

A deeper dive into *Hepatozoon* species

Ana Isabel Nunes Janeiro Ferreira

MSc in Biodiversity, Genetics and Evolution Faculty of Sciences of University of Porto 2021

Supervisor

Dr. David James Harris, Researcher, CIBIO

Todas as correções determinadas pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ____/___/____

Acknowledgements

Firstly, I would like to show my appreciation to my supervisor, James for all the time you spent helping me, sorry for having my head always in the clouds. Thanks for your patience, availability, advice and for helping me improve as a scientist and person. Thanks for the amazing group you join me in, and the field works, hopping to go next year to Morocco, they were an amazing way to better get to know people and learn to lead with the lizards. Then I would like to show my gratitude to Ana for helping during the thesis, for always being available for everything, mainly the care and motivation even when I was a pain to deal with and for the amazing experience in the first year of the master in primary school where I was able to become a better person. To Isabel for the help with the Greek part, for your availability during all the time and help with the field work to Lisbon, hopefully in the future we will have more time with each other to share more moments.

I also would like to thank my master buddy's, Joaquim, Diana, and Carolina, for the good times and for always being there to hear me complain, talk and making my days 100 times better, it was a pleasure to be able to know you guys. I promise to continue being me.

I would also want to show my appreciation to everyone you join as in the field works mainly to Carretero and Frederico. And to everyone in CIBIO, mainly to Susana, Patrícia, Maria, Sofia, Diana, and Lili for being there when I needed help. I also want to thank Cristina, D. Rosa and Andreia for making my mornings a lot happier.

Lastly, I want to thank my family for everything.

Ш

Abstract

Parasitism is one of the main components of biodiversity, and parasite communities are affected by various factors. Parasites can be external or internal; in this study we focus on *Hepatozoon* (Apicomplexa, Adeleorina, Hepatozoidae), an endoparasite that infect the blood cells of the hosts. They have an heteroxenous lifecycle, meaning they need more than one host species to develop – a typical lifecycle they pass through two vertebrate hosts and an invertebrate host. Transmission can be vertically or horizontally, and this complexity of life cycle and hosts, along with a simple morphological aspect, has greatly limited understanding of these important parasites. Furthermore, the study of *Hepatozoon* is not equal for every host species, with a main focus on mammals and birds, and a lack of information regarding endoparasites infecting reptiles.

Hepatozoon species can be identified and studied using microscopy and genetic tools. Classically, microscopy has been used to identify and quantify the amount of endoparasites present, and identify if the host has more than one parasite infection. The genetic markers are used to identify and perform phylogenetic analyses. Most studies rely on only the 18s rRNA region as a molecular marker which greatly limits attempts to reconstruct phylogenies and to delimit species.

In order to better understand *Hepatozoon* diversity we divided this thesis in two parts: the first one where we focus on the development of new markers for different regions of the mitochondrial, the apicoplast and the nuclear genomes as well as testing primers already develop by other authors from different hosts to see if they would work in the reptile host. In the second part of this thesis, we focus on the *Hepatozoon* species that infect *Podarcis erhardii* from four different Greek islands, to understand the different host-parasite interactions and what factors play an important role in the phylogeographic of this parasite within a simplified island system.

Concerning our first aim, we were unable to develop new markers. While this is a negative result, it can still be useful to other researchers so that they appreciate the difficulties of employing some published primers.

In the second part of this thesis, we found that lizard size varied significantly between islands, as did ectoparasite prevalence. Larger lizards had higher prevalence of ticks, but lower prevalence of mites, and males had higher prevalence of *Hepatozoon* than females. Presence of ticks influenced endoparasite prevalence, but not mites. Overall,

we found no significant impact of island age and area influencing parasite prevalence. The *Hepatozoon* identified were genetically part of a clade with parasites from various other lizards, including some considered as *Karyolysus*. We also identified a species of *Schellackia*, the first record of this parasite genus from this host, both using microscopy and confirmed using DNA sequencing. Our results further underscore the complexity of this parasite system, even within small islands.

Key words: *Podarcis erhardii;* endoparasites; islands; molecular markers; phylogeny; *Hepatozoon*; lizards

Resumo

Um dos principais componentes da biodiversidade é o parasitismo. Existem diversos fatores que afetam as interações entre os parasitas e os seus hospedeiros, afetando assim os ecossistemas. Os parasitas podem ser externos ou internos. Neste trabalho iremos concentrar num parasita sanguíneo, *Hepatozoon* (Apicomplexa, Adeleorina, Hepatozoidae). Este parasita possui um ciclo de vida heterogéneo, o que significa que precisam de mais de uma espécie hospedeira para se desenvolver - um ciclo de vida típico: eles passam por dois hospedeiros vertebrados e um hospedeiro invertebrado. A transmissão pode ser vertical ou horizontal, e a complexidade do ciclo de vida e dos hospedeiros assim como o aspeto morfológico simples, tem limitado a importância da compreensão destes parasitas. Além disso, o estudo do *Hepatozoon* não é igual para todas as espécies hospedeiras, com foco principal em mamíferos e aves, e falta de informações sobre endoparasitas que infetam répteis.

As espécies de *Hepatozoon* podem ser identificadas e estudadas usando microscopia e métodos genéticos. A microscopia tem sido usada para identificar e quantificar o número de endoparasitas presentes assim como identificar se o hospedeiro tem mais do que uma infeção parasitária. Os marcadores genéticos são usados para identificar e realizar análises filogenéticas. A maioria dos estudos baseia-se apenas na região do gene 18S rRNA como um marcador molecular o que limita muito as tentativas de reconstruir filogenias e delimitar espécies.

Para compreender melhor a diversidade do género *Hepatozoon*, dividimos esta tese em duas partes: a primeira onde nos focamos no desenvolvimento de novos marcadores genéticos para diferentes regiões do genoma mitocondrial, apicoplastidial e nuclear, além de testar primers já desenvolvidos por outros autores de diferentes hospedeiros para ver se eles funcionam em répteis. Na segunda parte do nosso trabalho, vamos nos concentrar nas espécies de *Hepatozoon* que infetam *Podarcis erhardii* de quatro ilhas gregas, para entender as diferentes interações parasita-hospedeiro e quais os fatores desempenham um papel importante na filogeografia deste parasita dentro de um sistema de ilhas simplificado.

Quanto ao nosso primeiro objetivo, não fomos capazes de desenvolver novos marcadores genéticos. Embora este resultado seja negativo, ainda pode ser útil para outros investigadores, para que avaliem as dificuldades de empregar alguns dos primers publicados.

Na segunda parte desta tese, descobrimos que o tamanho dos lagartos varia significativamente entre as ilhas estudadas, assim como a prevalência de ectoparasitas. Lagartos maiores tiveram maior prevalência de carraças, mas menor prevalência de ácaros, e os machos tiveram maior prevalência de *Hepatozoon* do que as fêmeas. A presença de carraças influenciou a prevalência de endoparasitas, ao contrário dos ácaros. Em geral, não detetamos um impacto significativo por parte da idade da ilha e da área que influencie a prevalência do parasita. Os *Hepatozoon* identificados faziam parte geneticamente de um grupo com parasitas de vários outros lagartos, incluindo alguns considerados cariólise. Também identificamos uma espécie de *Schellackia*, é o primeiro registo deste gênero de parasita neste hospedeiro, tanto por microscopia quanto confirmado por sequenciamento de DNA. Nossos resultados ressaltam ainda mais a complexidade deste sistema parasítico, mesmo em pequenas ilhas.

Palavras-chave: *Podarcis erhardii;* endoparasitas; Ilhas; marcadores moleculares; filogenias; *Hepatozoon*; lagartos.

Table Of Contents

Chapter 1	1
Introduction	1
1.1. Parasites	1
1.2 Microscopy	7
1.3 Genetic analyses	7
1.4 Reptiles	10
1.5 Islands	11
Chapter 2	15
Manuscript I	15
Manuscript II	25
Chapter 3	48

List of figures

Figure 1	Generalized apicomplexan lifecycle.	3
Figure 2	Hepatozoon sp. present in Podarcis erhardii.	5
Figure 3	Generalized Hepatozoon lifecycle.	5
Figure 4	Stages of the lifecycle of Hepatozoon.	6
Figure 5	Schellackia sp. present in Podarcis erhardii.	10
Figure 6	Map of Greek islands sampled for Podarcis erhardii.	12
Figure 7	Map of the 4 islands that were the focus of this thesis.	12
Figure 8	Results from the electrophoresis with the Api_PL23S primers	21
Figure 9	Figure 6 - Map of Greek islands sampled for <i>Podarcis erhardii</i> .	29
Figure 10	Variation of <i>Podarcis erhardii</i> SVL (mm) between islands.	32
Figure 11	Variation of SVL of Podarcis erhardii in comparison with	32
	the number of ticks present (A) and the number of mites present (B)	
Figure 12	Estimate of relationships of Hepatozoon species based on	34
	18S rRNA gene fragments. Numbers near to nodes are	
	Bayesian posterior probability values. The tree was rooted	
	using Dactylosoma ranarum and Haemogregarina balli	
Figure 13	Estimate of the relationships from Hepatozoon, using a	35
	network approach employing TCS and TCSbu. All	
	available sequences related to those from P. erhardii were	
	included	
Figure 14	Endoparasites found in samples from the Greek species-	36
	Podarcis erhardii. Figure A is a species of Hepatozoon,	
	Figure B is a species of Schellackia	

List of tables

Table 1	Main differences between islands	13
Table 2	Primers tested in samples from mammals and reptiles	18
	that were infected with Hepatozoon	
Table 3	Primer's design to amplify via PCR	19/20
Table 4	Statistic results obtain, and models used	30
Table 5	Percentage of the prevalence of Hepatozoon,	33
	Schellackia, ticks and mites present in each island. The	
	percentage for total/ for the number of males/ for the	
	number of females	
Table 6	Median intensity of Hepatozoon and Schellackia in	33
	each island	
Table 7	Median intensity of ticks and mites in each island	33
Table s1	Island age and area considered in this study	45
Table s2	Number of parasites per host	45/46/47
Annex 1	All Hepatozoon sequences available in GenBank	62-154

Abbreviations

- rRNA- Ribosomal ribonucleic acid SVL- Snout-vent length PCR- Polymerase Chain Reaction
- DNA- Deoxyribonucleic acid

Chapter 1

Introduction

1.1. Parasites

In an ecosystem, most organisms interact with each other; these interactions are the result of natural selection that occur during million years. Parasitism is one of the most successful interactions known (Poulin, 2007), and is defined as a relationship between two species in which one benefits at the expense of the other.

Parasitism is currently considered one of the main components of biodiversity and one of the most efficient lifestyles (Combes 2001; Poulin & Morand 2000), as the importance of parasites in the ecosystem has increasingly been recognized (Thomas et al., 2000; Damas, 2013; Maia, 2015). The diversity of parasite communities present in an ecosystem can help understand the health of the ecosystem (Hudson et al., 2006).

Parasite communities are influenced by a variety of factors such as population size, habitat, host migration, and anti-parasite defences of the hosts. Various factors within a host community play a role, for example in some cases male hosts have lower resistance to infection and immune response than female hosts (Schmid-Hempel, 2003) due to the testosterone values, since males with higher testosterone contain a weaker immune system (Amo et al., 2005). The parasites can be ectoparasites, parasites that install themselves in the outside of the hosts body (like ticks and mites) feeding on the host's blood, or endoparasites, parasites that live inside of the host body (like various blood parasites and parasitic worms).

Parasite diversity also depends of the phylogenetic, geographic history and host specificity of each parasite species (Combes, 1996; Maia, 2015; Papkou et al., 2016; Poulin, 2007). In the case of islands, the phylogenetic history is one of the main factors driving parasite communities diversity because after the islands are separated from the mainland/ other islands or are formed the host and parasite genetic variability typically decreases (Fornberg & Semegen 2021). Parasites can be lost during the colonization events or find novel hosts.

Just as the hosts characteristics can affect parasitism, parasites can also, indirectly, affect the biology of their hosts (Schmid-Hempel, 2003) by, for example, making them spend more energy; with less energy available they are more vulnerable to predators and less competitive, potentially reducing their ability to reproduce. However, most

2

parasite species do not directly cause diseases on their hosts, because they depend on their survival to reproduce and live (Combes, 2001).

Despite all this, and even though parasites represent a huge part of the global biodiversity and the knowledge available about them is improving, most parasite species remain undescribed (Bouattour et al., 2021). From all this vast diversity of parasites, in this work we will be focusing on the phylum Apicomplexa.

The phylum Apicomplexa is one of the largest unicellular clades. Even though the total diversity within this group is poorly known, it includes many obligate endoparasites and some of the best known pathogenic parasites, and its members are present in a variety of species, both vertebrate and invertebrate (Votýpka et al., 2017). Studies suggest this phylum has evolved from free living, photosynthetic organisms (Mathur, 2016). This organism may have originated 800 My ago, which means they are expected to be very different from other organisms. Dinoflagellates seem to be the closest relatives. This may have repercussions on the usefulness of available markers (Escalante & Ayala, 1995).

This phylum can be divided into 7 groups: gregarines, cryptosporids, adeleorinids, piroplasms, haemosporinids, sarcocystids and eimeriids; however, this division does not include all known species from this phylum (Barta et al., 2012). As there is currently little data available, new information is always emerging, and this can easily change the estimates of phylogenetic relationships. Nevertheless, study effort on this phylum has increased, as some important pathogenic organisms —capable of causing diseases on human, livestock, and pets— are present in it; still, most of its members are non-pathogenic.

Parasites present in this phylum are protozoa with an alveolate format, but there is minimal information available regarding their distribution and phylogeny. Most species possess a nuclear genome —organized in chromosomes inside of the nucleus, with a variable number of chromosomes between species —, a mitochondrial genome —small and variable and typically containing three protein coding regions, the COI (Cytochrome c oxidase subunit I), COIII (Cytochrome c oxidase subunit 3) and CytB (Cytochrome b), it also codifies the LSU (rRNA large subunit) and SSU (rRNA small subunit) (Hikosaka et al., 2012)—, and an apicoplast genome —typically circular and around 35 kilobases, it is housed in the apicoplast, a unique organelle from which the group name derives (Campo et al., 2019). They also have other characteristics that make them unique, such as the apical complex. This complex is formed by the apical cap, the conoid and the

micronemes and rhoptires (Frénal et al., 2017). Inside of these phylum different groups utilize this mechanism in different ways to enter the host cells.

Apicomplexan parasites lifecycles all have three main development stages: gametogony, sporogony and merogony.

Figure 1- Generalized Apicomplexa lifecycle.

The lifecycles are generally heteroxenous, requiring interaction with two or more hosts to complete all three developmental stages, but can also be monoxenous, relying on a single host to complete their lifecycle. To form a zygote, it is necessary that macrogamonts (female) and microgamonts (male) undergo gametogony to generate macro- and microgametes. These then fuse and form the only diploid stage, the zygote. After the zygote is formed, it develops into an oocyst and then into a sporocyte.

Regarding the ones that cause diseases in humans, the best known are from the genera *Plasmodium* and *Toxoplasma*. The first is responsible for up to 500 million clinical cases of malaria and the death of 1 to 2 million people, mostly children, per year; while the last one infects people worldwide, but generally only those that are immunocompromised develop symptoms. Likewise, Apicomplexa that affect livestock

are responsible for causing economic distress, since they cause diseases that may lead to weight loss and even death. Most of these parasites are resistant to drugs (Frölich et al., 2012) and it is difficult to prevent infections as they can be transmitted in a variety of ways. On the other hand, most apicomplexan endoparasites that infect animals especially wildlife — are still poorly known and should be the target of more study, to better understand them and their impact on their hosts (Becker, 2011).

In wildlife the study of *Hepatozoon* is not equal for every host species: there is a main focus in groups such as birds and mammals, so for reptiles hosts there is a lack of available information. Although there are some species of Plasmodium already known in lizards hosts, for example the malarial infections that are caused by Plasmodium mexicanum, and infected hosts are less apt to interact with their conspecifics (Schall & Dearing, 1987) so they have less opportunities to reproduce (Beldomenico & Begon, 2010; Howard & Minchella, 1990).

As mentioned before, the Apicomplexa phylum can be divided in seven main groups, in this study we will be focus on the suborder of Adeleorina (Hemogregarines): this can be divided into the groups Haemogregarine, Hepatozoidae, Karyolysidae and Dactylosomatidae. All species from this suborder produce gamonts by syzygy, pairing of the gametes prior to fertilization.

Hemogregarines can be transmitted by a variety of invertebrates, such as ticks, mites, leeches, and mosquitoes to the vertebrate host through ingestion. They can cause mortality and severe complications in some vertebrates, but this is rarely reported in their natural vertebrate hosts (Barta et al., 2012; Telford, 2009).

In lizards, it has been shown that these endoparasites can reduce the number of erythrocytes, reducing the capacity to transport oxygen. Because of that, and the energy spent to fight the infection, the hosts have a reduction in interactions (Lochmiller & Deerenberg, 2000), the range of their homes (Bouma et al., 2007), the body condition of the hosts, the speed that they move or the rate of tail regeneration (Oppliger & Clobert, 1997). In general, the impact that these parasites have in their hosts depends on their history and the conditions that the hosts are.

Hepatozoon is one of the most well distributed and common protozoans found in reptiles, it is also present in other vertebrate hosts including amphibians, birds and mammals. Some species of *Hepatozoon* can significantly be harmful to other species, for example cats and dogs, increasing the veterinary research made (Criado-Fornelio et al., 2009).

4

Figure 2- Hepatozoon sp. present in Podarcis erhardii.

In lizards, the most widely identified endoparasites are species of the genus Hepatozoon. Hepatozoon were first described by Miller in 1908; since then, the knowledge about it is improving but various aspects remain poorly known.

Hepatozoon lifecycles varies between species.

Figure 3- Generalized Hepatozoon lifecycle.

Some lifecycles are more complex than others: the lifecycle can have vertical transmission and/or horizontal transmission, vertical occurs from an effected animal to

5

their descendants and horizontal occurs between species. For the *Hepatozoon* spp. that infect reptiles (as the first intermediate host), their lifecycle normally contains one invertebrate (final) host and two vertebrate host, the first one is normally a small mammal, bird, reptile, or amphibian that transmit the parasite to the second vertebrate host, typically a bigger animal, when the latter ingests the former. The first vertebrate host is infected by ingestion of the invertebrate or when the invertebrate feeds on the vertebrate blood, the transmission can also occur vertically by transovarial transmission in the definitive host, especially in mammals, but it is a topic that need more research. In viviparous reptile species this transmission is also possible but is unlikely in most species that lay eggs. (Barta et al., 2012; Combes, 1996; Damas, 2013; Kopena et al., 2021; Maia, 2015; Smith et al., 1999; Smith & Desser, 1997).

The genus *Hepatozoon* is heteroxenous, it needs more than one species of host to develop, and normally this genus is characterized by the formation of large polysporocystic oocyst found in the definitive host. Considerable uncertainty concerning the definitive host for many *Hepatozoon* species remains, because different species have different definitive hosts (Léveillé, 2019; Smith & Desser, 1997). In lizards the definitive hosts are thought to be predominantly ticks or mites.

Figure 4- Stages of the lifecycle of Hepatozoon.

The sporulation phase occurs in the invertebrate, in this phase the sporozoites are produced. After they are transmitted to the first vertebrate host, the sporozoites penetrate the cells of the lungs or liver where occurs the cystic production. Subsequently two of

FCUP 6

the phases can take place, merogony or gametogony (Barta et al., 2012; Combes, 1996; Damas, 2013; Maia, 2015; Smith et al., 1999; Smith & Desser, 1997).

Merogony is the stage in which the asexual reproduction occurs, in other words, when the sporozoites goes thought numerous fissions to generate meronts; after developing they become merozoites. The latter can enter the bloodstream and infect the erythrocytes (and becoming gamonts), and then pass either to the second vertebrate host or to the invertebrate host (Damas, 2013; Maia, 2015; Smith et al., 1999; Smith & Desser, 1997).

These parasites are typically detected either by microscopy and/or by genetic analyses. These different approaches will be discussed next.

1.2 Microscopy

The first microscope techniques were developed in the 15th century by Antonie van Leeuwenhoek, and it remains the traditional and standard method for detection, identification and quantification of parasites though the examination of blood smears stained with Giemsa (Telford, 2009; Valkiūnas, 2005). Microscopy has several positive features, such as the capacity to observe the parasite morphology during the different life stages and understanding the course of infection, the possibility to quantify the parasite intensity, number of parasites present in one host, what type of blood cell are infected and if there are multiple infections in the same host. Another advantage of this technique is the fact that it is inexpensive and available in most laboratories, however this technique is susceptible to false negatives due to the number of erythrocytes counted, for example if there are counted 2000 erythrocytes and none of them is infected that does not guarantee the sample does not have endoparasites as they could have simply have not been observed (Maia, et al., 2014).

As mentioned before the parasite intensity can be quantified using the microscope, and to perform this there are two ways: the first one is counting the number of infected cells in a determined amount of time, while the more widely used alternative is counting the number of infected cells, for example per 2,000, 5,000 or 10,000 erythrocytes cells. The amount of the erythrocytes counted varies according to the studies needs and the quality of the samples.

1.3 Genetic analyses

To have a better understanding of the parasites present in the samples, an integrated approach is used, combining microscopy techniques with genetic techniques. This latter

7

technique can be used for specie identification, assessing parasite diversity and the population differentiation, and to estimate phylogenies.

There are mainly two molecular techniques used, conventional polymerase chain reaction (PCR) and the quantitative PCR (qPCR), or Real time PCR. Both techniques have advantages and disadvantages.

Conventional PCR was developed by Kary Mullis, and it consists of three phases: first the denaturation where the DNA chain open, annealing where the primer connects with the sequence, and extension. This is then repeated to exponentially amplify the desired region. The main advantage is the capability of getting genetic information with more length and being cheaper, the main disadvantage is the impossibility to measure the intensity. The real time PCR is a much expensive methodology, but it allows to quantify the parasite gene copies (intensity of parasites).

For the genetic analyses of Hepatozoon and related parasites, few genetic markers have been developed. Indeed, most studies have relied on a single molecular marker, and the most common primers are the HepF300 and HepR900, targeting part of the 18S rRNA region, (Ujvari et al., 2004) and HEMO1 and HEMO2 (Perkins & Keller, 2001) for the same gene but different zones. Recently several primer pairs were designed for Hepatozoon species found in amphibians, so in this work one of our aims will be to try to make them work for our samples. The primers used for the cox3 in dinoflagellates because it has a faster evolution rate and the results could be combined with the 18S rRNA gene region (John et al., 2019).

All the genetic information available from GenBank for Hepatozoon is in annex 1. As can be seen, other than 18S rRNA sequences there is very little data, such as apicoplast sequence obtain from parasites infecting Canis lupus familiaris. Apicoplast sequence from other hosts (Calil et al., 2019) was later shown to be contaminants (Harris, 2020), which demonstrates the difficulty of utilizing other gene regions. This is particularly problematic given that the 18S rRNA region is considered to have a slow evolution rate, so distinguishing closely related parasite species may not be possible with this marker.

There is limited molecular information available about blood parasite communities that infect Podarcis. Most information available for Hepatozoon infecting Podarcis are for Podarcis bocagei, Podarcis lilfordi and Podarcis vaucheri (Harris et al., 2012; Maia et al., 2011; Maia et al., 2012). Regarding Podarcis erhardii, there is one recent study of particular importance which assessed how the time of separation of the islands and other

characteristics could affect prevalence, number of infect animals in the population and intensity, number of parasite per host (Fornberg & Semegen, 2021).

In this study the focus was on endoparasites specially in *Hepatozoon* (including some forms identified as Karyolysus, but for which taxonomic identification is unclear, given that Karyolysus as typically recognized is paraphyletic with Hepatozoon (Haklová-Kočíková et al., 2014; Maia, 2015). Other endoparasites can also be found in the blood smears of Podarcis species, such as species from the genus Schellackia.

The genus Schellackia, another endoparasite, a type of haemococcidian, first described and identified in European lizards by analysis of blood smears via microscopy (Telford, 1993). It infects mainly erythrocytes, but it can be also found in lymphocytes and monocytes. This genus contains 12 species described worldwide, infecting birds, lizards, and frogs. In lizards it is now considered that infection due to Schellackia only occurs in species from the Old World, and that species that infect lizards in the New World (previously considered Schellackia) are now considered part of Lankesterella (Megía-Palma et al., 2017). Schellackia parasites have a high host-parasite specificity (Bristovetzky & Paperna, 1990). Co-speciation between reptile hosts and Schellackia species may also occur (Megía-Palma et al., 2018).

The lifecycle of Schellackia is heteroxenous, it contains more than one host, on their life cycle once in the invertebrate host, the sporozoites a turn into an dormant state when the blood cell is digested (Megía-Palma et al., 2018; Upton, 2000).

In lizards these parasites are typically found in low prevalence and parasitaemia (Olsson et al., 2000; Psaroulaki et al., 2006; Zechmeisterová et al., 2021). These endoparasites are also present in other reptile species such as Chelonia mydas; in this specie Schellackia can cause diseases and organ failure (Pedroso et al., 2020).

The different species from this genus are hard to identify using only morphologic data due to the lack of morphologic descriptions available on their gamonts development and fertilization. Transmission of this parasites occurs via predation of infected hosts or by hematophagous vectors (Megía-Palma et al., 2018).

⁹

Figure 5- Schellackia sp. present in Podarcis erhardii. Image A and B at scale, image C with zoom.

1.4 Reptiles

Reptiles belong to the phylum Chordata, class Reptilia (this class is commonly considered paraphyletic), order Squamata. The genus *Podarcis* has 26 species known in the southern European region and is one of the most predominant reptiles. This genus is a monophyletic group, and while until recently the relationships inside this group were poorly understood (Faria, 2019; Lymberakis et al., 2009; Salvi et al., 2021; Speybroeck et al., 2020; Uetz, 2021), recently many subgroups have been defined (Salvi et al., 2021).

Podarcis was first described as a genus in 1830 by Wagler (1830), although it was generally relegated to a subgenus, prior to the work of Arnold (1973). This genus is widely use in phylogeographic and evolutionary studies due to the high endemism of this genus, with species restricted to specific areas, with one main exception, *Podarcis muralis*. It is thought that the genus *Podarcis* has divided and spread giving rise to most of the species known during the Pleistocene glaciations (Poulakakis et al., 2005; Yang et al., 2021). It is thought that multiple glacial refugia occurred within the Mediterranean peninsulas (the Balkans, the Italian Peninsula and the Iberian Peninsula) and various studies have determined how changes in the sea level in the coastal and island settings impacted diversity within and between species (Salvi et al., 2021).

In this thesis, I will be focusing on one of the species, the Aegean wall lizard, *Podarcis erhardii*. This is a diurnal, medium-sized lizard (snout-to-vent length in adulthood 49–78 mm), ground-dwelling lacertid. It can be found from sea level up to 2000 meter of altitude. The colour and pattern of these species vary a lot with the place where they are found. Males are usually bigger than the females (Brock et al., 2020; Marshall et al., 2015; Zabalaga, 2008; Zhao, 2018). *Podarcis erhardii* is widely distributed in Albania, Bulgaria, Greece, North Macedonia, and Serbia (Lymberakis et al., 2009), and is present in mainland and in many islands. It can be found in various habitats, but they are more common in areas with dry stone walls and/or shrublands (Lymberakis et al., 2009). It is listed as Least Concern under the IUCN Red List of endangered species (Lymberakis et al., 2009).

The diet of the Aegean Wall Lizard consists mainly of arthropods (Brock et al., 2020). They can also consume snails and some fruits, although it is not reported that they consume specifically nectar or vegetables. Occasionally they demonstrate cannibalism tendencies (Adamopoulou et al., 1999; Zhao 2018). The lizards that live in rock walls are more sedentary and ingest highly mobile prey. On the other hand, the ones that are more active tend to eat more sedentary preys and some plant material (Donihue, 2016).

This species can be divided in 28 subspecies, with different evolutionary histories that have promoted differences in size, colour, and different environments where they live. As *Podarcis erhardii* live in so many different places it can be consider a good indicator to study the historical biogeography of the islands due to poor over-water dispersal abilities.

1.5 Islands

A significant part of the earth's biodiversity consists of the species endemic to islands, and these island endemics represent a large part of the world's endangered species (Spatz et al., 2017). There are different types of islands, such as continental island that were once connected to the continent, tidal islands, barrier islands made of sediments or corrals, and oceanic islands or volcanic islands that were made by the eruption of volcanos on the ocean floor, and never connected to continents.

On environments like islands, gene flow is restricted so the populations typically have low genetic variability (Fornberg & Semegen, 2021; Fourfopoulos et al., 2017).

There are a lot of behaviour and structure differences between *Podarcis erhardii* in the mainland and in the islands, and these changes are thought to be a result of differences in the temperature, that affects indirectly with animal behaviour, in the number of predators that affects the size of the lizards and the populations density; and the quantity and variability of food available that also can change their behaviour. Lizards that live in islands tend to be bigger due to a reduction in potential mammal predators, and this can also result in a higher density population (Aguiar et al., 2020; Lomolino, 2005; Meiri, 2008). When the populations have higher densities there are more competitions between conspecifics for the resources available (Lymberakis et al., 2018).

Lizards populations from younger islands often have a higher occurrence of parasites than older ones (Foufopoulos et al. 2017; Frankham et al., 2003; Roca et al. 2009), possibly since the populations from older islands had longer periods of co-evolution and in some cases parasite populations were unviable and went extinct. On the other hand, it has been proposed that larger islands tend to have more numerous reptile's populations, so they can keep more considerable parasite populations, leading to higher parasite intensity (Fourfopoulos et al., 2017).

In this work we focus on islands from Greece, more specific the Cyclades archipelago. These islands have a classic Mediterranean climate, where the summers are warm and torrid, and the winters are mild and wet.

These archipelago has about 220 islands (Knodell et al., 2020) where most of them are volcanic or continental.

Figure 6- Map of Greek islands sampled for Hepatozoon and their host, Podarcis erhardii

Figure 7- Map of the islands that are the focus on the second manuscript for Hepatozoon from Podarcis erhardii

The island we focus on in this study were Santorini (also known as Thira), Nea Kameni, Folegandros and Syros. The island of Santorini has a shared history with the Protocycladic block, meaning it has a continental connection but it separated from the block at least 200,000 years, but recently (3500 years ago) the volcano present in the island erupted causing a catastrophic tsunami (Andel & Shackleton, 1982; Driessen & Macdonald, 2000). Nea Kameni origins are volcanic and the most recent explosion that impacted the island was 400 years ago (Cita & Aloisi, 2000).

The age considered for Syros and Folegandros were the age that they separate from the adjustment landmass, 12800 and 11650 years, respectively (Foufopoulos & Ives 1999; Marshall et al. 2015; Poulakakis et al. 2003).

For Apicomplexa parasites in these islands, *Hepatozoon* species were described affecting dogs, cattle, sheep, goats, cats, ticks and reptiles (Efstratiou, et al., 2021; Latrofa et al. 2017; Morelli et al. 2021). As for *Hepatozoon* that infect *Podarcis* in these islands having a 95% prevalence of blood parasites (Garrido et al., 2013).

Island	type of	Area in	number of	Historical connections	number of
	habitat	km ²	inhabitants		avian
					predators
Folegandros	Rocky	32.38	800	Syros, Santorini	2
	shrubland				
Santorini	Rocky	76.19	13500	Folegandros, Syros	5
	shrubland				
Nea Kameni	Lava	3.4	0	volcanic eruption	5
	dome				
Syros	Rocky	101.9	21507	Folegandros, Santorini	5
	shrubland				

Table 1- Main differences between islands

The main type of *Podarcis* habitat in Santorini, Folegandros and Syros is rocky shrubland, and in Nea Kameni is lava dome (Marshall et al., 2015). Even though some *Podarcis* can exhibit behaviour preference for darker subtracts, the volcanic ash negatively affects the locomotor performance of the reptiles (Zabalaga, 2008).

Objectives

In this study we have two main goals, the development of genetic markers for *Hepatozoon*, and the understanding what variables influence the prevalence and intensity of parasites, using a group of small islands as a model system.

The molecular markers used to study the genus *Hepatozoon* have until now been almost without exception the 18s rRNA gene region. To be able to better understand these parasites phylogenetics our first goals were to develop and test new genetic markers from different parts of the genome, and in particular to identify markers that had a higher mutation rate.

At the same time, we decided to study the *Hepatozoon* that were infecting *Podarcis erhardii* to understand the factors that influence their prevalence and intensity, using microscopy to identify cases of multiple parasite infection and molecular markers to identify species and to place these in a phylogenetic framework.

Chapter 2

Manuscript I

In the blood: developing genomic resources for endoparasites- Hepatozoon

Abstract

The phylum Apicomplexa contains the most common blood parasites, and within this phylum, the genus Hepatozoon is one of the most diverse and prevalent. As this genus has both a complex lifecycle and many described species, the taxonomic evaluation is difficult. Historically the parasite was identified using microscopy, but more and more genetic analyses are employed. However, most studies use only one gene for phylogenetic analyses, the 18S ribosomal RNA gene, which has a slow mutation rate. Genes from the mitochondrial (smaller and with three main genes) and/or the apicoplast genome would be ideal to incorporate into the phylogenetic analyses, but they also are harder to amplify and sequence. We designed and tested multiple primers with the aim of developing new markers for Hepatozoon, from various vertebrate hosts. Unfortunately, none of these that amplified gave identifiable parasite sequences. Extremely high diversity, coupled with gene rearrangements, may explain the difficulty in developing markers in this poorly known group.

Key words: Hepatozoon; primer-design; mitochondrial genome; reptile; PCR

15

Introduction

Hepatozoon species belong to the Apicomplexa phylum, suborder Adeleorina. The phylum Apicomplexa contains some of the most common blood parasites, consisting of unicellular intraerythrocytic parasites. Most of these endoparasites have an heteroxenous lifecycle, which means they need more than one host; normally they have one invertebrate definitive host (ticks, mites, fleas, lice and some dipteran flies), and one or more intermediated vertebrate hosts (mammals, amphibians, reptiles and birds) (Criado-Fornelio et al., 2009). The transmission in most cases occurs via ingestion of the invertebrate or vertebrate host/ vertebrate host blood per another vertebrate or by the invertebrate.

Hepatozoon was first described by Miller in 1908, and since then many different species have been described, while the monophyly of the group has been called into question (Barta et al., 2012), Many new species have been discovered during screening of herpetofauna (Tomé et al., 2018), and currently this genus is considered paraphyletic (Zechmeisterová et al., 2021), with *Karyolysus* being sister taxa to a lineage of *Hepatozoon* primarily from carnivores. The position of *Hemolivia* is unclear but may also fall within *Hepatozoon*.

Species from this genus contain a nuclear, an apicoplast and a mitochondrial genome. The nuclear genome consists in chromosomes inside of the nucleus. The mitochondrial genome is small (6-7 Kb), but functional in a single mitochondria and variable, typically contain three protein coding regions, the COI, COIII and Cyt b, and the structure and order varies between species (Hikosaka et al., 2012). The apicoplast genome is typically circular and has 35 kilobases (Cai et al., 2003).

The lifecycle of *Hepatozoon* species is variable and complex, and since being first described by Miller in 1908, more studies have clarified the different species lifecycle. Most of them have three main phases: gametogony, sporogony and merogony. The gametogony and merogony phase can be found in the vertebrate hosts but the sporogony phase is more often found in the invertebrate host (Barta et al., 2012; Harris et al., 2015; Smith & Desser, 1997).

To verify the prevalence and intensity of *Hepatozoon* in different samples, normally blood smears are examined under the microscope. The number of infected erythrocytes per 2,000, 5,000, or 10,000 erythrocytes is counted. Different species of *Hepatozoon* are hard to tell apart in some stages in the microscope, and so genetic analyses are

invaluable both to separate morphologically similar species, and to reconstruct phylogenetic relationships.

In most studies, the primers used to perform the genetic and phylogenetic analyses amplify a part of the 18S rRNA gene region. The primers used in most studies are HepF300 and HepR900 from Ujvari (2004) (Ujvari et al., 2004) or HEMO1 and HEMO2 from Perkins and Keller (2001) (Perkins & Keller, 2001). These primers are the most widely used because the nuclear region has a low mutation rate, so they are specific enough to work on most *Hepatozoon* species described. For the same reason the 18S is not the best region to be used in phylogenetic analyses, as closely related species may be identical with this marker. Furthermore, it is well known that a gene tree may not reflect the species tree, so, when possible, it is important to assess multiple, independent genes. Therefore, the aim of this study was to design and test primers for other regions that contain a more rapid evolution rate, with a focus on the mitochondrial and apicoplast genomes.

Léveille in 2014 and 2019 developed some primers for *Hepatozoon* that infect amphibians and mammals for the mitochondrial genome, as well as some primers for the apicoplast genome (Léveillé et al., 2014; Léveillé et al., 2020). Therefore, our approach was both to test these published primers in Hepatozoon from reptiles, and also to design new primers based on the limited sequences currently available that we hoped would amplify across various parasite lineages. Materials and methods

Test of available primers

Our first approach was to determine if the available primers for mitochondrial and apicoplast genome worked in the *Hepatozoon* present in reptiles hosts. First, we took samples of reptiles and some mammals that were positive, re-extracted them using the DNeasy Blood & Tissue Kits from Quiagen, and verified by PCR that they were positive using the hep300 and hep900 primers from Ujvari (2004). Then, we reproduced the PCR reaction mentioned in the respective articles (table 2) but with platinum taq DNA Polymerase High Fidelity from ThermoFisher or with MyTaq HS mix from Bioline. Those that amplified were send to sequence by a commercial company (Genwiz, Germany). The ones that did not amplify were repeated with different anneal temperatures, different numbers of cycles and amounts of DNA.

Amplicon	Size (bp)	Primer names	Primer Sequences Annealing Temperature		Reference
Mitochondrial	2000	Api_LSUG_R	5'-AGATAGGGAACAAACTGYCTCAA-3'	62 °C	(Léveillé et
amplicon		Api_LSUF_F	5'-GTWCGCCGGGGATAACAGGT-3'	02 0	al., 2019)
cytochrome c					(Hrazdilová et
ovidase subunit	1800	Hep_COI_R2	5'-TATCAGGACTCTAATTGCGACAG-3'	62 °C	al., 2021)
	1000			02 0	(Léveillé et
1		Api_LSUG_R			al., 2019)
Cytochrome b	1400	Hep_cytb_F2	5'-TGTCGCTGGGTAACTATTATCAC-3'	57 °C	(Hrazdilová et
		Hep_cytb_R2	5'-AACTAGTCCATCCACACAATTGT-3'	57 0	al., 2021)
		ApiPL23SF/			
apicoplast 23S	630	Api_PL_23S_2414F	5'-TAACGGTCCDAAGGTAGCG-3'	61 °C	(Léveillé et
rDNA		ApiPL23SR/			al., 2019)
		Api_PL_23S_3135R	5'-TTYTGAACCCAGCTCACGT-3'		
apicoplast 23S rDNA	500	ApiPL23SF/			(Léveillé et
		Api_PL_23S_2414F	5'-TAACGGTCCDAAGGTAGCG-3'	62 °C	al.,
		ApiSPPLR/ Api-Sp-	5'- GATHAGCCTGTTATCCCTAGAGTAAC -	02 0	2019)(Léveillé
		PL_23S_R	3'		et al., 2019)

Table 2- Primers tested in samples from mammals and reptiles that were infected with Hepatozoon

Primer design

To perform the design of new markers we started by downloading and aligning the available published data for *Hepatozoon*, (annex 1), using the programs BioEdit and Geneious, and separated them by the genes available (all, COI, COIII and Cytochrome b). To align the sequences, we use the clustalW Multiple alignment in Geneious. Then we look for zones that were invariable enough to be able to anneal to a primer. To design

the primers, we follow some standard rules, such as to not have mismatch in the last 10 pb in the 3' extremity, avoiding zones with a lot of nucleotide repetitions, making the melting temperature vary between 55° C and 70° C, and calculating the primer-dimer probability and choosing the ones that had a lower probability.

From 23 possible primer pairs designed, we chose the best 14 to test (table 3). These were chosen by verifying the difference of annealing temperatures between the forward and reverse primers, the percentage of GC and the self-complementarity values. At the same time, we compared the possible new primers against typical vertebrate (host) gene sequences, to try to ensure that the primers will amplify parasite, but not host DNA.

Amplicon	Size (bp)	Primer	Primer Sequences	Annealing	
Amplicon		names		Temperature	
Mitochondrial	400	400F	5'-TGGGACGACAGTCTACTCAA-3'	55 °C	
amplicon	400	400R	5'-ATGGCCTCACCATAAAGGA-3'	55 0	
Small subunit		195F	5'-TAGATGTTCTGGGCTGCACG-3'		
ribosomal RNA	195	195R	5'-TGTGTACAAAGGGCAGGGAC-	55 °C	
gene			3'		
Small subunit		3465	5'-ATTGGAGGGCAAGTCTGGTG-		
ribosomal RNA	346	3406	3'	51 °C	
gene		346R	5'-ATGCCCCCAACTGTCCCTAT-3'		
	172	172F	5'-AAACCTTCCTGAGCGACTCG-3'	55 °C	
Cytochrome b		172R	5'-AAGGCGAGAAGGGAAGTGTG-		
			3'		
Mitochondrial	456	456F	5'-TTACAGCTACCAGGCACAGC-3'	55 °C	
amplicon	450	456R	5'-AGTTACCCAGCGACACCAT-3'	55 °C	
cytochrome c		2045	5'-TTGATACGGGGGAATGCGAC-	55 °C	
oxidase subunit	304	304F	3'		
I		304R	5'-TGGCACTAGCACCTTCCTTC-3'		
Cytochromo h	302	302F	5'-TCGCAAAGTGAAAACAGGCG-3'		
Cytochrome b		302R	5'-CACCAGACTTGCCCTCCAAT-3'	55 C	
cytochrome c		156F	5'-TCGCATTCCCCCGTATCAAC-3'		
oxidase subunit I	156	156R	5'-ATGCAAAGGGGCTAGCCATT-3'	55 °C	

Table 3-Primer's design to amplify via PCR

FCUP 20 A deeper dive into *Hepatozoon* species

Amplicon	Size (bp)	Primer	Primer Sequences	Annealing
				Temperatu
		names		re
cytochrome c		763F	5'-AGATGTTAGTATAGGTACGG-3'	
oxidase subunit III	763	763R	5'-GGCCTCACCATAAAGGA-3'	51 °C
cytochrome c		CO1177F	5'-TCCTGTAGCGTTTCTGTTGGT-3'	
oxidase subunit I	1177	CO1177R	5'-CAGGTACAGCCGAGTGTTATC-3'	54 °C
cytochrome c	760	CO760F	5'-TCTGGTTCTTCGGTCATCC-3'	
oxidase subunit I		CO760R	5'-GTAACCAGGCGTCAATAGCG-3'	49 °C
cytochrome c		CO174F	5'-TTTCACCGCGGTCACAATCT-3'	
oxidase subunit I	174	CO174R	5'-GCATTGCCTAACACCACACC-3'	50 °C
Cytochrome b	519	CB519F	5'-GGGTCAGATGAGTTTCTGGGC-3'	55 °C
		CB519R	5'-TTCGTATTTACTTGACGCTGCT-3'	
Cytochrome b	423	CB423F	5'-GGGTCAGATGAGTTTCTGGGC-3'	56 °C
		CB423R	5'-AGCATCGCATAGAATGGTAGGAA-3'	

As "in silico" design is difficult to produce, primers that look good in theory sometimes do not amplify, while those which look less good sometimes amplify, so we rely on "in vitro" primer testing in the laboratory.

The samples used were already collected (as part of the Cibio/InBio collection) and were already known to be infected with endoparasites, confirmed using 18S rRNA primers from Ujbari (2004) (Ujvari et al., 2004) or through examination of blood cells from direct observation of parasite gamonts in the microscope. To extract the positive samples we use high-salt approaches (Maia et al., 2014; Sambrook et al., 1989) or the DNeasy Blood & Tissue Kits from Quiagen.

The PCR technique uses a mix that contain enzyme (Taq polymerase), dNTP's, MgCl2, buffer and primers. These can be added separately or be present in a "master mix" so that all that is added are the primers. The Taq polymerase used was Platinum[™] from thermofisher or MyTaq[™]Mix by Bioline, which comes with a "master mix". We adjusted conditions such as magnesium concentration, annealing temperatures and other standard approaches until positive PCR occurs.

Any markers that amplified were then sequenced from different host species so we can determine if that gene shows some variability. Ideally, we would then select primers that amplify across many different lineages of parasites.

Results

From the primers tested in table 2 we were able to amplify Api_PL_23S_2414F and Api_PL_23S_3135R for samples from mammals (lion, serval, cat, and seals) and reptiles (snakes). We perform these PCR with the recommend temperatures from the original article, except we used MyTaq[™]Mix. Then we run the second primer pairs (Api_PL_23S_2414F and Api-Sp-PL_23S_R) with the PCR product obtain from the first ones (Api_PL_23S_2414F and Api_PL_23S_3135R), when this failed, we tried 95 °C 10 min, 35 cycles – 94 ° C 3 min, 55 °C 30 sec and 72 °C 40 sec follow by 72 ° C 10 min. The samples from the seals did not amplify, the samples of the lion and the serval amplified (figure 1), the sample from the reptiles amplified two bands. Despite changing annealing temperature, the amount of DNA and the number of cycles, this did not improve.

Figure 8-Results from the electrophoresis with the Api_PL23S primers

Concerning the other primers from table 2, none of them worked consistently. From table number 3, one of the primers worked, the 195 and was sent to sequence to know if it amplifies the parasite.

Unfortunately, none of the sequences were satisfactory. Most were unreadable, except for an apparent *Methylobacterium* (Apicoplast primers, cat host) and apparent large subunit rRNA algal sequences (seal host). However, even these were poor quality sequences and with no close matches.

Conclusion

The work perform did not go as expected, since none of the primers amplified without unspecificities the samples obtain from reptile hosts. It seems likely that this is a general problem – for example primers for apicoplast have been available for some time (eg Obornik et al. 2002). However, these have not been used within *Hepatozoon*, except for in one case (Calil et al. 2019), but these were later shown to be contaminants (Harris 2020). Similarly, some of the mtDNA primers have been available for some time (eg those from Léveillé et al. 2014), and yet there have been few successful attempts to employ these primers in later studies (Hrazdilová et al. 2021), despite several studies highlighting the need for sequences of this organelle. It seems likely that high variability in gene order may cause some problems. The phylum Apicomplexa is an extremely ancient group (800 million years ago), and therefore designing primers to amplify across such a long evolutionary history will always be complex. In our case, presence of other microorganisms, such as bacteria or fungi, might co-amplify and thus prevent the sequences from being usable. Cloning the obtained PCR products might be a potential way forward to overcome this problem.

To improve our knowledge more studies should be performed using the genomic approach, and the primer design should be made with more sequences. Changing the Taq used might be useful. Léveillé (pers. comm.), who successfully amplified the mtDNA genes in amphibians (Léveillé et al. 2014) suggests using High Fidelity Phusion Taq. After this thesis was nearly completed, we attempted to use this Taq, but still unsuccessfully. More mtDNA sequence data have also recently become available from related species of the genus *Haemogregarina* (Attia et al. 2021). As more data becomes available for other related groups, designing primers for use in *Hepatozoon* infecting lizards should, we hope, become an obtainable goal in the near future.

FCUP 22

Reference

- Barta, J. R., Ogedengbe, J. D., Martin, D. S., & Smith, T. G. (2012). Phylogenetic Position of the Adeleorinid Coccidia (Myzozoa, Apicomplexa, Coccidia, Eucoccidiorida, Adeleorina) Inferred Using 18S rDNA Sequences. *Journal of Eukaryotic Microbiology*, *59*(2), 171–180. https://doi.org/10.1111/j.1550-7408.2011.00607.x
- Cai, X., Fuller, A. L., McDougald, L. R., & Zhu, G. (2003). Apicoplast genome of the coccidian *Eimeria tenella*. *Gene*, *321*(1–2), 36–49.
- Criado-Fornelio, A., Buling, A., Casado, N., Gimenez, C., Ruas, J., Wendt, L., Rosa-Farias, N., Pinheiro, M., Rey-Valeiron, C., & Barba-Carretero, J. (2009). Molecular characterization of arthropod-borne hematozoans in wild mammals from Brazil, Venezuela and Spain. *Acta Parasitologica*, *54*(3), 187–193. https://doi.org/10.2478/s11686-009-0031-5
- Harris, D. J., Borges-Nojosa, D. M., & Maia, J. P. (2015). Prevalence and Diversity of *Hepatozoon* in Native and Exotic Geckos from Brazil. *Journal of Parasitology*, 101(1), 80–85. https://doi.org/10.1645/14-522.1
- Hikosaka, K., Tsuji, N., Watanabe, Y., Kishine, H., Horii, T., Igarashi, I., Kita, K., & Tanabe, K. (2012). Novel type of linear mitochondrial genomes with dual flip-flop inversion system in apicomplexan parasites, *Babesia microti* and *Babesia rodhaini*. *BMC Genomics*, *13*(1), 622. https://doi.org/10.1186/1471-2164-13-622
- Hrazdilová, K., Červená, B., Blanvillain, C., Foronda, P., & Modrý, D. (2021). Quest for the type species of the genus *Hepatozoon* phylogenetic position of hemogregarines of rats and consequences for taxonomy. *Systematics and Biodiversity*, *19*(6), 622–631. https://doi.org/10.1080/14772000.2021.1903616
- Léveillé, A. N., Baneth, G., & Barta, J. R. (2019). Next generation sequencing from *Hepatozoon canis* (Apicomplexa: Coccidia: Adeleorina): Complete apicoplast genome and multiple mitochondrion-associated sequences. *International Journal for Parasitology*, 49(5), 375–387. https://doi.org/10.1016/j.ijpara.2018.12.001
- Léveillé, A. N., Ogedengbe, M. E., Hafeez, M. A., Tu, H.-H. (Abby), & Barta, J. R.
 (2014). The Complete Mitochondrial Genome Sequence of *Hepatozoon* catesbianae (Apicomplexa: Coccidia: Adeleorina), a Blood Parasite of the Green Frog, *Lithobates* (Formerly *Rana*) clamitans. Journal of Parasitology, 100(5), 651. https://doi.org/10.1645/13-449.1

- Léveillé, A. N., Skhawy, N. El, & Barta, J. R. (2020). Multilocus sequencing of Hepatozoon cf. griseisciuri infections in Ontario eastern gray squirrels (*Sciurus* carolinensis) uncovers two genotypically distinct sympatric parasite species. Parasitology Research, 119(2), 713–724. https://doi.org/10.1007/s00436-019-06583-5
- Maia, J. P., Harris, D. J., Carranza, S., & Gómez-Díaz, E. (2014). A Comparison of Multiple Methods for Estimating Parasitemia of Hemogregarine Hemoparasites (Apicomplexa: Adeleorina) and Its Application for Studying Infection in Natural Populations. *PLoS ONE*, *9*(4), e95010. https://doi.org/10.1371/journal.pone.0095010
- Perkins, S. L., & Keller, A. K. (2001). Phylogeny of nuclear small subunit rRNA genes of hemogregarines amplified with specific primers. *The Journal of Parasitology*, *87*(4), 870–876. https://doi.org/10.1645/0022-3395(2001)087[0870:PONSSR]2.0.CO;2
- Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual. *Molecular Cloning: A Laboratory Manual*.
- Smith, T. G., & Desser, S. S. (1997). Phylogenetic analysis of the genus *Hepatozoon* Miller, 1908 (Apicomplexa: Adeleorina). *Systematic Parasitology*, *36*(3), 213–221. https://doi.org/10.1023/A:1005721501485
- Tomé, B., Pereira, A., Harris, D. J., Carretero, M. A., & Perera, A. (2019). A paradise for parasites? Seven new haemogregarine species infecting lizards from the Canary Islands. *Parasitology*, *146*(6), 728–739. https://doi.org/10.1017/S0031182018002160
- Ujvari, B., Madsen, T., & Olsson, M. (2004). High Prevalence of *Hepatozoon* Spp. (Apicomplexa, Hepatozoidae) Infection in Water Pythons (*Liasis fuscus*) From Tropical Australia. *Journal of Parasitology*, *90*(3), 670–672. https://doi.org/10.1645/GE-204R
- Zechmeisterová, K., Javanbakht, H., Kvičerová, J., & Široký, P. (2021). Against growing synonymy: Identification pitfalls of *Hepatozoon* and *Schellackia* demonstrated on North Iranian reptiles. *European Journal of Protistology*, 79, 1– 17. https://doi.org/10.1016/j.ejop.2021.125780

Manuscript II

What factors influence prevalence and intensity of *Hepatozoon* infection in *Podarcis erhardii* from different Greek islands?

A. Isabel Ferreira^{1,2}, Isabel Damas-Moreira³, Ana Perera¹, D. James Harris^{1*}

¹CIBIO-InBIO, Universidade do Porto, Portugal

² Departamento de Biologia Universidade do Porto, Portugal

³Department of Behavioural Ecology, Bielefeld University, Germany*

Corresponding author: james@cibio.up.pt

Abstract

Island biogeography theories predict that characteristics such as island size, age, and isolation interplay in host-parasite dynamics. In this study, we analyse the Aegean wall lizard *Podarcis erhardii*, and blood parasites of the genus *Hepatozoon* (Apicomplexa: Adeleina: Hepatozoidae) to investigate how island characteristics related to parasite prevalence and intensity. A previous study on Greek islands suggested that isolation time and host population density were key predictors of parasitism. In our study we increase this previously published dataset by including data from four additional islands, Santorini, Syros, Nea Kameni and Folegandros, and by collecting data for the prevalence of ectoparasites (ticks and mites), definitive hosts for *Hepatozoon*. Furthermore, we employed partial 18S rRNA gene sequences to confirm parasite identities.

Lizard size varied significantly between islands, as did ectoparasite prevalence. Larger lizards had more ticks, but less mites, and males were more frequently infected by haemogregarines than females. Presence of ticks influenced endoparasite prevalence, but not mites. The additional data, when joined with that from Fornberg and Semegen (2021), showed no significant impact of island age and area influencing parasite prevalence. All the *Hepatozoon* identified were genetically part of a clade with parasites from various other lizards, including some considered as *Karyolysus*. We also confirmed by microscopy and DNA sequencing the presence of *Schellackia*, the first record of this parasite genus in this host. Our results further highlight the complexity of host-parasite systems, even within small islands.

Keywords: Insularity; Host-parasite interactions; 18S rRNA; Aegean wall lizard; Apicomplexa; *Karyolysus*; *Schellackia*.
Introduction

Parasites represent a huge proportion of biodiversity, and have an important role in the ecosystems, influencing the dynamics and structure of host populations (Combes, 2001; Hudson et al., 2006; Poulin & Morand, 2000). Islands are classic models in evolutionary studies, due to the simplicity of the system when compared to continental regions, and, in particular, host-parasite interactions have received little attention in assessments of island ecology (Fornberg & Semegen, 2021). It is expected that island size, age, and isolation all interplay to impact host-parasite dynamics, but the relative importance of the different factors is still not clear (Fornberg & Semegen, 2021; Foufopoulos et al., 2017; Patiño et al., 2017).

In islands, animal populations in the initial stages of colonization tend to be smaller, with high levels of inbreeding and lower genetic variability (Fornberg & Semegen, 2021). During the process of isolation, parasites can decrease in numbers or even be lost entirely due to the reduction of host abundance and dispersal and through the process of "bottlenecks" associated with each colonization event and shifting the hosts is also possible (Tomé et al., 2018). On the other hand, due to the lack or reduced amount of predators, insular systems can have very dense populations, and in particular the smaller islands generally can have more dense populations than the bigger ones (Rodda & Dean-Bradley, 2002). Given that, insular species can be more susceptible to diseases and parasitism (if they are new to the insular environment) (Fornberg & Semegen, 2021; Papkou et al., 2016).

Lizards are good model systems to study the variation of parasitism on island populations given their low mobility, high densities, and easiness of sampling. This is particularly true for the Aegean Wall Lizard, *Podarcis erhardii*, a diurnal medium-sized lizard, widely distributed in mainland Greece and many Aegean islands (Lymberakis et al., 2009). Moreover, *Podarcis erhardii* can be found in different habitats and types of islands (Lymberakis et al., 2009), being primarily insectivorous (Brock et al., 2020), although diet varies considerably according to habitat (Foufopoulos & Ives, 1999; Zhao, 2018). Recently, Fornberg and Semegen (2021) carried out an extensive assessment of parasite diversity within *P. erhardii* in the Cyclades islands, 19 islands, (which are part of the Aegean islands, Greece). They found that islands with greater host density and islands that had been isolated for less time generally had higher hemogregarine prevalence, which they hypothesised was associated by insular density compensation, when a island support a large number of species and they occupy a familiar habitat their populations tend to be more dense. Islands that were temporally and spatially isolated

also showed a trend towards higher prevalence and parasitaemia levels. However, Fornberg and Semegen (2021) only used morphological identification of the parasites, and as such, they could not be certain of the identity, ascertain if distinct parasites were present nor place them within a phylogenetic framework.

In this study, we aim to extend the work of Fornberg and Semegen (2021) by sampling four additional islands within the Cyclades, that were not sampled before: Santorini, Nea Kameni, Folegandros and Syros (Figure 9). These islands have notable differences in size (from 3.4 Km² to 101.9 Km²) and ages since separation (between 400 years and 12,800 years) (Perkins & Keller, 2001).

The genus *Hepatozoon* (Apicomplexa: Adeleina: Hepatozoidae) consists of a variety of unicellular obligate endoparasites. These parasites are present in almost every group of terrestrial vertebrates, being one of the most abundant and widespread hemoparasites, especially in reptiles (Telford, 2009). The lifecycle of *Hepatozoon* species is heteroxenous, employing intermediate hosts- vertebrates, and definitive hosts- invertebrates, typically mites and ticks (Barta et al., 2012; Harris et al., 2015; Smith & Desser, 1997).

Hepatozoon are transmitted to the vertebrate hosts primarily through ingestion of an infected invertebrate (or another infected vertebrate) or when the invertebrate feeds on the vertebrate blood. One of the most common lizard host species in the Greek islands is the Aegean Wall lizard, *Podarcis erhardii.* These lizards can be found in different habitats being more common in areas with dry stone walls and/or shrublands (Lymberakis et al., 2009).

Hepatozoon definitive hosts present in these Greek islands are thought to be ticks (the genus *Dermacentor, Hyalomma*, and *Ixodes* are present (Allain & Bateman, 2018)) and mites from the family Trombiculidae (Garrido & Pérez-Mellado, 2015). Ectoparasite load is generally affected by the type of vegetation present and the presence of ruminants (Allain & Bateman, 2018), with males often having a higher ectoparasite load (Amo et al., 2006; As et al., 2020).

FCUP A deeper dive into *Hepatozoon* species

Figure 9- Map of Greek islands sampled in this study and in the Fornberg and Semegen 2021 for Hepatozoon and their host, Podarcis erhardii. The island included in this study are named. The islands from our study were Santorini, Nea Kameni, Folegandros and Syros

Material and methods

We collected blood samples from 195 adult P. erhardii lizards between April and June 2014. After lizards were caught, we cut the tail tip, and we performed blood smears from the blood dropped naturally from this cut. The tip of the tail was then immediately stored in 96% ethanol. We also sexed them by seen the format and size of the femoral pores and measured lizards' snout-to-vent length (SVL) and weight using digital callipers and a small scale (± 0.01mm/g respectively). Sex was recorded, as well as the number of ticks and mites present. The lizards were after released in the place where they were captured. Blood smears were fixed with methanol and air dried in the same day. Once in the laboratory, they were stained with Giemsa for 45 min.

Blood smears were examined under an Olympus CX41 microscope using x400 optics, and pictures were taken with Cell^B 3.4 Olympus® software. Pictures were inspected using the ImageJ 1.46® program. For each individual, we counted 2000 erythrocytes, and scored how many were infected with parasites. Like this, we could assess the parasite prevalence (percentage of individuals infected in the population) and intensity (number of parasitized cells per individual) (supplemented material s3).

The variables included were prevalence and intensity of parasites (ectoparasites and haemogregarines), sex, body size and weight of the Podarcis erhardii, and the island where they were captured. We determined if the variables followed a normal distribution

29

using the Shapiro-Wilk normality test and checked the homogeneity of variances among groups (sexes, islands) using Bartlett test.

Since the variables did not follow a normal distribution, we used non parametric approaches. We checked for correlation between the transform data to logarithms of lizard weight and SVL using a Spearman rank correlation. Since logSVL and logweight were correlated only SVL was used.

We employed generalized linear models with a binomial distribution to compare and understand if the ectoparasites and hemoparasites prevalence is influence by the different islands where they are present and sexes of the hosts.

For the intensity of parasites, we employed two different methods (Negative Binomial Models and Binomial Models) to try to understand if any of the variables influence the endoparasite intensity. We start by using a permutational analysis of the variance using the function adonis, package vegan (Permanova), then we run a permutational Ancova (Anova with covariance) to see if this statistic analysis would change our results once it creates a distribution curve based on our real data. We also use negative binominal models to check if it would change the results.

Then we combined the data from the four islands sampled with the data from Fornberg and Semegen (2021) using permanova analysis follow by permutational pairwise a-posteriori contrasts to know which haplogroups were different (function pairwisePermutationTest, R package rcompanion), we could also use a structural equation (path analysis) but as our main focus was the influence of the island age and area in the prevalence and intensity of endoparasites, so we chose the permutational analysis of the variance. All statistical analyses were performed in Rstudio 1.4.

	Podarcis erhardii SVL	Hepatozoon prevalence	Hepatozoon intensity		
SVL	-	p<0.001	F= 0.151, p= 0.723		
Sex	F= 21.807, p<0.001	p= 0.01	F= 0.060, p= 0.821		
Island	F= 23.782, p<0.001	p<0.001	F= 0.980, p= 0.332		
Number of mites	F= 16.857, p= 0.001	p= 0.119	F= 0.047, p= 0.799		
Number of ticks	F= 3.1047, p= 0.046	p= 0.011	F= 0.171, p= 0.634		

Table 4- Statistic results obtain, and models used

Island age*	-	F= 0.991, p= 0.334	-
Island área*	-	F= 0.018, p= 0.901	-

In order to confirm the identity of the parasites present in the four islands analysed DNA from six tail-tip samples were extracted (n=195) using standard High Salt methods (Sambrook et al., 1989). Following extraction, we performed a PCR to amplify part of the 18s rRNA gene, using the Hep300 and Hep900 primers from Ujvari (2004) and the conditions proposed in Maia et al. (2011). Positive PCR products were cleaned and sequenced by a commercial company (Genewiz, Germany). The sequences generated were compared with the data from GenBank using BLAST to confirm parasite identify. The sequences were aligned in Geneious using clustalW, with representative sequences from GenBank with 104 (Supplementary Material, Table s1). We used Bayesian inference (BI) to estimate the phylogeny with the most appropriate model of molecular evolution identified using PartitionFinder2 (Lanfear et al., 2016). BI was implemented using Mr. Bayes v.3.1 (Huelsenbeck & Ronguist, 2001). The analysis was run for 10⁷ generations, saving one tree each 1000 generations. The log-likelihood values of the sample points were plotted against the generation time and all the trees prior to reaching stationarity (25%) were discarded. Remaining trees were combined in a 50% majorityrule consensus tree (Huelsenbeck & Ronguist, 2001). Phylogenetic relationships within haplogroups were also inferred using a network approach, which is particularly appropriate when few characters for phylogenetic analysis are available due to limited divergence (Posada & Crandall, 2001). We used the statistical parsimony network approach implemented in TCS 1.21 (Clement et al., 2000) with a connection limit of 95%. Networks were visualised and edited in TCSbu (Santos et al., 2015).

31

Results

Significant differences were identified in SVL between islands (F= 23.782, df=3, p<0.001) and between sexes, with males being larger than females (F= 21.807, df=1, p<0.001). Interaction between these factors was not significant (F= 1.295, p= 0.283). The lizards from Syros were largest, follow by Folegandros and then Santorini and Nea Kameni (Figure 10)

Figure 10- Variation of Podarcis erhardii SVL (mm) between islands.

The number of ticks (df=1, p=0.046) and mites (df=1, p= 0.001) present in the lizards were both correlated with SVL (Figure 11), with larger *Podarcis* hosting a higher number of ticks, but inversely a smaller number of mites.

Figure 11- Variation of SVL of *Podarcis erhardii* in comparison with the number of ticks present (A) and the number of mites present (B).

Hepatozoon prevalence varied between islands (df=3, p=2.525e-07) and between sexes (df=1, p=0.012), with males having higher prevalence than females. The

FCUP A deeper dive into *Hepatozoon* species

differences found in prevalence between islands were between Syros, Folegandros and Santorini and Nea Kameni. There were no significant differences between these last two.

Regarding whether the numbers of mites and ticks on a lizard influenced the prevalence, the number of ticks present on the lizard did influence prevalence (df=1, p=0.011), while the number of mites and the interaction of both did not (df=1, p=0.119; df=1, p= 0.845, respectively), during this statistic part the islands where the samples were caught were not considered.

Table 5- Percentage of the prevalence of Hepatozoon, Schellackia, ticks and mites present in each island. The percentage for total/ for the number of males/ for the number of females

Island	N/ N males/ N females	Hepatozoon (%)	Schellackia(%)	Ticks (%)	Mites (%)
Folegandros	64/38/26	70/ 84/ 57 7	5/26/77	34.4/50/	20.3/ 23.7/
Foleganulos	04/00/20		0/ 2.0/ 1.1	11.5	15.4
Syros	57/35/22	46/54.3/31.8	10.5/14.3/4.5	0/0/0	0/0/0
Santorini	51/ 26/25	67/69/64	37.3/38.5/36	0/0/0	90.2/92.3/48
Nea Kameni	21/11/10	9.5/9/10	19/ 27.3/10	0/0/0	0/0/0

Table 6- Average intensity of Hepatozoon in each island (per 2,000 erythrocytes)

	Hepatozoon					
	average	average	average			
Island	intensity	intensity	intensity			
	(total)	(males)	(females)			
Folegandros	8.2	8.5	8.2			
Syros	6.2	6.1	6.2			
Santorini	4.6	4.7	4.6			
Nea Kameni	0.5	0.5	0.6			

Table 7- Average intensity of ticks and mites in each island

	Ticks N			Mites		
	average	average	average	average	average	average
Island	intensity	intensity	intensity	intensity	intensity	intensity
	(total)	(males)	(females)	(total)	(males)	(females)
Folegandros	0.66	0.68	0.65	1	0.87	1
Santorini	0	0	0	10.7	12	11

33

FCUP 34 A deeper dive into *Hepatozoon* species

Combining our results with those from Fornberg and Semegen (2021), we found that prevalence was not significantly influence by island age (p=0.295), while in Fornberg and Semegen (2021) younger islands had a trend towards higher percentage of infected animals. Concerning island size, our results showed it was not significant on the *Hepatozoon* prevalence (p=0.900). Regarding parasite intensity in different islands, sexes and ectoparasite quantities, we conclude that there were not significant differences (p>0.05). There was also no significant correlation between parasite intensity and the islands age (p=0.506) and area (p=0.249).

As for intensity none of our variables had a significant influence in the intensity of the *Hepatozoon,* with SVL, sex and island containing a probability of p= 0.710, p= 0.06010, p= 0.98076 respectively.

Figure 12- Estimate of relationships of *Hepatozoon* species based on 18S rRNA gene fragments. Numbers near to nodes are Bayesian posterior probability values. The tree was rooted using *Dactylosoma ranarum* and *Haemogregarina balli*.

Figure 13- Estimate of the relationships from *Hepatozoon*, using a network approach employing TCS and TCSbu. All available sequences related to those from *P. erhardii* were included.

We amplified a fragment of the 18S rRNA gene region from the *Hepatozoon* of five infected *Podarcis erhardii* individuals (two individuals per island (Syros and Folegandros) and one individual from Santorini) and aligned these sequences against those from GenBank (aligned length 553 bp). All the new sequences were closely related (maximum of 30 nucleotide differences) and formed a clade with other lizards haemogregarines, which includes many samples identified as *Karyolysus* and *Hepatozoon*. Taxonomic reassessment of this group still needs to be fully reassessed.

From the haplotype network (Figure 13) it is possible to observed that the *Hepatozoon* species from the Greek islands are more similar to the ones from similar hosts, primarily other lizard species, particularly from Portugal and Spain.

Under microscopy, as well as typical haemogregarine parasites from the genus *Hepatozoon*, several lizards appeared to be infected with *Schellackia* (Figure 14). We successfully amplified one of these (from *Podarcis erhardii* from the Greek island of Nea Kameni) using the same conditions and primers as those used for the *Hepatozoon* parasites.

The sequence quality for *Schellackia* was suboptimal, but a BLAST search with 253bp of sequence showed a 100% match with MG775272 sequence from GenBank, from *Schellackia* species infecting a *Timon lepidus* collected in Spain.

Figure 14- Endoparasites found in samples from the Greek species- *Podarcis erhardii*. Figure A is a species of *Hepatozoon*, Figure B is a species of *Schellackia*.

Discussion and conclusion

Unravelling the dynamics of host-parasite relationships is a major aim of evolutionary ecology but is extremely complex, with multiple factors influencing the interactions (Megía-Palma et al., 2021). In such situations, islands are ideal models, simplifying the system while allowing the impacts of population fragmentation to be determined within known time frames.

In this study we detected the presence of two different blood parasites: haemogregarines belonging to the genera *Schellackia* and *Hepatozoon/Karyolysus*. This is, as far as we know, the first report of *Schellackia* parasites in *P. erhardii*, and the factors that are influenced by the size of the lizard (number of ectoparasite) or influence (island and sex), the *Hepatozoon* prevalence (sex and island). The *Hepatozoon* average intensity was significantly higher that the *Schellackia* average intensity in Santorini, Syros and Folegandros, but not in Nea Kameni. *Hepatozoon* intensity was not significantly affected by the sex of the host, the island where they were present or by the size of the host. *Hepatozoon* prevalence was higher in males than females, probably due to their higher susceptibility and their behaviour (Olsson et al., 2000), except for Nea Kameni, where the overall prevalence of *Hepatozoon* was significantly lower, presumably associated with the type of habitat there.

Recent applications of molecular tools have highlighted the diversity of parasites infecting Mediterranean lizards. The most common parasites infecting lacertids are haemogregarines, typically considered to be transmitted by mites and ticks (Allain & Bateman, 2018). Less common are haemococcidians, including *Schellackia*, which are regarded as more host specific (Megía-Palma et al., 2018). Our identification of *Schellackia* sp. in all four studied populations, with molecular represents an interesting finding and the first record for *P. erhardii*. That this parasite was not reported by Fornberg and Semegen (2021) in the other Greek islands. This genus of parasites has in general, lower prevalence, but morphologically might be mistaken by other parasites. In our case, molecular tools were helpful to detect the presence of these parasites and confirm their identity. Assessment of more islands particularly for the presence of *Schellackia* would be needed to confirm this.

We detected both *Hepatozoon/Karyolysus* and *Schellackia* parasites in all four studied populations. Interestingly, ticks were only present in one and mites on two of the four populations, and the prevalence of mites in these two islands was higher in males. Infection with mites and ticks in *Podarcis melisellensis* was more severe at the end of the reproductive season (Huyghe et al., 2010). On the other side, tick prevalence was

significantly associated with past grazing practices in the islands occupied by *P. erhardii* (Hurston, 2007). It seems like that temporal variation combined with contrasting habitat characteristics and use may explain the differences in ectoparasite prevalence in our study, although this aspect clearly needs further assessments.

Not unexpectedly, average sizes of P. erhardii vary across populations. Body size often evolve rapidly in island lizards (Poulakakis et al., 2003). These island populations also show colour differences that apparently match background colours as anti-predator avoidance (Marshall et al., 2015), with body size differences also associated with antipredator defence mechanisms. Unexpectedly, we found an inverse relationship between ticks and mites, with larger lizards having more ticks but less mites. Previous studies found that mites intensity was not associated with body size in Podarcis muralis (Amo et al., 2005), while in a community of three lacertid lizards in the Iberian Peninsula, there was a positive correlation between SVL and mite infestation (Drechsler et al., 2021). This latter study highlighted that each host-parasite system showed unique particularities, despite being related hosts in similar environments. An inverse relationship was also described with different habitats both parasites, mites being more present in areas with dry grasslands and little disturbance, and ticks in areas with higher plant cover and disturbance by livestock (Hamilton et al., 2021). Our results corroborate this - even in a simplified island system, unique particularities are seen between different ectoparasites and endoparasites. Such singularities highlight the difficulties in generalizing patterns of host-parasite dynamics, and the need for more studies to try to understand these complex relationships, however traits like island size and distance to continent should not be relevant.

As expected, the haemogregarines prevalence was much higher in males than females, due to their higher susceptibility (due to higher values of testosterone values and immunosuppression) and their behaviour, the fact that males have a more bolder behaviour make them more expose to the parasites because they have more interactions with other individuals and different species (Olsson et al., 2000), except for Nea Kameni. The overall prevalence of these parasites in this island was significantly lower than in the other islands, this prevalence can be influence by the type of habitat that this host live in.

As for the islands age and area, our results contradicted the findings from Fornberg and Semegen (2021) where they found that smaller islands had a higher prevalence. Our results, however, did not identify a significant relation between island age, area and prevalence and intensity of parasitism. We think that more studies should be performed including islands with similar evolutionary histories.

Lizards were more intensely infected with *Hepatozoon* than with *Schellackia* in Santorini, Syros and Folegandros. The average intensity of both endoparasites was the same in Nea Kameni. Haemogregarines intensity was not significantly affected by the sex of the host, the island where they were present or by the size of the host.

The lack of consistency between our results and the previous study by Fornberg and Semegen (2021) highlights the need for more studies to understand how factors such as the size and age of the island, vegetation, habitat structure, and lizards' density, among others, shape parasitism. The Greek islands provide a unique framework for a better understanding of host parasite interactions in insular ecosystems.

References

- Allain, S. J. R., & Bateman, T. C. B. (2018). Ixodid ticks on Oertzen's Rock Lizard (*Anatololacerta oertzeni*) on Ikaria, Greece, with notes on the island's reptiles. *Reptiles* & *Amphibians*, 25(3), 176–179. https://doi.org/10.17161/randa.v25i3.14291
- Amo, L., López, P., & Martín, J. (2005). Prevalence and intensity of haemogregarine blood parasites and their mite vectors in the common wall lizard, Podarcis muralis. *Parasitology Research*, *96*(6), 378–381. https://doi.org/10.1007/s00436-005-1354-2
- Amo, Luisa, Lopés, P., & Martín, J. (2006). Nature-based tourism as a form of predation risk affects body condition and health state of *Podarcis muralis* lizards. *Biological Conservation*, 1, 402–409. https://doi.org/10.1016/j.biocon.2006.02.015
- As, M. van, Netherlands, E. C., & Smit, N. J. (2020). Molecular characterisation and morphological description of two new species of *Hepatozoon* Miller, 1908 (Apicomplexa: Adeleorina: Hepatozoidae) infecting leukocytes of African leopards *Panthera pardus pardus*. *Parasites & Vectors*, 13(1), 222. https://doi.org/10.1186/s13071-020-3933-6
- Barta, J. R., Ogedengbe, J. D., Martin, D. S., & Smith, T. G. (2012). Phylogenetic Position of the Adeleorinid Coccidia (Myzozoa, Apicomplexa, Coccidia, Eucoccidiorida, Adeleorina) Inferred Using 18S rDNA Sequences. *Journal of Eukaryotic Microbiology*, *59*(2), 171–180. https://doi.org/10.1111/j.1550-7408.2011.00607.x
- Brock, K. M., Baeckens, S., Donihue, C. M., Martín, J., Pafilis, P., & Edwards, D. L. (2020). Trait differences among discrete morphs of a color polymorphic lizard, *Podarcis erhardii. PeerJ*, 8, e10284. https://doi.org/10.7717/peerj.10284
- Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. *Molecular Ecology*, *9*, 1657–1659.
- Combes. (2001). Parasitism: the ecology and evolution of intimate interactions. *University of Chicago Press.*
- Drechsler, R. M., Belliure, J., & Megía-Palma, R. (2021). Phenological and intrinsic predictors of mite and haemacoccidian infection dynamics in a Mediterranean community of lizards. *Parasitology*, *148*(11), 1328–1338. https://doi.org/10.1017/S0031182021000858

Fornberg, J. L., & Semegen, S. L. (2021). Biogeographic patterns of blood parasitism in

the Aegean Wall Lizard across the cycladic islands. *Frontiers of Biogeography*, *13*(2), 0–12. https://doi.org/10.21425/F5FBG49428

- Foufopoulos, J., & Ives, A. R. (1999). Reptile Extinctions on Land-Bridge Islands: Life-History Attributes and Vulnerability to Extinction. *The American Naturalist*, 153(1), 1–25. https://doi.org/10.1086/303149
- Foufopoulos, J., Roca, V., White, K. A., Pafilis, P., & Valakos, E. D. (2017). Effects of island characteristics on parasitism in a Mediterranean lizard (*Podarcis erhardii*): A role of population size and island history? *North-Western Journal of Zoology*, *13*(1), 70–76.
- Garrido, M., & Pérez-Mellado, V. (2015). Human pressure, parasitism and body condition in an insular population of a Mediterranean lizard. *European Journal of Wildlife Research*, 61(4), 617–621. https://doi.org/10.1007/s10344-015-0915-7
- Hamilton, K., Goulet, C. T., Drummond, E. M., Senior, A. F., Schroder, M., Gardner, M.
 G., While, G. M., & Chapple, D. G. (2021). Decline in lizard species diversity, abundance and ectoparasite load across an elevational gradient in the Australian alps. *Austral Ecology*, *46*(1), 8–19. https://doi.org/10.1111/aec.12951
- Harris, D. J., Borges-Nojosa, D. M., & Maia, J. P. (2015). Prevalence and Diversity of *Hepatozoon* in Native and Exotic Geckos from Brazil. *Journal of Parasitology*, 101(1), 80–85. https://doi.org/10.1645/14-522.1
- Hudson, P. J., Dobson, A. P., & Lafferty, K. D. (2006). Is a healthy ecosystem one that is rich in parasites? *Trends in Ecology & Evolution*, 21(7), 381–385. https://doi.org/10.1016/j.tree.2006.04.007
- Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. *Bioinformatics*, 17(8), 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
- Hurston, H. (2007). Historical Land Fragmentation and its Effects on Genetic Diversity and Parasitism of Island Populations of *Podarcis erhardii* (Lacertidae, Reptilia). *Diversity*.
- Huyghe, K., Oystaeyen, A. Van, Pasmans, F., Tadić, Z., Vanhooydonck, B., & Damme,
 R. van. (2010). Seasonal changes in parasite load and a cellular immune response
 in a colour polymorphic lizard. *Oecologia*, *163*(4), 867–874.
 https://doi.org/10.1007/s00442-010-1646-9

- Lanfear, R., Frandsen, P. B., Senfeld, T., & Calcott, B. (2016). PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. *Molecular Biology and Evolution*, 34(3), 772– 773.
- Lymberakis, P., Isailovic, J. C., Ajtic, R., Vogrin, M., & Böhme, W. (2009). *Podarcis* erhardii. The IUCN Red List of Threatened Species. https://dx.doi.org/10.2305/IUCN.UK.2009.RLTS.T61546A12512784.en
- Maia, J. P. M. C., Harris, D. J., & Perera, A. (2011). Molecular survey of *Hepatozoon* Species in Lizards From North Africa. *Journal of Parasitology*, *97*(3), 513–517. https://doi.org/10.1645/GE-2666.1
- Marshall, K. L. A., Philpot, K. E., Damas-Moreira, I., & Stevens, M. (2015). Intraspecific Colour Variation among Lizards in Distinct Island Environments Enhances Local Camouflage. *PLOS ONE*, *10*(9). https://doi.org/10.1371/journal.pone.0135241
- Megía-Palma, R., Barja, I., & Barrientos, R. (2021). Fecal glucocorticoid metabolites and ectoparasites as biomarkers of heat stress close to roads in a Mediterranean lizard.
 Science of The Total Environment, 802. https://doi.org/10.1016/j.scitotenv.2021.149919
- Megía-Palma, Rodrigo, Martínez, J., Cuervo, J. J., Belliure, J., Jiménez-Robles, O., Gomes, V., Cabido, C., Pausas, J. G., Fitze, P. S., Martín, J., & Merino, S. (2018).
 Molecular evidence for host–parasite co-speciation between lizards and *Schellackia* parasites. *International Journal for Parasitology*, 48(9–10), 709–718. https://doi.org/10.1016/j.ijpara.2018.03.003
- Olsson, M., Wapstra, E., Madsen, T., & Silverin, B. (2000). Testosterone, ticks and travels: A test of the immunocompetence-handicap hypothesis in free-ranging male sand lizards. *Proceedings of the Royal Society B: Biological Sciences*, 267(1459), 2339–2343. https://doi.org/10.1098/rspb.2000.1289
- Papkou, A., Gokhale, C. S., Traulsen, A., & Schulenburg, H. (2016). Host–parasite coevolution: why changing population size matters. *Zoology*, *119*(4), 330–338. https://doi.org/10.1016/j.zool.2016.02.001
- Patiño, J., Whittaker, R. J., Borges, P. A. V., Fernández-Palacios, J. M., Ah-Peng, C.,
 Araújo, M. B., Ávila, S. P., Cardoso, P., Cornuault, J., Boer, E. J. de, Nascimento,
 L. de, Gil, A., González-Castro, A., Gruner, D. S., Heleno, R., Hortal, J., Illera, J. C.,
 Kaiser-Bunbury, C. N., Matthews, T. J. Emerson, B. C. (2017). A roadmap for island

biology: 50 fundamental questions after 50 years of The Theory of Island Biogeography. *Journal of Biogeography*, 963–983. https://doi.org/10.1111/jbi.12986

- Perkins, S. L., & Keller, A. K. (2001). Phylogeny of nuclear small subunit rRNA genes of hemogregarines amplified with specific primers. *The Journal of Parasitology*, 87(4), 870–876. https://doi.org/10.1645/0022-3395(2001)087[0870:PONSSR]2.0.CO;2
- Posada, D., & Crandall, K. A. (2001). Intraspecific gene genealogies: trees grafting into networks. *Trends in Ecology and Evolution*, *16*(1), 37–45.
- Poulakakis, N., Lymberakis, P., Antoniou, A., Chalkia, D., Zouros, E., Mylonas, M., & Valakos, E. (2003). Molecular phylogeny and biogeography of the wall-lizard *Podarcis erhardii* (Squamata: Lacertidae). *Molecular Phylogenetics and Evolution*, 28(1), 38–46. https://doi.org/10.1016/S1055-7903(03)00037-X
- Poulin, R., & Morand, S. (2000). The diversity of parasites. The Quarterly Review of Biology, 75(3). http://www.journals.uchicago.edu/t-and-c
- Rodda, G. H., & Dean-Bradley, K. (2002). Excess density compensation of island herpetofaunal assemblages. *Journal of Biogeography*, 29(5–6), 623–632. https://doi.org/10.1046/j.1365-2699.2002.00711.x
- Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual. *Molecular Cloning: A Laboratory Manual.*
- Santos, A. M. dos, Cabezas, M. P., Tavares, A. I., Xavier, R., & Branco, M. (2015). TcsBU: A tool to extend TCS network layout and visualization. *Bioinformatics*, *32*(4), 627–628.
- Smith, T. G., & Desser, S. S. (1997). Phylogenetic analysis of the genus *Hepatozoon* Miller, 1908 (Apicomplexa: Adeleorina). *Systematic Parasitology*, *36*(3), 213–221. https://doi.org/10.1023/A:1005721501485
- Telford, S. R. (2009). Themoparasites of the Reptilia: Color atlas and textitle. CRC Press.
- Tomé, B., Pereira, A., Harris, D. J., Carretero, M. A., & Perera, A. (2019). A paradise for parasites? Seven new haemogregarine species infecting lizards from the Canary Islands. *Parasitology*, 146(6), 728–739. https://doi.org/10.1017/S0031182018002160
- Tomé, B., Pereira, A., Jorge, F., Carretero, M. A., Harris, D. J., & Perera, A. (2018). Along for the ride or missing it altogether: exploring the host specificity and diversity of

P 43

haemogregarines in the Canary Islands. *Parasites & Vectors*, *11*(1), 190. https://doi.org/10.1186/s13071-018-2760-5

- Ujvari, B., Madsen, T., & Olsson, M. (2004). High Prevalence of *Hepatozoon spp*. (Apicomplexa, Hepatozoidae) Infection in Water Pythons (*Liasis fuscus*) From Tropical Australia. *Journal of Parasitology*, *90*(3), 670–672. https://doi.org/10.1645/GE-204R
- Zhao, Y. (2018). The effects of predation risk, shelter, and food availability on the reproduction of Aegean Wall lizards (Podarcis erhardii) in the Greek islands. https://www.lacerta.de/AF/Bibliografie/BIB_12648.pdf

Supplementary Material

Island	Island age	Area km2
Amorgos	200000	123
Anafi	5000	40.37
Andros	5800	379.95
Antikeros	15150	1.05
Fidoussa	600	0.63
Glaronissi	5600	0.16
Los	11750	109.03
Iraklia	9800	18.08
Keros	9150	15.05
Kisiri	5700	0.01
Lazaros	9100	0.01
Makria	13500	0.5
Mando	4	0.3
Megalo fteno	9580	0.06
Mikro fteno	5000	0.03
Naxos	8700	448
Pacheia	11850	1.36
Parthenos	5400	0.008
Tinos	5800	194.5
Santorini	3500	76.19
Nea kameni	400	3.4
Folegandros	11650	32.384
Syros	12800	101.9

Table s1- Island age and area considered in this study

Table s2- Number of parasites per host

Island	Intensity of	Island	Intensity of	Island	Intensity of
	Hepatozoon		Hepatozoon		Hepatozoon
Syros	4	Nea Kameni	0	Folegandros	3
Syros	0	Nea Kameni	2	Folegandros	14
Syros	0	Nea Kameni	0	Folegandros	0
Syros	0	Nea Kameni	0	Folegandros	15

FCUP 46

Syros	0	Nea Kameni	0	Folegandros	2
Syros	7	Nea Kameni	0	Folegandros	3
Syros	0	Nea Kameni	0	Folegandros	4
Syros	0	Nea Kameni	0	Folegandros	4
Syros	0	Nea Kameni	0	Folegandros	13
Syros	0	Nea Kameni	0	Folegandros	24
Syros	0	Nea Kameni	0	Folegandros	2
Syros	0	Nea Kameni	0	Folegandros	1
Syros	0	Nea Kameni	0	Folegandros	3
Syros	45	Santorini	0	Folegandros	11
Syros	1	Santorini	20	Folegandros	1
Syros	0	Santorini	0	Folegandros	10
Syros	0	Santorini	2	Folegandros	3
Syros	0	Santorini	1	Folegandros	31
Syros	44	Santorini	6	Folegandros	1
Syros	0	Santorini	5	Folegandros	9
Syros	10	Santorini	11	Folegandros	9
Syros	3	Santorini	9	Folegandros	8
Syros	47	Santorini	1	Folegandros	0
Syros	22	Santorini	1	Folegandros	0
Syros	0	Santorini	6	Folegandros	15
Syros	2	Santorini	14	Folegandros	0
Syros	5	Santorini	25	Folegandros	5
Syros	0	Santorini	0	Folegandros	4
Syros	0	Santorini	0	Folegandros	1
Syros	0	Santorini	0	Folegandros	9
Syros	0	Santorini	7	Folegandros	20
Syros	4	Santorini	56	Folegandros	38
Syros	4	Santorini	1	Folegandros	4
Syros	0	Santorini	0	Folegandros	33
Syros	0	Santorini	0	Folegandros	5
Syros	0	Santorini	0	Folegandros	9
Syros	7	Santorini	1	Folegandros	0
Syros	1	Santorini	5	Folegandros	0
Syros	46	Santorini	24	Folegandros	28

FCUP 47

A deeper dive into *Hepatozoon* species

Syros	10	Santorini	0	Folegandros	1
Syros	0	Santorini	3	Folegandros	2
Syros	0	Santorini	0	Folegandros	0
Syros	0	Santorini	1	Folegandros	152
Syros	2	Santorini	32	Folegandros	3
Syros	17	Santorini	6	Folegandros	0
Syros	20	Santorini	5	Folegandros	2
Syros	0	Santorini	0	Folegandros	1
Syros	0	Santorini	0	Folegandros	0
Syros	4	Santorini	1	Folegandros	0
Syros	1	Santorini	9	Folegandros	0
Syros	11	Santorini	4	Folegandros	1
Syros	0	Santorini	0	Folegandros	0
Syros	7	Santorini	10	Folegandros	0
Syros	0	Santorini	12	Folegandros	0
Syros	2	Santorini	10	Folegandros	0
Syros	27	Santorini	7	Folegandros	0
Syros	0	Santorini	0	Folegandros	1
Nea Kameni	0	Santorini	4	Folegandros	1
Nea Kameni	0	Santorini	0	Folegandros	5
Nea Kameni	0	Santorini	0	Folegandros	1
Nea Kameni	1	Santorini	2	Folegandros	6
Nea Kameni	0	Santorini	0	Folegandros	1
Nea Kameni	0	Santorini	1	Folegandros	8
Nea Kameni	0	Santorini	5	Folegandros	0
Nea Kameni	0		1	1	1

Chapter 3

Discussion and Final conclusions

At this moment in time, global biodiversity is decreasing due multiple factors including habitat fragmentation, climate change and human interference. These changes influence the dispersal ability of species, and in turn the parasite intensity and prevalence: the effects of habitat fragmentation and isolation on the host-parasite interactions are complex. The human interference can also increase the connectivity between hosts and parasites.

It is clear that there are still a lot of *Hepatozoon* species that remain undescribed. For those with available genetic data, this is typically limited to the 18S rRNA gene region, which is not always variable enough to distinguish between cryptic form. Therefore, we attempted to develop new genetic markers for *Hepatozoon* species. Separately, we also tried to understand what influences their prevalence and intensity in *Podarcis erhardii* from several Greek islands, which offer a simplified system to try to unravel the complex patterns observed in continental systems (eg. Maia 2015). This lizard species can help to understand the geographic history of Greece due to co-evolution of the island's final formation and the lizards (Hurston et al., 2009) and the parasites DNA could be used to track ancient contact between host species that are currently separated or extinct, and the appearance of other species for example alien species (*P. vaucheri*, *P. siculus*) that may change the host-population dynamics. The *Hepatozoon* species present can also help understand how the island separation history affect the endoparasite prevalence and intensity, making it easier to predict what will be the effect of habitat fragmentation on both the *Hepatozoon* species, and the species that they infect.

In the first part of this thesis, we designed primers to amplify several regions of the mitochondrial, apicoplast and nuclear genome. During the development of the molecular markers, we identified several challenges. There are a small number of mitochondrial sequences from *Hepatozoon* available in GenBank and none of them were from reptiles. While the design of the primers should follow some standard rules, this was hard to follow based on the limited published sequences available. Once the primers were designed and the ones that look better were tested, we conclude that most of our primers and even some primers develop by other authors have nonspecificities when used to amplify *Hepatozoon* in reptile hosts.

As for the published Léveillé primers, the Api23S did amplify in various samples but had considerable non-specificity in samples from reptiles. We also tried extracting from the gel the band of the expected length, but again this was unsuccessful. Cloning of these fragments may be the best approach to move this forward.

As the mitochondrial and the apicoplast genome generally have a faster mutation rate, the primer design for these regions is harder, and likely more specific for *Hepatozoon* species from a specific host group. The primers we develop could be tested in additional samples from very different host groups and with different PCR conditions to check if the nonspecificities are due the host DNA or due to a problem with the design. The primers were compared with the reptile's genome and did not coincidence, but they could likely amplify bacteria or even other parasites present that we did not consider.

Another approach that could be applied would be extensive datamining of published vertebrate genomes for parasite DNA and using this for primer design and the datamining of dinoflagellates to check the zones that are more similar. Various studies have shown that many published genomes incorporate parasite DNA, which can greatly increase the data available to design parasites. While designing the primers we could also try to redesign primers already developed in order to make them more specific.

Regarding the second part of the thesis, the results obtain supported our predictions that the host parasite interaction would be shaped during the island canonizations. From our results we were able to conclude that the size of the *Podarcis erhardii* caught were significantly different between the different islands, and that this difference can be due to the growth rate and longevity of the different island lizards, to the adaptations to the number of predators and background colour, as the lizards adapt to the characteristics of the islands that shape their ecology or even phenotypic plasticity acts that happened earlier.

One interesting find from this work was that ticks on lizards were only found in one island, while mites were present in two islands. These results were unexpected, since it is generally thought that *Hepatozoon* species are transmitted to the *Podarcis* though ticks, mites or an infected prey (Orkun & Emir, 2020) so we expected that, even if only in smaller quantities, these ectoparasites would be present in every island given that *Hepatozoon* were ubiquitous, this results are likely habitat-mediated. In the future, it would be informative to collect samples in different seasons to see why they were not present during the time of sampling or try to see how the *Hepatozoon* are being transmitted potentially by other final hosts such as biting flies. This would also have

taxonomic implications, as Karvolvsus is often suggested to be transmitted by mites (Hassl, 2012). In some species it has been reported vertical transmission (eg. Inokuma et al., 2002), but in the case of this specie is unlikely, since vertical transmission was not identified in another lizard, Lacerta schreiberi (Kopena et al., 2021). We also notice that bigger lizards contained higher number of ticks and a small number of mites, potentially indicating a competition between mites and ticks. This clearly deserves further investigation, as it is a novel pattern not previously identified.

Another result was that the Hepatozoon prevalence was higher in males, as expected due to their testosterone values (Olsson et al., 2000). To make a more complete study an experiment could also be performed to see if the amount of Hepatozoon would affect their aggressivity, since supposedly animals with higher testosterone values would be more aggressive, although it is still unclear if the testosterone act directly or through body condition and damage, more experimentation is needed, particularly monitoring individual hosts (Oppliger et al., 2004). The only island where the prevalence was smaller was Nea Kameni, in which the population was small and mainly focused in one place with a lot of tourist interaction (Isabel Damas pers. comm.), so to have a better understanding of the prevalence of *Hepatozoon* here it would be important to study their diet, to see how this influences *Hepatozoon* prevalence.

Furthermore, in this work, we found the endoparasite Schellackia, a parasite which had not previously been described in this host (Podarcis erhardii). In future studies it would be important to perform wider sampling to try to have a better understanding of the prevalence and intensity of them, their interaction with other parasites and hosts, and try to understand why their prevalence is so small in comparison with Hepatozoon. This might also shed light on why they were not reported on a previous study of blood parasites of P. erhardii from many more islands (Fornberg & Semegen, 2021). The possibility that they were overlooked, or mistaken for stages of Hepatozoon needs to be assessed. It is also necessary to determine if the Schellackia negatively affects the hosts, and to determine if this is the same species found in other *Podarcis* hosts, or represents a new, undescribed species.

Regarding the influence of the island age and area in the prevalence and intensity of endoparasites, our results did not go as expected, partially contradicting the results from Fornberg and Semegen (2021). Our results shown no significant interaction between those variables. Part of the reason for this might be that the significance values obtained by Fornberg and Semegen (2021) were quite low. Another reason might be the slightly

50

differing timing of the study since strong seasonal effects are expected. Again, repeating the sampling over different seasons might help to address this.

Concerning the parasite intensities, the medium intensity of *Hepatozoon* was higher than from *Schellackia*, but none of the factor's studied in this work influenced the intensity. Why *Schellackia* is often found at low intensities clearly deserves further attention.

To conclude, the main goal of this thesis was to have a better understanding of these parasites, "diving deeper" into the still poorly known genus *Hepatozoon*, and I think that we were successful. More studies should be performed in the future because as we got answers, so we also got more questions. And for a better understanding of these parasite species, new primers need to emerge.

Reference

- Adamopoulou, C., Valakos, E. D., & Pafilis, P. (1999). Summer diet of *Podareis milensis*, *P. gaigeae and P. erhardii* (Sauria: Lacertidae). *Bonn. Zool. Beitr*, 48, 275–282. https://doi.org/10.1128/AAC.03728-14
- Aguiar, A., Morais, D. H., Yamada, F. H., Anjos, L. A., Silva, L. A. F., & Silva, R. J. (2020).
 Can differences between continental and insular habitats influence the parasites communities associated with the endemic frog *Haddadus binotatus*? *Journal of Helminthology*, 2020. https://doi.org/10.1017/S0022149X20000620
- Amo, L., López, P., & Martín, J. (2005). Prevalence and intensity of haemogregarine blood parasites and their mite vectors in the common wall lizard, *Podarcis muralis*. *Parasitology Research*, *96*(6), 378–381. https://doi.org/10.1007/s00436-005-1354-2
- Andel, T. H. V., & Shackleton, J. C. (1982). Late paleolithic and mesolithic coastlines of Greece and the Aegean. *Journal of Field Archaeology*, 9(4), 445–454. https://doi.org/10.1179/009346982791504454
- Barta, J. R., Ogedengbe, J. D., Martin, D. S., & Smith, T. G. (2012). Phylogenetic Position of the Adeleorinid Coccidia (Myzozoa, Apicomplexa, Coccidia, Eucoccidiorida, Adeleorina) Inferred Using 18S rDNA Sequences. *Journal of Eukaryotic Microbiology*, 59(2), 171–180. https://doi.org/10.1111/j.1550-7408.2011.00607.x
- Becker, K. (2011). Apicomplexan Parasites- Molecular Approaches toward Targeted Drug Development. 1–531.
- Beldomenico, P. M., & Begon, M. (2010). Disease spread, susceptibility and infection intensity: vicious circles? *Trends in Ecology & Evolution*, 25(1), 21–27. https://doi.org/10.1016/j.tree.2009.06.015
- Bouattour, A., Chabchoub, A., Hajjaji, I., & M'ghirbi, Y. (2021). Hepatozoon canis and Babesia vogeli infections of dogs in Tunisia. Veterinary Parasitology: Regional Studies and Reports, 23(August 2020), 100512. https://doi.org/10.1016/j.vprsr.2020.100512
- Bouma, M. J., Smallridge, C. J., Bull, C. M., & Komdeur, J. (2007). Susceptibility to infection by a haemogregarine parasite and the impact of infection in the Australian sleepy lizard *Tiliqua rugosa*. *Parasitology Research*, *100*(5), 949–954. https://doi.org/10.1007/s00436-006-0379-5

- Bristovetzky, M., & Paperna, I. (1990). Life cycle and transmission of *Schellackia cf. agamae*, a parasite of the starred lizard *Agama stellio*. *International Journal for Parasitology*, *20*(7), 883–892. https://doi.org/10.1016/0020-7519(90)90026-J
- Brock, K. M., Baeckens, S., Donihue, C. M., Martín, J., Pafilis, P., & Edwards, D. L. (2020). Trait differences among discrete morphs of a color polymorphic lizard, *Podarcis erhardii. PeerJ*, 8, e10284. https://doi.org/10.7717/peerj.10284
- Calil, P. R., Puorto, G., Dunn, J. C., Chagas, C. R. F., & Ramos, P. L. (2019). Molecular and morphological characterization of *Hepatozoon spp.* In Brazilian snakes.
 Amphibia Reptilia, 40(3), 337–347. https://doi.org/10.1163/15685381-20191113
- Campo, J. del, Heger, T. J., Rodríguez-Martínez, R., Worden, A. Z., Richards, T. A., Massana, R., & Keeling, P. J. (2019). Assessing the Diversity and Distribution of Apicomplexans in Host and Free-Living Environments Using High-Throughput Amplicon Data and a Phylogenetically Informed Reference Framework. *Frontiers in Microbiology*, *10*(OCT), 1–15. https://doi.org/10.3389/fmicb.2019.02373
- Cita, M. B., & Aloisi, G. (2000). Deep-sea tsunami deposits triggered by the explosion of Santorini (3500 y BP), eastern Mediterranean. *Sedimentary Geology*, *135*(1–4), 181–203. https://doi.org/10.1016/S0037-0738(00)00071-3
- Combes. (2001). Parasitism: the ecology and evolution of intimate interactions. *University of Chicago Press.*
- Combes, C. (1996). Parasites, biodiversity and ecosystem stability. *Biodiversity and Conservation*, *5*(8), 953–962. https://doi.org/10.1007/BF00054413
- Criado-Fornelio, A., Buling, A., Pingret, J. L., Etievant, M., Boucraut-Baralon, C., Alongi,
 A., Agnone, A., & Torina, A. (2009). Hemoprotozoa of domestic animals in France:
 Prevalence and molecular characterization. *Veterinary Parasitology*, *159*(1), 73–76.
 https://doi.org/10.1016/j.vetpar.2008.10.012

Cyclades Archipelago (Greece). (2009).

- Damas, I. (2013). Fitness effects of Hepatozoon blood parasites in selected lizard species.
- Donihue, C. M. (2016). Aegean wall lizards switch foraging modes, diet, and morphology in a human-built environment. *Ecology and Evolution*, *6*(20), 7433–7442. https://doi.org/10.1002/ece3.2501

Driessen, J., & MacDonald, C. F. (2000). The eruption of the Santorini volcano and its

effects on Minoan Crete. *Geological Society, London, Special Publications*, 171(1), 81–93. https://doi.org/10.1144/GSL.SP.2000.171.01.08

- Efstratiou, A., Karanis, G., & Karanis, P. (2021). Tick-Borne Pathogens and Diseases in
Greece.*Microorganisms*,
9(8),9(8),1732.https://doi.org/10.3390/microorganisms9081732
- Escalante, A. A., & Ayala, F. J. (1995). Evolutionary origin of *Plasmodium* and other Apicomplexa based on rRNA genes. *Proceedings of the National Academy of Sciences of the United States of America*, 92(13), 5793–5797. https://doi.org/10.1073/pnas.92.13.5793
- Faria, J. F. (2019). Unravelling Evolutive Histories from the Maghreb: Two Comprehensive Studies on the Lacertids Podarcis vaucheri and Psammodromus algirus.
- Fornberg, J. L., & Semegen, S. L. (2021). Biogeographic patterns of blood parasitism in the Aegean Wall Lizard across the cycladic islands. *Frontiers of Biogeography*, *13*(2), 0–12. https://doi.org/10.21425/F5FBG49428
- Foufopoulos, J., & Ives, A. R. (1999). Reptile Extinctions on Land-Bridge Islands: Life-History Attributes and Vulnerability to Extinction. *The American Naturalist*, 153(1), 1–25. https://doi.org/10.1086/303149
- Foufopoulos, J., Roca, V., White, K. A., Pafilis, P., & Valakos, E. D. (2017). Effects of island characteristics on parasitism in a Mediterranean lizard (*Podarcis erhardii*): A role of population size and island history? *North-Western Journal of Zoology*, *13*(1), 70–76.
- Frénal, K., Dubremetz, J., Lebrun, M., & Soldati-Favre, D. (2017). Gliding motility powers invasion and egress in Apicomplexa. *Nature Reviews Microbiology*, *15*(11), 645– 660. https://doi.org/10.1038/nrmicro.2017.86
- Frölich, S., Entzeroth, R., & Wallach, M. (2012). Comparison of Protective Immune Responses to Apicomplexan Parasites. *Journal of Parasitology Research*, 1–11. https://doi.org/10.1155/2012/852591
- Garrido, M., & Pérez-Mellado, V. (2013). Prevalence and intensity of blood parasites in insular lizards. *Zoologischer Anzeiger - A Journal of Comparative Zoology*, 252(4), 588–592. https://doi.org/10.1016/j.jcz.2012.11.003

Greeff, J. M., & Vuuren, B. van. (2003). Introduction to Conservation Genetics. African

Zoology, 38(1), 192–192. https://doi.org/10.1080/15627020.2003.11657212

- Haklová-Kočíková, B., Hižňanová, A., Majláth, I., Račka, K., Harris, D. J., Földvári, G., Tryjanowski, P., Kokošová, N., Malčeková, B., & Majláthová, V. (2014).
 Morphological and molecular characterization of *Karyolysus* - A neglected but common parasite infecting some European lizards. *Parasites and Vectors*, 7(1), 1– 12. https://doi.org/10.1186/s13071-014-0555-x
- Harris, D. J. (2020). Problems with parasites: Comments on the recently proposed Apicoplast sequences of Calil et al. (2019). *Amphibia Reptilia*, *41*(1), 119–121. https://doi.org/10.1163/15685381-20191288
- Harris, D. J., Maia, J. P. M. C., & Perera, A. (2012). Molecular Survey of Apicomplexa In Podarcis Wall Lizards Detects Hepatozoon, Sarcocystis, and Eimeria Species. Journal of Parasitology, 98(3), 592–597. https://doi.org/10.1645/JP-GE-2908.1
- Hikosaka, K., Tsuji, N., Watanabe, Y., Kishine, H., Horii, T., Igarashi, I., Kita, K., & Tanabe, K. (2012). Novel type of linear mitochondrial genomes with dual flip-flop inversion system in apicomplexan parasites, *Babesia microti* and *Babesia rodhaini*. *BMC Genomics*, *13*(1), 622. https://doi.org/10.1186/1471-2164-13-622
- Howard, R. D., & Minchella, D. J. (1990). Parasitism and mate competition. *Oikos*, *58*(1), 120–122.
- Hudson, P. J., Dobson, A. P., & Lafferty, K. D. (2006). Is a healthy ecosystem one that is rich in parasites? *Trends in Ecology & Evolution*, 21(7), 381–385. https://doi.org/10.1016/j.tree.2006.04.007
- Hurston, H., Voith, L., Bonanno, J., Foufopoulos, J., Pafilis, P., Valakos, E., & Anthony, N. (2009). Effects of fragmentation on genetic diversity in island populations of the Aegean wall lizard *Podarcis erhardii* (Lacertidae, Reptilia). *Molecular Phylogenetics and Evolution*, 52(2), 395–405. https://doi.org/10.1016/j.ympev.2009.03.028
- Inokuma, H., Okuda, M., Ohno, K., Shimoda, K., & Onishi, T. (2002). Analysis of the 18S rRNA gene sequence of a *Hepatozoon* detected in two Japanese dogs. *Veterinary Parasitology*, *106*(3), 265–271. https://doi.org/10.1016/S0304-4017(02)00065-1
- John, U., Lu, Y., Wohlrab, S., Groth, M., Janouškovec, J., Kohli, G. S., Mark, F. C., Bickmeyer, U., Farhat, S., Felder, M., Frickenhaus, S., Guillou, L., Keeling, P. J., Moustafa, A., Porcel, B. M., Valentin, K., & Glöckner, G. (2019). An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. *Science Advances*, *5*(4), 1–12. https://doi.org/10.1126/sciadv.aav1110

- Knodell, A. R., Athanasoulis, D., Tankosić, Ž., Cherry, J. F., Garonis, T. K., Levine, E. I., Nenova, D., & Öztürk, H. Ç. (2020). An island archaeology of uninhabited landscapes: Offshore islets near Paros, Greece (the Small Cycladic Islands Project). *The Journal of Island and Coastal Archaeology*, *0*(0), 1–37. https://doi.org/10.1080/15564894.2020.1807426
- Kopena, R., Martín, J., López, P., Majláth, I., & Majláthová, V. (2021). Lack of evidence of vertical transmission of *Karyolysus* blood parasites in Iberian green lizards (*Lacerta schreiberi*). International Journal for Parasitology: Parasites and Wildlife, 16(June), 95–98. https://doi.org/10.1016/j.ijppaw.2021.08.008
- Latrofa, M. S., Angelou, A., Giannelli, A., Annoscia, G., Ravagnan, S., Dantas-Torres, F., Capelli, G., Halos, L., Beugnet, F., Papadopoulos, E., & Otranto, D. (2017). Ticks and associated pathogens in dogs from Greece. *Parasites & Vectors*, *10*(1), 301. https://doi.org/10.1186/s13071-017-2225-2
- Léveillé, A. N. (2019). Scratching the surface : Diversity among the first sequenced extrachromosomal genomes of parasites in the suborder Adeleorina (Apicomplexa) with a focus on Hepatozoon species. http://hdl.handle.net/10214/16973
- Lochmiller, R. L., & Deerenberg, C. (2000). Trade-offs in evolutionary immunology: just what is the cost of immunity? *Oikos*, *88*(1), 87–98. https://doi.org/10.1034/j.1600-0706.2000.880110.x
- Lomolino, M. V. (2005). Body size evolution in insular vertebrates: generality of the island rule. *Journal of Biogeography*, *32*(10), 1683–1699. https://doi.org/10.1111/j.1365-2699.2005.01314.x
- Lymberakis, P., Isailovic, J. C., Ajtic, R., Vogrin, M., & Böhme, W. (2009). *Podarcis* erhardii. The IUCN Red List of Threatened Species. https://dx.doi.org/10.2305/IUCN.UK.2009.RLTS.T61546A12512784.en
- Lymberakis, P., Pafilis, P., Poulakakis, N., Sotiropoulos, K., & Valakos, E. D. (2018). *Amphibians and Reptiles of the Aegean Sea. September 2020*, 169–190.
- Maia, J. P. M. C., Harris, D. J., & Perera, A. (2011). Molecular survey of *Hepatozoon* Species in Lizards From North Africa. *Journal of Parasitology*, 97(3), 513–517. https://doi.org/10.1645/GE-2666.1
- Maia, J. P. M. C., Perera, A., & Harris, D. J. (2012). Molecular survey and microscopic examination of *Hepatozoon* Miller, 1908 (Apicomplexa: Adeleorina) in lacertid lizards from the western Mediterranean. *Folia Parasitologica*, 59(4), 241–248.

https://doi.org/10.14411/fp.2012.033

- Maia, João P., Harris, D. J., Carranza, S., & Gómez-Díaz, E. (2014). A Comparison of Multiple Methods for Estimating Parasitemia of Hemogregarine Hemoparasites (Apicomplexa: Adeleorina) and Its Application for Studying Infection in Natural Populations. *PLoS ONE*, *9*(4), e95010. https://doi.org/10.1371/journal.pone.0095010
- Maia, João Pedro. (2015). *Diversity, infection patterns and host-parasite associations of apicomplexan parasites in reptiles*. 368. https://doi.org/https://repositorio-aberto.up.pt/handle/10216/82096
- Marshall, K. L. A., Philpot, K. E., Damas-Moreira, I., & Stevens, M. (2015). Intraspecific Colour Variation among Lizards in Distinct Island Environments Enhances Local Camouflage. *PLOS ONE*, *10*(9). https://doi.org/10.1371/journal.pone.0135241
- Mathur, V. (2016). The phylogeny and evolution of apicomplexan parasites.
- Megía-Palma, R., Martínez, J., Cuervo, J. J., Belliure, J., Jiménez-Robles, O., Gomes, V., Cabido, C., Pausas, J. G., Fitze, P. S., Martín, J., & Merino, S. (2018). Molecular evidence for host–parasite co-speciation between lizards and *Schellackia* parasites. *International Journal for Parasitology*, 48(9–10), 709–718. https://doi.org/10.1016/j.ijpara.2018.03.003
- Megía-Palma, R., Martínez, J., Paranjpe, D., D'Amico, V., Aguilar, R., Palacios, M. G., Cooper, R., Ferri-Yáñez, F., Sinervo, B., & Merino, S. (2017). Phylogenetic analyses reveal that *Schellackia* parasites (Apicomplexa) detected in American lizards are closely related to the genus *Lankesterella*: is the range of *Schellackia* restricted to the Old World? *Parasites & Vectors*, *10*(1), 470. https://doi.org/10.1186/s13071-017-2405-0
- Meiri, S. (2008). Evolution and ecology of lizard body sizes. *Global Ecology and Biogeography*, *17*(6), 724–734. https://doi.org/10.1111/j.1466-8238.2008.00414.x
- Morelli, S., Diakou, A., Traversa, D., Gennaro, E. Di, Simonato, G., Colombo, M., Dimzas, D., Grillini, M., Regalbono, A. F. di, Beugnet, F., Halos, L., Paoletti, B., & Cesare, A. Di. (2021). First record of *Hepatozoon spp.* in domestic cats in Greece. *Ticks and Tick-Borne Diseases*, 12(1), 101580. https://doi.org/10.1016/j.ttbdis.2020.101580
- Olsson, M., Wapstra, E., Madsen, T., & Silverin, B. (2000). Testosterone, ticks and travels: A test of the immunocompetence-handicap hypothesis in free-ranging male

sand lizards. *Proceedings of the Royal Society B: Biological Sciences*, 267(1459), 2339–2343. https://doi.org/10.1098/rspb.2000.1289

- Oppliger, A., & Clobert, J. (1997). Reduced tail regeneration in the Common Lizard, *Lacerta vivipara*, parasitized by blood parasites. *Functional Ecology*, *11*(5), 652–655. https://doi.org/10.1046/j.1365-2435.1997.00134.x
- Oppliger, A., Giorgi, M. S., Conelli, A., Nembrini, M., & John-Alder, H. B. (2004). Effect of testosterone on immunocompetence, parasite load, and metabolism in the common wall lizard (*Podarcis muralis*). *Canadian Journal of Zoology*, 82(11), 1713– 1719. https://doi.org/10.1139/z04-152
- Orkun, Ö., & Emir, H. (2020). Identification of tick-borne pathogens in ticks collected from wild animals in Turkey. *Parasitology Research*, *119*(9), 3083–3091. https://doi.org/10.1007/s00436-020-06812-2
- Papkou, A., Gokhale, C. S., Traulsen, A., & Schulenburg, H. (2016). Host–parasite coevolution: why changing population size matters. *Zoology*, *119*(4), 330–338. https://doi.org/10.1016/j.zool.2016.02.001
- Pedroso, S. B. de G., Phalen, D. N., Terkildsen, M., Blyde, D., March, D. T., Gordon, A. N., Chapman, P. A., Mills, P. C., Owen, H., Gillett, A., Lloyd, H. B., Ross, G. A., Hall, J., Scott, J., Ariel, E., Yang, R., & Rose, K. A. (2020). Coccidiosis in green turtles (*Chelonia mydas*) in Australia: Pathogenesis, spatial and temporal distribution, and climate-related determinants of disease outbreaks. *Journal of Wildlife Diseases*, 56(2), 359–371. https://doi.org/10.7589/2019-05-115
- Perkins, S. L., & Keller, A. K. (2001). Phylogeny of nuclear small subunit rRNA genes of hemogregarines amplified with specific primers. *The Journal of Parasitology*, 87(4), 870–876. https://doi.org/10.1645/0022-3395(2001)087[0870:PONSSR]2.0.CO;2
- Poulakakis, N., Lymberakis, P., Antoniou, A., Chalkia, D., Zouros, E., Mylonas, M., & Valakos, E. (2003). Molecular phylogeny and biogeography of the wall-lizard *Podarcis erhardii* (Squamata: Lacertidae). *Molecular Phylogenetics and Evolution*, 28(1), 38–46. https://doi.org/10.1016/S1055-7903(03)00037-X
- Poulakakis, N., Lymberakis, P., Valakos, E., Zouros, E., & Mylonas, M. (2005). Phylogenetic relationships and biogeography of *Podarcis* species from the Balkan Peninsula, by bayesian and maximum likelihood analyses of mitochondrial DNA sequences. *Molecular Phylogenetics and Evolution*, 37(3), 845–857. https://doi.org/10.1016/j.ympev.2005.06.005

- Poulin, R. (2007). The Evolutionary Ecology of Parasites. https://doi.org/10.1515/9781400840809
- Poulin, R., & Morand, S. (2000). The diversity of parasites. The Quarterly Review of Biology, 75(3). http://www.journals.uchicago.edu/t-and-c
- Psaroulaki, A., Ragiadakou, D., Kouris, G., Papadopoulos, B., Chaniotis, B., & Tselentis,
 Y. (2006). Ticks, tick-borne rickettsiae, and *Coxiella burnetii* in the Greek island of
 Cephalonia. *Annals of the New York Academy of Sciences*, 1078, 389–399.
 https://doi.org/10.1196/annals.1374.077
- Roca, V., Foufopoulos, J., Valakos, E., & Pafilis, P. (2009). Parasitic infracommunities of the Aegean wall lizard *Podarcis erhardii* (Lacertidae, Sauria): isolation and impoverishment in small island populations. *Amphibia-Reptilia*, *30*(4), 493–503. https://doi.org/10.1163/156853809789647176
- Salvi, D., Pinho, C., Mendes, J., & Harris, D. J. (2021). Fossil-calibrated time tree of Podarcis wall lizards provides limited support for biogeographic calibration models. *Molecular Phylogenetics and Evolution*, 161(February), 107169. https://doi.org/10.1016/j.ympev.2021.107169
- Schall, J. J., & Dearing, M. D. (1987). Malarial parasitism and male competition for mates in the western fence lizard, *Sceloporus occidentalis*. *Oecologia*, 73(3), 389–392. https://doi.org/10.1007/BF00385255
- Schmid-Hempel, P. (2003). Variation in immune defence as a question of evolutionary ecology. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1513), 357–366. https://doi.org/10.1098/rspb.2002.2265
- Smith, T. G., & Desser, S. S. (1997). Phylogenetic analysis of the genus *Hepatozoon* Miller, 1908 (Apicomplexa: Adeleorina). *Systematic Parasitology*, *36*(3), 213–221. https://doi.org/10.1023/A:1005721501485
- Smith, T. G., Kim, B., & Desser, S. S. (1999). Phylogenetic relationships among *Hepatozoon* species from snakes, frogs and mosquitoes of Ontario, Canada, determined by ITS-1 nucleotide sequences and life-cycle, morphological and developmental characteristics: Nucleotide sequence data reported. *International Journal for Parasitology*, 29(2), 293–304. https://doi.org/10.1016/S0020-7519(98)00198-2
- Spatz, D. R., Zilliacus, K. M., Holmes, N. D., Butchart, S. H. M., Genovesi, P., Ceballos, G., Tershy, B. R., & Croll, D. A. (2017). Globally threatened vertebrates on islands

with invasive species. *American Association for the Advancement of Science*, *3*, 1– 12. https://doi.org/10.1126/sciadv.1603080

- Speybroeck, J., Beukema, W., Dufresnes, C., Fritz, U., Jablonski, D., Lymberakis, P., Martínez-Solano, I., Razzetti, E., Vamberger, M., Vences, M., Vörös, J., & Crochet, P.-A. (2020). Species list of the European herpetofauna – 2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica. *Amphibia-Reptilia*, 41(2), 139–189. https://doi.org/10.1163/15685381-bja10010
- Telford, S. R. (2009). No Themoparasites of the Reptilia: Color atlas and textitle. *CRC Press.*
- Telford, Sam R. (1993). A species of *Schellackia* (Apicomplexa: Lankesterellidae) parasitising east and southeast Asian lizards. *Systematic Parasitology*, *25*(2), 109–117. https://doi.org/10.1007/BF00009980
- Thomas, F., Guégan, J.-F., Michalakis, Y., & Renaud, F. (2000). Parasites and host lifehistory traits: implications for community ecology and species co-existence. *International Journal for Parasitology*, 30(5), 669–674. https://doi.org/10.1016/S0020-7519(00)00040-0
- Uetz, P., Freed, P., Aguilar, R. & Hosek, J. (eds. . (2021). *Reptile Database*. The Reptile Database. http://www.reptile-database.org
- Ujvari, B., Madsen, T., & Olsson, M. (2004). High Prevalence of *Hepatozoon spp*. (Apicomplexa, Hepatozoidae) Infection in Water Pythons (*Liasis fuscus*) From Tropical Australia. *Journal of Parasitology*, *90*(3), 670–672. https://doi.org/10.1645/GE-204R
- Upton, S. J. (2000). Suborder Eimeriorina Léger, 1911. In Lee, J.J., Leedale, G.F. & Bradbury, P., An Illustrated Guide to the Protozoa, Second Edition, Vol. 1. Society of Protozoologists, Lawrence, Kansas, U.S.A., 318-339.
- Valkiūnas, G. (2005). Avian Malaria Parasites and other Haemosporidia. *CRC Press, Boca Raton, Florida.*
- Votýpka, J., Modrý, D., Obornik, M., Šlapeta, J., & Lukeš, J. (2017). Apicomplexa. In: Archibald JM, Simpson AGB, Slamovits CH. Handbook of the Protists: Second Edition. Springer International Publishing, 567–624.
- Yang, W., Feiner, N., Salvi, D., Laakkonen, H., Jablonski, D., Pinho, C., Carretero, M.A., Sacchi, R., Zuffi, M. A. L., Scali, S., Plavos, K., Pafilis, P., Poulakakis, N.,

Lymberakis, P., Jandzik, D., Schulte, U., Aubret, F., Badiane, A., Lanuza, G. P. i de, ... Uller, T. (2021). *Population genomics of wall lizards reflects the dynamic history* of the Mediterranean Basin. https://doi.org/https://doi.org/10.1101/2021.05.26.445763

- Zabalaga, N. A. (2008). Influence of vegetation types and environmental variables in structuring *Podarcis erhardii* spatial heterogeneity in Crete, Greece. In *Geo-Information Science*.
- Zechmeisterová, K., Javanbakht, H., Kvičerová, J., & Široký, P. (2021). Against growing synonymy: Identification pitfalls of *Hepatozoon* and *Schellackia* demonstrated on North Iranian reptiles. *European Journal of Protistology*, 79, 1–17. https://doi.org/10.1016/j.ejop.2021.125780
- Zhao, Y. (2018). The effects of predation risk, shelter, and food availability on the reproduction of Aegean Wall lizards (Podarcis erhardii) in the Greek islands. https://www.lacerta.de/AF/Bibliografie/BIB_12648.pdf

Annex

Annex 1- Data available for *Hepatozoon* on GenBank (collated 29/09/2021)

							Available
Hepatozoon	Host species	Class	Family	Country	GenBank ID	Reference	genes
Hepatozoon	Spalerosophis			Saudi		(Abdel-Haleem	
aegypti	diadema	Reptilia	Colubridae	Arabia	MH198742	et al., 2018)	18S rRNA
Hepatozoon							
americanum;							
Hepatozoon							
catesbianae;							
Hepatozoon						(Mathew et al.,	
canis	Canis familiaris	Mammalia	Canidae	USA	AF176836; AF176835; AF176837	2000)	18S rRNA
Hepatozoon							
americanum;							
Hepatozoon						(Gomes et al.,	
canis	Canis familiaris	Mammalia	Canidae	Brazil	KU729739; KU729737; KU729738	2016)	18S rRNA
Hepatozoon				Not		(Johnson et al.,	
americanum	Canis familiaris	Mammalia	Canidae	available	EU249992; EU249993	2008)	18S rRNA
					JX415169; JX415170; JX415166;		
Hepatozoon					JX415167; JX415168; JX415171;	(Starkey et al.,	
americanum	Canis latrans	Mammalia	Canidae	USA	JX415172; JX415173; JX415174;	2013)	18S rRNA
					JX415175; JX415176; JX415177;		
-----------------	----------------	----------	------------	-------------	-------------------------------	------------------	----------
					JX415178; JX415179; JX415180;		
					JX415181; JX415183; JX415182;		
					JX415165		
Hepatozoon	Canis lupus				EU146062; EU146065; EU146066;	(Allen et al.,	
americanum	familiaris	Mammalia	Canidae	USA	EU146067; EU146063; EU146064;	2008)	18S rRNA
Hepatozoon							
Americanum;				Not			
sipedon;	Canis lupus			availableav	AF206668; AF206669; AF206670;	(Baneth et al.,	
catesbianae	familiaris	Mammalia	Canidae	ailable	AF206671;	2000)	18S rRNA
Hepatozoon							
sp.;angeladavie	Philothamnus			South	MG519502; MG519501;	(Netherlands et	
sae	semivariegatus	Reptilia	Colubridae	Africa	MG519503	al., 2018)	18S rRNA
Hepatozoon	Sus scrofa					(Yamamoto et	
apri	leucomystax	Mammalia	Suidae	Japan	LC314791	al., 2017)	18S rRNA
	Apodemus						
	sylvaticus;				KT274177; KT274182; KT274178;		
Hepatozoon	Clethrionomys				KT274185; KT274186; KT274179;		
sp.; ayorgbor	glareolus;	Mammalia	Muridae	Croatia	KT274181; KT274183; KT274184	Unpublished	18S rRNA
Hepatozoon						(Sloboda et al.,	
ayorgbor	Python regius	Reptilia	Pythonidae	Ghana	EF157822	2007)	18S rRNA

Hepatozoon	Rhombomys						
ayorgbor	opimu	Mammalia	Muridae	China	MW342705	Unpublished	18S rRNA
					MG758137; MG758136;		
Hepatozoon					MG758133; MG758134;	(Greay et al.,	
banethi	Ixodes tasmani	Arachnida	Ixodidae	Australia	MG758135; MG758138;	2018)	18S rRNA
Hepatozoon	Caiman				MF435048; MF435049;	(Úngari et al.,	
caimani	crocodilus	Reptilia	Alligatoridae	Brazil	MF435047; MF435046	2018)	18S rRNA
	Caiman						
Hepatozoon	crocodilus					(Bouer et al.,	
caimani	yacare	Reptilia	Alligatoridae	Brazil	MF322538; MF322539	2017)	18S rRNA
Hepatozoon						(Soares et al.,	
caimani	Caiman yacare	Reptilia	Alligatoridae	Brazil	KU495923; KU495924; KU495925	2017)	18S rRNA
Hepatozoon	Amblyomma					(Melo et al.,	
canis	sculptum	Arachnida	Ixodidae	Brazil	KP167594; KP167595	2015)	18S rRNA
Hepatozoon	Camelus			Saudi		(Alanazi et al.,	
canis	dromedarius	Mammalia	Camelidae	Arabia	MN989311	2020)	18S rRNA
				Czech	KX712124; KX712127; KX712125;		
Hepatozoon				Republic;	KX712126; KX712123; KX712128;	(Mitková et al.,	
canis	Canis aureus	Mammalia	Canidae	Romania	KX712129	2017)	18S rRNA
Hepatozoon						(Farkas et al.,	
canis	Canis aureus	Mammalia	Canidae	Hungary	KJ634654	2014)	18S rRNA

Hepatozoon	Canis aureus;				KJ572975; KJ572976;	KJ572978;	(Farkas et al.,	
canis	Vulpes vulpes	Mammalia	Canidae	Hungary	KJ572977		2014)	18S rRNA
					JX466880; JX466881;	JX466882;		
Hepatozoon					JX466883; JX466884;	JX466885;	(Mitková et al.,	
canis	Canis aureus	Mammalia	Canidae	Austria	JX466886;		2017)	18S rRNA
	Canis aureus;				MK957186;	MK957188;		
Hepatozoon	Vulpes vulpes;				MK957189;	MK957187;	(Otranto et al.,	
canis; felis	Felis catus	Mammalia	Canidae	Iraq	MK957185		2019)	18S rRNA
Hepatozoon					KJ868814; KJ868819;	KJ868815;	(Levi et al.,	
canis	Canis aureus	Mammalia	Canidae	Israel	KJ868818; KJ868816; K	KJ868817	2018)	18S rRNA
Hepatozoon							(Miterpáková et	
canis	Canis familiaris	Mammalia	Canidae	Slovakia	KX761384		al., 2017)	18S rRNA
Hepatozoon							(Orkun & Emir,	
canis	Canis lupus	Mammalia	Canidae	Turkey	MN463030		2020)	18S rRNA
					KY247116; KY247114;	KY247112;		
Hepatozoon					KY247113; KY247115;	KY247117;	(Guven et al.,	
canis	Canis lupus	Mammalia	Canidae	Turkey	KY247111		2017)	18S rRNA
					DQ439540; [DQ439543;		
				Venezuela;	DQ439541; I	DQ439542;	(Criado-	
Hepatozoon	Canis lupus			Thailand;	DQ439544;	DQ519357;	Fornelio et al.,	
canis	familiaris	Mammalia	Canidae	Spain	DQ519358;		2007)	18S rRNA

						KC138535; KC138531	; KC138532;				
	Canis	lupus				KC138533; KC138534	; KC138540;				
Hepatozoon	familiaris;	Felis				KC138539; KC138541	; KC138538;	(East e	t al.,		
canis	catus		Mammalia	Canidae	Israel	KC138536; KC138537	; KC138542;	2008)		18S r	RNA
										18S	rRNA;
										28S	large
										subur	nit
Hepatozoon	Canis	lupus				MH615006;	MH615003;	(Léveillé	et al.,	riboso	omal;
canis	familiaris		Mammalia	Canidae	Israel	MH615004; MH61500	5	2019)		ITS1;	ITS2
Hepatozoon	Canis	lupus						(Léveillé	et al.,		
canis	familiaris		Mammalia	Canidae	Israel	MH557086		2019)		Apico	plast
Hepatozoon	Canis	lupus				MK214283;	MK214284;	(Léveillé	et al.,	Cds;	cytb-1;
canis	familiaris		Mammalia	Canidae	Israel	MK214282		2019)		cytb-2	2
Hepatozoon	Canis	lupus						(Léveillé	et al.,		
canis	familiaris		Mammalia	Canidae	Israel	MH615002		2019)		COI	
Hepatozoon	Canis	lupus						(Léveillé	et al.,		
canis	familiaris		Mammalia	Canidae	Israel	MK214285		2019)		Cytb	
Hepatozoon	Canis	lupus						(Léveillé	et al.,		
canis	familiaris		Mammalia	Canidae	Israel	MK091092; MK091091	I	2019)		Cds	
						DQ111754;	DQ111751;				
Hepatozoon	Canis	lupus				DQ111755;	DQ111757;	(Oyamad	a et		
canis	familiaris		Mammalia	Canidae	Sudan	DQ111752;	DQ111753;	al., 2005)		18S r	RNA

						DQ111759;	DQ111758;		
						DQ111756			
Hepatozoon	Canis	lupus				MN393911;	MN393913;	(Díaz-Sánchez	
canis	familiaris		Mammalia	Canidae	Cuba	MN393910;	MN393912	et al., 2021)	18S rRNA
						MK091090;	MK091084;		
						MK091089;	MK091085;		
Hepatozoon	Canis	lupus				MK091086;	MK091087;	(Léveillé et al.,	
canis	familiaris		Mammalia	Canidae	Israel	MK091088		2019)	18S rRNA
Hepatozoon	Canis	lupus						(Léveillé et al.,	
canis	familiaris		Mammalia	Canidae	USA	MH557087		2020)	COI
Hepatozoon	Canis	lupus						(Guo et al.,	
canis	familiaris		Mammalia	Canidae	Malawi	LC556379		2020)	18S rRNA
Hepatozoon	Canis	lupus				LC331052; L	LC331053; LC331054;	(Qiu et al.,	
canis	familiaris		Mammalia	Canidae	Zambia	LC331055		2018)	18S rRNA
Hepatozoon	Canis	lupus						(Forlano et al.,	
canis	familiaris		Mammalia	Canidae	Taiwan	EU289222		2007)	18S rRNA
Hepatozoon	Canis	lupus						(Greay et al.,	
canis	familiaris		Mammalia	Canidae	Australia	MG062866;	MG062865	2018)	18S rRNA
Hepatozoon	Canis	lupus			Saint Kitts			(Loftis et al.,	
canis	familiaris		Mammalia	Canidae	and Nevis	JX112783		2013)	18S rRNA
Hepatozoon	Canis	lupus						(Soltani &	
canis	familiaris		Mammalia	Canidae	Iran	KT736298		Dalimi, 2018)	18S rRNA

Hepatozoon	Canis	lupus				KX880502; KX88	0503; KX880504;	(Soltani	&	
canis	familiaris		Mammalia	Canidae	Iran	KX880505; KX88	0506	Dalimi, 201	8)	18S rRNA
Hepatozoon	Canis	lupus				JN584477; JN584	4478; JN584475;	(Pawar et	al.,	
canis	familiaris		Mammalia	Canidae	India	JN584476		2012)		18S rRNA
Hepatozoon	Canis	lupus						(Lakshman	an	
canis	familiaris		Mammalia	Canidae	India	MG543849		et al., 2018)	18S rRNA
Hepatozoon	Canis	lupus						(Barati et	al.,	
canis	familiaris		Mammalia	Canidae	Iran	KU360328; KU36	0327; KU360326	2018)		18S rRNA
Hepatozoon	Canis	lupus						(Sasaki et	al.,	
canis	familiaris		Mammalia	Canidae	Nigeria	AB365071		2008)		18S rRNA
Hepatozoon sp.	Canis	lupus				AY864676; AY86	4677; AY864678;	(Paludo et	al.,	
; canis	familiaris		Mammalia	Canidae	USA; Brazil	AY864679		2005)		18S rRNA
Hepatozoon								(Hodžić et	al.,	
canis	Canis lupu familiaris	IS	Mammalia	Canidae	Germany	MN791088; MN79	91089	2020)		18S rRNA
						MK757806;	MK757798;			
						MK757802;	MK757807;			
						MK757808;	MK757809;			
	Canis luni	10				MK757810;	MK757811;			
	familiaris;	10				MK757813;	MK757801;			
	Vulpes vul	lpes;				MK757797;	MK757799;			
Hepatozoon	bispinosa;	ysalls	Mammalia;	Canidae;		MK757800;	MK757814;	(Helm et	al.,	
canis	Rhipicepha sanguineu	alus Is	Arachnida	Ixodidae	Germany	MK757812;	MK757711;	2020)		18S rRNA

		MK757768;	MK757815;	
		MK757709;	MK757777;	
		MK757793;	MK757781;	
		MK757769;	MK757780;	
		MK757757;	MK757778;	
		MK757785;	MK757792;	
		MK757804;	MK757783;	
		MK757786;	MK757788;	
		MK757791;	MK757805;	
		MK757756;	MK757774;	
		MK757789;	MK757796;	
		MK757759;	MK757795;	
		MK757790;	MK757761;	
		MK757784;	MK757752;	
		MK757771;	MK757755;	
		MK757758;	MK757787;	
		MK757776;	MK757803;	
		MK757750;	MK757751;	
		MK757754;	MK757762;	
		MK757763;	MK757765;	
		MK757766;	MK757770;	
		MK757737;	MK757738;	
		1		1

						MK757767		MK757824;		
						MK757825				
Hepatozoon	Canis	lupus	Mammalia;	Canidae;		KF972443;	KF972442;	KF972444;	(Gonçalves et	
canis	familiaris;	tick	Arachnida	Ixodidae	Brazil	KF972445;	KF972441		al., 2014)	18S rRNA
						FJ497022;	FJ497012;	FJ497021;		
						FJ497019;	FJ497020;	FJ497017;		
						FJ497011;	FJ497009;	FJ497018;		
						FJ497015;	FJ497010;	FJ497014;		
Hepatozoon	Canis	lupus				FJ497023;	FJ497016;	FJ497024;	(Vojta et al.,	
canis	familiaris		Mammalia	Canidae	Croatia	FJ497013;			2009)	18S rRNA
Hepatozoon	Canis	lupus							(Götsch et al.,	
canis	familiaris		Mammalia	Canidae	Cape verde	GQ395386			2009)	18S rRNA
						KT267952;	KT267953;	KT267954;		
						KT267955;		KT267956;		
						KT267957;		KT267958;		
						KT267959;		KT267960;		
						KT267961;		KT267962;		
Hepatozoon	Canis	lupus				KT267963;		KT267964;	(Mohammed,	
canis	familiaris		Mammalia	Canidae	Malaysia	KT267965;	KT267951		2016)	18S rRNA
Hepatozoon	Canis	lupus			India,	KU096058;	KU765200;	KU765202;		
canis	familiaris		Mammalia	Canidae	Thailandia	KU527125;	KU527126;	KU527127	(Liu et al., 2016)	18S rRNA

Hepatozoon	Canis	lupus					(Bölükbaş et al.,	
canis	familiaris		Mammalia	Canidae	Turkey	KX588232	2016)	18S rRNA
Hepatozoon	Canis	lupus					(Gou et al.,	
canis	familiaris		Mammalia	Canidae	Turkey	KX641899; KX641900; KX641901	2017)	18S rRNA
Hepatozoon	Canis	lupus						
canis	familiaris		Mammalia	Canidae	India	KX377968	Unpublished	18S rRNA
Hepatozoon	Canis	lupus						
canis	familiaris		Mammalia	Canidae	India	KX863669	Unpublished	18S rRNA
Hepatozoon	Canis	lupus						
canis	familiaris		Mammalia	Canidae	India	KX818220	Unpublished	18S rRNA
						KY021177; KY021178; KY021181;		
Hepatozoon	Canis	lupus			Czech	KY021183; KY021184; KY021176;		
canis	familiaris		Mammalia	Canidae	Republic	KY021180; KY021182	Unpublished	18S rRNA
Hepatozoon	Canis	lupus						
canis	familiaris		Mammalia	Canidae	India	MH922767; MH922768	Unpublished	18S rRNA
Hepatozoon	Canis	lupus						
canis	familiaris		Mammalia	Canidae	Thailand	MW402988; MW402989	(Do et al., 2021)	18S rRNA
Hepatozoon	Canis	lupus			South		(Seo et al.,	
canis	familiaris		Mammalia	Canidae	Korea	MK238383; MK238384	2020)	18S rRNA
Hepatozoon	Canis	lupus			Brazil;	MN103412; MN103528;	(Mierzejewska	
canis	familiaris		Mammalia	Canidae	Poland	MN103520; MN103519	et al., 2021)	18S rRNA

Hepatozoon	Canis lupu	6						
canis	familiaris	Mammalia	Canidae	Taiwan	JF459994		Unpublished	18S rRNA
Hepatozoon	Canis lupu	6					(Oliveira et al.,	
canis	familiaris	Mammalia	Canidae	Brazil	KP233215		2014)	18S rRNA
Hepatozoon	Canis lupu	6					(Lakshmanan	
canis	familiaris	Mammalia	Canidae	India	MF797806		et al., 2018)	18S rRNA
					JQ976621; JQ976620; 、	JQ976622;		
					JQ976623; JX027010;	JX027011;		
					JX027018; JQ976629;	JX027012;		
	Canis lupu	6			JX027017; JX027019; 、	JQ976626;		
	familiaris;				JQ976628; JX027020;	JX027015;		
Hepatozoon	Rhipicephalus	Mammalia;	Canidae;		JX027016; JQ976627;	JX027014;	(Kamani et al.,	
canis	sanguineus	Arachnida	Ixodidae	Nigeria	JQ976624; JQ976625; J	JX027013	2013)	18S rRNA
Hepatozoon	Canis lupu	6		Not	KP182934; KP182932; ł	KP182933;	(Adao et al.,	
canis	familiaris	Mammalia	Canidae	available	KP182930; KP182929; k	KP182931	2017)	18S rRNA
					MG254622; N	/IG254603;		
					MG254593; N	/IG254611;		
					MG254591; N	/IG254606;		
					MG254576; N	/IG254583;		
					MG254597; N	/IG254604;		
Hepatozoon	Canis lupu	3			MG254605; N	/IG254589;	(Orkun et al.,	
canis	familiaris	Mammalia	Canidae	Turkey	MG254595; N	/IG254623;	2018)	18S rRNA

								T	
						MG254599;	MG254600;		
						MG254609;	MG254620;		
						MG254607;	MG254612;		
						MG254621;	MG254579;		
						MG254580;	MG254587;		
						MG254594;	MG254618;		
						MG254592;	MG254601;		
						MG254602;	MG254619;		
						MG254574;	MG254577;		
						MG254585;	MG254590;		
						MG254575;	MG254598;		
						MG254608;	MG254582;		
						MG254617;	MG254578;		
						MG254613;	MG254614;		
						MG254573;	MG254588;		
						MG254615;	MG254596;		
						MG254610;	MG254586;		
						MG254584;	MG254581;		
						MG254616			
Hepatozoon	Canis lu	ous						(Ramos et al.,	
canis	familiaris		Mammalia	Canidae	Brazil	JX118828		2015)	18S rRNA
								1	

						KU232310; KU23230	8; KU232309;		
Hepatozoon	Canis	lupus				KU232307; KU23230	5; KU232304;	(Furtado et al.,	
canis	familiaris		Mammalia	Canidae	Brazil	KU232306; KU23230	2; KU232303	2017)	18S rRNA
Hepatozoon	Canis	lupus						(Galay et al.,	
canis	familiaris		Mammalia	Canidae	Philippines	LC428208		2018)	18S rRNA
						KF621082; KF62108	5; KF621088;		
						KF621089; KF62109	1; KF621095;		
						KF621096; KF62108	6; KF621087;		
						KF621090; KF62109	2; KF621083;		
Hepatozoon	Canis	lupus				KF621093; KF62109	4; KF621097;	(Kongklieng et	
canis	familiaris		Mammalia	Canidae	Thailand	KF621084		al., 2015)	18S rRNA
						MG209586;	MG209580;		
						MG209581;	MG209582;		
						MG209583;	MG209584;		
						MG209585;	MG209587;		
						MG209589;	MG209590;		
						MG209591; ;	MG209593;		
Hepatozoon	Canis	lupus				MG209594;	MG209592;	(Ahmad et al.,	
canis	familiaris		Mammalia	Canidae	Pakistan	MG209589; MG2095	89;	2018)	18S rRNA
Hepatozoon	Canis	lupus						(Qablan et al.,	
canis	familiaris		Mammalia	Canidae	Jordan	JF827605; JF827606		2012)	18S rRNA

Hepatozoon	Canis	lupus					(Ramos et al.,	
canis	familiaris		Mammalia	Canidae	Brazil	FJ943578	2010)	18S rRNA
Hepatozoon	Canis	lupus					(Lasta et al.,	
canis	familiaris		Mammalia	Canidae	Brazil	EU571737	2009)	18S rRNA
Hepatozoon	Canis	lupus	Mammalia;	Canidae;			(Otranto et al.,	
canis	familiaris;	tick	Arachnida	Ixodidae	Italy	JF827276; JF827277	2011)	18S rRNA
Hepatozoon	Canis	lupus				KU535868; KU535870; KU535869;	(Qamar et al.,	
canis	familiaris		Mammalia	Canidae	Pakistan	KU535871	2016)	18S rRNA
Hepatozoon	Canis	lupus					(Alho et al.,	
canis	familiaris		Mammalia	Canidae	Qatar	MF142765	2017)	18S rRNA
Hepatozoon	Canis	lupus			Not		(Rubini et al.,	
canis	familiaris		Mammalia	Canidae	available	FJ743476	2009)	18S rRNA
						KT215362; KT215361; KT215374;		
						KT215377; KT215375; KT215370;		
						KT215360; KT215369; KT215373;		
						KT215363; KT215365; KT215354;		
						KT215355; KT215366; KT215371;		
						KT215376; KT215353; KT215372;		
Hepatozoon	Canis	lupus				KT215359; KT215368; KT215364;	(Jarquín-Díaz	
canis	familiaris		Mammalia	Canidae	Mexico	KT215357	et al., 2016)	18S rRNA
Hepatozoon	Canis	lupus	Mammalia;	Canidae;				
canis	familiaris;	tick	Arachnida	Ixodidae	India	MK757648; MK757647	Unpublished	18S rRNA

Hepatozoon	Canis	lupus	Mammalia;	Canidae;			(Zeinali et al.,	
canis	familiaris;	tick	Arachnida	Ixodidae	Iran	MT810115; MT810118	2020)	18S rRNA
Hepatozoon	Canis	lupus					(Miranda et al.,	
canis	familiaris		Mammalia	Canidae	Brazil	KF692039; KF692040; KF692038	2014)	18S rRNA
						LC018209; LC018208; LC018210;		
						LC018206; LC018207; LC018203;		
						LC018194; LC018199; LC018196;		
						LC018202; LC018195; LC018205;		
Hepatozoon	Canis	lupus				LC018200; LC018204; LC018193;	(Maia et al.	
canis	familiaris		Mammalia	Canidae	Portugal	LC018201; LC018197; LC018198	2015)	18S rRNA
Hepatozoon	Canis	lupus			Not			
canis	familiaris		Mammalia	Canidae	available	MW362245; MW362244	Unpublished	18S rRNA
Hepatozoon	Canis	lupus					(Licari et al.,	
canis	familiaris		Mammalia	Canidae	Malta	KJ946246; KJ946247; KJ946245	2017)	18S rRNA
Hepatozoon	Canis	lupus					(Morgado et al.,	
canis	familiaris		Mammalia	Canidae	Brazil	KY026191; KY026192	2016)	18S rRNA
Hepatozoon	Canis	lupus				MG807345; MG807346;	(Prakash et al.,	
canis	familiaris		Mammalia	Canidae	Malaysia	MG807347	2018)	18S rRNA
Hepatozoon	Canis	lupus					(Daskalaki et	
canis	familiaris		Mammalia	Canidae	Mauritius	MF588667; MF588668; MF588669	al., 2018)	18S rRNA
Hepatozoon	Canis	lupus				MK301147; MK301150;		
canis	familiaris		Mammalia	Canidae	Hungary	MK301146; MK301151;	Unpublished	18S rRNA

						MK301148;		MK301152;		
						MK301149				
						MT396731;		MT396726;		
						MT396727;	MT396728	MT396734;		
Hepatozoon	Canis	lupus				MT396733;		MT396732;		
canis	familiaris		Mammalia	Canidae	Turkey	MT396729;	MT396735		Unpublished	18S rRNA
						MW255598	• ,	MW255601;		
Hepatozoon	Canis	lupus				MW255599	;	MW255600;		
canis	familiaris		Mammalia	Canidae	Thailand	MW255597	•		(Do et al., 2021)	18S rRNA
Hepatozoon	Canis	lupus				MW092541	,	MW092540;		
canis	familiaris		Mammalia	Canidae	Jordan	MW092539			Unpublished	18S rRNA
						MT433122;		MT433125;		
Hepatozoon	Canis	lupus				MT821184;		MT433126;		
canis	familiaris		Mammalia	Canidae	Turkey	MT433124;	MT433123	; MT433121	Unpublished	18S rRNA
	Canis	lunus								
	fomiliaria	iupus				KOE00E00.	KOEOOEOO	KOE00E00		
	tamiliaris;					KC509528;	KC509532;	KC509526;		
Hepatozoon	Haemaph	iysalis	Mammalia;	Canidae;	Not	KC509527;	KC509529;	KC509530;	(Hornok et al.,	
canis	concinna		Arachnida	Ixodidae	available	KC509531			2013)	18S rRNA
						MK645949;		MK645947;		
Hepatozoon	Canis	lupus				MK645967;		MK645971;	(Medkour et al.,	
canis	familiaris		Mammalia	Canidae	Algeria	MK645946;		MK645948;	2020)	18S rRNA

						MK645951;	MK645952;		
						MK645953;	MK645954;		
						MK645955;	MK645956;		
						MK645957;	MK645959;		
						MK645960;	MK645961;		
						MK645962;	MK645963;		
						MK645964;	MK645965;		
						MK645967;	MK645968;		
						MK645969;	MK645970;		
						MK645950; MK645958	3;		
Hepatozoon	Canis	lupus							
canis	familiaris		Mammalia	Canidae	Egypt	MZ203845		Unpublished	18S rRNA
								(Vargas-	
Hepatozoon	Canis	lupus						Hernandez et	
canis	familiaris		Mammalia	Canidae	Colombia	JN217101; JN217102		al., 2011)	18S rRNA
						KX069232; KX069233	; KX069236;		
						KX069234; KX069235	; KX069238;		
						KX069241; KX069240	; KX069242;		
Hepatozoon	Canis	lupus				KX069244; KX069237	; KX069239;		
canis	familiaris		Mammalia	Canidae	Malta	KX069243		Unpublished	18S rRNA
Hepatozoon	Canis	lupus						(Pereira et al.,	
canis	familiaris		Mammalia	Canidae	Brazil	GQ176285		2011)	18S rRNA

Hepatozoon	Canis	lupus							
canis	familiaris		Mammalia	Canidae	Brazil	MH891623		Unpublished	18S rRNA
Hepatozoon	Canis	lupus						(Ramos et al.,	
canis	familiaris		Mammalia	Canidae	Brazil	FJ943578		2010)	18S rRNA
Hepatozoon	Canis	lupus							
canis	familiaris		Mammalia	Canidae	Brazil	MT081050; MT081051		Unpublished	18S rRNA
						DQ060327;	DQ060325;		
Hepatozoon	Canis	lupus				DQ060329;	DQ060324;	(Karagenc et	
canis	familiaris		Mammalia	Canidae	Turkey	DQ060328; DQ060326	; ;	al., 2006)	18S rRNA
Hepatozoon	Canis	lupus						(Aktas et al.,	
canis	familiaris		Mammalia	Canidae	Pakistan	KT955848		2017)	18S rRNA
						KX082909; KX082905	; KX082906;		
						KX082907; KX082908	; KX082910;		
Hepatozoon	Canis	lupus				KX082911; KX082912	; KX082913;	(Cardoso et al.,	
canis	familiaris		Mammalia	Canidae	Angola	KX082914		2016)	18S rRNA
Hepatozoon	Canis	lupus						(Rubini et al.,	
canis	familiaris		Mammalia	Canidae	Brazil	DQ198378; DQ198379)	2005)	18S rRNA
Hepatozoon	Canis	lupus				MK910142;	MK910141;	(Thomas et al.,	
canis	familiaris		Mammalia	Canidae	Colombia	MK910143; MK910144	Ļ	2020)	18S rRNA
Hepatozoon	Canis	lupus							
canis	familiaris		Mammalia	Canidae	Brazil	MG496257; MG496273	3	Unpublished	18S rRNA

Hepatozoon	Canis	lupus						
canis	familiaris		Mammalia	Canidae	Israel	MW570843	Unpublished	18S rRNA
Hepatozoon	Canis	lupus					(Miranda et al.,	
canis	familiaris		Mammalia	Canidae	Brazil	JN835188	2014)	18S rRNA
Hepatozoon	Canis	lupus					(Düzlü et al.,	
canis	familiaris		Mammalia	Canidae	Turkey	KJ513193; KJ513198	2014)	18S rRNA
Hepatozoon	Canis	lupus						
canis	familiaris		Mammalia	Canidae	Brazil	KJ831221; KJ831219	Unpublished	18S rRNA
Hepatozoon	Canis	lupus						
canis	familiaris		Mammalia	Canidae	Cyprus	KU255116	Unpublished	18S rRNA
Hepatozoon	Canis	lupus					(Lopes et al.,	
canis	familiaris		Mammalia	Canidae	Brazil	MG772658	2019)	18S rRNA
						KU961914; KU961916; KU961917;		
						KU961918; KU961919; KU961921;		
						KU961922; KU961924; KU961925;		
						KU961926; KU961927; KU961928;		
						KU961929; KU961930; KU961931;		
						KU961932; KU961934; KU961935;		
						KU961936; KU961937; KU961938;		
						KU961939; KU961940; KU961941;		
Hepatozoon	Canis	lupus				KU961943; KU961945; KU961947;	(Lauzi et al.,	
canis	familiaris		Mammalia	Canidae	Cape verde	KU961948; KU961950; KU961951;	2016)	18S rRNA

						KU961952; KU961954; KU961955		
						KU961956; KU961957; KU961958		
						KU961959; KU961960; KU961961;		
						KU961962; KU961963; KU961964		
						KU961965; KU961967; KU961968		
						KU961942; KU961944; KU961933;		
						KU961966; KU961915; KU961946		
						KU961949; KU961920; KU961953		
						KU961923		
Hepatozoon	Canis	lupus					(Aguiar et al.,	
canis	familiaris		Mammalia	Canidae	Brazil	MN174861	2018)	18S rRNA
Hepatozoon	Canis	lupus						
canis	familiaris		Mammalia	Canidae	India	KX236166	Unpublished	18S rRNA
Hepatozoon	Canis	lupus				MN900602; MN900603		
canis	familiaris		Mammalia	Canidae	Pakistan	MN900610; MN900692	Unpublished	18S rRNA
Hepatozoon	Canis	lupus						
canis	familiaris		Mammalia	Canidae	Colombia	MT579549	Unpublished	18S rRNA
						MN540616; MN540617		
Hepatozoon	Canis	lupus				MN540618; MN540619		
canis	familiaris		Mammalia	Canidae	Romania	MN540620; MN540621	Unpublished	18S rRNA
Hepatozoon	Canis	lupus					(Forlano et al.,	
canis	familiaris		Mammalia	Canidae	Brazil	DQ071888	2007)	18S rRNA

						MN628317;	MN628318;		
						MN628319;	MN628320;		
						MN628321;	MN628322;		
						MN628323;	MN628324;		
						MN628325;	MN628326;		
Hepatozoon	Canis	lupus				MN628327;	MN628328;		
canis	familiaris		Mammalia	Canidae	India	MN628329		Unpublished	18S rRNA
Hepatozoon	Canis	lupus						(Pietrobelli et	
canis	familiaris		Mammalia	Canidae	Italy	FJ608736		al., 2007)	18S rRNA
Hepatozoon	Canis	lupus	Mammalia;	Canidae;		KY433319; KY433320	; KY433321;		
canis	familiaris;	ticks	Arachnida	Ixodidae	Romania	KY433326; KY433327		Unpublished	18S rRNA
Hepatozoon	Canis	lupus							
canis	familiaris		Mammalia	Canidae	India	LC053450		Unpublished	18S rRNA
Hepatozoon	Canis	lupus							
canis	familiaris		Mammalia	Canidae	Mexico	MT672778		Unpublished	18S rRNA
Hepatozoon	Canis	lupus							
canis	familiaris		Mammalia	Canidae	Argentina	KY940658		Unpublished	18S rRNA
						KU821656; KU821657	; KU821658;		
Hepatozoon	Canis	lupus				KU821659; KU821660	; KU821661;		
canis	familiaris		Mammalia	Canidae	Italy	KU821662		Unpublished	18S rRNA
Hepatozoon	Canis	lupus							
canis	familiaris		Mammalia	Canidae	China	MW281789; MW28172	22	Unpublished	18S rRNA

Hepatozoon	Canis	lupus							
canis	familiaris		Mammalia	Canidae	Turkey	MT909554		Unpublished	18S rRNA
Hepatozoon	Canis	lupus							
canis	familiaris		Mammalia	Canidae	Israel	KY741982		Unpublished	18S rRNA
						MN689651;	MN689652;		
						MN689653;	MN689655;		
						MN689656;	MN689658;		
						MN689660;	MN689662;		
						MN689664;	MN689665;		
						MN689667;	MN689668;		
						MN689669;	MN689670;		
						MN689671;	MN689654;		
	Canis	lupus			Vietnam;	MN689659;	MN689661;		
Hepatozoon	familiaris;	Felis		Canidae;	Thailand;	MN689666;	MN689663;		
canis	catus		Mammalia	Felidae	Philippines	MN689657;		Unpublished	18S rRNA
Hepatozoon	Canis	lupus						(Bouattour et	
canis	familiaris		Mammalia	Canidae	Tunisia	MT588816; MT5888 ⁻	17	al., 2021)	18S rRNA
Hepatozoon	Canis	lupus						(Colella et al.,	
canis	familiaris		Mammalia	Canidae	China	MT499354; MT4993	55; MT499356	2020)	18S rRNA
						MW019630;	MW019631;		
Hepatozoon	Canis	lupus				MW019632;	MW019633;	(latta et al.,	
canis	familiaris		Mammalia	Canidae	Iran	MW019634;	MW019635;	2021)	18S rRNA

						MW019636;	MW019637;		
						MW019638;	MW019639;		
						MW019640;	MW019641;		
						MW019642; MW01964	13		
Hepatozoon	Canis	lupus						(Andersson et	
canis	familiaris		Mammalia	Canidae	Romania	JX976545		al., 2013)	18S rRNA
Hepatozoon	Canis	lupus							
canis	familiaris		Mammalia	Canidae	India	MN181508		Unpublished	18S rRNA
Hepatozoon	Canis	lupus							
canis	familiaris		Mammalia	Canidae	Australia	MG076961		Unpublished	18S rRNA
								(Criado-	
Hepatozoon	Canis	lupus			Not			Fornelio et al.,	
canis	familiaris		Mammalia	Canidae	available	EF650846		2007)	18S rRNA
						LC012821; LC012822;	; LC012823;		
						LC012824; LC012825;	; LC012826;		
						LC012827; LC012828;	; LC012829;		
						LC012830; LC012831;	; LC012832;		
						LC012833; LC012834;	; LC012835;		
Hepatozoon	Canis	lupus				LC012836; LC012837;	; LC012838;	(Kubo et al.,	
canis	familiaris		Mammalia	Canidae	Japan	LC012839		2015)	18S rRNA
Hepatozoon	Canis	lupus							
canis	familiaris		Mammalia	Canidae	China	KP719091		(Xu et al., 2015)	18S rRNA

Hepatozoon	Canis lupus				HQ718615;	HQ718616;	(Wong et al.,	
canis	familiaris	Mammalia	Canidae	China	HQ718617;		2011)	18S rRNA
					MZ318674;	MZ318676;		
					MZ318689;	MZ318707;		
					MZ323359;	MZ323360;		
					MZ323361;	MZ323362;		
					MZ323363;	MZ323364;		
Hepatozoon	Canis lupus				MZ411572;	MZ411573;		
canis	familiaris	Mammalia	Canidae	India	MZ411581;		Unpublished	18S rRNA
					MK621311;	MK621312;		
					MK621313;	MK621314;		
					MK621317;	MK621315;		
					MK621318;	MK621309;		
					MK621304;	MK621305;		
					MK621319;	MK621303;		
	Canis				MK621302;	MK621308;		
Hepatozoon	mesomelas;		Canidae;	South	MK621306;	MK621307;	(Viljoen et al.,	
canis	Caracal caracal	Mammalia	Felidae	Africa	MK621316		2020)	18S rRNA
Hepatozoon	Canis			South				
canis	mesomelas	Mammalia	Canidae	Africa	MT774531		Unpublished	18S rRNA

							(Criado-	
Hepatozoon	Cerdocyon						Fornelio et al.,	
canis	thous	Mammalia	Canidae	Brazil	AY461378		2006)	18S rRNA
Hepatozoon	Chrysocyon						(Arrais et al.,	
canis	brachyurus	Mammalia	Canidae	Brazil	MT965691; MT96569	2	2020)	18S rRNA
Hepatozoon							(Pawar et al.,	
canis	Cuon alpinus	Mammalia	Canidae	India	HQ829447; HQ82944	8	2012)	18S rRNA
Hepatozoon								
canis	Cuon alpinus	Mammalia	Canidae	Thailand	MK144332		Unpublished	18S rRNA
Hepatozoon	Didelphis						(Silva et al.,	
canis	albiventris	Mammalia	Didelphidae	Brazil	KY392884; KY392885	5	2017)	18S rRNA
Hepatozoon							(Rubini et al.,	
canis	Felis catus	Mammalia	Felidae	Brazil	DQ315565; DQ31556	6	2006)	18S rRNA
	Felis catus;				MW377924;	MW402991;		
Hepatozoon	Canis lupus		Felidae;		MW402992;	MW402990;		
canis	familiaris	Mammalia	Canidae	Thailand	MW377923		Unpublished	18S rRNA
							(Criado-	
Hepatozoon	Felis						Fornelio et al.,	
canis	domesticus	Mammalia	Felidae	France	EU622909; EU622910	C	2009)	18S rRNA
							(Criado-	
Hepatozoon	Felis						Fornelio et al.,	
canis	domesticus	Mammalia	Felidae	France	FJ213775		2009)	18S rRNA

KP216415; KP216416; KP216418; KP216420; KP216421; KP216426; KP216427; KP216430; KP216433; KP216434; KP216435; KP216436; KP216437; KP216440; KP216444;	
KP216420; KP216421; KP216426; KP216427; KP216430; KP216433; KP216434; KP216435; KP216436; KP216437; KP216440; KP216444;	
KP216427; KP216430; KP216433; KP216434; KP216435; KP216436; KP216437; KP216440; KP216444;	
KP216434; KP216435; KP216436; KP216437; KP216440; KP216444;	
KP216437; KP216440; KP216444;	
KP216446; KP216449; KP216455;	
KP216456; KP216458; KP216459;	
KP216460; KP216464; KP216466;	
KP216468; KP216469; KP216473;	
KP216477; KP216478; KP216482;	
KP216484; KP216485; KP216486;	
KP216487; KP216489; KP216490;	
KP216491; KP216492; KP216425;	
Bosnia and KP216454; KP216462;	
HepatozoonHerzegovinKP216472;KP216480;(Hodžić et al.,	
canis Fox Mammalia Canidae a KP216456; KP216458; KP216481 2015) 18S rRNA	٩.
MG018464; MG050161;	
HaemaphysalisMG018465;MG018466;	
<i>bispinosa;</i> MG919976; MG919977;	
HepatozoonCanisIupusArachnida;Ixodidae;India;MG050160;MG018467;	
canis familiaris Mammalia Canidae Kyrgyzstan MG917710; MG917715; Unpublished 18S rRNA	١

					MG917709; MG917	7718;		
					MG917713; MG917	7719;		
					MG917712; MG917	7714;		
					MG050163; MG050	0162;		
					MG917716; MG917	7717;		
					MG917711			
Hepatozoon	Haemaphysalis							
canis	bispinosa	Arachnida	Ixodidae	India	MG241124;		Unpublished	18S rRNA
Hepatozoon	Haemaphysalis							
canis	longicornis	Arachnida	Ixodidae	Japan	LC169075; LC169076		Unpublished	18S rRNA
Hepatozoon	Haemaphysalis							
canis	longicornis	Arachnida	Ixodidae	China	MK294048		Unpublished	18S rRNA
Hepatozoon	Hyalomma							
canis	anatolicum	Arachnida	Ixodidae	Pakistan	JX441117		Unpublished	18S rRNA
Hepatozoon	Hydrochoerus				KY965141; KY965142; KY965	5143;		
canis	hydrochaeri	Mammalia	Caviidae	Brazil	KY965144		Unpublished	18S rRNA
Hepatozoon	Ixodes						(Greay et al.,	
canis	holocyclus	Arachnida	Ixodidae	Australia	MG758124		2018)	18S rRNA
					KU597242; KU597253; KU597	7254;		
	Ixodes ricinus;				KU597239; KU597240; KU597	7241;		
Hepatozoon	Myodes	Arachnida;	Ixodidae;	Czech	KU597252; KU597243; KU597	7244;	(Hamšíková et	
canis	glareolus	Mammalia	Cricetidae	Republic	KU597245; KU597246; KU597	7246;	al., 2016)	18S rRNA

					KU597248; KU597249	; KU597250;		
					KU597251; KU597235	; KU597236;		
					KU597237; KU597238	3		
Hepatozoon					MG253004;	MG253001;	(Víchová et al.,	
canis	lxodes ricinus	Arachnida	Ixodidae	Slovakia	MG253002; MG25300	3	2018	18S rRNA
Hepatozoon				Luxembour			(Reye et al.,	
canis	Ixodes ricinus	Arachnida	Ixodidae	g	GU827130		2010)	18S rRNA
Hepatozoon	Lycalopex							
canis	gymnocercus	Mammalia	Canidae	Brazil	KX816958		Unpublished	18S rRNA
Hepatozoon	Lycalopex							
canis	gymnocercus	Mammalia	Canidae	Brazil	KM057841		Unpublished	18S rRNA
Hepatozoon	Lycalopex				MT458173;	MT458171;		
canis	vetulus	Mammalia	Canidae	Brazil	MT458172; MT458170);	Unpublished	18S rRNA
Hepatozoon				South				
canis	Lycaon pictus	Mammalia	Canidae	Africa	MT762140; MT762147	1	Unpublished	18S rRNA
					MW578992;	MW578993;		
					MW578996;	MW579001;		
					MW579002;	MW578979;		
					MW578980;	MW578981;		
					MW578982;	MW578983;		
Hepatozoon	Martes foina;		Mustelidae;		MW578984;	MW578985;		
canis	Vulpes vulpes	Mammalia	Canidae	Spain	MW578986;	MW578987;	Unpublished	18S rRNA

						MW578988;	MW578989;		
						MW578990;	MW578991;		
						MW578994;	MW578995;		
						MW578997;	MW578998;		
						MW578999; MW57900	00;		
Hepatozoon	Canis I	lupus						(Demoner et al.,	
canis	familiaris		Mammalia	Canidae	Brasil	KU569168		2016)	18S rRNA
Hepatozoon	Canis I	lupus							
canis	familiaris		Mammalia	Canidae	Thailand	MT354613; MT355552	2; MT355565	Unpublished	18S rRNA
Hepatozoon	Canis I	lupus						(Bora et al.,	
canis	familiaris		Mammalia	Canidae	India	MN252045; MN25204	4	2019)	18S rRNA
Hepatozoon	Canis I	lupus							
canis	familiaris		Mammalia	Canidae	Ireland	LS453286; LS453287;	LS453288	Unpublished	18S rRNA
Hepatozoon	Canis I	lupus						(Attipa et al.,	
canis	familiaris		Mammalia	Canidae	Cyprus	KF724626		2017)	18S rRNA
Hepatozoon									
canis	Canis lupus	S	Mammalia	Canidae	India	KT246304		Unpublished	18S rRNA
Hepatozoon	Canis I	lupus						(Bouer et al.,	
canis	familiaris		Mammalia	Canidae	Brasil	JF295088		2017)	18S rRNA
Hepatozoon	Canis I	lupus							
canis	familiaris		Mammalia	Canidae	Ethiopia	KF646812; KF646813		Unpublished	18S rRNA

Hepatozoon		Not		Not				
canis	Not available	available	Not available	available	GU386283; GU386284	1	Unpublished	18S rRNA
				Trinidad				
Hepatozoon				and			(Sant et al.,	
canis	Canis lupus	Mammalia	Canidae	Tobago	KX249834; KX249835		2017)	18S rRNA
Hepatozoon							(Zheng et al.,	
canis	Not available	Arachnida	Ixodidae	China	MG675579		2018)	18S rRNA
Hepatozoon							(Campana et	
canis	Not available	Arachnida	Ixodidae	Kenya	KT956192		al., 2016)	18S rRNA
Hepatozoon							(Squarre et al.,	
canis	Panthera leo	Mammalia	Felidae	Zambia	MT814748; MT814761		2020)	18S rRNA
Hepatozoon					MT232062;	MT232063;	(Yamamoto et	
canis	Panthera tigris	Mammalia	Felidae	Italy	MT232064;		al., 2017)	18S rRNA
					MZ151528;	MZ151523;		
					MZ151529;	MZ151509;		
					MZ151516;	MZ151517;		
					MZ151527;	MZ151524;		
	Prionailurus				MZ151512;	MZ151518;		
	bengalensis;				MZ151511;	MZ151513;		
	Panthera onca;				MZ151507;	MZ151521;		
Hepatozoon	Elephas		Felidae;		MZ151526;	MZ151519;		
canis	maximus	Mammalia	Proboscidea	Thailand	MZ151522;	MZ151510;	(Do et al., 2021)	18S rRNA

					MZ151505;	MZ151515;		
					MZ151520;	MZ151508;		
					MZ151504;	MZ151506;		
					MZ151514; MZ151525	5		
							(Criado-	
Hepatozoon					MG897468;	MG897469;	Fornelio et al.,	
canis	Procyon lotor	Mammalia	Procyonidae	Spain	MG897470; MG89747	1;	2018)	18S rRNA
	Pseudalopex						(Criado-	
Hepatozoon	gymnocercus;			Brazil;			Fornelio et al.,	
canis	Dusicyon thous	Mammalia	Canidae	Spain	AY461376; AY461375	; AY471615	2006)	18S rRNA
	Rhipicephalus							
Hepatozoon	(Boophilus)						(Miranda et al.,	
canis	microplus	Arachnida	Ixodidae	Brazil	HQ605710		2011)	18S rRNA
Hepatozoon	Rhipicephalus						(Chiuya et al.,	
canis	decoloratus	Arachnida	Ixodidae	Kenya	MN294724		2020)	18S rRNA
Hepatozoon	Rhipicephalus						(Banovic et al.,	
canis	sanguineus	Arachnida	Ixodidae	Serbia	MZ146329		2021)	18S rRNA
Hepatozoon	Rhipicephalus							
canis	sanguineus	Arachnida	Ixodidae	Brazil	MG793450; MG79344	9	(Ramos, 2018)	18S rRNA
Hepatozoon	Rhipicephalus						(Aktas &	
canis	sanguineus	Arachnida	Ixodidae	Turkey	KY196999; KY197000	; KY197001	Özübek, 2017)	18S rRNA

Hepatozoon	Rhipicephalus				MG564214;	MG564216;		
canis	sanguineus	Arachnida	Ixodidae	Egypt	MG564215; MG56421	17;	Unpublished	18S rRNA
					MH595892;	MH595893;		
					MH595894;	MH595895;		
					MH595896;	MH595897;		
					MH595898;	MH595902;		
					MH595903;	MH595904;		
					MH595905;	MH595906;		
					MH595907;	MH595908;		
					MH595909;	MH595910;		
Hepatozoon	Rhipicephalus				MH595911;	MH595899;	(Chao et a	.,
canis	sanguineus	Arachnida	Ixodidae	Taiwan	MH595900; MH59590)1	2019)	18S rRNA
Hepatozoon	Rhipicephalus						(Santos et a	-,
canis	sanguineus	Arachnida	Ixodidae	Brazil	MG241229		2018)	18S rRNA
Hepatozoon	Rhipicephalus						(Azmi et a	• ,
canis	sanguineus	Arachnida	Ixodidae	Palestine	KT587790; KT587789)	2016)	18S rRNA
							(Coimbra-	
Hepatozoon	Rhipicephalus						Dores et a	-,
canis	sanguineus	Arachnida	Ixodidae	Portugal	MN207197		2020)	18S rRNA
Hepatozoon	Rhipicephalus				KJ605144; KJ605145	5; KJ605146;	(Latrofa et a	-,
canis	sp	Arachnida	Ixodidae	Spain	KJ605147		2014)	18S rRNA

Hepatozoon								
canis	Ticks	Arachnida	Not available	China	KX870924; KX870925		(Liu et al., 2016)	18S rRNA
				France,			(Criado-	
Hepatozoon				Portugal,			Fornelio et al.,	
canis	vulpes	Mammalia	Cannidae	Spain	AY150067		2003)	18S rRNA
							(Criado-	
Hepatozoon	Hydrochaeris						Fornelio et al.,	
canis	hydrochaeris	Mammalia	Caviidae	Brazil	EF622096		2007)	18S rRNA
					MT107087;	MT107088;		
					MT107089;	MT107090;		
					MT107091;	MT107092;		
					MT107093;	MT107094;		
Hepatozoon					MT107095;	MT107096;	(Guo et al.,	
canis	Various species	Mammalia	Canidae	China	MT107097; MT107098	3	2020)	18S rRNA
							(Criado-	
Hepatozoon							Fornelio et al.,	
canis	Vulpes vulpes	Mammalia	Canidae	Spain	AY731062		2004)	18S rRNA
					GU371446;	GU371447;		
					GU371448;	GU371449;		
					GU371450;	GU371451;		
Hepatozoon					GU371452;	GU376453;	(Gabrielli et al.,	
canis	Vulpes vulpes	Mammalia	Canidae	Italy	GU376454;	GU376455;	2010)	18S rRNA

					GU376456;	GU376457;		
					GU376458			
Hepatozoon							(Sgroi et al.,	
canis	Vulpes vulpes	Mammalia	Canidae	Italy	MW295531		2021)	18S rRNA
					KM115969;	KM115970;		
					KM115971;	KM115974;		
					KM115979;	KM115983;		
					KM115984;	KM115986;		
					KM115987;	KM115989;		
					KM115991;	KM115993;		
					KM115996;	KM115998;		
					KM116001;	KM116003;		
					KM116005;	KM115981;		
Hepatozoon					KM116002;	KM116000;	(Duscher et al.,	
canis	Vulpes vulpes	Mammalia	Canidae	Austria	KM115995;		2014)	18S rRNA
Hepatozoon							(Hodžić et al.,	
canis	Vulpes vulpes	Mammalia	Canidae	Austria	KY693670		2018)	18S rRNA
					KX879139; KX879135;	; KX887324;		
					KX879129; KX879138;	; KX879141;		
					KX879134; KX887325;	; KX887327;		
Hepatozoon					KX887323; KX879136;	; KX879137;	(Miterpáková et	
canis	Vulpes vulpes	Mammalia	Canidae	Slovakia	KX887328; KX879133;	; KX879131;	al., 2017)	18S rRNA

					KX879130; KX887326	; KX887322;		
					KX879132; KX879140			
Hepatozoon					MG077085;	MG077087;	(Orkun et al.,	
canis	Vulpes vulpes	Mammalia	Canidae	Turkey	MG077084; MG07708	6	2018)	18S rRNA
Hepatozoon								
canis	Vulpes vulpes	Mammalia	Canidae	Italy	KP644235		Unpublished	18S rRNA
Hepatozoon					KP715299; KP715300	; KP715301;		
canis	Vulpes vulpes	Mammalia	Canidae	Italy	KP715302; KP715303		Unpublished	18S rRNA
Hepatozoon					HM212626;	HM212625;	(Dežđek et al.,	
canis	Vulpes vulpes	Mammalia	Canidae	Croatia	HM212627		2010)	18S rRNA
					MN463026;	MN463025;		
					MN463023;	MN463021;		
					MN463022;	MN463029;		
Hepatozoon					MN463024;	MN463027;	(Orkun & Emir,	
canis	Various species	Mammalia	Various	Turkey	MN463028		2020)	18S rRNA
					KC584773; KC584774	; KC584775;		
Hepatozoon		Mammalia;	Canidae;		KC584776; KC584777	; KC584780;	(Najm et al.,	
canis	Various species	Arachnida	Ixodidae	Germany	KC584778; KC584779)	2014)	18S rRNA
					MH699891;	MH699889;		
Hepatozoon					MH699892;	MH699888;		
canis	Vulpes vulpes	Mammalia	Canidae	Serbia	MH699890;	MH699885;	Unpublished	18S rRNA

					MH699887;	MH699886;			
					MH699884				
Hepatozoon					MK872809;	MK872810;	(Bajer	et al	,
canis	Vulpes vulpes	Mammalia	Canidae	Poland	MK872808		2019)		18S rRNA
Hepatozoon					KM096414;	KM096413;	(Imre	et al	,
canis	Vulpes vulpes	Mammalia	Canidae	Romania	KM096411; KM096412	2	2015)		18S rRNA
					KC886726; KF322143;	; KC886723;			
					KC886724; KC886722	; KC886733;			
					KC886721; KC886725	; KF322142;			
					KC886731; KC886732	; KC886728;			
					KC886730; KC886727	; KF322144;			
Hepatozoon					KF322141; KF322145;	KC886729;	(Farkas	et al	,
canis	Vulpes vulpes	Mammalia	Canidae	Hungary	KC886720;		2014)		18S rRNA
					MK673838;	MK673840;			
					MK673816;	MK673834;			
					MK673848;	MK673851;			
					MK673852;	MK673853;			
					MK673818;	MK673819;			
					MK673820;	MK673821;			
					MK673823;	MK673824;			
Hepatozoon					MK673825;	MK673826;	(Medkou	ır et al	,
canis	Vulpes vulpes	Mammalia	Canidae	France	MK673827;	MK673831;	2020)		18S rRNA

					MK673832;	MK673835;		
					MK673836;	MK673837;		
					MK673839;	MK673841;		
					MK673842;	MK673843;		
					MK673844;	MK673845;		
					MK673846;	MK673847;		
					MK673849;	MK673850;		
					MK673854;	MK673828;		
					MK673830;	MK673817;		
					MK673833;	MK673829;		
					MK673822			
Hepatozoon								
canis	Vulpes vulpes	Mammalia	Canidae	Poland	EU165370		Unpublished	18S rRNA
Hepatozoon							(Miterpáková et	
canis	Vulpes vulpes	Mammalia	Canidae	Slovakia	KX958469		al., 2017)	18S rRNA
Hepatozoon							(Majláthová et	
canis	Vulpes vulpes	Mammalia	Canidae	Slovakia	DQ869309		al., 2007)	18S rRNA
Hepatozoon							(<u>Víchová</u> et al.,	
canis	Vulpes vulpes	Mammalia	Canidae	Slovakia	MG214908		2018)	18S rRNA
					KU893125; KU893118; KU893119;			
-------------	---------------	-----------	-------------	-----------	-------------------------------	-------------------	---------------	
	Vulpes vulpes				KU893120; KU893123; KU893124;			
Hepatozoon	and various			Czech	KU893126; KU893122; KU893127;	(Mitková et al.,		
canis	dogs breeds	Mammalia	Canidae	Republic	KU893121	2016)	18S rRNA	
Hepatozoon	Lithobates			Not		(Lang-Unnasch		
catesbianae	catesbeianus	Amphibia	Ranidae	available	AF040972; AF041438	et al., 1998)	18S rRNA	
							Cytochrome	
							b;	
							cytochrome	
							c oxidase	
							subunit I;	
							cytochrome	
							c oxidase	
							subunit III;	
							18S rRNA ;	
Hepatozoon	Lithobates			USA and		(Léveillé et al.,	large subunit	
catesbianae	clamitans	Amphibia	Ranidae	Canada	AIG55089	2014)	ribosomal;	
Hepatozoon						(Carreno et al.,		
catesbianae	Earthworms	Annelidia	Lumbricidae	USA	AF130361	1999)	18S rRNA	
Hepatozoon	Rana					(Barta et al.,		
catesbianae	catesbeiana	Amphibia	Ranidae	USA	HQ224954	2012)	18S rRNA	
1			1	1		1	1	

								18S rRNA ;
								ITS1; 5.8S
Hepatozoon					MN244528;	MN245144;	(Léveillé et al.,	ribosomal
catesbianae	Various species	Amphibia	Ranidae	USA	MN245145; MN24514	6;	2020)	RNA
	Philothamnus							
Hepatozoon	natalensis			South			(Cook et al.,	
cecilhoarei	natalensis	Reptilia	Colubridae	Africa	MG519504		2018)	18S rRNA
					DQ856584;	DQ856585;		
					DQ856586;	DQ856587;		
Hepatozoon				Not	DQ856588;	DQ856589;	(Boulianne et	
clamatae	Various species	Amphibia	Ranidae	available	DQ856590; DQ856597	I	al., 2007)	ITS1
Hepatozoon							(Barta et al.,	
clamatae	Rana clamitans	Amphibia	Ranidae	USA	HQ224962; HQ224963	3	2012)	18S rRNA
Hepatozoon							(Léveillé et al.,	
clamatae	Rana pipiens	Amphibia	Ranidae	Canada	MN310689; MN31069	C	2021)	COI
								18S rRNA ;
								ITS1; 5.8S
Hepatozoon							(Léveillé et al.,	ribosomal
clamatae	Various species	Amphibia	Ranidae	USA	MN244529		2020)	RNA
Hepatozoon		Not						
colubri	Not available	available	Not available	Iran	MN723844		Unpublished	18S rRNA

Hepatozoon					MF497769;	MF497765;				
cuestensis;					MF497763;	MF497767;				
Hepatozoon	Crotalus				MF497770;	MK757772;	(Úngari	et	al.,	
musa	durissus	Reptilia	Viperidae	Brazil	MF497768; MF49	97764; MF497766	2018)			18S rRNA
Hepatozoon	Madagascarop		Lamprophiid	Madagasc	KM234646;	KM234649;	(Maia	et	al.,	
domerguei	his colubrinus	Reptilia	ae	ar	KM234648; KM23	34650	2014)			18S rRNA
Hepatozoon	Ctenophthalmu		Hystrichopsy				(Rigó	et	al.,	
erhardovae	s agyrtes	Insecta	llidae	Hungary	KJ634066; KJ608	8372	2016)			18S rRNA
Hepatozoon	Myodes						(Bajer	et	al.,	
erhardovae	glareolus	Mammalia	Cricetidae	Poland	KF418367; KF41	8366	2014)			18S rRNA
Hepatozoon	Haemaphysalis						(Greay	et	al.,	18S rRNA ;
ewingi	bancrofti	Arachnida	Ixodidae	Australia	MG593275; MG5	593274	2018)			18S rRNA
					AB983403; AB98	33428; AB983419;				
					AB983437; AB98	33387; AB983390;				
					AB983415; AB98	33426; AB983389;				
	Amblyomma				AB983432; AB98	33386; AB983402;				
	testudinarium				AB983388; AB98	33406; AB983411;				
	larva;				AB983393; AB98	33394; AB983401;				
	Haemaphysalis				AB983405; AB98	33407; AB983408;				
	longicornis				AB983409; AB98	33410; AB983412;				
Hepatozoon	nymph; various				AB983414; AB98	33417; AB983422;	(Tatenc	o et	al.,	
felis	species	Arachnida	Ixodidae	Japan	AB983423; AB98	33429; AB983430;	2015)			18S rRNA
		1		1			I			

					AB983435; AB983431	; AB983420;		
					AB983433; AB983436	; AB983385;		
					AB983391; AB983392	; AB983396;		
					AB983399; AB983404	; AB983416;		
					AB983421; AB983400	; AB983418;		
					AB983424; AB983427	; AB983425		
Hepatozoon				South			(Viljoen et al.,	
felis	Caracal caracal	Mammalia	Felidae	Africa	MK621310		2020)	18S rRNA
							(Criado-	
Hepatozoon							Fornelio et al.,	
felis	Felis catus	Mammalia	Felidae	Spain	AY620232		2006)	18S rRNA
							(Criado-	
Hepatozoon							Fornelio et al.,	
felis	Felis catus	Mammalia	Felidae	Spain	AY628681		2006)	18S rRNA
Hepatozoon							(Bortoli et al.,	
felis	Felis catus	Mammalia	Felidae	Brazil	JN123435;		2011)	18S rRNA
Hepatozoon								
felis	Felis catus	Mammalia	Felidae	Brazil	KM435071		(Braga, 2017)	18S rRNA
					MT210598;	MT210593;		
Hepatozoon					MT210597;	MT210594;	(Bazzano et al.,	
felis	Felis catus	Mammalia	Felidae	Uruguay	MT210595; MT210596	6	2021)	18S rRNA
1		1	1				1	

Hepatozoon							(Otranto e	t al.,	
felis	Felis catus	Mammalia	Felidae	Italy	KY511259		2017)		18S rRNA
Hepatozoon							(Basso e	: al.,	
felis	Felis catus	Mammalia	Felidae	Austria	MK724001		2019)		18S rRNA
					KX808667; KX808665	; KX808660;			
					KX808661; KX808658	; KX808658;			
					KX808663; KX808662	; KX808666;			
Hepatozoon					KX808670; KX808671	; KX808668;	(Attipa et	al.,	
felis	Felis catus	Mammalia	Felidae	Cyprus	KX808669; KX808664		2017)		18S rRNA
Hepatozoon					LC179796; LC179798	; LC179799;	(Jikuya e	al.,	
felis	Felis catus	Mammalia	Felidae	Japan	LC179794; LC179797	; LC179795	2017)		18S rRNA
Hepatozoon							(Pereira e	t al.,	
felis	Felis catus	Mammalia	Felidae	Cape verde	MK836092		2019)		18S rRNA
					KY215809; KY215817	; KY215807;			
					KY215811; KY215815	; KY215814;			
					KY215808; KY215810	; KY215816;			
Hepatozoon					KY215818; KY215813	; KY215805;	(Attipa et	al.,	
felis	Felis catus	Mammalia	Felidae	Cyprus	KY215812; KY215806		2017)		18S rRNA
					MN227271;	MN227275;			
Hepatozoon					MN227274;	MN227269;	(Malangme	et et	
felis	Felis catus	Mammalia	Felidae	India	MN227268;	MN227270;	al., 2021)		18S rRNA

					MN227272;	MN227273;		
					MN227267; MN22727	6		
Hepatozoon					MG386482;	MG386483;	(Oliveira et al.,	
felis	Felis catus	Mammalia	Felidae	Angola	MG386484		2018)	18S rRNA
Hepatozoon					MG722717;	MG722718;	(Kamani et al.,	
felis	Felis catus	Mammalia	Felidae	Israel	MG722715; MG72271	6	2018)	18S rRNA
					MK301457;	MK301458;		
					MK301459;	MK301463;		
Hepatozoon				South	MK301460;	MK301461;	(Harris et al.,	
felis	Felis catus	Mammalia	Felidae	Africa	MK301462		2019)	18S rRNA
Hepatozoon	Haemaphysalis				KF034779; KF034776	; KF034780;		
felis	sulcata	Arachnida	Ixodidae	Turkey	KF034777; KF034775;	KF034778	(Aktas, 2014)	18S rRNA
Hepatozoon	Lycalopex						(Giannitti et al.,	
felis	gymnocercus	Mammalia	Canidae	Argentina	HQ020489		2012)	18S rRNA
Hepatozoon	Leopardus						(Metzger et al.,	
felis	pardalis	Mammalia	Felidae	Brazil	EU028344; EU267606	i	2008)	18S rRNA
Hepatozoon	Panthera leo						(Rafiqi et al.,	
felis	leo	Mammalia	Felidae	India	KX017290		2018)	18S rRNA
					HQ829440;	HQ829438;		
					HQ829439;	HQ829441;		
Hepatozoon	Panthera leo				HQ829442;	HQ829443;	(Pawar et al.,	
felis	persica	Mammalia	Felidae	India	HQ829444;	HQ829434;	2012)	18S rRNA

					HQ829435:	HQ829436:		
					HO829437	HO829430		
					HQ829431; HQ829433	5;		
Hepatozoon	Panthera leo						(Bhusri et al.,	
felis	persica	Mammalia	Felidae	Thailand	KY056823		2017)	18S rRNA
Hepatozoon	Panthera						(Pawar et al.,	
felis	pardus fusca	Mammalia	Felidae	India	HQ829444		2012)	18S rRNA
Hepatozoon				Not				
felis	Panthera tigris	Mammalia	Felidae	available	MT634695		Unpublished	18S rRNA
Hepatozoon				Not				
felis	Panthera tigris	Mammalia	Felidae	available	MT645336		Unpublished	18S rRNA
Hepatozoon	Panthera tigris						(Pawar et al.,	
felis	tigris	Mammalia	Felidae	India	HQ829445; HQ829446	5	2012)	18S rRNA
Hepatozoon	Prionailurus				GQ377217;	GQ377218;	(Kubo et al.,	
felis	bengalensis	Mammalia	Felidae	Korea	GQ377216		2010)	18S rRNA
					AB771501; AB771502;	; AB771503;		
					AB771504; AB771505;	; AB771506;		
					AB771507; AB771508;	; AB771509;		
					AB771510; AB771511;	; AB771512;		
					AB771513; AB771514;	; AB771515;		
Hepatozoon	Prionailurus				AB771516; AB771517;	; AB771518;	(Tateno et al.,	
felis	iriomotensis	Mammalia	Felidae	Japan	AB771519; AB771520;	; AB771521;	2013)	18S rRNA

					AB771522; AB771523; AB771524;		
					AB771525; AB771526; AB771527;		
					AB771528; AB771529; AB771530;		
					AB771531; AB771532; AB771533;		
					AB771534; AB771535; AB771536;		
					AB771537; AB771538; AB771539;		
					AB771540; AB771541; AB771542;		
					AB771543; AB771544; AB771545;		
					AB771546; AB771547; AB771548;		
					AB771549; AB771550; AB771551;		
					AB771552; AB771553; AB771554;		
					AB771555; AB771556; AB771557;		
					AB771558; AB771559;AB771560;		
					AB771561; AB771562; AB771563;		
					AB771564; AB771565; AB771566;		
					AB771567; AB771568; AB771569;		
					AB771570; AB771571; AB771572;		
					AB771573; AB771574; AB771575;		
					AB771576; AB771577		
Hepatozoon	Prionailurus					(Sakuma et al.,	
felis	iriomotensis	Mammalia	Felidae	Japan	AB636285; AB636286; AB636287	2011)	18S rRNA

					AB872948; AB872945; AB872949;		
					AB872992; AB872944; AB872993;		
					AB872947; AB872994; AB872995;		
					AB896687; AB896694; AB983397;		
					AB983395; AB983398; AB896688;		
	Rhipicephalus				AB896690; AB896691; AB896693;		
Hepatozoon	sanguineus;	Arachnida;	Ixodidae;Feli		AB896689; AB983434; AB896686;	(Maia et al.,	
felis	Felis catus	Mammalia	dae	Portugal	AB896692	2014)	18S rRNA
Hepatozoon	Rhipicephalus					(Aktas et al.,	
felis	sanguineus	Arachnida	Ixodidae	Turkey	JQ867388; JQ867390; JQ867389	2013)	18S rRNA
	Rhipicephalus						
	sanguineus						
Hepatozoon	infested on an					(Bhusri et al.,	
felis	asiatic lion	Arachnida	Ixodidae	Thailand	KY056823	2017)	18S rRNA
Hepatozoon	Rhipicephalus					(Karasartova et	
felis	turanicus	Arachnida	Ixodidae	Turkey	MF383513; MF383514	al., 2018)	18S rRNA
Hepatozoon	Amblyomma					(Omondi et al.,	
fitzsimonsi	sparsum	Arachnida	Ixodidae	Kenya	KT266582	2017)	18S rRNA
Hepatozoon	Chersina		Geoemydida	South		(Cook et al.,	
fitzsimonsi	angulata	Reptilia	е	Africa	KJ702453	2014)	18S rRNA
Hepatozoon						(Adetunji et al.,	
fitzsimonsi	Kinixys belliana	Reptilia	Testudinidae	Nigeria	MT704950	2020)	18S rRNA
	1	1					

FCUP | 107

Hepatozoon	Kinixys			South		(Cook et al.,	
fitzsimonsi	zombensis	Reptilia	Testudinidae	Africa	KR069084	2015)	18S rRNA
Hepatozoon	Kinixys			South		(Conradie et al.,	
fitzsimonsi	zombensis	Reptilia	Testudinidae	Africa	KR069084	2017)	18S rRNA
Hepatozoon				South	MW494679; MW494678;		
fitzsimonsi	Not available	Reptilia	Not available	Africa	MW494680; MW494681	Unpublished	18S rRNA
Hepatozoon	Sciurus					(Léveillé et al.,	Mitochondri
griseisciuri	carolinensis	Mammalia	Sciuridae	USA	MK452388	2020)	on
Hepatozoon	Sciurus					(Léveillé et al.,	
griseisciuri	carolinensis	Mammalia	Sciuridae	USA	MK452252; MK452253	2020)	18S rRNA
Hepatozoon	Panthera			South			
ingwe	pardus pardu	Mammalia	Felidae	Africa	MN793000; MN793001	(As et al., 2020)	18S rRNA
Hepatozoon	Hyperolius			South	MG041594; MG041591;	(Netherlands et	
involucrum	marmoratus	Amphibia	Hyperoliidae	Africa	MG041592; MG041593	al., 2018)	18S rRNA
Hepatozoon	Amietophrynus			Not	KP119771; KP119772; KP119773;	(Netherlands et	
іхохо	gutturalis	Amphibia	Bufonidae	available	KP119770	al., 2014)	18S rRNA
Hepatozoon	Sclerophrys			South		(Conradie et al.,	
іхохо	maculata	Amphibia	Bufonidae	Africa	KX512803; KX512804	2017)	18S rRNA
Hepatozoon	Sclerophrys			South		(Netherlands et	
іхохо	pusilla	Amphibia	Bufonidae	Africa	MG041604	al., 2018)	18S rRNA
Hepatozoon	Panthera			South	MN793004; MN793002;		
luiperdjie	pardus pardus	Mammalia	Felidae	Africa	MN793003	(As et al., 2021)	18S rRNA

				Bosnia and				
Hepatozoon	Martes martes;			Herzegovin	MG136687;	MG136688;	(Hodžić et al.,	
martis	Martes foina	Mammalia	Mustelidae	a; Croatia	MG136687		2018)	18S rRNA
Hepatozoon	Philodryas						(Borges-Nojosa	
musa	nattereri	Reptilia	Colubridae	Brazil	KX880079		et al., 2017)	18S rRNA
Hepatozoon		Not						
ophisauri	Not available	available	Not available	Iran	MN723845		Unpublished	18S rRNA
Hepatozoon	Rhombomys							
ophisauri	opimu	Mammalia	Muridae	China	MW256822; MW342	2705	Unpublished	18S rRNA
					MF685403;	MF685387;		
					MF685405;	MF685408;		
					MF685406;	MF685409;		
					MF685397;	MF685398;		
					MF685407;	MF685410;		
					MF685404;	MF685390;		
					MF685391;	MF685393;		
					MF685399;	MF685396;		
					MF685389;	MF685392;		
					MF685394;	MF685388;		
					MF685386;	MF685402;		
Hepatozoon					MW862003;	MW862006;	(Silva et al.,	
procyonis	Nasua nasua	Mammalia	Procyonidae	Brazil	MF685395;	MW862005;	2018)	18S rRNA

		-			ME685401	MW862004.			
					1011 003401,	1010002004,			
					MK277318;	MK277319;			
					MK277320;	MK277321;			
					MK277322;	MK277323;			
					MK277324;				
Hepatozoon							(Perles	et al.,	
procyonis	Nasua nasua	Mammalia	Procyonidae	Brazil	MT102405		2020)		18S rRNA
					MN104640;	MN104639;			
Hepatozoon				Czech	MN104638;	MN104637;	(Modrý	et al.,	
sciuri	Sciurus vulgaris	Mammalia	Sciuridae	Republic	MN104636		2021)		18S rRNA
Hepatozoon	Grandisonia		Indotyphlida				(Harris	et al.,	
seychellensis	alternans	Amphibia	е	Seychelles	KF246565; KF246566		2014)		18S rRNA
Hepatozoon				Switzerlan			(Kegler	et al	
silvestris	Felis catus	Mammalia	Felidae	d	MH078194		2018)		18S rRNA
Hepatozoon					KY649445; KY649446	; KY649442;	(Giannel	li et al.,	
silvestris	Felis catus	Mammalia	Felidae	Italy	KY649443; KY649444	;	2017)		18S rRNA
				Bosnia and					
Hepatozoon	Felis silvestris			Herzegovin			(Hodžić	et al.,	
silvestris	silvestris	Mammalia	Felidae	а	KX757032; KX757031	; KX757033;	2017)		18S rRNA
				Bosnia and					
Hepatozoon	Felis silvestris			Herzegovin	MF614155;	MF614156;	(Hodžić	et al.,	
silvestris	silvestris	Mammalia	Felidae	а	MF614157;		2018)		18S rRNA

	Nerodia						
Hepatozoon	sipedon					(Barta et al.,	
sipedon	sipedon	Reptilia	Colubridae	Canada	JN181157	2012)	18S rRNA
	Nerodia						
Hepatozoon	sipedon					(Barta et al.,	
sipedon	sipedon	Reptilia	Colubridae	USA	JN181157	2012)	18S rRNA
					AF110243; AF110244; AF110245;		
Hepatozoon		Not			AF110246; AF110247; AF110248;	(Smith et al.,	
sipedon	Not available	available	Not available	Canada	AF110249; AF110241; AF110242;	1999)	18S rRNA
	Acomys				KT337469; KT337470; KT337472;	(Alsarraf et al.,	
Hepatozoon sp.	russatus	Mammalia	Muridae	Egypt	KT337467; KT337468; KT337471	2016)	18S rRNA
	Ailuropoda						
Hepatozoon sp.	melanoleuca	Mammalia	Ursidae	China	MK645858;	(Yu et al., 2019)	18S rRNA
	Amblyomma					(Shock et al.,	
Hepatozoon sp.	americanum	Arachnida	Ixodidae	USA	KC162911; KC162910; KC162913	2014)	18S rRNA
	Amblyomma					(Thompson et	
Hepatozoon sp.	americanum	Arachnida	Ixodidae	USA	MT259335	al., 2020)	18S rRNA
	Amblyomma						
Hepatozoon sp.	dissimile	Arachnida	Ixodidae	Brazil	MG437271	Unpublished	18S rRNA
	Amblyomma					(Blanco et al.,	
Hepatozoon sp.	fuscum	Arachnida	Ixodidae	Brazil	KU955319	2017)	18S rRNA

	Amblyomma								
	rotundatum;						(Mendoza-		
	Pogona	Arachnida;	Ixodidae;		MT733844;	MT733845;	Roldan et a	I.,	
Hepatozoon sp.	vitticeps	reptilia	Sauropsida	Brazil	MT733847; MT733846	6; MT733848	2021)	18S	s rRNA
	Ameiva ameiva				MN833642;	MN833641;	(Picelli et a	l.,	
Hepatozoon sp.	Linnaeus	Reptilia	Lacertidae	Amazonia	MN833640; MN83363	9	2020)	18S	s rRNA
	Apodemus				MH523103;	MH523101;	(Usluca et a	l.,	
Hepatozoon sp.	mystacinus	Mammalia	Muridae	Turkey	MH523102; MH52310	0	2019)	18S	s rRNA
	Apodemus						(Usluca et a	l.,	
Hepatozoon sp.	uralensis	Mammalia	Muridae	Turkey	MH523098; MH52309	9	2019)	18S	rRNA
	Aponomma						(Sumrandee	et	
Hepatozoon sp.	varanense	Arachnida	Ixodidae	Thailand	JQ670908; JQ670909	; JQ670910	al., 2015)	18S	s rRNA
	Aponomma								
	varanense;				KF301647; KF301648	; KF301649;			
	Pithon				KF301650; KF524356	; KF524357;			
	reticulatus;	Arachnida;	Ixodidae;		KF524358; KF524359	; KF524360;			
Hepatozoon sp.	various species	Reptilia	Pythonidae	Thailand	KF524361; KF524362	; KF524363	Unpublished	18S	rRNA
	Artibeus								
	planirostris;				MN399957;	MN399959;			
	Artibeus		Phyllostomid		MN399960;	MN399958;			
Hepatozoon sp.	litoratus	Mammalia	ae	Brazil	MN399956		Unpublished	18S	rRNA

	Bandicota						(Dantra	kool	et	
Hepatozoon sp.	indica	Mammalia	Muridae	Thailand	AB181504		al., 200	4)		18S rRNA
	Boiga									
Hepatozoon sp.	irregularis	Reptilia	Colubridae	Australia	AF297085		Unpubl	ishec	ł	18S rRNA
					KJ413132; KJ413113;	KJ413133;				
					KJ413127; KJ413115;	KJ413112;				
					KJ413122; KJ413121;	KJ413123;				
					KJ413114; KJ413117;	KJ413129;				
					KJ413131; KJ413138;	KJ413124;				
					KJ413116; KJ413128;	KJ413119;				
					KJ413134; KJ413130;	KJ413135;				
					KJ413126; KJ413118;	KJ413125;				
					KJ413120; KJ413136;	KT881534;				
					KT881531; KJ413137;	KT881536;				
	Caiman				KX453648; KT881539;	KX453641;				
	crocodilus				KT881540; KT881537;	KT881538;	(Maia	et	al.,	
Hepatozoon sp.	yacare	Reptilia	Alligatoridae	Brazil	KX453645		2016)			18S rRNA
	Calomys						(Wolf	et	al.,	
Hepatozoon sp.	callosus	Mammalia	Cricetidae	Brazil	KP757838		2016)			18S rRNA
					MH111420;	MH111419;				
	Calomys sp,	,			MH111408;	MH111410;	(Perles	et	al.,	
Hepatozoon sp.	Akodon sp	Mammalia	Cricetidae	Brazil	MH111407;	MH111417;	2018)			18S rRNA

FCUP | 113

					MH111405;	Ν	VH111409;				
					MH111411;	Ν	MH111423;				
					MH111415;	Ν	MH111406;				
					MH111422;	Ν	MH111412;				
					MH111416;	Ν	MH111413;				
					MH111418;	Ν	MH111414;				
					MH111421; MH	H111404					
					KJ499495; KJ4	499505;	KJ499513;				
					KJ499490; KJ4	499503;	KJ499514;				
					KJ499515; KJ4	499502;	KJ499492;				
					KJ499506; KJ4	499491;	KJ499521;				
					KJ499534; KJ4	499489;	KJ499533;				
					KJ499522; KJ4	499531;	KJ499519;				
					KJ499528; KJ4	499529;	KJ499536;				
					KJ499526; KJ4	499527;	KJ659858;				
					KJ499479; KJ4	499523;	KJ499535;				
					KJ499537; KJ4	499484;	KJ499499;				
					KJ499525; KJ4	499493;	KJ499494;				
					KJ499517; KJ4	499524;	KJ659861;				
					KJ499482; KJ4	499496;	KJ499497;				
					KJ499510; KJ4	499501;	KJ499507;	(Maia	et	al.,	
Hepatozoon sp.	Various species	Mammalia	Canidae	Algeria	KJ499508; KJ4	499509;	KJ499516;	2014)			18S rRNA

			Г								
					KJ499530; KJ	1499483;	KJ499485;				
					KJ499487; KJ4	1499512;	KJ499520;				
					KJ499488; KJ4	1499504;	KJ499481;				
					KJ499498; KJ4	1499511;	KJ499486;				
					KJ499518; KJ	1659862;	KJ659859;				
					KJ499480; KJ4	499532; k	KJ659860				
					JF491230; JF4	491228;	JF491231;				
					JF491233; JF4	491226;	JF491236;				
					JF491229; JF4	491232;	JF491237;				
					JF491238; JF4	491239;	JF491240;				
					JF491241; JF4	491242;	JF491234;				
					JF491235; JF4	491243;	JF491244;				
			Canidae;		JF491245; JF4	491246;	JF491227;	(Allen	et	al.,	
Hepatozoon sp.	Various species	Mammalia	<u>Cricetidae</u>	USA	JF491225			2011)			18S rRNA
	Canis lupus	;						(Guo	et	al.,	
Hepatozoon sp.	familiaris	Mammalia	Canidae	Turkey	KX641902			2016)			18S rRNA
					MZ297965;		MZ297964;				
					MZ297962;	I	MZ298096;				
	Canis lupus	;			MZ298095;	I	MZ297963;				
Hepatozoon sp.	familiaris	Mammalia	Canidae	Brazil	MZ298097; MZ	Z297966;	MZ297303	Unpubl	ishec	ł	18S rRNA
	Canis lupus	;									
Hepatozoon sp.	familiaris	Mammalia	Canidae	Brazil	KP642760; KP	642759		(Oliveir	a, 20	15)	18S rRNA

						MW350131;	MW350129;		
	Canis	lupus				MW350130;	MW350127;		
Hepatozoon sp.	familiaris		Mammalia	Canidae	Turkey	MW350128		Unpublished	18S rRNA
	Canis	lupus				KF439864; KF439865	; KF439866;	(Aydin et al.,	
Hepatozoon sp.	familiaris		Mammalia	Canidae	Turkey	KF439867		2015)	18S rRNA
	Canis	lupus						(Inokuma et al.,	
Hepatozoon sp.	familiaris		Mammalia	Canidae	Sudan	AF418558		2002)	18S rRNA
	Canis	lupus						(Malheiros et	
Hepatozoon sp.	familiaris		Mammalia	Canidae	Brazil	KT323937		al., 2016)	18S rRNA
						MK107808;	MK107810;		
					Bosnia and	MK107811;	MK107812;		
	Canis	lupus			Herzegovin	MK107813;	MK107807;		
Hepatozoon sp.	familiaris		Mammalia	Canidae	а	MK107809		Unpublished	18S rRNA
						KF270654; KF270651	; KF270658;		
						KF270644; KF270646	; KF270673;		
						KF270663; KF270668	; KF270643;		
						KF270660; KF270667	; KF270665;		
	Canis	lupus				KF270642; KF270669	; KF270666;	(Williams et al.,	
Hepatozoon sp.	familiaris		Mammalia	Canidae	Zambia	KF270659; KF270664		2014)	18S rRNA
	Canis	lupus						(Buddhachat et	
Hepatozoon sp.	familiaris		Mammalia	Canidae	Thailand	MK830998		al., 2020)	18S rRNA

					KX776310; KX776318; k	X776315;			
					KX776317; KX776311; ł	X776313;			
					KX776322; KX776325; ł	X776319;			
					KX776297; KX776308; ł	X776301;			
					KX776293; KX776329; ł	X776298;			
					KX776326; KX776328; ł	X776291;			
					KX776312; KX776294; ł	X776330;			
					KX776323; KX776307; ł	X776300;			
					KX776302; KX776303; k	XX776321;			
					KX776304; KX776314; ł	X776296;			
					KX7763207;	X776295;			
					KX776331; KX776299; ł	X776286;			
					KX776292; KX776289; ł	X776316;			
	Canis lupus				KX776290; KX776324; ł	X776354;			
	familiaris;				KX776364; KX776391; ł	X776374;			
	Thylamys				KX776363; KX776387; ł	X776390;			
	macrurus;				KX776373; KX776335; ł	X776365;			
	Cerdocyon				KX776359; KX776366; ł	X776337;			
	thous;				KX776384; KX776306; ł	X776375;			
	leopardus				KX776378; KX776361; ł	X776392;			
	pardalis;		Canidae;		KX776348; KX776393; ł	KY197002;	(Sousa e	et al.,	
Hepatozoon sp.	various species	Mammalia	Didelphidae	Brazil	KX776357; KX776377; ł	X776386;	2017)		18S rRNA
			1	1					

FCUP | 117

					KX776287; KX776394	; KX776309;			
					KX776367; KX776399	; KX776376;			
					KX776400; KX776362	; KX776358;			
					KX776381; KX776389	; KX776347;			
					KX776353; KX776344	; KX776369;			
					KX776305; KX776288	; KX776368;			
					KX776372; KX776379	; KX776339;			
					KX776352; KX776342	; KX776360;			
					KX776405; KX776403	; KX776333;			
					KX776341; KX776402	; KX776406;			
					KX776401; KX776338	; KX776334;			
					KX776398; KX776407	; KX776349;			
					KX776340; KX776404	; KX776343;			
					KX776371; KX776380	; KX776408;			
					KX776370; KX776345	; KX776345;			
					KX776351; KX776355	; KX776356;			
					KX776382; KX776385	; KX776396;			
					KX776346; KX776350				
					MG919977;	MG919980;			
					MG919981;	MG919986;			
	Canis			South	MG919982;	MG919987;	(Matjila e	t al.,	
Hepatozoon sp.	mesomelas	Mammalia	Canidae	Africa	MG919984;	MG919985;	2008)		18S rRNA

					MG919983;	MG919973;		
					MG919975;	MG919974;		
					MG919978; MG91997	9;		
					MN369545;	MN369548;		
	Carollia		Phyllostomid		MN369549;	MN369547;	(Santos et al.,	
Hepatozoon sp.	perspicillata	Mammalia	ae	Brazil	MN369546		2020)	18S rRNA
Hepatozoon sp.	Cathartes aura	Aves	Cathartidae	USA	GU344682		Unpublished	16s rna
	Cerastes							
	cerastes							
Hepatozoon sp.	cerastes	Reptilia	Viperidae	Egypt	KJ574012		Unpublished	18S rRNA
					KJ408511; KJ408514	; KJ408515;		
					KJ408520; KJ408521	; KJ408523;		
					KJ408525; KJ408526	; KJ408512;		
					KJ408516; KJ408517	; KJ408528;		
					KJ408529; KJ408531	; KJ408510;		
	Cerastes				KJ408524; KJ408522	; KJ408530;		
	cerastes;		Viperidae;	Mauritania;	KJ408518; KJ408519	; KJ408532;	(Tomé et al.,	
Hepatozoon sp.	various species	Reptilia	colubridae	turkey	KJ408527; KJ408513		2014)	18S rRNA
							(Criado-	
	Cerdocyon						Fornelio et al.,	
Hepatozoon sp.	thous	Mammalia	Canidae	Brazil	AY600625		2006)	18S rRNA

						(Criado-	
	Cerdocyon					Fornelio et al.,	
Hepatozoon sp.	thous	Mammalia	Canidae	Brazil	AY461377	2006)	18S rRNA
	Cerdocyon					(Almeida et al.,	
Hepatozoon sp.	thous	Mammalia	Canidae	Brazil	KC127679; KC127680	2013)	18S rRNA
					KT881501; KT881521; KT881528;		
					KT881512; KT881502; KT881524;		
					KT881515; KT881530; KT881504;		
					KT881514; KT881518; KT881529;		
					KT881508; KT881500; KT881509;		
					KT881505; KT881519; KT881519;		
					KT881535; KT881511; KT881525;		
					KT881532; KT881510; KT881506;		
					KT881516; KT881507; KT881522;		
					KT881526; KT881533; KT881517;		
	Cerdocyon				KT881513; KT881520; KT881527;	(Sousa et al.,	
Hepatozoon sp.	thous	Mammalia	Canidae	Brazil	KT881523	2017)	18S rRNA
					KT873277; KT873268; KT873269;		
					KT873280; KT873272; KT873275;		
					KT873271; KT873270; KT873273;		
	Cerdocyon				KT873274; KT873278; KT873279;	(Sousa et al.,	
Hepatozoon sp	thous	Mammalia	Canidae	Brazil	KT873282; KT873283; KT873263;	2017)	18S rRNA

				1			
					KT873262; KT873284; KT873260;		
					KT873265; KT873267; KT873276;		
					KT873266;KT873264; KT873285;		
	Chrysocyon					(Perles et al.,	
Hepatozoon sp.	brachyurus	Mammalia	Canidae	Brazil	MK424119	2019)	18S rRNA
	Chrysocyon					(Yamamoto et	
Hepatozoon sp.	brachyurus	Mammalia	Canidae	Brazil	KU507416	al., 2017)	18S rRNA
	Clethrionomys					(Hamšíková et	
Hepatozoon sp.	glareolus	Mammalia	Cricetidae	Slovakia	KJ649313	al. 2016)	18S rRNA
						(East et al.	
Hepatozoon sp.	Crocuta crocuta	Mammalia	Canidae	Tanzania	EF188809	2006)	18S rRNA
	Crotalus				KC342522; KC342523; KC342524;		
	durissus				KC342525; KC342526; KC342527;	(O'Dwyer et al.,	
Hepatozoon sp.	terrificus	Reptilia	Viperidae	Brazil	KC342528;	2013)	18S rRNA
	Crotalus						
Hepatozoon sp.	molossus	Reptilia	Viperidae	Mexico	MT385834; MT385835	Unpublished	18S rRNA
	Dendroaspis						
	polylepis;						
	various						
	species;		Elapidae;	Indonesia;	KC866367; KC866368; KC866369;	(Haklová et al.,	
Hepatozoon sp.	Morelia viridis	Reptilia	Pythonidae	Swaziland	KC866370	2013)	18S rRNA

	Dermacentor						(Sumrande	e et	
Hepatozoon sp.	atrosignatus	Arachnida	Ixodidae	Thailand	JQ751276		al., 2015)		18S rRNA
	Dermacentor						(Sumrande	e et	
Hepatozoon sp.	auratus	Arachnida	Ixodidae	Thailand	KF318170; KF318171;	KF318169	al., 2015)		18S rRNA
	Didelphis						(Cole et	al.,	
Hepatozoon sp.	marsupialis	Mammalia	Didelphidae	Brazil	MK257775		2019)		18S rRNA
							(Úngari et	: al.,	
Hepatozoon sp.	Dipsas mikanii	Reptilia	Dipsadidae	Brazil	MW591599; MW59155	56	2021)		18S rRNA
	Dromiciops								
	gliroides;				FJ719818; FJ719815;	FJ719817;			
	Abrothrix		Microbiotheri		FJ719813; FJ719816;	FJ719819;	(Merino et	t al.,	
Hepatozoon sp.	olivaceus	Mammalia	idae	Chile	FJ719814;		2009)		18S rRNA
				Saudi			(Abdel-Baki	et al.,	
Hepatozoon sp.	Echis coloratus	Reptilia	Viperidae	Arabia	MN497412		2020)		18S rRNA
							(André et	al.,	
Hepatozoon sp.	Felis catus	Mammalia	Felidae	Brazil	KP410283		2015)		18S rRNA
					KM234615;	KM234614;			
					KM234617;	KM234618;			
					KM234613;	KM234612;	(Harris et	al.,	
Hepatozoon sp.	Various species	Reptilia	Lacertidae	Brazil	KM234616		2015)		18S rRNA
	Gerbilliscus			South			(Harris et	al.,	
Hepatozoon sp.	leucogaster	Mammalia	Muridae	Africa	KU955995; KU955996	; KU955997	2016)		18S rRNA

	Haemaphysalis					(Masatani et al.,	
Hepatozoon sp.	hystricis	Arachnida	Ixodidae	Japan	LC169077	2017)	18S rRNA
	Haemaphysalis					(Orkun et al.,	
Hepatozoon sp.	sulcata	Arachnida	Ixodidae	Turkey	MK918613; MK918614	2020)	18S rRNA
	Helicops						
Hepatozoon sp.	angulatus	Amphibia	Colubridae	Brazil	MT561455	Unpublished	18S rRNA
	Hipposideros		Hipposiderid			(Pinto et al.,	
Hepatozoon sp.	cervinus	Mammalia	ae	Malaysia	KC848055; KC848056; KC848057	2013)	18S rRNA
	Isoodon				KX361174; KX361175; KX361177;	(Barbosa et al.,	
Hepatozoon sp.	macrourus	Mammalia	Peramelidae	Australia	KX361176;	2017)	18S rRNA
					EF152221; EF152222; EF152223;		
					EF152224; EF152230; EF152229;		
					EF152228; EF152220; EF152225;		
	Isoodon				EF152219; EF152226; EF152227;	(Wicks et al.,	
Hepatozoon sp.	obesulus	Mammalia	Peramelidae	Australia	EF152218	2006)	18S rRNA
	Ixodes					(Najm et al.,	
Hepatozoon sp.	hexagonus	Arachnida	Ixodidae	Germany	JX679178	2014)	18S rRNA
	Ixodes					(Wei et al.,	
Hepatozoon sp.	persulcatus	Arachnida	Ixodidae	China	KX016028; KX016029	2016)	18S rRNA
	Ixodes tasmani				EU430238; EU430237; EU430236;	(Vilcins et al.,	
Hepatozoon sp.	from	Arachnida	Ixodidae	Australia	EU430234; EU430231; EU430232;	2009)	18S rRNA

	Sarcophilus				EU430240; EU430235; EU	J430233;		
	harrisii				EU430239			
	Kinosternon				KY684006; KY684007; K	Y684004;	(Yamamoto et	
Hepatozoon sp.	scorpioides	Reptilia	Testudinidae	Brazil	KY684005		al., 2017)	18S rRNA
	Leopardus				FJ876446; FJ876448; F	J876445;	(André et al.,	
Hepatozoon sp.	tigrinus	Mammalia	Felidae	Brazil	FJ876444; FJ876447		2010)	18S rRNA
			Leptodactyli				(Leal et al.,	
Hepatozoon sp.	Leptodactylus	Amphibia	dae	Brazil	JX987775		2015)	18S rRNA
	Leptodactylus		Leptodactyli		MW584362; MV	V584361;	(Ungari et al.,	
Hepatozoon sp.	latrans	Amphibia	dae	Brazil	MW584356; MW584365		2021)	18S rRNA
					AY252105; AY252104; A	Y252106;		
					AY252109; AY252107; AY	Y252108;	(Ujvari et al.,	
Hepatozoon sp.	Liasis fuscus	Reptilia	Pythonidae	Australia	AY252111; AY252110; AY	Y252103	2004)	18S rRNA
	Lithobates						(Isaak-Delgado	
Hepatozoon sp.	vaillanti	Amphibia	Ranidae	Mexico	MN816297		et al., 2020)	18S rRNA
					MW633713; MV	V633712;		
	Lycalopex				MW633710; MV	V633709;		
Hepatozoon sp.	culpaeus	Mammalia	Canidae	Chile	MW633711		Unpublished	18S rRNA
	Lycalopex				MK049948; MI	K049949;	(Millán et al.,	
Hepatozoon sp.	griseus	Mammalia	Canidae	Argentina	MK049950; MK049951		2019)	18S rRNA
				South	MW676058; MV	V676059;	(Netherlands et	
Hepatozoon sp.	Lycaon pictus	Mammalia	Canidae	Africa	MW676060; MV	V676061;	al., 2021)	18S rRNA

		MW676065;	MW676082;	
		MW676118;	MW676113;	
		MW676111;	MW676114;	
		MW676097;	MW676086;	
		MW676100;	MW676103;	
		MW676078;	MW676088;	
		MW676085;	MW676087;	
		MW676095;	MW676092;	
		MW676083;	MW676084;	
		MW676089;	MW676099;	
		MW676110;	MW676115;	
		MW676062;	MW676068;	
		MW676091;	MW676098;	
		MW676112;	MW676102;	
		MW676079;	MW676104;	
		MW676094;	MW676067;	
		MW676093;	MW676063;	
		MW676077;	MW676117;	
		MW676096;	MW676109;	
		MW676090;	MW676064;	
		MW676070;	MW676075;	
		MW676074;	MW676071;	
	1	1		1

FCUP | 126 A deeper dive into *Hepatozoon* species |

					MW676101	; [MW676066;		
					MW676072	; 1	MW676119;		
					MW676108	; [MW676069;		
					MW676069	;	MW676073;		
					MW676116	; [MW676107;		
					MW676120	;	MW676076;		
					MW676081	;	MW676106;		
					MW676080	;	MW676105;		
					MW676121	;			
					HQ292771;		HQ292772;		
					HQ292773;		HQ292774;	(Harris et al.,	
Hepatozoon sp.	Mabuya wrightii	Reptilia	Scincidae	Seychelles	HQ292775			2011)	18S rRNA
	Macrovipera								
Hepatozoon sp.	lebetina obtusa	Reptilia	Viperidae	Iran	MZ208822;	MZ208821;	, MZ208827	Unpublished	18S rRNA
	Madagascarop		Lamprophiid	Madagasc				(Maia et al.,	
Hepatozoon sp.	his colubrinus	Reptilia	ae	ar	KM234647			2014)	18S rRNA
	Malpolon								
	monspessulanu				JX244266;	JX244267;	JX244268;	(Tomé et al.,	
Hepatozoon sp.	S	Reptilia	Colubridae	Morocco	JX244269;			2012)	18S rRNA
								(Criado-	
								Fornelio et al.,	
Hepatozoon sp.	Martes martes	Mammalia	Mustelidae	Spain	EF222257;	EF222256;		2009)	18S rRNA

							(Simpson et al.,	
Hepatozoon sp.	Martes martes	Mammalia	Mustelidae	Scotland	EU686690		2005)	18S rRNA
	Martes				FJ595127; FJ595128	; FJ595129;		
	melampus				FJ595130; FJ595131	; FJ595132;	(Kubo et al.,	
Hepatozoon sp.	melampus	Mammalia	Mustelidae	Japan	FJ595133; FJ595134		2009)	18S rRNA
	Mauremys		Geoemydida					
Hepatozoon sp.	leprosa	Reptilia	е	Spain	KJ740753; KJ740754		Unpublished	18S rRNA
							(Barandika et	
Hepatozoon sp.	Meles meles	Mammalia	Mustelidae	Spain	KU198330		al., 2016)	18S rRNA
					MN340278;	MN340276;		
					MN340277;	MN340279;		
					MN340284;	MN340280;		
					MN340281;	MN340282;		
					MN340283;	MN340277;		
Hepatozoon sp.	Microtus sp	Mammalia	Cricetidae	Turkey	MN340275; MN34027	4	Unpublished	18S rRNA
	Myodes							
Hepatozoon sp.	glareolus	Mammalia	Cricetidae	Hungary	JX644997; JX644998;	JX644996	Unpublished	18S rRNA
					MH656731;	MH656732;		
	Myodes			Netherland	MH656729;	MH656730;		
Hepatozoon sp.	glareolus	Mammalia	Cricetidae	s; Croatia	MH656728; MH65672	7	Unpublished	18S rRNA
	Myodes				MH784529;	MH784530;		
Hepatozoon sp.	glareolus	Mammalia	Cricetidae	Slovakia	MH784531; MH78453	2	Unpublished	18S rRNA

	Myodes							(Silaghi	et al.,	
Hepatozoon sp.	glareolus	Arachnida	Ixodidae	Germany	JQ886023			2012)		18S rRNA
								(Moustat	fa et al.,	
Hepatozoon sp.	Myodes rutilus	Mammalia	Muridae	Japan	LC189478; I	LC189479		2017)		18S rRNA
Hepatozoon sp.	Nasua nasua	Mammalia	Procyonidae	Brazil	KF516510			Unpublis	shed	18S rRNA
	Neophron									
Hepatozoon sp.	percnopterus	Aves	Accipitridae	Israel	MF541372;	MF541371	MF541370	Unpublis	shed	18S rRNA
					KF939620;	KF939621;	KF939622;			
		Not			KF939623;	KF939624;	KF939625;			
Hepatozoon sp.	Not available	available	Not available	China	KF939626; I	KF939627;	KF939628	Unpublis	shed	18S rRNA
				Not						
Hepatozoon sp.	Not available	Arthropoda	Not available	available	MT114683			Unpublis	shed	18S rRNA
		Not		Not				(Demone	er et al.,	
Hepatozoon sp.	Not available	available	Not available	available	KU667309;	MN512148	KU667308	2016)		18S rRNA
								(Bouer	et al.,	
Hepatozoon sp.	Not available	Reptilia	Alligatoridae	Brazil	KJ425235			2017)		18S rRNA
					MG925078;		MG925091;			
					MG925086;		MG925079;			
					MG925080;		MG925081;			
					MG925082;		MG925085;			
		Not			MG925083;		MG925092;	(Perles	et al.,	
Hepatozoon sp.	Various species	available	Not available	Brazil	MG925090;		MG925088;	2019)		18S rRNA
		1	1		1			1		

					MG925089;	MG925093;				
					MG925094;	MG925084;				
					MG925087					
					MW810626;	MW810627;				
		Not		Not	MW810628;	MW810629;				
Hepatozoon sp.	Not available	available	Not available	available	MW810630; MW8106	31	Unpublis	shed		18S rRNA
					MW076443;	MW076444;				
					MW076449;	MW076446;				
		Not			MW076448;	MW076445;	(Tomé	et	al.,	
Hepatozoon sp.	Not available	available	Not available	Yemen	MW076447		2021)			18S rRNA
		Not					(Kelly	et	al.,	
Hepatozoon sp.	Not available	available	Not available	Zimbabwe	KJ598887; KJ598886		2014)			18S rRNA
_					MH924605;	MH924606;				
					MH924607;	MH924608;				
					MH924609;	MH924610;				
					MH924611;	MH924612;				
		Not		South	MH924613;	MH924614;	(Harris	et	al.,	
Hepatozoon sp.	Not available	available	Not available	Africa	MH924604		2018)			18S rRNA
		Not								
Hepatozoon sp.	Not available	available	Not available	Poland	EU908289		Unpublis	shed		18S rRNA
		Not			KR262503; KR262504	4; KR262499;	(Campa	na	et	
Hepatozoon sp.	Not available	available	Not available	USA	KR262502; KR262500	0	al., 2016	5)		18S rRNA

FCUP | 130 A deeper dive into *Hepatozoon* species |

							(Johnson et al.,	
Hepatozoon sp.	Not available	Mammalia	Muridae	USA	EF620026; EF620027		2007)	18S rRNA
		Not			LC417346; LC417342	; LC417343;	(Calil et al.,	
Hepatozoon sp.	Not available	available	Not available	Brazil	LC417344; LC417345	; LC417341	2019)	18S rRNA
		Not					(Bataille et al.,	
Hepatozoon sp.	Not available	available	Not available	Equador	JQ080304; JQ080302	; JQ080303	2012)	18S rRNA
							(Gondard et al.,	
Hepatozoon sp.	Not available	Mammalia	Muridae	Sweden	MK071735		2020)	18S rRNA
	Oceanodroma		Hydrobatida				(Merino et al.,	
Hepatozoon sp.	melani	Aves	е	Mexico	KF022102		2014)	18S rRNA
	Oecomys				KX776332; KX776327	; KX776336;	(Sousa et al.,	
Hepatozoon sp.	mamorae	Mammalia	Cricetidae	Brazil	KX776388; KX776383		2016)	18S rRNA
	Oligoryzomys							
	longicaudatus;				MH594207;	MH594206;		
	Abrothrix				MH594205;	MH594204;		
Hepatozoon sp.	olivaceus;	Mammalia	Cricetidae	Chile	MH594208		Unpublished	18S rRNA
	Oligoryzomys				MW881033;	MW881032;		
Hepatozoon sp.	longicaudatus	Mammalia	Cricetidae	Chile	MW881034; MW88103	35	Unpublished	18S rRNA
	Ornithodoros				MH174343;	MH174344;	(Muñoz-Leal et	
Hepatozoon sp.	atacamensis	Arachnida	Argasidae	Chile	MH174345		al., 2019)	18S rRNA

FCUP | 131 A deeper dive into *Hepatozoon* species |

	Ornithodoros							
Hepatozoon sp.	rietcorreai	Arachnida	Argasidae	Brazil	MF383348; MF3	383349; MF383350	Unpublished	18S rRNA
	Panthera			South	MN792996;	MN792997;		
Hepatozoon sp.	pardus pardus	Mammalia	Felidae	Africa	MN792998; MN	792999	(As et al., 2019)	18S rRNA
	Pelophylax						(Harris et al.,	
Hepatozoon sp.	perezi	Amphibia	Ranidae	Portugal	KF733812		2013)	18S rRNA
					MN012924;	MN012925;		
	Peromyscus				MN012931;	MN012928;		
	gossypinus;				MN012929;	MN012930;	(Yamamoto et	
Hepatozoon sp.	various species	Mammalia	Muridae	USA	MN012926; MN	012927	al., 2017)	18S rRNA
	Peromyscus						(Harris et al.,	
Hepatozoon sp.	leucopus	Mammalia	Cricetidae	USA	KM225833		2015)	18S rRNA
					MN003368;	MN003357;		
					MN003356;	MN003367;		
					MN003369;	MN003370;		
					MN003360;	MN003359;		
					MN003364;	MN003361;		
					MN003363;	MN003365;		
	Philodryas				MN003366;	MN003358;	(Bazzano et al.,	
Hepatozoon sp.	patagoniensis	Reptilia	Colubridae	Uruguay	MN003362		2020)	18S rRNA

	Philothamnus						
	semivariegatus;		Colubridae;				
	Mehelya		Lamprophiid	Africa;	KC800702; KC800704; KC800706;	(Haklová et al.,	
Hepatozoon sp.	capensis	Reptilia	ae	Asia; USA	KC800703	2014)	18S rRNA
	Phymaturus			Not			
Hepatozoon sp.	calcogaster	Reptilia	Liolaemidae	available	KX387860; KX387861	Unpublished	18S rRNA
					KJ189389; KJ189390; KJ189391;		
					KJ189392; KJ189393; KJ189394;		
					KJ189395; KJ189396; KJ189398;		
					KJ189399; KJ189402; KJ189404;		
					KJ189405; KJ189406; KJ189407;		
					KJ189408; KJ189409; KJ189414;		
					KJ189416; KJ189419; KJ189420;		
					KJ189423; KJ189426; KJ189427;		
					KJ189428; KJ189429; KJ189430;		
					KJ189431; KJ189432; KJ189433;		
					KJ189421; KJ189411; KJ189417;		
					KJ189397; KJ189401; KJ189412;		
					KJ189413; KJ189387; KJ189388;		
					KJ189400; KJ189425; KJ189418;		
	Podarcis;				KJ189410; KJ189422; KJ189403;	(Harris, et al.,	
Hepatozoon sp.	various species	Reptilia	Lacertidae	Portugal	KJ189415; KJ189424; KJ499500;	2014)	18S rRNA

					KJ189435;	KJ189438;	KJ189439;				
					KJ189444;	KJ189445;	KJ189446;				
					KJ189447;	KJ189448;	KJ189450;				
					KJ189455;	KJ189456;	KJ189459;				
					KJ189460;	KJ189437;	KJ189453;				
					KJ189454;	KJ189461;	KJ189443;				
					KJ189434;	KJ189449;	KJ189463;				
					KJ189440;	KJ189441;	KJ189451;				
					KJ189442;	KJ189452; I	KJ189436				
					JX531921;	JX531907;	JX531908;				
					JX531909;	JX531910;	JX531911;				
					JX531912;	JX531913;	JX531914;				
					JX531915;	JX531916;	JX531917;				
					JX531918;	JX531919;	JX531920;				
					JX531924;	JX531925;	JX531926;				
					JX531927;	JX531928;	JX531930;				
					JX531931;	JX531932;	JX531933;				
	Podarcis				JX531935;	JX531936;	JX531937;				
	bocagei;				JX531938;	JX531939;	JX531942;				
	Podarcis				JX531943;	JX531944;	JX531945;				
	hispânica;			Portugal;	JX531946;	JX531949	;JX531950;	(Tomé	et a	al.,	
Hepatozoon sp.	Various species	Reptilia	Lacertidae	Spain	JX531951;	JX531952;	JX531934;	2018)			18S rRNA

					JX531922; JX531923; JX531941;			
					JX531954; JX531948; JX531929;			
					JX531940; JX531953; JX531955;			
					JX531956; JX531958; JX531960;			
					JX531961; JX531963; JX531964;			
					JX531965; JX531966; JX531969;			
					JX531970; JX531971; JX531972;			
					JX531968; JX531962; JX531967;			
					JX531957; JX531959			
	Podarcis				JQ762308; JQ762309; JQ762310;	(Harris et al.,		
Hepatozoon sp.	hispânica	Reptilia	Lacertidae	Spain	JQ762311	2012)	18S rRNA	
	Podarcis					(Panelli et al.,		
Hepatozoon sp.	muralis	Reptilia	Lacertidae	Italy	KU529653	2016)	18S rRNA	
						(Gutiérrez-		
	Podocnemis		Podocnemidi			Liberato et al.,		
Hepatozoon sp.	unifilis	Reptilia	dae	Colombia	MW246123	2021)	18S rRNA	
	Prionailurus					(Salakij et al.,		
Hepatozoon sp.	bengalensis	Mammalia	Felidae	Thailand	GQ926902; GQ926901	2008)	18S rRNA	
	Psammophis							
	schokari;		Lamprophiid		KC696565; KC696569; KC696567;	(Tomé et al.,		
Hepatozoon sp.	various species	Reptilia	ae	Algeria	KC696568; KC696566; KC696564	2013)	18S rRNA	
	Psammophis			Not			(Abdel-Baki et	
----------------	-----------------	----------	------------	------------	--------------------	-----------	-------------------	----------
Hepatozoon sp.	schokari	Reptilia	Colubridae	available	JQ746622		al., 2014)	18S rRNA
Hepatozoon sp.	Ptyas mucosa	Reptilia	Colubridae	India	MG249965		Unpublished	18S rRNA
							(Rosado et al.,	
Hepatozoon sp.	Python sebae	Reptilia	Viperidae	Mauritania	KR653312; KR653313	}	2015)	18S rRNA
				Not			(Léveillé et al.,	
Hepatozoon sp.	Rana forreri	Amphibia	Ranidae	available	MN255489		2021)	COIII
					MT932305;	MT932306;	(Hrazdilova et	
Hepatozoon sp.	Rattus exulan	Mammalia	Muridae	French	MT932307; MT932308	3	al., 2020)	Cytb
					MT932268;	MT932267;	(Hrazdilova et	
Hepatozoon sp.	Rattus exulans	Mammalia	Muridae	France	MT932265; MT932266	6	al., 2021)	COI
					MH216198;	MH216196;		
	Rattus				MH216199;	MH216195;		
Hepatozoon sp.	norvegicus	Mammalia	Muridae	Chile	MH216197		Unpublished	18S rRNA
					MK454898;	MK454892;		
					MK454900;	MK454897;		
					MK757741;	MK757743;		
	Rattus				MK757745;	MK757782;		
	norvegicus;				MK757747;	MK757753;		
	mus musculus;				MK757764;	MK757742;		
	Vulpes vulpes;		Muridae;		MK757746;	MK757773;		
Hepatozoon sp.	various species	Mammalia	Canidae	Chile	MK757779;	MK757794;	Unpublished	18S rRNA

FCUP 136 A deeper dive into *Hepatozoon* species

					MK757758;	MK757787;		
					MK757760;	MK454894;		
					MK757744;	MK454893;		
					MK454896;	MK454899;		
					MK757748;	MK454901;		
					MK454903;	MK757775;		
					MK757749;	MK454902;		
					MK454895			
	Rattus							
	norvegicus;							
	Cricetomys				MG786593;	MG786594;	(Kamani et al.,	
Hepatozoon sp.	ganbiamus	Mammalia	Muridae	Nigeria	MG786595; MG78659	6	2018)	18S rRNA
	Rattus rattus;							
	Rattus exulans;							
	Ratus						(Hrazdilova et	
Hepatozoon sp.	norvegicus	Mammalia	Muridae	France	MT919388; MT919387	'; MT919389	al., 2021)	18S rRNA
	Rhinella							
	diptycha;		Bufonidae;		MK503647;	MK503646;		
	Leptodactylus		Leptodactyli		MK503648;	MK503645;	(Ferreira et al.,	
Hepatozoon sp.	latrans	Amphibia	dae	Brazil	MK503643		2020)	18S rRNA
		1	1					

FCUP 137 A deeper dive into Hepatozoon species

	Rhinella									
	diptycha;		Bufonidae;		MK508987;		MK508989;			
	Leptodactylus		Leptodactyli		MK508985;		MK508984;	(Ferreira e	et al.,	
Hepatozoon sp.	latrans	Amphibia	dae	Brazil	MK508986; N	/K508988		2020)		18S rRNA
								(Gutiérrez-	•	
	Rhinoclemmys							Liberato e	et al.,	
Hepatozoon sp.	melanosterna	Arachnida	Ixodidae	Colombia	MT754271; N	/IT754266		2021)		18S rRNA
					MG456822;		MG456821;			
					MG456824;	l	MG456823;			
	Various				MG456818;		MG456819;			
Hepatozoon sp.	species.	Reptilia	Iguanidae	Mexico	MG456817; N	MG456820)	Unpublishe	ed	18S rRNA
					HQ734791;		HQ734792;			
					HQ734787;		HQ734788;			
					HQ734789;		HQ734790;			
					HQ734806;		HQ734807;			
			Lacortida:		HQ734809;		HQ734808;			
	Scelarcis		Dhyllodootyli		HQ734793;		HQ734794;			
	perspicillata;		door		HQ734795;		HQ734796;			
	Tarentola		uae,		HQ734797;		HQ734798;			
	mauritanica;		Sphaerodactyl		HQ734799;		HQ734800;	(Maia et	al.,	
Hepatozoon sp.	various species	Reptilia	idae; various	Morocco	HQ734801;		HQ734802;	2011)		18S rRNA

FCUP 138 A deeper dive into Hepatozoon species

					HQ734803;	HQ734804;			
					HQ734805				
							(Criado-		
							Fornelio	et al.,	
Hepatozoon sp.	Sciurus vulgaris	Mammalia	Sciuridae	Spain	EF222259		2009)		18S rRNA
					KX453564; KX453569	; KX453571;			
					KX453573; KX453574	; KX453575;			
					KX453576; KX453578	8; KX453581;			
					KX453582; KX453584	; KX453585;			
					KX453588; KX453589	; KX453592;			
					KX453594; KX453596	; KX453599;			
					KX453601; KX453602	2; KX453603;			
					KX453605; KX453606	; KX453611;			
					KX453612; KX453614	; KX453615;			
					KX453616; KX453617	'; KX453618;			
					KX453619; KX453621	; KX453622;			
					KX453623; KX453624	; KX453628;			
	Sclerophrys				KX453636; KX453638	; KX453561;			
	arábica;				KX453563; KX453568	; KX453577;			
	Asaccus		Bufonidae;		KX453579; KX453583	; KX453593;			
	platyrhynchus;	Amphibia;	Phyllodactyli		KX453598; KX453604	; KX453607;	(Maia e	tal.,	
Hepatozoon sp.	various species	Reptilia	dae; various	Oman	KX453609; KX453620); KX453625;	2016)		18S rRNA

A deeper dive into Hepatozoon species

					KX453626; KX453629; KX453631;		
					KX453640; KX453644; KX453565;		
					KX453572; KX453580; KX453586;		
					KX453591; KX453610; KX453570;		
					KX453627; KX453558; KX453559;		
					KX453560; KX453562; KX453566;		
					KX453567; KX453633; KX453637;		
					KX453642; KX453587; KX453597;		
					KX453635; KX453639; KX453643;		
					KX453630; KX453632; KX453646;		
					KX453613; KX453608; KX453634;		
					KX453540; KX453541; KX453542;		
					KX453544; KX453545; KX453546;		
					KX453547; KX453548; KX453549;		
					KX453550; KX453551; KX453552;		
					KX453553; KX453554; KX453555;		
					KX453556; KX453557; KX453558;		
					KX453562; KX453543;		
	Sclerophrys					(Maia et al.,	
Hepatozoon sp.	arabica	Amphibia	Bufonidae	Oman	KY091311	2016)	18S rRNA
Hepatozoon sp.	Snake	Reptilia	Not available	India	MH107332	Unpublished	18S rRNA

FCUP 139

A deeper dive into *Hepatozoon* species

					LC505379; LC505380; LC505381;	(Sugita-	
	Sus scrofa				LC505382; LC505383; LC505384;	Konishi et al.,	
Hepatozoon sp.	leucomystax	Mammalia	Suidae	Japan	LC505385; LC505386; LC505387	2019)	18S rRNA
	Sus scrofa						
Hepatozoon sp.	leucomystax	Mammalia	Suidae	Japan	LC062147	Unpublished	18S rRNA
	Sylvilagus					(Johnson et al.,	
Hepatozoon sp.	floridanus	Mammalia	Leporidae	USA	FJ895406; FJ895407;	2009)	18S rRNA
					KU680458; KU680456; KU680466;		
					KU680457; KU680465; KU680464;		
					KU680462; KU680463; KU680461;		
					KU680460; KU680459; KU680455;		
					KU680443; KU680446; KU680451;		
					KU680425; KU680426; KU680428;		
					KU680429; KU680430; KU680431;		
					KU680432; KU680433; KU680440;		
					KU680442; KU680444; KU680448;		
	Tarentola				KU680449; KU680450; KU680424;		
	boehmei;				KU680434; KU680422; KU680427;		
	Tarentola				KU680421; KU680435; KU680436;		
	deserti ; various		Phyllodactyli		KU680437; KU680438; KU680439;	(Tomé et al.,	
Hepatozoon sp.	species	Reptilia	dae	Morocco	KU680423; KU680453; KU680447;	2008)	18S rRNA

FCUP 140

FCUP 141 A deeper dive into Hepatozoon species

					KU680445; KU680454	l; KU680452;		
					KU680441			
	Tarentola							
	delalandii;							
	Gallotia							
	atlantica;							
	Gallotia galloti;							
	Gallotia stehlini;							
	Gallotia				MG787251;	MG787243;		
	caesaris;				MG787244;	MG787245;		
	Chalcides		Phyllodactyli		MG787246;	MG787248;		
	viridanus;		dae;		MG787247;	MG787249;		
	Psammodromu		Lacertidae;	Spain;	MG787250;	MG787252;	(Tomé et al.	,
Hepatozoon sp.	s algirus	Reptilia	Scincidae	Morocco	MG787253		2018)	18S rRNA
					MH201399;	MH201397;		
Hepatozoon sp.	Teira dugesii	Reptilia	Lacertidae	Portugal	MH201398; MH20139	6	Unpublished	18S rRNA
Hepatozoon sp.	Ticks	Arachnida	Ixodidae	China	KX890094		(Liu et al., 2016) 18S rRNA
	Trogonophis		Trogonophid				(Harris et al.	,
Hepatozoon sp.	wiegmanni	Reptilia	ae	Morocco	MN512148		2020)	18S rRNA
					HM585203;	HM585204;		
	Varanus				HM585205;	HM585206;	(Salakij et al.	3
Hepatozoon sp.	salvator	Reptilia	Varanidae	Thailand	HM585207;	HM585208;	2014)	18S rRNA

A deeper dive into Hepatozoon species

	salvator;				HM585209;	HM585210;		
	various species				HM585211;	HM585212;		
					HQ317909;	HQ317910;		
					HQ317911			
		Amphibia;	Ranidae;				(Barta et al.,	
Hepatozoon sp.	Various species	Reptilia	Colubridae	USA	HQ224960		2012)	18S rRNA
							(Criado-	
							Fornelio et al.,	
Hepatozoon sp.	Various species	Mammalia	Various	Spain	AY600626		2006)	18S rRNA
								18S rRNA ;
								ITS1; 5.8S
							(Léveillé et al.,	ribosomal
Hepatozoon sp.	Rana pipiens	Amphibia	Ranidae	Canada	MN244530		2020)	RNA
							(Kistler et al.,	
Hepatozoon sp.	Vulpes vulpes	Mammalia	Canidae	USA	KF989489		2014)	18S rRNA
					MG041596;	MG041597;		
					MG041595;	MG041598;		
	Afrixalus				MG041599;	MG041591;		
Hepatozoon	fornasini;			South	MG041592;	MG041593;	(Netherlands et	
tenuis	various species	Amphibia	Hyperoliidae	Africa	MG041594		al., 2018)	18S rRNA
Hepatozoon	Amietia		Pyxicephalid	South			(Netherlands et	
theileri	delalandii	Amphibia	ae	Africa	MG041605		al., 2018)	18S rRNA

FCUP 142

Hepatozoon	Amietia			South			(Netherlan	ds et	
theileri	quecketti	Amphibia	Ranidae	Africa	KJ599676		al., 2014)		18S rRNA
					MG041602;	MG041600;			
Hepatozoon	Hyperolius			South	MG041601;	MG041603;	(Netherlan	ds et	
thori	marmoratus	Amphibia	Hyperoliidae	Africa	MG041604		al., 2018)		18S rRNA
Hepatozoon		available	Sphenodonti	New	GU385470;	GU385471;	(Herbert e	et al.,	
tuatarae	Sphenodon	Reptilia	dae	Zealand	GU385472; GU385473	3;	2010)		18S rRNA
Hepatozoon	Melursus						(Pawar et	tal.,	
ursi	ursinus	Mammalia	Ursidae	India	HQ829437		2011)		18S rRNA
Hepatozoon	Melursus						(Pawar et	tal.,	
ursi	ursinus	Mammalia	Ursidae	India	HQ829429; HQ829432	2	2011)		18S rRNA
					MN150504;	MN150506;			
Hepatozoon	Ursus arctos;		Ursidae;		MN150505;	MN905023;	(Orkun et	al.,	
ursi	various species	Mammalia	Felidae	Turkey	MN905025; MN905024	4	2020)		18S rRNA
Hepatozoon							(Orkun &	Emir,	
ursi	Ursus arctos	Mammalia	Ursidae	Turkey	KT274180		2020)		18S rRNA
	Ursus								
Hepatozoon	thibetanus						(Kubo et	al.,	
ursi	japonicus	Mammalia	Ursidae	Japan	EU041717; EU041718	3;	2008)		18S rRNA
	Ursus								
Hepatozoon	thibetanus						(Kubo et	al.,	
ursi	japonicus	Mammalia	Ursidae	Japan	EU041718		2008)		18S rRNA

	Ursus						
Hepatozoon	thibetanus					(Moustafa et al.,	
ursi	japonicus	Mammalia	Ursidae	Japan	LC431853; LC431855; LC431854	2020)	18S rRNA
	Ursus						
Hepatozoon	thibetanus					(Ikawa et al.,	
ursi	japonicus	Mammalia	Ursidae	Japan	AB586028	2011)	18S rRNA