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Detecting Acute Leukemia in Blood Slides Images
Using a CNNs Ensemble

Abstract: Leukemia is a disease that has no defined etiology and affects the production
of white blood cells in the bone marrow. Young cells or blasts are produced abnormally,
replacing normal blood cells (white, red blood cells, and platelets). Consequently, the
person suffers problems in transporting oxygen and infections combat. Acute leukemia
is a particular type of leukemia that causes abnormal cell growth in a short period,
requiring a quick start of treatment. Classifying the types of acute leukemia in blood slide
images is a vital process, and a system of assisting doctors in selecting treatment becomes
necessary. This paper presents an ensemble approach using four convolutional neural
networks (CNNs) - Alert Net-RWD, Resnet50, InceptionV3, and Xception. These CNNs,
individually, demonstrated that are efficient in differentiating between the two types of
acute leukemia - Acute Lymphoid Leukemia (ALL) and Acute Myeloid Leukemia (AML)
- and Healthy Blood Slides (HBS). We verified that the union of these four well-known
CNNs improve the hit rates of current techniques from the literature. The experiments
were carried out using 18 data sets with 3,293 images, and the proposed CNNs ensemble
achieved an accuracy of 96.17%, and precision of 96.38%.

Keywords: Acute leukemia diagnosis, model ensemble, convolutional neural network.

1 Introduction

The bone marrow produces a large proportion of blood
cells, 100 million of leucocytes (white blood cells) per day
on average. Leukocytes act combating and eliminating
microorganisms and foreign chemical structures in the
body employing a catch (phagocytosis) or antibody
production. One of the diseases affecting the bone
marrow function is leukemia [1].

Leukemia is a type of cancer that mostly affects
the population. The American Cancer Society (ACS)
(https://cancerstatisticscenter.cancer.org/!/cancer-
site/Leukemia) estimates 60,530 new cases for 2020,
with approximately 23,100 deaths. According to the
ACS, 35,470 cases are in men and 25,060 in women and
13,420 deaths in men and 9,860 in women. This disease
has no defined etiology and affects the production of
cells by the bone marrow. Over time, diseased cells
replace healthy blood cells (white, red blood cells, and
platelets), and the individual suffers from problems in
transporting oxygen and fighting infections [1]. Among
the forms of leukemia diagnosis, the complete blood
count (CBC) and the myelogram are the most used.

Leukemias can be grouped based on the speed at
which the disease progresses and becomes severe. In
this respect, the condition can be of the chronic type
(which usually gets worse slowly) or acute (which
usually gets worse quickly) [1]. They can also be
grouped based on the types of white blood cells
they affect: lymphoid or myeloid. Thus, there are
some types of leukemia, the four primary ones being
Acute Lymphoblastic Leukemia (ALL), Acute Myeloid
Leukemia (AML), Chronic Myeloid Leukemia (CML)
and Chronic Lymphocytic Leukemia (CLL). Myeloid
leukemia (SCI) is the most frequent, with about 40% of
diagnoses.

Thus, ALL and AML require a diagnosis in the early
stages of the disease to provide appropriate treatment.
Figure 1 shows examples of blood slide images used in
our tests with ALL, AML, and Healthy Blood Slides
(HBS). The first column of Figure 1 shows examples of
images with ALL; the second column shows images with
AML, and the last column shows HBS images.

(a) (b) (c)

Figure 1 Examples of images used in this work: (a) ALL
example, (b) AML example, and (c) HBS
example.

The use of computer systems can assist in fast
leukemia diagnosis. Convolutional Neural Networks
(CNNs) is currently one of the most effective techniques
in diagnosing medical images. This paper proposes
an ensemble model with CNNs for the automated
diagnosis of acute leukemia (ALL and AML) and HBS.
Resnet50 [2], inceptionV3 [3], Xception [4] and the
network models proposed by Claro et al. [5]. Also,
we implemented a new network based on the last-
mentioned work. We evaluated the proposed model in
18 heterogeneous datasets with 3,293 images, combined
with data augmentation techniques.
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This paper is organized as follows. Section 2 presents
related works; In Section 3, we present the dataset
used, the data augmentation technique employed, the
evaluated architectures and the applied evaluation
metrics. Sections 4 and 5 present the achieved results
and a discussion; and finally, we present the conclusion
and possibilities of future work in Section 6.

2 Related Works

We carried out a systematic survey of the state of
the art related to leukemia computer-aided diagnosis.
The survey aimed to identify and classify the available
literature works based on the techniques used, the year
of publication, and the relevance.

The survey was realized using three public datasets:
Scopus, Web of Science, and IEEE Xplore. We used the
following search strings: “leukemia acute classification”,
“white blood cell classification”, and “blood smear
leukemia classification”. Following this, we selected
works published after 2012 in engineering and computer
science fields. As a result, we obtained 427 articles. We
then analyzed the title and abstract of these, aiming
to eliminate repeated documents and those with non-
automatic classification methods. Table 1 presents the
works found in the literature, organized according to
their purpose.

We organized the selected papers into four
approaches using the diagnosis type suggested by the
authors. We found studies that performed the diagnosis
between images with leukemia and healthy, regardless
of the type of leukemia [6] and [7]. Some authors
differentiated blades of blood with ALL and healthy
blades [8, 9, 10, 11, 12, 13, 14, 15], while other
proposals differentiated images with AML and healthy
images [16, 17].

The latter approach mentioned above coincides with
our proposal and is characterized by the diagnosis
into three classes: ALL, AML, and HBS. In Rawat et
al. [18], the authors performed the leukocyte nucleus
segmentation on 420 images. Then, they analyzed
331 characteristics of each segmented nucleus using a
Support Vector Machine (SVM). The work of Laosai
and Chamnongthai [19] also to take into account these
categories. They subdivide the types of acute lymphoid
leukemia and acute myeloid leukemia. The tests were
performed on 500 images, 150 of ALL type, 150 of AML
type, and 200 of HBS type. According to the authors,
the tests showed promising results.

Still, in this approach, we have the work of Tran
et al. [20] and Claro et al. [5]. In both studies,
the authors proposed convolutional neural networks to
classify the two types of acute leukemia and images
without leukemia. In the first work, the system developed
was LeukemiaNet, and in the second work, the network
presented was Alert Net-RWD.

3 Materials and Methods

This paper aims to present models of CNN architectures
to diagnose acute leukemia types in blood slide images.
To develop the architectural model proposed in this
work, we rely on architectures that recently obtained
the best results in leukemia detection, according to the
studies found in the literature.

The dataset used in this research hold 3,293 images,
which does not represent a large number of data for
training a CNN. A solution found to increase the
generality of the model and attack the few cases problem
for training the network is the Data Augmentation
technique that generates new training samples.

3.1 Image Dataset

The development of a robust methodology to aid in the
diagnosis depends on the data used in its validation. The
main challenge found in state of the art is related to
the datasets’ acquisition since most of them are private.
However, we obtained 18 public datasets with 3,293
images for the evaluation of the proposed model. In
Table 2, the used image datasets are presented according
to the addressed classes.

Among the images listed in Table 2, we disregarded
those “Other Types” class, since the amount of data in
this class does not form an adequately representative set.
Thus, we used the HBS, ALL, and AML classes to build
the proposed model. One can note that these classes
were made using different datasets, contributing to the
creation of a complex set with different resolutions, dyes,
approximations, and contrast. The before-mentioned
approach is similar to the one used to obtain microscopic
images in daily medical practices [14].

Figure 2 shows examples of blood slide images used
in our tests with ALL, AML, and Healthy Blood Slides
(HBS). These images are some examples of the databases
used in this study.

For the proper use of the images under study, we
carried out two pre-processing operations. The first was
the central clipping considering the smaller side image
since CNN architectures require square inputs. The
second operation was to resize the input images to 224
× 224 pixels because these are the standard CNN input
dimensions.

In the Bloodline dataset, we observed the existence of
15 rectangular images containing at least two leukocytes.
In these images, the leukocytes’ clipping was done
manually, since the pre-processing operations would
eliminate the region of interest for the classification. The
clipped images were added to the dataset, resulting in a
total of 217 samples.

3.2 Data Augmentation

Deep neural networks have been successfully applied
to Computer Vision tasks such as image classification,
object detection, and image segmentation, thanks to the
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Table 1 Summary of works identified in the state of the art as to: year, descriptor(s), classifier, number of images used and
accuracy.

Work Year Descriptor(s) Classifier Images Accuracy(%)

Leukemia - Healthy
Vogado et al. [6] 2018 Deep Features SVM 1,268 99.76
Loey et al. [7] 2020 Deep Features CNN 2,820 100
ALL - Healthy
Vincent et al. [8] 2015 Texture and geometry MLP 100 97.70
Singhal and Singh [9] 2016 Texture SVM 260 93.80
Thanh et al. [10] 2017 Deep Features CNN 1,188 96,60
Shafique et al. [11] 2018 Deep Features CNN 760 99.50
Rehman et al. [12] 2018 Deep Features CNN 330 97.78
Pansombut et al. [13] 2019 Deep Features CNN 363 81.74
Ahmed et al. [14] 2019 Deep Features CNN 2,478 88.25
Gehlot et al. [15] 2020 Deep Features CNN 15,114 93.40
AML - Healthy
Madhukar and Agaian [16] 2012 Texture SVM 50 93.50
Goutam and Sailaja [17] 2015 Texture SVM 90 98.00
ALL - AML - Healthy
Rawat et al. [18] 2017 Geometrical, color and texture GA-SVM 420 99.50
Laosai and Chamnongthai [19] 2018 Shape, color distribution,

texture and number of nucleoli
SVM 500 99.85

Tran et al. [20] 2018 Deep Features CNN 1,676 97.20
Claro et al. [5] 2020 Deep Features CNN 2,415 97.18

Table 2 Summary of the used image datasets.

Dataset HBS ALL AML Other types Total Ref.
ALL-IDB 1 59 49 - - 108 [21]
ALL-IDB 1 (Crop) - 510 - - 510 [21]
ALL-IDB 2 130 130 - - 260 [21]
Leukocytes 149 - - - 149 [22]
CellaVision 109 - - - 109 [23]
Atlas - 25 40 23 88 -
Omid et al. 2014 154 - - - 154 [24]
Omid et al. 2015 - - 27 - 27 [25]
ASH-OK - - 96 - 96 [26]
Bloodline - - 217 - 217 [27]
ONKODIN - - 78 - 78 [28]
CellaVision 2 100 - - - 100 [29]
JTSC 300 - - - 300 [29]
UFG 57 10 27 27 121 -
PN-ALL Dataset - 30 - - 30 [30]
leukemia-images - 40 78 22 140 -
MIDB Dataset - 87 415 171 673 -
LISC Dataset 376 - - - 376 [31]
Total of images 1434 881 978 243 3536 -

evolution of CNNs. However, these networks rely on a
large amount of data to avoid overfitting [32].

Improving generalization of these models is one of the
main challenges in the area, but Data Augmentation is
a powerful way to overcome this difficulty. Augmented
data is expected to represent a more extensive dataset,
minimizing the differences between the training and
validation sets as well as any future test sets [32].

Routine augmentation operations are rotation in the
range of 0º to 40º, vertical, horizontal, shear, and zoom
in the field of 0 to 0.2 and horizontal and vertical
flip. One should notice that the nuclei images do not
have asymmetry allowing flipping in both directions.
The reflection fill operation was applied to replace black
pixels resulting from rotation and translation techniques.
Finally, we normalized the input image pixels to values
between 0 (zero) and 1 (one). The augmentation resulted
in a dataset 20 times bigger than the original. Figure 3
shows examples of the results of these operations applied
in blood smear images.

(a) ALL-IDB1 (b) ALL-
IDB2

(c) Atlas

(d) ASH (e) leukemia-
images

(f) Omid et
al. [25]

(g) Omid et
al. [24]

(h)
Cellavision

(i) JTSC

Figure 2 Samples of (a-c) ALL images, (d-f) AML images
and (g-i) HBS images used in this work.

3.3 Evaluated Architectures

In this study, we evaluated the pre-trained neural
networks Resnet50 [2], InceptionV3 [3] and Xception
[4] to classify the two types of acute leukemia (ALL
and AML) and healthy images. In addition to these
architectures, we also evaluated the models developed by
Claro et al. [5] and a new variation developed in this
work based on the proposed models.

ResNet50 [2] is a deep convolutional network
architecture proposed in 2016 to solve the problem of
vanishing gradient that causes saturation in learning
and consequently slows down training. The basic idea
is to skip blocks of convolutional layers using shortcut
connections to form unions called residual blocks. These
stacked residual blocks significantly improve training
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Figure 3 Examples of the results of the data
augmentation operations.

efficiency and mainly solve the problem of degradation
present in deep networks.

The InceptionV3 [3] architecture emerged as a
new version for the GoogLeNet and InceptionV2
architectures. This architecture reduces CNN’s
complexity in terms of the number of operations
performed using Inception modules, which consists of
parallel combinations of layers with convolutional filters
of size 1×1, 3×3 and 5×5. Convolutions with larger
filters are computationally more costly; therefore, it
was proposed to perform 1×1 convolutions first, reduce
the dimensionality of the characteristics map, and then
perform convolutions with the other filters. The use
of Inception modules results in a reduction of 28%
in the number of parameters compared to traditional
convolutional layers.

The Xception [4] architecture is an extension of
the Inception architecture that replaces the standard
Inception modules with separable convolutions in
depth. Instead of partitioning the input data into
multiple compressed blocks, it maps the spatial
correlations for each output channel separately. It then
performs a convolution of 1 × 1 in-depth to capture
the correlation between channels. This operation is
essentially equivalent to an existing process known as
depthwise separable convolution, which consists of a
depthwise convolution (a spatial convolution performed
independently for each channel) followed by a pointwise
convolution (filters with size 1 × 1 between channels).
Xception achieved superior results when compared
to previous versions, despite having fewer layers and
parameters. The inclusion of the depthwise separable
convolution layers also provided greater efficiency in
computational cost, which is less costly and faster
than the standard convolution for performing a smaller
number of operations.

Based on the AlexNet [33], CaffeNet [34] and
VggNet [35] architectures, the authors of Claro et
al. cite claro2020convolution developed the Acute
Leukemias Recognition Network (Alert Net) which is a

CNN for the classification of acute leukemia in blood
slides.

Alert Net has five convolutional layers, followed
by Batch Normalization and Max Pooling layers. The
shallower layers are formed by two fully connected layers,
followed by a dropout operation and a softmax layer with
three neurons. This model has characteristics existing
in sequential architectures presented in state of the art.
The authors proposed architectures that would achieve
the best compromise between the number of parameters
and precision. Therefore, their model with 8 million
parameters, is less complex than architectures in the
literature.

The authors carried out an ablation study from the
initial model to remove or replace layers in Alert Net.
Thus, Claro et al. built two models using technologies
implemented in some of the CNNs with the best results
in the ImageNet competition. They are ResNet [2] and
Xception [4]. Developed the Alert Net with a Residual
Layer (Alert Net-R) and the Alert Net with Depthwise
Separable Convolutions Layer (Alert Net-X).

In Alert Net-R a residual structure similar to ResNet.
Initially, max pooling after the input layer is used
to resize the original image. This operation’s result is
concatenated with the maximum result of the second
convolutional layer pool. Therefore, the image to be
concatenated does not change in the initial convolutional
layers. It is observed that the waste generated tends
to propagate the essential characteristics of the image
during training. Studies presented in the literature prove
the efficiency of this approach [2].

The Depth-Wise Separable Convolution layers were
introduced in the Xception architecture and provide
greater computational efficiency since the number of
operations performed during convolution is reduced, so
Alert Net-X was developed. That is, they have less
complexity and require less training time than regular
convolutional layers.

From these architectures developed in the study
by Claro et al. [5], we developed a new network
architecture called Alert Net-RX. The design for this
new architecture involves the insertion of a residual
layer in the Alert Net - RX architecture with Depth-
Wise Separable Convolution layers. Figure 4 presents the
model developed and illustrates the types of layers.

3.4 Ensemble

The ensemble is a technique that existed long before
the Deep Learning paradigm emerged [36]. The theory
behind this is quite simple and is based on the well-
known notion of “wisdom of crowds”: instead of relying
on just one model for prediction, a set of multiple (pre-
trained) models is created. These models’ results are
then combined in a final classification by constructing
some weighted votes. The original idea was developed to
reduce the classifiers’ variance to obtain a better overall
performance [37].
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Figure 4 Topologies of the Aler Net - RX a CNN based
in Alert Net from [5].

The most commonly used ensemble method for neural
networks is weighted average voting. In this vote, later
labels are generated by averaging a class’s probabilities
from the predicted labels, such as the accuracy [38].
Figure 5 presents a general ensemble example.

3.5 Evaluation Metrics

To analyze the classification results, we computed the
confusion matrix. Then, from the elements of this
matrix, we calculated the accuracy (A), precision (P),
recall (R) and F1-score [39].

We also computed the kappa index (k), which is
recommended as an appropriate exactitude measure as it
can adequately represent the confusion matrix; it takes
all elements of the matrix into account, rather than

just those on the main diagonal, which occurs when
calculating the global classification accuracy [57]. This
metric can be calculated as:

k =
observed− expected

1 − expected
. (1)

According to Landis and Koch [40] k assumes values
between 0 (zero) and 1 (one). The result is qualified
according to the k value as follows: k ≤ 0.2: Bad; 0.2 <
k ≤ 0.4: Fair; 0.4 < k ≤ 0.6: Good; 0.6 < k ≤ 0.8: Very
Good and k > 0.8: Excellent.

The cost function metric (loss) was also used in this
work. This function is responsible for saying how far one
is from the ideal prediction and, therefore, quantifies the
“cost” or “loss” by accepting the prediction generated
by the current parameters of the model [41].

4 Experiments

In this section, we present the carried out experiments
in this study. The results are structured as follows:
Section 4.1 presents the individual results for each CNN
mentioned in Section 3.3. Section 4.2 presents the results
of the models performing the ensemble experiment. All
experiments were applied with the k-fold cross-validation
with k equal to 5 and analyzed the results using state of
the art metrics.

4.1 Results of Individual CNNs

The CNNs ResNet50, InceptionV3, and Xception
presented excellent results in the ImageNet competition.
Also, they have a relatively low number of parameters
when compared to other sequential architectures. We
applied fine-tuning techniques [42], which consists of
using a pre-trained architecture to carry out the transfer
learning. Thus, training is only conducted in selected
layers and with lower learning rates.

The most commonly used fine-tuning technique in the
literature is Shallow fine-tuning (SFT) [42]. In SFT, the
initial layers are frozen, decreasing the complexity during
the CNN training, and only the final layers are retrained.
These layers have specific characteristics related to the
used dataset. Some authors claim that SFT does not
perform well when the target domain differs from one
used to pre-train the weights [43]. For example, natural
photographic images from ImageNet belong to a different
domain compared to blood smear images.

In those situations, it is better to apply Deeply Fine-
Tuning (DFT). The DFT approach allows training the
entire CNN. However, it requires a higher computational
cost and a more considerable amount of data. Table 3
presents the results from obtained applying the SFT and
DFT technique with the CNNs found in the literature.

In Table 3, we observed that the performance of the
networks using the SFT was lower than using DFT. The
ResNet50 architecture, for example, got a kappa value
equal to 0 (zero), which means that this CNN classified
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Table 3 Results obtained with Shallow Fine Tuning and Deeply Fine Tuning.

Model A (%) P (%) R (%) F1-score K Num. param File size
Shallow Fine Tuning

ResNet50 43.56±0.03 18.97±0.02 33.33±0 26.43±0.03 0 24,638,339 98mb
InceptionV3 67.66±2.76 68.85±3.41 67.32±3.29 67.82±2.87 0.5081±0.044 22,853,411 92mb
Xception 68.94±3.85 73.38±2.85 64.42±4.13 67.02±4.38 0.5050±0.060 21,912,107 88mb

Deeply Fine Tuning
ResNet50 96.02±0.79 96.07±0.10 95.41±0.75 96.01±0.80 0.9392±0.012 24,638,339 188mb
InceptionV3 95.44±0.64 95.55±0.52 94.76±0.94 95.42±0.67 0.9298±0.010 22,853,411 175mb
Xception 92.04±1.24 92.338±1.19 90.70±1.50 91.97±1.29 0.8772±0.019 21,912,107 167mb

Table 4 Results obtained by K-fold cross validation for Alert Net variations.

Model A (%) P (%) R(%) F1-score(%) K
Alert Net 93.71±0.68 94.00±0.57 92.62±0.87 93.66±0,70 0.9031±0.010
Alert Net-WD 94.56±0.68 94.69±0.66 93.69±0.89 94.53±0.70 0.9163±0.010
Alert Net-R 93.68±0.84 93.97±0.71 92.67±1.02 93.63±0.88 0.9027±0.013
Alert Net-RWD 94.74±0.86 94.87±0.79 93.89±1.04 94.72±0.87 0.9191±0.013
Alert Net-X 92.65±1.14 93.04±1.07 91.64±1.28 92.60±1.14 0.8868±0.017
Alert Net-XWD 93.26±1.11 93.39±1.08 92.21±1.31 93.21±1.13 0.8961±0.017
Alert Net-RX 90.89±1.15 91.35±1.04 89.80±1.20 90.83±1.17 0.8597±0.017
Alert Net-RXWD 92.16±0.73 92.57±0.44 91.12±1.00 92.12±0.76 0.8793±0,011

all images in one class. Comparing the results of the
CNNs using the SFT and the DFT, one can realize that
DFT’s use resulted in a substantial performance gain of
the pre-trained CNNs. With DFT, ResNet50 obtain with
the best results in terms of accuracy (96.02%), precision
(94.87%), recall (93.89%), F1-score (94.72%), and kappa
(0.9191).

In Table 4, we present the results achieved by
architectures proposed by Claro et al. [5] and two new
versions called Alert Net-RX and Alert Net-RXWD. In
the results, we found that Alert Net-RWD achieved the
best results in terms of Accuracy (94.74%), Precision
(94.87%), Recall (93.89%), F1-score (94.72%), and kappa
(0.9191). We also highlight the results obtained by the
Alert Net without dropout.

The results in Table 4 allow us to infer that the
dropout layer removal helps achieve better results. The
dropout is a regularization technique, and its use reduces
the generalization capacity of the model. It would be
necessary to increase the model size because typically,
the validation dataset’s error is much smaller when using
dropout, but with accounting, larger models cost more
training iterations. When the training dataset is small,
the use of the dropout becomes less effective.

4.2 Proposed Ensemble

Figure 5 presents our ensemble approach. It consists
of four CNNs: three pre-trained Resnet50, InceptionV3,
Xception, and Aler Net-RWD. The results presented in
this section demonstrate the reason for choosing these
four networks.

For the development of the proposed CNNs
Ensemble, we evaluated the literature’s architecture and
the models generated by Claro et al. [5]. The predictions
of the pre-trained CNN models are calculated to build
an ensemble model. An advantage of using this model
set is that it does not need training, since the average

Composite
PredictionDatabase

Alert Net-RWD

InceptionV3

ResNet50
Ensemble
Classifier

Weighted Average Voting

Xception

Figure 5 Proposed ensemble flowchart.

of the predictions does not require any parameter to be
learned.

First of all, we evaluated the Alert Net variations,
since they were proposed to identify acute leukemias.
Table 5 presents the results achieved through these
ensembles. The former ensemble was carried out with
the four CNNs with a dropout layer (Alert Net, Alert
Net-R, Alert Net-X, and Alert Net-RX). The second
ensemble was formed by the CNNs withouth a dropout
layer. Finally, the third ensemble is composed of the
eight Alert Net architectures. We can infer that the set
using only as networks without a dropout layer obtained
a better performance.

Table 6 illustrates the results of the prediction of
ensemble models with pre-trained CNNs. In the first
row, the ensemble was formed by the refined CNNs
Resnet50, InceptionV3, and Xception. We chose these
CNNs since they achieved the best-ranking performance
using Deeply Fine Tuning.

To improve the ensemble, we carried out tests,
including the eight versions of Alert Net separately. In
the end, we found that the best set of CNNs to compose
the ensemble is the one shown in the second line of Table
6 . That is the union of the pre-trained networks Resnet,
Inception, and Xception with Alert Net-RWD.
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Table 5 Results achieved with different ensembles formed by Alert Net variations.

Model Ensemble A (%) P (%) R(%) F1-score(%) K
Alert Net, Alert Net-R, Alert
Net-X, Alert-RX

93.31±0.95 93.90±0.84 93.30±0.94 93.33±0.96 0.8971±0.014

Alert Net-WD, Alert Net-RWD,
Alert Net-XWD, Alert Net-
RXWD

94.50±0.83 94.82±0.63 94.52±0.84 94.51±0.82 0.9153±0.013

Alert Net, Alert Net-WD, Alert
Net-R, Alert Net-RWD,
Alert Net-X, Alert Net-XWD,
Alert Net-RX, Alert Net-RXWD

94.22±0.73 94.83±0.46 94.23±0.71 94.26±0.71 0.9111±0.011

Table 6 Results achieved with different ensembles formed by pre-trained CNNs.

Model Ensemble A (%) P (%) R (%) F1-score (%) K
Resnet50, InceptionV3,
Xception

95.38±0.88 95.71±0.59 95.39±0.87 95.40±0,83 0.9288±0,013

Alert Net-RWD,
Resnet50, InceptionV3,
Xception

96.17±0,56 96.38±0,43 95.94±0,55 96.18±0,54 0.9411±0,008

CNNs suffer from the limitation of high variance,
as they are highly dependent on the specifications
of the training data and prone to overfitting, which
reduces their generalizability. We address this problem
by training various models to obtain a diverse set of
predictions that, when combined, can provide a set of
viable solutions.

It is observed that for the construction of an
ensemble, it is important to select diversified CNNs
that present high precision rates in several regions in
the characteristics space. For this reason, we evaluate
model combinations and determine the best one to build
the proposed ensemble. The experimental results are
statistically significant for a given level of statistical
significance if they are not attributed to chance and if
there is a relationship.

5 Discussion

We compare the proposed ensemble results and the
ones obtained by literature works that address the same
problem. From Table 7, one can realize that state of the
art presented higher accuracy values than the proposed
approach. However, the number of images used in those
studies is at least four times less than the number of
images used in this work. Another essential point to
be highlighted is related to the images’ heterogeneity,
as they come from eighteen different datasets. This
characteristic leads to a greater diversity in the training
data, which leads to the achievement of a robust method
for different input image types.

Figure 6 shows examples of the Alert Net-RWD
activation maps for the three classes. It is possible to
identify which regions are used to differentiate healthy
images from those with acute leukemia (lymphoid or
myeloid).

The number of leukocytes may vary depending on
the input image. We see in Figure 6 that Alert Net-

Table 7 Comparison among the results obtained by the
proposed ensemble against the ones obtained by
related methods.

Method Descritors
N. of

images
Accuracy

Rawat et al. [18] Geometrical, color and texture 420 99.50%
Laosai and

Chamnongthai [19]
Shape, color, Texture

and number of nucleoli
500 99.85%

Tran et al. [20] Deep Features 1,636 97.30%
Claro et al. [5] Deep Features 2,415 97.18%

Proposed method Deep Features 3,293 96.17%

(a)

(b)

Figure 6 Examples of activation maps for blood slides,
(a) images with one leukocyte, (b) images with
various leukocytes. The first column are images of
the ALL class; the second column are images of
the AML class and the third of the HBS class.

RWD generates different activation map patterns for
each of these situations. Also, as it is trained in
different databases, the proposed model can adapt to
different characteristics, it is possible to observe that the
maps differ from one base to another. However, CNN
activates different regions for each class. For example,
in Figure 5.a, of the ALL class, the leukocyte turned
predominantly blue. This pattern changes in the other
classes, becoming mostly red in the HBS class.
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6 Conclusion

The conducted systematic survey showed that many
researchers had focused their efforts on the Computer-
Aided Diagnostic systems field, where the automatic
diagnosis of leukemia can be found.

This study proposed an ensemble model with CNNs
for the automated diagnosis of acute lymphoid leukemia
and acute myeloid leukemia. The results achieved in
3,293 images are encouraging. The literature works
showed results superior to ours; however the quantity
and diversity of images applied in our work are superior
to that of the compared works, thus increasing the
method’s robustness.

Another essential point to be highlighted is the
use of the ensemble method, where it reduces the
model’s standard deviation rate, ideally combining
the predictions of various models. The ensemble
model’s performance simulates real-world conditions
with standard deviation and reduced overfitting, leading
to improved generalization. We believe that the proposed
results are beneficial for developing clinically valuable
solutions to detect and differentiate images of acute
leukemia in blood slides.

For future approaches, the proposed model needs
to be applied to a more significant number of images.
Moreover, in addition to differentiation of the three
classes proposed in this work, a distinction will also
be made between the images that have Chronic
Lymphocytic Leukemia and Chronic Myeloid Leukemia.
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