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Abstract—Classification and analysis of surface EMG (sEMG)
signals have been of particular interest due to their numerous
applications in the biomedical field. They can be used for the
diagnosis of neuromuscular diseases, kinesiological studies, and
human-machine interaction. However, these signals are difficult
to process due to their noisy nature. To overcome this problem, a
hybrid of wavelet with ensemble empirical mode decomposition
pre-processing technique called WD-EEMD is proposed for
classifying lower limb activities based on sEMG signals in healthy
and knee abnormal subjects. First, Wavelet De-noising is used
for filtering out white Gaussian Noise (WGN) and unwanted
signals (contribution of other muscle signals). Next, an Ensemble
Empirical Mode Decomposition is used for filtering out power line
interference (PLI) and baseline wandering (BW) noises, followed
by extraction of a total of nine time-domain features. Finally,
the performance parameters of the Linear Discriminant Analysis
(LDA) classifier are calculated with a 3-fold cross-validation
technique. This study involves 11 healthy and 11 individuals with
a knee abnormality for three different activities: walking, flexion
of the leg up (standing), and leg extension from sitting position
(sitting). Different pre-processing techniques similar to that of
WD-EEMD were compared. It was observed that the proposed
method achieves an average classification accuracy of 90.69%
and 97.45% for healthy subjects and knee abnormal subjects,
respectively.

Index Terms—Biomedical signal analysis, EMG classification,
WD-EEMD, Ensemble Empirical Mode Decomposition, Wavelet
denoising, Linear Discriminant Analysis, Gait activities.

I. INTRODUCTION

KNEE problems are defined as a sensation of discomfort
in the knee that are caused by lack of proper warm-

up, poor form during physical activities, or osteoarthritis.
According to [1], one out of every four individuals have
joint symptoms or arthritis because of an underlying condition
such as degenerative arthritis of the knee. The knee joint
is a synovial joint that is formed with several surrounding
structures, including ligaments, bones, cartilage and tendons,
to perform its functions [2]. Any external harm to any of these
can result in knee abnormality [3]. Knee osteoarthritis, cerebral
palsy are some knee abnormalities that cause knee pain and
reduce the quality of daily life of a person [4], [5].
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Assistive devices can be used to enhance the quality of 
the daily life of an unhealthy person. These devices are 
categorized into: orthosis and prosthesis. The prosthesis is 
an artificial limb for a missing body part while orthosis 
is used to improve the functionality of moving body parts 
for weak person. These devices are also classified based on 
power: active and passive. An active assistive device uses 
a power source to activate the actuators while a passive 
device has no power source. So, automatic control is pos-
sible with active devices while passive devices cannot be 
similarly controlled. As usual, the active devices could be 
body-powered, or electric-powered. Electric-powered lower 
limb assistive devices have been widely used, and may be 
operated by a pressure resistor, strain gauge, micro-switch, 
electroencephalogram signals (EEG), electromyogram signals 
(EMG), etc. In recent years, EMG signals have widely been 
used for controlling assistive devices because it allows the 
recognition of movement in advance [6] and provides faster 
detection of the signal variation [7]. Invasive or non-
invasive techniques are used to acquire EMG signals from 
muscles in which non-invasive techniques are better than 
invasive techniques as no medical supervision is required and 
infection is also negligible during placement of non-invasive 
(sEMG) electrodes [8]. In the non-invasive technique, 
electrical activity produced by skeletal muscle is collected 
through a sEMG sensor.

The design of a neuro-fuzzy controller has been proposed 
by Kiguchi et al. for the upper limb robotic exoskeleton, 
which is an upper limb assistive device [9]. The purpose 
of this exoskeleton is to enhance the quality of life of the 
injured, disabled, elderly, and physically challenged people. A 
sEMG based low-cost elbow joint-powered exoskeleton was 
developed for bicep brachii strength augmentation by Krasin et 
al. [10]. The user who worn this exoskeleton can freely move 
in normal condition; however, when the biceps muscle is in an 
underloaded condition, then this muscle produces a different 
EMG signal which causes the exoskeleton to automatically 
switch to the assistive lifting movement and then returns 
to its normal condition once the muscle is relaxed. A low-
cost sEMG controlled upper limb prosthetic arm has been 
developed by Sharmila et al. [11]. For automatic control of 
the prosthetic arm, the sEMG signal is acquired for different 
hand movements from the users and features are extracted after 
preprocessing the data. Based on these features, the signal is 
classified for various hand movements. After recognizing the 
hand movements by the classifier, a control signal is generated 
and given to the motor of the prosthetic arm to perform the
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intended movements.
Over the past several years, applications of the upper limb 

using sEMG signal have been focused on by researchers com-
pared to the applications of the lower limb, because acquiring 
the sEMG signals of lower limb muscles is more complex due 
to the contribution of multiple motor units at a time and their 
dependency on neuromuscular activity, physiological and 
anatomical properties of the involved muscles. Recognition of 
various gait activities based on the sEMG signal of the lower 
limb has an important role in controlling the exoskeleton for the 
knee abnormal person or in the prosthesis control for the lower 
limb amputee. Neural network based myopathy and neuropathy 
classification using sEMG signal was proposed in [13]. Kugler 
et al. have recognized Parkinson’s disease using sEMG signal 
[14]. The classification of six different move-ments of lower 
limb using machine learning classifiers was studied by Khimraj 
et al. [12]. Vijayavargiya et.al. [15] worked on identifying knee 
abnormality in the subject, by collecting imbalanced surface 
EMG signals data as a result of different sized signal lengths, of 
healthy and unhealthy individuals. To realize multi-step 
classification, various schemes were adopted and employed a 
computational classifier for conclusive recog-nition. In other 
research [16], they used various machine learning algorithms to 
provide a comparative analysis between them. In this, walking, 
standing, and sitting three lower limb activities are observed 
and the movements are recorded in terms of sEMG signals for 
the purpose of classification of subjects with knee abnormality. 
Various different steps are performed on sEMG data to achieve 
classification. And five machine learning algorithms including 
Decision tree, Extra tree, KNN (k-nearest neighbor), SVM 
(support vector ma-chine), and Random forest to provide 
performance comparison in terms of accuracy, sensitivity, 
specificity, and F1-score to identify knee abnormality in 
unhealthy subjects. A. Gautam et al [45] introduced a novel 
classification approach to incor-porate lower limb activities 
accompanying prognostication of the knee joint angle. 
Convolutional Neural Network (CNN) and LSTM combinedly 
make architecture to classify lower limb activities where CNN 
is used for extracting features from sEMG signal data and 
LSTM is used for joint angle prediction and to interpret the 
features follow up dense layer is connected for classification. 
Combining these three blocks they have proposed MyoNet 
model to predict lower limb activities (out of walking, standing, 
and sitting) simultaneously with joint angle prediction.

Despite several successful applications, sEMG based knee 
activity recognition remains a challenging problem due to their 
noisy nature. Due to the mixing of different noise signals or 
artifacts such as inherent noise, ambient noise and motion 
artifacts, the identity of an actual sEMG signal originating in 
the muscle is lost. For this purpose, different methods have 
been proposed for sEMG noise elimination by the researchers. 
The frequency range of the sEMG signal is 10 to 500 Hz and an 
amplitude range of 0 to 10 mV [17]. The conventional filtering 
methods such as low-pass, high-pass, and band-pass filters can 
be used to remove the noises that are not in the range of the 
sEMG signals. However, they are unable to remove random 
noises such as white Gaussian

noise that is in the range of active sEMG signal spectrum 
band. The frequency ranges of the motor unit in an sEMG 
signal can be represented by Wigner-Ville distribution (WVD)
[18]. It exhibits excellent localization properties, but has a 
cross-term effect and thus, cannot deal with multi-component 
signals. Wavelets overcome the limitations caused by WVD. 
It does not have a cross-term and thus, has the capability of 
handling multi-resolution problems. Various adaptive filtering 
[19] techniques, like Wiener filtering [20], based on the Fourier 
approach have also been proposed for the removal of noise in 
surface myoelectric signals. As mentioned in many of earlier 
works [21], [22], the Wavelet Transform (WT) has been used 
in processing sEMG signals, as it is an extremely flexible 
approach to signal decomposition with a lot of choices in 
wavelet functions. The properties of the wavelet function and 
the characteristic of the signal to be analyzed need to be more 
carefully matched, before the classification process [21]. WT is 
also used for de-noising these signals by selecting an optimal 
wavelet function for them [23]. The use of wavelets has 
also gained widespread acceptance when extracting features 
or analyzing signals, especially for sEMG signals [24], [25]. 
They have advantages over classical techniques like Fourier 
transform or autoregressive models in analyzing physical sit-
uations where the signal contains discontinuities and sharp 
spikes [26], [27].

Studies on the decomposition of sEMG signals have been 
done since the 1960s [28], [29], where efforts have been 
made to segregate individual contributing motor potentials. 
A powerful technique called Empirical Mode Decomposition 
(EMD) was introduced [30] in 1998, which decomposed 
sEMG signals into Intrinsic Mode Functions (IMFs). EMD 
proved to be very effective and useful yet there were a few 
limitations associated with it. Improvements have been made 
in this algorithm, one of which is the Ensemble EMD (EEMD)
[31].

Motivated by the need for neural control of the lower limb 
exoskeleton or prosthesis, investigated different types of 
mobility tasks that could be correctly identified using sEMG 
signals obtained from the leg muscles. The results of this study 
will help in the future development of neural-controlled 
artificial exoskeleton or lower limbs prosthesis with versatile 
activities for injured or disabled persons. Due to mixing of 
various noises in the sEMG signal, sEMG based knee activity 
recognition is a challenging problem. Therefore, in this article, 
a hybrid pre-processing technique WD-EEMD is proposed for 
the analysis of sEMG signal for the recognition of lower limb 
activities.

The major contributions of this research are:
1) Identification of the lower limb activity using the sEMG

signals obtained from the leg muscles in individuals with
and without knee abnormality.

2) A hybrid pre-processing technique WD-EEMD (Wavelet
Denoising - Ensemble Empirical Mode Decomposition)
which is proposed for the analysis of sEMG signals for
lower limb activities recognition.

3) A total of nine time-domain features are extracted from
the sEMG signals of the four lower limb muscles using
the overlapping windowing technique.
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4) Performance parameters of LDA classifier are calculated
for the recognition of gait activities in healthy and knee
abnormal subjects.

The structure of the article is as follows: a survey of
data collection is given in section II. Section III presents the
proposed methodology. Section IV comprises the results and
discussion. Conclusion and future scope are given in Section
V.

II. DATA ACQUISITION

In this study, we have considered publicly available datasets
from UCI for the classification of lower limb activity [32].
It consists of 22 volunteer participants above the age of 18
years, among which 11 participants appear to be fit and the
rest exhibit knee abnormalities. No preceding case history
was found regarding pain or injury in the knee of healthy
participants. Among participants with knee abnormalities, four
were affected with a meniscus injury, six suffered from anterior
cruciate ligament (ACL), and one was encountered with sciatic
nerve injury. The left leg for healthy subjects and affected
limb for the knee abnormal subjects were chosen for acquiring
the EMG signal. All the subjects undergo three different
exercises: walking, flexion of the leg up (standing), and leg
extension from sitting position (sitting) to analyze the behavior
of the knee muscle. The data was recorded by four surface
electrodes around the muscles: biceps femoris, rectus femoris,
semitendinosus and vastus medialis, and the goniometer was
attached to the external side of the knee joint. The used
data collection equipment for obtaining the sEMG data was
a MWX8 by Biometrics Ltd. that has 4 analog channels
and 8 digital channels, out of which 4 for sEMG and 1 for
goniometry were used. All the data was stored directly from
MWX8 storage to the computer and transmitted to the Datalog
software by the bluetooth adapter in real-time. The sampling
frequency was of 1000 Hz and a 14-bit resolution was used.
This study only focuses on the effect of EMG signals of the
lower limb muscles during the lower limb activities, so only
the sEMG signals are considered.

III. METHODOLOGY

This section provides a description of the methods used in
building the proposed methodology.

A. Wavelet De-noising (WD)

To remove noise from the sEMG signal, a technique called
the thresholding method is used based on wavelets. Wavelets
can be visualized as small waves or ripples that have a very
short and finite period. In the wavelet analysis method, first
is selected a wavelet function that is called mother wavelet.
Then, the low frequency version of wavelet is used to perform
frequency analysis while the high frequency version of wavelet
is used for temporal analysis [26]. Different mother wavelets
are generated from a single basic wavelet ψ(t), by scaling and
translation [33]:

ψs,τ =
1√
s

ψ

(
t− τ

s

)
. (1)

There are various kinds of mother wavelets and each has its
own characteristics. Some of the most popular wavelet families
are: Haar, Daubechies, Coiflet and Symlet.

When performing Discrete Wavelet Transform (DWT),
wavelet coefficients can be generated by passing the signal
through high-pass (detail coefficients) and low-pass (approx-
imate coefficients) filters. The number of detail coefficients
generated depends on the adopted level of decomposition.

After the wavelet decomposition of a signal, approximate
and detailed coefficients are obtained. To eliminate the noise,
small signal details can be excluded without any loss of impor-
tant information. This, thresholding sets all coefficients to zero
that are less than a particular threshold [14]. There are various
modes for it such as soft and hard thresholding; however,
both present their challenges. Garotte threshold function was
proposed to overcome the shortcomings in the soft and hard
thresholding methods. The universal threshold, that is used in
this study, is defined as:

λ = σ
√

2ln(N), (2)

where σ = (MAD)/0.6745, with MAD referring to the Median
Absolute Deviation of the wavelet coefficient and N is the
length of signal.

As studied in [25], db7 from the Daubechies family is
used till the fourth decomposition level in this work, and the
decomposition is selected upto four level where one level of
approximate coefficients and four levels of details coefficients
are obtained. Garotte thresholding is applied on the second
detail coefficient level (D2).

B. Ensemble Empirical Mode Decomposition

Due to the non-linearity and non-stationarity of sEMG
signals, decomposition techniques that assume a process to
be linear and stationary may yield deceptive results [34].
Empirical Mode Decomposition (EEMD) is a powerful tool
for decomposing non-stationary and non-linear signals with
complicated spatial and temporal structures into complete or
almost orthogonal components, called Intrinsic Mode Func-
tions [35]. IMF is a mono-component function or an oscilla-
tory mode with one instantaneous frequency [36].

Using the EMD algorithm, a given signal x(t) can be
decomposed into a number of IMFs iteratively through a
shifting algorithm. The procedure is as follows [30]:

1) An upper u(t) and a lower l(t) envelopes are created
through interpolation (here, cubic) of all local maxima
and minima of x(t).

2) A running mean envelope m(t) is then calculated using
m(t) = u(t)+l(t)

2 .
3) The mean envelope is then subtracted from the signal,

which gives k(t) = x(t)−m(t).
4) It is verified that whether k(t) satisfies the following

conditions of being an IMF:
• The number of local extrema and zero crossings in

the entire length of k(t) must either be equal or at
most differ by one;

• At any point in the series, the mean value of k(t)
should be zero.
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TABLE I: Extracted sEMG features and their mathematical formulation.

Extracted Feature Mathematical formulation

1 Mean Absolute Value (MAV)
1
N ∑

N
i=1 |xi|

where xi is a sample of the sEMG signal

2 Root Mean Square (RMS)
√

1
N ∑

N
i=1 |xi|2

3 Zero Crossing (ZC)

∑
N−1
i=1 f (xi)

where f (xi) =

1 i f ,(xi > 0 and xi+1 < 0)
or (xi < 0 and xi+1 > 0)

0 otherwise

4 Slope Sign Change (SSC)

∑
N−1
i=2 f (xi)

where f (xi) =

1 i f , i f ,(xi > xi−1 and xi > xi+1)
or (xi < xi−1 and xi < xi+1)

0 otherwise
5 Variance (VAR) 1

N−1 ∑
N
i=1 x2

i

6 Difference Absolute Standard Deviation Value (DASDV)
√

1
N−1 ∑

N−1
i=1 (xi+1− xi)

2

7 Average Amplitude Change (AAC) 1
N ∑

N−1
i=1 |xi+1− xi|

8 Skewness (Skew) E[(x−µ)3]

σ3

9 Kurtosis (Kurt)

E[(x−µ)4]

σ4

where σ is the Standard deviation of the signal dataset,
µ = Mean of the dataset and

E is the Expected value estimator of the dataset.

5) If k(t) does not satisfy the conditions of being an IMF,
x(t) is replaced by k(t) and sifting is continued, i.e.,
steps 1-4 are reiterated until the signal obtained satisfy
the conditions. The sifting process can also be stopped
if k(t) is a monotonic function.

The original signal x(t) may be obtained by summation of
IMFs and the residual term:

x(t) =
M−1

∑
m=1

IMFm(t)+ rM(t) (3)

where rM is the residual term after extracting M−1 IMFs.
However, the EMD algorithm has a problem of frequent

appearance mode mixing due to its sensitivity to noise [37]. To
alleviate this problem, the noise-assisted data analysis method
EEMD was proposed, which describes the IMFs as the average
of an ensemble of trials [35].

The procedure of Ensemble EMD is as follows [35]:
1) An equally distributed and independent white noise

series having the same standard deviation is added to
the targeted data [37].

xm(t) = x(t)+nm(t) (4)

where nm(t) is the mth white noise series added to x(t),
and xm(t) is the noise-added signal.

2) The signal xm(t) is then decomposed using the EMD
algorithm into P IMFs hp,m, where P denotes the number
of IMFs and hp,m is the pth IMF of the mth trial.

3) The above two steps are repeated M times, but with
different white noises, where M indicates the number of
ensembles.

4) The final IMFs are calculated by averaging each of the
P IMFs over M trials.

IMFP =
1
M

M

∑
1

hp,m, p = 1,2, ...,P m = 1,2, ...,M (5)

The added noise cancels each other during averaging of cor-
responding IMFs in the EEMD process. The final IMFs remain

inside the natural dyadic filter windows, hence decreasing the
chances of mode-mixing [31].

Wavelet De-noising is used for filtering out white Gaussian
Noise (WGN) and unwanted signals, e.g. contributions of other
muscle signals. It also helps in preserving critical features.
Ensemble Empirical Mode Decomposition is used for filtering
out power line interference (PLI) and baseline wandering
(BW) noises. It is also used here for decomposing the signal
to extract relevant features from it. In this article, the pre-
processing technique using Wavelet De-noising (WD) and
Ensemble Empirical Mode Decomposition (EEMD) is referred
to as WD-EEMD, and together, they form an excellent hybrid
approach.
C. Feature Extraction

After the WD-EEMD analysis, a sliding windowing tech-
nique is used to extract the features rather than considering
the entire signal at once, due to its stochastic nature [38]. A
sliding window procedure, of adjacent or overlapped nature, is
used for segmentation [39]. In [40], the results exemplify that
the overlapped windowing approach outperforms the disjoint
or adjacent windowing scheme on the basis of classification
accuracy. Segmenting the data into short windows clinches
constant local mean, which assures stationarity of the data
during the feature extraction process [41]. The overlapped
windowing approach was implemented in this study to divide
each of the temporal series into optimal segments or sub-
frames of 256ms time windows and a leap of 64ms [42].

After preprocessing and signal segmentation, a feature ex-
traction stage is used to emphasize the relevant structures
of sEMG signals. The features must be selected in such a
way that condenses the suitable information and maximally
separate the output classes. Time-domain features are normally
employed for muscle activity detection, muscle contraction,
and onset detection whereas, frequency domain features are
used to detect neural abnormalities and muscle fatigue.

In this research, nine time-domain features: Mean Abso-
lute Value, Root Mean Square, Zero Crossing, Slope Sign
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Changes, Variance, Difference Absolute Standard Deviation
Value, Skewness, and Kurtosis, are extracted from the three
IMFs generated using the EEMD algorithm. As these fea-
tures do not require any transformation and also due to
their computational simplicity, they are generally quick and
easily implemented for sEMG pattern recognition. A brief
description of the features used is given in Table I.

D. Feature classification

As per the literature survey, many different machine learning
models, like Support Vector Machine classifier and Decision
Tree, have been used for sEMG classification; however, Linear
Discriminant Classifier has been shown to be effective on
applications to lower limb sEMG signal [42]. In this classifier,
the discriminant property of LDA is enhanced during classifi-
cation by maximizing the ratio of the between-class variance
to the within-class variance. The within the class matrix (Sw)
and between-class matrix (Sb) can formally be defined as:

Sw =
C

∑
k=1

Nk

∑
i=1

( f k
i −µk)( f k

i −µk)
T , (6)

Sb =
C

∑
k=1

(µk−µ)(µk−µ)T , (7)

where f k
i is the ith sample of class k, µk is the mean of class

k, C is the number of classes, Nk is the number of samples in
class k, and µ is the mean of all classes.

E. Performance Evaluation Metrics

To analyze the performance of machine learning models
true positive rate, false positive rate, true negative rate, false
negative rate are estimated, and their outcome helps in the
building of confusion metrics. A confusion matrix facilitates
the visualization of the performance of the model on the test
dataset. In this study, we have three different classes: walking
(W), sitting (S) and standing (T). The confusion matrix is
formed as:

C =

CWW CWS CWT
CSW CSS CST
CTW CT S CT T ,

 (8)

where CWW is the number of cases in walking class predicted
as walking, CWS is the number of cases in walking class
predicted as Sitting, CWT is the number of cases in walking
class predicted as standing and others can be defined similarly.

Total number of data points =
CWW +CWS +CWT +CSW +CSS +CST +CTW +CT S +CT T

Total number of cases as predicted walking (PW ) =
CWW +CSW +CTW
Total number of cases as actual walking (AW ) =
CWW +CWS +CWT
Total number of cases as predicted sitting (PS) =
CWS +CSS +CT S
Total number of cases as actual sitting (AS) = CSW +CSS +CST
Total number of cases as predicted standing (PT ) =
CWT +CST +CT T

Total number of cases as actual standing (AT ) =
CTW +CT S +CT T

The performance parameters for three class dataset are:

Accuracy - defined as the ratio of all correct predictions to
the total number of instances in the dataset:

Acc=
CWW +CSS +CT T

Total number o f dataset
. (9)

Specificity - the ratio of correct negative prediction to the total
number of actual negative instances in the dataset.

Specificity for walking class:

SPW =
CSS +CST +CT S +CT T

AS +AT
. (10)

Specificity for sitting class:

SPS =
CWW +CWT +CTW +CT T

AW +AT
. (11)

Specificity for standing class:

SPT =
CWW +CWS +CSW +CSS

AW +AS
. (12)

Precision - gives the ratio of correct positive prediction to the
total number of predicted positive instances in the dataset:

PRi =
Cii

Pi
. (13)

Sensitivity (Recall) - the ratio of correct positive prediction
to the total number of actual positive instances in the dataset:

RCi =
Cii

Ai
. (14)

F-Score - measures the balance between precision and recall
and is equal to harmonic mean of precision and recall:

Fi =
2∗RCi ∗PRi

RCi +PRi
, (15)

where i ∈ {W, S, T }.

IV. RESULT AND DISCUSSION

The current study is based on the application of WD-
EEMD based classification of lower limb movement using
sEMG signals. A total of 11 healthy and 11 subjects suffering
from knee abnormality were considered and the performance
parameters for the classification of three different movements:
walking, sitting and standing, were computed. The activity
signal of the subjects was pre-processed using WD-EEMD and
then divided into training and testing sets according to the 3-
fold cross-validation technique. An overlapping window with
a window size of 256 msec and 25% overlapping was chosen
for the segmentation of the signal. Then, the LDA classifier
was trained with the training dataset and the performance
parameters of the model with the testing dataset calculated.

The K-fold cross-validation methodology is a resampling
strategy that utilizes a compelled information test to assess
the performance of AI models. In this technique, the samples
are divided into groups of k equal size. After that, the training
of the model is performed with k−1 groups of samples and the
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TABLE II: Subject-wise Mean accuracy of the LDA classifier in percentage with the 3-fold cross validation technique for
healthy individuals during walking, sitting and standing, with different pre-processing techniques (best values found are in
bold).

Subject Wavelet EMD WD-EEMD
Walking Sitting Standing Walking Sitting Standing Walking Sitting Standing

S1 96.43 87.84 91.03 82.14 52.70 61.54 85.71 97.30 97.44
S2 91.89 94.59 93.59 64.86 62.16 70.51 89.19 91.89 100.00
S3 71.43 68.75 91.86 45.71 43.75 46.51 68.57 37.50 72.09
S4 76.32 78.57 75.00 52.63 60.00 62.50 68.42 92.86 93.75
S5 93.94 94.87 92.75 66.67 71.79 81.16 93.94 82.05 92.75
S6 67.57 70.89 92.38 81.08 64.56 85.71 100.00 96.20 100.00
S7 97.56 92.68 94.78 95.12 90.24 97.39 95.12 100.00 95.65
S8 68.09 88.30 92.74 82.98 90.43 90.32 97.87 100.00 95.97
S9 65.38 100.00 99.08 69.23 100.00 78.41 61.54 98.31 95.41

S10 86.21 97.38 96.69 89.66 97.91 96.03 100.00 100.00 94.70
S11 93.10 88.89 96.51 62.07 53.70 79.07 75.86 79.63 90.70

Mean 82.54 87.52 92.40 72.01 71.57 77.20 85.11 88.70 93.50

TABLE III: Subject-wise Mean accuracy of the LDA classifier in percentage with the 3-fold cross validation technique for
knee abnormal individuals during walking, sitting and standing, with different pre-processing techniques (best values found
are in bold).

Subject Wavelet EMD WD-EEMD
Walking Sitting Standing Walking Sitting Standing Walking Sitting Standing

S1 84.84 96.55 96.51 60.60 75.86 83.72 98.48 87.93 98.83
S2 94.64 89.23 91.42 82.14 78.46 60.00 98.21 100 82.85
S3 96.90 84.21 98.01 96.90 90.35 99.00 100 91.22 100
S4 96.58 95.37 97.42 95.90 97.10 99.35 98.63 100 96.67
S5 95.79 93.06 100 96.63 98.02 99.23 99.16 99.00 100
S6 87.22 75.67 88.61 84.59 85.84 91.39 99.62 100 98.61
S7 97.5 84.81 91.67 86.21 88.61 90.28 100 91.14 95.83
S8 73.08 84.70 85.52 48.08 71.76 64.47 96.15 94.12 100
S9 86.14 67.86 78.13 85.54 76.78 87.5 100 99.10 97.91

S10 90.68 94.19 84.16 92.37 96.51 90.10 97.22 97.67 96.03
S11 94.37 86.00 98.46 95.07 75.00 89.23 100 100 97.69

Mean 90.70 86.51 91.81 84.00 84.91 86.75 98.86 96.38 96.77

testing is performed with kth group of samples. This process
is repeated for all the groups obtained from the input data.

Table II presents the subject-wise mean of the correct
classification percentage for the three movements under study
obtained from the sEMG data acquired from healthy subjects,
whereas the performance concerning the knee abnormal sub-
jects is given in Table III. The similar pre-processing tech-
niques can be compared as to with and without knee abnormal
subjects from the data in these tables, which confirms that
WD-EEMD performed significantly better than the Wavelet
Transform or EMD when apllied individually.

Tables IV and V allow the comparison in terms of perfor-
mance indices between the different pre-processing techniques
under studied when applied to subjects with and without
knee abnormalities. This comparison allows to conclude that
the WD-EEMD pre-processing technique obtained the highest
performance indices relatively to other techniques.

Many different methods have been proposed for lower limb
activity recognition. Herrera-Gonzalez et al. have developed a
classifier for the classification of three different exercises using
MP-ANN with an accuracy of 88%, 94% and 92% for walking,
sitting and standing tasks, respectively Table VI [43]. On the
other hand, Zhang et al. have classified different lower limb

movements of healthy subjects by using the Empirical Mode 
Decomposition based approach obtaining the results given in 
Table VI [44].

TABLE VI: Comparison of the performance obtained by the 
proposed methodology against the ones obtained by literature 
studies with same dataset.

Approach Subject Walking Sitting Standing
EMD [44] Healthy 0.64 0.67 0.69

MEMD [44] Healthy 0.73 0.79 0.82
NA-EMD [44] Healthy 0.79 0.83 0.83
MP-ANN [43] Knee Abnormal 88 94 92

Transfer Learning
based LRCN [45]

Healthy 98.2 97.7 98.4
Knee Abnormal 92.8 92.3 92.2

ICA-EBM [42] Healthy 96.0 96.2 96.2
Knee Abnormal 86.6 86.4 85.5

Proposed Method
Healthy 85.11 88.70 93.50

Knee Abnormal 98.86 96.38 96.77

Naik et al. developed a classifier to classify the walking,
sitting and standing activities with an accuracy of 96.14
and 86.17% for healthy subjects and subjects suffering from
knee abnormalities, respectively [42]. Gautam and collabora-
tors introduced the transfer learning-based LRCN model to
classify the walking, sitting and standing activities obtaining
an accuracy of 98.2, 97.7 and 98.4% for healthy subjects
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TABLE IV: Subject-wise performance indices of the LDA classifier in percentage with the 3-fold cross validation technique
for healthy individuals during walking, sitting and standing, with different pre-processing techniques (best values found are in
bold).

Subject Wavelet EMD WD-EEMD
Accuracy Specificity Sensitivity F-Score Accuracy Specificity Sensitivity F-Score Accuracy Specificity Sensitivity F-Score

S1 92.86 96.19 92.64 92.93 74.29 86.64 73.40 73.71 95.71 97.75 95.08 95.41
S2 91.62 95.66 91.77 92.02 72.77 86.17 73.53 73.38 93.19 96.56 93.69 93.54
S3 94.64 97.36 93.04 93.34 96.30 98.14 95.42 95.66 98.15 99.02 97.08 97.66
S4 96.46 98.21 96.46 96.30 97.10 98.53 97.46 97.20 98.55 99.34 98.47 98.33
S5 96.38 98.21 96.29 95.92 97.65 98.92 97.96 97.43 99.36 99.71 99.39 99.31
S6 84.74 92.26 83.83 83.95 87.79 93.70 87.27 87.47 99.30 99.68 99.41 99.27
S7 91.34 95.74 91.33 91.24 88.52 93.98 88.36 88.97 95.67 97.87 95.66 95.58
S8 82.16 90.52 81.10 82.14 63.38 80.93 61.44 62.04 96.71 98.28 96.76 96.88
S9 78.61 88.36 77.38 78.34 83.42 91.32 83.28 83.63 99.20 99.52 99.01 99.20

S10 89.51 94.55 89.67 89.82 92.79 96.37 92.99 92.84 96.95 98.49 96.98 96.92
S11 93.55 96.74 92.94 93.13 87.63 93.77 86.43 86.67 99.19 99.57 99.23 99.26

Mean 90.17 94.89 89.68 89.92 85.60 92.59 85.23 85.36 97.45 98.71 97.34 97.40

TABLE V: Subject-wise performance indices of the LDA classifier in percentage with the 3-fold cross validation technique
for knee abnormal individuals during walking, sitting and standing, with different pre-processing techniques(best values found
are in bold).

Subject Wavelet EMD WD-EEMD
Accuracy Specificity Sensitivity F-Score Accuracy Specificity Sensitivity F-Score Accuracy Specificity Sensitivity F-Score

S1 90.56 94.97 91.76 90.72 61.11 79.30 65.46 62.18 95.56 97.83 93.48 93.50
S2 93.65 96.48 93.36 94.02 66.14 82.20 65.85 65.70 94.71 97.19 93.69 94.12
S3 81.07 89.45 77.35 78.42 45.56 72.22 45.33 44.56 61.54 79.64 59.39 57.72
S4 76.60 87.63 76.63 76.87 59.57 78.60 58.38 58.70 88.30 94.24 85.01 85.40
S5 93.89 96.93 93.85 93.21 74.44 86.94 73.21 72.46 88.33 94.74 89.58 86.94
S6 80.54 90.29 76.94 76.15 77.38 89.19 77.12 74.28 98.64 99.35 98.73 98.32
S7 94.54 96.82 95.01 95.27 94.54 96.76 94.25 94.91 97.06 98.64 96.92 96.46
S8 86.79 92.68 83.04 84.47 89.06 94.48 87.91 87.39 97.74 98.96 97.95 97.40
S9 96.05 97.77 88.16 90.95 88.36 94.36 82.55 81.25 93.28 96.51 85.09 86.23
S10 96.23 97.64 93.43 95.17 96.50 97.85 94.53 95.45 97.84 99.04 98.23 95.79
S11 93.49 95.97 92.83 93.61 68.05 81.74 64.95 65.82 84.62 91.61 82.06 82.62

Mean 89.40 94.24 87.49 88.08 74.61 86.69 73.59 72.97 90.69 95.25 89.10 88.59

and 92.8, 92.3 and 92.2% for individual suffering from knee
abnormalities, respectively [45]. The sEMG data of lower limb
muscles that we have considered here is the same as the other
contributors. Table VI allows the comparative performance
analysis between the proposed model against literature studies,
which allows to conclude that the proposed WD-EMD based
pre-processing technique gave high performance for lower
limb activity recognition in knee abnormal subjects while in
healthy subjects other techniques gave better results than the
WD-EMD. The controlling of lower limb assistive devices, for
example, is required for individuals with knee abnormality, so
the proposed technique seems to be better than other literature
methods.

V. CONCLUSION

In this article, a hybrid pre-processing technique called
Wavelet Denoising - Ensemble Empirical Mode Decomposi-
tion (WD-EEMD) was proposed for the analysis of sEMG
signals for recognition of lower limb activity in subjects
with and without knee abnormality. Both WD and EEMD
filter different types of noises commonly associated with
the EGG signal, and hence provide an integrated approach
to de-noising and decomposition the inout signal. Another
advantage of using EEMD is to decompose the signal into
several IMFs to assist with the signal segmentation and feature
extraction phases using the overlapping windowing technique.
The results were compared with the ones obtained by similar
pre-processing techniques with the hybrid approach proving

to be superior than them. For performance evaluation, 3-fold 
cross-validation was implemented on the used dataset, and the 
proposed method achieved an average classification accuracy 
of 90.69 and 97.45% for healthy subjects and knee abnormal 
subjects, respectively.

There are still some extensions in the future for the proposed 
work. First, the used dataset includes data acquired with a 
relative low number of subjects. Hence, the proposed approach 
should be validated with a large number of the subject, which 
will reduce the biasing issue due to the use of a small dataset. 
Second, the proposed methodology was validated using an 
offline dataset, and so, further research can aim its validation 
using a real-time dataset for its clinical validation. Addition-
ally, the other advanced machine learning algorithm can be 
implemented and one may also try to reduce the extracted 
features space by using feature reduction techniques.
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