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Abstract

The citrus industry has grown exponentially as a result of increasing demand on its consumption, giving it high standing
among other fruit crops. Therefore, the citrus sector seeks rapid, easy, and non-destructive approaches to evaluate in real
time and in situ the external and internal changes in physical and nutritional quality at any stage of fruit development or
storage. In particular, vitamin C is among the most important micronutrients for consumers, but its measurement relies on
laborious analytical methodologies.

In this study, a portable near infrared spectroscopy (NIRS) sensor was used in combination with chemometrics to develop
robust and accurate models to study the ripeness of several citrus fruits (oranges, lemons, clementines, tangerines, and
Tahiti limes) and their vitamin C content. Ascorbic acid, dehydroascorbic acid, and total vitamin C were determined by
HILIC-HPLC-UV, while soluble solids and total acidity were evaluated by standard analytical procedures.

Partial least squares regression (PLSR) was used to build regression models which revealed suitable performance regarding
the prediction of quality and ripeness parameters in all tested fruits. Models for ascorbic acid, dehydroascorbic acid, total
vitamin C, soluble solids, total acidity, and juiciness showed R2

cv ¼ 0.77–0.87, R2
cv ¼ 0.29–0.79, R2

cv ¼ 0.77–0.86, R2
cv ¼ 0.75–0.97,

R2
cv ¼ 0.24–0.92, and R2

cv ¼ 0.38–0.75, respectively. Prediction models of oranges and Tahiti limes showed good to excellent
performance regarding all tested conditions. The resulting models confirmed that NIRS technology is a time- and cost-
effective approach for predicting citrus fruit quality, which can easily be used by the various stakeholders from the citrus
industry.

Citrus fruit is one of the world’s major fruit crops with global
production and international trade growing every year due to
the high demand imposed by consumers (1). This need for fresh
and processed citrus availability comes mostly from their pre-
ferred flavor, delightful taste, affordable economic reach, and

consumer awareness of the increasingly recognized health ben-
efits, mostly owing to its vitamin C content (2). Besides being a
cofactor of enzymes responsible for the biosynthesis of collagen,
vitamin C is also a potent water-soluble antioxidant. However, the
variability of vitamin C content and organoleptic properties (e.g.,
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sweetness and acidity) in citrus products is greatly influenced by
variety, maturity, climate, handling, processing, and storage con-
ditions (2). Moreover, the main quality features that drive consum-
ers to acquire fruit and vegetables are based on external aspects
such as appearance, color, size, and absence of blemishes, not nec-
essarily transposed to the internal quality parameters sought by
consumers, mostly related to soluble solids content (SSC), titrat-
able acidity (TA), soluble solids to acid (SSC/TA) ratio, and texture,
as revised by Arendse and colleagues (3). Therefore, consistent
supply of nutritious and pleasant citrus fruits motivates the devel-
opment of innovative non-destructive tools for field and labora-
tory measurement as well as sorting and grading based on both
external and internal fruit attributes (4).

Numerous non-destructive techniques have been used for
the evaluation of internal and external quality characteristics of
citrus products. These include near infrared spectroscopy (NIRS)
(5), NIRS-based systems such as multispectral and hyperspec-
tral imaging (6), nuclear magnetic resonance imaging (7), and
X-ray computed tomography (8). Notwithstanding, NIRS is
still one of the most used methods for assessing fresh fruit in-
ner quality (4). In addition, smartphone-based food diagnostic
technologies have been emerging and offer significant advan-
tages over traditional platforms in terms of test speed, control,
affordability, ease-of-operation, and data management, and
require minimal equipment and user involvement (9). These
approaches can be divided into two categories: lab-on-
smartphone biosensors (involving with fluorescence imaging,
colorimetric readers, and electro-analytical platforms) and
smartphone optical and spectroscopy (9). Unlike biosensors, in
which it is necessary a reagent to trigger the transduction, in
smartphone spectroscopy the analysis is performed in a non-
invasive manner (9). Also, the entire assembly along with the
smartphone can be realized with a total cost of at least five
times lower than reference spectrometer platforms (9).

The system used in this manuscript (Tellspec, Canada) relies
on a three-part system that includes a pocket-sized NIR sensor,
a cloud-based patented analysis engine, and a mobile app (10),
previously used under different food approaches from macro-
nutrients to allergens and contaminants, giving information on
possible fraud, adulteration, and quality of foodstuffs, or even
in the quality control of pharmaceutical drugs (11), meat (12),
and honey (13). However, there are no available studies
regarding its use in citrus fruits. The main goal of this study is
to investigate the feasibility of this pocket-sized NIR sensor as
an accurate, robust, user-friendly, and cost-effective tool for
predicting the ripeness status, organoleptic, and nutritional
quality of commercially relevant citrus, supporting the interest
of producers, retailers, and consumers.

Experimental
Chemicals

Acetonitrile (HPLC grade) was acquired from Honeywell
(Riedel-de Ha�n, Germany). Deionized water of 0.055 lS/cm was
obtained with a Seralpur Pro 90CN from Seral, Ransbach-
Baumbach (Germany).

L-ascorbic acid (purity > 99%) and tris-(2-carboxyethyl)-
phosphine-hydrochloride (TCEP) were purchased from Carl
Roth (Karlsruhe, Germany). Metaphosphoric acid, trifluoroacetic
acid (TFA), sodium hydroxide, and phenolphthalein were all
analytical grade from Merck, Germany.

Sampling and Sample Preparation

Fruits, without evident injuries or illnesses, were acquired be-
tween February and March 2017 in local markets of Porto,
Portugal. The sample set comprised 135 samples belonging to
various cultivars of the genus Citrus, which included 39 oranges
(Citrus sinensis L.), 30 lemons (Citrus limon L.), 25 clementines
(Citrus � clementina), 21 tangerines (Citrus reticula L.), and 20
Tahiti limes (Citrus � latifolia).

Collected fruits were separated in three ripeness stages (un-
ripe, ripe, and overripe) and, at the lab, fruit weight and circum-
ference perimeter were measured, and volume was determined
according to the following formula (14):

V ¼ 4
3

p
P

2p

� �3

where V represents fruit volume (mL) and P stands for the fruit
circumference perimeter (cm). Juice ratio (J) was also estimated
according to:

J ¼ Wj
Wf
� 100

where Wj represents juice weight (g) and Wf stands for the fruit
weight (g).

After morphological measurements, samples were kept re-
frigerated at 4�C until the following day, when laboratory test-
ing was conducted. Samples were allowed to reach room
temperature (20 6 3�C) before spectra acquisition by portable
NIRS sensor and subsequent destructive tests of chemical
analysis.

Spectra Acquisition

NIRS spectra of citrus fruits were collected in reflectance mode
(log 1/R) using the Tellspec Entreprise sensor (Tellspec Inc.,
Toronto, Canada) at (20 6 3�C). The NIRS handheld analyzer
incorporates essential components like a reflectance probe, re-
chargeable batteries, and a Bluetooth module. It is equipped
with two integrated tungsten halogen lamps and the reflected
light is collected and measured by a single, uncooled InGaAs
photodetector (1 mm). The spectrophotometer scans at a non-
constant step of 2 nm across a spectral range of 900–1700 nm
and presents a signal-to-noise ratio of 5000:1. The device is
equipped with a quartz protection lens to prevent damage and
dirt accumulation. Daily calibration was performed with
SpectralonVR white diffuse reflectance standard (99%).

At least 2 scanning spots were selected for each fruit and 16
spectral measurements were made around each spot in 4 sepa-
rate daily sessions, with the fruit inside a clear plastic bag (poly-
ethylene and polypropylene). A total of 540 spectra were
averaged to provide a mean spectrum for each sample.

The spectral pre-treatment procedures, such as standard
normal variate (SNV), Savitzky–Golay (SG) smoothing, deriva-
tion methods (usually first and second derivative), data normal-
ization, and multiplicative scatter correction (MSC) were applied
in order to eliminate the scatter effects in the spectra and im-
prove the accuracy of the models.

Chemical Analysis

Immediately after acquiring the NIRS spectra, the fruit was cut
into pieces and each spot was separately squeezed by an
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electric juicer (Philips Viva Collection, HR 1832, The
Netherlands). The juices (N¼ 282) were divided in two portions,
one for direct determination of SSC and TA, and another portion
to be stored at �80�C until vitamin C quantification.

Total soluble solids contents (� Brix) was measured by a
handheld digital refractometer (VWR, type A Cat No. 635–0722,
Belgian), while TA was estimated by titrimetry based on official
methods of analysis (15) and results were reported in citric acid
equivalents (g per 100 mL of juice).

The total vitamin C content, alongside with the individual
fractions of ascorbic acid (AA) and dehydroascorbic acid (DHA)
were determined according to Barros and co-workers (16) by hy-
drophilic interaction liquid chromatography (HILIC). Briefly,
defrosted samples were diluted with a metaphosphoric acid so-
lution (1:5, 6.25% m/v) and vortexed. For AA determination,
500 mL of acetonitrile was added to diluted samples (500 mL),
centrifuged (10 min, 13 300 rpm, 4�C), and the supernatant was
injected in the HPLC system. Regarding total vitamin C, diluted
samples (400 mL) were mixed with a TCEP aqueous solution
(100mL, 10 mM), vortexed and incubated for 1 h at 40�C.
Afterward, 500 mL of acetonitrile was added to the previous
solution, which was then centrifuged (10 min, 13 300 rpm, 4�C)
and the supernatant was injected in the HPLC system.
The DHA content was estimated by subtracting the amount of
AA to the total vitamin C content as described by (17).
Chromatographic analysis was accomplished with a JASCO
HPLC system equipped with an auto-sampler (Jasco AS-950,
Japan), an oven (ECOMEco2000, Czech Republic), and a photo-
diode array detector (Jasco MD—4010, Japan). Data were
analyzed using Borwin PDA Controller Software (JMBS
Developments, Le Fontanil, France). The chromatographic
separation was achieved by HILIC using a YMC-Triart Diol-
HILIC column (15 cm � 3 mm; 3 lm, YMC, Japan) and acetoni-
trile–water–trifluoroacetic acid (90:9.9:0.1, v/v) was used as
mobile phase at a flow rate of 0.80 mL/min, operating at con-
stant temperature (23�C). The compounds were identified by
chromatographic comparison with authentic standards at
268 nm. Quantification was based on the UV signal response
using six-level calibration curves and results were expressed
in milligram of AA per 100 mL of juice.

Statistical Analysis

Pearson’s correlation was established, at a 5% significance level,
between morphological and chemical data.

Partial least squares regression can simultaneously
evaluate the effect of more than one X-random variables on
Y-target variable (18). Therefore, PLSR was used to investigate

the relationships between morphological and chemical
features (Y-vector) and NIRS spectra (X-matrix) in terms of the
prediction of Y-target variable from X-random variables.
Five-fold cross-validation (CV) was used to test the predictive
significance of the regression. Root mean square error and the
coefficient of determination of cross-validation (RMSECV and
R2CV) were used to evaluate the performance of the PLSR
models.

Principal component analysis (PCA) was applied to cluster
samples according to the type of citrus fruits.

Linear discrimant analysis (LDA) was used as a supervised
learner to train models for fruit type calibration. The number of
latent variables used were 2 with tolerance set to 0.001.

The data analysis was performed in Tellspec proprietary
framework for machine learning model development.

Results and Discussion
Morphology and Chemical Composition

The citrus fruits with higher worldwide commercial relevance
are oranges, lemons, limes, grapefruit, and tangerines (1). In the
current study, morphological data of these fresh citrus at differ-
ent ripeness stages, are presented in Figure 1. Average weight
and volume of collected fruits are within those reported in the
literature (19), although our range is slightly wider, tentatively
addressed to include a wider range of commercial maturation
stages. In fruits and vegetables, size, mass, volume, and density
attributes are usually correlated, with volume and mass to-
gether determining fruit density (19). Differences in density
have also been utilized for quality inspection of citrus (19), thus
it is of utmost importance to include morphological information
in mathematical modelling to predict the quality of fruits.

The chemical composition of citrus fruits that includes the
sugar content (SSC, � Brix), acidity (TA), and vitamin C is detailed
in Figure 2. Soluble solids content of tested fruits varies from
5.8� Brix (unripe lemon) to 19.9� Brix (ripe tangerine), while TA
ranges between 0.3 (ripe clementine) and 8.0% (or g/100 mL, un-
ripe lime). Citrus quality is dependent on several intrinsic and
extrinsic factors, such as cultivar or rootstock, harvest period,
climate, fruit thinning, hormones, irrigation, and mineral nutri-
tion (2). Therefore, a wide range of both parameters was predict-
able, although regarding ripe fruits average values are within
those described in international standards (20, 21).

Vitamin C is often recognized as the major antioxidant in
citrus. Like sweetness and acidity, vitamin C content in fruits
can be affected by numerous features such as postharvest treat-
ment, storage conditions, as well as oxidative stress. In our

Figure 1. Morphological data of fresh citrus fruits (orange, N¼39; lemon, N¼30; clementine, N¼25; tangerine, N¼21; lime, N¼20).
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study, total vitamin C varied from 3.7 (unripe clementine) to
94.9 mg/100 mL (overripe lemon, Figure 2), which is in accor-
dance with reported data (22, 23).

In citrus, vitamin C is composed mainly by its reduced form,
AA, and minority by its first oxidation product, DHA, which
seems to possess equivalent biological activity to AA (22). As it
can be observed in Figure 2, DHA comprises, on average, 6.4%
(in limes) to 9.8% (in clementines) of total vitamin C, as antici-
pated. Nevertheless, the current study intended to ascertain
whether the NIRS measurements would be able or not to distin-
guish between both oxidation fractions of this hydrophilic
vitamin.

Prediction of Fruit Quality from NIRS Spectra

Spectral data in the NIR region represent absorption bands that
are related to overtones and combinations of fundamental
vibrations mainly due to –CH, –NH, –OH functional groups (24).
However, in order to accomplish adequate calibration and ro-
bust prediction models, the NIR spectral data often require pre-
processing treatments to improve signal-to-noise ratio and cor-
rect light-scattering effects that arise due to non-homogenous
distribution of sample particles, particle size distribution, and
morphology (24). Multiplicative scatter correction and SNV are
two popular NIR spectra pre-processing methods that reduce
spectral distortions due to scattering (24, 25). However, when
scattering effects are removed, the chemical signal may also be
reduced. Therefore, the use of derivatives such as SG derivatives
(26), is an alternative for correcting the effect of overlapping
peaks and removing spectral base line offset and baseline slope
(24). The original dataset of NIR spectra and the result of apply-
ing a combination of SNV and SG derivatives are shown in

Figure 3. In Figure 3A, well-defined absorption bands are
detected at 970 nm and 1470 nm attributed to the second and
first overtones of OH stretching, respectively (4). This observa-
tion was expected considering the hydration degree of citrus
fruits (80–90%) (2), leading to those characteristic water bands.
Citrus fruits are also known by high carbohydrate content
(9–11%) (2) which can be corroborated by the absorption band at
around 1200 nm that corresponds to the second overtones of
CH and CH2 stretching and at around 1370 nm regarding CH
combination vibrations (4, 25). By applying SNV or MSC and
second-derivative SG (Figure 3B and C) the effect of light scatter-
ing is reduced, and the signal is enhanced.

Reducing the number of physical and chemical variables is
beneficial to explain the variance of the dataset. Thus, a PCA
was performed and the two-dimensional score plot explaining
78% of total variance is shown in Figure 4A. Overall, there is a
satisfactory discrimination of fruit type mostly by PC1 except
for clementines, which seems to overlap all remaining citrus.
In addition, the contribution of spectral points that allow the
distinction of citrus fruits was evaluated by the loadings from
PCA (Figure 4B). The absorbance band at 1400 nm, at both PCs,
was the largest contributor to dataset variance, followed by
the absorbance band around 1230 nm and 1170 nm. Even after
spectral data pre-treatment, significant differences between
citrus fruits can only be verified after an integrated analytical
approach combining NIRS and chemical data.

Prior to building a calibration model by PLSR, spectral ranges
between 900–950 nm and 1630–1700 nm were removed consider-
ing that they were dominated by noise. The outcomes of the
PLSR models for NIRS regarding all citrus fruits are detailed in
Table 1. Predictive models encompassed single latent variables
and, in general, resulted in low RMSECV together with high R2

cv

Figure 2. Chemical composition of fresh citrus fruits scanned spots (orange, n¼84; lemon, n¼66; clementine, n¼50; tangerine, n¼42; lime, n¼40). AA¼ascorbic acid;

CA¼ citric acid; DHA¼dehydroascorbic acid.
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Figure 4. Principal component analysis score plots (A) and loadings (B) of physical and chemical parameters determined in fresh citrus fruits.

Table 1. Results of PLSR between chemical parameters and juice ratio (X-variables) and spectral data (Y-variables) for different citrus fruits

Orange Tangerine Clementine Lime Lemon

R2a RMSEb R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Juice ratio 0.726 3.788 0.580 4.870 0.382 4.780 0.746 2.292 0.422 6.121
˚Brix 0.829 0.651 0.970 0.381 0.959 0.396 0.927 0.324 0.754 0.605
TAc 0.768 0.162 0.919 0.088 0.508 0.100 0.744 0.245 0.319 0.691
Vitamin C 0.766 6.495 0.816 2.769 0.772 3.920 0.864 1.497 0.845 2.873
AAd 0.775 6.276 0.868 2.360 0.767 3.714 0.785 1.606 0.769 3.524
DHAe 0.620 0.754 0.289 1.022 0.787 0.666 0.577 0.630 0.606 0.880

a R2 ¼ Coefficient of determination.
b RMSE ¼ Root mean square error.
c TA ¼ Titratable acidity.
d AA ¼ Ascorbic acid.
e DHA ¼ Dehydroascorbic acid.

Figure 3. Near infrared spectra without data pre-treatment (A), after SNV plus SG smoothing (B), and after MSC plus SG smoothing (C; 11 wavelengths gap size, second-

order polynomial, and second-order derivative). MSC¼multiplicative scatter correction; SG¼Savitzky–Golay; SNV¼ standard normal variate.
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as desired (27). Only four exceptions did not provide satisfactory
performances (R2

cv < 0.5), which were DHA for tangerines, juice
ratio for clementines, tangerines and lemons, and TA for lem-
ons (Table 1). Regarding juice ratio, there is a considerable vari-
ability of fruit total weight (i.e., flavedo, albedo, carpel, seeds,
and juice) at the different ripeness states of clementines, tan-
gerines, and lemons (Figure 1), thus affecting the accurate esti-
mation of juice ratio. Considering that AA comprises about 90%
of total vitamin C, similar R2

cv were already expected. On the
contrary, DHA constitutes a minor portion of total vitamin C
and, despite all preventive measures taken, it can easily be
formed during juice extraction, thus explaining the less satis-
factory performance of DHA models (Table 1). Finally, TA of
lemons showed a greater variance in comparison to the remain-
ing fruits (Figure 1) likely due to ripeness range, which then was
mirrored in the models. Regarding fruit type classification, lin-
ear discriminant analysis achieved a 95.6% precision for all fruit
types. The model seems to have less confidence classifying tan-
gerines and clementines correctly as it can be seen in Figure 5.
Besides these two fruits, the remaining 3 species showed preci-
sion higher than 98%.

Throughout the years, several methods have been developed
for the determination of vitamin C in fruits, including spectro-
photometry, electrophoresis, titration, and the most selective,
accurate, and precise approach—HPLC (28). Despite the advan-
tages of the chromatographic determination of total vitamin C
and its bioactive fractions, this is still a destructive methodol-
ogy, thus making further uses of tested samples unfeasible.
Therefore, NIRS has been increasingly used to quantify the con-
tent of ascorbic acid in several fruits and vegetables (29–32). In
comparison to our study, Xia and colleagues (29) obtained simi-
lar coefficients of determination (R2

cv ¼ 0.7765) for predicting the
content of total vitamin C in oranges (assessed by titration) after
NIR spectral pre-processing by MSC. In bell peppers, total vita-
min C (also quantified by titration) showed a similar range of
coefficients of determination (R2

cv ¼ 0.64–0.78) when NIR spectra
was collected in reflectance mode (30). On the other hand,

Malegori and co-workers (31) did not obtain suitable PLSR mod-
els for either total vitamin C (assessed by titration) or TA in ac-
erola (R2

cv < 0.42). As verified, the handheld device not only
allows the assessment of TA, �Brix, and total vitamin C in citrus,
but it also enables the discrimination between AA and DHA,
while preserving the fruits integrity. As far as we are aware, this
is the first study that shows the potential of combining the
chromatographic measurement of vitamin C with NIRS to build
mathematical models to predict the individual contribution of
vitamin C fractions.

In conclusion, this work demonstrated, for the first time, the
fitting performance of NIRS portable sensors at predicting mul-
tiple chemical components in citrus fruits, including vitamin C
fractions. Moreover, machine learning algorithms and data pre-
treatments were very useful for both regression and classifica-
tion assignments. In this way, these devices constitute a cost-
effective, easy to use, accurate, and environmental-friendly tool
to monitor the internal quality of citrus fruits, whose affordabil-
ity make it an option for retailers or even consumers.
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