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Abstract

Human lower limb activity recognition (HLLAR) has grown in popularity
over the last decade mainly because to its applications in the identi-
fication and control of neuromuscular disorders, security, robotics, and
prosthetics. Surface electromyography (sEMG) sensors provide various
advantages over other wearable or visual sensors for HLLAR applica-
tions, including quick response, pervasiveness, no medical monitoring,
and negligible infection. Recognizing lower limb activity from sEMG sig-
nals is also challenging owing to the noise in the sEMG signal. Pre-
processing of sEMG signals is extremely desirable before the classi-
fication because they allow a more consistent and precise evaluation
in the above applications. This article provides a segment-by-segment
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overview of: 1) Techniques for eliminating artifacts from sEMG sig-
nals from the lower limb; 2) A survey of existing datasets of lower
limb sEMG; 3) A concise description of the various techniques for pro-
cessing and classifying sEMG data for various applications involving
lower limb activity. Finally, an open discussion is presented, which may
result in the identification of a variety of future research possibilities
for human lower limb activity recognition. Therefore, it is possible to
anticipate that the framework presented in this study can aid in the
advancement of sEMG-based recognition of human lower limb activity.

Keywords: Human lower limb activity recognition, Surface
electromyography signal, Machine learning techniques, Biomedical signal
processing, Human-machine interaction

1 Introduction

In recent times, Human Activity Recognition (HAR) has attracted the atten-
tion of researchers, particularly because of the advancements in computer
vision, artificial intelligence approaches, availability of wearable sensors, and
the Internet of Things. HAR recognises a variety of human actions, including
walking, sitting, running, standing, sleeping, showering, driving, and cook-
ing. Numerous HAR applications can be found across a variety of disciplines,
including healthcare monitoring, smart homes with aided surveillance, and
tele-immersion applications [1, 2].

The HAR’s goal is to analyze people’s daily behaviors through observa-
tional data collected from them and their neighboring environments of living.
It is a challenging problem because of the several difficulties inherent in HAR.
However, the difficulty level associated with these obstacles varies according to
the activity being considered. Based on the difficulty level and activity length,
HAR may be categorised into five distinct types of activities, as shown in Fig.
1 [3, 4]:

� Gestures based Activities involves simple activities such as the opening-
closing of hands and bending of arms.

� Action based Activities are single-person activities that may be com-
posed of multiple gestures organized, such as standing, sitting, walking,
cycling, etc.

� Interaction based Activities involves two agents, one of that is a human
and the other of that might be a person or an object. The interaction may
be categorised into two types: human-object interaction and human-
human interaction, depending on the nature of the agents. Human-human
interactions include wrestling, embracing, and shaking hands, whereas
human-object interactions include human interaction with a phone or a
laptop and may be other human work’s on machine.
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� Group Activities are the activities performed by the group of multiple
persons. For example, a group of people marching, a group having a meeting.

Fig. 1: Representation of lower limb muscles

Two approaches can be used to observe and record the activities of the
human lower limb. One is accomplished through the use of a visual sensor,
while the other is accomplished through the use of wearable sensors [5] as
shown in Fig. 1. In the vision-based approach, a camera is used to record the
data about a human’s activities and collected data is in the form of images
or video, which may then be categorised using computer vision techniques.
Computer vision-based approaches provide excellent results and are also simple
to implement; however, it faces numerous drawbacks for the HAR [6, 7], i.e.,

� Security/privacy;
� Lightning variation;
� Perspective change if using single view acquisition system;
� partial occlusion of human body parts;
� Limited range;
� Requirement of more powerful computing machines.

Improvement in sensor technology leads to the development of accelerom-
eters, EMG, gyroscopes, and barometers, which can be used for capturing the
data. Recently, these sensors are integrated with smartphones and wearables
such as wristbands, smartwatches, and clothing which further improves the
flexibility for a recording of the data. The EMG technique is better than the
other wearable sensor techniques for detecting human activities for the appli-
cation of controlling an artificial limb or exoskeleton, because it can anticipate
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Fig. 2: Methods for human activity recognition

movements and detect signal changes more quickly [8, 9]. Table 1 indicates
some of the previous articles on human activity recognition. The articles are
listed in chronological sequence by year of publication, and the technique is
also specified in this table as Vision-Based or Sensor Based.

Fig. 3: Types of EMG electrodes

Electromyography (EMG) techniques such as surface electromyography
(sEMG) and intramuscular electromyography (iEMG) are frequently employed
for acquiring the EMG signals as shown in Fig. 3. sEMG has several advan-
tages relatively to iEMG, including the fact that the electrodes can be worn
without causing discomfort, and the risk of inflammation is extremely low.
Long term control using surface electrodes is an easy task than the handling
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Table 1: Literature Survey: founds work on Human Activity Recognition

Author year Approach Sensor Activities

Englehart et al.
[10]

2001 Sensor EMG Close/Open hand, Wrist Exten-
sion/Flexion, Radial/Ulnar
Deviation

Pawar et al.
[11]

2007 Sensor ECG Sitting on a chair, left/right and
both arms simultaneously lowered and
raised, Walking, Twisting Left-Right-
Left body movement, Down/Up Stairs

Tunçel et al.
[12]

2009 Sensor Gyroscope Standing, right leg lower part back
movement, right leg both part for-
ward movement with knee bending,
forward/backward locomotion without
bending of knee, Extending the right
leg towards the opposite side of body,
Squatting, the movement of both the
upper and lower legs, while seated on
a stool, raise just the bottom portion
of the right leg.

Khan et al. [13] 2010 Sensor Accelerometer Combination of sitting and stand-
ing, i.e, sit-stand and vice-versa, a
combo of lie and stand, i.e., lie-
stand and vice-versa, normal and fast
Locomotion, simple sitting/standing,
upstairs/downstairs walking.

Wang et al. [14] 2012 Sensor Triaxial
Accelerome-
ter

Task related to the household such as
relax and sitting on the crouch, work-
ing on the computer by sitting at a
desk, drinking/eating stuff, sleeping on
the bed, locomotion in the corridor/
holding a box in arms, upstairs/down-
stairs, hand-washing, cleaning of win-
dows/table/floor using cleaning rag,
standing without movement and sit-
ting.

Zhang et al.
[15]

2013 Sensor Accelerometer,
Gyroscope,
Magnetome-
ter

Multiple type of locomotion tasks such
as forward/right/left, upstairs/down-
stairs, normal, fast, jumping, stand-
still and sitting.

Park et al. [16] 2016 Vision Depth Cam-
era

lift arms, push right, duck, goggles,
shoot, bow, wind it up, throw, had
enough, beat both, change weapon,
and kick

Chen et al. [17] 2017 Vision Cameras Normal Walk, Slow Walk with Halt,
Slow Lame Walk

Naik et al. [18] 2018 Sensor EMG Walking, Sitting, Standing

Hussain et al.
[19]

2019 Sensor Gyroscope Locomotion at multiple speeds such
as slow/normal/fast and positive/neg-
ative incline ground locomotion

Vijayvargiya et
al. [20]

2021 Sensor EMG Walking, Sitting, Standing
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of iEMG needles. sEMG electrodes are classified into two types: gelled and dry
sEMG electrodes. For short amounts of time, wet sEMG electrodes may pro-
vide higher-quality sEMG signals. As the gel dries, motion artefacts and high
contact impedance may exacerbate the degradation of the signal. Therefore, if
stability is more important than quality, dry sEMG electrodes are preferable
[21]. However, the positioning of the sEMG sensors has a major impact on the
recorded signal and the computational algorithm’s subsequent analysis and
recognition. It is a technique in biomedical which evaluates and records the
muscles generated electrical signals. The process for generating a EMG signal
is as follows. Motor nerves in the cerebral cortex which is part of the central
nervous system generate electrical signals. These brain signals are transmit-
ted via axons to muscle fibers, resulting in pulse sequences that drive them to
contract and generate muscular tension. Meanwhile, in the human body, a cur-
rent is created, resulting in transmembrane potential. Muscles cells developed
the potential difference between the internal and external potentials, by the
current is created in the human body, known to be transmembrane potential.
When the muscle cells are inactive, they have a polarised membrane potential.
During the polarisation, a resetting potential is formed by the potential dis-
tance between the interior and outside of the membrane of the cell. Then, a cell
is stimulated leads to depolarization, this propensity will continue to develop
roughly. The corresponding action potential is defined as an electromyography
signal, Fig. 4.

(a) (b)

Fig. 4: The mechanism by which the EMG signal is generated: (a) the neuro-
muscular system’s structure; (b) a schematic representation of the nerve and
muscle system’s EMG signal transduction [22]

.

A HAR system can monitor the activities of a human’s lower limbs by util-
ising a sEMG sensors . This type of human lower limb activity recognition
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(HLLAR) system can be beneficial in a variety of situations, including identify-
ing jumps and lifts while performing ballet movements, identifying movements
such as standing, sitting, walking, running, stair climbing and descending, vac-
uuming, and situps, diagnosing neuromusculoskeletal disorders that cause knee
pain, composing a robotic prosthetic limb in the case of an amputee’s missing
limb, and sports [23, 24]. The major contribution of this review article is as
follows:

� Provide a thorough investigation of the general structure and methodologies
for detecting human lower limb activity using sEMG.

� Describe and synthesise the sEMG datasets used in HLLAR.
� Classify and evaluate the processes used in HLLAR for conventional data

processing, feature engineering, and feature extraction.
� Classify and analyse machine learning approaches applicable to HLLAR,

with a focus on current research in deep learning in HLLAR.
� Describe the difficulties and potential directions of HLLAR.

Fig. 5: PRISMA flow diagram for the systematic review

The findings from the search are presented in Fig. 5 A total of 5361 rele-vant 
records from Google Scholar, PubMed, and Scopus were evaluated during the 
initial phase of the search. There were only 2836 records remaining after
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eliminating duplicates. There were a total of 578 records considered for inclu-
sion after being checked for their titles and abstracts. Finally, the systematic 
review examined 92 studies, 71 of which were published after 2010, and 21 of 
which were published before 2010.

The presented research article is organised as follows: section 2 discusses 
the overview of sEMG dataset for lower limb activities. Section 3 provides 
noise sources in sEMG signal during lower limb activities. Section 4 comprises 
the sEMG signal processing techniques. A detailed overview of machine learn-
ing techniques on the lower limb activity recognition using sEMG signal is 
presented in section 5. Then, section 6 demonstrates the applications of the 
lower limb activity recognition. Finally, section 7 concludes the overall work 
and identify potential future scopes.

2 Overview of available sEMG datasets
This section discusses various sEMG datasets presented in the literature, which 
are collected for different human lower limb activities. As per the author’s 
knowledge, there have been very few publicly available sEMG datasets on 
human lower-limb motions. The sEMG dataset for lower limb movements is 
presented in Table 2, which includes several subjects and their performed activ-
ities during the data collection. The sEMG signal of lower limb activities is 
collected from the lower limb muscles. The anatomical structure of lower limb 
muscles is presented in Fig. 6. Table 3 shows which limb muscles are more 
active or relevant for different human movements.

Fig. 6: Representation of lower limb muscles [22]
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The HAR-sEMG [25] dataset was built by employing the Trigno wireless
biofeedback sensors to collect sEMG data from five lower limb movements,
including jogging, standing, lunge stretching, walking, and jumping. To acquire
the HAR-sEMG dataset, nine healthy subjects, i.e., two females and seven
men with a mean age of 23.5 years took part in the study. They each provided
1800 EMG signals with a duration of 10 seconds each. A total of six major
muscles were chosen for the experiment, all of which are involved in lower-limb
movements and can be easily identified within the muscle group. A total of
six sensors, each of which was attached to a separate muscle region, were used
to collect the sEMG signals for the HAR-sEMG dataset. The dataset includes
the muscles namely, tibialis anterior, gastrocnemius medialis, gastrocnemius
lateralis rectus femoris, vastus lateral femoral, and semitendinosus muscles of
the thigh, as well as others.

The SUKFNN [26] dataset includes 2500 sEMG recordings from five
patients. The sEMG signal was obtained utilising a Biometrics UK-developed
and -manufactured sEMG acquisition equipment and five common lower limb
movements: plane walking, crossing of the obstacle, sit-up, ascending/de-
scending the stairs. The medial gastrocnemius, lateral femoral muscle, and
semitendinosus muscles of the lower limb were deployed for the collection of a
dataset in the present study.

Table 2: A survey of sEMG datasets for human lower limb activities

Dataset year Subjects Activities Sampling Fre-
quency

Instrument Number
of
Sensors

HAR-sEMG
[25]

2020 9 (7 Male, 2
female)

Running, Standing, Lunge
Stretching, Jumping, Walking

2000 Hz DELSYS Trigno
wireless EMG
equipment

6

SUKFNN [26] 2020 5 (Healthy) walking, downstairs, upstairs,
crossing obstacles and standing

2000 Hz Biometrics wireless
sEMG sensor sys-
tem

3

HHMM [27] 2019 5 Walking, Running, Jumping,
Sit-to-stand

1000 Hz Noraxon Telemyo
2400T & 2400R

8

ENABLE3S
[28]

2018 10 (7 Male and
3 female)

Sitting, Standing, zero incline
Walking, Stair upward/down-
wards, Stairs, Ramp Ascen-
t/Descent

1000 Hz Delsys DE-2.1
sEMG Sensor

7

TAS [29] 2016 10 walking, sitting, standing,
Stair upward/downwards

1000 Hz Biopac BN-EMG2s 9

MFWF [30] 2015 5 Downstairs, upstairs, downhill,
and uphill

1000 Hz NORAXON
MyoResearch XP

9

UCI-sEMG
[31]

2014 22 (11 Normal
and 11 Abnor-
mal)

Walking, Sitting, Standing 1000 Hz MWX8 by Biomet-
rics

4

The HHMM [27] dataset contains the lower limb sEMG signals data of
various activities for five people such as walking, jumping, running, and sit-to-
stand. Eight different recording sites were used to record the sEMG dataset,
the data is collected using the Noraxon Telemyo 2400T & 2400R (Noraxon
Inc., AZ, USA) at 1,000-Hz sampling frequency and wet-type electrodes. The
participants who were not injured were instructed to normal/fast left or right
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Table 3: Relevant muscles involvement in movement

Name of Muscle Types of Movements

Satorius Hip flexion and lateral rotation exercise

Quadriceps

(Rectus femoris, Vastus medialis, Vastus

lateralis, Vastus intermedius)

Hip flexion or knee extension

Hamstrings

(biceps femoris, semitendinosus,

semimembranosus)

Hip extension or knee flexion

Adductor magnus Hip adduction

Gracilis Hip adduction, rotation, and flexion

Gastrocnemius Knee flexion and ankle plantar flexion

Soles Plantar flexion of the foot

Tibialis anterior Foot dorsiflexion

side walking across the spaces without implementation the walking and run-
ning exercises on the treadmill. A total of five sessions were conducted, with
each session lasting 40 seconds and the total number of sessions being 5. Par-
ticipants were instructed the alternate between the sit-to-stand action, such as
the standing-up/sitting-down for the 40 seconds in each session, which was then
done five times. For the counter movement leaps, participants were instructed
to attempt to jump as high as they possibly could in position. The total of 8
muscles such as rectus femoris, biceps femoris, vastus lateralis, vastus medi-
alis, peroncus longus, tibialis anterior, gastrocnemius medialis, gastrocnemius
lateralis were considered in this study.

ENABLE3S dataset [28] proposed by Hu et al. consists of the neuro-
mechanical lower-limb bilateral signals from 10 healthy subjects (3-female,7-
male; 160–193 cm; 23–29 years; 54–95 kg) using three wearable sensors like.,
EMG sensors, inertial measurement unit (IMU), and goniometer. On both
lower limbs, sEMG electrodes were implanted on seven muscles: gastrocne-
mius, vastus lateralis, semitendinus, soleus, biceps femoris, rectus femoris, and
tibialis anterior. Each subject repeated two distinct sequences of the seven gait
activities mentioned below for a total of 25 repetitions: Sitting → Standing →
Level ground walking → Stair/Ramp ascent → flat ground walking → Ramp
descent/ Stair descent → flat ground walking → Standing → Sitting. These
exercises took place in a 20 x 30 foot area that contained a platform (thirty
inches tall) connected to the stairs (7.7 inch rise, 10 inch run) and length of
ramp (14 ft. long). The length of the chosen segment was approximately 45
feet. Following that, signals were amplified 1000 times at a sampling rate of 1
kHz and then sent through a band-pass Butterworth filter operating between
20 and 450 Hz.

The TAS dataset [29] includes ten patients with no historical musculoskele-
tal disorders and have aged between 26–32 years. The MP150 and six BioPac
BN-EMG2s commercial available sEMG instruments were used to augment



Overview of Lower Limb Activity Recognition using sEMG Signal 11

the sEMG signals. The raw data were acquired on the sEMG signal collecting
device utilising a 1-kHz sampling rate with a bandpass filter of range 20–450
Hz and a 16-bit ADC converter. Nine sEMG channels were attached to the
multiple muscles for collection of the dataset; namely, the biceps femoris, per-
oneus longus, sartorius, semitendinosus, gastrocnemius, tibialis anterior, rectus
femoris, and vastus lateralis/medialis,

In the MFWF dataset [30] includes 600 sEMG signals were recorded from
5 subjects for the lower limbs activities, who have performed the four activities
such as going up and down the stairs, walking up and downhill. The surface
electromyography equipment NORAXON MyoResearch XP 16-channel was
used to capture the sEMG signal. The sampling rate for the equipment can
reach up to 2048Hz, with a bandwidth ranging from 10Hz to 1000Hz. Experi-
ments were conducted to acquire sEMG signals from nine different muscles of
lower limb: rectus femoris, vastus medialis, vastus lateris, biceps femoris, semi-
tendinosus, tibialis anterior, medial gastrocnemius, lateral gastrocnemius, and
soleus muscles.

UCI-sEMG dataset [31] proposed by Sanchez et al. concerns the three dif-
ferent lower limb movements performed 22 male, 11 subjects are healthy and
the other 11 with knee abnormalities. Subjects were older than 18 years. Lower
limb activities such as walking, sitting, and standing were performed. There
was no prior case history of discomfort or damage in the knee of normal sub-
jects. In abnormal subjects, the four had meniscus injuries, six had anterior
cruciate ligament (ACL) injuries, and one had sciatic nerve injuries. The sEMG
signal is collected from the left leg for the healthy person whereas the acquired
signal from the abnormal subject was from the affected leg. Four surface elec-
trodes were used for the data collection. These are placed around the muscles;
namely, biceps femoris, rectus femoris, semitendinosus, and vastus medialis. A
goniometer was also affixed to the outside of the knee joint for capturing the
joint angle which could be used for the knee prosthetic leg application. The
sample rate and resolution were 1000 Hz, and 14 bits, respectively.

3 Noise sources in sEMG signal during lower
limb activity

Whenever a muscle’s EMG signal is recorded, it is contaminated by a variety of
noise sources. The EMG signal’s characteristics are determined by the subject’s
internal structure, which includes blood flow velocity, skin formation, skin
temperature, measuring site, tissue structure, and other factors. Assessing and
classifying EMG signals is highly difficult due to the diverse order of EMG
that is influenced by the physiological/anatomical properties of muscles. In the
following, the several types of electrical noise that impact EMG signals [32–34]
are discussed.
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3.1 Inherent noise in the EMG electrodes

Most of the electronic equipment generates the inherent or electrical noise
which consists of the frequency components in the range of 0 Hz to several
thousand Hz. Therefore, it is found that the silver/silver chloride electrodes (10
mm x 1 mm) has an appropriate signal-to-noise ratio (SNR) and also electri-
cally exceptionally stable for the recording of EMG signals. On the other hand,
there is an inverse relationship between the electrode size and impedance.
High electrode impedance significantly lowers the signal quality and results
in a poor signal-to-noise ratio. Therefore, it is necessary to consider both fac-
tors before choosing the appropriate electrodes. High electrode impedances or
a large number of electrodes may be used in studies when the requirement of
the statistical power is high; otherwise, use the low electrode impedances is
suggested. This type of noise can be mitigated by the employment of smart
circuit design with high-quality instrumentation.

3.2 Ambient Noise

The human body works as an antenna, with electric and magnetic radiation
assaulting its surface all the time, causing electromagnetic noise. The unwanted
signal recorded from a muscle is either superimposed or canceled by electro-
magnetic sources in the environment. The magnitude of the noise is about one
to three times the sEMG signal. It is almost impossible to avoid the interfer-
ence of this type of noise in EMG signals on the earth’s surface. Power sources
like Power-Line Interference (PLI) are the major cause of the generation of the
ambient noise ranges in 60 Hz (or 50 Hz). It is important to understand the
reasoning behind of generation of noise. It is because of the differences between
the electrode impedances and stray currents flowing through the wires and
patients. Off-line processing is needed to eliminate the recorded artifact [35].
In some cases, when the inference has a high-frequency component then there
is a necessity for a high pass filter. However, it is necessary to understand the
sEMG signal’s nature before implementing the processing of data.

3.3 Motion Artifact

Motion artifacts [36] are generated by establishing the connection between the
electrode to an amplifier and also contact between the electrode’s detecting
surface and the body skin. In order to record the sEMG signals, there is a
requirement of placing the electrodes near the chosen muscle groups. Whenever
an activity is performed, the length of muscles is decreased, so the position of
the muscle, skin, and electrodes moves relative to each other. At this moment,
the movement artifact is detected in the electrodes. Typically, the range of
noise generated is lies between 1-10 Hz, and the voltage magnitude corresponds
to the sEMG signals.

Motion artifacts resemble the signal characteristics of baseline wander noise
[37]. It is a low frequency artefact in the EMG that can be caused by a vari-
ety of factors, including patient movement, poor contact between electrode
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cables and EMG recording equipment, inadequate skin preparation where the
electrode is placed, and dirty electrodes.

3.4 Inherent Instability of Signal

Since the magnitude of the sEMG signal is depend upon the activity performed,
these dependencies make it unpredictable in nature. EMG signal is adversely
impacted by the firing rate of the motor units [38]; typically, firing range has
a frequency in the range 0-20 Hz. This type of noise is badly impacting the
quality of the signal; therefore, it is important to mitigate this. In addition,
multiple factors like the number of active motor units and mechanical contact
between muscle fibers also affect the sEMG signal nature.

3.5 Cross Talk

Crosstalk [39] is a special type of EMG signal which is generated from the
unknown muscle group, an unwanted signal. It can contaminate the signal
and lead to the erroneous interpretation of the data. Crosstalk is influenced
by a variety of physiological factors; however, it may be reduced by carefully
selecting electrode sizes and inter-electrode spacing.

As many forms of noise contaminate the signals, the process of analyzing
and identifying EMG data becomes exceedingly challenging. So, here are some
recommendations for recording high-quality EMG signals:

� Surface EMG electrodes of high quality should be used with small inter-
electrode spacing (1cm or less).

� Ensure that the surface EMG signal is recorded at a rate of at least 1000
Hz by setting the sampling rate to 1000 Hz.

� Adjusting the hardware amplification (referred to as gain) is important for
EMG signal quality; a properly configured gain improves the signal-to-noise
ratio. A gain of 1000 is often appropriate for surface EMG signals. Check
that there is no clipping in the signal; if so, ensure that the EMG sensor
and reference electrode are properly connected.

� For general usage in surface EMG recording, a Butterworth filter with corner
frequencies ranging from 20 to 500 Hz is suggested.

� Inspect the recording to ensure that there are no instruments or electrical
connections that might cause line interference during the recording.

� To obtain valuable information from the EMG signal, the skin’s impedance
must be minimized and skin should be completely cleaned. The dead skin
was removed using an abrasive gel.

� Place the EMG sensor in the muscular belly, away from innervation zones
and tendon origins.

� Ensure that good contact between the electrodes and the skin.



14 Overview of Lower Limb Activity Recognition using sEMG Signal

4 sEMG signal processing techniques

4.1 Denoising Techniques

The process of evaluating and classifying EMG data gets extremely challeng-
ing as various types of noise contaminate the data. As a result, signal denoising
is a necessary step that must be completed before the signals can be used for
classification purposes. Many researchers have presented various approaches
for the detection of muscle activity which allows for a consistent and accu-
rate assessment of neurophysiological, rehabitational, and assistive technology
findings. The noises that are not in the spectrum range of sEMG signal can
be mitigated using state-of-art filters like High Pass, Low Pass, or Band Pass.
However, they have faced difficulties for mitigation of white Gaussian noise
present in the sEMG signal spectrum. In recent times, various researchers
have implemented novel methods such as wavelet denoising, Empirical Mode
Decomposition (EMD), and Independent Component Analysis (ICA), which
helps in the reduction of these noises in the sEMG signal [40, 41].

As per the literature, it is beneficial to employ the wavelet denoising
technique on the sEMG signal dataset consisting of upper and lower limbs.
Phinyomark et al. proposed utilising the wavelet denoising approach to denoise
the sEMG signal [42]. Wavelet denoising can effectively remove random dis-
turbances such as White Gaussian noise usually present in sEMG signals. In
the implementation of wavelet denoising over signals, discrete coefficients of
wavelets are generated when the signal is passed via low-pass as well as high
pass filters. With the help of the wavelet denoising approach, detail and approx-
imation coefficients are acquired using signal decomposition and thresholding
is accomplished. The total number of coefficients is decided by the level of
decomposition. There is a total of 324 wavelet functions from 15 wavelet fam-
ilies. This technique requires the selection of five parameters such as mother
wavelet, level of decomposition, threshold selection, threshold rescaling, and
thresholding function [43].

Phinyomark et al. [44] investigated the denoising of the sEMG signal for
multifunction myoelectric control using five wavelet algorithms: sym5, sym8,
db2, db5, and coif5. It is discovered that scale level 4 performs the best as
compared to the other scale levels based on the mean square error (MSE)
parameter for processed sEMG data. In addition, it was also suggested that the
5th order coiflet function gives the optimal reconstruction for the sEMG sig-
nal. Jiang and others [41] analysed four typical threshold estimation functions
and concluded that EMG signals are insensitive to the choice of the thresh-
old estimation function. Kumar et al. [45] quantified muscle failure using the
Symlet function (Sym4 and Sym5) decomposed at levels 8 and 9. Hossain and
colleagues [46] demonstrated that mother wavelet db45 had the highest con-
trast between 50 and 70 Hz when compared to the other four mother wavelets
such as Haar, db2, sym4, and sym5. Vijayvargiya et al. [47] used the wavelet
denoising technique for the detection of human knee abnormality using sEMG
signal. In this study, it was calculated the value of mean absolute error, signal
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to noise ratio, mean squared error, and peak signal to noise ratio of the sEMG
signal with different mother wavelets and level of decomposition. They have
observed that sym4 originating from the family of symlet to the first level of
decomposition led to the best results relatively to other mother wavelets and
levels of decomposition.

In the other study of Vijayvargiya et al. [48], wavelet denoising is used with
db7 from the Daubechies family till fourth level decomposition for the classifi-
cation of three lower limb activities such as walking, sitting, and standing, for
three different cases: 1) Knee healthy subjects, 2) Knee anomaly subjects, and
3) Pooled data (Combined of healthy and knee abnormal subjects). Dutta et
al. [49] used the discrete wavelet transform of identifying the six distinct lower
limb activities: full leg swing, forward leg swing, lifting knee, backward swing,
squatting, and sideways leg swing using On-Body Creeping Wave Propagation.

Independent component analysis (ICA) [50] is a signal processing tech-
nique for separating additive subcomponents from a multivariate signal. This
is achieved by assuming that the subcomponents are non-Gaussian signals
and statistically independent. By maximising the statistical independence of
the estimated components, ICA locates the independent components. There
are various methods to establish a proxy for independence, and the one you
choose determines the ICA algorithm. The following are the two widest tech-
niques of independence for ICA: 1) Mutual information minimization, 2)
Non-Gaussianity maximization. The Kullback-Leibler Divergence and max-
imal entropy metrics are used in the Minimization-of-Mutual-Information
family of ICA techniques. Kurtosis and negentropy are used in the non-
Gaussianity family of ICA algorithms, which are justified by the central limit
theorem. It is now commonly used to identify and eliminate noise sources
from EMG signals, as well as to decompose EMG signals into as many dis-
tinct components as possible. The ICA techniques such as the fast ICA, the
Joint Approximate Diagonalization of Eigen-matrices (JADE), and the Info-
max Estimation or maximum likelihood algorithm are commonly employed for
the filtering of the EMG signal. [51–54].

The decomposition methodologies which assume that the process is sta-
tionary/linear may produce inaccurate or misleading findings because of the
presence of non-stationary/non-linearity in the sEMG dataset [55]. A station-
ary time series signal is one in which statistical characteristics (for example,
the mean and variance) do not change over time. On the other hand, non-
stationary signal is a time series whose statistical features are changing
throughout the span of time. Empirical Mode Decomposition is a very effec-
tive topology for the decomposition of the non-stationary/non-linear signals
that have both complex spatial and temporal characteristics to their orthog-
onal components, which is known to be the Intrinsic Mode Functions (IMF)
[56]. IMF is a single-frequency oscillatory mode or a mono-component function
[57]. The signal can be subdivided into that multiple number of IMFs using
the EMD approaches iteratively. On the other hand, the EMD approaches
have complexity issues with the frequent appearance mode mixing because of
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its sensitivity to noise [58]. In order to address this problem, the EEMD was
developed which is a noise-assisted data analysis method that defines the IMFs
as the average of an ensemble of trials [59].

Wavelet de-noising is frequently used to remove white Gaussian noise and
undesired signals such as the contributions from other muscle signals while
preserving key properties of the signal. Empirical Mode Decomposition is
employed to filter out sounds such as power line interference (PLI) and base-
line wandering (BW). Because of its mostly independent signal-to-noise ratio
and minor impacts on the frequency content, the ICA-based filtering process
successfully removes power-line noise (PLI). According to the existing liter-
ature, all signal processing procedures have advantages and disadvantages,
hence researchers also adopted a combination of different strategies for EMG
signal processing. Zhang et al. [60] developed the noise-assisted multivariate
empirical mode decomposition (NA-MEMD) approach for pre-processing mul-
tiple channel EMG signals that allow the temporal and spatial features of
different muscle groups to be statistically depicted. Vijayvargiya and colleagues
[20] proposed the wavelet denoising with ensemble empirical mode decomposi-
tion (WD-EEMD) pre-processing technique for denoising the sEMG signal of
lower leg muscles for activity detection applications. Naik et al. [18] developed
an ICA-based classification algorithm for lower limb sEMG data, which was
implemented and validated with signals from healthy people and people with
knee pathology.

4.2 Segmentation

The nature of the EMG signal is random in nature, so segmented EMG signals
are preferable to whole sEMG signals after the denoising. The segmentation
is used as a part of pre-processing as it is a smart way to process time-series
data to reduce the computational complexity. To implement the segmentation
process, the windowing method is usually utilized. Two discrete methods of
windowing are present to accomplish the process of segmentation: adjacent
windowing and overlapping windowing [61]. The following segment overlaps the
preceding segment in the overlap window; however, no segments overlap in the
adjacent windowing approach as shown in Fig. 7. Englehart et al. [62] observed
that the lengths of EMG data have an influence on classification accuracy. For
data segmentation, two critical factors to consider are the windowing technique
and the data length. Farina et al. [63] demonstrated that a window size of
250-500 ms is appropriate, and that employing a segment length smaller than
128 ms degrades classifier performance, resulting in large bias and variation of
features.

5 Machine Learning Techniques

Numerous noises and artifacts can be seen in a raw sEMG signal reduces the
overall accuracy since the required information stays as an amalgam in the raw
sEMG dataset. To improve the classification accuracy, firstly the sEMG signal
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Fig. 7: Types of Windowing [48]

is denoised, and, then the features are extracted for use as input to a computa-
tional classifier. There are three different types of feature extraction approaches
are presented in the literature: time-domain (TD), frequency-domain (FD),
and time-frequency domain (TFD) feature. Time-domain features are popular
because they perform better signal classification in low-noise conditions and
require less processing effort [64]. Therefore, in the majority of studies, time-
domain features are employed to classify sEMG signals. The most commonly
used features extracted from sEMG signal are indicated in Table 4.

Many researchers have been interested in developing an efficient method for
identifying electromyography signal patterns. Various kinds of classifiers, such
as Artificial Neural Networks, Support Vector Machine, Linear Discriminant
Analysis, Random Forest, and Decision Tree, have been efficiently employed
for different EMG applications [20, 47, 67, 76]. The feature vector is utilised
as an input to the classifier after the feature extraction procedure. As per the
studies, dimensional reduction strategies such as principal component analy-
sis, and linear discriminant analysis, are used to reduce the classifier’s burden
and processing time. Toledo-Pérez et al. [77] utilised the principal component
analysis approach to minimise the dimensionality of the retrieved features
from the lower limb sEMG signal and investigate the impact of changing the
number of channels or the muscles. Phinyomark et al. [78] employed linear
discriminant analysis, which reduces the number of features needed in the
categorization of hand movements using sEMG signals. Englehart and col-
leagues [10] employed principle components analysis to minimise the size of a
wavelet-based feature set, which increased classification accuracy significantly
in a myoelectric-controlled prosthesis application. A dimensionality reduction
strategy minimises intra-class variability while increasing inter-class distance,
simplifying the classification problem. After the feature reduction process,
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Table 4: Feature Extraction from sEMG signal

Features References

Time

Domain

Integrated EMG [65, 66]

Mean Absolute Value (MAV) [20, 47, 65–68]

Simple square integral (SSI) [65, 66]

Root Mean Square (RMS) [20, 47, 65–67]

Zero Crossing (ZC) [20, 47, 65, 67]

Slope Sign Change (SSC) [20, 47, 65, 67]

Variance (VAR) [20, 47, 65–67]

Wilison Amplitude (WAMP) [47, 65, 67]

Myopulse Percentage Rate (MYOP) [47, 65, 67]

Difference Absolute Standard Devia-
tion Value (DASDV)

[20, 47, 65, 67]

Skewness (Skew) [20, 47, 65, 67, 69]

Kurtosis (Kurt) [20, 47, 65, 67, 69]

Waveform Length (WL) [65, 66, 68, 70]

Histogram of EMG (HIST) [65]

Auto-regressive coefficients (AR) [65, 66, 71]

Average Amplitude Change (AAC) [20, 47, 65, 67]

Frequency

Domain

Mean Frequency (MNF) [32, 65, 66, 69, 70]

Median Frequency (MDF) [32, 65, 66, 69, 70]

Peak Frequency (PKF) [32, 65]

Mean Power Frequency (MNP) [32, 65]

Total Power (TTP) [32, 65]

Frequency Ration (FR) [32, 65]

Power Spectrum Ratio (PSR) [65, 69, 70]

Variation of Central Frequency (VCF) [32, 65]

Time-Frequency

Domain

Discrete Wavelet Transofrm (DWT) [65, 71]

Continous Wavelet Transform (CWT) [65, 72]

Emprical Mode Decomposition (EMD) [65, 73]

Short Term Fourier Transform (STFT) [65, 71, 74]

Wavelet Packet Transform (WPT) [65, 75]
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the features are employed to perform the classification task. Luan et al. [25]
compared the five different feature reduction techniques such as Principal com-
ponent analysis (PCA), Linear Discriminant Analysis (LDA), ) Locally Linear
Embedding (LLE), Laplacian eigenmaps, and Rank preserving discriminant
analysis (RPDA) for six distinct lower limb activities. There are several ways
to dimensionality reduction, which are given below [79]:

� Linear Discriminant Analysis;
� Independent Component Analysis;
� Principal Component Analysis;
� General Discriminant Analysis;
� High Correlation Filter;
� Low Variance Filter;
� Missing Value Ratio;
� Backward Feature Elimination;
� Random Forest;
� Factor Analysis;
� Projection methods;
� Forward Feature Selection.

The electromyogram classification system’s effectiveness is strongly depen-
dent on the selection and extraction of high-quality features [80]. With the
feature extraction stage in a classification system, the information density of
the signal is increased [81]. Naik et al. [18] made good use of a multivariate
technique called entropy bound minimization (ICA-EBM) for the assortment
of lower limb activities. It classifies the walking, standing, and sitting activities
of 11 healthy and 11 possessed knee pathology subjects with an accuracy rate of
96.1% and 86.2% by using a linear discriminant analysis classifier. Vijayvargiya
and colleagues [20] proposed a new hybrid wavelet denoising with ensemble
empirical mode decomposition (WD-EEMD) pre-processing technique for the
classification of three lower limb activities same as Naik et al. with an accuracy
of 90.69% and 97.45% for healthy and knee abnormal subjects, respectively. In
the article [29], the authors proposed a new top and slope feature extraction
technique for lower limb human motion detection.

Deep learning algorithms have been used in several different areas in recent
years. Deep learning does not need the extraction of handcrafted features.
These algorithms extract features and later classify them accordingly. A Con-
volutional Neural Network (CNN) is a type of deep learning algorithm that
can automatically extract the signal features. Vijayvargiya et al. classify three
different activities for three distinct cases: healthy, knee abnormal, and pooled
data, which is a combined dataset of healthy and knee abnormal participants.
They employed a voting-based 1D convolutional neural network and obtained
classification accuracy of 99.35, 97.63, and 97.14 percent for healthy, patholog-
ical knee, and pooled data, respectively [48]. Gautam et al. [86] developed a
new classification methodology that considers the lower-limb movements when
determining knee joint angle prognosis. CNN and Long Short-term Memory
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Table 5: Summary of lower limb activity recognition using sEMG

Author Preprocessing Activities Classifier Accuracy

[18] ICA-EBM Walking, sitting, standing LDA -

[20] WD-EEMD Walking, sitting, standing LDA
97.45% for healthy

90.69% for knee abnormal

[48] WD Walking, sitting, standing 1D CNN
99.35% for healthy

97.63% for knee abnormal

[82] WD Walking, sitting, standing MP-ANN -

[83] - Horizontal walking, crossing obstacles,
standing up, going down the stairs, and
going up the stairs

Gaussian Ker-
nel LDA

96.00%

[84] - Sit, stand, level walk, stair ascent, stair
descent, ramp ascent and ramp descent

SVM, KNN,
LDA, ANN

96.43-98.78%

[85] - Walking, sitting, standing Long-term
Recurrent
Convolution
Network

98.1% for healthy

92.4% for knee abnormal

[86] WD-SVD Flexion of the leg up (standing), hip
extension from a sitting position (sit-
ting) and gait (walking)

SVM 91.85%

(LSTM) collaborate to develop an architecture for classifying activities, with
CNN extracting features from sEMG signal data and LSTM predicting joint
angles and interpreting the features. After that, a dense layer is connected
for classification. The authors developed the MyoNet model, which uses these
three blocks to predict lower-limb activities (walking, standing, and sitting) as
well as joint angle. In [87], to achieve the classification of the limb movements
from EMG signal, a Deep belief network (DBN) was used to get the better of
local minima problems and overfitting issues. This 4-class classifier algorithm
achieved better classification performance with reduced training time and was
trained for each subject.

6 Applications

In the last decade, sEMG-based solutions have grown with an increasing num-
ber of demonstrations and attempts in three critical rehabilitation scenarios as
shown in Fig. 8. First, the lower limb activity recognition based on sEMG plays
an important role in accurately diagnosing the neuromuscular diseases in the
lower limb so that patients could begin the rehabilitation process before their
disorders progressed further. Vijayvargiya et al. [67] used sEMG signal-based
lower limb activities to differentiate between diseased and healthy knees. In this
study, 11 time-domain characteristics were extracted from the sEMG signal of
four lower limb muscles and classified using five machine learning classifiers:
support vector machine, decision tree, k-nearest neighbor, random forest, and
additional tree classifiers, all with 10-fold cross-validation. The results revealed
that the extra tree classifier outperforms the other classifiers with 91.3 % of
accuracy. In the other study of Vijayvargiya et al. [47], the effect of imbalance
of sEMG signal during the walking of knee abnormal and healthy subject was
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studied. The walking task takes longer for people with a knee deformity than
for healthy subjects. Therefore, the length of the sEMG signal was longer than
the one of healthy subjects. It resulted in an imbalance in the collected data.
Thus, the oversampling was used for increasing the training minority dataset
which helps in the balancing of the used dataset. The classification between
myopathy and neuropathy based on sEMG signal using neural network was
also presented by Swaroop et al. [88].

Fig. 8: Application scenarios of the sEMG based activity recognition

Second, sEMG-based LLAR have been used to assess patients’ reha-
bilitation progress and therapy success on a broader scale. Robot-assisted
rehabilitation and therapy are becoming more popular for assisting the elderly,
and disabled patients. As proven by favorable clinical outcomes and recov-
ery time, robot-assisted lower limb rehabilitation has significant benefits
over standard manual therapy and training. Meng et al. [89] conducted a
systematic review on the recent development of mechanisms and control tech-
niques for robot-assisted lower limb rehabilitation, focusing on various robotic
mechanisms, training modes, and control strategies.

Thirdly, sEMG-based LLAR is used to control assistive equipment such
as intelligent prostheses and orthoses [90]. These auxiliary devices can be
employed for aiding the patients during physical rehabilitation. It can ease the
load on the physical therapy to a certain extent [91, 92]. Additionally, this
technology enables these gadgets to attain a higher level of security and a more
pleasant user experience. In recent times, the interface between the human-
machine become a research topic for the artificial lower limb. It is because of
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the requirement of the deliberate human locomotion knowledge and also helps
the external devices for the development of the active control mechanisms.

7 Conclusion and future prospective

This study delves into the fundamental structure and methodology for identify-
ing human lower limb activity using sEMG signals which is very important due
to its applications in the diagnosis of neuromuscular diseases, security, control-
ling of robots/prostheses, human-machine interaction, and pattern recognition.
Due to the presence of undesirable signal sources or artifacts in EMG data,
filtering procedures are advised to reduce the existent noise. However, while
this procedure may minimise these noises, it does not ensure the originality of
EMG signals. Classification of EMG data is critical for real-time control of, for
example, a robotic limb. As a result, researchers are concentrating their efforts
on EMG signal processing methods to develop a more accurate, simple, and
dependable system for recognising lower limb motion patterns. This study dis-
cussed the methods and procedures utilised for sEMG signal pre-processing.
The sEMG signal is random in nature so, features are extracted from it after
denoising and used as input to a computational classifier to increase classi-
fication accuracy. The most commonly used extracted features from sEMG
signal were discussed. The implemented machine learning algorithms were then
indicated. Finally, an overview of different applications of lower limb activity
recognition were presented.

Other significant findings that should be investigated further in the future
are yet possible. To begin, the accessible dataset comprises information from
a rather limited number of patients. As a result, the recommended approaches
should be examined using a large number of participants to mitigate the bias
imposed by small datasets. There are limited lower limb activity datasets
available on abnormal people based on sEMG signals, therefore researchers
can focus on this field as well. There has been relatively little research on
the imbalance of sEMG signals in healthy and pathological knee individuals,
consequently it is also an open topic for researchers. Feature extraction is a
crucial step for the classification task using machine learning techniques. So,
in further study, one may strive to minimise the extracted feature space by
employing feature reduction or selection strategies. On the brighter side, this
study provides a clear and concise overview of sEMG signal based human lower
limb activity recognition techniques, databases, challenges, application, and
its future prospective.
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