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Title: Vibrations of carbon nanotubes by a nonlocal shell model

Abstract

The knowledge and insight on the behaviour of carbon nanotubes is strongly tied to the
study of their dynamic response for many of the applications they are employed on. From
early on, particular physical properties were identified, after their successful synthesis,
leading to the application of CNT onto several fields such as sensors, oscillators, field emis-
sion devices, charge detectors, mass detection NEMS devices and other biological usages,
setting room for potential devices in the fields of power electronics and heat exchangers.

The carbon nanotubes vibrational response reveals itself a crutial topic of research, as
not only the cited applications involve direct dependency on modes of vibration (and re-
spective shifts on the natural frequency and mode shapes), but also different measurement
processes that focus on the study of mechanical properties, and production of the nan-
otubes and derived composite materials which include CNTs are linked to this response.
Thus, the research of the overall dynamic behaviour as the natural frequency and mode
shapes for different parameters and boundary conditions of the CNTs is of great relevance
in this field of nanotechnology.

In this dissertation, the linear undamped free vibration of single-walled carbon nan-
otubes and double-walled carbon nanotubes is studied. For the order of magnitude of the
present study, the nanometers, the relatively low size of the considered shells may yield
results which are distant from the expected ones. Thus, as the nonlocal small-size effect
is relevant, a nonlocal parameter is considered and is the focus of a meticulous approach.
Two equivalent continuum models are then formulated using the Sanders-Koiter shell the-
ory, accounting for the Eringen’s nonlocal elasticity theory, one for SWCNTs, and another
for DWCNTs, where for the latter the van der Waals pressure is also included. For both,
the p-version finite element method is applied to discretize the displacements and obtain
the equations of motion and equivalent matrices featuring the Galerkin method.

The results for the natural frequencies of both models for different parameters and
boundary conditions are then presented and compared to several results from available
literature. Later, the mode shapes associated with the already stated natural frequency
values are also illustrated, with some being validated by referenced data. The local and
nonlocal models are therefore validated, yielding satisfactory results.

A study on the influence of the nonlocal parameter is then conducted, focusing on
the calibration of this parameter for different order natural frequencies of CNTs and
investigating onto the different effects for each. Critical values of length for which the
nonlocal theory remains relevant are proposed for determined parameters and boundary
conditions. The influence on the frequency ratio and the circumferential mode number
effect on the natural frequency order is also studied, as well as the nonlocal parameter
influence effect on the mode shapes of the carbon nanotubes.

Lastly, a model for a SWCNT and DWCNT with an attached mass is developed and
implemented using the p-version finite element method. The validation is performed
by comparison to results from literature, and the influence of the nonlocal parameter is
studied, as a calibration is performed, and the dynamic behaviour of a bridged CNT with
an concentrated mass is characterized.

Keywords: Single-walled carbon nanotubes (SWCNT); Double-walled carbon nanotubes
(DWCNT); Sanders-Koiter shell theory; p-version Finite Element Method; Linear vibra-
tion; Natural frequency; Mode shape; Nonlocal theory; Nonlocal effects; Mass detection;
Attached concentrated mass.
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T́ıtulo: Vibrações de nanotubos de carbono por um modelo de cascas não local

Resumo

O conhecimento e compreensão do comportamento de nanotubos de carbono está forte-
mente ligado ao estudo da resposta dinâmica de diversos aparelhos nos quais estes são
utilizados. Desde a sua descoberta e śıntese, as propriedades f́ısicas dos nanotubos de
carbono foram identificadas, tendo levado à aplicação destes nanotubos em vários setores
como sensores, osciladores, dispositivos de emissão por campo, detetores de carga elétrica,
dispositivos de deteção de massa e outras aplicações biológicas, abrindo espaço para po-
tenciais aplicações na área da potência eletrónica e permutadores de calor.

A resposta vibratória dos nanotubos de carbono revela-se, portanto, um tópico de in-
vestigação crucial, uma vez que as suas aplicações envolvem diretamente descrição dos re-
spetivos modos de vibração (e respetivas variações nos valores de frequências e formas nat-
urais), bem como determinados processos de medição que permitem estudar propriedades
mecânicas e ainda processos de produção de nanotubos e materiais que os incorporam.
Assim, o estudo da resposta dinâmica sob a forma dos modos de vibração para diferentes
parâmetros e condições de fronteira do nanotubo é de grande interesse para este ramo da
nanotecnologia.

Na presente dissertação, o estudo é focado em vibração de nanotubos de camada sin-
gular e de dupla camada em regime livre e não-amortecido. Para a ordem de grandeza
deste estudo, na ordem de nanómetros, o tamanho relativamente reduzido das cascas con-
sideradas podem produzir resultados distantes dos esperados se se usar uma teoria clássica
de cascas. Como tal, os efeitos de escala tornam-se relevantes, pelo que uma teoria que
englobe os efeitos não locais deve ser considerada, tornando-se o foco deste trabalho. Deste
modo, dois modelos equivalentes cont́ınuos são enunciados, com base na teoria de Sanders-
Koiter para cascas finas, inclúındo os efeitos não locais pela teoria não local de Eringen,
tanto para nanotubos de camada singular como de camada dupla, sendo que para o último
as forças intercamada de van der Waals são consideradas. Posteriormente, para ambos,
a versão p do método dos elementos finitos é utilizada para discretizar os deslocamen-
tos e obter as equações de movimento e matrizes equivalentes recorrendo ao método de
Galerkin.

Os resultados relativamente a frequências naturais para ambos os modelos tendo em
conta diferentes parâmetros e condições de fronteira são posteriormente apresentados,
realizando-se uma comparação com resultados de bibliografia dispońıvel. As formas nat-
urais associadas a estas frequências são também ilustradas e validadas com recurso a tra-
balho de outros autores. Por fim, o modelo local e não local dá-se por validado, produzindo
valores satisfatórios.

De seguida, é conduzido um estudo relativo à influência do parâmetro não local,
focando-se primeiramente na calibração deste parâmetro para frequências naturais de difer-
ente ordem, e investigando-se o respetivo efeito em cada. Relativamente a determinados
parâmetros e condições de fronteira, são também propostos valores cŕıticos de comprimento
do nanotubo, para os quais a teoria não local passa a ter relevância desprezável. A razão
de frequências entre teoria não local e local é também estudada, a par com a influência
do número de ondas em direção circunferencial nos valores e ordem das frequências natu-
rais, sendo que o estudo é conclúıdo investigando a influência do parâmetro não local nas
formas de vibração dos nanotubos de carbono.

Finalmente, é desenvolvido um modelo para um nanotubo de carbono de camada
singular e dupla com uma massa concentrada e implementado com a versão p do método
dos elementos finitos. Este é validado com recurso a resultados da literatura existente,
sendo posteriormente investigada a influência do parâmetro não local, executada uma
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calibração deste parâmetro, e caracterizado o comportamento dinâmico de um nanotubo
de carbono encastrado com uma massa concentrada na zona central da superf́ıcie.

Palavras-chave: Nanotubos de carbono de camada singular; Nanotubos de carbono
de camada dupla; Teoria de cascas Sanders-Koiter; Versão p do Método dos Elementos
Finitos; Vibração linear; Frequência Natural; Forma natural de vibração; Teoria não local;
Efeitos não locais; Deteção de massas; Massa concentrada.
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ü0 middle surface axial acceleration;
ül generic acceleration;
V generic volume;
VIJ Lennard-Jones pair potential;
v circumferential displacement;
v0 middle surface circumferential displacement;
v̇ circumferential velocity;
v̇0 middle surface circumferential velocity;
v̈0 middle surface circumferential acceleration;
w transverse displacement;
w0 middle surface transverse displacement;
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Chapter 1

Introduction

1.1 General Overview and Motivation

The most recent advances in nanoscience and nanotechnology have made them earn a
proper spot in the areas of engineering, materials science, medicine, biology, electronics
and energy production. Ever since the Carbon nanotubes (CNTs) were discovered in 1991
by Iijima [1], who pioneered the analysis of the synthesis of molecular carbon structures
in the form of fullerenes and then reported the processing of a needle-like tubes of finite
carbon structure, the helical tubules of graphene sheets, the carbon nanotubes, the ongoing
research and consequent number of publications on the topic have taken an important part
of the scientific community.

Due to their great mechanical and physical properties, along with small dimensions,
carbon nanotubes are used as ultrahigh frequency nanomechanical resonators in a wide
range of nanoeletromechanical resonators (as their reduced size and high stiffness amplify
the resonant frequency and reduce its energy consumption, improving its sensivitity), such
as sensors, oscillators, charge detectors, field emission devices [2], NEMS devices linked to
mass detection and biological applications [3], as well as making them renowned candidates
for applications of power electronics, eletric motors, generators and heat exchangers [4].

These applications are strongly connected to the study of vibration characteristics of
CNTs, as different boundary conditions along with different vibrational responses - linear
and nonlinear - occur, not only in the direct application but also as part of nondestructive
measuring procedures as Raman spectroscopy (which allows for the estimation of mechani-
cal properties) [5], or dispersion of carbon nanotubes along the production of homogeneous
composites which include them as reinforcement [2]. Thus, the modal analysis of carbon
nanotubes reveals its extreme importance as it allows for the prediction of vibrational
response associated with resonant frequencies and mode shapes, which influences the me-
chanical and electronic properties of nanotube resonators, having been a significant branch
of the focus of the investigation regarding nanotechnology in the past years, despite the
numerous challenges it presents.

Several approaches have employed molecular dynamics simulations onto the investiga-
tion of vibrations of CNTs [6–9], composing a reliable method which yields results close
to experimental studies. Different approaches regarding continuum models using beam or
shell theories have also been published [10–13]. These studies include efforts to character-
ize linear, nonlocal and nonlinear theories onto the CNTs, considering both single-walled
and multi-walled carbon nanotubes, as both encapsule different applications and distinct
vibrational behaviour.
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In this dissertation, the linear and nonlocal free vibrations of single-walled and double-
walled carbon nanotubes are studied by employing the Sanders-Koiter theory and using the
p-version finite element method to aid with the discretization and implementation, while
using molecular dynamics and different continuum models results to validate the model,
and later investigating the influence of the nonlocal parameter on the modal response of
the nanotubes.

1.2 Literature Review

1.2.1 Morphology and characteristics of carbon nanotubes

Carbon nanotubes can be described as a thin sheet of graphene folded into a tube.
graphene is formed as a 2-D sheet of carbon atoms, displayed in an hexagonal array,
so that when rolled into cylinders, carbon nanotubes are formed, opening various possi-
bilities in terms of atomic orientation. Nanotubes properties depend on this orientation,
the tube diameter and length, and the nano structure. CNTs can exist as single-walled
carbon nanotubes (SWCNTs) and as multi-walled carbon nanotubes (MWCNTs), being
the latest an aggregation of concentric single-walled carbon nanotubes, where each one of
these can express different chiralities, and are held to each other by van der Waals bond-
ing. In terms of fundamental investigations of CNTs, single-walled are the most desired
as the intra-tube interactions increse the analysis complexity. It is important to note that
SWCNTs and MWCNTs present different properties, as stated later on this dissertation.

The structure of the nanotube at the atomic level is mainly described through its
chirality, defined by the chiral vector, ~Ch and the chiral angle, θ. The chiral vector can be
described by the following equation:

~Ch = n~a1 +m~a2 (1.1)

where the group of integers (n,m) - also noted (r, s) on further chapters of this dissertation
- are the multipliers of the zig-zag carbon bonds of hexagonal lattice, while ~a1 and ~a2 are
the vectors of the same lattice. The chiral angle represents the slope of the vector relative
to a original position, the zig-zag. This way, there are three main distinct types of the
main lattice orientation, being the default zig-zag (0°), armchair (30°) and the intermediate
one, chiral, with a different angle from the previous two. The limiting cases - zig-zag and
armchair - are based on the geometry of the carbon bonds, so that the chiral vector can
be defined, for a zig-zag nanotube, as (n,0), and for the armchair as (m,m), as illustrated
on Figures 1.1 and 1.2. This vector also defines the tube’s diameter by the following
expression [14]:

d =
ã

π

√
n2 + nm+m2 (1.2)

where ã is the inter-atomic spacing of the carbon atoms [14], being ã = 0.246 nm for
graphene sheets and consequently carbon nanotubes.

It is known that the chirality of the nanotube has significant influence on the ma-
terial properties, in particular, on the electronic properties of CNTs [15]. Graphene is
characterized as a semi-metal, although it it has been proven that it can assume metal-
lic or semiconducting behaviours, depending on the tube chirality [16]. Wei et al. [17]
demonstrated that MWCNTs display high current carrying capacity, which generated con-
siderable interest in its utilization in nanoelectronics. The electromechanical behaviour
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Figure 1.1: Schematic representation of a hexagonal graphene sheet rolled into a carbon
nanotube. Reprinted from [15] with permission from Elsevier

Figure 1.2: Representation of the atomic structure of (a) an armchair and (b) a zig-zag
carbon nanotube. Reprinted from [15] with permission from Elsevier

of nanotubes has also been reported, as the injection of charge induced mechanical defor-
mation [18]. On the other side, it was concluded that bending deformation altered the
band structure of the nanotube, and depending on nanotube chirality, eletrical properties
may be altered. On the same note, Li and Chou electrically charged singe-walled carbon
nanotubes by subjecting them to a electric field (electromechanical coupling effect), reg-
istering quantitatively the local deformations that arise. They have shown that the large
radial strain was localized in a small region near the nanotube ends, while the rest of the
tube length between the ends had uniform radial strain. The main conclusion was that
for open-ended SWCNTs, the radial deformation in the ends was much higher than for
close-ended SWCNTs. For the latest, the distribution of radial strain was different and
the transition more gradual [19]. Again, in the same study, similar conclusions were taken
regarding the behaviour of charge-induced behaviour in armchair and zigzag nanotubes
(comparing to [18]), as well as revealing that the bond breaking occurred differently for
open and close-ended nanotubes.
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Closely related to electromechanical coupling of CNTs is the nanotubes pull-in. When
the resultant current applied in a nanotube from a determined voltage exceeds the max-
imum allowable value given by the elastostatic force, the CNT electrically breaks down
and deforms in the direction of the ground plane (electrode). Thus, the study of this
nanotubes’ characteristic is crucial for nanodevices in which CNTs are included [20].

As can be inferred from the applicability of CNTs in nanotechnology, the nanodevices
produced may be subjected to coupled actions of an electric field and mechanical loading.
This leads to an emerging need of understanding the coupled effect on the failure of
nanotubes. Guo and Guo have developed studies on the topic involving SWCNTs, and
concluded that nanotube strengh under electric field is subject to more significant decay
than under mechanical loading alone [21].

Early studies on the mechanical properties of CNTs have also had remarkable conclu-
sions, reason why the research and application of carbon nanotubes have been a relevant
subject of study for the past three decades. It was shown that CNTs are very resilient
and suitable to extreme strain with no relevant signs of plasticity and brittleness, while
also having an unstable response beyond linear motion, and demonstrating a high elastic
modulus along with fracture strain sustaining capability [15, 22].

Static and dynamic measurements have been, since early research, a trustworthy
method to characterize mechanical properties of CNTs, as both mechanical test meth-
ods have been used to study their elastic moduli, for example [2]. In a particular study,
loaded nanobeams composed of SWCNTs were used to estimate the elastic moduli, deter-
mined to be on the order of 1 TPa, while the shear modulus was calculated to be about
1 GPa [23]. These values were confirmed later, while also stating a decrease of the elastic
moduli with the diameter of a MWCNT, which was associated with rippling on the com-
pression side of the larger diameter nanotubes with larger amplitude motions (leading to
the possible relevance of the nonlinear behaviour). Later, this dependence was disproved
and constant values usage was established. Along with this study, Ru [24] discovered an
actual value for the bending stiffness of SWCNTs much lower than the one given by the
elastic-continuum shell model, with the common value of thickness used. Thus, it was pro-
posed an effective nanotube bending stiffness value, not related to the actual thickness,
leading the computational results to be more on pair with molecular dynamics simula-
tions. Later on, an effective value for thickness, for example, was also put in use, as
will also be used further in this dissertation, regarding the model validation. On a last
note regarding the vibrational analysis importance, Barnard [25] very recently concluded
about and documented the weakly chaotic mechanical breather emergence (specially in
the Brownian limit), meaning that the concentrating energy in the low-frequency modes
disperses into the higher-frequency modes, returning to the first ones. Along with the
coupling of vibrational modes, this study also comes in support to the study of nonlinear
modes approach in numerical models. Moreover, evidence about the strong influence of the
Brownian limit (system driven by thermal fluctuations) is discussed regarding nanotube
resonators, a common application of CNTs.

A widely used technique involving the excitation of a sample with intense monochro-
matic light followed by observations of the scattering of the radiation, specially in the area
of materials science, is Raman Spectroscopy [5]. As the radiation scatters, its frequencies
correspond to the vibrational modes of the molecules in the sample (Raman Spectrum),
being different from the frequency of the incident radiation. The CNTs dimensions are of
the same order of magnitude as the molecules analysed by Raman spectroscopy, which re-
veals CNTs as excellent targets for this method. In fact, Raman spectra analysis has been
set as a unique characterization tool for SWCNTs [26]. One of the main features made
possible is the information gathering of vibration symmetries of vibrational modes, directly
obtained from polarized Raman spectra, using different polarization configurations (paral-
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lel or perpendicular), as the effects of polarization are usually observed in low-dimensional
materials - as SWCNTs. This technique led to the characterization of two main vibra-
tional modes in carbon nanotubes: radial breathing mode (RBM) and G-band mode [27].
It is also important to note that Raman scattering has been extensively used to study
the dependence of SWCNT breathing mode resonances on the nanotube diameter [28].
Raman spectroscopy had great relevance during the first and second decades of study of
CNTs, while still being relevant nowadays in model validation, as will be seen further in
this dissertation. The study on CNTs using this method has produced many publications,
and for the comprehensibility of this section, it is kept short. Lastly, for the study of
MWCNTs this technique was usually followed by another method, the Surface-Enhanced
Raman Spectroscopy (SERS), also vastly used in the nanooptical scale [2].

On another note, there has been used field emission to observe resonance frequencies
of MWCNTs in the MHz range [29]. Later studies show that these values can go up to
the order of THz [30].

Microwave excitation related experiments have been conducted in carbon nanotubes,
yielding several conclusions regarding the heating of CNTs. It was found that with mi-
crowave irradiation, HiPco SWCNTs rapidly increased their temperature to about 1850°C,
releasing hydrogen, steam and carbon derivates [31]. Microwave response properties on
composites was also studied [32], revealing that the maximum absorption was noted as the
concentration of CNTs increased. Microwaves in the range of 2.45GHz were also observed
to cause ignition, burning and reconstruction of unpurified SWCNTs. These properties
have important effects on the processing of nanotube-inforced polymer composites (as
discussed in subsection ”Applications”), as microwave radiation is often used for curing
the polymer matrix and because CNTs can be grown my using microwave-enhanced CVD
process [2].

Storage of gases and fluids inside CNTs has also been subject of study and controversy.
Studies revealed that a fluid flowing through the CNT tends to straighten it as it flexes,
as well as excite the longitudinal vibration modes of the same CNT [33, 34]. It was also
concluded that the resonant frequencies of the CNT differ based on the fluid flow velocity,
while these characteristics disappear when the CNTs are embedded in a matrix material
composite.

When it comes to mechanical properties on a macro level, CNTs show promising
and unique properties that facilitate their usage, and are directly linked to the type of
application they are associated to, which will be discussed later in this chapter.

1.2.2 Production

Ever since CNTs were discovered, a wide variery of techniques for production were de-
veloped. The first observed nanotubes were synthesized from the electric-arc discharge
technique [1], resulting in the first MWCNTs ever processed. Later, the first SWCNTs
were processed by a very similar process, also connected to arc-discharge [35]. With the
development of research, new processes were created, displaying a wide range of options
besides the arc-discharge [36], as laser ablation [37], gas-phase catalystic growth from
carbon monoxide [38] and chemical vapor deposition (CVD) from hydrocarbons [39–41].

When produced for industrial applications, more specifically in composites, large quan-
tities of CNTs are allocated, which by definition reveals preference for certain methods. On
the other hand, during CNTs production, a considerable amount of impurities - catalyst
particles, amorphous carbon and non-tubular fullerenes - are also synthesised, requiring
further purification. As the gas-phase processes produce fewer impurities and are more
suitable for large-scale processing, it is stated that these techniques, such as CVD, are the
most valuable for large-scale production usually needed as a supplement to composites
[15].
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The electric-arc discharge technique usually involves the use of high-purity graphene
rods as the anode and cathode. Both are merged in a helium atmosphere, with voltage
applied, forming a stable arc. As the anode is consumed, the material is deposited on the
cathode, building an outside shell of fused material and a softer fibrous core - nanotubes.
SWCNTs are synthesised doping the electrodes with a small amount of metallic catalyst
particles [36].

Laser ablation was firstly used to produce fullerenes, and has been later improved
to produce SWCNTs [37]. Here, a laser is used to vaporize a graphite object located
in controlled atmospheres at temperatures near 1200°C. To produce SWCNTs instead of
MWCNTs, the graphite object was supplemented with cobalt and nickel catalyst. Later,
it is collected the condensed product on a water-cooled target.

Figure 1.3: Schematic representation of the electric-arc discharge method. Reprinted from
[42] with permission of AIP Publishing

Figure 1.4: Schematic representation of the laser ablation discharge method. Reprinted
from [15] with permission from Elsevier

The arc-discharge and the laser ablation technique are both limited to the amount
of CNTs that can be produced, in relation to the mass of the carbon source. In other
words, the process cannot be continuous, and has to be periodically stopped to replace the
source of material. Furthermore, these processes required extensive purification steps to
claim the nanotubes from by-products, revealing these processes as not ideal for industrial
level [15]. This way, gas-phase techniques were developed - CVD, for example -, forming
CNTs by decomposition of carbon-containing gas. Not only this process conducts to high-
purity results, requiring few steps for purification, but also allows for a continuous process,
systematically replacing the carbon source along the process with flowing gas, and allowing
for collecting the product during its synthesis.
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One of the first and renowned gas-phase techniques is called the HiPco process [38], as it
can produce high-purity SWCNTs in large quantities with carbon monoxide as the carbon
source, in a high pressure environment. Other gas-phase techniques involve hydrocarbon
gases as the carbon source for production of both SWCNTs and MWCNTs, named CVD.
Here, the working temperature is very low compared to the HiPco process, diminishing
the purity in the product, but also allowing the growth of nanotubes on a wide variety of
substrates [43]. CVD techniques may involve a substrate coated with nickel catalyst, with
ammonia as the catalytic gas and acetylene as the carbon source [39, 40]. Furthermore, a
DC power may generate the plasma that enhances the reaction [41], while the nanotube
length, diameter and graphitization are controlled by changing the growth time and tem-
perature. Here, the synthesis of well-aligned, straight carbon nanotubes on a variety of
substrates is accomplished by the use of the plasma, giving name to the plasma-enhanced
chemical vapor deposition technique (PECVD).

In fact, highly aligned arrays of carbon nanotubes with great control over its properties
can be achieved by PECVD, at a larger cost and fewer quantity, while a larger quantity
associated with a cheaper price may be achieved by CVD techniques, with less control
over the product properties uniformity [15].

1.2.3 Applications

The emergence of nanotechnology has been enabling the development of devices working
at the nanoscale, projected for particular goals as actuation, sensing and detection. The
areas of micro-electro-mechanical systems (MEMS) and more specifically, the nano-electro-
mechanical systems (NEMS) are one of the main targets of CNTs research, aiming at its
further palpable application. In general, a reasonable way to manufacture NEMS is to
scale down conventional MEMS, but CNT-based NEMS have several advantages over the
previous devices, mainly related to their dynamic behaviour. Enlightening examples are
nanometer-sized silicon-based systems that are unprovided with high-Q mechanical res-
onances due to dominant surface effects, while CNT-based NEMS have higher strength,
damping, stiffness, and thermal and electrical conductivity [44]. Still, MEMS and more
importantly NEMS devices have introduced new opportunities when it comes to sensitive
detection of physical quantities as spin, molecular mass, quantum state, thermal fluctu-
ation, coupled resonance and biochemical reactions [45]. A general highlight of a NEMS
device, a nanomechanical resonator, is its unprecedented dynamic behaviour, registering
frequencies in the magnitude of GHz and THz. In fact, the resonant frequencies of the
device are related to the CNTs length, which adds to the fact that the sensitivity of the
device increases the higher the frequencies are, which may be verified in Chapter 5. This
fact itself qualifies nanodevices as a great candidate for small physical quantities detection
[46]. In addition to the measurement of other already listed properties, nanomechanical
resonators show openings for a development of lab toolkits capable of a wide range of
functions.

As an illustration of the NEMS resonators potential, it was proven that nanoscale mass
spectometers are able to measure the molecular weight of determined molecules. This
itself implies that NEMS are a potential alternative to conventional mass spectrometry,
while not being limited to low value molecular masses [3]. Unlike molecular recognition,
which uses labeling, these devices have fast and reliable detection of molecules that can
be associated with determined diseases, implying interest in diagnosis gadgets [47].

This characteristic has different embranchments when it comes to biological detection,
more specifically, cell detection. For example, a NEMS resonant cantilever was employed
do detect E.Coli cells in different environments, having its surface chemically modified
with antibodies that detect these specific organisms [48]. Additionally, the number of
colected cells by the cantilever was directly linked to the resonant frequency shift, implying
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the importance of the vibrational research. On the same note, virus detection was also
possible using the same technique of mass detection through resonant frequency shift [49],
as well as protein detection [50], with the addition of the nanocantilever bending deflection
motion measurement. This last method is also used in specific DNA sequences detection
[51], while enzymatic activity was able to be detected by the cantilever mass reduction,
and consequent resonant frequency increase [52]. The comparison between the utilization
or not of CNTs in the NEMS was also studied [53], as chemical sensors based on SWCNTs
revealed faster responses and higher sensitivities than existing solid-state sensors. Other
applications as membrane chemical and pH sensors have also been documented [54].

All these biologic detection areas have employed considerable effort in further research,
as from all the above mentioned, DNA and enzymatic activity detection are reported to be
the least developed areas in terms of NEMS application, with great potential stored [45].
It is important to note that these applications of NEMS resonators composed of CNTs
as the primary component for its designed function lay on different principles of mass
detection, such as flexural deflection, resonance motion, and lastly, nonlinear oscillations,
with less established experimental work [55]. Nonlinear vibrational behaviour exists due
to geometric nonlinearity, increasing the resonant frequency and stiffening the structure
[45]. As the topic of nonlinearity is matter of current and increasing investigation, great
hints from the above mentioned applications come that highlight the importance of such
matter.

CNTs also reveal applicability in reinforcing the conventional atomic force microscopes
(AFM), increasing sensitivity and resolution due to their large aspect ratio, while being
resistant to damage from tip crashes (where they are placed), resulting in a better image
of surface topography [56].

A particular and interesting application of CNTs are nanotweezers. Already devel-
oped before the implantation of CNTs in their core (more specifically, at the end of the
substrate), nanotweezers are electrically stimulated, and allow for grabbing and manipu-
lation of submicron cluster and nanowires. Given the conductive properties of the carbon
nanotubes, the nanotweezers were also used for testing of electrical properties of of silicon
carbide nanoclusters and gallium arsenide nanowires [57].

Research related to the behaviour of layered Nafion/SWCNTs polymer composite nan-
odevices took place and revealed a large mechanical response at low voltages without the
use of an electrolyte. This nanoactuator allowed the authors to conclude about the signif-
icance of the area of the nanotubes, playing a crucial role enhancing actuation response,
along with a separate influence just from the nanotubes themself [58]. Regarding the
nanotubes alignment in the matrix, it was concluded on a different study that certain
specific angles of alignment were ideal for a maximum value of electrical conductivity,
desired in certain types of actuators [59]. One of the major setbacks faced during pro-
cessing of carbon nanotube-reinforced or nanoparticle-reinforced polymer composites is
the apparent inability to achieve a uniform dispersion of the nanotubes in the polymer.
CNTs tend to agglomerate due to physical entanglements of the tubes, as well as van der
Waals forces between tube’s surfaces. Different methods to achieve uniform dispersion
were studied - sonication, for example -, but will not be discussed in this dissertation [2].
Thermal conductivity also plays a significant role in the application of the nanotubes in
their polymeric nanocomposites, as recent research established CNTs as promising candi-
dates for advanced applications as power electronics, electric motors, generators, and heat
exchangers [4].

CNTs have their developing place in the ceramic and metal-matrix composites, along
with the already discussed polymer composites. Although ceramics have high stiffness,
high thermal stability and low density, their brittleness disables them for use as a structural
material. Study related to the application of carbon nanotubes to different ceramics,
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highlighting the CNTs property of excellent resilience, may have great results. Not only the
resulting composites would potentially have high-temperature stability, but the toughness
and creep resistance of the final product would also be of great value [15].

1.2.4 CNT Modelling

CNT behavioural research and description is greatly enhanced by experimental studying,
as already described in the ”Applications” section. In fact, the primary reason of research
on the carbon nanotubes topic is clearly related to the necessity of correct and accurate
models that allow for CNT mechanical and electrical properties description, leading to a
reliable prediction of results close to experiment ones, enabling for a correct investments
onto CNT-including devices.

Experimental studies are not only complex to conduct, but are also expensive at the
nano-scale, requiring the use of high-resolution transmission electron microscopes, while
also not allowing for the natural frequencies of different vibration modes within the fre-
quency spectrum to be separated and identified easily (partially due to being of close
values). Thus, three distinct types of approaches are labelled for modelling nanostruc-
tures: atomistic modelling; hybrid atomistic-continuum modelling; continuum modelling.
The first, atomistic modelling, includes methods such as molecular dynamics (MD) and
density functional theory (DFT) [60]. in this dissertation, numerical results and the de-
veloped model will be tested and validated mostly by molecular dynamics results from
bibliography, as MD simulations provide good predictions of the mechanical behaviour of
CNTs with results close to experiments [13]. Due to this, a single section will be dedicated
to this method, still in the current chapter. Hybrid atomistic-continuum modelling is a
blend method between the first and third ones, and serves as an intermediate position al-
lowing to introduce interatomic potentials into the continuum analysis, by incorporationg
the molecular potential energy of a nanostructured device onto the mechanical strain en-
ergy of the limited volume element of the continuum model [61]. In the cited study, the
authors were able to determine the bending rigidity of a graphene sheet, transitioning to
a multi-scale level approach. Lastly, continuum modelling includes classical (local) beam,
plate and shell theories that allow for an analysis of nanostructures approaching them
as large-scale systems. The main advantages of continuum modelling are linked to the
mostly easier formulation and to the fact that the implementation and execution comes
with a computationally more appealing price [10]. Thus, specific phenomena simulation
and research in nanotubes such as buckling, wave propagation, free vibration, nonlinear
vibration and energy exchange is backed up by a continuum model [60, 62]. The continuum
mechanics theory is based on the continuous assumption along the model, and necessarily
implies a verification of results from molecular dynamics/experimental studies to validate
the model.

As already discussed, it is key knowledge to understand the mechanical properties of
the CNTs, more so when their applications require specific properties such has natural
frequencies and mode shapes. The goal of the models discussed in this section is to obtain
reliable and exact results regarding the stated properties, for a wide range of SWCNTs or
MWCNTs, with varying lentgh, diameter and chirality, etc. The continuum models treat
the CNTs composed of covalent carbon atoms bonds as continuous and homogeneous
macrostructures, ignoring the lattice spacing between individual carbon atoms. Thus, the
stress at any given point is function of the strain at that point, as dictated by the local
model. For this reason, and even though several studies have taken part applying local
models, their pertinence at small scales is not ideal [63]. Thus, their limited applicability,
coming from the fact that at small size the lattice spacing between individual atoms
becomes more important and the approximation of homogeneity to a continuum model is
not exact, size effects must be taken into account. In fact, the carbon tubes’ properties on
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a nano-scale are size dependent, and the small scale effect/parameter needs to be included
for a better model of the materials behaviour. Here, Eringen’s nonlocal theory [64] is
mostly used, which essentially indicates that the stress state at a given reference point
is a function of the strain field at every point of the defined volume, hence including
information about the CNT length and diameter - scale effect - along with the long range
forces between atoms of the said body.

Due to large elastic deformation, nonlinear vibration in microeletromecanical systems
(MEMS) and nanoelectromechanical systems (NEMS) appear in the practical engineering
and occupy a relevant role in the design and analysis of these systems [65]. A wide
range of studies have been incorporating geometric nonlinearity in order to model what
is proven to be a common behaviour of CNTs deformation in nature [66]. One of the
most characteristic phenomenons of nonlinear vibration coming from the expected higher
amplitudes of vibration is the increase of the natural frequencies. This effect has been
linked not only to the stiffening of the material (coming from a large amplitude), but
also to interlayer molecular forces - van der Waals force - nonlinearity, more specifically
in MWCNTs [67]. Nonlinearity is still a fresh topic that has been studied in the past
decade, and accounts for many of the current efforts of research and modelling of carbon
nanotubes, along with the local and nonlocal models, for a better representation and
characterization of CNTs properties.

Over the past two decades several studies have been conducted regarding the modelling
of CNTs. More specifically related to vibrations, the next paragraphs focus on the most
relevant papers that contextualize and lead to the work presented in this dissertation.

When developing continuum models for CNTs, the first theories that come to mind are
beam and shell theories. Regarding the first, beam theories were firstly used to describe
flexural vibrations of carbon nanotubes. Both Euler-Bernoulli and Timoshenko theories
were applied (the first for thin beams without rotary inertia and shear effects, and the
second for thick, short length, higher modes with rotary inertia and through thickness
shear deformation). The limitations of these theories are evident, as they are modelling a
nanoshell, even though they are often employed to describe shells due to their simplicity
compared to shell theories, despite the latter yielding better results. Hybrid theories
accounting for van der Waals interactions between nanotubes layers in MWCNTs were
also presented, complementing beam theories, but were deemed incomplete [2, 68]. Thus,
various shell theories were developed, for example Wang [69] applied the Flugge elastic
shell theory [70] in order to complement the flexural vibrational modes study with radial
breathing modes (RBM). On the same study, van der Waals forces were also considered for
MWCNTs, illustrating its significant effect on the RBMs, from all of the flexural, torsional
and axial modes. The same author developed simplified elastic shell models for buckling
and free vibration based on Flugge and Donnell theories.

Finite Element techniques have been employed to perform vibrational analysis of CNTs
[63], based on beam elements. 3D models were developed with elastic beams and point
masses, taking into account the covalent bonds of the carbon atoms in the hexagonal
lattice of the nanotubes. Both FE and MD techniques have revealed inefficient due to the
computational effort, concretely regarding the representation of the nonlinear behaviour
in MWCNTs that incorporate a large number of atoms.

Silvestre et al. [71] compared the Donnell shallow shell and Sanders-Koiter thin shell
theories regarding axial buckling of SWCNTs. It was demonstrated that the Sanders-
Koiter theory produced better and accurate results reproducing buckling strains and mode
shapes of axially compressed nanotubes. Silvestre also proved that Sanders-Koiter theory
is more suitable regarding buckling under torsion - specifically the angle of twist - leading
to more accurate results than the Donnell theory [72].
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It is important to note that the shell theories discussed in this dissertation consider
the nanotube model an isotropic and homogenous material, and the tube as a thin shell.
In fact, different studies study and cite the anisotropy of the graphene and in CNTs [73],
still, the difference between an anisotropic and isotropic models is almost neglectable (as is
the case for plates [74]), and thus an isotropic model is assumed. For this reason, different
equivalent mechanical and geometrical parameters have been proposed to fulfill the prop-
erties descriptions necessity, allowing for a transposition between atomistic modelling and
continuum modelling. Yakobson et al. [22] performed research on the instabilities beyond
linear response of CNTs with large amplitudes. On this study, the equivalent parameters
Poisson’s ratio, Young’s modulus and wall thickness were documented, being the same
parameter used in this dissertation.

Regarding the nonlocal theory modelling research, diverse studies have taken place:
Wang et al. [75] accurately applied the nonlocal theory to a Flugge theory model, pre-
dicting the wave propagation behaviour in CNTs with different properties (length, aspect
ratio, chirality), and estimated the range of the scale parameter employing said theory;
Duan et al. [7] presented a calibration of the small-scale parameter using a Timoshenko
theory to model CNTs, allowing for further developments in research; Ansari et al. [76]
applied Eringen’s nonlocal elasticity theory onto a classical beam theory to study CNTs
free vibrational characteristics, concluding that the type of nonlocal beam theory, along
with the boundary conditions of the CNTs significantly influence the appropriate value of
the nonlocal parameter. This study is greatly complemented by Hu [30] in terms of chiral-
ity dependent wave dispersion both for SWCNTs and DWCNTs. Avramov [10], besides
focusing on the nonlinearity of the model, performed analysis on the nonlocal parameter
when comparing to MD simulation of CNTs vibration modes. In fact, several other re-
search papers have been published on the matter of nonlocal elasticity theory; still, room
for further investigation is left for this dissertation, as will be enlightened in the Objectives
section.

Nonlinear vibrational behaviour has been growing in research publications through the
last decade. Amabili [77] published a book covering the majority of the relevant theories
and approaches to nonlinearity both in shells and plates, with significant detail and foun-
dation. Strozzi et al. conducted many different studies with opportunity for publication
regarding nonlinearity, starting with a introductory study on linear vibrations from a lo-
cal shell theory (Sanders-Koiter), also developing a reduced model, while studying and
confirming the inadequacy of reduced Donnell’s theory when covering CNTs vibrational
characteristics [11]. The same authors performed a study on circunferential flexural modes
of vibration, based on the previous paper, considering the influence of diverse CNTs prop-
erties as aspect ratio and chirality, along with different boundary conditions, and focusing
on the stability of vibration modes [13]. This study served as framework for the next
study, which enlightened the energy exchange along SWCNTs axis in nonlinear field in
RBMs, presenting evidence on the influence of initial excitation [62]. Different studies
focused on complememtary issues, such as the forced vibration of fluid-conveying CNTs,
establishing a critical value of external force amplitude that disables resonant vibration
on the nanotube [65], free vibration of a curved MWCNTs embedded in elastic medium,
accounting for geometric and van der Waals force nonlinearity, and studying the effect of
boundary conditions on the variation on natural frequencies and characteristic expression
in nonlinear behaviour [66].

Most of the discussed papers in this section show different approaches and theories
regarding the carbon nanotubes dynamic behaviour description. From beam to shell the-
ories, nonlocal theories and presence of nonlinear behaviour significant enough to not be
neglected, a model will be developed and described in further sections.

11



1. Introduction

1.2.5 Molecular Dynamics

Atomistic approaches to the analysis of CNT vibrations include mostly Molecular Dy-
namics. This section briefly introduces the concept and method of molecular dynamics
simulations - MD - as they are used in this dissertation as a bibliographical reference
to validate the continuum model results, even though none are performed as a thesis
objective.

Molecular dynamics emerged as one of the first simulation methods from the pioneering
applications in dynamics of liquids. As computational efficiency and algorithmic research
improved, several other areas of interest have embodied this technique, such as chemistry
and biochemistry, mostly since the 1970s, from the study of structure and dynamics of
macromolecules [78].

From MD methods two main ramifications stand out as to the model chosen to rep-
resent the physical system. The first, classical molecular dynamic simulations, treats
molecules as classical objects, as atoms correspond to masses and bonds correspond to
stiffness, being defined by general classical mechanics laws. The second, quantum molecu-
lar dynamic simulations, explicitly take into account the quantum nature of the chemical
bond, applying the electron density function for the valence electrons that determine
bonding, and classical dynamics to the ions [2, 78, 79].

A classical MD simulation is essentially a particle method with the objective to solve
governing equations of particle dynamics based on Newton’s second law [79]. First, the
simulation starts by defining the base conditions of the particles, in order to determine
the potential function of the system at each atoms position, U(r1, ..., rn) . This potential
represents the potential energy of N interacting atoms as a function of their positions
{ri} = (xi, yi, zi) . The acting force on each ith atom is given by:

{Fi} = −∇riU(r1, ..., rn) = −
(
∂U

∂x
,
∂U

∂y
,
∂U

∂z

)
(1.3)

As can be observed, the initial position ri of each atom is a necessary input. Along
with this, is is also needed the initial velocity of each atom vi. It is noted that all the
forces among the atoms of the system can be derived from this potential. Moreover, the
potential energy U can be divided onto the respective potential energy from bonded or
non-bonded atoms. Bonded atoms potential energy includes stretching, bending, dihedral
angle torsion and out of plane torsion, while non-bonded atoms mainly express potential
energy through van der Waals forces. These are expressed in Figure 1.5.

It is important to understand that the concept of atom is not accurate in the light
of the quantum mechanics theory. As electrons may be shared by different nuclei, decen-
tralized electronic clouds appear and influence chemical bonding. This way, it is crucial
to introduce the concept of potential energy surface into the dynamics of the nuclei, in
order to not study each electron individually. Thus, transitional characteristics of the
electronic cloud are neglected and an average field is considered, which allows to represent
the electronic cloud effect on nuclei by the potential function - a deterministic approach
instead of probabilistic -, leading to the following equations that, considering Newton’s
second law, solve the dynamic system [78]:

{Fi} = mi
∂2{ri(t)}
∂t2

(1.4)

The solution of the system of equations are the position ri and velocity vi for each atom.
These values are often calculated by the Verlet algorithm or derivations, within a atomic
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Figure 1.5: Interatomic interactions in the molecular structural mechanics approach.
Reprinted by permission from [80]

discretization followed by numerical integration of the differential equations iteratively.
The main Verlet algorithm is given by the following equation:

{ri(t+ ∆t)} ≈ 2{ri(t)} − {ri(t−∆t)}+
{Fi(t)}
mi

∆t2 (1.5)

It is important to understand that due to the complexity and range of the discretiza-
tion needed in molecular dynamics simulations, the method is extremely costly in terms
of computation. Besides this disadvantage, usual MD techniques such as classical, which
do not take into account quantum effects, has its Schrödinger equations replaced by New-
tonistic motion equation, a relatively simplistic theory. When the inter-particle distance
is small and/or the inter-layer forces become significant (MWCNTs case), the classical
models show inaccuracies comparing to quantum models. Here, quantum corrections may
be introduced to the classical MD model. A different problem regarding MD simulations
is time-scale, being in some cases in the magnitude of femtoseconds. This brings computa-
tional balances as large systems are not able to be studied by MD, requiring a continuum
model [78].

In-depth studies have been presented regarding MD simulations. In fact, even though
the number of publications is not astounding, there are a few resources well received by
the community which served as groundwork for many research on continuum modelling.
Regarding the present dissertation, it is important to note the crucial work of Duan et al.
[7], where the authors investigate the natural frequencies of CNTs on different chiralities,
aspect-ratios and boundary conditions. The amount of documented data from MD sim-
ulations is, in fact, of great aid in the present thesis, as will be seen in further chapters.
Nonlocal studying as also taken place by Ansari et al. regarding the free vibrations of
SWCNTs and DWCNTs, investigating size effects on classical models comparing to MD
simulations of different CNT chiralities [12]. Lastly, torsional vibration modes have been
proposed by Khademolhosseini et al., completing the available research of RBM and axial
vibrational modes associated with the nonlocal Eringen’s theory, producing MD simula-
tions that provide validation and calibration, opening room for wave propagation study
in the specific conditions of the study [6].
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1.3 Continuum Model

In this dissertation a continuum model will be developed based on Kirchhoff-Love assump-
tions, which mainly yields the hypothesis that the transverse shear stresses and transverse
normal stress may be neglected, as the thickness of the shell is very small compared to
other dimensions. Thus, a thin shell theory is adequate for the present model. Among
different shell theories as Donnell’s, Flugge’s or Sanders-Koiter’s, for example, the results
from the linear field study are very similar [10]. With the aim to establish the groundwork
and open the possibilities of future development for nonlinear field, Sanders-Koiter theory
is selected.

Regarding the study of structures in the order of magnitude of the nanometers, as is
the case of the carbon nanotubes, the original continuum model reveals itself insufficient
to characterize the dynamic behaviour, as the small-scale effect resultant from the inter-
atomic interaction is not taken into account. For this reason, a nonlocal elasticity theory
is employed, as for an atomic scale structure the Hooke’s elasticity law is incapable of
describing the stress tensor at an arbitrary reference point [30], and thus the hypothesis
that the stress tensor at said reference point is dependent on the strains of the complete
structure is assumed. Therefore, the Eringen’s nonlocal elasticity theory [64] is applied
and implemented on the shell model.

Firstly, a generalized model is developed for a single-walled carbon nanotube, which is
then adapted onto a model for a double-walled carbon nanotube. The last requires further
incorporation of the interlayer forces between the different shells on the same nanotube,
also known as van der Waals forces, developed from the Lennard-Jones pair potential
[81]. These van der Waals forces take into account the effect of each atom of a layer on
each atom of the other layer, resulting in the coefficients that describe the van der Waals
pressure on each of the layers, describing the rigidity coupling between them.

For both models, the implementation is held through the p-version finite element
method, which after discretization of the displacement components, is aided by the Galerkin
method to formulate the rigidity and mass matrices necessary to solve the linear dynamic
problem that processes the natural frequency and mode shape results.

One last model is developed, based on the SWCNT one, with the addition of a concen-
trated mass. This mass is characterized for having a defined value and being applied in
defined coordinates on the surface of the CNT. The implementation follows the same prin-
ciples, utilizing the p-version finite element method for the discretization of displacement
components, featuring the Galerkin method to deduce the finite element matrices.

1.4 Objectives

The main goal of the present work is to study the linear vibration modes of single-walled
and double-walled carbon nanotubes, using the thin shell Sanders-Koiter theory and dis-
cretizing the model by the p-version finite element method, with the application of the
Galerkin method to obtain the weak formulation and matrices that characterize the modal
vibration problem. The influence of the nonlocal parameter on the natural frequencies and
mode shapes should also be investigated, and thus intermediate tasks are defined to be
completed along the study developed on this dissertation:

• Development of a generalized equivalent continuum model based on the thin shell
Sanders-Koiter theory, based on Kirchhoff-Love assumptions, for a single-walled car-
bon nanotube;

• Adaptation of the continuum model onto a double-walled carbon nanotube, including
the interlayer forces defined by van der Waals coefficients;
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• Inclusion of the small scale parameter by incorporation of Eringen’s nonlocal theory
onto the stress components and consequently onto the equations of motion;

• Development of an equivalent continuum model that allows for inclusion of a con-
centrated mass on a variable and defined point on the surface of the nanotube;

• Implementation of the models by the p-version finite element method, aided by the
Galerkin method to obtain the weak formulation and deduce the finite element ma-
trices, by application of the Rodrigues’ form of Legendre’s orthogonal polynomials;

• Convergence and validation of the model by comparison to distinct studies and
molecular dynamics simulations;

• Validation and illustration of the mode shapes associated with different parameters,
boundary conditions and wave numbers;

• Calibration of the nonlocal parameter onto clamped-clamped boundary conditions
case and study of its influence on different order natural frequencies;

• Study on the influence of the nonlocal parameter on the frequency ratio, mode shapes
and relevance of the circumferential mode number;

• Investigation onto the dynamic behaviour of a carbon nanotube with a concentrated
attached mass and prediction of natural frequency/ concentrated mass values, study-
ing the sensitivity of the system and respective nonlocal effects;

• Study on the influence of the nonlocal parameter on the natural frequencies given
for a model accounting for a concentrated mass; proposal of a calibration of the non-
local parameter for different mass values and investigation onto a singular nonlocal
parameter global influence;

1.5 Layout

This dissertation is structured in six chapters, with the first being the present introductory
one, where the main objectives and motivations for the execution of the work are expressed.
Regarding the following chapters, they are described as:

• Chapter 2, Mathematical Formulation - On this chapter, the mathematical
formulation of the single-walled and double-walled carbon nanotubes continuum
model is presented, based on the p-version finite element method. The establish-
ment process of the equations of motion is detailed, stating with the Kirchhoff-Love
assumptions for thin shells, and application of the Hamilton’s principle to obtain
the equations of motion with respect to stresses after selection of Sanders-Koiter
theory. Eringen’s nonlocal theory is presented and implemented. The p-version
finite element method is finally used to discretize the domain and obtain the matri-
cial formulation needed to solve the modal linear problem, resorting to the Galerkin
method.

• Chapter 3, Linear Model Validation - Here, the developed and implemented
model on Maple is convergence tested, by comparison to results from bibliography, in
terms of different characteristic parameters and boundary conditions - clamped, free,
simply-supported. The natural frequency values are, therefore, evaluated, as well as
the respective mode shapes, which are also validated by comparison to referenced
data. Different types of mode shapes are also presented, illustrating the versatility
of the model implemented using the p-version FEM.
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• Chapter 4, Study of the nonlocal parameter influence - On this chapter, the
already validated results of the thin shell model are used to perform a study on the
influence of the nonlocal parameter, adjusting the results of the developed model
to MD simulations results, by proposing a nonlocal parameter calibrated value. It
is then possible to conclude on the influence of this parameter for different order
natural frequencies. The effect of the nonlocal parameter for different chiralities and
aspect ratios is also established by studying the frequency ratio for each case, while
the weight of the circumferential mode number and phenomena created on shells is
discussed. Finally, the influence of the nonlocal parameter on the mode shapes is
also illustrated and studied.

• Chapter 5, Study of a CNT with an attached mass - On this chapter, a model
for a SWCNT and DWCNT with an attached concentrated mass for a defined point
in the surface of the CNT is developed. With the inclusion of the Eringen’s nonlocal
elasticity theory, the model is implemented via p-version finite element method,
discretizing the displacement components and generating the finite element matrices
using the Galerkin method. The model is then tested for validation using available
literature data, after which a study focusing on the dynamic behaviour of a CNT
with an attached mass, regarding the relation between the natural frequencies and
the mass value is performed, also investigating into the nonlocal parameter influence
for nanotubes of distinct characteristics;

• Chapter 6, Conclusions - Finally, the main conclusions drawn from the current
dissertation are presented in this final chapter. These include the main ideas from
the validation, implementation and study of the nonlocal linear developed model.
Lastly, the future work possibilities are also discussed, as this work leaves room for
further work based on the conclusions of the dissertation and on the current research
state of vibrations of carbon nanotubes, possible to be done on a wider duration of
study.
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Chapter 2

Mathematical Formulation

2.1 Introduction and outline

In this chapter the formulation of a continuum model for both a single-walled and double-
walled carbon nanotube will be presented. The carbon nanotubes, as already discussed,
are essentially a folded graphene sheet, meaning their thickness is that of the carbon atoms
of the said sheet. It is therefore correct to assume a thin shell theory to describe a CNT,
being single-walled or multi-walled (in the latter case, van der Waals forces between each
tube will be considered and formulated).

A thin shell is defined as a three-dimensional body bounded by two closely spaced
curved surfaces, the distance between the surfaces being small in comparison with the
other dimensions (length and diameter). The group of points lying midway between the
two surfaces is called the middle surface of the shell. The distance between the surfaces
measured in the radial direction - normal to the middle surface - is called thickness of
the shell at a given point. The thickness value may not be considered constant in the
formulation, but a constant value yields governing equations simpler to solve, and, in the
case of CNTs, it is an approximation that does not induct significant errors, as the value
is related to the diameter of the atom (even though it is an estimation obtained along
with the Young’s modulus value) and initial deformation in the curvature is neglected.

Shells may be regarded as a generalization of a flat plate, as inversely a flat plate
may be a case of a shell with no curvature. Many theories approach shells exactly as the
first situation, as shells present a very large radius - or a very small curvature - reason
why they are designated shallow shells. Considerations such as a linear elasticity with
isotropic and homogeneous materials are assumed (having been identified for both plates
[74] and shells [73], revealing a relatively small significance compared to anisotropic models,
even though the latter case was deemed relevant for certain cases, for example CNTs
under tension-twisting [82, 83]) along with small displacements - for linear behaviour.
Nonlinear behaviour may come from considerable displacements that revoke the linearly
elastic material assumption, as well as from geometrical basis [10]. Shear deformation and
rotary inertia effects are also neglected, along with initial stress and deformation [84].

Among different thin shell theories, a specific one is analysed and chosen for the present
dissertation, specially regarding its documented behaviour in nonlinear dynamic domain,
as for linear motions the difference between theories as Flügge’s, Donnell’s or Sanders-
Koiter, for example, is not significant. Regarding the neglect of the thickness in early
stages of the formulation, more precisely in the stress equations, Sanders-Koiter’s thin
shell theory is applied.
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A p-version finite element model will be formulated for SWCNT and DWCNT in the
present chapter. Logically organized regarding the order of development, it is necessary to
enunciate the Kirchhoff-Love’s principles, before presenting the general displacement field
and strain field. Then, the equations of motion are calculated along with the stress equa-
tions, with the aid of the Hamilton’s Principle. The next section presents the foundation
of the nonlocal Eringen’s theory of elasticity, introducing the small-scale parameters into
the equations of motion. Then, the p-version method is presented, followed by the the
application of the Galerkin method, transforming the differential equations of motion into
their weak formulation, respectively in two distinct and consecutive sections for a SWCNT
and DWCNT case.

2.2 Kirchhoff-Love assumptions

Before heading to the main theory applied in CNTs in the present dissertation, it is
important to describe its core assumptions and ideas behind a thin shell theory.

The Kirchhoff’s hypothesis are defined for plate bending, stating that normals to the
undeformed middle surface remain straight and normal to the deformed middle surface
and suffer no extension. This principle is parallel to the one applied in Euler-Bernoulli’s
thin beam theory, which is only valid for thin beams where the thickness is very small
compared to the length (raises problems for thicker beams, in which Timoshenko’s theory
is necessary). Thus, the thin plates yield the following hypothesis [85]:


γxz = 0

γyz = 0

εzz = 0

(2.1)

and therefore, from the Hooke’s law, transverse shear stresses come as:

σxz = σyz = 0 (2.2)

Later, Love adapted the hypothesis described in Equation (2.1) onto thin shells [85],
defined as the Kirchhoff-Love hypothesis, yielding in cylindrical coordinates:


γxz = 0

γθz = 0

εzz = 0

(2.3)

and therefore transverse shear stresses come as:

σxz = σθz = 0 (2.4)

Love’s assumptions come specifically for the classical theory of small displacements of
thin shells [84]:

1. ”The thickness of the shell is small compared with the other dimensions, for example,
the smallest radius of curvature of the middle surface of the shell.”
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2. ”Strains and displacements are sufficiently small so that the quantities of second
and higher-order magnitude in the strain-displacement relations may be neglected
in comparison with the first-order terms.”

3. ”The transverse normal stress is small compared with the other normal stress com-
ponents and may be neglected.”

These three assumptions along with the Kirchhoff-Love assumption, also named the
fourth assumption of Love, give rise to what Love called his ”first approximation” shell
theory. It is important to understand that these approximations allow for the formulation
of the linear field model, given the nonlinear behaviour requires extra steps [84].

The first assumption defines what the name ”thin shells” resembles, setting stage for
the whole theory. Denoting the thickness of the shell by h and the radius of curvature by R,
it will be convenient at numerous instances in the subsequent derivation of the shell theory
to neglect higher powers of z/R or h/R in comparison with unity. The second assumption
allows one to refer all calculations to the original configuration of the shell and ensures
that the differential equations come as linear. The third assumption and the Kirchhoff’s
hypothesis deal with the constitutive equations of thin elastic shells, assuming a special
type of orthotropy when isotropy is still not considered, so that Ez = Gxz = Gθz = ∞
and νxz = νθz = 0 [84].

2.3 Sanders-Koiter thin shell theory

Following Sanders procedure [77, 86] in order to apply the theory to a cylindrical shell,
and considering the Cylindrical coordinates (x,θ,z ), comes the displacement field as:

u(x, θ, z, t) = u0(x, θ, t)− z ∂w
0(x, θ, t)

∂x
(2.5a)

v(x, θ, z, t) = v0(x, θ, t)− z

R

∂w0(x, θ, t)

∂θ
(2.5b)

w(x, θ, z, t) = w0(x, θ, t) (2.5c)

where u0(x, θ, t), v0(x, θ, t) and w0(x, θ, t) refer to the displacement components in the
middle surface, Ω, as is represented in Figure 2.1.

And thus, according to Amabili [77], the strain field from Sanders-Koiter shell theory
comes expressed as the middle surface strains and displacement projections as follows:

εx,0 =
∂u0

∂x
(2.6a)

εθ,0 =
1

R

∂v0

∂θ
+
w0

R
(2.6b)

γxθ,0 =
1

R

∂u0

∂θ
+
∂v0

∂x
(2.6c)

kx = −∂
2w0

∂x2
(2.6d)

kθ =
1

R2

∂v0

∂θ
− 1

R2

∂2w0

∂θ2
(2.6e)

19



2. Mathematical Formulation

Figure 2.1: Geometry of the circular cylindrical shell: (a) complete view and (b) cross-
section view

kxθ = −2
1

R

∂2w0

∂x∂θ
+

1

2R

(
3
∂v0

∂x
− 1

R

∂u0

∂θ

)
(2.6f)

being the strains εxx, εθθ, γxθ of the point at z distance from the middle surface given by:

εxx = εx,0 + zkx (2.7a)

εθθ = εθ,0 + zkθ (2.7b)

γxθ = γxθ,0 + zkxθ (2.7c)

As already explained and stated in (2.3) the transverse shear strains are null and are
not taken into account for the next step: calculating the equations of motion.

Invoking Hamilton’s Principle, the total variation of the mechanical energy over a
period of time is null:

∫ t2

t1

(δK − δU + δW ) dt = 0 (2.8)

being δK the variation of kinetic energy, δU the variation of potential energy, and δW
the virtual work of forces that either do not have a potential function (non-conservative
forces) or whose potential function is not included in U . For the sake of simplicity, these
forces are labelled non-conservative.
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The variation of potential energy δU is given by:

δU =

∫
Ω

∫ h
2

−h
2

σxxδεxx + σθθδεθθ + τxθδγxθ dz dΩ

=

∫
Ω

∫ h
2

−h
2

σxx(δεx,0 + zδkx) + σθθ(δεθθ + zδkθ) + τxθ(δγxθ,0 + zδkxθ) dz dΩ

(2.9)

Given the internal membrane forces and moments (also known as stress resultants)
dependencies on the general stress field, they can be expressed as:

{
Nxx, Nθθ, Nxθ,Mxx,Mθθ,Mxθ

}
=

∫ h
2

−h
2

(
1− z

R

){
σxx, σθθ, τxθ, zσxx, zσθθ, zτxθ

}
dz

(2.10)

Thus, performing the substitution of Equation (2.10) into Equation (2.9), while ne-
glecting the term 1− z/R by approximating 1− z/R ≈ 1 and integrating along the shell,
yields the following form of the variation of the potential energy:

δU =

∫ 2π

0

∫ l

0︸ ︷︷ ︸∫
Ω

(Nxxδεx,0 +Nθθδεθθ +Nxθδγxθ,0 +Mxxδkx +Mθθδkθ +Mxθδkxθ) R dx dθ︸ ︷︷ ︸
dΩ

(2.11)

Heading now to the variation of the kinetic energy, it comes that:

δK =

∫ 2π

0

∫ l

0

∫ h
2

−h
2

ρ(u̇δu̇+ v̇δv̇ + ẇδẇ) dz R dx dθ

=

∫ 2π

0

∫ l

0

∫ h
2

−h
2

ρ

[(
u̇0 − z ∂ẇ

0

∂x

)(
δu̇0 − z ∂δẇ

0

∂x

)
+

(
v̇0 − z

R

∂ẇ0

∂θ

)(
δv̇0 − z

R

∂δẇ0

∂θ

)
+ ẇ0δẇ0

]
R dx dθ

=

∫ 2π

0

∫ l

0
ρ

[
h u̇0δu̇0 +

h3

12

∂ẇ0

∂x

∂

∂x
(δẇ0) + h v̇0δv̇0 +

h3

12

1

R2

∂ẇ0

∂θ

∂

∂θ
(δẇ0) + h ẇ0δẇ0

]
R dx dθ

=

∫ 2π

0

∫ l

0
ρh

[
u̇0δu̇0 + v̇0δv̇0 + ẇ0δẇ0

]
+
ρh3

12

[
∂ẇ0

∂x

∂

∂x
(δẇ0) +

1

R2

∂ẇ0

∂θ

∂

∂θ
(δẇ0)

]
R dx dθ

(2.12)

where u̇0, v̇0 and ẇ0 indicates the velocity in the respective direction, in an arbitrary
point, according to Figure 2.1, as δu̇0, δv̇0 and δẇ0 represent their respective variation.

Lastly, defining the variation of the work of the external forces which will be the only
non-conservative forces per surface area considered in this derivation, comes:

δW =

∫ 2π

0

∫ l

0
(pxδu

0 + pyδv
0 + qδw0) R dx dθ (2.13)

21



2. Mathematical Formulation

Before substituting the respective equations of variation of potential energy, kinetic
energy, and work of external forces, it is illustrated in the following equations the proce-
dure of integration by parts and consequent isolation of the variational of displacement
(removing the derivatives associated with it), by substituting only the first term of each
variation of energy in the Hamilton’s principle, as an example, comes:∫ t2

t1

∫
Ω
ρhu̇0δu̇0 dΩ︸ ︷︷ ︸

(1)

−
∫

Ω
Nxxδ

(
∂u0

∂x

)
dΩ︸ ︷︷ ︸

(2)

+

∫
Ω
pxδu

0 dΩ dt (2.14)

(1) :

∫ t2

t1

∫
Ω
ρh u̇0δu̇0 dΩ =

∫ t2

t1

∫
Ω
ρh u̇0 d

dt
(δu0) dΩ

=

∫
Ω
ρh u̇0 δu̇0 dΩ

∣∣∣∣∣
t2

t1︸ ︷︷ ︸
=0, as δu0(t2)=δu0(t1)=0

−
∫ t2

t1

∫
Ω
ρh ü0 δu0 dΩ dt

= −
∫ t2

t1

∫
Ω
ρh ü0 δu0dΩ dt

(2.15a)

(2) : −
∫ t2

t1

∫
Ω
Nxxδ

(
∂u0

∂x

)
dΩ = −

∫ t2

t1

∫
Ω
Nxx

∂

∂x
δu0 dΩ

= −
∫

Ω
Nxxδu

0 dΩ

∣∣∣∣∣
t2

t1︸ ︷︷ ︸
=0, as δu0(t2)=δu0(t1)=0

+

∫ t2

t1

∫
Ω

∂Nxx

∂x
δu0 dΩ dt

=

∫ t2

t1

∫
Ω

∂Nxx

∂x
δu0 dΩ dt

(2.15b)

where ü0, v̈0 and ẅ0 indicate the acceleration components in their respective direction,
according to Figure 2.1.

Introducing Equations (2.11), (2.12) and (2.13) into the Hamilton’s Principle equation
(2.8), and substituting equations (2.6) into the respective strains from the variation of
potential energy, the following expression is found:

0 =

∫ t2

t1

(δK − δU + δW ) dt

=

∫ t2

t1

[∫
Ω
ρh
[
u̇0δu̇0 + v̇0δv̇0 + ẇ0δẇ0

]
+
ρh3

12

[
∂ẇ0

∂x

∂

∂x
(δẇ0) +

1

R2

∂ẇ0

∂θ

∂

∂θ
(δẇ0)

]
dΩ

−
∫

Ω

[
Nxx δ

(
∂u0

∂x

)
+Nθθ δ

(
1

R

∂v0

∂θ
+
w0

R

)
+Nxθ δ

(
1

R

∂u0

∂θ
+
∂v0

∂x

)
+Mxx δ

(
− ∂2w0

∂x2

)
+Mθθ δ

(
1

R2

∂v0

∂θ
− 1

R2

∂2w0

∂θ2

)
+Mxθ δ

(
− 2

1

R

∂2w0

∂x∂θ
+

1

2R

(
3
∂v0

∂x
− 1

R

∂u0

∂θ

))]
dΩ

+

∫
Ω

[
pxδu

0 + pyδv
0 + qδw0

]
dΩ

]
dt

(2.16)
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2.3. Sanders-Koiter thin shell theory

Developing the last equation, integrating by parts and performing the permutation of
the variational in the terms of the variation of kinetic and potential energy, following the
procedure of (2.15), comes:

∫ t2

t1

[
−
∫

Ω
ρh[ü0δu0 + v̈0δv0 + ẅ0δw0] +

ρh3

12

[
∂2ẅ0

∂x2
δw0 +

1

R2

∂2ẅ0

∂θ2
δw0

]
dΩ

+

∫
Ω

[
∂Nxx

∂x
δu0 +

1

R

∂Nθθ

∂θ
δv0 −

Nθθ

R
δw0 +

1

R

∂Nxθ

∂θ
δu0 +

∂Nxθ

∂x
δv0 +

∂2Mxx

∂x2
δw0

+
1

R2

∂Mθθ

∂θ
δv0 +

1

R2

∂Mθθ

∂θ
δw0 +

2

R

∂2Mxθ

∂x∂θ
δw0 +

3

2R

∂Mxθ

∂x
δv0 −

1

2R2

∂Mxθ

∂θ
δu0

]
dΩ

+

∫
Ω

[
pxδu

0 + pyδv
0 + qδw0

]
dΩ

]
dt = 0

(2.17)
Selecting the terms affected by δu̇0, δv̇0 and δẇ0 for each equation, and considering

that along the domain [t1, t2], as δu̇0, δv̇0 and δẇ0 can be replaced by any arbitrary value
inside the domain, they are set to zero, and the equations of motion come as:

−ρhü0 +
∂Nxx

∂x
+

1

R

∂Nxθ

∂θ
− 1

2R2

∂Mxθ

∂θ
+ px = 0 (2.18)

−ρhv̈0 +
1

R

∂Nθθ

∂θ
+
∂Nxθ

∂x
+

1

R2

∂Mθθ

∂θ
+

3

2R

∂Mxθ

∂x
+ py = 0 (2.19)

−ρhẅ0 +
ρh3

12

[
∂2ẅ0

∂x2
+

1

R2

∂2ẅ0

∂θ2

]
︸ ︷︷ ︸

rotary inertia

−Nθθ

R
+
∂2Mxx

∂x2
+

1

R2

∂Mθθ

∂θ
+

2

R

∂2Mxθ

∂x∂θ
+ q = 0 (2.20)

Neglecting the rotary inertia from Equation (2.20) as these terms only affect higher
frequencies and have little influence on the CNTs vibration, while also setting the external
forces per surface area in the u, v, w axial, circumferential and radial directions respectively
equal to zero, as only free vibrations will be studied, and lastly, swapping the signals in
the equations, in order to later arrive at a positive definite mass matrix and positive
semidefinite stiffness matrix, maintaining mechanical coherence, come the final equations
of motion with dependence on the forces and moments:

ρhü0 − ∂Nxx

∂x
− 1

R

∂Nxθ

∂θ
+

1

2R2

∂Mxθ

∂θ
= 0 (2.21)

ρhv̈0 − 1

R

∂Nθθ

∂θ
− ∂Nxθ

∂x
− 1

R2

∂Mθθ

∂θ
− 3

2R

∂Mxθ

∂x
= 0 (2.22)

ρhẅ0 +
Nθθ

R
− ∂2Mxx

∂x2
− 1

R2

∂Mθθ

∂θ
− 2

R

∂2Mxθ

∂x∂θ
= 0 (2.23)
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2. Mathematical Formulation

Regarding the dependence of the forces and moments on the influence of displacements
(and related partial derivatives) coming from the theory of elasticity, it is important to
define these relations based on classical elasticity. Thus, based on Equation (2.10), and
considering an isotropic material, as already stated, comes:

σxx =
E

1− ν2
(εxx + νεθθ) (2.24a)

σθθ =
E

1− ν2
(εθθ + νεxx) (2.24b)

τxθ =
E

2(1 + ν)
γxθ (2.24c)

And consequently, integrating along the thickness comes:

Nxx =

∫ h
2

−h
2

σxx dz =

∫ h
2

−h
2

E

1− ν2
(εxx + νεθθ)dz

=

∫ h
2

−h
2

E

1− ν2

(
∂u0

∂x
− z ∂

2w0

∂x2
+ ν

[
1

R

∂v0

∂θ
+
w0

R
+ z

(
1

R2

∂v0

∂θ
− 1

R2

∂2w0

∂θ2

)])
dz

=
Eh

1− ν2

[
εx,0 + ν εθ,0

]
=

Eh

1− ν2

[
∂u0

∂x
+ ν

(
1

R

∂v0

∂θ
+
w0

R

)]
(2.25a)

Nθθ =

∫ h
2

−h
2

σθθ dz =

∫ h
2

−h
2

E

1− ν2
(εθθ + νεxx)dz =

Eh

1− ν2

(
1

R

∂v0

∂θ
+
w0

R
+ ν

∂u0

∂x

)
(2.25b)

Nxθ =

∫ h
2

−h
2

τxθ dz =

∫ h
2

−h
2

E

2(1 + ν)
γxθdz =

Eh

2(1 + ν)

(
1

R

∂u0

∂θ
+
∂v0

∂x

)
(2.25c)

Mxx =

∫ h
2

−h
2

σxxz dz =

∫ h
2

−h
2

E

1− ν2
(εxx + νεθθ) z dz =

=
Eh3

12(1− ν2)

(
− ∂2w0

∂x2
+ ν

1

R2

∂v0

∂θ
− ν 1

R2

∂2w0

∂θ2

) (2.25d)

Mθθ =

∫ h
2

−h
2

σθθz dz =

∫ h
2

−h
2

E

1− ν2
(εθθ + νεxx) z dz =

=
Eh3

12(1− ν2)

(
1

R2

∂v0

∂θ
− 1

R2

∂2w0

∂θ2
− ν ∂

2w0

∂x2

) (2.25e)

Mxθ =

∫ h
2

−h
2

τxθz dz =

∫ h
2

−h
2

E

2(1 + ν)
γxθ z dz =

=
Eh3

24(1 + ν)

(
− 2

R

∂2w0

∂x∂θ
+

3

2R

∂v0

∂x
− 1

2R2

∂u0

∂θ

) (2.25f)

24



2.4. Eringen’s Nonlocal elasticity theory

2.4 Eringen’s Nonlocal elasticity theory

Eringen developed a nonlocal elasticity theory [64], including the small scale effect and
whole body-range atomic interactions relevant in carbon nanotubes, as previously dis-
cussed. In fact, this theory generally leads to a continuum model that is able converge
closer to molecular dynamics simulations, as it considers that the stress at a reference
point x in the body depends not only on the strains at x but also on strains at all the
other points of the body, which is in agreement with phonon dispersion experimental ob-
servations [64]. When the effects of strains at other points other than x are neglected, the
classical theory of elasticity is obtained. Thus, the linear theory is expressed as:

tkl,k + ρ (fl − ül) = 0 (2.26)

as tkl,k indicates the stress tensor, ρ indicates the mass density, fl indicates the body force
density and ül designates the displacement vector at a reference point x in the body, at a
time t. The stress tensor tkl,k can be expanded and defined as:

tkl,k =

∫
V
α (|x′ − x|, τ)σkl(x

′) dv (x′) (2.27)

as α(|x′−x|, τ) designates the nonlocal kernel function, dependent on τ = e0a/l, with a be-
ing an internal characteristic length (lattice parameter or granular distance, for example),
l an external characteristic length and e0 a constant appropriate to each material.σkl(x

′)
designates the macroscopic/classical/local stress tensor at x′, which is related to the linear
strain tensor at any point x′, ekl(x

′). It is important to note that this nonlocal elasticity
theory has great relevance at small scales, as it is size-dependent and for large dimensions
(τ → 0) the influence of the nonlocal parameter is expected to fade and be negligible.

Further on it is necessary to solve the Equation (2.27), which is a hard process, specially
for three-dimensional problems. Thus, it was found that assuming that the nonlocal
kernel function was dependent on a Green’s function of a linear differential operator, still
unknown, as seen in Equation (2.28), lead to a prompt solution of the imposed problem:

Lα (|x′ − x|, τ) = δ(|x′ − x|) (2.28)

This equation can be simplified into:

L tkl = σkl (2.29)

Imposing the previous equation in Equation (2.26) and assuming the differential oper-
ator L has constant coefficients comes the following:

σkl,k + L ρ (fl − ül) = 0 (2.30)

And finally, by equating the lattice models with the phonon dispersion curves, while
proving the accuracy of the proposed differential operator by an approximation of atomic
dispersion relations, the following is taken as definition:

L = 1− (e0a)2∇2 (2.31)
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2. Mathematical Formulation

As can also be expressed by substituting in Equation (2.29) [64]:

[
1− (e0a)2∇2

]
tkl = σkl (2.32)

Necessarily implying that the nonlocal parameter is affected onto the classical stress
tensor, dependent on the Young’s modulus and strain tensor. It is important to note that
a specific value for e0 was given by Eringen [64] (e0 = 0.39), although no experiments
have revealed a constant and transversal value for CNTs. As the a parameter is assumed
to be independent of the length, diameter and chirality of CNTs, a value is proposed
in [30], a = 0.142 nm, with e0 suffering calibration by comparison to MD simulations,
according to each case, as discussed further on this dissertation. With the nonlocal theory
in consideration, more specifically Equation (2.32), it is applied to the components of
forces and moments equations (2.25), and for homogeneous and isotropic solids, come the
following equations:

Nxx − (e0a)2∇2Nxx =
Eh

1− ν2

[
∂u0

∂x
+ ν

(
1

R

∂v0

∂θ
+
w0

R

)]
(2.33a)

Nθθ − (e0a)2∇2Nθθ =
Eh

1− ν2

(
1

R

∂v0

∂θ
+
w0

R
+ ν

∂u0

∂x

)
(2.33b)

Nxθ − (e0a)2∇2Nxθ =
Eh

2(1 + ν)

(
1

R

∂u0

∂θ
+
∂v0

∂x

)
(2.33c)

Mxx − (e0a)2∇2Mxx =
Eh3

12(1− ν2)

(
− ∂2w0

∂x2
+ ν

1

R2

∂v0

∂θ
− ν 1

R2

∂2w0

∂θ2

)
(2.33d)

Mθθ − (e0a)2∇2Mθθ =
Eh3

12(1− ν2)

(
1

R2

∂v0

∂θ
− 1

R2

∂2w0

∂θ2
− ν ∂

2w0

∂x2

)
(2.33e)

Mxθ − (e0a)2∇2Mxθ =
Eh3

24(1 + ν)

(
− 2

R

∂2w0

∂x∂θ
+

3

2R

∂v0

∂x
− 1

2R2

∂u0

∂θ

)
(2.33f)

where in the case of a cylindrical shell comes:

∇2 =
∂2

∂x2
+

1

R2

∂2

∂θ2
(2.34)

Thus, applying the linear differential operator L onto Equations (2.21), (2.22) and
(2.23), taking into account the already established components of forces and moments
affected by the nonlocal elasticity theory, expressed in the equations (2.33), comes:

ρh
(
1− (e0a)2∇2

)
ü0 − Eh

1− ν2

[
∂2u0

∂x2
+

1− ν
2

1

R2

∂2u0

∂θ2
+ ν

1

R

∂w0

∂x
+

1 + ν

2

1

R

∂2v0

∂x∂θ

]
− Eh3

24(1 + ν)R3

[
∂3w0

∂x∂θ2
− 3

4

∂2v0

∂x∂θ
+

1

4R

∂2u0

∂θ2

]
= 0

(2.35)
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2.5. Single-walled carbon nanotube

ρh
(
1− (e0a)2∇2

)
v̈0 − Eh

1− ν2

[
1

R2

∂2v0

∂θ2
+

1

R2

∂w0

∂θ
+

1 + ν

2

1

R

∂2u0

∂x∂θ
+

1− ν
2

∂2v0

∂x2

]
− Eh3

12(1− ν2)

[
1

R4

∂2v0

∂θ2
− 1

R4

∂3w0

∂θ3
− 3− ν

2

1

R2

∂3w0

∂x2∂θ

+
9(1− ν)

8R2

∂2v0

∂x2
− 3(1− ν)

8R3

∂2u0

∂x∂θ

]
= 0

(2.36)

ρh
(
1− (e0a)2∇2

)
ẅ0 +

Eh

1− ν2

[
1

R2

∂v0

∂θ
+
w0

R2
+ ν

1

R

∂u0

∂x

]
+

Eh3

12(1− ν2)

[
∂4w0

∂x4

− 3− ν
2R2

∂3v0

∂x2∂θ
+

2

R2

∂4w0

∂x2∂θ2
− 1

R4

∂3v0

∂θ3
+

1

R4

∂4w0

∂θ4
+

1− ν
2

1

R3

∂3u0

∂x∂θ2

]
= 0

(2.37)

These equations are denominated equations of motion (in respect to displacements),
and are the three main equations that describe the thin shell. In order to apply them and
extract a weak formulation, further work is presented on the next sections.

2.5 Single-walled carbon nanotube

2.5.1 The p-version Finite Element Method

Discretization of displacement components

Two main finite element method version are used to analyze a structure and refine its
solution convergence. The first and most common is the h-version finite element method,
which principle sets on varying the number of elements of an object, increasing them
(refining the mesh) to improve the results accuracy. Here, the displacement and strain
field of a single element is not the target of variation, as the size of the elements decreases
with the increase of number of elements. The other viable method is the p-version finite
element method, that typically uses a small number of elements, while relying on a higher
number of shape functions (increasing the order of the polynomials, if the shape functions
are, in fact, polynomials, which is often the case) and generalized coordinates to improve
the accuracy of the results. Here, the displacement field is variable and refined by using
more shape functions, and the number/size of elements usually remains constant. The
previously used functions are also kept in improved approximations, which is why the
method is designated as hierarchical by some authors. It is also stated [87] that the p-
version FEM has several advantages over the traditional h-version FEM, as it requires a
smaller number of elements and a smaller number of degrees-of-freedom, while keeping
the versatility of the h-version FEM, to output better results. The p-version also allows
the modelling of simple structures with only one element, as it is the case of the present
study, reducing the computational effort and illustrating a higher convergence ratio.

For the p-version FEM, a set of shape functions has to be selected. For the present
model, Rodrigues’ form of Legendre’s orthogonal polynomials are chosen for the x coor-
dinate [88–90].

Thus, for internal membrane displacements, the set of shape functions is given by:

gr(ξ) =

Int(r/2)∑
n=0

(−1)n(2r − 2n− 5)!!

2nn!(r − 2n− 1)!
ξr−2n−1, r > 2 (2.38)
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2. Mathematical Formulation

While for transverse displacements the particular set of functions is selected:

fr(ξ) =

Int(r/2)∑
n=0

(−1)n(2r − 2n− 7)!!

2nn!(r − 2n− 1)!
ξr−2n−1, r > 4 (2.39)

noting that r!! = r(r − 2)...(2 or 1), 0!! = (−1)!! = 1, that Int(r/2) denotes the integer
part of r/2 and that terms respecting the condition (r − 2n− 1)! < 0 are ignored.

The main difference between the internal membrane shape functions and the out-of-
plane/transverse shape functions lays on the fact that the first ones, gr(ξ), have null value
for ξ = −1 and ξ = 1, while the second ones, fr(ξ) have both null value and slope for
ξ = −1 and ξ = 1.

The first two functions of gr(ξ) and the first four functions of fr(ξ) may be adjusted
depending on the boundary conditions. Typically, gBC1 (ξ) and gBC2 (ξ) allow for displace-
ments in each one of the extremities while the other one is fixed, while fBC1 (ξ) and fBC3 (ξ)
allow for the same displacement behaviour with no slope, and fBC2 (ξ) and fBC4 (ξ) allow for
no displacements, but enable rotation (slope) in each one of the extremities respectively.
These properties allow for proper adjustments depending on the studied case, selecting
the right functions that fit the boundary conditions. It is important to note that the set
of two and four functions of gr(ξ) and fr(ξ) are not deduced from the Equations (2.38)
and (2.39), and thus are defined as comes, with the index BC to be distinguished from
the expressions deduced by the referred equations:

gBC1 (ξ) =
1

2
− 1

2
ξ (2.40a)

gBC2 (ξ) =
1

2
+

1

2
ξ (2.40b)

fBC1 (ξ) =
1

2
− 3

4
ξ +

1

4
ξ3 (2.40c)

fBC2 (ξ) =
1

4
− 1

4
ξ − 1

4
ξ2 +

1

4
ξ3 (2.40d)

fBC3 (ξ) =
1

2
+

3

4
ξ − 1

4
ξ3 (2.40e)

fBC4 (ξ) = −1

4
− 1

4
ξ +

1

4
ξ2 +

1

4
ξ3 (2.40f)

For example, for clamped-clamped cases, none of the above described functions are
used, while for free-free cases all the above functions are selected. It is important to
register that the number notation of the functions used for free-free boundary conditions
cause the described functions to occupy such positions r = 1, 2, 3, 4, as the ones produced
by the summations (2.38) and (2.39) occupy the following positions r = 5, 6..., with the
same order, while for clamped-clamped, the right order and indexes that come from said
equations remain intact.

It is also possible to make the distinction between odd and even functions, as the
appropriate set may require symmetric shape functions - odd ones - or assymmetric shape
functions - even ones -, relative to the point ξ = 0.

Regarding the θ coordinate, a different set of functions is selected, based on [11]. It
is a set of trigonometric harmonic functions, widely used when describing the dynamic
behaviour along the cylindrical coordinate θ.
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2.5. Single-walled carbon nanotube

Thus, for u0 displacement, comes:

tun(θ) = cos(n θ) (2.41)

For v0 displacement, comes:

tvn(θ) = sin(n θ) (2.42)

And finally for w0 displacement, comes:

twn(θ) = cos(n θ) (2.43)

As these shape functions purpose is to describe the conduct in the θ coordinate, for
each one of the displacement u0, v0 and w0, they can also be adjusted to better fit specific
variations of boundary conditions of the shell model. For example, to study beam-like
modes of vibration, one must calibrate the value of n to be n = 1, allowing for a better
representation of such modes. For radial breathing modes, one must calibrate the value
of n to be n = 0, and for the inextensional modes of vibration or Rayleigh, Love or Koga
[91], greater values of n are employed.

As will be seen further on this dissertation, different boundary conditions may imply
a variation of the shape functions use, as out-of-plane/tranverse functions may be used to
describe the internal membrane dynamic behaviour of v0 in very specific cases. For this
reason, a uniform nomenclature for the functions with respect to u0, v0 and w0 is used, so
that fur/s(x) is the shape function attributed to the displacement u0 in the coordinate x,

fur/s(θ) is the shape function attributed to the displacement u0 in the coordinate θ, and

so on following this logic, giving place to fvr/s(x), fvr/s(θ), f
w
r/s(x), fwr/s(θ). It is important

to note that the index r/s is used as the application of the Galerkin method requires a
combination of the functions that two indexes justify. For the sake of reading easiness,
the nomenclature is simplified so that fur/s(x) becomes fur/s x.

The middle surface displacements can be described as the product of a shape function
combination matrix and the vector of generalized displacements, as follows:

{de0} =


u0

v0

w0

 = [N ]{q}

=

{δ1}T 0 0
0 {δ2}T 0
0 0 {δ3}T

 {q}
(2.44)

where:
{δ1}T = {fu1xfu1θ, fu1xfu2θ, . . . , fupgu x, fuptu θ}

{δ2}T = {fv1xfv1θ, fv1xfv2θ, . . . , fvpgv x, fvptv θ}

{δ3}T = {fw1xfw1θ, fw1xfw2θ, . . . , fwpw x, fwptw θ}
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2. Mathematical Formulation

And {q}T is defined as:

{q}T =
{
qu11; qu12; . . . ; qupgu−ptu qv11; qv12; . . . ; qvpgv−ptv qw11; qw12; . . . ; qwpw−ptw

}
(2.45)

where pgu, pgv and pw define the number of shape functions allocated to the displacement

components of u0, v0 and w0 in the coordinate of x, respectively, and ptu, ptv and ptw
define the number of shape functions allocated to the displacements of u0, v0 and w0 in
the coordinate of θ, respectively.

Lastly, the displacements in Equation (2.44) can be displayed as follows:

{de0(x, θ, t)} =


u0(x, θ, t)
v0(x, θ, t)
w0(x, θ, t)

 =



pgu∑
r=1

ptu∑
s=1

furx(x)fusθ(θ) q
u
rs(t)

pgv∑
r=1

ptv∑
s=1

fvrx(x)fvsθ(θ) q
v
rs(t)

pw∑
r=1

ptw∑
s=1

fwrx(x)fwsθ(θ) q
w
rs(t)

(2.46)

Finite element matrices

To arrive at the p-version finite element method matrices corresponding to the described
discretization, comes the option to obtain a weak formulation of Equations (2.35), (2.36)
and (2.37) (from integration by parts). Thus, Galerkin method is applied, discretizing the
continuous partial differential equations onto algebraic equations [92], as comes from the
following equations: ∫ 2π

0

∫ l

0
fur (x) fus (θ)Lu(x, θ, t) dxR dθ (2.47)∫ 2π

0

∫ l

0
fvr (x) fvs (θ)Lv(x, θ, t) dxR dθ (2.48)∫ 2π

0

∫ l

0
fwr (x) fws (θ)Lw(x, θ, t) dxR dθ (2.49)

where Lu(x, θ, t), Lv(x, θ, t) and Lw(x, θ, t) are (2.35), (2.36) and (2.37), respectively.
Moreover, the x coordinate will be permuted to the natural coordinate ξ in the domain

[−1, 1], in order to apply correctly the selected shape functions dependent on the natural
coordinate ξ. In order to perform the transformation, the following relation must be
defined:

dx =
l

2
dξ (2.50)

The computational implementation can only be made possible by considering all the
combinations of products between shape functions. Thus, auxiliary variables are created,
where N designates the number of respective shape functions of a considering displacement
and coordinate, taking the values of either pgu, pgv, pw, ptu, ptv and ptw. Note that i and
j designate, respectively, the column and row numbers of the resultant matrices. The new
variable indexes will replace the lower index in the current nomenclature (note that both
for the shape functions f and the generalized nodal displacements q(t), highlighting the
index variation that comes with the implementation, so that it is expressed as:
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2.5. Single-walled carbon nanotube

iξ = Int
(
i−1
N

)
+ 1 jξ = Int

( j−1
N

)
+ 1

iθ = i− (iξ − 1)N jθ = j − (jξ − 1)N

(2.51)

The following procedure consists of the application of the Galerkin method for each one
of the three equations of motion, Lu(x, θ, t), Lv(x, θ, t) and Lw(x, θ, t).

The equations of motion come with the differential operator ∇ expanded, and with
each differential term associated with the respective sum term resultant from the Galerkin
method application, designated from ter(1) to ter(34), and resulting in the linear model
algebraic terms.

For the equation of motion in u0 comes:

Lu(x, θ, t) = ρh

[
∂2u0

∂t2︸ ︷︷ ︸
ter(1)

−(e0 a)2

[
∂2

∂x2

(
∂2u0

∂t2

)
︸ ︷︷ ︸

ter(2)

+
1

R2

∂2

∂θ2

(
∂2u0

∂t2

)
︸ ︷︷ ︸

ter(3)

] ]

− Eh

1− ν2

[
∂2u0

∂x2︸ ︷︷ ︸
ter(4)

+
1− ν

2

1

R2

∂2u0

∂θ2︸ ︷︷ ︸
ter(5)

+ ν
1

R

∂w0

∂x︸ ︷︷ ︸
ter(6)

+
1 + ν

2

1

R

∂2v0

∂x∂θ︸ ︷︷ ︸
ter(7)

]

− Eh3

24(1 + ν)R3

[
∂3w0

∂x∂θ2︸ ︷︷ ︸
ter(8)

− 3

4

∂2v0

∂x∂θ︸ ︷︷ ︸
ter(9)

+
1

4R

∂2u0

∂θ2︸ ︷︷ ︸
ter(10)

]
= 0

(2.52)

For the equation of motion in v0 comes:

Lv(x, θ, t) = ρh

[
∂2v0

∂t2︸ ︷︷ ︸
ter(11)

−(e0 a)2

[
∂2

∂x2

(
∂2v0

∂t2

)
︸ ︷︷ ︸

ter(12)

+
1

R2

∂2

∂θ2

(
∂2v0

∂t2

)
︸ ︷︷ ︸

ter(13)

] ]

− Eh

1− ν2

[
1

R2

∂2v0

∂θ2︸ ︷︷ ︸
ter(14)

+
1

R2

∂w0

∂θ︸ ︷︷ ︸
ter(15)

+
1 + ν

2

1

R

∂2u0

∂x∂θ︸ ︷︷ ︸
ter(16)

+
1− ν

2

∂2v0

∂x2︸ ︷︷ ︸
ter(17)

]

− Eh3

12(1− ν2)

[
1

R4

∂2v0

∂θ2︸ ︷︷ ︸
ter(18)

− 1

R4

∂3w0

∂θ3︸ ︷︷ ︸
ter(19)

− 3− ν
2

1

R2

∂3w0

∂x2∂θ︸ ︷︷ ︸
ter(20)

+
9(1− ν)

8R2

∂2v0

∂x2︸ ︷︷ ︸
ter(21)

− 3(1− ν)

8R3

∂2u0

∂x∂θ︸ ︷︷ ︸
ter(22)

]
= 0

(2.53)
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And finally, for the equation of motion in w0 comes:

Lw(x, θ, t) = ρh

[
∂2w0

∂t2︸ ︷︷ ︸
ter(23)

−(e0 a)2

[
∂2

∂x2

(
∂2w0

∂t2

)
︸ ︷︷ ︸

ter(24)

+
1

R2

∂2

∂θ2

(
∂2w0

∂t2

)
︸ ︷︷ ︸

ter(25)

] ]

+
Eh

1− ν2

[
1

R2

∂v0

∂θ︸ ︷︷ ︸
ter(26)

+
w0

R2︸︷︷︸
ter(27)

+ ν
1

R

∂u0

∂x︸ ︷︷ ︸
ter(28)

]
+

Eh3

12(1− ν2)

[
∂4w0

∂x4︸ ︷︷ ︸
ter(29)

− 3− ν
2R2

∂3v0

∂x2∂θ︸ ︷︷ ︸
ter(30)

+
2

R2

∂4w0

∂x2∂θ2︸ ︷︷ ︸
ter(31)

− 1

R4

∂3v0

∂θ3︸ ︷︷ ︸
ter(32)

+
1

R4

∂4w0

∂θ4︸ ︷︷ ︸
ter(33)

+
1− ν

2

1

R3

∂3u0

∂x∂θ2︸ ︷︷ ︸
ter(34)

]
= 0

(2.54)

Expanding the terms of Equations (2.47), (2.48) and (2.49), comes:

ter(1) : ρ h

∫ 2π

0

∫ l

0
fuix f

u
iθ · (fujx fujθ) dxR dθ q̈uij(t)

= ρ hR
l

2

∫ 2π

0
fuiθ f

u
jθ dθ

∫ 1

−1
fuiξ f

u
jξdξ q̈

u
ij(t)

(2.55)

ter(2) : −ρ h (e0 a)2

∫ 2π

0

∫ l

0
fuix f

u
iθ ·

∂2

∂x2

(
fujx f

u
jθ

)
dxR dθ q̈uij(t)

= ρ h (e0 a)2R
2

l

∫ 2π

0
fuiθ f

u
jθ dθ

∫ 1

−1

dfuiξ
dξ

dfujξ
dξ

dξ q̈uij(t)

(2.56)

ter(3) : −ρ h (e0 a)2 1

R2

∫ 2π

0

∫ l

0
fuix f

u
iθ ·

∂2

∂θ2

(
fujx f

u
jθ

)
dxR dθ q̈uij(t)

= ρ h (e0 a)2 1

R

l

2

∫ 2π

0

dfuiθ
dθ

dfujθ
dθ

dθ

∫ 1

−1
fuiξ f

u
jξdξ q̈

u
ij(t)

(2.57)

ter(4) : − Eh

1− ν2

∫ 2π

0

∫ l

0
fuix f

u
iθ ·

∂2

∂x2

(
fujx f

u
jθ

)
dxR dθ quij(t)

=
2

l

EhR

1− ν2

∫ 2π

0
fuiθ f

u
jθ dθ

∫ 1

−1

dfuiξ
dξ

dfujξ
dξ

dξ quij(t)

(2.58)

ter(5) : − Eh

1− ν2

1− ν
2R2

∫ 2π

0

∫ l

0
fuix f

u
iθ ·

∂2

∂θ2

(
fujx f

u
jθ

)
dxR dθ quij(t)

=
Ehl (1− ν)

4(1− ν2)R

∫ 2π

0

dfuiθ
dθ

dfuiθ
dθ

dθ

∫ 1

−1
fuiξ f

u
jξdξ q

u
ij(t)

(2.59)

ter(6) : − Ehν

(1− ν2)R

∫ 2π

0

∫ l

0
fuix f

u
iθ ·

∂

∂x

(
fwjx f

w
jθ

)
dxR dθ qwij(t)

= − Ehν

1− ν2

∫ 2π

0
fuiθ f

w
jθ dθ

∫ 1

−1
fuiξ

dfwjξ
dξ

dξ qwij(t)

(2.60)
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ter(7) : − Eh

1− ν2

1 + ν

2R

∫ 2π

0

∫ l

0
fuix f

u
iθ ·

∂2

∂x∂θ

(
fvjx f

v
jθ

)
dxR dθ qvij(t)

= − Eh

1− ν2

1 + ν

2

∫ 2π

0
fuiθ

dfvjθ
dθ

dθ

∫ 1

−1
fuiξ

dfvjξ
dξ

dξ qvij(t)

(2.61)

ter(8) : − Eh3

24(1 + ν)R3

∫ 2π

0

∫ l

0
fuix f

u
iθ ·

∂3

∂x∂θ2

(
fwjx f

w
jθ

)
dxR dθ qwij(t)

=
Eh3

24(1 + ν)R2

∫ 2π

0

dfuiθ
dθ

dfwjθ
dθ

dθ

∫ 1

−1
fuiξ

dfwjξ
dξ

dξ qwij(t)

(2.62)

ter(9) :
3

4

Eh3

24(1 + ν)R3

∫ 2π

0

∫ l

0
fuix f

u
iθ ·

∂2

∂x∂θ

(
fvjx f

v
jθ

)
dxR dθ qvij(t)

=
Eh3

32(1 + ν)R2

∫ 2π

0
fuiθ

dfvjθ
dθ

dθ

∫ 1

−1
fuiξ

dfvjξ
dξ

dξ qvij(t)

(2.63)

ter(10) : − Eh3

24(1 + ν)R3

1

4R

∫ 2π

0

∫ l

0
fuix f

u
iθ ·

∂2

∂θ2

(
fujx f

u
jθ

)
dxR dθ quij(t)

=
Eh3l

192(1 + ν)R3

∫ 2π

0

dfuiθ
dθ

dfujθ
dθ

dθ

∫ 1

−1
fuiξ f

u
jξdξ q

u
ij(t)

(2.64)

ter(11) : ρ h

∫ 2π

0

∫ l

0
fvix f

v
iθ · (fvjx fvjθ) dxR dθ q̈vij(t)

= ρ hR
l

2

∫ 2π

0
fviθ f

v
jθ dθ

∫ 1

−1
fviξ f

v
jξdξ q̈

v
ij(t)

(2.65)

ter(12) : −ρ h (e0 a)2

∫ 2π

0

∫ l

0
fvix f

v
iθ ·

∂2

∂x2

(
fvjx f

v
jθ

)
dxR dθ q̈vij(t)

= ρ h (e0 a)2R
2

l

∫ 2π

0
fviθ f

v
jθ dθ

∫ 1

−1

dfviξ
dξ

dfvjξ
dξ

dξ q̈vij(t)

(2.66)

ter(13) : −ρ h (e0 a)2 1

R2

∫ 2π

0

∫ l

0
fvix f

v
iθ ·

∂2

∂θ2

(
fvjx f

v
jθ

)
dxR dθ q̈vij(t)

= ρ h (e0 a)2 1

R

l

2

∫ 2π

0

dfviθ
dθ

dfvjθ
dθ

dθ

∫ 1

−1
fviξ f

v
jξdξ q̈

v
ij(t)

(2.67)

ter(14) : − Eh

1− ν2

1

R2

∫ 2π

0

∫ l

0
fvix f

v
iθ ·

∂2

∂θ2

(
fvjx f

v
jθ

)
dxR dθ qvij(t)

=
Ehl

(1− ν2)2R

∫ 2π

0

dfviθ
dθ

dfvjθ
dθ

dθ

∫ 1

−1
fviξ f

v
jξdξ q

v
ij(t)

(2.68)
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ter(15) : − Eh

1− ν2

1

R2

∫ 2π

0

∫ l

0
fvix f

v
iθ ·

∂

∂θ

(
fwjx f

w
jθ

)
dxR dθ qwij(t)

= − Ehl

(1− ν2)2R

∫ 2π

0
fviθ

dfwjθ
dθ

dθ

∫ 1

−1
fviξ f

w
jξdξ q

w
ij(t)

(2.69)

ter(16) : − Eh

1− ν2

1 + ν

2

1

R

∫ 2π

0

∫ l

0
fvix f

v
iθ ·

∂2

∂x∂θ

(
fujx f

u
jθ

)
dxR dθ quij(t)

= − Eh

1− ν2

1 + ν

2

∫ 2π

0
fviθ

dfujθ
dθ

dθ

∫ 1

−1
fviξ

dfujξ
dξ

dξ quij(t)

(2.70)

ter(17) : − Eh

1− ν2

1− ν
2

∫ 2π

0

∫ l

0
fvix f

v
iθ ·

∂2

∂x2

(
fvjx f

v
jθ

)
dxR dθ qvij(t)

=
Eh(1− ν)R

(1− ν2) l

∫ 2π

0
fviθ f

v
jθ dθ

∫ 1

−1

dfviξ
dξ

dfvjξ
dξ

dξ qvij(t)

(2.71)

ter(18) : − Eh3

12(1− ν2)

1

R4

∫ 2π

0

∫ l

0
fvix f

v
iθ ·

∂2

∂θ2

(
fvjx f

v
jθ

)
dxR dθ qvij(t)

=
Eh3l

24(1− ν2)R3

∫ 2π

0

dfviθ
dθ

dfvjθ
dθ

dθ

∫ 1

−1
fviξ f

v
jξdξ q

v
ij(t)

(2.72)

ter(19) :
Eh3

12(1− ν2)

1

R4

∫ 2π

0

∫ l

0
fvix f

v
iθ ·

∂3

∂θ3

(
fwjx f

w
jθ

)
dxR dθ qwij(t)

= − Eh3l

24(1− ν2)R3

∫ 2π

0

dfviθ
dθ

d2fwjθ
dθ2

dθ

∫ 1

−1
fviξ f

w
jξdξ q

w
ij(t)

(2.73)

ter(20) :
Eh3(3− ν)

24(1− ν2)R2

∫ 2π

0

∫ l

0
fvix f

v

iθ ·
∂3

∂x2∂θ

(
fwjx f

w
jθ

)
dxR dθ qwij(t)

= − Eh3(3− ν)

12(1− ν2) lR

∫ 2π

0
fviθ

dfwjθ
dθ

dθ

∫ 1

−1

dfviξ
dξ

dfwjξ
dξ

dξ qwij(t)

(2.74)

ter(21) : − Eh3

12(1− ν2)

9(1− ν)

8R2

∫ 2π

0

∫ l

0
fvix f

v
iθ ·

∂2

∂x2

(
fvjx f

v
jθ

)
dxR dθ qvij(t)

=
9Eh3(1− ν)

48(1− ν2)lR

∫ 2π

0
fviθ f

v
jθ dθ

∫ 1

−1

dfviξ
dξ

dfvjξ
dξ

dξ qvij(t)

(2.75)

ter(22) :
Eh3

12(1− ν2

3(1− ν
8R3

∫ 2π

0

∫ l

0
fvix f

v
iθ ·

∂2

∂x∂θ

(
fujx f

u
jθ

)
dxR dθ quij(t)

=
Eh3(1− ν)

32(1− ν2)R2

∫ 2π

0
fviθ

dfujθ
dθ

dθ

∫ 1

−1
fviξ

dfujξ
dξ

dξ quij(t)

(2.76)

ter(23) : ρ h

∫ 2π

0

∫ l

0
fwix f

w
iθ · (fwjx fwjθ) dxR dθ q̈wij(t)

= ρ hR
l

2

∫ 2π

0
fwiθ f

w
jθ dθ

∫ 1

−1
fwiξ f

w
jξdξ q̈

w
ij(t)

(2.77)

34



2.5. Single-walled carbon nanotube

ter(24) : −ρ h (e0 a)2

∫ 2π

0

∫ l

0
fwix f

w
iθ ·

∂2

∂x2

(
fwjx f

w
jθ

)
dxR dθ q̈wij(t)

= ρ h (e0 a)2R
2

l

∫ 2π

0
fwiθ f

w
jθ dθ

∫ 1

−1

dfwiξ
dξ

dfwjξ
dξ

dξ q̈wij(t)

(2.78)

ter(25) : −ρ h (e0 a)2 1

R2

∫ 2π

0

∫ l

0
fwix f

w
iθ ·

∂2

∂θ2

(
fwjx f

w
jθ

)
dxR dθ q̈wij(t)

= ρ h (e0 a)2 1

R

l

2

∫ 2π

0

dfwiθ
dθ

dfwjθ
dθ

dθ

∫ 1

−1
fwiξ f

w
jξdξ q̈

w
ij(t)

(2.79)

ter(26) :
Eh

1− ν2

1

R2

∫ 2π

0

∫ l

0
fwix f

w
iθ ·

∂

∂θ

(
fvjx f

v
jθ

)
dxR dθ qvij(t)

=
Ehl

(1− ν2)2R

∫ 2π

0
fwiθ

dfvjθ
dθ

dθ

∫ 1

−1
fwiξ f

v
jξdξ q

v
ij(t)

(2.80)

ter(27) :
Eh

1− ν2

1

R2

∫ 2π

0

∫ l

0
fwix f

w
iθ ·
(
fwjx f

w
jθ

)
dxR dθ qwij(t)

=
Eh

1− ν2

1

R

l

2

∫ 2π

0
fwiθ f

w
jθ dθ

∫ 1

−1
fwiξ f

w
jξdξ q

w
ij(t)

(2.81)

ter(28) :
Ehν

(1− ν2)R

∫ 2π

0

∫ l

0
fwix f

w
iθ ·

∂

∂x

(
fujx f

u
jθ

)
dxR dθ quij(t)

=
Ehν

1− ν2

∫ 2π

0
fwiθ f

u
jθ dθ

∫ 1

−1
fwiξ

dfujξ
dξ

dξ quij(t)

(2.82)

ter(29) :
Eh3

12(1− ν2

∫ 2π

0

∫ l

0
fwix f

w
iθ ·

∂4

∂x4

(
fwjx f

w
jθ

)
dxR dθ qwij(t)

=
2Eh3R

3(1− ν2)l3

∫ 2π

0
fwiθ f

w
jθ dθ

∫ 1

−1

d2fwiξ
dξ2

d2fwjξ
dξ2

dξ qwij(t)

(2.83)

ter(30) : − Eh3(3− ν)

24(1− ν2)R2

∫ 2π

0

∫ l

0
fwix f

w

iθ ·
∂3

∂x2∂θ

(
fvjx f

v
jθ

)
dxR dθ qvij(t)

=
Eh3(3− ν)

12(1− ν2) lR

∫ 2π

0
fwiθ

dfvjθ
dθ

dθ

∫ 1

−1

dfwiξ
dξ

dfvjξ
dξ

dξ qvij(t)

(2.84)

ter(31) :
Eh3

12(1− ν2)

2

R2

∫ 2π

0

∫ l

0
fwix f

w

iθ ·
∂4

∂x2∂θ2

(
fwjx f

w
jθ

)
dxR dθ qwij(t)

=
Eh3

3(1− ν2) l R

∫ 2π

0

dfwiθ
dθ

dfwjθ
dθ

dθ

∫ 1

−1

dfwiξ
dξ

dfwjξ
dξ

dξ qwij(t)

(2.85)

ter(32) : − Eh3

12(1− ν2)

1

R4

∫ 2π

0

∫ l

0
fwix f

w
iθ ·

∂3

∂θ3

(
fvjx f

v
jθ

)
dxR dθ qvij(t)

=
Eh3l

24(1− ν2)R3

∫ 2π

0

dfwiθ
dθ

d2fvjθ
dθ2

dθ

∫ 1

−1
fwiξ f

v
jξdξ q

v
ij(t)

(2.86)
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ter(33) :
Eh3

12(1− ν2

1

R4

∫ 2π

0

∫ l

0
fwix f

w
iθ ·

∂4

∂θ4

(
fwjx f

w
jθ

)
dxR dθ qwij(t)

=
Eh3l

24(1− ν2)R3

∫ 2π

0

d2fwiθ
dθ2

d2fwjθ
dθ2

dθ

∫ 1

−1
fwiξ f

w
jξdξ q

w
ij(t)

(2.87)

ter(34) :
Eh3

12(1− ν2)

1− ν
2R3

∫ 2π

0

∫ l

0
fwix f

w
iθ ·

∂3

∂x∂θ2

(
fujx f

u
jθ

)
dxR dθ quij(t)

= − Eh3

24(1 + ν)R2

∫ 2π

0

dfwiθ
dθ

dfujθ
dθ

dθ

∫ 1

−1
fwiξ

dfujξ
dξ

dξ quij(t)

(2.88)

Expressing the complete model in the matrix form, as the generalized nodal displace-
ments still depend on the time variable, the dynamic problem may be expressed as:

[Muu] 0 0
0 [Mvv] 0
0 0 [Mww]

+

[Mµ
uu] 0 0
0 [Mµ

vv] 0
0 0 [Mµ

ww]


{q̈u(t)}
{q̈v(t)}
{q̈w(t)}


+

[Kuu] [Kuv] [Kuw]
[Kvu] [Kvv] [Kvw]
[Kwu] [Kwv] [Kww]


{qu(t)}
{qv(t)}
{qw(t)}

 =


0
0
0


(2.89)

where each one of the submatrixes are defined as:

• [Muu]← ter(1)

• [Mvv]← ter(11)

• [Mww]← ter(23)

• [Mµ
uu]← ter(2) + ter(3)

• [Mµ
vv]← ter(12) + ter(13)

• [Mµ
ww]← ter(24) + ter(25)

• [Kuu]← ter(4) + ter(5) + ter(10)

• [Kuv]← ter(7) + ter(9)

• [Kuw]← ter(6) + ter(8)

• [Kvu]← ter(16) + ter(22)

• [Kvv]← ter(14) + ter(17) + ter(18) + ter(21)

• [Kvw]← ter(15) + ter(19) + ter(20)

• [Kwu]← ter(28) + ter(34)

• [Kwv]← ter(26) + ter(30) + ter(32)

• [Kww]← ter(27) + ter(29) + ter(31) + ter(33)
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2.6. Double-walled carbon nanotube

As the linear problem is implemented to be solved and the modes of vibration extracted,
one last decomposition must be considered regarding the time dependence: the generalized
displacements are assumed to be dependent on an harmonic function, as done for linear
vibrations of a conservative system, coming as expressed below:

qurs(t) = qurs cos ωt (2.90a)

qvrs(t) = qvrs cos ωt (2.90b)

qwrs(t) = qwrs cos ωt (2.90c)

Hence, regarding the generalized accelerations comes as:

q̈urs(t) = −ω2 qurs cos ωt (2.91a)

q̈vrs(t) = −ω2 qvrs cos ωt (2.91b)

q̈wrs(t) = −ω2 qwrs cos ωt (2.91c)

This process allows to drop the harmonic function from every term, resulting in time-
independent equations. This simplification may be assumed as the model is studied in the
linear field, where the displacements amplitudes are relatively small.

2.6 Double-walled carbon nanotube

In the present section, the modelling for a double-walled carbon nanotube is developed,
following the same procedure described for a single-walled carbon nanotube (or generalized
single shell) in the current chapter. For this formulation, the Sanders-Koiter theory is
applied to both shells.

First of all, it is necessary to introduce the nomenclature of the new displacements
and consequent generalized displacements, for each of the carbon nanotubes in the con-
sidered structure: For the inner tube, the displacement components in the middle plane,
following the same principle of Figure 2.1, are u0

1, v0
1 and w0

1, while for the outer tube the
displacement components are designated u0

2, v0
2 and w0

2.
Following the same procedure applied to obtain Equations (2.18)-(2.20), the governing

equations of a double-walled CNT, after neglecting the rotary inertia and considering
the effect of the van der Waals pressure on the transverse direction in the place of the
initial formulation for non-conservative forces, as its effect on the axial and circumferential
direction is negligible [93], come as:

ρhü0 − ∂Nxx

∂x
− 1

R

∂Nxθ

∂θ
+

1

2R2

∂Mxθ

∂θ
= 0 (2.92)

ρhv̈0 − 1

R

∂Nθθ

∂θ
− ∂Nxθ

∂x
− 1

R2

∂Mθθ

∂θ
− 3

2R

∂Mxθ

∂x
= 0 (2.93)

ρhẅ0 +
Nθθ

R
− ∂2Mxx

∂x2
− 1

R2

∂Mθθ

∂θ
− 2

R

∂2Mxθ

∂x∂θ
− pvdW = 0 (2.94)

where pvdW is the van der Waals pressure exerted on a shell.
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2. Mathematical Formulation

2.6.1 Van der Waals interlayer pressure

According to Timoshenko et al. [94], the van der Waals pressure for a multi-walled
shell may be expressed as:

pvdW = pi(x, θ) = −
i−1∑
j=1

pij +
Nl∑

j=i+1

pij + ∆pi(x, θ) = 0 (2.95)

where pij is the initial uniform van der Waals pressure contribution to the ith layer from the
jth layer before deformation, Nl is the total number of layers of a multi-walled CNT, and
∆pi(x, θ) is the pressure increment after deformation of the CNT. It should be noted that
the outward pressure is assumed to be positive, leading to the attractive pressure being
positive and the repulsive pressure being negative for the inner tube, with the reverse being
true for the outer tube. Considering only the infinitesimal pressure increment, ∆pi(x, θ)
is considered to be linearly proportional to the deflection between two layers, resulting in
the following expression:

∆pi =

Nl∑
j=1

∆pij =

Nl∑
j=1

cij(wi − wj) = wi

Nl∑
j=1

cij −
Nl∑
j=1

cijwj (2.96)

where ∆pij is the contribution of the pressure increment ∆pi exerted on the ith layer
from the jth layer, and cij is the van der Waals interaction coefficient. Finally, for a
double-walled carbon nanotube, the pressure increment comes as:

∆pi = wi

2∑
j=1

cij −
2∑
j=1

cijwj (2.97)

To determine the coefficient cij , the van der Waals interaction model between two
layers, the Lennard-Jones pair potential VIJ is adopted as [81, 95]:

VIJ
(
d̄
)

= 4 ε

[(
σvdW
d̄

)12

−
(
σvdW
d̄

)6
]

(2.98)

where d̄ represents the distance between the interacting atoms, ε indicates the depth of the
potential, and σvdW is the parameter determined by the equilibrium distance, adequate to
carbon atoms included in a graphene sheet. The van der Waals force F is obtained from
taking the derivative of the Lennard-Jones pair potential, as comes:

F
(
d̄
)

=
dVIJ

(
d̄
)

dd̄
=

24 ε

σvdW

[
2

(
σvdW
d̄

)13

−
(
σvdW
d̄

)7
]

(2.99)

As only the infinitesimal deflection of the CNT is of interest, the van der Waals force may
be estimated by the Taylor expansion to the first order around the equilibrium position
prior to deflection, as comes:

F
(
d̄
)

= F
(
d̄0

)
+

dF
(
d̄0

)
dd̄

=
24 ε

σvdW

[
2

(
σvdW
d̄0

)13

−
(
σvdW
d̄0

)7
]

+
24 ε

σ2
vdW

[
26

(
σvdW
d̄0

)14

− 7

(
σvdW
d̄0

)8
] (
d̄− d̄0

)
(2.100)
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2.6. Double-walled carbon nanotube

where d̄0 =
((
Rj cos θ−Ri

)2
+R2

j sin2 θ+ x2
)1/2

is the initial distance between atoms of

different tubes prior to deflection.
Then, the van der Waals force exerted on any atom of the tube may be estimated by

summing all forces between a given atom and the atoms of the other tube. Taking into
consideration the assumption of the nanotube as a continuum cylindrical shell, as well as
the area of each carbon atom to be of 9a2/4

√
3 [96], Equation (2.100) is integrated along

the entire nanotube resulting in the analytical representation of the pressure contribution
pi caused by van der Waals interaction as follows:

pi =

(
4
√

3

9a2

)2 24 ε

σvdW

∫ π

−π

∫ L/2

−L/2

[
2

(
σvdW
d̄0

)13

−
(
σvdW
d̄0

)7
]
Rj dx dθ

=

[
2048εσ12

vdW

9a4

5∑
k=0

(−1)k

2k + 1

(
5
k

)
E12
ij −

1024εσ6
vdW

9a4

2∑
k=0

(−1)k

2k + 1

(
2
k

)
E6
ij

]
Rj

(2.101)

Finally, the pressure increment comes:

∆pi = −
(

4
√

3

9a2

)2 24 ε

σvdW

∫ π

−π

∫ L/2

−L/2

[
26

(
σvdW
d̄0

)14

− 7

(
σvdW
d̄0

)8
](
d̄− d̄0

)
Rj dx dθ

= −

[
1001πεσ12

vdW

3a4
E13
ij −

1120πεσ6
vdW

9a4
E7
ij

]
Rj(wi − wj)

(2.102)

where a is the C-C bond length, already defined in this dissertation, Rj is the radius of
the jth layer, the subscripts i and j denote the ith and jth layers respectively, and E6

ij ,

E7
ij , E

12
ij and E13

ij denote the elliptic integrals defined as:

Emij = (Rj +Ri)
−m
∫ π/2

0

1[
1−Kij cos2 θ

]m/2 (2.103)

where m is an integer and

Kij =
4RjRi(
Rj +Ri

)2 (2.104)

Lastly, comparing Equations (2.102) and (2.97), the van der Waals interaction coefficients

may be expressed as:

cij = −

[
1001πεσ12

vdW

3a4
E13
ij −

1120πεσ6
vdW

9a4
E7
ij

]
Rj (2.105)
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2. Mathematical Formulation

2.6.2 Application of Eringen’s nonlocal elasticity theory

After the development and application of the Lennard-Jones potential in the van der
Waals pressure, the equations of motion for each nanotube may be developed as the pre-
viously described Eringen’s nonlocal theory is incorporated into the stress components, in
Equations (2.33) and further substituted in Equations (2.92)-(2.94). Thus, the generalized
equations of motions for a nanotube i come as:

ρh
(
1− (e0a)2∇2

)
ü0
i −

Eh

1− ν2

[
∂2u0

i

∂x2
+

1− ν
2

1

R2
i

∂2u0
i

∂θ2
+ ν

1

Ri

∂w0
i

∂x
+

1 + ν

2

1

Ri

∂2v0
i

∂x∂θ

]
− Eh3

24(1 + ν)R3
i

[
∂3w0

i

∂x∂θ2
− 3

4

∂2v0
i

∂x∂θ
+

1

4Ri

∂2u0
i

∂θ2

]
= 0

(2.106)

ρh
(
1− (e0a)2∇2

)
v̈0
i −

Eh

1− ν2

[
1

R2
i

∂2v0
i

∂θ2
+

1

R2
i

∂w0
i

∂θ
+

1 + ν

2

1

Ri

∂2u0
i

∂x∂θ
+

1− ν
2

∂2v0
i

∂x2

]
− Eh3

12(1− ν2)

[
1

R4
i

∂2v0
i

∂θ2
− 1

R4
i

∂3w0
i

∂θ3
− 3− ν

2

1

R2
i

∂3w0
i

∂x2∂θ

+
9(1− ν)

8R2
i

∂2v0
i

∂x2
− 3(1− ν)

8R3
i

∂2u0
i

∂x∂θ

]
= 0

(2.107)

ρh
(
1− (e0a)2∇2

)
ẅ0
i +

Eh

1− ν2

[
1

R2
i

∂v0
i

∂θ
+
w0
i

R2
i

+ ν
1

Ri

∂u0
i

∂x

]
+

Eh3

12(1− ν2)

[
∂4w0

i

∂x4

− 3− ν
2R2

i

∂3v0
i

∂x2∂θ
+

2

R2
i

∂4w0
i

∂x2∂θ2
− 1

R4
i

∂3v0
i

∂θ3
+

1

R4
i

∂4w0
i

∂θ4
+

1− ν
2

1

R3
i

∂3u0
i

∂x∂θ2

]
−
(
1− (e0a)2∇2

) [
w0
i

2∑
j=1

cij −
2∑
j=1

cijw
0
j

]
= 0

(2.108)

where i = 1, 2 for the inner and the outer tube, respectively.

2.6.3 The p-version Finite Element Method

Discretization of displacement components

Regarding the discretization of displacement components, a similar process to the one
described for SWCNT is applied. The chosen shape functions are the same than those
described on the SWCNT section, and thus the are not mentioned again on this subsection.

Analogously, the middle surface displacements can be described as the product of a
shape function combination matrix and the vector of generalized nodal displacements, as
follows:

{de0} =



u0
1

v0
1

w0
1

u0
2

v0
2

w0
2


= [N ]

{
q
}

=



{δ1}T 0 0 0 0 0
0 {δ2}T 0 0 0 0
0 0 {δ3}T 0 0 0
0 0 0 {δ4}T 0 0
0 0 0 0 {δ5}T 0
0 0 0 0 0 {δ6}T


{
q
}

(2.109)
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2.6. Double-walled carbon nanotube

where:
{δ1}T = {fu1

1x f
u1
1θ , f

u1
1x f

u1
2θ , . . . , f

u1
pgu xf

u1
ptu θ}

{δ2}T = {fv1
1xf

v1
1θ , f

v1
1xf

v1
2θ , . . . , f

v1
pgv xf

v1
ptv θ}

{δ3}T = {fw1
1x f

w1
1θ , f

w1
1x f

w1
2θ , . . . , f

w1
pw xf

w1
ptw θ}

{δ4}T = {fu2
1x f

u2
1θ , f

u2
1x f

u2
2θ , . . . , f

u2
pgu xf

u2
ptu θ}

{δ5}T = {fv2
1xf

v2
1θ , f

v2
1xf

v2
2θ , . . . , f

v2
pgv xf

v2
ptv θ}

{δ6}T = {fw2
1x f

w2
1θ , f

w2
1x f

w2
2θ , . . . , f

w2
pw xf

w2
ptw θ}

And {q} is defined as:

{q} =



qu1
11 ; qu1

12 ; . . . ; qu1
pgu−ptu

qv1
11; qv1

12; . . . ; qv1
pgv−ptv

qw1
11 ; qw1

12 ; . . . ; qw1
pw−ptw

qu2
11 ; qu2

12 ; . . . ; qu2
pgu−ptu

qv2
11; qv2

12; . . . ; qv2
pgv−ptv

qw2
11 ; qw2

12 ; . . . ; qw2
pw−ptw


(2.110)

where pgu, pgv and pw define the number of shape functions allocated to the displacements
of u0

i , v
0
i and w0

i (i = 1, 2) in the coordinate of x, respectively, and ptu, ptv and ptw define
the number of shape functions allocated to the displacements of u0

i , v
0
i and w0

i (i = 1, 2)
in the coordinate of θ, respectively.

Lastly, the displacements in Equation (2.109) can be displayed in the compact matrix
form, as follows:

{de0(x, θ, t)} =



u0
1(x, θ, t)
v0

1(x, θ, t)
w0

1(x, θ, t)
u0

2(x, θ, t)
v0

2(x, θ, t)
w0

2(x, θ, t)


=



pgu∑
r=1

ptu∑
s=1

fu1
rx (x)fu1

sθ (θ) qu1
rs (t)

pgv∑
r=1

ptv∑
s=1

fv1
rx(x)fv1

sθ (θ) qv1
rs(t)

pw∑
r=1

ptw∑
s=1

fw1
rx (x)fw1

sθ (θ) qw1
rs (t)

pgu∑
r=1

ptu∑
s=1

fu2
rx (x)fu2

sθ (θ) qu2
rs (t)

pgv∑
r=1

ptv∑
s=1

fv2
rx(x)fv2

sθ (θ) qv2
rs(t)

pw∑
r=1

ptw∑
s=1

fw2
rx (x)fw2

sθ (θ) qw2
rs (t)

(2.111)

Finite Element Matrices

Following a procedure analogous to the one for a single-walled nanotube in the present
chapter, the Galerkin method is applied in order to obtain the weak formulation. The
following equations are presented:∫ 2π

0

∫ l

0
fu1
r (x) fu1

s (θ)Lu1(x, θ, t) dxR1 dθ (2.112)∫ 2π

0

∫ l

0
fv1
r (x) fv1

s (θ)Lv1(x, θ, t) dxR1 dθ (2.113)
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∫ 2π

0

∫ l

0
fw1
r (x) fw1

s (θ)Lw1(x, θ, t) dxR1 dθ (2.114)∫ 2π

0

∫ l

0
fu2
r (x) fu2

s (θ)Lu2(x, θ, t) dxR2 dθ (2.115)∫ 2π

0

∫ l

0
fv2
r (x) fv2

s (θ)Lv2(x, θ, t) dxR2 dθ (2.116)∫ 2π

0

∫ l

0
fw2
r (x) fw2

s (θ)Lw2(x, θ, t) dxR2 dθ (2.117)

where Lu1(x, θ, t) and Lu2(x, θ, t) come from Equation (2.106), Lv1(x, θ, t) and Lv1(x, θ, t)
come from Equation (2.107), and finally Lw1(x, θ, t) and Lw2(x, θ, t) come from Equation
(2.108) after substitution of the value of i.

It is important to note that the employed formulation allows for the usage of different
shape functions for the inner and the outer tube. Therefore, hypothetically, the boundary
conditions of the inner and outer tubes may be different and a study on that matter may be
performed. Furthermore, these equations are then presented with the differential operator
∇ expanded, and with each differential term associated with the respective sum term
resultant from the Galerkin method application, designated from ter(35) to , resulting
again in the linear model algebraic terms.

Thus, for the equation of motion in u0
1 comes:

Lu1(x, θ, t) = ρh

[
∂2u0

1

∂t2︸ ︷︷ ︸
ter(35)

−(e0 a)2

[
∂2

∂x2

(
∂2u0

1

∂t2

)
︸ ︷︷ ︸

ter(36)

+
1

R2
1

∂2

∂θ2

(
∂2u0

1

∂t2

)
︸ ︷︷ ︸

ter(37)

] ]

− Eh

1− ν2

[
∂2u0

1

∂x2︸ ︷︷ ︸
ter(38)

+
1− ν

2

1

R2
1

∂2u0
1

∂θ2︸ ︷︷ ︸
ter(39)

+ ν
1

R1

∂w0
1

∂x︸ ︷︷ ︸
ter(40)

+
1 + ν

2

1

R1

∂2v0
1

∂x∂θ︸ ︷︷ ︸
ter(41)

]

− Eh3

24(1 + ν)R3
1

[
∂3w0

1

∂x∂θ2︸ ︷︷ ︸
ter(42)

− 3

4

∂2v0
1

∂x∂θ︸ ︷︷ ︸
ter(43)

+
1

4R1

∂2u0
1

∂θ2︸ ︷︷ ︸
ter(44)

]
= 0

(2.118)

For the equation of motion in v0
1 comes:

Lv1(x, θ, t) = ρh

[
∂2v0

1

∂t2︸ ︷︷ ︸
ter(45)

−(e0 a)2

[
∂2

∂x2

(
∂2v0

1

∂t2

)
︸ ︷︷ ︸

ter(46)

+
1

R2
1

∂2

∂θ2

(
∂2v0

1

∂t2

)
︸ ︷︷ ︸

ter(47)

] ]

− Eh

1− ν2

[
1

R2
1

∂2v0
1

∂θ2︸ ︷︷ ︸
ter(48)

+
1

R2
1

∂w0
1

∂θ︸ ︷︷ ︸
ter(49)

+
1 + ν

2

1

R1

∂2u0
1

∂x∂θ︸ ︷︷ ︸
ter(50)

+
1− ν

2

∂2v0
1

∂x2︸ ︷︷ ︸
ter(51)

]

− Eh3

12(1− ν2)

[
1

R4
1

∂2v0
1

∂θ2︸ ︷︷ ︸
ter(52)

− 1

R4
1

∂3w0
1

∂θ3︸ ︷︷ ︸
ter(53)

− 3− ν
2

1

R2
1

∂3w0
1

∂x2∂θ︸ ︷︷ ︸
ter(54)

+
9(1− ν)

8R2
1

∂2v0
1

∂x2︸ ︷︷ ︸
ter(55)

− 3(1− ν)

8R3
1

∂2u0
1

∂x∂θ︸ ︷︷ ︸
ter(56)

]
= 0

(2.119)
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For the equation of motion in w0
1 comes:

Lw1(x, θ, t) = ρh

[
∂2w0

1

∂t2︸ ︷︷ ︸
ter(57)

−(e0 a)2

[
∂2

∂x2

(
∂2w0

1

∂t2

)
︸ ︷︷ ︸

ter(58)

+
1

R2
1

∂2

∂θ2

(
∂2w0

1

∂t2

)
︸ ︷︷ ︸

ter(59)

] ]

+
Eh

1− ν2

[
1

R2
1

∂v0
1

∂θ︸ ︷︷ ︸
ter(60)

+
w0

1

R2
1︸︷︷︸

ter(61)

+ ν
1

R1

∂u0
1

∂x︸ ︷︷ ︸
ter(62)

]
+

Eh3

12(1− ν2)

[
∂4w0

1

∂x4︸ ︷︷ ︸
ter(63)

− 3− ν
2R2

1

∂3v0
1

∂x2∂θ︸ ︷︷ ︸
ter(64)

+
2

R2
1

∂4w0
1

∂x2∂θ2︸ ︷︷ ︸
ter(65)

− 1

R4
1

∂3v0
1

∂θ3︸ ︷︷ ︸
ter(66)

+
1

R4
1

∂4w0
1

∂θ4︸ ︷︷ ︸
ter(67)

+
1− ν

2

1

R3
1

∂3u0
1

∂x∂θ2︸ ︷︷ ︸
ter(68)

]

+ c12

[
w0

2︸︷︷︸
ter(69)

− w0
1︸︷︷︸

ter(70)

+(e0a)2

(
∂2w0

1

∂x2︸ ︷︷ ︸
ter(71)

+
1

R2
1

∂2w0
1

∂θ2︸ ︷︷ ︸
ter(72)

− ∂
2w0

2

∂x2︸ ︷︷ ︸
ter(73)

− 1

R2
1

∂2w0
2

∂θ2︸ ︷︷ ︸
ter(74)

)]
= 0

(2.120)

For the equation of motion in u0
2 comes:

Lu2(x, θ, t) = ρh

[
∂2u0

2

∂t2︸ ︷︷ ︸
ter(75)

−(e0 a)2

[
∂2

∂x2

(
∂2u0

2

∂t2

)
︸ ︷︷ ︸

ter(76)

+
1

R2
2

∂2

∂θ2

(
∂2u0

2

∂t2

)
︸ ︷︷ ︸

ter(77)

] ]

− Eh

1− ν2

[
∂2u0

2

∂x2︸ ︷︷ ︸
ter(78)

+
1− ν

2

1

R2
2

∂2u0
2

∂θ2︸ ︷︷ ︸
ter(79)

+ ν
1

R2

∂w0
2

∂x︸ ︷︷ ︸
ter(80)

+
1 + ν

2

1

R2

∂2v0
2

∂x∂θ︸ ︷︷ ︸
ter(81)

]

− Eh3

24(1 + ν)R3
2

[
∂3w0

2

∂x∂θ2︸ ︷︷ ︸
ter(82)

− 3

4

∂2v0
2

∂x∂θ︸ ︷︷ ︸
ter(83)

+
1

4R2

∂2u0
2

∂θ2︸ ︷︷ ︸
ter(84)

]
= 0

(2.121)

For the equation of motion in v0
2 comes:

Lv2(x, θ, t) = ρh

[
∂2v0

2

∂t2︸ ︷︷ ︸
ter(85)

−(e0 a)2

[
∂2

∂x2

(
∂2v0

2

∂t2

)
︸ ︷︷ ︸

ter(86)

+
1

R2
2

∂2

∂θ2

(
∂2v0

2

∂t2

)
︸ ︷︷ ︸

ter(87)

] ]

− Eh

1− ν2

[
1

R2
2

∂2v0
2

∂θ2︸ ︷︷ ︸
ter(88)

+
1

R2
2

∂w0
2

∂θ︸ ︷︷ ︸
ter(89)

+
1 + ν

2

1

R2

∂2u0
2

∂x∂θ︸ ︷︷ ︸
ter(90)

+
1− ν

2

∂2v0
2

∂x2︸ ︷︷ ︸
ter(91)

]

− Eh3

12(1− ν2)

[
1

R4
2

∂2v0
2

∂θ2︸ ︷︷ ︸
ter(92)

− 1

R4
2

∂3w0
2

∂θ3︸ ︷︷ ︸
ter(93)

− 3− ν
2

1

R2
2

∂3w0
2

∂x2∂θ︸ ︷︷ ︸
ter(94)

+
9(1− ν)

8R2
2

∂2v0
2

∂x2︸ ︷︷ ︸
ter(95)

− 3(1− ν)

8R3
2

∂2u0
2

∂x∂θ︸ ︷︷ ︸
ter(96)

]
= 0

(2.122)
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For the equation of motion in w0
2 comes:

Lw2(x, θ, t) = ρh

[
∂2w0

2

∂t2︸ ︷︷ ︸
ter(97)

−(e0 a)2

[
∂2

∂x2

(
∂2w0

2

∂t2

)
︸ ︷︷ ︸

ter(98)

+
1

R2
2

∂2

∂θ2

(
∂2w0

2

∂t2

)
︸ ︷︷ ︸

ter(99)

] ]

+
Eh

1− ν2

[
1

R2
2

∂v0
2

∂θ︸ ︷︷ ︸
ter(100)

+
w0

2

R2
2︸︷︷︸

ter(101)

+ ν
1

R2

∂u0
2

∂x︸ ︷︷ ︸
ter(102)

]
+

Eh3

12(1− ν2)

[
∂4w0

2

∂x4︸ ︷︷ ︸
ter(103)

− 3− ν
2R2

2

∂3v0
2

∂x2∂θ︸ ︷︷ ︸
ter(104)

+
2

R2
2

∂4w0
2

∂x2∂θ2︸ ︷︷ ︸
ter(105)

− 1

R4
2

∂3v0
2

∂θ3︸ ︷︷ ︸
ter(106)

+
1

R4
2

∂4w0
2

∂θ4︸ ︷︷ ︸
ter(107)

+
1− ν

2

1

R3
2

∂3u0
2

∂x∂θ2︸ ︷︷ ︸
ter(108)

]

+ c21

[
w0

1︸︷︷︸
ter(109)

− w0
2︸︷︷︸

ter(110)

+(e0a)2

(
∂2w0

2

∂x2︸ ︷︷ ︸
ter(111)

+
1

R2
2

∂2w0
2

∂θ2︸ ︷︷ ︸
ter(112)

− ∂2w0
1

∂x2︸ ︷︷ ︸
ter(113)

− 1

R2
2

∂2w0
1

∂θ2︸ ︷︷ ︸
ter(114)

)]
= 0

(2.123)

As may be concluded comparison to the single shell model, the terms ter(35)− ter(68)
for the inner tube, and ter(75) − ter(108) for the outer tube from the present model are
analogous to the terms ter(1) − ter(34), which were already expanded in the previous
section. It is, therefore, redundant to expand the terms associated with the singular shell
model for each layer, as the main difference in formulation is the radius and the associated
generalized coordinate. Thus, only the terms with respect to the van der Waals force are
expanded, from Equations (2.114) and (2.117):

ter(69) : c12

∫ 2π

0

∫ l

0
fw1
ix fw1

iθ · (f
w2
jx f

w2
jθ ) dxR1 dθ qw2

ij (t)

= c12R1
l

2

∫ 2π

0
fw1
iθ fw2

jθ dθ

∫ 1

−1
fw1
iξ fw2

jξ dξ qw2
ij (t)

(2.124)

ter(70) : −c12

∫ 2π

0

∫ l

0
fw1
ix fw1

iθ · (f
w1
jx f

w1
jθ ) dxR1 dθ qw1

ij (t)

= −c12R1
l

2

∫ 2π

0
fw1
iθ fw1

jθ dθ

∫ 1

−1
fw1
iξ fw1

jξ dξ qw1
ij (t)

(2.125)

ter(71) : c12 (e0 a)2

∫ 2π

0

∫ l

0
fw1
ix fw1

iθ ·
∂2

∂x2

(
fw1
jx f

w1
jθ

)
dxR1 dθ qw1

ij (t)

= −c12 (e0 a)2R1
2

l

∫ 2π

0
fw1
iθ fw1

jθ dθ

∫ 1

−1

dfw1
iξ

dξ

dfw1
jξ

dξ
dξ qw1

ij (t)

(2.126)

ter(72) : c12 (e0 a)2 1

R2
1

∫ 2π

0

∫ l

0
fw1
ix fw1

iθ ·
∂2

∂θ2

(
fw1
jx f

w1
jθ

)
dxR1 dθ qw1

ij (t)

= −c12 (e0 a)2 1

R1

l

2

∫ 2π

0

dfw1
iθ

dθ

dfw1
jθ

dθ
dθ

∫ 1

−1
fw1
iξ fw1

jξ dξ qw1
ij (t)

(2.127)

44



2.6. Double-walled carbon nanotube

ter(73) : −c12 (e0 a)2

∫ 2π

0

∫ l

0
fw1
ix fw1

iθ ·
∂2

∂x2

(
fw2
jx f

w2
jθ

)
dxR1 dθ qw2

ij (t)

= c12 (e0 a)2R1
2

l

∫ 2π

0
fw1
iθ fw2

jθ dθ

∫ 1

−1

dfw1
iξ

dξ

dfw2
jξ

dξ
dξ qw2

ij (t)

(2.128)

ter(74) : −c12 (e0 a)2 1

R2
1

∫ 2π

0

∫ l

0
fw1
ix fw1

iθ ·
∂2

∂θ2

(
fw2
jx f

w2
jθ

)
dxR1 dθ qw2

ij (t)

= c12 (e0 a)2 1

R1

l

2

∫ 2π

0

dfw1
iθ

dθ

dfw2
jθ

dθ
dθ

∫ 1

−1
fw1
iξ fw2

jξ dξ qw2
ij (t)

(2.129)

ter(109) : c21

∫ 2π

0

∫ l

0
fw2
ix fw2

iθ · (f
w1
jx f

w1
jθ ) dxR2 dθ qw1

ij (t)

= c21R2
l

2

∫ 2π

0
fw2
iθ fw1

jθ dθ

∫ 1

−1
fw2
iξ fw1

jξ dξ qw1
ij (t)

(2.130)

ter(110) : −c21

∫ 2π

0

∫ l

0
fw2
ix fw2

iθ · (f
w2
jx f

w2
jθ ) dxR2 dθ qw2

ij (t)

= −c21R2
l

2

∫ 2π

0
fw2
iθ fw2

jθ dθ

∫ 1

−1
fw2
iξ fw2

jξ dξ qw2
ij (t)

(2.131)

ter(111) : c21 (e0 a)2

∫ 2π

0

∫ l

0
fw2
ix fw2

iθ ·
∂2

∂x2

(
fw2
jx f

w2
jθ

)
dxR2 dθ qw2

ij (t)

= −c21 (e0 a)2R2
2

l

∫ 2π

0
fw2
iθ fw2

jθ dθ

∫ 1

−1

dfw2
iξ

dξ

dfw2
jξ

dξ
dξ qw2

ij (t)

(2.132)

ter(112) : c21 (e0 a)2 1

R2
2

∫ 2π

0

∫ l

0
fw2
ix fw2

iθ ·
∂2

∂θ2

(
fw2
jx f

w2
jθ

)
dxR2 dθ qw2

ij (t)

= −c21 (e0 a)2 1

R2

l

2

∫ 2π

0

dfw2
iθ

dθ

dfw2
jθ

dθ
dθ

∫ 1

−1
fw2
iξ fw2

jξ dξ qw2
ij (t)

(2.133)

ter(113) : −c21 (e0 a)2

∫ 2π

0

∫ l

0
fw2
ix fw2

iθ ·
∂2

∂x2

(
fw1
jx f

w1
jθ

)
dxR2 dθ qw1

ij (t)

= c21 (e0 a)2R2
2

l

∫ 2π

0
fw2
iθ fw1

jθ dθ

∫ 1

−1

dfw2
iξ

dξ

dfw1
jξ

dξ
dξ qw1

ij (t)

(2.134)

ter(114) : −c21 (e0 a)2 1

R2
2

∫ 2π

0

∫ l

0
fw2
ix fw2

iθ ·
∂2

∂θ2

(
fw1
jx f

w1
jθ

)
dxR2 dθ qw1

ij (t)

= c21 (e0 a)2 1

R2

l

2

∫ 2π

0

dfw2
iθ

dθ

dfw1
jθ

dθ
dθ

∫ 1

−1
fw2
iξ fw1

jξ dξ qw1
ij (t)

(2.135)
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Expressing the model in the matrix form, the dynamic problem comes as:





[Mu1u1 ] 0 0 0 0 0
0 [Mv1v1 ] 0 0 0 0
0 0 [Mw1w1 ] 0 0 0
0 0 0 [Mu2u2 ] 0 0
0 0 0 0 [Mv2v2 ] 0
0 0 0 0 0 [Mw2w2 ]

+



[Mµ
u1u1 ] 0 0 0 0 0
0 [Mµ

v1v1 ] 0 0 0 0
0 0 [Mµ

w1w1 ] 0 0 0
0 0 0 [Mµ

u2u2 ] 0 0
0 0 0 0 [Mµ

v2v2 ] 0
0 0 0 0 0 [Mµ

w2w2 ]







{q̈u1(t)}
{q̈v1(t)}
{q̈w1(t)}
{q̈u2(t)}
{q̈v2(t)}
{q̈w2(t)}



+



[Ku1u1 ] [Ku1v1 ] [Ku1w1 ] 0 0 0
[Kv1u1 ] [Kv1v1 ] [Kv1w1 ] 0 0 0
[Kw1u1 ] [Kw1v1 ] [Kw1w1 ] 0 0 [Kw1w2 ]

0 0 0 [Ku2u2 ] [Ku2v2 ] [Ku2w2 ]
0 0 0 [Kv2u2 ] [Kv2v2 ] [Kv2w2 ]
0 0 [Kw2w1 ] [Kw2u2 ] [Kw2v2 ] [Kw2w2 ]





{qu1(t)}
{qv1(t)}
{qw1(t)}
{qu2(t)}
{qv2(t)}
{qw2(t)}


=



0
0
0
0
0
0


(2.136)

where each one of the submatrixes are defined as:

• [Mu1u1 ]← ter(35)

• [Mv1v1 ]← ter(45)

• [Mw1w1 ]← ter(57)

• [Mµ
u1u1 ]← ter(36) + ter(37)

• [Mµ
v1v1 ]← ter(46) + ter(47)

• [Mµ
w1w1 ]← ter(58) + ter(59)

• [Mu2u2 ]← ter(75)

• [Mv2v2 ]← ter(85)

• [Mw2w2 ]← ter(97)

• [Mµ
u2u2 ]← ter(76) + ter(77)

• [Mµ
v2v2 ]← ter(86) + ter(87)

• [Mµ
w2w2 ]← ter(98) + ter(99)
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• [Ku1u1 ]← ter(38) + ter(39) + ter(44)

• [Ku1v1 ]← ter(41) + ter(43)

• [Ku1w1 ]← ter(40) + ter(42)

• [Kv1u1 ]← ter(50) + ter(56)

• [Kv1v1 ]← ter(48)+ter(51)+ter(52)+
ter(55)

• [Kv1w1 ]← ter(49) + ter(53) + ter(54)

• [Kw1u1 ]← ter(62) + ter(68)

• [Kw1v1 ]← ter(60) + ter(64) + ter(66)

• [Kw1w1 ]← ter(61)+ter(63)+ter(65)+
ter(67) + ter(70) + ter(71) + ter(72)

• [Kw1w2 ]← ter(69)+ ter(73)+ ter(74))

• [Ku2u2 ]← ter(78) + ter(79) + ter(84)

• [Ku2v2 ]← ter(81) + ter(83)

• [Ku2w2 ]← ter(80) + ter(82)

• [Kv2u2 ]← ter(90) + ter(96)

• [Kv2v2 ]← ter(88)+ter(91)+ter(92)+
ter(95)

• [Kv2w2 ]← ter(89) + ter(93) + ter(94)

• [Kw2u2 ]← ter(102) + ter(108)

• [Kw2v2 ] ← ter(100) + ter(104) +
ter(106)

• [Kw2w2 ] ← ter(101) + ter(103) +
ter(105) + ter(110) + ter(111) +
ter(112)

• [Kw2w1 ] ← ter(109) + ter(113) +
ter(114)

As the linear problem is implemented and in order for the modes of vibration to be
extracted, one last decomposition must be considered regarding the time dependence: the
generalized displacements are assumed to be dependent on an harmonic function, as done
for linear vibrations of a conservative system, an analogous procedure to the one taken for
single-walled nanotubes. The consideration is expressed as follows:

qu1
rs (t) = qu1

rs cos ωt (2.137a)

qv1
rs(t) = qv1

rs cos ωt (2.137b)

qw1
rs (t) = qw1

rs cos ωt (2.137c)

qu2
rs (t) = qu2

rs cos ωt (2.137d)

qv2
rs(t) = qv2

rs cos ωt (2.137e)

qw2
rs (t) = qw2

rs cos ωt (2.137f)

Hence, regarding the generalized accelerations, comes:

q̈u1
rs (t) = −ω2 qu1

rs cos ωt (2.138a)

q̈v1
rs(t) = −ω2 qv1

rs cos ωt (2.138b)

q̈w1
rs (t) = −ω2 qw1

rs cos ωt (2.138c)

q̈u2
rs (t) = −ω2 qu2

rs cos ωt (2.138d)

q̈v2
rs(t) = −ω2 qv2

rs cos ωt (2.138e)

q̈w2
rs (t) = −ω2 qw2

rs cos ωt (2.138f)

This process allows to drop the harmonic function from every term, resulting in time-
independent equations. This simplification is usually assumed as the model is studied in
the linear field, as already explained, where the displacements amplitudes are relatively
small.
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2.7 Conclusions

In the present chapter, a model based on the thin shell theory of Sanders-Koiter, which lays
on Kirchhoff-Love’s principles is developed. The material is assumed to be homogeneous
and isotropic, as commonly assumed in the reviewed bibliography. Eringen’s nonlocal
theory is also applied, in order to take into account the small-scale effect inherent in
nanosized tubes.

First, Hamilton’s principle is used to derive a set of equations of motion dependent on
the shell’s forces and moments. For the general displacements, the Galerkin method is ap-
plied in order to establish the discretized set of equations properly capable of representing
the dynamic problem. This process is executed for both single-walled and double-walled
carbon nanotubes, where the first may be interpreted as a simpler case of the second, not
only for the usage of half displacement components, but also because the van der Waals
pressure influence between layers is only relevant for multi-walled carbon nanotubes. The
matricial formulation is finally presented with the attribution of each term resultant from
the Galerkin method to the respective matrix. Lastly, the time domain of the general-
ized displacements is expanded due to its periodic response dependence on an harmonic
function, as the latter is dropped, resulting in the characteristic vibration problem.
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Chapter 3

Model Validation

3.1 Introduction

In this chapter, the previously developed model is tested and verified under different
scenarios, all according to bibliographical data. The linear eigenvalue problem described
as a result of the dynamic problem established in the previous chapter, used for linear
vibration problems, is approached, as natural frequencies and mode shapes are calculated.

First, a convergence analysis takes place, setting a basic number of functions necessary
for the solution to converge to an accurate value from the eigenvalue-type problem using
different input properties, such as boundary conditions. Then, both local - SWCNT and
DWCNT - and nonlocal - SWCNT - models are validated, as different nonlocal param-
eters are taken as input, being a crucial step for the next chapter. Lastly, a wide range
of mode shapes within the local theory is documented, including different types of vibra-
tional modes (extensional and inextensional), linked to the properties used for the model
validation, illustrating the versatility of the computational implementation using the p-
version FEM with less computational effort, when comparing to molecular dynamics. All
the numerical values and mode shapes are produced using the software Maple.

3.2 Numerical results: Convergence

Before analysing the convergence of the method, it is necessary to define the boundary
conditions studied in this chapter and dissertation, regarding the CNTs. Thus, clamped-
clamped (CC), free-free (FF) and simply supported-simply supported (SS) boundary con-
ditions are considered, and are defined as follows [11, 70, 97]:

• Clamped-clamped (CC)

u0 = v0 = w0 = 0, x = 0, l

∂w0

∂x
= 0, x = 0, l

• Free-Free (FF)
Nxx = 0, x = 0, l

Nxθ +
1

R
Mxθ = 0, x = 0, l

Qxx +
1

R

∂Mxθ

∂θ
= 0, x = 0, l

Mxx = 0, x = 0, l

49



3. Model Validation

• Simply supported-simply supported (SS)

v0 = w0 = 0, x = 0, l

Nxx = 0, x = 0, l

Mxx = 0, x = 0, l

where N indicates normal stress, M indicates moment and Q indicates transverse stress.
As can be observed, clamped-clamped conditions require geometric boundary condi-

tions, while free-free conditions only need natural boundary conditions to describe their
edges, and simply supported-simply supported state being a mix of both, as for the
clamped edge it assumes the typical geometric boundary conditions and for the free edge,
the natural boundary conditions described before are assumed. It should also be stated
that for the problem’s convergence, only the geometric boundary conditions must be re-
spected. In fact, taking into consideration the natural boundary conditions may provide
a better convergence with fewer shape functions, but they are not taken into account for
the shape functions selection. Thus, for FF, all the initial four functions of f and two
initial functions of g are considered, as described in the last chapter, while for CC none
are considered. For SS, functions for v0 are the same as for CC, while for u0 both initial
g functions are used, allowing for displacement in u0, and for w0 the fBC2 (ξ) and fBC4 (ξ)
initial functions are employed, having unitary slope in each edge.

The material’s and lattice properties must be defined before the computation of the
problem. As stated, the material is considered homogeneous and isotropic, and thus the
elastic and geometric problems arise for an equivalent model, as the one in the present
dissertation. Different ”effective” properties are documented, regarded as a range of val-
ues calculated from different experiments, not defining a specific set of parameters, and
”equivalent” parameters, having been proposed by Yakobson et al. in [22], from the prin-
ciple that the elastic-properties of a two-dimensional hexagonal structure are isotropic
(assumed previously in this dissertation), and leading to the approximation that a uni-
form shell may be characterized by two elastic parameters: the flexural rigidity D and the
resistance to membrane stretching, the in-plane stiffness C. These constants determined
by semiempirical methods are used to establish the stated equivalent parameters, which
are, in fact, commonly used as an approximation of the continuum model to match molec-
ular dynamics experiments results, regarding the nanotube’s behaviour under strain [22].
These parameters are stated in Table 3.1.

Table 3.1: Effective and equivalent parameters of single-walled carbon nanotubes [11, 22]

Effective thickness h0 [nm] 0.10-0.15
Equivalent thickness h [nm] 0.066
Effective Young’s modulus E0 [TPa] 1.0-2.0
Equivalent Young’s modulus E [TPa] 5.5
Effective Poisson’s ratio ν0 0.12-0.28
Equivalent Poisson’s ratio ν 0.19
Surface density of graphite σ[kg/m2] 7.718× 10−7

Equivalent mass density ρ[kg/m3] 11,700

In Table 3.2 the first four linear natural frequencies of beam-like modes (n = 1) are
presented, considering clamped-clamped boundary conditions, for a specific value of aspect
ratio χ = l

2R . Different sets of number of functions are employed, designating the number
of functions of x by N applied for u0, v0 and w0, being respectively pgu, pgv and pw. The
results are compared to the solutions given by Strozzi et al. [11], who applied the Sanders-
Koiter theory aided by the Rayleigh-Ritz method in order to implement it. It can be
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observed that from the value of N = 15 and onwards, the model converges for a difference
below 0.4% consistently. As the difference values remain constant from the referred number
of shape functions on, it is concluded that the natural frequencies converge. In p-version
finite element method with an hierarchic set of shape functions, the eigenvalues converge
to the exact solution from above, as the number of shape functions is increased [98].

Table 3.2: Convergence of local natural frequencies [THz] of beam-like modes (n = 1) -
CC

(r, s) = (5, 5) χ = 10.34

N ω1 Diff. (%) ω2 Diff. (%) ω3 Diff. (%) ω4 Diff. (%)

- Sol. [11] 0.335 - 0.819 - 1.428 - 2.095 -
5

Model

0.3374 0.72 0.8303 1.4 1.479 3.6 4.110 96
7 0.3357 0.21 0.8253 0.77 1.433 0.34 2.137 2.0
11 0.3346 0.13 0.8190 0.0045 1.423 0.34 2.093 0.089
15 0.3344 0.17 0.8181 0.11 1.422 0.40 2.091 0.20
19 0.3344 0.17 0.8181 0.11 1.422 0.40 2.091 0.20
21 0.3344 0.18 0.8181 0.11 1.422 0.40 2.091 0.20
25 0.3344 0.18 0.8181 0.11 1.422 0.40 2.091 0.20

Another local linear model validation is described in Table 3.3 , as the first four linear
and local natural frequencies of modes (n = 2) are calculated, for free-free boundary
conditions. More sets of shape functions N are examined and compared to the model [11].
It can be observed for this case that convergence happens for a higher number of shape
functions, when the difference value becomes stabilized, for N = 24. The discrepancy in
the difference remains below 3% for all natural frequencies, also signaling the validation
of the model.

Table 3.3: Convergence of local natural frequencies [THz] of modes for (n = 2) - FF

(r, s) = (10, 0) χ = 12.8

N ω1 Diff. (%) ω2 Diff. (%) ω3 Diff. (%) ω4 Diff. (%)

- Sol. [11] 1.174 - 1.176 - 1.195 - 1.227 -
5

Model

1.169 0.41 1.173 0.27 1.188 0.57 1.257 2.4
7 1.169 0.41 1.173 0.28 1.187 0.66 1.221 0.50
11 1.169 0.41 1.173 0.29 1.184 0.90 1.211 1.3
15 1.169 0.41 1.172 0.34 1.179 1.3 1.198 2.4
19 1.169 0.41 1.172 0.37 1.178 1.4 1.194 2.7
21 1.169 0.41 1.172 0.38 1.177 1.5 1.193 2.8
23 1.169 0.41 1.172 0.38 1.177 1.5 1.192 2.8
24 1.169 0.41 1.172 0.39 1.177 1.5 1.192 2.9
25 1.169 0.41 1.172 0.39 1.177 1.5 1.192 2.9

Lastly in the present subsection, it is important to study the convergence of the linear
theory taking into account the nonlocal small-size effects. Two sets of values e0 = 0.3
and e0 = 0.6 are tested in Table 3.4 , as the goal is to study the convergence into the
values given by Avramov [10]. As can be observed, from the value of N = 15 onwards, the
natural frequencies converge as the value of the difference remains constant. On another
note, the registered numbers come very close to the ones given by [10], hinting about the
validation of the values, as the difference values are very close to 0% when comparing to
a similar continuum theory.
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Table 3.4: Convergence of nonlocal natural frequencies [THz] of beam-like modes (n = 1),
for e0 = 0.3 and e0 = 0.6 - CC

(r, s) = (5, 5) χ = 5.26 e0 = 0.3

N ω1 Diff. (%) ω2 Diff. (%) ω3 Diff. (%) ω4 Diff. (%)

- Sol. [10] 1.009 - 2.169 - 3.478 - 4.767 -
5

Model

1.014 0.50 2.190 1.00 3.524 1.3 6.116 28
7 1.010 0.088 2.174 0.23 3.481 0.090 4.810 0.91
11 1.009 0.014 2.169 0.013 3.479 0.014 4.768 0.015
15 1.009 0.013 2.169 0.012 3.479 0.013 4.767 0.012
19 1.009 0.013 2.169 0.012 3.479 0.013 4.767 0.012
21 1.009 0.013 2.169 0.012 3.479 0.013 4.767 0.012
25 1.009 0.013 2.169 0.012 3.479 0.013 4.767 0.012

(r, s) = (5, 5) χ = 5.26 e0 = 0.6

N ω1 Diff. (%) ω2 Diff. (%) ω3 Diff. (%) ω4 Diff. (%)

- Sol. [10] 0.9839 - 2.103 - 3.342 - 4.522 -
5

Model

0.9888 0.50 2.124 0.98 3.385 1.3 5.795 28
7 0.9848 0.091 2.108 0.23 3.345 0.085 4.562 0.87
11 0.9841 0.018 2.103 0.017 3.342 0.015 4.523 0.019
15 0.9841 0.017 2.103 0.016 3.342 0.013 4.523 0.014
19 0.9841 0.017 2.103 0.016 3.342 0.013 4.523 0.014
21 0.9841 0.017 2.103 0.016 3.342 0.013 4.523 0.014
25 0.9841 0.017 2.103 0.016 3.342 0.013 4.523 0.014

It should be noted that as the small scale parameter increases, the natural frequencies
decrease, as is possible to observe in Table 3.4. That comes from the fact that in the linear
model, the nonlocal effect does not alter the stiffness, but influences the inertia of the shell
model, increasing it with the increase of the parameter. This reveals to be an important
factor that allows for the calibration and study of influence of the nonlocal parameter in
the natural frequencies and mode shapes, as will be discussed further.

As can be observed, for different situations the natural frequencies values converge for a
minimum value of N that is variable. More specifically, for different boundary conditions,
the number of shape functions necessary for convergence can differ from N = 15 to N = 24.
Thus, along the following sections for the calculation of natural frequencies and mode
shapes, the maximum number of functions is employed, typically N = 25.

Although comparisons were carried out with results from other authors, allowing us to
gain some confidence in the present model, the main goal of this section was to analyse the
convergence properties of the latter. The data used for comparison in this section comes
from models based on assumptions similar to the ones on which the present model is based;
hypothetically, these models may be inadequate to represent a real carbon nanotube. Thus,
the next section further validates the model with values from molecular dynamics’ simula-
tions and finite element method simulations from hybrid atomistic-continuum modelling.
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3.3 Numerical Results: Validation

The present section intends to validate the values of the natural frequencies and behaviour
of mode shapes obtained by the continuum model developed in this dissertation based on
the Sanders-Koiter theory. The results are compared to resonant Raman Spectroscopy
(RRS), Molecular Dynamics (MD), Finite Element Analysis (FEA) and lastly, to a con-
tinuum model theory, as not enough data for the specific characteristics intended to be
tested were found, thus allowing for validation by comparison to a model (as done for
convergence in the previous chapter), as it is an option chosen for the lack of MD or FEA
results.

The first tested values are for radial breathing modes (RBM). The parameters for
single-walled carbon nanotubes used are the ones already described in Table 3.1. From this
paragraph on, a notation is introduced, consisting of describing the number of complete
waves in the x coordinate, k, as when visualizing mode shapes it is crucial to associate
them to the respective frequencies and pace (for θ the association is simpler as for the
calculated values a definite value of n is employed and therefore easier to comprehend).
In Table 3.5 and 3.6 different values of fundamental frequencies for RBMs are calculated
and presented. For RRS, the same aspect ratio is employed as it is also constant in the
source of the values, while for MD the same parameter varies.

Table 3.5: Comparison between local natural frequency [THz] for k = 0 of Radial Breath-
ing Modes (n = 0) and Resonant Raman Spectroscopy (RRS)

(r,s) χ Model RRS [99] Diff. (%)

(10,5) 10 6.789 7.105 4.45
(11,4) 10 6.675 6.865 2.76
(9,7) 10 6.465 6.742 4.11
(10,6) 10 6.418 6.688 4.04
(14,1) 10 6.186 6.295 1.74
(18,0) 10 4.992 5.276 5.39
(17,2) 10 4.969 5.216 4.74
(16,4) 10 4.902 5.066 3.24
(15,6) 10 4.796 4.947 3.06
(11,11) 10 4.716 4.917 4.09
(14,8) 10 4.659 4.857 4.09
(19,1) 10 4.603 4.797 4.04
(18,3) 10 4.567 4.737 3.58
(13,10) 10 4.498 4.677 3.82
(17,5) 10 4.498 4.677 3.82
(16,7) 10 4.400 4.617 4.70
(12,12) 10 4.323 4.527 4.51
(15,9) 10 4.279 4.461 4.09
(21,0) 10 4.278 4.437 3.59
(20,2) 10 4.264 4.446 4.09

It is important to note that the fundamental frequencies of radial breathing modes
studied for free-free edges assume a constant shape regarding the displacement in the x
coordinate, so that k = 0, while the second natural frequency expresses a shape regarding
a half wave, while for clamped-clamped CNTs, the fundamental frequency mode shape
assumes a complete wave behaviour in the x coordinate. The relevancy of this fact comes
from the phenomenon described for the natural frequencies of lower wave number to not
be necessarily the first or less energetic natural frequency, as the mode shapes need to be
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Table 3.6: Comparison between local natural frequency [THz] for k = 0 of Radial Breath-
ing Modes (n = 0) and Molecular Dynamics (MD)

(r,s) χ Model MD [100] Diff. (%)

(12,0) 5.677 7.495 7.272 3.07
(7,7) 5.577 7.419 7.166 3.53
(9,6) 5.827 6.878 6.649 3.44
(10,5) 5.289 6.801 6.581 3.34
(8,8) 5.673 6.491 6.275 3.44
(14,0) 5.771 6.424 6.235 3.03
(11,7) 5.333 5.724 5.550 3.14
(16,0) 6.070 5.620 5.455 3.03
(10,10) 5.626 5.193 5.026 3.32
(15,4) 5.445 5.185 5.018 3.33
(18,0) 5.598 4.997 4.850 3.03
(20,0) 5.671 4.497 4.364 3.05
(12,12) 5.671 4.327 4.190 3.28
(25,0) 5.624 3.598 3.491 3.06
(15,15) 5.624 3.462 3.354 3.22
(30,0) 5.683 2.998 2.908 3.10
(18,18) 5.644 2.885 2.796 3.18
(33,0) 6.239 2.725 2.623 3.88
(20,20) 5.669 2.596 2.516 3.20
(36,0) 5.669 2.498 2.423 3.11

observed to determine the values for each table.
It should also be noted that for both comparisons the results come with a small and

consistent difference value, with the maximum value to be close to 5% for RRS, and 3%
for MD. For a last instance, it can be observed that for an increasing value of diameter
(coming from the chiral vectors amplitude increase), the natural frequencies of k = 0
RBMs tend to decrease, for similar values of aspect ratio.

The following validation process describes values regarding the beam-like modes (n =
1) of carbon nanotubes with different values of aspect ratio, documenting the set of the
first four natural frequencies under clamped-clamped boundary conditions. The natural
frequency values are compared to the Molecular Dynamics calculations performed by Duan
et al. [7]. These values come expressed in Table 3.7.

Analysing Table 3.7, the first conclusion that comes is that the natural frequencies
tend to decrease as the aspect ratio increases, as independently from the number of the
natural frequency, this behaviour is registered as already done for radial breathing modes.
Generally speaking, the relative difference values also decreases for higher value aspect
ratio, comparing to lower values.

For the whole range of natural frequencies, it is noted that the calculated values from
the model are higher than the MD values, as expected, until a breaking point defined
by a critical value of aspect ratio is attained, after which the values calculated by the
local model are below the ones given by MD results. This is linked to the theory and to
the parameters of the current analysis, as similar parameters were used in the analysis
performed by Strozzi et al. [11] with close yielded results. Logically this fact invalidates
an analysis of the effect of the nonlocal parameter for aspect ratio values superior to the
critical one, which will be studied on Chapter 4.

The next analysis is carried regarding the validation of the model when comparing
the values of the natural frequencies to finite element analysis results. It is important to
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Table 3.7: Comparison between local natural frequencies [THz] of beam-like modes (n = 1)
and Molecular Dynamics (MD)

Model MD [7] Diff. (%)

(r, s) = (5, 5), χ = 6.35

Clamped-Clamped CC

ω1 0.7622 0.741 2.9
ω2 1.7027 1.654 2.9
ω3 2.793 2.717 2.8
ω4 3.920 3.828 2.4

(r, s) = (5, 5), χ = 11.43

Clamped-Clamped CC

ω1 0.2792 0.282 1.0
ω2 0.6938 0.698 0.60
ω3 1.221 1.223 0.14
ω4 1.813 1.811 0.12

(r, s) = (5, 5), χ = 15.05

Clamped-Clamped CC

ω1 0.1676 0.172 2.5
ω2 0.4319 0.440 1.8
ω3 0.7847 0.796 1.4
ω4 1.1967 1.210 1.1

study the effect of chirality, diameter, aspect ratio and boundary conditions of the linear
model on the results, evaluating its accuracy. As seen, different chiralities and diameters
are yet to be studied, and as MD simulations documentation is relatively short in number
of publications, not only using FEA it is found a comparing number, but it can also
be compared the p-version FEM to an h-version, as used by Sakhaee-Pour et al. [63].
Relevant results are presented in Table 3.8.

In Table 3.8, results from the validation of the model in comparison to finite element
analysis are presented. It should be understood that the FEA process itself requires
validation with MD results, as this is not the same source as MD, it is still relevant for
the purpose of this review. Regarding the results itself, it may be concluded that a similar
phenomenon takes place as the previous analysis, as for the same chirality/diameter and for
different aspect ratios, not only for a higher aspect ratio the value of the natural frequency
is lower independently of the boundary conditions, but the difference value is also lower.
It is important to recognize a relevant detail regarding the number of significant digits
presented by the authors in [63], as it may induce larger relative differences than the real
ones, for example for the first natural frequency of the last two tables, only two significant
digits are presented. Therefore, the number is certainly suffering an approximation (the
value 0.044 may range from 0.0435 to 0.0444, considering one more digit) that given the
possible range limits, may or may not represent a significant addition to the difference
value.
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Table 3.8: Comparison between local natural frequencies [THz] of beam-like modes (n = 1)
and Finite Element Analysis (FEA)

Model FEA [63] Diff. (%)

(r, s) = (12, 12), χ = 6.95

Clamped-Clamped CC

ω1 0.2730 0.243 12
ω2 0.6198 0.545 13
ω3 1.025 0.616 66
ω4 1.448 0.762 90

(r, s) = (12, 12), χ = 19.65

Clamped-Clamped CC

ω1 0.04204 0.042 0.094
ω2 0.1110 0.111 0.032
ω3 0.2066 0.207 0.20
ω4 0.3224 0.339 4.9

(r, s) = (20, 0), χ = 19.60

Clamped-Clamped CC

ω1 0.04376 0.044 0.55
ω2 0.1155 0.116 0.44
ω3 0.2150 0.217 0.93
ω4 0.3355 0.354 5.2

A clear conclusion may be taken from the value of difference for lower aspect ratios, as
the higher the natural frequency, the higher the difference. For an aspect ratio of χ = 6.95
the difference for ω4 is very significant. The magnitude of the the difference value is, on
average, on the same order for the same chirality and aspect ratio, fading higher values of
difference as the aspect ratio increases and revealing satisfactory values for χ = 19.65, for
example.

With the effort of testing the chirality influence, the last parameter set is presented.
For instance, for (r, s) = (12, 12) and χ = 19.65, the value of diameter and length comes
as D = 1.628 nm and l = 31.993 nm, while for for (r, s) = (20, 0) and χ = 19.60, the
value of diameter and length comes as D = 1.566 nm and l = 30.693 nm. These values are
sufficiently close to carry out a comparison between the effects of chirality, having in mind
that the developed continuum model does not account for the influence of the orientation
of the lattice on the output results, as it is only able to calculate the diameter from the
chiral vectors (as stated by Equation (1.2)), while FEA with discretization of the atoms as
concentrated masses and bonds as rigid beams does account for that influence. Despite this
fact, it can be observed that the values of the first four natural frequencies is very similar
between the armchair CNT ((r, s) = (12, 12)) and the zig-zag CNT ((r, s) = (20, 0)).
In fact, the magnitude of the associated differences are very similar, and the difference
between the natural frequency values may be not come only from the chirality itself,
but also due to the difference in the resultant diameter and the aspect ratio simulated.
Nevertheless, the influence of the chirality reveals itself with few significance compared to
other parameters.
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Table 3.9: Comparison between local natural frequencies [THz] of modes for n = 2 and
Free-free edges and [11]

Model Sol. [11] Diff. (%)

(r, s) = (10, 0), χ = 3.83

ω1 1.164 1.188 2.0
ω2 1.169 1.216 3.8
ω3 1.316 1.522 14
ω4 2.110 2.324 9.2
ω5 3.318 3.437 3.4
ω6 4.594 4.632 0.83

(r, s) = (10, 0), χ = 12.8

ω1 1.169 1.174 0.41
ω2 1.172 1.176 0.39
ω3 1.177 1.195 1.51
ω4 1.192 1.227 2.87
ω5 1.238 1.291 4.09
ω6 1.333 1.399 4.73

A different validation analysis is taken regarding the free-free boundary conditions.
Molecular dynamics simulations or finite element analysis were lacking for this specific
boundary condition, and therefore the continuum model already used in the previous
section (Strozzi et al. [11]) is again employed for this case. Results are shown in Table
3.9.

Analysing Table 3.9, the natural frequency results come in agreement with the model
developed by [11]. In fact, for a smaller value of aspect ratio, the third and fourth eigenval-
ues of the characteristic problem come with a considerable difference associated. Despite
this, for a greater number of aspect ratio, the associated difference values are considerably
smaller as the natural frequency values are closer to the ones documented. The general
behaviour of the values also comes as expected, as the natural frequencies are lower for a
higher aspect ratio in comparison to the equivalent for a lower χ, with the exception of the
first two, which are very close with a difference in the fourth significant figure, illustrating
most likely a numerical malfunction. As no molecular dynamics data is used to test the
accuracy of the model, no further conclusions are taken for this case.

One more validation approach is taken regarding another type of boundary conditions,
namely simply supported-simply supported. The results are compared to the values given
in [97], presenting results from the analytical exact natural frequency results, along with
FEM results, all by the same author. The model is validated for different properties of
the tubes/shells, as the material is steel and not carbon associated with larger dimensions,
which come in Table 3.10.

The results of regarding the validation of the model for simply supported-simply sup-
ported edges are established in Table 3.11.

As may be further analysed from the data of Table 3.11, the results are in good
agreement with the bibliography used for the present verification. In fact, the results
obtained in the developed model for this dissertation are calculated with a wide range of
significant digits, even though only present with four significant digits, which leads to the
relative difference value seen on the fifth column, as the source only provides the digits
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Table 3.10: Chosen parameters of simply supported boundary conditions result validation
[97]

Equivalent thickness h [m] 0.247×10−3

Equivalent Young’s modulus E [Pa] 71.02× 109

Equivalent Poisson’s ratio ν 0.31
Radius [m] 0.1
Length [m] 0.2
Equivalent mass density ρ [kg/m3] 2,796

Table 3.11: Comparison between local natural frequencies [Hz] of modes for simply
supported-simply supported edges and the exact solution and Finite Element Analysis
(FEA) [97]

n Model Exact Sol. [97] Diff. (%) FEM Sol. [97] Diff. (%)

ω1 7 484.6 484.6 0 484.9 0.072
ω1 8 489.6 489.6 0 490.0 0.090
ω1 9 546.2 546.2 0 546.9 0.13
ω1 6 553.3 553.3 0 553.7 0.066
ω1 10 636.8 636.8 0 637.9 0.17
ω1 5 722.1 722.1 0 722.5 0.051
ω1 11 750.7 750.7 0 752.3 0.22
ω1 12 882.2 882.2 0 884.6 0.27
ω2 10 968.1 968.1 0 970.5 0.25
ω2 11 983.4 983.4 0 985.9 0.26

exposed in the stated table, which are certainly affected by an approximation (the same
consideration described regarding Table 3.8 is applied here). Regarding the comparison to
the FEM solution, the results also come with a reduced relative difference, being possible
to conclude that the stated boundary condition is validated for the present model.

Regarding double-walled carbon nanotubes, the validation process is conducted by
comparison to the results given by Ansari et al. [101], from a molecular dynamics approach.
The parameters of the CNTs are the same used in Table 3.1, and the van der Waals pressure
specific parameters come in Table 3.12, as follows:

Table 3.12: Parameters regarding the van der Waals pressure [9, 93]

Bond length of carbon atoms a [nm] 0.142
Depth of the potential ε [J] 4.7483× 10−22

Equilibrium distance parameter σvdW [nm] 0.3407

as the bond length of the carbon atoms a was already defined before, and the respec-
tive inner and outer radius values are determined from the chirality expression stated in
Equation (1.2).

The comparison of results is performed regarding different sets of boundary condi-
tions, namely clamped-clamped and simply supported-simply supported. The results are
presented in Tables 3.13 and 3.14. It is important to note that both the length of the nan-
otubes and the aspect ratio value are presented as the first one is stated on reference [101],
and the aspect ratio is still shown to maintain coherence of the tables on this dissertation.

Analysing Tables 3.13 and 3.14, it is possible to note that generally, the fundamental
frequency values given by the present model come in close agreement with the ones found
in the selected bibliography. In fact, relative difference values may come above the mark
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Table 3.13: Comparison between the local fundamental frequency [THz] of a DWCNT of
inner tube (r, s) = (5, 5) and outer tube (r, s) = (10, 10), for k = 1 and clamped-clamped
edges and Molecular Dynamics (MD)

l [nm] χ Model MD [101] Diff. (%)

2.436 1.80 1.849 2.064 10
3.680 2.71 1.137 1.086 4.8
4.914 3.62 0.7805 0.7005 11
6.156 4.54 0.5679 0.4985 14
7.360 5.43 0.4341 0.3778 15
8.602 6.34 0.3391 0.3059 11
9.815 7.24 0.2729 0.2485 9.8

Table 3.14: Comparison between the local fundamental frequency [THz] of a DWCNT
of inner tube (r, s) = (5, 5) and outer tube (r, s) = (10, 10), for k = 1/2 and simply
supported-simply supported edges and Molecular Dynamics (MD)

l [nm] χ Model MD [101] Diff. (%)

2.436 1.80 1.458 1.360 7.1
3.680 2.71 0.7923 0.8342 5.0
4.914 3.62 0.4931 0.5465 9.8
6.156 4.54 0.3325 0.3742 11
7.360 5.43 0.2399 0.2738 12
8.602 6.34 0.1796 0.2005 10
9.815 7.24 0.1396 0.1530 8.8

of 10%. Still, it is important to note that the aspect ratio values associated with the
gathered data come in a range of values from χ = 1.80 to χ = 7.24, which are relatively
low values of aspect ratio, as for example for different references in this dissertation this
range would be defined from χ = 5.26 to χ = 15.05, as for the higher values of the aspect
ratio range, the relative difference values would in fact be lower. As for the current case
these higher aspect ratio values are not available, no conclusions may be taken. On the
same topic, it can be observed that the absolute difference value, given by the subtraction
of calculated and reference values, even for the apparently high relative difference values,
are small and in the order of the second significant digit, tending to the third digit.

It should be noted that for clamped-clamped boundary conditions, the natural fre-
quency values as generally higher than the ones given by MD simulations (with the ex-
ception for the first value of aspect ratio), while for simply supported-simply supported
boundary conditions the opposite effect occurs, as the calculated fundamental frequency
values are generally inferior to the ones given by MD simulations. This behaviour is also
verified in Ansari et al. [8]. In fact, it will open the possibility of a nonlocal parameter
calibration for clamped-clamped boundary conditions on the next chapter.

Lastly, a comparison between the fundamental natural frequencies of a single-walled
carbon nanotube with chirality (r, s) = (10, 10) and a double-walled carbon nanotube
with an outer tube of chirality (r, s) = (10, 10) using the present model is performed. The
aim is to confirm the illustrated phenomena by Natsuki et al. [102] where for a SWCNT
and DWCNT with a similar external radius, for the same length/aspect ratio, the natural
frequency values of the DWCNT are lower than the ones of the SWCNT independently of
the inner tube of the DWCNT. Thus, for different values of length of the nanotube, the
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comparison is presented on Figure 3.1.

(a) C-C boundary conditions (b) SS-SS boundary conditions

Figure 3.1: Fundamental natural frequency of different DWCNTs and SWCNT of chirality
(r, s) = (10, 10) for different inner tubes of the DWCNT and boundary conditions, function
of the length of the nanotube

Analysing Figure 3.1, it is possible to observe that in fact, for different values of
chirality of the inner tube for the DWCNT, as long as its outer tube’s chirality is the same
as the SWCNT (while being physically admissible), the natural frequency of the DWCNT
is lower. In fact, for clamped-clamped and simply supported-simply supported boundary
conditions the behaviour is verified, as well as the fact that the higher the chirality and
consequently the radius of the inner tube, the closer the values of ω of the DWCNT are to
the ones of de SWCNT. This allows us to conclude that for a DWCNT, for an increasing
radius, the raise in the values of the stiffness is more predominant than the increase in the
inertia or mass values, and thus increasing the natural frequency values. Still, comparing
to a SWCNT, the addition of an inner tube inside yields a more relevant effect on the
inertia than in the stiffness, and thus decreasing the values of the natural frequencies.

With the presented results along this section registered, they are now used to illustrate
the mode shapes associated with each natural frequency, on the next section.
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3.4 Mode Shapes

In the present section the linear mode shapes of single-walled carbon nanotubes are plotted
in a three-dimensional design. As mostly values from section 3.3 are used, the equivalent
parameters of SWCNTs of Table 3.1 are also employed.

In Figure 3.2 the radial breathing modes (n = 0) of a (21, 0) carbon nanotube with
χ = 10 are presented, respectively for a wavenumber in x of k = 0, k = 1/2, k = 1 and
k = 3/2, associated with the natural frequency presented in Table 3.5.

In Figure 3.3, the first four beam-like mode shapes (n = 1) of a (5, 5) carbon nanotube
with χ = 11.43 are presented for clamped-clamped edges, as the mode shapes correspond to
the natural frequencies given in the Table 3.7. The evolution of the wavenumber along the
increasing values of the natural frequencies should be emphasized, behaving as expected
for a beam-like mode, as confirmed by the modes presented in [63].

The mode shapes for n = 2 of a (10, 0) carbon nanotube with χ = 12.8 are presented for
free-free edges, regarding the first six mode shapes associated with the natural frequencies
registered in Table 3.9, in Figure 3.5. These mode shapes are compared and validated
by the ones presented in [11]. It is important to note that the mode represented in
Figure 3.5a, which is assigned the value k = 0 corresponds to Rayleigh’s inextensional
symmetrical mode (uniform vibration), while the mode represented in Figure 3.5b, for
k = 1/4, corresponds to Love’s inextensional asymmetrical mode. On the same Figure
3.5, on the left column symmetrical modes are represented, while on the right column
asymmetrical modes are plotted. Out of curiosity, in Figure 3.4a a Rayleigh’s inextensional
mode shape for a wavenumber of n = 6 in θ coordinate is plotted, while in Figure 3.4b a
Love’s inextensional mode shape for a wave number of n = 6 in θ coordinate is illustrated.
Regarding Figure 3.6, the mode shapes of simply supported-simply supported edges are
plotted and illustrated, regarding modes for n = 1. As in Table 3.11 a wide range of
values for n are selected, similar modes to the ones presented for CC boundary conditions
are presented, which yields the comparison regarding the behaviour on the edges, where
rotation is now allowed while displacements are not, leading the value of k for the first
natural frequency, for example, to be k = 1/2 for SS boundary conditions while k = 1 for
CC.

Regarding the double-walled carbon nanotubes mode shapes, the beam-like modes
(n = 1) are presented for an inner tube of chirality (r, s) = (5, 5) and outer tube of chirality
(r, s) = (10, 10), for an aspect ratio of χ = 7.24, for clamped-clamped boundary conditions
on Figure 3.7, and simply supported-simply supported boundary conditions on Figure 3.8.
It is important to register that on the left column of both figures the ”in-phase” mode
shapes are illustrated, where the inner and outer tube display a similar behaviour in the
same direction, while on the right column the ”anti-phase” mode shapes are presented,
where the inner and outer tube present its behaviour on an opposite direction. It is
important to note that similarly to n = 1, for higher values of the circumferential mode
number n, in-phase and anti-phase mode shapes also exist, as the axial wave number of
both inner and outer nanotubes is the same for a considered mode. Thus, for the sake of
illustration brevity, only beam-like modes of DWCNTs are presented in this chapter.
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(a) k = 0, ω = 4.278 THz (b) k = 1/2, ω = 4.279 THz

(c) k = 1, ω = 4.290 THz (d) k = 3/2, ω = 4.298 THz

Figure 3.2: Mode shapes of radial breathing modes (n = 0), (r, s) = (21, 0), χ = 10,
free-free edges
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(a) k = 1, ω1 = 0.279 THz (b) k = 3/2, ω2 = 0.694 THz

(c) k = 2, ω3 = 1.221 THz (d) k = 5/2, ω4 = 1.813 THz

Figure 3.3: Mode shapes of beam-like modes (n = 1), (r, s) = (5, 5), χ = 11.43, clamped-
clamped edges

(a) k = 0,n = 6, ω = 19.985 THz (b) k = 1/2,n = 6, ω = 19.995 THz

Figure 3.4: Mode shapes of n = 6 modes , (r, s) = (5, 5), χ = 11.43, free-free edges
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(a) k = 0, ω1 = 1.169 THz (b) k = 1/4, ω2 = 1.172 THz

(c) k = 1/2, ω1 = 1.177 THz (d) k = 3/4, ω1 = 1.192 THz

(e) k = 1, ω1 = 1.298 THz (f) k = 5/4, ω1 = 1.333 THz

Figure 3.5: Mode shapes of n = 2 modes , (r, s) = (10, 0), χ = 12.8, free-free edges
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(a) k = 1/2, ω1 = 4811 Hz (b) k = 1, ω2 = 7103 Hz

(c) k = 3/2, ω3 = 7627 Hz (d) k = 5/2, ω4 = 7806 Hz

Figure 3.6: Mode shapes of beam-like modes (n = 1), simply supported-simply supported
edges with parameters referring to Table 3.10
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(a) k = 1, ω = 0.2729 THz (b) k = 1, ω = 2.003 THz

(c) k = 3/2, ω = 0.6358 THz (d) k = 3/2, ω = 1.927 THz

(e) k = 2, ω1 = 1.082 THz (f) k = 2, ω1 = 1.759 THz

Figure 3.7: Mode shapes of n = 1 modes for a DWCNT, (r, s) = (5, 5) and (r, s) = (10, 10),
χ = 7.24, clamped-clamped edges
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(a) k = 1/2, ω = 0.1396 THz (b) k = 1/2, ω = 2.010 THz

(c) k = 1, ω = 0.4945 THz (d) k = 1, ω = 1.953 THz

(e) k = 3/2, ω1 = 0.9620 THz (f) k = 3/2, ω1 = 1.814 THz

Figure 3.8: Mode shapes of n = 1 modes for a DWCNT, (r, s) = (5, 5) and (r, s) = (10, 10),
χ = 7.24, simply supported-simply supported
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3.5 Conclusions

In the present chapter, convergence and validation of natural frequencies results are per-
formed, while mode shapes of different sets of conditions and parameters are plotted.

After establishing the definition of boundary conditions and the equivalent parameters
of single-walled carbon nanotubes, convergence analysis takes place. It was found that
different boundary conditions imply a different set of numbers of shape functions in order
for the local model to converge (in comparison to different cited published shell models),
as for free-free boundary conditions the results converge for a high value of N . Thus,
for the sake of accuracy, the maximum number of shape functions for the x coordinate
is employed for each one of the simulations in the following sections and chapters. The
convergence of the values of the nonlocal theory are compared to available bibliographical
sources, as the results reveal accurate.

Regarding the validation of the local theory, the radial breathing modes were first
tested. When compared to resonant Raman Spectroscopy and Molecular Dynamics simu-
lation results, the values obtained by the developed model in the present dissertation are
accurate and satisfactory. Then, beam-like modes for clamped-clamped edges were tested,
revealing a high order accuracy as the dimensions of the nanotube increase, namely the
diameter and specially the aspect ratio, which plays a significant factor in the magnitude
of the difference. When comparing the same boundary conditions with higher diameters
and lengths to FEA results, the accuracy behaviour does propagate. The free-free bound-
ary conditions reveal accurate values as well as displaying more accurate results for higher
aspect ratios, as expected. Finally, the simply supported-simply supported boundary con-
ditions are validated by comparison to a model for a shell with different properties, while
yielding results with very low relative differences, being in good agreement with the exact
solution and producing better results than the FEM model proposed by the referenced
author.

The natural frequencies of DWCNTs were also tested for clamped-clamped and simply
supported-simply supported boundary conditions, by comparison to MD results, gener-
ating results with relatively higher difference value regarding the referenced data, while
being within a reasonable range to validate the model. Then, the natural frequency values
of a SWCNT of given chirality were compared to DWCNTs of the same chirality for the
outer tube, with varying inner chirality parameters and consequent diameter. It was found
that for lower values of inner tube diameter, the fundamental natural frequency was lower
than the SWCNT one by a more significant margin, while for higher inner tube diameter
values the natural frequency values would increase and tend to the SWCNT value. There-
fore, it leads to believe that the stiffness increment is more preponderant than the inertia
increment for an increasing value of inner tube diameter for a DWCNT, yielding higher
natural frequency results, while the addition of an inner tube of a SWCNT always results
in lower natural frequency values.

The mode shapes of the carbon nanotubes in the conditions described in the last
paragraphs were plotted next, illustrating not only the versatility of the implemented
model, but also the wide range of vibrational behaviour associated with shells. Radial
breathing modes, beam-like modes and other modes for different n values were shown for
different boundary conditions in SWCNT, while for DWCNT the ”in-phase” and ”anti-
phase” beam-like modes for different boundary conditions were shown. It is important
to note that although for a p-version FEM technique it is possible to adjust the input
parameters to extract each one of the vibrational modes, defining the specific value of the
circumferential mode number n, in real CNTs and MD/FEA the vibrational modes are
extracted at once. Thus the process to identify the correspondent mode shape to each
natural frequency may be lengthy, as the wavenumber of a given mode shape may not be
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associated with the order of the calculated natural frequencies, given the influence of the
non-diagonal stiffness terms on shell dynamics, that make for apparently unpredictable
behaviours of the mode shapes regarding switches in expected outputs and the actual ones.
This characteristic is seen for example in modes affected by the nonlocal parameter, but
specially and more widely when extracting modes for a high circumferential mode number
(will be studied on the next chapter).

The study on the influence of the nonlocal parameter is not carried out in the validation
process, as it is a wide and long description, and does not represent a validation, being
instead a proposed calibration, according to different parameters. Thus, it is performed
in the next chapter.
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Chapter 4

Study on the nonlocal parameter
influence

4.1 Introduction

In the present chapter the already validated thin shell model is used to perform a study on
the influence of the nonlocal parameter. This parameter, e0, is calibrated in order for the
model to preview the most accurate result for each natural frequency along a set of defined
values of aspect ratio. These results are compared to molecular dynamics simulations and
finite element analysis, as well as continuous sets of constant nonlocal parameters.

The nonlocal parameter is lastly adjusted to inspect its influence on the frequency ratio
for different aspect ratios and chiralities, along with its behaviour for different values of the
circunferential mode numbers n, covering the same range of already listed characteristics.
The influence on the behaviour of mode shapes is also investigated for different values of
the nonlocal parameter. The results and graphics from the present study are all produced
using the software Maple and MATLAB.

4.2 Calibration of e0

4.2.1 Single-walled carbon nanotube

The calibration of the nonlocal parameter may be carried out in different terms. The
first possibility is selecting a set of consecutive natural frequencies for a given chirality
and aspect ratio, and adjusting the nonlocal parameter that produces the results with
minimum average difference when comparing to MD or FEA results. The second option
consists of calibrating a single value of e0 for each value of natural frequency (for a given
chirality and aspect ratio), for different order natural frequencies (being ω1, ω2, ω3 and
ω4), minimizing the difference when comparing to the corresponding natural frequency
calculated by MD or FEA. In fact, the value of the calibrated e0 yields a similar behaviour
in both analysis (a critical value of aspect ratio is identified), while the first does not
provide insights about the significant behaviour differences for distinct natural frequencies
- ωi, for i ∈ N. Thus, the second option is taken on this dissertation, consisting of an
iterative method that ranges values of e0 paced by 0.05 dimensionless units, selecting
the minimum difference value in the end, as distinct natural frequencies are separately
analysed.

Having chosen the analysis procedure, and selecting Duan et al. [7] molecular dynamics
work as a reference, a comparison between the curves of the results of a clamped-clamped
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CNT given by Molecular Dynamics and the values calculated by the developed model for
different values of the nonlocal parameter e0 along different values of aspect ratio χ = l

2R
(for which the radius R is constant for each case), for a chirality of (r, s) = (5, 5) is carried
out and presented for the first four natural frequencies in Figure 4.1.

(a) ω1 (b) ω2

(c) ω3 (d) ω4

Figure 4.1: Comparison between the natural frequencies calculated by MD [7] and values
from the present model for different nonlocal parameters, clamped-clamped edges CNT
with (r, s) = (5, 5)

Investigating into Figure 4.1 results, the first noticeable characteristic is the proximity
of the MD results and relatively low values of the nonlocal parameter. In fact, for the
graphic of ω1, for small values of aspect ratio, the natural frequency is in close agreement
with the curve e0 = 0.6, leaning onto the curve e0 = 0 as the aspect ratio increases. For
the following natural frequencies ω2, ω3 and ω4, for lower aspect ratios the MD results
tend to be closer to the e0 = 0 as the natural frequency increases, with the values for
higher aspect ratios keeping a tight relation to the same curve.

The concept of critical aspect ratio must also be introduced, being the value of the
aspect ratio for which the nonlocal theory (and parameter) have no effect or relevance in
the outcome of the natural frequency results. As already stated, with the increase of the
nonlocal parameter value, the natural frequencies value tend to reduce, therefore, for an
increasing aspect ratio, once the local theory yields a numerical value below the referenced
one (here, MD simulations), the critical point as been achieved. From Figure 4.1, it can
be concluded that for higher natural frequencies, the critical aspect ratio tends to also
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increase (detected on the intersection of ”MD Simulations” and ”e0 = 0” plots).
The last point to note remains with the fact that the curves of e0 = 1.2 appear to have

a larger gap from the curves of e0 = 0 as the order of the natural frequency increases.
Even though the scale on the y-axis is different, this conclusion may be apparent, and
reveals room for investigation, as will be seen further in this chapter.

Given the presented analysis, it is clear that the calibration for different numbers of
natural frequencies is necessary, as its behaviour is clearly distinct. Thus, the calibration
is established in Table 4.1.

Table 4.1: Calibration of the nonlocal parameter regarding natural frequencies THz
clamped-clamped edges CNTs with (r, s) = (5, 5) in comparison to MD results

χ ωMD [7] e0 ωModel Diff. (%) ωMD [7] e0 ωModel Diff. (%)

First natural frequency ω1 Second natural frequency ω2

5.26 0.975 0.70 0.973 0.232 2.105 0.60 2.103 0.079
5.62 0.887 0.65 0.886 0.096 1.936 0.60 1.930 0.284
5.99 0.809 0.60 0.808 0.108 1.787 0.55 1.785 0.129
6.35 0.741 0.55 0.741 0.057 1.654 0.50 1.658 0.221
6.71 0.681 0.50 0.682 0.190 1.535 0.50 1.535 0.031
7.07 0.628 0.50 0.627 0.163 1.429 0.50 1.426 0.209
7.44 0.580 0.45 0.579 0.166 1.333 0.45 1.331 0.133
7.80 0.538 0.40 0.537 0.136 1.246 0.40 1.247 0.105
8.16 0.500 0.35 0.500 0.079 1.167 0.40 1.166 0.075
8.52 0.465 0.30 0.466 0.113 1.096 0.35 1.096 0.033
8.89 0.434 0.25 0.434 0.060 1.030 0.30 1.030 0.032
9.25 0.406 0.15 0.406 0.071 0.970 0.25 0.971 0.121
9.61 0.380 0.15 0.380 0.003 0.915 0.25 0.914 0.060
9.98 0.357 0.00 0.356 0.230 0.864 0.15 0.864 0.036
10.34 0.336 0.00 0.334 0.472 0.818 0.00 0.818 0.010
10.70 0.316 0.00 0.315 0.465 0.774 0.00 0.774 0.037
11.06 0.299 0.00 0.296 0.895 0.734 0.00 0.733 0.172
11.43 0.282 0.00 0.279 1.004 0.698 0.00 0.694 0.601
11.79 0.267 0.00 0.264 1.185 0.663 0.00 0.659 0.645
12.15 0.253 0.00 0.250 1.303 0.631 0.00 0.626 0.769
12.52 0.240 0.00 0.236 1.540 0.601 0.00 0.595 0.992
12.88 0.228 0.00 0.224 1.643 0.573 0.00 0.567 1.070
13.24 0.217 0.00 0.213 1.805 0.548 0.00 0.541 1.353
13.60 0.206 0.00 0.203 1.597 0.523 0.00 0.516 1.332
13.97 0.197 0.00 0.193 2.130 0.500 0.00 0.492 1.511
14.33 0.188 0.00 0.184 2.216 0.479 0.00 0.471 1.677
14.69 0.179 0.00 0.175 1.974 0.459 0.00 0.451 1.782
15.05 0.172 0.00 0.168 2.532 0.440 0.00 0.432 1.840
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χ ωMD [7] e0 ωModel Diff. (%) ωMD [7] e0 ωModel Diff. (%)

Third natural frequency ω3 Fourth natural frequency ω4

5.26 3.404 0.50 3.396 0.238 4.724 0.35 4.736 0.253
5.62 3.147 0.50 3.140 0.234 4.389 0.40 4.377 0.264
5.99 2.920 0.45 2.924 0.143 4.095 0.35 4.105 0.250
6.35 2.717 0.45 2.719 0.074 3.828 0.35 3.839 0.295
6.71 2.536 0.45 2.535 0.044 3.588 0.35 3.598 0.290
7.07 2.372 0.45 2.369 0.131 3.371 0.35 3.380 0.254
7.44 2.225 0.40 2.226 0.037 3.173 0.35 3.175 0.059
7.8 2.090 0.40 2.089 0.058 2.993 0.35 2.993 0.003
8.16 1.968 0.40 1.964 0.208 2.829 0.35 2.827 0.088
8.52 1.856 0.35 1.858 0.081 2.678 0.35 2.673 0.169
8.89 1.754 0.30 1.756 0.102 2.539 0.30 2.539 0.010
9.25 1.659 0.30 1.659 0.007 2.410 0.30 2.409 0.060
9.61 1.572 0.25 1.574 0.144 2.291 0.30 2.288 0.147
9.98 1.491 0.25 1.489 0.112 2.181 0.25 2.180 0.060
10.34 1.417 0.20 1.416 0.049 2.079 0.20 2.081 0.085
10.7 1.348 0.15 1.348 0.018 1.983 0.20 1.983 0.009
11.06 1.283 0.10 1.283 0.024 1.894 0.20 1.892 0.097
11.43 1.223 0.00 1.221 0.137 1.811 0.10 1.811 0.003
11.79 1.167 0.00 1.164 0.261 1.733 0.05 1.733 0.012
12.15 1.115 0.00 1.110 0.411 1.660 0.00 1.658 0.092
12.52 1.066 0.00 1.059 0.655 1.592 0.00 1.586 0.351
12.88 1.020 0.00 1.012 0.761 1.527 0.00 1.521 0.420
13.24 0.977 0.00 0.968 0.881 1.466 0.00 1.459 0.500
13.6 0.936 0.00 0.927 0.936 1.409 0.00 1.400 0.614
13.97 0.898 0.00 0.888 1.166 1.355 0.00 1.344 0.822
14.33 0.862 0.00 0.851 1.253 1.304 0.00 1.292 0.918
14.69 0.828 0.00 0.817 1.330 1.255 0.00 1.243 0.952
15.05 0.796 0.00 0.785 1.417 1.210 0.00 1.197 1.099

And finally, from the gathered information from Table 4.1, comes Figure 4.2. From
Table 4.1 and Figure 4.2 it is possible to validate points already made in the previous
paragraphs, for instance the fact that for lower order natural frequencies, the ideal value
of the calibrated nonlocal parameter is higher than for higher order natural frequencies,
as for ω1, e0 = 0.70, for ω2, e0 = 0.6 and for ω4, e0 = 0.35, for an aspect ratio of χ = 5.26.
Thus, it is possible to conclude that for higher order natural frequencies, the magnitude
of the influence of the nonlocal parameter is reduced.

Regarding the critical value of the aspect ratio, it is now clear that this value is also
higher for higher order natural frequencies. In fact, for the first natural frequency ω1, the
value of the critical aspect ratio is χcr = 9.98, while for ω2 it is χcr = 10.34, for ω3 the value
is χcr = 11.43 and finally for ω4, χcr = 12.15. Thus, even though the magnitude of the
calibrated nonlocal parameter is higher for low number natural frequencies, the opposite
effect happens when it comes to the permanence of influence of the nonlocal parameter
in the natural frequency values, sustaining its relevance in longer carbon nanotubes for
higher order natural frequencies, as its critical aspect ratio is also higher. Naturally, it can
be identified a range of aspect ratio values in which the relevance and magnitude of the
nonlocal parameter is similar for different natural frequencies (χ ∈ [7.5, 8.5]), even though
it is not clear the same range would be the same for chiralities that would lead to higher
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diameter values.
In an attempt to collect information on a carbon nanotube with a chirality that induces

a higher diameter value, the same process applied in Table 4.1 is used regarding finite
element analysis results from A. Sakhaee-Pour et al. [63]. The results are compiled in
Figure 4.3.

Figure 4.2: Calibration of e0 for each natural frequency for clamped-clamped edges CNTs
with (r, s) = (5, 5) in comparison to MD results [7]

Figure 4.3: Calibration of e0 for each natural frequency for clamped-clamped edges CNTs
with (r, s) = (12, 12) in comparison to FEA results [63]

From Figure 4.3 it possible to gauge and validate some of the previous conclusions.
In fact, the behaviour of the plotted curves is similar in terms of tendence to the critical
aspect ratio to the already described hypothesis, with the exception of ω1 that after its
tendency for the nonlocal parameter to be null, it has small variations before returning to
the null value. Then, regarding the magnitude of the nonlocal parameter associated with
each natural frequency’s number, ω4 reveals a considerable increase for χ = 6.95. This fact
along with the behaviour of the natural frequency values for the lower registered aspect
ratio are most likely connected to the fact that the simulation comes from finite element
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analysis with beam elements and not molecular dynamics simulations, even though it is
modelled so that each atom is a concentrated mass and their bonds are modelled by the
beam elements. As already described in the previous chapter, for lower aspect ratios the
results of FEA tend to not be in agreement with the present model, as for higher aspect
ratios the values end up converging. Thus, not further conclusions may be taken from
comparison to FEA results.

4.2.2 Double-walled carbon nanotube

Regarding the double-walled carbon nanotube, as mentioned on the previous chapter,
only the fundamental frequency was analysed. Thus, the nonlocal parameter calibration
process is simpler, as again an iterative method paced by 0.05 dimensionless units is
selected, allowing for the determination of the value associated with the minimum relative
difference in the end, for each value of aspect ratio/length of the nanotube.

Utilizing Ansari et al. [101] molecular dynamics values as a reference, it is firstly
presented the comparison between the curves of the MD results of a clamped-clamped
DWCNT and the calculated ones by the model developed in this dissertation, for different
values of the nonlocal parameter e0. The values in the abscissa axis come as aspect ratio
instead of the length of the nanotube in nanometers, as presented in the last chapter, to
maintain coherence with the values presented in the current chapter. Still, it is important
to note that they are equivalent to the length values already documented in Table 3.13.
Thus, the natural frequency values are presented in Figure 4.4.

Figure 4.4: Comparison between the natural frequencies calculated by MD [101] and
values from the present model for different nonlocal parameters, clamped-clamped edges
DWCNT with (r, s) = (5, 5); (10, 10)

As may be observed from Figure 4.4, it is possible to observe that the MD results are
well fitted inside the curves of the local model and the nonlocal model for e0 = 2.50. In
fact, the MD simulations values are always inferior to the nonlocal model except for the
first value of aspect ratio. This may come as unexpected, even though the same behaviour
where for very low values of aspect ratio the natural frequency previewed by MD is higher
than for the shell model, in a work of Ansari et al. [12], for example. Still, the curves
illustrate the common behaviour where as the aspect ratio increases, the natural frequency
value tends to decrease, and the values regarding different values of the nonlocal parameter
tend to be closer, as the nonlocal theory’s relevance reduces, tending to the values of the
local theory with the increase of dimensions of the nanotube in general.
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Finally, a similar calibration to the one performed and presented in Table 4.1 is taken,
for the DWCNT fundamental frequency case. For the sake of brevity, the table is not
presented, as the values are exposed in Figure 4.5.

Figure 4.5: Calibration of e0 for the fundamental natural frequency for clamped-clamped
edges DWCNT with (r, s) = (5, 5); (10, 10) in comparison to MD results [101]

Regarding Figure 4.5, it is evident that with the present results, a critical aspect
ratio value was not achieved. In fact, it can be observed that with the exception of the
first value (which is not referring to the same aspect ratio value as Figure 4.4, as its
first χ yielded a higher MD result in comparison to the shell local model), the calibrated
nonlocal parameter e0 values are close. This may come from the fact that the range of the
documented aspect ratio values is small, in comparison to the available used data for the
SWCNT, for example, as for this case the maximum value of the aspect ratio is still inferior
than the critical value for the SWCNT. Even though conclusions about the preponderance
of the nonlocal theory on the DWCNT case along the aspect ratio spectrum may not be
taken, it may be observed that for similar χ values, for a DWCNT the values of e0 are
higher than for a SWCNT. Utilizing wider data for length values, a more detailed study
would be possible, even though it may be seen that from the last three values presented
on Figure 4.5, a decrescent tendency for the value of e0 is noticeable, while for said aspect
ratio values the nonlocal parameter effect on the natural frequency is less significant.

4.3 Influence of e0 on the frequency ratio

As discussed regarding Figure 4.1 about the more significant displacement of the curves
plotted of a higher value of e0 for higher order natural frequencies, the effect of the nonlocal
parameter on the frequency ratio is now investigated. Therefore, for the same chirality
conditions studied, where (r, s) = (5, 5), and with the frequency ratio defined as ωnonlocal

ωlocal
,

or the ratio of the frequency given for a defined value of e0 and a frequency given for
e0 = 0. This ratio is studied as a function of the nonlocal parameter, for different values
of the aspect ratio, as is given in Figure 4.6.

Analysing Figure 4.6, it is important to note that the same scale on the y-axis is applied
to all the four graphics. The first evident conclusion to take note is the fact that for the
same natural frequency order, for instance ω1, it is clear that for lower values of aspect
ratio, the frequency ratio drop is higher than for higher values of aspect ratio. Naturally
it is already known that for the same chirality, for an increasing value of the aspect ratio,
a smaller value of the natural frequency is yielded, as well as for an increasing value of
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(a) ω1 (b) ω2

(c) ω3 (d) ω4

Figure 4.6: Frequency ratio as a function of the nonlocal parameter, for different values
of aspect ratio, regarding the first four natural frequencies of a (r, s) = (5, 5) clamped-
clamped edges carbon nanotube

the nonlocal parameter, a smaller value of natural frequency is also calculated. With this
plot it is concluded that in comparison to the local natural frequency value, a relatively
lower value of nonlocal natural frequency is produced for lower aspect ratios.

Furthermore, when comparing the curves of the same aspect ratios for different natural
frequency’s numbers, it is concluded that the higher that number is, the more significant
the decrease in frequency ratio is. For example, for an aspect ratio of χ = 15.05 and
e0 = 3, for ω1 the frequency ratio is 0.6202, while for ω2 the frequency ratio is 0.6137, and
for ω3 and ω4 the frequency ratio is 0.6039 and 0.5912 respectively.

On the same note, as the order of the natural frequency progresses, the gap between
the curves of different aspect ratios is increased, meaning that for ω4 the influence of
lower aspect ratios for the same value of nonlocal parameter is higher, for example. Thus,
the higher the order of the natural frequency, the more the nonlocal parameter becomes
relevant on the whole range of aspect ratios, specially for lower values of aspect ratio, in
comparison to the local values of the natural frequency. This is related to the fact that
for higher order natural frequencies the wavenumber associated with its mode shape is
higher, yielding for a greater influence of the nonlocal parameter.
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4.3. Influence of e0 on the frequency ratio

The described behaviour needs to be evaluated for a different value of chirality, in order
to study the effect of the diameter on the object of study. Therefore, for a chirality of
(r, s) = (20, 20) the same research on the influence of the nonlocal parameter is performed
using the same values of aspect ratio, leading to Figure 4.7.

(a) ω1 (b) ω2

(c) ω3 (d) ω4

Figure 4.7: Frequency ratio as a function of the nonlocal parameter, for different values
of aspect ratio, regarding the first four natural frequencies of a (r, s) = (20, 20) clamped-
clamped edges carbon nanotube

From Figure 4.7 the same behaviour described for a chirality of (r, s) = (5, 5) is shown.
It should be noted that the values of the y-axis scale are different, as higher values of
frequency ratio are plotted. Thus, it is concluded that for higher diameter values, the
same type of behaviour is produced while having a smaller relative influence, so that for
higher order natural frequencies, the influence of the nonlocal parameter is increasingly
relevant specifically for lower values of aspect ratios, but with a smaller order of magnitude
when comparing the results coming from smaller diameters. This is in accordance to the
fact that the nonlocal theory is in fact more relevant the smaller the size the object of
study.
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4. Study on the nonlocal parameter influence

4.4 Influence of e0 and circumferential mode number

In the present section, the influence of the circumferential mode number on the value
of the natural frequencies, along with the effect of the nonlocal parameter e0 is verified.
One of the many characteristics that distinguishes the behaviour of mode shapes in shells
and plates is the fact that for shells, the resulting consecutive natural frequencies and
associated mode shapes are not necessarily linked to the ascending behaviour of natural
frequencies with increasing values of axial and circumferential mode/wave numbers. This
means that the first natural frequency, for example, may not be the natural frequency
associated with n = 1 and k = 1/4 or k = 1/2, depending on the boundary conditions.
In fact, swaps related to the circumferential mode numbers associated with each natural
frequencies are more common than the latest, reason why it is studied in the current
section.

The described phenomenon is clear for low aspect ratio carbon nanotubes, as for higher
values of aspect ratio the natural frequencies naturally increase with the ascending value
of the circumferential mode number n, with the growth having less expression the higher
the value of the nonlocal parameter. Therefore, the study will be exemplified by carbon
nanotubes with a relatively low value of aspect ratio.

In Figure 4.8 it is presented, for a carbon nanotube with chirality (r, s) = (5, 5) and
aspect ratio of χ = 2.5, the values of natural frequencies as a function of the circumferential
mode number n, for different values of the nonlocal parameter.

For the considered aspect ratio, it is clear that for the whole scenario of natural fre-
quency’s number, the value of the natural frequency for n = 2 is always inferior to the
value for n = 1. It is important to note that independently from this phenomenon, the
natural frequencies ω1, ω2, ω3 and ω4 nomenclature is still defined, and for a given value of
n, their value is crescent with the order of the respective natural frequency. Still, it must
be understood that when calculating the natural frequencies for a given value of n > 2 that
uses all integer values until the selected one, the nomenclature that sorts ascending values
of natural frequencies attributed with an integer number may or may not be associated
with the ωi, i = 1, 2, 3, 4 used in these graphics, as this nomenclature is used not only to
maintain coherence within the present chapter, but also to illustrate the behaviour and
effect of the nonlocal parameter, as the natural frequencies are calculated using discrete
values of n and not the entire sum of its values (for the sake of brevity and clarity), as
equated in Equations (2.41).

It should also be noted that regarding the influence of the nonlocal parameter, a higher
value of e0 naturally yields lower values of natural frequencies in comparison to a null
value - local theory - as already discussed and proved along this dissertation. Analysing
this specific case, it it possible to conclude that the same value of the nonlocal parameter
produces a smaller drop in the value of ω from n = 1 to n = 2 as the number of the natural
frequency increases. The behaviour of the curves also appears to be more compact and
with smaller value discrepancy for the whole range of values of n when comparing to the
natural frequency given for n = 1, for an increasing value of e0. Another relevant aspect
consists of the fact that for certain values of e0, for instance e0 = 2 in this case, the
behaviour of the curve may be altered, as for example for ω3 the value of the natural
frequency for n = 3 would be greater than the one for n = 2 from a local theory, becoming
inferior to the value of n = 2 for this specific value of the nonlocal parameter.

Having illustrated and discussed the phenomenon of the swaps of natural frequencies
regarding the value of n they are associated with, the same behaviour should be studied
for a different chirality carbon nanotube, as for different and higher values of aspect ratios
this phenomenon is not clear, and thus its relevancy is not enough to include on the
present study. Thus, in Figure 4.9 the natural frequencies are presented as a function
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(a) ω1 (b) ω2

(c) ω3 (d) ω4

Figure 4.8: Natural frequencies (THz) as a function of the circumferential mode number
n, for different values of e0, for a CNT of (r, s) = (5, 5) and χ = 2.5 with clamped-clamped
edges

of the circumferential mode number, for different values of the nonlocal parameter, for a
chirality of (r, s) = (20, 20) and the same aspect ratio of χ = 2.5.

Analysing Figure 4.9, the first impression possible to register is that the already de-
scribed phenomenon associated with the values of the circumferential mode shapes is not
only relevant for a higher value of chirality and diameter, but also it is more noticeable and
apparent for a higher diameter value, while the absolute values of the natural frequencies
are significantly lower, being also closer for different values of e0.

Comparing to Figure 4.8, it should be noted that the decrease in value of natural
frequencies with n is more relevant the higher the number of the natural frequency is, as
for ω4 for example, the consecutive values of ω decrease from n = 1 until n = 4, having a
slow but steady growth for the following values of n, while for ω1 the value of the natural
frequencies decreases until n = 3, having a significant growth from that value of n on.
Naturally, for an increasing order of ω, the higher the natural frequencies are for the same
value of n.

The nonlocal parameter e0 appears to have the same influence as described previously,
compacting the curve and smoothing the growth rates of the natural frequencies with the
value of the circumferential mode number. It should also be noted that the influence of
the nonlocal parameter regarding the gap between the local and nonlocal values of ω is
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(a) ω1 (b) ω2

(c) ω3 (d) ω4

Figure 4.9: Natural frequencies (THz) as a function of the circumferential mode number n,
for different values of e0, for a CNT of (r, s) = (20, 20) and χ = 2.5 with clamped-clamped
edges

more evident for higher order natural frequencies specifically for lower values of n, while
being of more relevant influence for higher values of n across all orders of ω. It is also
clear that the nonlocal parameter is of generic inferior relevance for a higher value of
diameter - (r, s) = (20, 20) - when comparing to the plots for an inferior value of diameter
- (r, s) = (5, 5) -, as should be concluded based on the difference of values in the scale of
the y-axis used.

Lastly, the values plotted in Figure 4.9 should be used to point and clearly illustrate the
visible swap of the predicted mode shapes association with a position in an organization
of ascending values of natural frequencies. For a simulation with extended range of mode
shapes, accounting for values of n from 1 to 10, for a local theory, all of the discrete values of
the grey plots would be obtained, with mode shapes of higher values of n being associated
with lower and less energetic values of natural frequencies, a phenomenon associated with
low aspect ratios carbon nanotubes and shells in general [12].
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4.5 Influence on the mode shapes

In the present section, the influence of the nonlocal parameter e0 is studied regarding the
influence on the mode shapes. First, the mode shapes will be studied for their behaviour
along the x coordinate, as it is the axis that illustrates variations in shape and magnitude
(which has no meaning, only exists if they are not normalized). The θ axis produces, for
different values of n, a periodic repetition of behaviour in x or ξ represented along the
said θ axis, and thus, the mode representations will not take place in θ but in x.

In Figure 4.10, the normalized mode shapes of a clamped-clamped CNT are plotted,
so that the maximum values for the mode shapes are defined by the unit value.

(a) First mode shape (b) Second mode shape

(c) Third mode shape (d) Fourth mode shape

Figure 4.10: Nonlocal parameter effect on mode shapes in x of a clamped-clamped carbon
nanotube, for (r, s) = (5, 5), χ = 5.26 and n = 1

As can be observed in Figure 4.10, the mode shapes are plotted for the local theory
(e0 = 0) and for two different values of the nonlocal parameter, e0 = 1 and e0 = 10. As
mode shapes are associated with a given natural frequency, and as in this case the first
mode shape corresponds to the first natural frequency and so on, the same magnitude
of influence observed for the natural frequencies is expected for the corresponding mode
shape. Thus, it can be observed that for the first mode shape, the influence of the nonlo-
cal parameter is practically null. This influence increases with the increasing mode shape
number, as it becomes more evident for the fourth mode shape, with the nonlocal param-
eter compacting the curve of the mode shape and decreasing the amplitude on specific
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curve peaks. The ξ coordinate for the peaks also tends to dislocate towards ξ = 0.

4.6 Conclusions

The purpose of the present chapter was to study the influence of the nonlocal parameter
on the developed thin shell model.

First, the calibration of the nonlocal parameter e0 was performed for different orders
of natural frequencies - ω1, ω2, ω3, ω4 - for a defined range of aspect ratios of a clamped-
clamped edges SWCNT. It was found that for a lower order natural frequency - ω1 - the
magnitude of the nonlocal parameter is superior than for higher order natural frequencies
when adjusting to the selected literature data and using defined parameters as thickness
and Young’s modulus. It was also concluded that for higher order natural frequencies the
nonlocal parameter maintains its relevancy along a wider range of aspect ratio, having
superior critical aspect ratios. It should also be noted that a more significant apparent
influence of e0 was detected for higher order natural frequencies.

Regarding the DWCNT case, a similar study was performed targeting the fundamental
frequency values. Even though the available data for aspect ratios was of a relatively low
spectrum, it was verified the expected behaviour of the nonlocal theory values tending to
the local ones for higher lengths of the nanotube. A critical aspect ratio value was not
found, while it was possible to observe a decrescent tendency in the nonlocal parameter
value for the higher aspect ratio values. The e0 values were found to be relatively higher
than the ones for SWCNT.

The relative influence of the nonlocal parameter on a SWCNT was evaluated by the
frequency ratio behaviour, having been concluded the hypothesised point of the more
significant influence for higher order natural frequencies. Thus, for a higher order natural
frequency, not only the nonlocal parameter reveals itself more relevant (a smaller nonlocal
parameter is required to achieve the same frequency ratio of inferior number natural
frequencies), but it also has a more significant influence for lower values of aspect ratios.
This influence fades as the chirality and diameter of the carbon nanotube increases, as
naturally predicted.

The phenomenon of having smaller values of natural frequencies associated with higher
values of circumferential mode numbers was evaluated for a SWCNT of the same conditions
as the previous studies, being important to note that it is more relevant for considerably
small aspect ratios. The nonlocal parameter not only reduces the value of the natural
frequency for a given n as expected, but also highlights the described phenomenon, while
also compacting the curves and behaviour of the natural frequency values attributed to
each n. For superior diameters, the output values of ω are smaller in comparison to inferior
diameters, still the phenomenon is clearer for the first case, while it was confirmed the
already discussed increasing influence of the nonlocal parameter as the natural frequency
number also increases.

Lastly, the influence of the nonlocal parameter in the mode shapes was studied. As
expected, the nonlocal parameter is of significant influence for higher order mode shapes,
as the same value of e0 yields more significant displacements and changes in the mode
shape behaviour.
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Chapter 5

Study of a CNT with an attached
mass

5.1 Introduction

In the present chapter, a continuation of the already developed model is formulated. As
stated in the introductory chapter of the present dissertation, an already established and
clear application for CNTs is mass detection, through several methods and for different
areas. Thus, a continuum model for a SWCNT and DWCNT with an attached mass for
a bridged shell (clamped-clamped) is developed and analysed. The option to devote a
single chapter to this matter and not include it in the three main chapters comes from a
clarity reason for the reader and for the global organization of this work, in order not to
overextend the length of the chapters, and also to emphasize a significant study which has
a relevant concrete application.

This chapter’s structure starts with the mathematical formulation of the equations
of motion, based on the SWCNT model already developed, with the application of the
p-version finite element method featuring the Galerkin method to deduce the weak for-
mulation of the problem and establish the finite element matrices. Then, the model is
validated with the aid of MD simulations results and mode shapes are illustrated, after
which a nonlocal parameter research is conducted and proposed, and finally, a comparison
between SWCNT and DWCNT results is performed.

5.2 Mathematical Formulation

5.2.1 Equations of motion

As the SWCNT model was already developed in Chapter 2, the process will not be repeated
and the established work will be used. Thus, from Equations (2.18), (2.19) and (2.20),
by neglecting the rotary inertia, not considering external forces as the dynamic problem
is being studied on a free regime, and including the mass terms relative to the attached
mass, with a similar process to Leizerovich and Seregin [103], using Dirac delta to further
define a concentrated mass on a single point of the domain, come the following equations
of motion:

ρhü0 +
mx

R
δ(x− xp) δ(θ − θp) ü0

− ∂Nxx

∂x
− 1

R

∂Nxθ

∂θ
+

1

2R2

∂Mxθ

∂θ
= 0

(5.1)
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ρhv̈0 +
mx

R
δ(x− xp) δ(θ − θp) v̈0

− 1

R

∂Nθθ

∂θ
− ∂Nxθ

∂x
− 1

R2

∂Mθθ

∂θ
− 3

2R

∂Mxθ

∂x
= 0

(5.2)

ρhẅ0 +
mx

R
δ(x− xp) δ(θ − θp) ẅ0

+
Nθθ

R
− ∂2Mxx

∂x2
− 1

R2

∂Mθθ

∂θ
− 2

R

∂2Mxθ

∂x∂θ
= 0

(5.3)

where mx is mass per unit length refering to the attached mass, with mx
R δ(x−xp)δ(θ−θp)

being employed to obtain Mconc after integration on dx and dθ domain, and ξp and θp

are the coordinates for which the attached concentrated mass will be defined in the shell
domain.

5.2.2 Application of Eringen’s nonlocal elasticity theory

After including the nonlocal parameters from Eringen’s nonlocal theory and expanding
the stress components, from Equations (2.33), come the equations of motion with respect
to the displacement components:

ρh
(
1− (e0a)2∇2

)
ü0 +

mx

R
δ(x− xp) δ(θ − θp)

(
1− (e0a)2∇2

)
ü0

− Eh

1− ν2

[
∂2u0

∂x2
+

1− ν
2

1

R2

∂2u0

∂θ2
+ ν

1

R

∂w0

∂x
+

1 + ν

2

1

R

∂2v0

∂x∂θ

]
− Eh3

24(1 + ν)R3

[
∂3w0

∂x∂θ2
− 3

4

∂2v0

∂x∂θ
+

1

4R

∂2u0

∂θ2

]
= 0

(5.4)

ρh
(
1− (e0a)2∇2

)
v̈0 +

mx

R
δ(x− xp) δ(θ − θp)

(
1− (e0a)2∇2

)
v̈0
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1− ν2
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1

R2

∂2v0

∂θ2
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1

R2

∂w0

∂θ
+
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2

1
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∂2u0

∂x∂θ
+
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2

∂2v0

∂x2

]
− Eh3

12(1− ν2)

[
1

R4

∂2v0

∂θ2
− 1

R4

∂3w0

∂θ3
− 3− ν

2

1

R2

∂3w0

∂x2∂θ

+
9(1− ν)

8R2

∂2v0

∂x2
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(5.5)

ρh
(
1− (e0a)2∇2

)
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R2

∂4w0

∂x2∂θ2
− 1
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∂θ3
+

1
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2

1

R3

∂3u0
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(5.6)
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5.2.3 The p-version Finite Element Method

Discretization of displacement components

For the process of discretization of displacement components, the process is very similar,
almost equal to the already described for SWCNTs, as the only terms that will be added is
the concentrated mass terms. The shape functions employed are ones already described in
Chapter 2, being employed 17 shape functions for the x coordinate and 7 shape functions
of the θ coordinate, as with the addition of the concentrated mass, modes of vibration for
a singular value of n should not be extracted, being strictly necessary to use the sum of
integer values until the defined circumferential mode number. Thus, for the middle surface
displacements may be described as a shape function combination matrix multiplied by the
generalized displacements, as comes from already defined equations (2.44), (2.45) and
(2.46).

Finite element matrices

Following an analogous procedure, the Galerkin method is applied and the following equa-
tions are presented: ∫ 2π

0

∫ l

0
fur (x) fus (θ)LAMu (x, θ, t) dxR dθ (5.7)∫ 2π

0

∫ l

0
fvr (x) fvs (θ)LAMv (x, θ, t) dxR dθ (5.8)∫ 2π

0

∫ l

0
fwr (x) fws (θ)LAMw (x, θ, t) dxR dθ (5.9)

where LAMu (x, θ, t), LAMv (x, θ, t) and LAMw (x, θ, t) are (5.4), (5.5) and (5.6), respectively.
These equations are now presented with the differential operator ∇ expanded, and

with each differential term associated with the respective sum term resultant from the
Galerkin method application, designated from ter(115) to ter(157), again resulting in the
linear model algebraic terms.

For the equation of motion in u0 comes:

LAMu (x, θ, t) = ρh

[
∂2u0

∂t2︸ ︷︷ ︸
ter(1)

−(e0 a)2

[
∂2
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(5.10)
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For the equation of motion in v0 comes:

LAMv (x, θ, t) = ρh

[
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And finally, for the equation of motion in w0 comes:

LAMw (x, θ, t) = ρh
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∂t2︸ ︷︷ ︸
ter(23)

−(e0 a)2

[
∂2

∂x2

(
∂2w0

∂t2

)
︸ ︷︷ ︸

ter(24)

+
1

R2

∂2

∂θ2

(
∂2w0

∂t2

)
︸ ︷︷ ︸

ter(25)

] ]

+
mx

R
δ(x− xp) δ(θ − θp)

[
∂2w0

∂t2︸ ︷︷ ︸
ter(121)

−(e0 a)2

[
∂2

∂x2

(
∂2w0

∂t2

)
︸ ︷︷ ︸

ter(122)

+
1

R2

∂2

∂θ2

(
∂2w0

∂t2

)
︸ ︷︷ ︸

ter(123)

] ]

+
Eh

1− ν2

[
1

R2

∂v0

∂θ︸ ︷︷ ︸
ter(26)

+
w0

R2︸︷︷︸
ter(27)

+ ν
1

R

∂u0

∂x︸ ︷︷ ︸
ter(28)

]
+

Eh3

12(1− ν2)

[
∂4w0

∂x4︸ ︷︷ ︸
ter(29)

− 3− ν
2R2

∂3v0

∂x2∂θ︸ ︷︷ ︸
ter(30)

+
2

R2

∂4w0

∂x2∂θ2︸ ︷︷ ︸
ter(31)

− 1

R4

∂3v0

∂θ3︸ ︷︷ ︸
ter(32)

+
1

R4

∂4w0

∂θ4︸ ︷︷ ︸
ter(33)

+
1− ν

2

1

R3

∂3u0

∂x∂θ2︸ ︷︷ ︸
ter(34)

]
= 0

(5.12)

As may be seen, the resultant terms from the application of the Galerkin method
are analogous to terms ter(1) − ter(34), with the exception of the terms relative to the
attached mass. Thus, for the sake of brevity, only the terms related to the attached mass
will be expanded, from Equations (5.7), (5.8) and (5.9), as comes:

ter(115) :

∫ 2π

0

∫ l

0

mx

R
fuix f

u
iθ · (fujx fujθ) δ(x− xp) δ(θ − θp) dxR dθ q̈uij(t)

= Mconc f
u
iθ(θ

p) fujθ(θ
p) fuiξ(ξ

p) fujξ(ξ
p) q̈uij(t)

(5.13)
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ter(116) : − 1

R
(e0 a)2

∫ 2π

0

∫ l

0
mxf

u
ix f

u
iθ ·

∂2

∂x2

(
fujx f

u
jθ

)
δ(x− xp) δ(θ − θp) dxR dθ q̈uij(t)

= Mconc (e0 a)2 4

l2
fuiθ(θ

p) fujθ(θ
p)

dfuiξ(ξ
p)

dξ

dfujξ(ξ
p)

dξ
q̈uij(t)

(5.14)

ter(117) : − 1

R
(e0 a)2 1

R2

∫ 2π

0

∫ l

0
mx f

u
ix f

u
iθ ·

∂2

∂θ2

(
fujx f

u
jθ

)
δ(x− xp) δ(θ − θp) dxR dθ q̈uij(t)

=
Mconc

R2
(e0 a)2 dfuiθ(θ

p)

dθ

dfujθ(θ
p)

dθ
fuiξ(ξ

p) fujξ(ξ
p) q̈uij(t)

(5.15)

ter(118) :

∫ 2π

0

∫ l

0

mx

R
fvix f

v
iθ · (fvjx fvjθ) δ(x− xp) δ(θ − θp) dxR dθ q̈vij(t)

= Mconc f
v
iθ(θ

p) fvjθ(θ
p) fviξ(ξ

p) fvjξ(ξ
p) q̈vij(t)

(5.16)

ter(119) : − 1

R
(e0 a)2

∫ 2π

0

∫ l

0
mxf

v
ix f

v
iθ ·

∂2

∂x2

(
fvjx f

v
jθ

)
δ(x− xp) δ(θ − θp) dxR dθ q̈vij(t)

= Mconc (e0 a)2 4

l2
fviθ(θ

p) fvjθ(θ
p)

dfviξ(ξ
p)

dξ

dfvjξ(ξ
p)

dξ
q̈vij(t)

(5.17)

ter(120) : − 1

R
(e0 a)2 1

R2

∫ 2π

0

∫ l

0
mx f

v
ix f

v
iθ ·

∂2

∂θ2

(
fvjx f

v
jθ

)
δ(x− xp) δ(θ − θp) dxR dθ q̈vij(t)

=
Mconc

R2
(e0 a)2 dfviθ(θ

p)

dθ

dfvjθ(θ
p)

dθ
fviξ(ξ

p) fvjξ(ξ
p) q̈vij(t)

(5.18)

ter(121) :

∫ 2π

0

∫ l

0

mx

R
fwix f

w
iθ · (fwjx fwjθ) δ(x− xp) δ(θ − θp) dxR dθ q̈wij(t)

= Mconc f
w
iθ(θ

p) fwjθ(θ
p) fwiξ (ξ

p) fwjξ(ξ
p) q̈wij(t)

(5.19)

ter(122) : − 1

R
(e0 a)2

∫ 2π

0

∫ l

0
mxf

w
ix f

w
iθ ·

∂2

∂x2

(
fwjx f

w
jθ

)
δ(x− xp) δ(θ − θp) dxR dθ q̈wij(t)

= Mconc (e0 a)2 4

l2
fwiθ(θ

p) fwjθ(θ
p)

dfwiξ (ξ
p)

dξ

dfwjξ(ξ
p)

dξ
q̈wij(t)

(5.20)

ter(123) : − 1

R
(e0 a)2 1

R2

∫ 2π

0

∫ l

0
mx f

w
ix f

w
iθ ·

∂2

∂θ2

(
fwjx f

w
jθ

)
δ(x− xp) δ(θ − θp) dxR dθ q̈wij(t)

=
Mconc

R2
(e0 a)2 dfwiθ(θ

p)

dθ

dfwjθ(θ
p)

dθ
fwiξ (ξ

p) fwjξ(ξ
p) q̈wij(t)

(5.21)
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Finally, the complete model is expressed in the matrix form, with the general displace-
ments still depending on the time variable, as comes:


[MAM

uu ] 0 0
0 [MAM

vv ] 0
0 0 [MAM

ww ]

+

[Mµ,AM
uu ] 0 0

0 [Mµ,AM
vv ] 0

0 0 [Mµ,AM
ww ]




{q̈u(t)}
{q̈v(t)}
{q̈w(t)}


+

[KAM
uu ] [KAM

uv ] [KAM
uw ]

[KAM
vu ] [KAM

vv ] [KAM
vw ]

[KAM
wu ] [KAM

wv ] [KAM
ww ]


{qu(t)}
{qv(t)}
{qw(t)}

 =


0
0
0


(5.22)

where each one of the submatrixes are defined as:

• [Muu]← ter(1) + ter(115)

• [Mvv]← ter(11) + ter(118)

• [Mww]← ter(23) + ter(121)

• [Mµ
uu]← ter(2) + ter(3) + ter(116) + ter(117)

• [Mµ
vv]← ter(12) + ter(13) + ter(119) + ter(120)

• [Mµ
ww]← ter(24) + ter(25) + ter(122) + ter(123)

• [Kuu]← ter(4) + ter(5) + ter(10)

• [Kuv]← ter(7) + ter(9)

• [Kuw]← ter(6) + ter(8)

• [Kvu]← ter(16) + ter(22)

• [Kvv]← ter(14) + ter(17) + ter(18) + ter(21)

• [Kvw]← ter(15) + ter(19) + ter(20)

• [Kwu]← ter(28) + ter(34)

• [Kwv]← ter(26) + ter(30) + ter(32)

• [Kww]← ter(27) + ter(29) + ter(31) + ter(33)

Regarding the implementation of the dynamic problem, the same dependence of the
generalized displacements on an harmonic function is considered. Thus, Equations (2.90)
and (2.91) are again applied, so that the harmonic function is dropped from every term,
resulting in time-independent equations.
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5.3 Validation

The developed model must be subjected to result testing from other authors referenced
data. An approach regarding molecular dynamics simulation values will be taken here, as
they represent reliable and accurate results and have been adopted many times for this
dissertation. Thus, the work of Li and Chou [104] for a bridged SWCNT is used as means of
comparison, where the concentrated mass is placed on the center of the clamped-clamped
edges shell.

In Table 5.1 the results of the comparison are presented. The parameters used to
describe the CNT material properties are the ones of Table 3.1, as the position of the
attached mass is described by the coordinate values ξp = 0 and θp = 0. A range of
different values of the concentrated mass Mconc are tested, from 1 × 10−8 [fg] to 1 [fg] -
femtograms = 10−15 grams. The value of the diameter of the nanotube is d = 0.8 [nm].

As may be concluded by observing Table 5.1, the values of the developed model are
in close agreement to the values of the molecular dynamics simulations proposed in [104].
Across the three studied length values, the magnitude of the relative difference is roughly
the same, with the exception of the higher concentrated mass values for the lowest length,
which is understandable when accounting for the last chapters’ conclusions. It is important
to note that for l = 6 [nm], the natural frequency values from the local model are higher
than the ones given by the MD results up until a defined attached mass value, while for
l = 8 [nm] this critical mass value is higher than for the lower length value, and for l = 10
[nm] a critical value is not found, as the values from the local model are always higher than
the results from literature. This naturally opens the possibility for an investigation of the
nonlocal parameter on a model with an attached mass, while already establishing that the
nonlocal elasticity theory may not be relevant for all concentrated mass values, depending
on the nanotube’s length. Regarding the lower mass value presented on the table, it is
clear that the natural frequency values are converging to a stagnant value (before the
logarithmically linear relation), which is due to the concentrated mass being so low that
it does not influence the dynamic behaviour of the CNT and cannot be detected.
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5. Study of a CNT with an attached mass

Table 5.1: Comparison between the fundamental natural frequency [GHz] of a clamped-
clamped SWCNT with an attached mass in the middle of the nanotube and MD simula-
tions

Mconc [fg] Model MD [104] Diff. (%)

l = 6 [nm]

1.00 ×10−8 492.1 474.9 3.6
1.00 ×10−7 487.7 474.8 2.7
1.00 ×10−6 443.1 437.5 1.3
1.00 ×10−5 235.1 248.2 5.3
1.00 ×10−4 79.67 82.60 3.5
1.00 ×10−3 25.37 27.86 9.0
1.00 ×10−2 8.027 8.730 8.1
1.00 ×10−1 2.538 2.868 11
1.00 ×100 0.8027 0.8923 10

l = 8 [nm]

1.00 ×10−8 300.3 291.3 3.1
1.00 ×10−7 298.2 288.3 3.4
1.00 ×10−6 278.7 274.9 1.4
1.00 ×10−5 174.3 173.9 0.19
1.00 ×10−4 63.22 64.58 2.1
1.00 ×10−3 20.29 20.91 3.0
1.00 ×10−2 6.425 6.774 5.2
1.00 ×10−1 2.032 2.135 4.8
1.00 ×100 0.6426 0.6821 5.8

l = 10 [nm]

1.00 ×10−8 200.6 191.5 4.8
1.00 ×10−7 199.5 191.4 4.2
1.00 ×10−6 189.0 178.0 6.2
1.00 ×10−5 128.9 120.1 7.3
1.00 ×10−4 49.75 47.86 3.9
1.00 ×10−3 16.10 15.67 2.8
1.00 ×10−2 5.104 4.972 2.7
1.00 ×10−1 1.614 1.569 2.9
1.00 ×100 0.5105 0.4915 3.9
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5.4 Mode shapes

With the new developed SWCNT with an attached concentrated mass model, the mode
shapes are expected to change. For the position where the mass is attached, higher relative
displacements in comparison to the opposite position in the shell are expected, as the mass
yields significant influence on the natural frequency values and mode shapes of the carbon
nanotube. Therefore, the first four mode shapes are presented in Figure 5.1.

(a) ω1 = 49.75 GHz (b) ω2 = 324.8 GHz

(c) ω3 = 447, 8 GHz (d) ω4 = 680, 9 GHz

Figure 5.1: Mode shapes of a clamped-clamped edges SWCNT with an attached mass of
1.00× 10−4 and l = 10 nm for ξp = 0 and θp = 0
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5. Study of a CNT with an attached mass

5.5 Nonlocal parameter influence

As stated in the last paragraph, a calibration of the nonlocal parameter is feasible. Thus,
it is firstly presented a comparison between the curves of the natural frequencies given by
the developed local and nonlocal model and by the MD simulations [104], in Figure 5.2.

(a) l = 6 [nm] (b) l = 8 [nm]

(c) l = 10 [nm]

Figure 5.2: Comparison between the fundamental natural frequencies (Hz) calculated by
MD [104] and values from the present model for different nonlocal parameters, clamped-
clamped edges SWCNT with d = 0.8 nm, for different values of attached concentrated
mass

As may be observed in Figure 5.2, for lower values of attached mass, the values of
the MD simulations are very close to the ones given by the local model. An important
conclusion for this range is that for a nanotube of this diameter, for the different length
values, a minimum concentrated mass value may be verified, below which the shift in
the fundamental frequency values is not significant and may not be detected [104], being
Mconc = 1.00×10−6 [fg]. As the attached concentrated mass value increases, a logarithmi-
cally linear relation between said value and the fundamental frequency is verified. It may
be seen across the graphics for the three different length values that, as already stated,
the local values are in very close agreement to the MD results, as the nonlocal values for
an arbitrary parameter of e0 = 2.00 is apparently more distant from the literature values.
While for the lower concentrated mass values it is clear that the MD values are lower
than the local model results across all length values, for the mass values that define the
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logarithmically linear relation, the MD yielded results become higher than the local model
for lower l values, as already stated. Regarding the higher length value, it is also apparent
that the MD values are in an intermediate position between the local and nonlocal models,
while being closer to the local one. It may also be hypothesized that for the whole range
of concentrated mass values, the difference or gap between the local and nonlocal theories
remains relatively constant (attending that the scale is logarithmic).

In order to study the model regarding the nonlocal behaviour, and to investigate into
the magnitude of the nonlocal parameter e0 for the currently studied CNTs, a calibration
of this parameter is carried out and presented in Figure 5.3.

Figure 5.3: Calibration of e0 for the fundamental natural frequency of clamped-clamped
edges CNTs with d = 0.8 nm, for different values of an attached concentrated mass, in
comparison to MD results [104]

Regarding Figure 5.3, several conclusions may be taken. Even though the length values
and respective aspect ratio values (χ = 7.5, χ = 10 and χ = 12.5) are relatively small,
they are in within the same range studied in the examples of the current dissertation.
It is clear that between all length values, for an attached mass of neglectable value, the
nonlocal parameter value is close between the three cases and is also in the magnitude
of the proposed nonlocal parameters in the last chapter, where free vibrations of CNTs
with no attached masses are studied. In fact, as the diameter value is very similar to the
one previously studied, and given the aspect ratio values, it is safe to assume a higher
nonlocal parameter value for l = 6 [nm] and a lower nonlocal parameter for the highest
length may be attributed, even though not represented in the considered figure, as for
higher lengths the nonlocal parameter would be relevant for wider ranges of masses, which
is in accordance with the represented situation.

As the concentrated mass increases, for the lowest and intermediate length value, the
nonlocal parameter tends to a null value, as the natural frequency values calculated from
the present model become inferior than the MD values, and thus the nonlocal theory
becomes irrelevant. For l = 6 [nm] the critical mass value is in the order of magnitude of
Mconc = 1.00 × 10−5 [fg], while for l = 8 [nm] the critical mass value is in the order of
Mconc = 1.00 × 10−4 [fg], and for l = 10 [nm] no critical mass value is identified in the
studied range (and is unknown if there is one), as the nonlocal parameter is more relevant
for the higher length. Still regarding the length value of l = 10 [nm], is it possible to
observe that across the mass values, the nonlocal parameter variation is relatively low.
This leads to the hypothesis that for higher length values, the variation of e0 becomes
low enough that a single nonlocal parameter value may be adequate to the characteristics
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of said CNT, allowing for a more accurate and reliable model for mass detection. In
an attempt to exemplify this type of study, the average nonlocal parameter from the
calibrated results for l = 10 [nm] is taken, being e0 = 0.817, and is plotted on Figure 5.4,
for the top values of the concentrated mass, where the behaviour is logarithmically linear,
being in great agreement with the MD results, as the highest relative difference value is
of 1.4% for Mconc = 1.00× 10−2 [fg].

Figure 5.4: Comparison between the fundamental natural frequencies (Hz) calculated by
MD [104] and the nonlocal model for e0 = 0.817, clamped-clamped edges SWCNT with
d = 0.8 nm, for different values of attached concentrated mass

5.6 Comparison between SWCNTs and DWCNTs with an
attached mass

As a last study regarding the investigation of the applicability of different types of CNTs
on mass detection, a comparison between the fundamental frequency results of SWCNTs
and DWCNTs is performed. A formulation for DWCNTs with an attached mass is not
detailed, as the process is analogous to an equivalent continuum model for a DWCNT,
already formulated, and an attached mass on the outer tube, following the formulation
presented in this chapter, still for an attached mass on coordinates ξp = 0 and θp = 0.

For this analysis, a DWCNT of an outer tube of diameter d2 = 0.8 [nm], equal to
the dimensions of de SWCNT, is taken, with an inner tube of diameter d1 = 0.4 [nm].
It is already known from Chapter 3 that for a DWCNT with the same length and outer
diameter as a SWCNT, the fundamental frequency will be lower than the one for the
considered DWCNT, and thus, the aim of this section is to investigate the influence of an
attached mass on that natural frequency result. Considering the same values of length
and attached mass, the fundamental frequency results are plotted on Figure 5.5.

As may be observed from Figure 5.5, the already stated property of the DWCNTs
with equal outer diameter and length of a SWCNT having lower fundamental frequencies
is confirmed for this case, considering no concentrated attached mass. As more consid-
erable concentrated mass values are added to the nanotubes, it is clear that generally
for DWCNTs the fundamental frequency decreases on a lower ratio when comparing to
SWCNTs, presenting a behaviour which yields higher natural frequencies for DWCNTs
after a critical concentrated mass value, being possible to note that this critical value is
higher for higher length values.
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Figure 5.5: Comparison between the fundamental natural frequencies (Hz) for SWCNT
with d = 0.8 nm and DWCNT with d2 = 0.8 nm and d1 = 0.4 nm, for clamped-clamped
edges and for different values of attached concentrated mass

It should also be noted that for lower length values (see l = 6 [nm] for example), for
the higher range of concentrated mass values, the SWCNTs fundamental frequency values
display an apparent higher gap regarding the DWCNTs curve of fundamental frequencies.
This gap tends to dissipate for higher length values.

In order to confirm the idea of the last paragraph and to evaluate the sensitivity of these
two types of carbon nanotubes, the frequency ratios between the fundamental frequency of
a determined concentrated mass value and the fundamental frequency of a regular carbon
nanotube with no attached mass is plotted in Figure 5.6.

Figure 5.6: Comparison between the frequency ratios for SWCNT with d = 0.8 nm and
DWCNT with d2 = 0.8 nm and d1 = 0.4 nm, for clamped-clamped edges and for different
values of attached concentrated mass
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Analysing Figure 5.6, it is confirmed that independently from the length value, as the
concentrated mass value increases, the frequency ratio drop becomes more sharp (meaning
of a lower value) for SWCNTs than for DWCNTs. Thus, the conclusion that SWCNTs
are more suitable for mass detection, as their sensitivity is in fact higher, must be taken.
Regarding the comparison between the frequency ratios among the SWCNTs of different
lengths, it is possible to observe that a SWCNT with a lower length yields more signifi-
cant shifts in the fundamental frequency, meaning the frequency ratio yields lower values.
Therefore, the single-walled carbon nanotubes which yield higher fundamental frequency
values (the ones of lower length) present a higher sensitivty and are optimal for usage in
mass detection, within the present study variables, confirming what has been precognized
in Chapter 1.

5.7 Conclusions

In this chapter, a complete model for a SWCNT with an attached concentrated mass was
developed, from an already fully developed model that allowed to study the vibration of
a SWCNT. From the established equations of motion, the attached concentrated mass
terms were added, and with the incorporation of the Eringen’s nonlocal elasticity theory,
the model was implemented using the p-version finite element method, with the aid of the
Galerkin method to obtain the finite element matrices.

The developed model was validated by comparison to molecular dynamics simulations
results, from available literature, as the fundamental natural frequency values given by
the model based on the Sanders-Koiter theory developed in this dissertation came in good
agreement regarding the MD ones. In fact, for lower values of length the relative difference
was higher than for higher length values from a specific concentrated mass value, while
generally the relative difference was in the same order of magnitude for all lengths. The
mode shapes regarding a SWCNT with an attached mass were also illustrated.

Then, a calibration and study of the influence of the nonlocal parameter in the preview
of the natural frequency values given by different concentrated masses was performed. A
value of a minimum concentrated mass proposed from the literature for the studied case
was verified, as well as the logarithmically linear behaviour of the fundamental frequency
values along the concentrated mass values. There were also critical attached mass values up
to which the nonlocal theory is relevant, for lower aspect ratios, as this critical value would
increase as the length of the nanotube would also increase, while the nonlocal parameter
would be in the same order of magnitude as proposed in chapter 4. Regarding the higher
studied length value, not only the nonlocal parameter relevance is more significant, the
variation of the parameter across the whole range of concentrated masses would be lower,
which may eventually need to an accurate singular e0 value that for any mass value
would accurately describe and predict the natural frequency behaviour. As there was not
enough data of higher length values, study was performed for the only available case, yet
representing a great topic for further investigation.

Lastly, a comparison between results of SWCNTs and DWCNTs was performed, having
been concluded that SWCNTs generally display higher sensitivity to the attachment of
concentrated masses than DWCNTs across different length values, while also confirming
that the usage of lower length carbon nanotubes, which yield higher natural frequency
values, also results in a significant increase in the sensitivity of the nanotube to attached
masses.
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Chapter 6

Conclusions

6.1 Summary

In the present dissertation an equivalent continuum model was developed for both SWCNT
and DWCNT, in order to study the free linear undamped vibration response and, in par-
ticular, the modes of vibration. These models were based on Kirchhoff-Love assumptions
for thin shells, after which the Sanders-Koiter thin shell theory was selected and devel-
oped. Eringen’s nonlocal theory was then included, taking into account the small-scale
nonlocal effects. Regarding the DWCNT model, the van der Waals forces were formulated
and included in the interlayer stiffness. Then, the p-version finite element method was
employed to discretize the displacement components and derive the equations of motion
and resultant finite element matrices with the aid of the Galerkin method, ending with
the transformation of the problem from time domain to frequency domain.

The developed models were tested and compared to existent referenced data from dif-
ferent authors, as the model convergence was verified in comparison to models from litera-
ture, and validation was carried out relatively to Raman spectrocopy, Molecular Dynamics
simulations, and Finite Element Analysis data. Regarding the first case, convergence was
in fact verified not only for the local model but also for the nonlocal model, for different
input parameters and for different boundary conditions. As a distinct number of shape
functions was found necessary for the convergence of each case, the maximum number of
shape functions, N = 25 for x were used for Chapter 3 and Chapter 4. Regarding the
second case, several vibration modes were tested for SWCNT for different parameters as
chirality and diameter, aspect ratio and boundary conditions, as Radial Breathing modes
and beam-like modes, along with higher order n modes both extensional and inexten-
sional. Natural frequency results were found to be satisfactory as the relative differences
revealed low values, specially for higher aspect ratios, when comparing to MD and FEA,
for CC boundary conditions. FF boundary conditions were compared to a shell model
and validated with close results. SS boundary conditions were compared to regular shell
model values, as results were also in agreement to the analytical results and were found
better than FEM results proposed by other authors. Finally, for DWCNTs, both CC and
SS boundary conditions were tested and validated regarding MD results.

The natural frequency values from SWCNT and DWCNT values were then compared,
as it was concluded that for a DWCNT with an outer tube of the same chirality as the
SWCNT, the natural frequency for the first one would always be inferior than the one of a
SWCNT. On the same note, the higher the chirality and diameter of the inner tube of the
DWCNT, the higher the natural frequency values and the closer it would be to the SWCNT
one, tending to its value. In fact, the stiffness increment is more preponderant than the
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inertia increment for an increasing value of the inner tube diameter for a DWCNT.
The mode shapes were then presented, regarding CC, SS and FF boundary conditions

for a SWCNT, with the free-free serving as validation by comparison to the mode shapes
from literature, and the rest coming as an illustration of the versatility of the implemented
model, showcasing RBMs, beam-like modes, Rayleigh and Love modes, and modes for
n = 2. Regarding the DWCNTs, in-phase and anti-phase modes were illustrated for
both CC and SS boundary conditions, with the behaviour of the mode shapes coming as
expected.

Further in the present dissertation, a study regarding the influence of the nonlocal
parameter was carried out. It is important to note that the initial set of defining param-
eters of the CNTs as Young’s modulus, Poisson’s coefficient, thickness and density is of
significant influence on the results the models produced. Even though a set of parameters
is not established on the scientific community, many are proposed, from which one was
adopted taking into account the frequency of usage and the quality of the results from
other authors. Still, the results from the nonlocal theory are influenced by this decision,
reason why the analysis must be meticulously evaluated.

Therefore, the study is started with the calibration of the nonlocal parameter for differ-
ent order natural frequencies of a clamped-clamped SWCNT. Besides the common decrease
in the natural frequency values with the increase of the aspect ratio, the relevance of the
nonlocal parameter revealed itself higher for low values aspect ratio, as for higher aspect
ratios the difference between the local and nonlocal theory would fade, being expected as
the small-size effect becomes negligible with the increase in the structure’s dimensions.
It was also found that for higher order natural frequencies, the nonlocal parameter stays
relevant for a wider range of aspect ratio, while also yielding lower nonlocal parameter
values overall. For a DWCNT case, such conclusions were not able to be taken as the
range of aspect ratio available values was relatively small, only being possible to observe a
decreasing tendency in the nonlocal parameter for superior aspect ratio values considered.

Then, the relative influence of the nonlocal parameter was investigated regarding the
frequency ratio, with the identification of a behaviour of more significant influence of
the nonlocal parameter for higher order natural frequencies and for lower values of aspect
ratio/length. This magnitude of relevancy would dissipate as the diameter of the nanotube
would increase, as predicted.

Regarding the circumferential mode number paired with the nonlocal parameter in-
fluence, a phenomenon describing the association of smaller values of natural frequencies
associated with higher values of circumferential mode numbers was evaluated for SWC-
NTs of CC boundary conditions, having been found that this behaviour is very relevant
for low value aspect ratios, while the nonlocal parameter besides diminishing the natural
frequency values, also highlights and magnifies the described behaviour. It is also impor-
tant to note that this phenomenon is more significant not only for smaller diameter values,
but also for higher order natural frequencies, meaning that for a list of ascending order
natural frequency values, for bigger values, the association of natural frequencies with
higher order circumferential mode numbers which may not be in an organized and ascend-
ing order will naturally occur. From a research standpoint, it reveals the importance of
identifying the pair natural frequency-mode shape, specially for shells, for example when
performing a similar study to the calibration of the nonlocal parameter already described
in this dissertation.

With respect to the influence of the nonlocal parameter on the mode shapes, it has been
found that the higher the parameter, the more significant and evident the nonlocal effect
is, while also being clear that for higher order natural frequency values associated with
higher order mode shapes, composed of an also higher wave numbers, the nonlocal effect
was, as expected, more relevant, as the length of a single wave in the x direction diminishes,
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where the small-size effects are more pronounced. This influence was observed regarding
the shape of the mode curve, as it was revealed more compact, while also describing lower
values on local maximum points, in absolute terms.

Finally, a model for a SWCNT and an attached concentrated mass was developed from
the established SWCNT model, including the Eringen’s nonlocal elasticity theory, and
implemented using the p-version finite element method. The results were then validated by
comparison to available literature data. From here, the influence of the nonlocal parameter
was investigated, as a calibration was performed for a wide range of concentrated mass
values. The value of a minimum concentrated mass proposed in the literature for the
studied conditions was verified, as well as the logarithmically linear behaviour of the
fundamental frequencies as a function of the concentrated mass. Regarding different length
values, for lower ones the nonlocal parameter relevance would cease up to a critical attached
mass value that has been proposed for the studied conditions. This value would increase
with the length value, until a point where no critical value was identified, and the nonlocal
parameter variation would be significantly lower across the concentrated mass values,
leading to the hypothesis that for certain lengths, a singular e0 may be proposed to
adequately and accurately describe the fundamental frequency results and consequently
the mass value, in a mass detection device. A comparison between results of SWCNTs
and DWCNTs was also performed, resulting in the conclusion that SWCNTs show a
higher sensitivity to attached concentrated masses for different length values, and also
that for lower length carbon nanotubes, the sensitivity also increases more significantly,
with SWCNTs with these conditions being more suitable candidates for mass detection
devices.

6.2 Future Work

Even though carbon nanotubes were discovered and synthesised almost three decades ago,
research into this ramification of nanotechnology is still in a development stage, with the
number of publications increasing in the past years. Thus, fields of research within this
theme, both theoretical and experimental should be considered and invested on, as more
in-depth scientific knowledge and great applications for CNTs are to be developed.

As a continuation from the work developed on this dissertation, it is apparent the
development of a nonlinear model with inclusion of geometric nonlinearities. Starting
with the simpler SWCNT case, the p-version finite element should be employed for a
more complex, complete and accurate model regarding experimental results, also leading
to the possibility of the study of nonlinear mode interaction.

A different topic plausible for investigation is forced vibration regime, which would be
one step further regarding the considered dynamic problem, and should be solved with the
aid of iterative processes. Within this possibility, the admission of an electrostatic force,
which may be represented by a nonlinear behaviour, described in some applications in the
introductory chapter, also reveals great interest.

Adapting the p-version finite element method versatility, a different but interesting
topic of reasearch would be the study and analysis of carbon nanotubes framed on more
than one (axial) axis, by either mechanical induced kinks (implying the usage of more
than one element) or initial curvature along the nanotube (implying the admission of new
terms on the initial formulation of the equations of motion).

With respect to the mass detection devices and concentrated attached mass study
performed in this dissertation, a study regarding the calibration of a singular nonlocal
parameter value (for high enough lengths of the nanotube), is highly cherished in order to
accurately predict the fundamental frequency results and attached mass values, being of
immediate and very relevant application.
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6. Conclusions

Lastly, the study of the nonlocal parameter influence on a nonlinear theory, along
with the investigation of different theories and their applicability on concrete cases, with
a secondary aim to more precisely define a set of parameters that describe the mechanical
behaviour of CNTs, represents a long-term yet rewarding and merit deserving research
cause, which is believed to be on the verge of development.
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