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IMPORTANCE Cognitive impairment is a common and disabling feature of multiple sclerosis
(MS), but a precise characterization of cognitive phenotypes in patients with MS is lacking.

OBJECTIVES To identify cognitive phenotypes in a clinical cohort of patients with MS and to
characterize their clinical and magnetic resonance imaging (MRI) features.

DESIGN, SETTING, AND PARTICIPANTS This multicenter cross-sectional study consecutively
screened clinically stable patients with MS and healthy control individuals at 8 MS centers in
Italy from January 1, 2010, to October 31, 2019. Patients with MS and healthy control
individuals who were not using psychoactive drugs and had no history of other neurological
or medical disorders, learning disability, severe head trauma, and alcohol or drug abuse were
enrolled.

MAIN OUTCOMES AND MEASURES Participants underwent a neurological examination and a
cognitive evaluation with the Rao Brief Repeatable Battery and Stroop Color and Word Test. A
subgroup of participants also underwent a brain MRI examination. Latent profile analysis was
used on cognitive test z scores to identify cognitive phenotypes. Linear regression and
mixed-effects models were used to define clinical and MRI features of each phenotype.

RESULTS A total of 1212 patients with MS (mean [SD] age, 41.1 [11.1] years; 784 women
[64.7%]) and 196 healthy control individuals (mean [SD] age, 40.4 [8.6] years; 130 women
[66.3%]) were analyzed in this study. Five cognitive phenotypes were identified: preserved
cognition (n = 235 patients [19.4%]), mild–verbal memory/semantic fluency (n = 362 patients
[29.9%]), mild–multidomain (n = 236 patients [19.5%]), severe–executive/attention (n = 167
patients [13.8%]), and severe–multidomain (n = 212 patients [17.5%]) involvement. Patients
with preserved cognition and mild–verbal memory/semantic fluency were younger (mean
[SD] age, 36.5 [9.8] years and 38.2 [11.1] years) and had shorter disease duration (mean [SD]
8.0 [7.3] years and 8.3 [7.6] years) compared with patients with mild–multidomain (mean
[SD] age, 42.6 [11.2] years; mean [SD] disease duration, 12.8 [9.6] years; P < .001),
severe–executive/attention (mean [SD] age, 42.9 [11.7] years; mean [SD] disease duration,
12.2 [9.5] years; P < .001), and severe–multidomain (mean [SD] age, 44.0 [11.0] years; mean
[SD] disease duration, 13.3 [10.2] years; P < .001) phenotypes. Severe cognitive phenotypes
prevailed in patients with progressive MS. At MRI evaluation, compared with those with
preserved cognition, patients with mild–verbal memory/semantic fluency exhibited
decreased mean (SE) hippocampal volume (5.42 [0.68] mL vs 5.13 [0.68] mL; P = .04),
patients with the mild–multidomain phenotype had decreased mean (SE) cortical gray matter
volume (687.69 [35.40] mL vs 662.59 [35.48] mL; P = .02), patients with severe–executive/
attention had higher mean (SE) T2-hyperintense lesion volume (51.33 [31.15] mL vs 99.69
[34.07] mL; P = .04), and patients with the severe–multidomain phenotype had extensive
brain damage, with decreased volume in all the brain structures explored, except for nucleus
pallidus, amygdala and caudate nucleus.

CONCLUSIONS AND RELEVANCE This study found that by defining homogeneous and clinically
meaningful phenotypes, the limitations of the traditional dichotomous classification in MS
can be overcome. These phenotypes can represent a more meaningful measure of the
cognitive status of patients with MS and can help define clinical disability, support clinicians in
treatment choices, and tailor cognitive rehabilitation strategies.
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C ognitive impairment is a common and disabling mani-
festationofmultiplesclerosis(MS),affectingpatients’per-
formance in everyday activities, behavior, and quality of

life. It may be detected in the earliest stages of disease, such as
a clinically1 and radiologically isolated syndrome.2

Numerous magnetic resonance imaging (MRI) studies
aimed at exploring the pathophysiological features of cogni-
tive impairment in MS have been conducted. The earliest ones
showed an association between cognitive deficits and higher
brain lesion load,3 whereas subsequent work highlighted the
importance of lesion location in strategic white matter (WM)
regions,4 WM microstructural damage,5 gray matter (GM)
lesions,6 cortical7 and deep8 GM atrophy,5 and abnormal pat-
terns of cerebral activation.9

However, most clinical and MRI studies were based on a di-
chotomous classification of cognitive functioning, namely, pre-
served vs impaired cognition. The inevitable consequence in
published studies was the inclusion of heterogeneous groups
of patients with variable cognitive profiles, preventing a clear
assessment of neuroanatomical substrates and personalized
rehabilitation strategies.

A promising approach was introduced by Leavitt et al,10

who identified 3 cognitively homogeneous subgroups of pa-
tients with MS that were defined as cognitive phenotypes: iso-
lated memory impairment, isolated information processing
speed impairment, and combined deficits in processing speed
and memory. Nevertheless, deficits in other cognitive do-
mains have been reported in MS,11,12 and this classification was
based on the dichotomous definition of impairment for each
domain, not considering patients with mildly decreased cog-
nitive performance.13

The definition of cognitive phenotypes may represent a
step toward personalized treatment approaches and toward im-
proving understanding of the pathophysiological mecha-
nism of MS-related cognitive changes.

Against this background, we conducted a cross-sectional
study with the aims of (1) identifying cognitive phenotypes in
a clinical cohort of patients with MS, including the whole spec-
trum of disease subtypes, and (2) characterizing their clinical
and MRI features. We used an unbiased, data-driven ap-
proach on neuropsychological data by applying latent profile
analysis (LPA).14 For the characterization of MRI features, we
selected highly reproducible and well-validated MRI metrics
of MS-related brain damage.

Methods
Approval of this cross-sectional study was received from the
local ethical standards committees on human experimenta-
tion of each participating center. Written informed consent was
obtained from all participants before study enrollment.

Of the 1370 patients with MS and the 200 healthy control
individuals consecutively screened from 8 Italian MS Centers
(Azienda Ospedaliero-Universitaria (AOU) Careggi, Florence;
San Raffaele Hospital, Milan; Policlinico Le Scotte, Siena; AOU
Policlinico Vittorio Emanuele, Catania; AOU di Padova, Pa-
dova; Gallarate Hospital, Varese; Azienda Socio Sanitaria

Territoriale Spedali Civili Brescia, Brescia; and Policlinico di
Bari, Bari) from January 1, 2010, to October 31, 2019, we en-
rolled 1212 clinically stable patients with MS and 196 healthy
control individuals who were not using psychoactive drugs and
had no history of other neurological or medical disorders, learn-
ing disability, severe head trauma, and alcohol or drug abuse.
We excluded patients with MS who had relapses or corticoste-
roid use within 4 weeks preceding a neuropsychological
assessment.10

Neuropsychological and Neurological Evaluation
All study participants underwent a neuropsychological evalu-
ation with the Rao Brief Repeatable Battery15 and the Stroop
Color and Word Test (SCWT).16 The Brief Repeatable Battery
evaluates the most frequently impaired cognitive domains in
MS, incorporating tests of verbal learning and memory (Selec-
tive Reminding Test [SRT]), including Long-term Storage, Con-
sistent Long-term Retrieval, and delayed recall; visual or spa-
tial learning and memory (10/36 Spatial Recall Test [SPART])
and its delayed recall; complex attention and information
processing speed (Paced Auditory Serial Addition Test [PASAT]
and Symbol Digit Modalities Test [SDMT]); and verbal fluency on
semantic stimulus (Word List Generation [WLG]). The SCWT16

evaluates complex attention and aspects of executive function-
ing, such as cognitive interference inhibition.

Our neuropsychologists (B.G., C.N., C.G.C., P. Grossi, M.R.,
C.S., and R.G.V.) participated in a common training session, in
which test administration and scoring procedures were clari-
fied and agreed on. Corrected scores for age, sex, and educa-
tion according to normative values17 were standardized on the
basis of healthy control individuals, obtaining z scores for each
cognitive test. Fatigue was assessed using the Fatigue Sever-
ity Scale (score range: 1-7 for each item, with the highest score
indicating greater fatigue severity),18 and depression was evalu-
ated using the Montgomery-Åsberg Depression Scale (score
range: 0-60, with the highest score indicating more severe
depression).19

All patients underwent a same-day neurological exami-
nation with the Expanded Disability Status Scale (EDSS; score

Key Points
Question Given the heterogeneity of cognitive function in
patients with multiple sclerosis (MS), can distinct cognitive
phenotypes be identified for clinical and research purposes?

Findings In this cross-sectional study of 1212 patients with MS and
196 healthy control individuals, 5 cognitive phenotypes (preserved
cognition, mild–verbal memory/semantic fluency,
mild–multidomain, severe–executive/attention, and
severe–multidomain) were identified by using a data-driven
approach to cognitive evaluations. Each phenotype was
characterized by specific clinical and magnetic resonance imaging
features.

Meaning Findings of this study suggest that this new
categorization of cognitive deficits in MS may integrate the
Expanded Disability Status Scale score in defining clinical disability,
support clinicians in treatment choices, and help tailor cognitive
rehabilitation strategies.
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range: 0-10, with higher scores indicating more severe clini-
cal disability)20 and definition of clinical subtype.21 Given the
high number of relapsing-remitting patients with MS, we clas-
sified these patients into early (duration <5 years) and late
(duration ≥5 years) groups.22

MRI Data Acquisition and Data Analysis
Two of the 8 involved MS centers (San Raffaele Hospital in Mi-
lan and Quantitative Neuroimaging Laboratory of the Univer-
sity of Siena) also performed brain MRI examination at the time
of neuropsychological evaluation on 172 patients with MS and
50 healthy control individuals. By using a 3-T scanner, we ac-
quired 3-dimensional T1-weighted (3-DT1) and dual-echo se-
quences. The complete acquisition protocol is available in the
eMethods in the Supplement.

The T2-hyperintense lesion volumes were measured on
proton density images, using a local thresholding, semiauto-
mated segmentation technique (Jim 8 software; Xinapse Sys-
tems). Normalized brain volume, normalized WM volume, nor-
malized GM volume, and normalized cortical GM volume were
measured on lesion-filled23 3-DT1-weighted images using
SIENAx software (SIENA; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
SIENA). Automated segmentation of the thalamus, caudate, pu-
tamen, pallidum, hippocampus, amygdala, and nucleus accum-
bens was performed on lesion-filled23 3-DT1-weighted images
using FMRIB Integrated Registration and Segmentation Tool
software (FIRST; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST).24

The volume of these structures was multiplied by the head-
normalization factor derived from SIENAx. Given the symme-
try of right and left deep GM nuclei, we calculated the mean cor-
responding volumes across hemispheres before the statistical
analysis.8

Statistical Analysis
To identify cognitive phenotypes, we performed LPA14,25 on
cognitive test z scores. Latent profile analysis is a flexible, per-
son-centered, and model-based clustering technique. We used
it for the data-driven, probabilistic identification of neuropsy-
chologically homogeneous subgroups of patients with MS,
which we defined as cognitive phenotypes. In addition, LPA
is based on specific mixture models25 that analyze the joint dis-
tribution of a set of continuous observed variables (neuropsy-
chological test z scores in this study) as a function of a finite
and mutually exclusive and exhaustive number of unob-
served components (mixtures) using a latent categorical vari-
able or profile.26,27 In this study, the latent variable was a pro-
file of cognitive functioning in patients with MS. It should be
noted that LPA does not necessitate any a priori categoriza-
tion of the observed variables or indicators, thus facilitating a
more granular examination of heterogeneity within and be-
tween latent-level groupings.25,28

A major advantage of applying LPA is the possibility to es-
timate profile-specific means, variances, and covariances of
the observed variables.28 An important step of LPA is the se-
lection of the best-fitting model. Models with 1 to 6 profiles
were run. For the optimal number of classes, we inspected the
bootstrap likelihood ratio test, bayesian information crite-
rion, and integrated completed likelihood in line with Nyl-

und et al29 and Scrucca et al.30 After selecting the best-fitting
model, we classified each patient with MS into one of the cog-
nitive phenotypes (latent profiles) on the basis of their phe-
notype membership probabilities estimated directly from the
model.25,31-33 To test the accuracy of the probabilistic estima-
tions in attributing a cognitive phenotype to each patient, we
performed a 10-fold cross-validation.

Cognitive phenotypes were named according to tests in
which patient performance was substantially lower com-
pared with that of healthy control individuals and according
to current knowledge about test interpretation. The names we
used to label different cognitive phenotypes are amenable to
changes in future developments. A mean z score threshold
lower than −1.5 was used to distinguish severely from mildly
decreased performance.

Between-group comparisons of demographic and clini-
cal parameters were performed using age- and sex-adjusted
linear regression models or nonparametric tests as appropri-
ate; normal distribution was assessed by visual inspection and
Kolmogorov-Smirnov test. Patients with and without an MRI
assessment were compared in terms of demographic, clini-
cal, and neuropsychological variables to assess the represen-
tativeness of the entire study cohort. To characterize the MRI
features of each cognitive phenotype, we adopted linear mixed-
effects models.

Statistical significance was corrected for multiple compari-
sons (Bonferroni method), and the threshold for statistical
significance was set at corrected 2-sided P < .05. To provide a
measure of effect size for the comparisons performed, we es-
timated Cohen d, Cliff Δ, and Cramer V as appropriate. Statis-
tical analysis was performed with R software, version 3.6.1, with
packages mclust, tidyLPA, and lme4 (R Foundation for Statis-
tical Computing). Data analysis was conducted between
November 20, 2019, and April 15, 2020.

Results
A total of 1212 patients with MS (mean [SD] age, 41.1 [11.1] years;
784 women [64.7%] and 428 men [35.3%]) and 196 healthy
control individuals (mean [SD] age, 40.4 [8.6] years; 130 women
[66.3%] and 66 men [33.7%]) were analyzed in this study. Com-
pared with healthy control individuals, patients with MS did
not differ in mean (SD) age, sex, and years of education (12.5
[3.4] years vs 12.2 [3.8]; P = .38). The clinical subtypes of the
patients with MS were as follows: early relapsing-remitting
(n = 396), late relapsing-remitting (n = 652), secondary pro-
gressive (n = 108), and primary progressive (n = 56). Table 1
summarizes the main demographic characteristics and clini-
cal features of study participants.

Cognitive Phenotypes
Using LPA, we found that a 5-profile model was the best-
fitting one (eTable 1 in the Supplement). A Brier score of 0.05
was obtained at the 10-fold cross-validation analysis. Five cog-
nitive phenotypes (eFigure in the Supplement) were identi-
fied: (1) preserved cognition comprised 235 patients (19.4%)
who showed no substantial difference from healthy control in-
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dividuals; (2) mild–verbal memory/semantic fluency com-
prised 362 patients (29.9%) who showed only mildly de-
creased performance in SRT (mean [SD] z score, −0.59 [0.85];
Cohen d = −0.69; 95% CI, −0.89 to −0.50; P < .001) and WLG
(mean [SD] z score, −1.29 [0.71]; Cohen d = −1.41; 95% CI, −1.89
to −1.39; P < .001) compared with healthy control individu-
als; (3) mild-multidomain comprised 236 patients (19.5%) who
showed mildly decreased performance in SRT (mean [SD] z
score, −1.26 [0.72]; Cohen d = −1.68; 95% CI, −1.92 to −1.44;
P < .001), SDMT (mean [SD] z score, −1.01 [1.09]; Cohen
d = −0.96; 95% CI, −1.18 to −0.74; P < .001), SCWT (mean [SD]
z score, −0.75 [1.11]; Cohen d = −0.68; 95% CI, −0.90 to −0.47;
P < .001), and PASAT (mean [SD] z score, −0.58 [1.11]; Cohen
d = −0.56; 95% CI, −0.77 to −0.35; P < .001) compared with
healthy control individuals; (4) severe–executive/attention
comprised 167 patients (13.8%) who showed severely de-
creased performance in SCWT (mean [SD] z score, −2.51 [3.24];
Cohen d = −1.72; 95% CI, −1.95 to −1.48; P < .001) and PASAT
(mean [SD] z score, −2.19 [1.48]; Cohen d = −1.83; 95% CI, −2.10
to −1.57; P < .001) and mildly decreased performance in SRT
(mean [SD] z score, −1.10 [1.04]; Cohen d = −1.17; 95% CI, −1.41
to −0.93; P < .001), SPART (mean [SD] z score, −0.33 [1.30]; Co-
hen d = −0.29; 95% CI, −0.51 to −0.07; P = .03), SDMT (mean
[SD] z score, −1.29 [1.46]; Cohen d = −1.02; 95% CI, −1.25 to 0.78;
P < .001), and WLG (mean [SD] z score, −1.06 [1.32]; Cohen
d = −0.90; 95% CI, −1.13 to 0.66; P < .001) compared with
healthy control individuals; and (5) severe–multidomain com-
prised 212 patients (17.5%) who showed severely decreased
performance in SRT (mean [SD] z score, −1.55 [1.21]; Cohen
d = −1.36; 95% CI, −1.60 to −1.13; P < .001), SCWT (mean [SD]

z score, −1.89 [2.07]; Cohen d = −1.10; 95% CI, −1.32 to −0.87;
P < .001), SDMT (mean [SD] z score, −2.26 [1.16]; Cohen
d = −2.06; 95% CI, −2.31 to 1.80; P < .001), PASAT (mean [SD]
z score, −2.51 [1.17]; Cohen d = −2.48; 95% CI, −2.75 to −2.20;
P < .001), and WLG (mean [SD] z score, −2.09 [0.77]; Cohen
d = −2.40; 95% CI, −2.67 to −2.12; P < .001) and mildly de-
creased performance in SPART (mean [SD] z score, −1.22 [0.52];
Cohen d = −1.71; 95% CI, −1.95 to −1.46; P < .001) compared
with healthy control individuals. Table 2 summarizes the
neuropsychological features of each cognitive phenotype.

Clinical Features of Cognitive Phenotypes
Statistically significant differences were found when compar-
ing clinical and demographic features among cognitive phe-
notypes, as summarized in Figure 1 and eTable 2 in the Supple-
ment. In particular, patients with the preserved cognition and
mild–verbal memory/semantic fluency phenotypes had simi-
lar age (mean [SD] age, 36.5 [9.8] years and 38.2 [11.1] years)
and disease duration (mean [SD] duration, 8.0 [7.3] years and
8.3 [7.6] years), but they were younger and had a shorter dis-
ease duration compared with the patients with the other phe-
notypes such as the mild–multidomain (mean [SD] age, 42.6
[11.2] years; mean [SD] disease duration, 12.8 [9.6] years;
P < .001), severe–executive/attention (mean [SD] age, 42.9 [11.7]
years; mean [SD] disease duration, 12.2 [9.5] years; P < .001),
and severe–multidomain (mean [SD] age, 44.0 [11.0] years;
mean [SD] disease duration, 13.3 [10.2] years; P < .001)
phenotypes.

Patients with the severe–multidomain phenotype had
higher physical disability compared with those with other

Table 1. Main Demographic and Clinical Characteristics of Participants in the Study

Characteristic

Mean (SD) [range]

P valueHealthy control individuals Patients with MS
Total No. 196 1212 NA

Age, y 40.4 (8.6) [20.2-60.9] 41.1 (11.1) [18.0-77.2] .38

Female sex, No. (%) 130 (66.3) 784 (64.7) .87

Male sex, No. (%) 66 (33.7) 428 (35.3) .87

EDSS score, median (range) NA 2.0 (0.0-8.5) NA

Disease duration, y NA 10.5 (9.0) [0.20-55.2] NA

Age at onset, y NA 29.8 (9.9) [7.0-68.9] NA

Education, y 12.5 (3.4) [5.0-19.0] 12.2 (3.8) [5.0-24.0] .38

FSS score NA 14.9 (17.4) [1.0-63.0] NA

MADRS score NA 10.1 (9.3) [0.0-59.0] NA

Abbreviations: EDSS, Expanded
Disability Status Scale;
FSS, Fatigue Severity Scale;
MADRS, Montgomery-Åsberg
Depression Rating Scale; MS, multiple
sclerosis; NA, not applicable.

Table 2. Mean z Scores of Cognitive Tests for Cognitive Phenotypes

Phenotype

Mean (SD) z score

SRT SPART SCWT SDMT PASAT WLG
Preserved cognition 0.29 (0.58) −0.01 (0.61) 0.02 (0.28) 0.75 (1.13) 0.22 (0.78) 0.06 (0.81)

Mild–verbal memory/semantic fluency −0.59 (0.85) −0.22 (0.93) −0.18 (0.89) −0.14 (0.86) −0.44 (0.99) −1.29 (0.71)

Mild–multidomain −1.26 (0.72) −0.25 (0.90) −0.75 (1.11) −1.01 (1.09) −0.58 (1.11) −0.16 (1.06)

Severe–executive/attention −1.10 (1.04) −0.33 (1.30) −2.51 (3.24) −1.29 (1.46) −2.19 (1.48) −1.06 (1.32)

Severe–multidomain −1.55 (1.21) −1.22 (0.52) −1.89 (2.07) −2.26 (1.16) −2.51 (1.17) −2.09 (0.77)

Abbreviations: PASAT, Paced Auditory Serial Addition Test; SCWT, Stroop Color and Word Test; SDMT, Symbol Digit Modalities Test; SPART, Spatial Recall Test;
SRT, Selective Reminding Test; WLG, Word List Generation.
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phenotypes (median [range] EDSS score, 3.0 [0.0-8.0]; P ≤ .001).
Patients with preserved cognition (median [range] EDSS score,
1.5 [0.0-7.0]; P < .001) had lower physical disability compared
with those with the mild–verbal memory/semantic fluency
(median [range] EDSS score, 2.0 [0.0-7.5]; P < .001), mild–
multidomain (median [range] EDSS score, 2.0 [0.0-8.0];

P < .001), severe–executive/attention (median [range] EDSS
score, 2.0 [0.0-8.0]; P = .001), and severe–multidomain (me-
dian [range] EDSS score, 3.0 [0.0-8.0]; P < .001) phenotypes.

Regarding mean (SD) years of education, a difference was
found only between the mild–multidomain and the severe–
executive/attention phenotypes (12.6 [3.9] years vs 11.5 [4.2]

Figure 1. Clinical and Demographic Features of Clinical Phenotypes
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years; P = .04). Patients with the severe–executive/attention
phenotype had higher mean (SD) Fatigue Severity Scale scores
(22.4 [19.4]) compared with those in the other phenotype
groups such as preserved cognition (14.2 [15.3]; P = .002), mild–
verbal memory/semantic fluency (11.1 [15.5]; P < .001), mild–
multidomain (17.2 [18.5]; P = .05), and severe–multidomain
(15.5 [18.7]; P = .01). Higher mean (SD) Montgomery-Åsberg De-
pression Scale scores were found in the severe–multidomain
(13.8 [11.0]) vs preserved cognition (7.7 [9.5]; P = .01) and se-
vere–executive/attention (8.3 [5.5]; P = .02) phenotypes and
in the mild–verbal memory/semantic fluency vs preserved
cognition (11.9 [10.0] vs 7.7 [9.5]; P = .04) phenotypes.

In intersecting cognitive phenotypes and clinical sub-
types, we observed a progressive decrease in the relative fre-
quencies of preserved cognition and mild–verbal memory/
semantic fluency phenotypes from early relapsing-remitting
MS (25% and 38%) to late relapsing-remitting MS (19% and 27%)
and then to secondary progressive MS (5% and 15%) clinical
subtypes. At the same time, we found a parallel increase of the
relative frequencies of mild–multidomain (14% in early relaps-
ing-remitting, 22% in late relapsing-remitting, and 25% in sec-
ondary progressive MS), severe–executive/attention (11% in
early relapsing-remitting, 14% in late relapsing-remitting, and
19% in secondary progressive MS), and severe–multidomain
(12% in early relapsing-remitting, 18% in late relapsing-
remitting, and 36% in secondary progressive MS) pheno-
types. The primary progressive MS subtype showed a distinct
distribution of cognitive phenotypes, with a higher preva-
lence of patients with the mild–verbal memory/semantic flu-
ency (36%) followed by the severe–multidomain (21%), severe–
executive/attention (20%), and mild–multidomain (16%)
phenotypes and with only a small percentage of patients with
preserved cognition (7%).

MRI Features of Cognitive Phenotypes
Participants undergoing MRI did not differ from the entire
study cohort in terms of demographic, clinical, and neuropsy-
chological variables (data not shown). Table 3 and Figure 2 sum-
marize the MRI features of each cognitive phenotype. Com-
pared with healthy control individuals, those with preserved
cognition showed significantly lower mean (SE) thalamic
volume (10.39 [0.28] mL vs 9.69 [0.28] mL; P = .005). A shared
pattern of damage was observed when comparing patients with
the mild–verbal memory/semantic fluency, mild–multido-
main, and severe–executive/attention phenotypes with healthy
control individuals (mean [SD] brain volume, 1532.61 [31.39]
mL) with lower normalized brain volume (mild–verbal
memory/semantic fluency: 1493.63 [30.85] mL, P = .03; mild–
multidomain: 1469.94 [31.52] mL, P = .001; and severe–
executive/attention: 1479.23 [33.10] mL, P = .03), normalized
GM volume (mild–verbal memory/semantic fluency: 733.70
[38.86] mL, P = .01; mild–multidomain: 715.71 [39.08] mL,
P = .002; and severe–executive/attention: 725.78 [39.63] mL,
P = .01), normalized cortical GM volume (mild–verbal memory/
semantic fluency: 672.04 [35.26] mL, P = .02; vs mild–
multidomain: 662.59 [35.48] mL, P = .005; and severe–
executive/attention: 665.35 [36.01] mL, P = .02), thalamic
volumes (mild–verbal memory/semantic fluency: 9.62 [0.27]

mL, P = .001; mild–multidomain: 9.31 [0.28] mL, P < .001;
and severe–executive/attention: 9.35 [0.31] mL, P = .001),
and putamen volumes (mild–verbal memory/semantic flu-
ency: 6.00 [0.25] mL, P = .03; mild–multidomain: 5.95
[0.25] mL, P = .01; and severe–executive/attention: 5.94
[0.27] mL, P = .04).

In addition, compared with healthy control individuals,
those with the mild–verbal memory/semantic fluency pheno-
type were characterized by lower nucleus accumbens (mean
[SE] volume, 0.74 [0.16] mL vs 0.66 [0.16]; P = .04) and hip-
pocampal volume (mean [SE] volume, 5.58 [0.68] mL vs 5.13
[0.68]; P = .03), those with the severe–executive/attention phe-
notype were characterized by lower hippocampal volume
(mean [SE] volume, 5.10 [0.69] mL; P = .006), and those with
the mild–multidomain phenotype were characterized by lower
caudate volume (mean [SE] volume, 5.39 [0.81] mL vs 5.06
[0.81] mL; P = .05). Compared with patients with preserved
cognition, those with mild–verbal memory/semantic fluency
only showed statistically significantly lower hippocampal vol-
ume (mean [SE] volume, 5.42 [0.68] mL vs 5.13 [0.68] mL;
P = .02); those with the mild–multidomain phenotype were
characterized by lower normalized cortical GM volume (mean
[SE] volume, 687.69 [35.40] mL vs 662.59 [35.48] mL; P = .04),
whereas those with severe–executive/attention were charac-
terized by higher T2 lesion volume (mean [SE] volume, 51.33
[31.15] mL vs 99.69 [34.07] mL; P = .04).

Patients with severe–multidomain phenotype had
extensive and severe brain damage. Compared with healthy
control individuals, these patients showed lower mean (SE)
volumes in all of the analyzed brain structures except for
nucleus pallidus and amygdala (normalized brain volume:
1423.67 [32.77] mL, P < .001; GM volume: 703.70 [39.51]
mL, P < .001; cortical GM volume: 646.36 [35.89] mL,
P < .001; WM volume: 718.99 [68.45] mL, P < .001; thalamic
volume: 8.72 [0.30] mL, P < .001; caudate volume: 4.87
[0.81], P = .004; putamen volume: 5.68 [0.26] mL, P < .001;
accumbens volume: 0.55 [0.16] mL, P < .001; and hippo-
campal volume: 5.09 [0.69] mL, P = .002). Compared with
those with preserved cognition, patients with the severe–
multidomain phenotype showed the same differences
except for the caudate nucleus.

Discussion
In this cross-sectional study, we propose a classification of
cognitive functions in patients with MS that is based on the
identification of distinct cognitive phenotypes. We applied
LPA to neuropsychological data from a large cohort of
patients with MS and characterized MRI features using well-
validated assessment tools. This approach allowed us to
identify the latent variables replacing single test measures,
which can be affected by multiple cognitive functions, and to
capture the shared variance across cognitive tests, likely
reflecting purer measures of cognitive domains. Moreover, by
using z scores rather than a dichotomous classification, we
found that the cognitive function was more properly repre-
sented as a continuum.
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To improve the readability of the study and the interpre-
tation of results, we named cognitive phenotypes according
to patients’ performance at neuropsychological tests. Al-
though current knowledge does not allow for a complete un-
derstanding of the meaning of these phenotypes, their defi-
nition represents a starting point for future studies.

By using MRI, we were able to identify neuroanatomical
substrates for each phenotype, substantiating the data-
driven cognitive findings with a biological basis. Given that vol-
ume loss in a specific GM region reflects demyelination and
loss of neurons, synaptic trees, and supporting cells,34 the find-
ing of lower volume in a region with known functional

Figure 2. Magnetic Resonance Imaging Features of Cognitive Phenotypes

Preserved cognition

Mild–verbal memory/semantic fluency

Mild–multidomain

Severe–attention/executive

Severe–multidomain

Differences between phenotype and both
healthy control and preserved cognition patients 

Differences between phenotype 
and healthy control patients
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relevance9,35 in a given phenotype can represent an impor-
tant biological validation of the data-driven classification.

We identified a first phenotype, preserved cognition, that
was characterized by preserved functioning in all cognitive
tests. This phenotype, prevailing in the early stages of the dis-
ease, included patients with shorter disease duration and less
severe disability compared with other phenotypes. As for MRI
features, patients in this group only showed lower thalamic vol-
ume compared with healthy control individuals. Given the
well-known thalamic involvement in cognitive functioning,36

there are a few explanations for the findings. Real-world cog-
nitive deficits that were not assessed in the neuropsychologi-
cal battery (eg, multitasking and word-finding tasks) may ac-
count for the lower thalamic volume. Otherwise, patients with
higher cognitive reserve may be clustered in this phenotype,
thus exhibiting normal cognitive performance despite mild tha-
lamic damage.37 Future research on patients with MS that
evaluates real-world cognitive abilities and their cognitive re-
serve using advanced MRI techniques for thalamic analysis and
segmentation38,39 could help clarify the role of thalamic dam-
age in patients with preserved cognition. In this study, we did
not assess the premorbid intelligence quotient as a proxy for
the participant’s cognitive reserve.

A second phenotype, mild–verbal memory/semantic flu-
ency, was characterized by mildly decreased performance in SRT
and WLG. The data-driven cosegregation of decreased perfor-
mance in verbal learning and memory and in semantic fluency40

was likely associated with impaired common semantic cluster-
ing strategies41,42 and lexical access modalities.43 In line with this
explanation, the MRI data in this study showed hippocampal
atrophy as a potential pathological substrate. Hippocampal
damage (both in terms of atrophy and abnormal functional
connectivity)44,45 was associated with decreased performance
in verbal learning and memory45,46 and in semantic fluency.47,48

In future studies, a detailed examination of cognitive
functions,49,50 together with MRI analysis of hippocampal
subfields51 and connections,52 may better characterize the neu-
ral basis of this phenotype. On the other hand, the lack of pro-
cessing speed impairment in these patients seems to challenge
the notion that slowed processing speed can always underlie
memory difficulties in MS.53

A third phenotype, mild–multidomain, showed mildly de-
creased cognitive performance in SRT, SCWT, SDMT, and
PASAT. These tests can recruit different cortically oriented cog-
nitive functions that may be interconnected with each other.
Cortical atrophy turned out to be the distinctive MRI feature
of this phenotype, in line with previous findings54 of de-
creased neocortical volumes in patients with MS with mild
cognitive impairment. Moreover, lower neocortical volume
was associated with a worse performance on tests of verbal
memory, attention/concentration, and verbal fluency in
MS.54,55 The relative frequency of mild–multidomain pheno-
type increased from early to late relapsing-remitting and sec-
ondary progressive MS, and it was also high in patients with
primary progressive MS. These results are consistent with
previous reports of cortical atrophy in progressive MS.56,57

Future MRI studies should focus on cortical thickness estima-
tion at the vertex level58 and on cerebral activation35 to as-

sess the precise patterns of cortical damage, possibly corre-
sponding to specific cognitive networks.

A fourth phenotype, severe–executive/attention, was char-
acterized by decreased performance in all tests, with more se-
vere involvement in the PASAT and SCWT. Patients with this
phenotype are likely to have a severe impairment of attention
and aspects of executive functions, such as cognitive interfer-
ence inhibition. This impairment may also justify, at least in part,
the decreased performance in the remaining tests.59 This phe-
notype was characterized by higher fatigue scores compared
with all of the other groups. Fatigue was previously associated
with lower performance in attentive60 and executive tasks.61 At
MRI assessment, patients with severe–executive/attention
compared with those with preserved cognition had a higher WM
lesion load. Given the preferential location close to the ven-
tricles of WM lesions in MS, a high lesion burden may play a ma-
jor role in both impaired cognition62 and higher fatigue
levels63,64 by disrupting long-range WM connections, which are
also located close to the ventricles.65,66 Long-range connec-
tions have been associated with attention and executive
functioning,67,68 and a higher lesion burden was associated with
worse performance at SCWT and PASAT in patients with MS.67-72

Long-range connections also have been associated with the
pathophysiological mechanism of MS-related fatigue,63,64,73 and
a higher lesion burden was associated with higher fatigue lev-
els in MS.63,64 Future studies should further investigate the role
of regional WM microstructural integrity as a possible neural
substrate of this cognitive phenotype.

A fifth phenotype, severe–multidomain, was character-
ized by severely decreased performance in all cognitive tests.
This phenotype was more frequent in the late stages of MS,
corresponding to end-stage cognitive failure in the study
population. However, the phenotype was also represented in
patients with short disease duration and low physical disabil-
ity, underscoring the importance of cognitive assessment of
patients with MS from the early disease stages. These pa-
tients had severe brain atrophy on MRI, involving all ex-
plored tissue compartments, which mirrored the extensive
cognitive impairment. Patients with severe–multidomain phe-
notype also experienced severe depressive symptoms, which
is consistent with the association between depression and dif-
ficulties in working memory,74 executive functioning,75 and
information processing speed.76

The findings of this study may have several implications
for clinical management and decision-making. This categori-
zation of cognitive features could help in planning rehabilita-
tive strategies77-83 tailored to subgroups of cognitively homo-
geneous patients. This categorization could be particularly
relevant to patients with mildly impaired profiles who may be
the ideal candidates for rehabilitative treatments because they
may have higher brain plasticity resources.84-87 Moreover, a
recent meta-analysis provided some evidence supporting the
potential advantage of disease-modifying drugs for patient cog-
nitive outcome.88,89 Transition to a more severe phenotype
may support the clinical decisions on changes in the pharma-
cological treatment.90-92

Use of these cognitive phenotypes can also represent a step
forward in research, allowing a better selection of candidates
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for cognitive rehabilitation trials as well as fostering future stud-
ies on the pathophysiological mechanism of cognitive changes
in MS by using more advanced MRI techniques and deep learn-
ing approaches.

Limitations
This study has several limitations. First, the cross-sectional de-
sign did not allow us to describe the time-dependent associa-
tion and evolution of phenotypes over time. Second, the study
was based on a clinical sample, which may not be entirely rep-
resentative of the general MS population. Third, although com-
monly used in MS clinical and research settings, the Brief Re-
peatable Battery and SCWT did not provide a finer-grained
assessment of cognitive functions. Fourth, only a subgroup of

participants underwent MRI examination at the time of the
neuropsychological evaluation.

Conclusions
The data-driven cognitive phenotypes presented in this study
can overcome the limitations of the traditional dichotomous
classification in MS and have the potential to represent a more
meaningful measure of the cognitive status of patients with
MS. This new categorization of cognitive deficits may inte-
grate the EDSS score in defining clinical disability, support cli-
nicians in treatment choices, and help tailor cognitive reha-
bilitation strategies.
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