definition as fol-

lows:

flatten([],[]).

flatten([L|R],Flat) :-
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flatten(L,F1), flatten(R,F2), append(F1,F2,Flat).

flatten(elem(L),[elem(L)]).

Now, the type σ3 × σ4 → bool is inferred for the predicate, where:

σ1 = [ ] + [σ1 | σ1] + elem(α)

σ2 = [ ] + [elem(α) | σ2]

Note that the elem functor in this predicate definition is playing the role

of a type constructor which identifies single elements in a data type definition

for nested lists (such as in a data declaration in Haskell). The resulting types

are now closed.

We are not advocating this second style of programming in Prolog, but

we argue that if one wants to have safer programs, in the sense that bugs and

errors are easier to catch at compile time, either we declare types, such as

in Curry or Mercury, or we infer types with an extra closure operation after

type inference which will make those types truly denote datatype definitions.

If this is the case, then a more datatype-centric style of programming, with

functors as type constructors in every case of an implicit datatype definition

will avoid the extra closure operation in many cases, making the initial

inferred types already closed.

6.6 Data Type Declarations

We avoid type declarations, and by type declarations we mean the program-

mer declaring the type for every function symbol (including constants), and

predicate symbol, because from our experience as programmers and as part

of the logic programming community, the benefits of having types are not

enough to compensate for the extra work.

In fact, in the functional programming community, the extra work re-

quired for having types is considerably decreased by automatic type infer-

ence and the good results that are wielded from it. The main difference is

that programmers declare the algebraic data types that will be used in the

program and then type signatures for functions are inferred automatically.

We argue that allowing for the introduction of data type definitions in

logic programming in a similar way would require much less extra work from

the programmer and still yield very interesting results. We decided to add

the possibility of declaring data types, through the introduction of data type

definitions of the form:

: −type type symbol(type vars) = type term1 + . . . + type termn.
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One example of such a declaration for trees is:

:- type tree(X) = empty + node(X, tree(X), tree(X)).

One restriction of such declarations is the assumption that if there is

a data type declared, then every constant of function symbol that starts a

summand in the definition is unique to that data type. This greatly improves

the results from type inference. Note that there is a similar restriction on

data declarations in functional programming languages.

We basically assume that every data type declaration corresponds to an

intended new domain in the semantics, and every term that can be built

from the data type definition belongs to that domain. If the data type is

polymorphic, then there is a domain for every instance.

For these type declarations to be correctly inferred we need to make a

few changes in the algorithm. First of all, we will interpret a data type

declaration as in fact being a declaration for the base types of the constants

and function symbols used in it.

So continuing the example above, the data type declaration can be in-

terpreted as:

basetype(empty) = tree(α), and basetype(node) = α× tree(α)× tree(α)→
tree(α).

So on the constraint generation algorithm, in fact the constant case re-

mains the same, with the minor change that a constant can be typed by a

polymorphic type. But we change the complex term cases as follows:

• generate(f(t1, . . . , tn)) = (σ,Γ, Eq, ∅,∆), f is a function symbol,

where basetype(f) = τ ′1 × . . .× τ ′n → σ,

generate(ti) = (τi,Γi, Eqi, ∅,∆i),

(Γ,∆, Eq′) = ⊗
(
(Γ1, . . . ,Γn), (∆1, . . . ,∆n)

)
,

and Eq = Eq1 ∪ . . . ∪ Eqn ∪ Eq′ ∪ {τ1
.
= τ ′1, . . . , τn

.
= τ ′n}.

And in the constraint solving algorithm, the names of data types are

treated as if they were function symbols, so we assume the alphabets are

disjoint.

The proof of soundness for the constraint generation algorithm still holds.

We are assuming type(f) = basetype(f), and for any S such that S |=∆ {τ1
.
=

τ ′1, . . . , τn
.
= τ ′n}, then S(τ ′i) = S(τi) ⪯ τi, for all i = 1, . . . , n. Therefore

we know that S(τ ′1) × · · · × S(τ ′n) → S(σ) ⪯ τ1 × · · · × τn → σ. Since

S |=∆ Eqi, by the induction hypothesis we know that Γi, S(∆i) ⊢P ti : τ ′′i,
where τ ′′i ≡∆ τi. Since S |=∆ Eq′, then we can replace Γi and ∆i by Γ and

∆, respectively. Therefore we can use rule CPL to derive that Γ, S(∆) ⊢P
f(t1, . . . , tn) : S(σ).
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6.7 Type Inference Revisited

In this section we show the results of type inference for some example pred-

icates. We also show the results of closing the inferred types and the results

yielded by using data type definitions for the relevant data structures. Note

that declaring data type definitions implies using closure.

For simplicity of presentation we will replace the type symbols σi for the

type of predicate arguments by the name of the predicate and the argument

position. If any other types are presented, they will be represented by some

lower case letter. Type variables with be represented by upper case letters.

Example 54: Let append be defined as usual. The type inferred for append

is append1× append2× append3→ bool, where:

append1 = [~] + [A~|~append1],

append2 = B,

append3 = B + [A~|~append3].

The types inferred if we used the data type declaration for lists list(X) =

[ ] + [X | list(X)], without using closure:

append1 = list(t),

append2 = B,

append3 = B + list(A),

t = A + G.

t results from the fact that lists are used both in the first and second

clause in the first argument of the predicate. Also, the second argument

never uses any function symbol that would indicate is it a list. But the type

inferred for append using the same data type definition and closure is:

append1 = list(append1),

append2 = list(append2),

append3 = list(append3).

In the implementation of the type inference algorithm, we have some

flags that can be turned on or off.

• closure (default: off) - when this flag is turned on, the closure operation

is applied as a post-processing step in the algorithm;

• list (default: off) - this flag adds the data type declaration for poly-

morphic lists to the program when turned on, and also turns on the

closure flag.
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We will now show the results of the type inference for some programs.

Example 55: Let us consider the predicate concat, which flattens a list of

lists, where app is the append predicate:

concat(X1,X2) :- X1 = [], X2 = [];

X1 = [X|Xs], X2 = List, concat(Xs,NXs), app(X,NXs,List).

app(A,B,C) :- A=[], B=D, C=D;

app(E,F,G), E=H, F=I, G=J, A=[K|H], B=I, C=[K|J].

The types inferred with all the flags off correspond to types inferred in

previous type inference algorithms which view types as an approximation of

the success set of the program:

concat :: concat1 x concat2 -> bool

concat1 = [] + [ t | concat1 ]

concat2 = C + [] + [ B | concat2 ]

t = [] + [ B | t ]

app :: app1 x app2 x app3 -> bool

app1 = [] + [ A | app1 ]

app2 = B

app3 = B + [ A | app3 ]

Now the types inferred when turning on the closure flag are:

concat :: concat1 x concat2 -> bool

concat1 = [] + [ concat2 | concat1 ]

concat2 = [] + [ B | concat2 ]

app :: app1 x app2 x app3 -> bool

app1 = [] + [ A | app1 ]

app2 = [] + [ A | app2 ]

app3 = [] + [ A | app3 ]

Note that these types are not inferred by any previous type inference algo-

rithm for logic programming so far, and they are a step towards the auto-

matic inference of types for programs used in a specific context, more pre-

cisely, a context which corresponds to how it would be used in a programming

language with data type declarations, such as Curry [81] or Haskell.

We also present the types resulting from type inference when declaring a

data type definition for lists (which is the same as turning the list flag on).

concat :: concat1 x concat2 -> bool

concat1 = list(list(B))
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concat2 = list(B)

app :: app1 x app2 x app3 -> bool

app1 = list(A)

app2 = list(A)

app3 = list(A)

list(X) = [] + [X | list(X)]

Example 56: Let rev be the reverse list predicate, defined using the append

definition used in the previous example:

rev(A, B) :- A = [], B = [] ;

rev(C, D), app(D, E, F), E = [G], A = [G|C], B = F.

The types inferred by the algorithm are:

rev :: rev1 x rev2 -> bool

rev1 = [] + [ A | rev1 ]

rev2 = [] + [ t | rev2 ]

t = B + A

If the closure flag is turned on, we perform closure on these types. The

resulting types are:

rev :: rev1 x rev2 -> bool

rev1 = [] + [ A | rev1 ]

rev2 = [] + [ A | rev2 ]

If we turn on the list flag, which declares the data type for polymorphic lists,

the type inference algorithm outputs the same types that would be inferred

in Curry or Haskell with pre-defined built-in lists:

rev :: rev1 x rev2

rev1 = list(A)

rev2 = list(A)

list(X) = [] + [X | list(X)]

We now show an example of the minimum of a tree to illustrate how different

data structures can be dealt with. We are assuming the extension to the

algorithm described in Section 4.4, where the type for all variables used in

arithmetic expression or predicates is int + float.

Example 57: Let tree minimum be the predicate defined as follows:
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tree_min(A,B) :- A = empty, B = 0 ;

A = node(C,D,E), tree_min(D,F), tree_min(E,G),

Y = [C,F,G], minimum(Y,X), X = B.

minimum(A,B) :- A = [I], B = I;

A = [X|Xs], minimum(Xs,C), X =< C, B = C ;

A = [Y|Ys], minimum(Ys,D), D =< Y, B = D.

The inferred types by the type inference algorithm are:

tree_min :: tree_min1 x tree_min2 -> bool

tree_min1 = atom + node(tree_min2, tree_min1, tree_min1)

tree_min2 = A + int + float

minimum :: minimum1 x minimum2 -> bool

minimum1 = [ minimum2 | t ]

minimum2 = A + int + float

t2 = [] + [ minimum2 | t2 ]

By applying the closure operation on these types, we get the following:

tree_min :: tree_min1 x tree_min2 -> bool

tree_min1 = atom + node(tree_min2, tree_min1, tree_min1)

tree_min2 = int + float

minimum :: minimum1 x minimum2 -> bool

minimum1 = [ minimum2 | t ]

minimum2 = int + float

t2 = [] + [ minimum2 | t2 ]

These types, although closed and closer to the programmer’s intention, still

somehow are not that intuitive.

If we now add a predefined declaration of a tree data type and turn on

the list flag, the algorithm outputs:

tree_minimum :: tree_minimum1 x tree_minimum2 -> bool

tree_minimum1 = tree(tree_minimum2)

tree_minimum2 = int + float

minimum :: minimum1 x minimum2 -> bool

minimum1 = list(minimum2)

minimum2 = int + float

tree(X) = empty + node(X, tree(X), tree(X))

list(Y) = [] + [ Y | list(Y) ]
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These would be the types declared in most functional programming lan-

guages, and the types intended by the programmer.

6.8 Discussion

In this chapter, we presented one sound way to close open types. This is not

the only way that we could do it. It is a heuristic, based on some principles,

and the results we got are promising. They are also close to what we set out

to do which was to get to the types that would be declared by programmers,

without any need for type annotations for each predicate. The intended

types for some predicates are obtained by our algorithm, but some others

are not.

In order not to be too restrictive and fail a lot of type inference appli-

cations due to closure of open types not being possible, we argue that this

step should be an optional step, or be used to provide recommendations to

the programmer. As such, programs would still compile if type inference

succeeded, but a warning is generated by the algorithm that the types are

open and cannot be closed, or that a closure is possible and the returned

types are presented.

The results we got when declaring data type definitions for the data

structures in some programs are often even better than using closure, and

type definitions can get us even closer to the programmer’s intended mean-

ing for programs. The amount of extra work is irrelevant since the data

declarations only occur once in a program, but can be used a large number

of times, and even re-used from program to program. One could even ar-

gue that some structures, such as lists, are so frequent that they could be

introduced as a polymorphic base type, in a way, and be inferred as such

automatically.

Concluding, closed types, here defined by the simple principle that types

should be defined by (and only by) the set of ground symbols existing in the

program, give us a simple way of approaching the output of automatic type

inference to the actual programmer’s intention.
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Chapter 7

Conclusions and Further

Work

In this thesis, we presented a type discipline for logic programming that

both dynamically and statically defines well-typed programs and detects

type errors.

For dynamic typing, we provided a typed unification algorithm based

on a three-valued logic. Given such an algorithm, we also described a

typed operational semantics called TSLD-resolution that follows a similar

approach to SLD-resolution, and calculates the derivation trees for programs

and queries. We also defined a typed declarative semantics and proved that

TSLD-resolution is correct with respect to that semantics.

For static typing, we defined a more complex typed declarative semantics

that allows for different interpretations of function symbols. We also define

a type language that describes regular types and defined their semantics.

Then, we defined a type system that described exactly which programs are

well-typed. Finally, we proved that the type system is sound, i.e., if there is

a derivation for a certain predicate with a type, then the predicate belongs

to the semantics of that type.

We then presented a type inference algorithm that, given a program,

infers types for the predicates in that program. We proved the correctness

of the algorithm: types inferred are proved to have a derivation in the type

system. The algorithm is based on type constraint generation followed by

constraint solving.

Lastly, we presented the definition of closed types, following some funda-

mental principles. We presented an algorithm that given open types calcu-

lates closed types that are an instance of the open ones. We also described

how we could change the type inference algorithm in order to include data

type definitions. We then showed results of both the closure operation and

data type definitions on some example programs.

We will now reflect on the results we obtained, and discuss possible future

lines of work.
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7.1 Dynamic Typing

TSLD-resolution can be used to dynamically detect type errors. The op-

erational semantics uses a typed unification algorithm. Therefore, this al-

gorithm may influence the results obtained by the semantics. Our typed

unification algorithm only really deals with constants, but lacks the capabil-

ity of identifying lists, or any other recursively defined structure. Supposing

that we have such an algorithm, we could in fact dynamically detect type

errors in a larger class of programs.

One major limitation of dynamic type checking is the necessity of running

the program. Unfortunately, logic programming worsens this limitation due

to the use of backtracking for finding several answers. Moreover, in TSLD-

resolution, unlike in SLD-resolution, false results do not stop execution, so

the execution of simple programs is less efficient in the typed semantics.

A certain compromise could be met, where we detect some, but not all,

type errors. This compromise can be seen as a step towards having type

information as part of the logic programming semantics, or as an argument

for the use of static typing, where the issues with execution and efficiency

do not occur.

7.2 Static Typing and Type Inference

Having static typing has the major advantage of being able to detect type

errors at compile-type, easing program development. The major disadvan-

tage is the fact that introducing types in a programming language always

introduces some loss of information.

We argue this loss is not that relevant when compared to the benefits

that come from having a type system.

The type inference algorithm infers types correctly, but types can be

overly-broad. This mostly comes from the programming style. This limita-

tion is compensated by the lack of extra work required from the programmers

in order to still have type verification in their programs.

7.3 Closed Types and Data Type Declaration

The results we got from the implementation of this work are types that are

much closer to the programmer’s intention than previous results from other

type inference algorithms.

Usually, type declaration is recommended, which involves the declaration

of type signatures for each predicate in a program. In our approach, we can

have no extra information and use closure, or just declarations of data types,

and we get similar results. We also show some examples of how static typing,

and in particular the closure operation, can be used for bug detection.
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One major limitation of the closure operation is that it will fail some-

times. However it can be used as a recommendation system, or as an optional

step in a real life application.

7.4 Further Developments

In the future, we would like to apply our type inference algorithm to several

larger examples that use more complex, yet widely used, data structures,

such as tries or red and black trees.

We would also like to provide a detailed comparison of the results ob-

tained by our type inference algorithm and other type inference algorithms.

This line of work could hopefully lead to the definition of a general frame-

work for type inference in logic programming, where one could input different

options in order to obtain a type inference algorithm as described by several

different authors.

We would also like to extend TSLD, or in specific the typed unification

algorithm, to specially interpreted functions. In this case, the algorithm

would have to perform some kind of type checking on the terms it is trying

to unify.

Finally, we would like to extend the type system to include refinement

types as defined by Freeman and Pfenning in [82]. Refinement types include

extra information about types, for instance we can have lists with a length

smaller than n. One big success application using refinement types was

Liquid Haskell [83], where the inference of refinement types was possible.

7.5 Final Comments

Untyped Prolog has the advantage of being very flexible and allowing for a

larger class of programs, when compared to typed logic programming lan-

guages. However, sometimes those programs can be very hard to debug and

understand, while usually typed logic programming programs have a longer

development time, but are much more reliable.

In this thesis, we present a solution that is halfway between untyped

Prolog and the languages that have mandatory type declaration. We try to

have the best of both worlds: retain some of the flexibility of untyped Prolog

while using type information in an optional, but sound, way.
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