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ABSTRACT 

Exposure modelling is a vital component of disaster risk assessments, providing geospatial information of 
assets at risk and their characteristics. Detailed information about exposure bring benefits to the spatial 
representation of a rapidly changing environment and allows decision makers to establish better policies aimed 
at reducing disaster risk. This work proposes and demonstrates a methodology aimed at linking together 
volunteered geographic information from OpenStreetMap (OSM), street-level imagery from Google Street 
View (GSV) and deep learning object detection models into the automated creation of exposure datasets of 
power grid transmission towers, an asset particularly vulnerable to strong wind among other perils. The 
methodology is implemented through a start-to-end pipeline that starting from the locations of transmission 
towers derived from the power grid layer of OSM’s world infrastructure, can assign relevant features of the 
tower based on the identification and classification returned from an object detection model over street-level 
imagery of the tower, obtained from GSV. The initial outcomes yielded promising results towards the 
establishment of the exposure dataset. For the identification task, the YOLOv5 model returned a mean average 
precision (mAP) of 83.57% at intersection over union (IoU) of 50%. For the classification problem, although 
predictive performance varies significantly among tower types, we show that high values of mAP can be 
achieved when there is a sufficiently high number of good quality images with which to train the model.  
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INTRODUCTION  
 
The built environment is constantly under the threat of natural hazards, and climate change will only exacerbate 
such perils (IPCC, 2021). The assessment of natural hazard risk requires exposure models representing the 
characteristics of the assets at risk, which are crucial to subsequently estimate damage and impacts of a given 
hazard to such assets (Figueiredo & Martina, 2016). Therefore, the exposure modelling of the built 
environment provides a basis for decision makers to establish policies and strategies to reduce disaster risk 
(Pearson & Pelling, 2015), offering geospatial information with a fine level of spatial detail regarding an often 
hard to track and rapidly changing built environment (Wieland et al., 2012). 
Therefore, studies addressing the exposure modelling of the built environment are expanding, supported by 
the emergence of new modelling possibilities associated to technological progress. In fact, several works are 
introducing data collected from volunteered geographic information (VGI), user-generated content, and remote 
sensing data (Klonner et al., 2016). These methods generate large amounts of data that typically require a time-
consuming extraction of the necessary information. This labour-intensive task is well suited for the capability 
of machine learning (ML) models, particularly deep learning models, to handle massive amounts of data 
(LeCun et al., 2015). For example, Geiß et al. (2017) use a ML classifier ensemble method to combine 
OpenStreetMap and remote sensing data and extract exposure information regarding the number of buildings 
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and the distribution of the population in the territory of Valparaíso, Chile. Several studies involve the use of 
deep learning models to extract information about the characteristics of buildings in urban areas (i.e., type of 
structures, numbers of floor, number of windows, type of roof etc.,) that are then used to perform seismic risk 
assessments (Aravena Pelizari et al., 2021; Xu et al., 2019). Iannelli & Dell’Acqua (2017) use a deep learning 
model to estimate the number of floors for each building in an urban setting based on street-level imagery. 
Similarly, deep learning models also found application in the field of electrical infrastructure with a special 
focus on detection of transmission towers in images (Hu et al., 2018; Wang et al., 2019). However, these 
studies are either based on images retrieved via drone or are aimed at inspection and management of the tower 
rather than being used for risk assessment. 
In this context, this work proposes a methodology that connects VGI obtained from OpenStreetMap (OSM), 
street-level imagery from Google Street View (GSV) and deep learning object detection models to create an 
exposure dataset of electrical transmission towers, an asset particularly vulnerable to strong winds among other 
perils (i.e., ice loads and earthquakes. (López et al., 2009; Rezaei et al., 2015; Tapia-Hernández & De-León-
Escobedo, 2021)). The main objective of the study is to establish and demonstrate a complete pipeline that 
first obtains the locations of transmission towers from the power grid layer of OSM’s world infrastructure, and 
subsequently assigns relevant features of each tower based on the classification returned from an object 
detection model over street-level imagery of the tower, obtained from GSV.  
The paper is structured as follows: Methodology introduces the key components of the pipeline, highlighting 
their features and criticality, describes the case study selected to pilot the methodology, the training procedures 
and the data used. The Results section highlights the main findings of the work, while Conclusions summarizes 
the most important take home message of the study, limitations, and future development that would improve 
the application of the methodology presented. 
 
 
METHODOLOGY 
 
The methodology proposed in this work connects VGI obtained from OpenStreetMap (OSM), street-level 
imagery from Google Street View (GSV) and deep learning object detection models into the creation of an 
exposure dataset of electrical transmission towers. First, OpenStreetMap VGI data are used to obtain the 
location of electricity transmission towers at the large scale.  Street-level imagery from Google Street View is 
then used to collect photographs for each tower. Lastly, a deep learning detection model is used to classify 
each tower based on a set of classes that are previously defined based on a custom taxonomy. The workflow 
is represented in Figure 1. 
 

 
Figure 1. Workflow of the proposed methodology. 



Data preparation 
 
In the object detection field, it is common practice to train and test new advancements in architectures, loss 
functions and tweaks in the algorithms on well-established datasets (Everingham et al., 2010; Lin et al., 2015). 
This way, it is possible for different researchers to measure the improvements brought by their novelties and 
compare the performances of the model over the same baseline. On the other hand, when the objective of the 
study is not to bring improvements to the model but using it in real-life application (i.e., using the model to 
identify and classify towers), adopting an already existing datasets could be detrimental towards achieving the 
best overall possible performances. The dataset might not contain images for the class of interest, or the 
accuracy of the image in describing the classes might not be good enough to reflect the outcome expected, 
thus, the training of the model requires the usage of custom datasets (Chiu et al., 2020) . 
In this work, two different tasks were carried out: identification and classification of transmission electrical 
towers. The first task was used to test the ability of a model to recognize whether a tower is present in an 
image, while the second task assigned a category to each tower based on a taxonomy derived from a 
compilation of the most used types of towers (Table 1).  
 

Table 1. Taxonomy of the tower’s classification 

Name Family Label Icon 

Single level Self-supporting ss_1 

 

Double level Self-supporting ss_2 

  

Triple level Self-supporting ss_3 

  
Modified delta 

structure Self-supporting ss_4 

 

Delta Waist-type wt_5 

 

Portal Waist-type wt_6 

 

Tubular single 
level Monopole mono_7 

 

Tubular double 
level Monopole mono_8 

 

Tubular triple 
level Monopole mono_9 

 



Tubular 
modified delta 

structures 
Monopole mono_10 

 

 
The two tasks call for different levels of detail in the images used to train the models, therefore, two datasets 
were created and manually annotated. There is no consensus on the number of images required to properly 
train a model (Shahinfar et al., 2020). Nguyen et al. (2019) used 28674 images to develop their model used to 
monitor and inspect power line components, while Hui et al. (2018) used 600 images for training UAV to 
autonomously identify and approach towers to perform inspection. It has been proved that accurately 
annotating the ground truth when creating the datasets for training brings benefits to the performances of the 
model beyond the sheer numerosity of each class in the dataset (Zhang et al., 2016). However, when creating 
custom datasets for multiclass object detection, it is vital to have a balance in the numerosity of images per 
class (Olivier & Raynaud, 2021). The characteristics of the two datasets are reported in Table 2: 
 

Table 2. Training datasets features 

Task # Images Image size # Classes 

Identification 300 512x512 1 

Classification 750 512x512 10 

 
During the training, both datasets were partitioned into training, validation and testing in accordance with a 
70/20/10 split. This step is crucial to avoid overfitting creating a model able to generalize outside of the set 
of data used for training (Reitermanova, 2010). 
 
Model prediction and evaluation 
 
Object detection models 
Object detection is defined as the task of predicting the location of an object in an image along with the class 
associated with the object. In recent years, two main types of machine learning models, commonly referred to 
as object detectors, are used to perform such tasks: two-stage detectors and single-stage detectors (Lazoglou 
& Anagnostopoulou, 2017). In this work, the model You Only Look Once (YOLOv5) (Jocher et al., 2021) 
was chosen to represent the single stage detectors family.  
YOLOv5 is the last iteration of the YOLO family models (Redmon et al., 2016) and, differently from two-
stage detectors, treats the classification task as a regression problem. The model uses the image as an input and 
learns the class of the object and the coordinates of the bounding box as if they were the parameters of a 
regression (Soviany & Ionescu, 2018). For additional details on single-stage detectors and the YOLOv5 model, 
the reader is referred to Jocher et al., (2021). 
 
Evaluation metrics 
The output of an object detection model is a bounding box framing the object in the input image along with 
the class and a confidence associated to the assigned class. The goodness of such prediction can be evaluated 
using several metrics. Regardless of the metric adopted, each single prediction produced by the model falls 
into one of the following scenarios: 

- True positive (TP): when the correct detection of a ground truth box occurs. 
- False positive (FP): when the model detects an object that is not present or the model mislabel an 

existing object (e.g., the model assigns the label dog to an image of a cat). 
- False negative (FN): when a ground truth bounding box goes undetected by the model. 
- True negative (TN): when a bounding box is correctly not identified. 

Noticeably, in the object detection field, true negatives are not taken into consideration when evaluating model 
performances, the reason being that there is an almost infinite number of bounding boxes that do not require 
detection in an image. Once the possible outcomes of a prediction are defined, it is necessary to establish what 
a correct detection is. The prevailing approach is using the intersection over union (IOU). The IOU is a 
measurement of the overlapping area between the ground truth bounding box and the detection bounding box, 
based on the Jaccardi Index (Ivchenko & Honov, 1998) and represented by the following equation (Eq.1): 
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 (𝐸𝐸𝐸𝐸. 1) 

  
An IOU=1 indicates a perfect match between detection and ground truth, while IOU=0 means no overlap 
between the predicted bounding box and the box of the actual object. By virtue of using the value of IOU as a 
threshold to compute the metrics employed to evaluate the models, it is possible to have more strict or relaxed 
metrics.  
Since identifying areas of the images without any object is irrelevant in the object detection field, most of the 
metrics used to evaluate these models do not take TN into consideration. As such, precision (P) and recall (R) 
are vastly adopted. Precision gives a measure of the percentage of times that the model is correct when making 
a prediction. Recall, on the other hand, measures the ability of the model to detect all relevant objects. The 
formulation of the two metrics is reported in Eq.2. 
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Precision and recall are used in conjunction in the precision-recall curve, a model-wide evaluation metric that 
highlights the tradeoff between precision and recall for different thresholds of the latter (Saito & Rehmsmeier, 
2015).  
In recent years, the average precision (AP) established itself as the golden standard in evaluating object 
detectors. The AP is obtained computing the area under the precision-recall curve after removing its typical 
zig-zag behavior generated by the single-value nature of precision and recall. To remove this effect, the 
precision is plotted as a function of a set number of recall values. 
For models that are carrying out detection of several classes, the performances of the object detectors can be 
evaluated using the mean average precision, that is the arithmetic mean of the average precision for each class 
being detected. Being the goodness of the detection function of the IOU, it is possible to retrieve the AP across 
different values of IOU, evaluating the model in stricter or softer conditions. The metrics adopted in this study 
are: mAP@0.5 and AP[.5:.05:.95]. The mAP@0.5 returns the mean average precision for IOU set at 0.5 (or 
an overlap of 50%). This is the most basic declination of AP and can be used to compare the performances of 
the models with a broader number of object detectors models. The AP[.5:.05:.95] computes the average 
precision of each class at 10 different thresholds of IOU from 0.5 to 0.95. Adopting this metric is beneficial 
when one is interested in analyzing the ability of the model to perform accurate prediction in terms of precise 
identification of the ground truth.  
 
Study area and data 
 
The study area for the initial application of the methodology is the Porto district (Portugal), which has an area 
of around 1360 km2 (Figure 4 in the results). The area was found to be representative given its diverse land 
use, containing both densely populated settlements and rural areas, and the different types of towers that can 
be found. Within this area, the power grid layer of OpenStreetMap contains 5789 towers distributed on almost 
680 kilometres of electrical cables. Retrieving the corresponding street-level imagery for each tower required 
the adoption of different strategies to overcome problems related to the visibility. Using the building and road 
layer of OSM made it possible to remove those GSV shots that were obstructed by the face of an edifice by 
simultaneously finding the closest point on the road network. Furthermore, the SRTM  30m resolution digital 
elevation model (OpenTopography, 2013) was used to remove camera shots that were instead hindered by the 
orography.  
 
 
 
 

(Eq.2) 
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RESULTS 
 
The results are presented by firstly showcasing the performances of the object detection model on the two tasks 
previously introduced: identification and classification on the test partition of the datasets, thus, on images that 
the models never encountered during the training. Secondly, the results of the prediction over the study area 
are presented analyzing the spatial distribution of the accuracy of the prediction.  
 
Identification 
 
The identification was envisioned as the initial step into the investigation of the potentiality of the proposed 
methodology. Additionally, being able to recognize a tower in the image was also seen as a preparatory step 
towards a better outcome in the classification phase. Figure 2 shows the precision-recall curve for the 
identification task along with the mean average precision value of 83.57% at IoU of 50%. The high value of 
mAP shows the ability of the model in detecting, and correctly placing the bounding box around the tower in 
the image. Also, the high values of precision for increasing values of the recall demonstrates the ability of the 
model to recognize many relevant objects whilst identifying the majority of the towers.  
 

 
Figure 2. Mean average precision for YOLOv5 for the identification task. 

 
Classification 
 
Regarding the performance of the model for the classification task, Figure 3 shows the mAP for the 10 classes 
identified in Table 2. Although the drop in performances with respect to the identification task is evident, the 
breakdown of mAP by class displayed in Table 3, shed some light on the possible causes of such decrease. 
Indeed, high mAP is observed for most of the classes with especially good performances for ss_3 and mono_8, 
which are among the most common type of towers and therefore might be easy to recognize.  
 
Table 3. Breakdown by class of the mean average precision for the classification task. The number of ground 

truth refers to the numerosity of each class in the images of the test partition. 

Name # Ground 
truth  Label mAP@0.50 

Single level 10 ss_1 3.33 

Double level 15 ss_2 45.00 

Triple level 48 ss_3 72.03 



Modified delta 
structure 

16 
ss_4 59.09 

Delta 25 wt_5 43.14 

Portal 10 wt_6 63.33 
Tubular single 

level 
15 mono_7 13.33 

Tubular double 
level 

14 mono_8 92.86 

Tubular triple 
level 

9 mono_9 59.76 

Tubular 
modified delta 

structures 

5 
mono_10 54.29 

mAP over all 
classes 

167  50.62 

  

The large difference in overall mAP between classification and identification, can be attributed, in large 
portion, to the poor performance of two specific classes: the self-supporting single-level category and the 
monopole tubular single-level category (i.e., ss_1 and mono_7). The bad performances over ss_1 and mono_7 
might be due to a low number of samples in the training set and/or to the quality of the image used. Without 
considering these two classes, the overall mAP would increase to an encouraging 61.2% It must be noted that 
although the balance between classes is important, in the real world not all the types of towers are employed 
at the same rate, and consequently, also finding images for each class to annotate is not a trivial task. 

 
Figure 3. Mean average precision for YOLOv5 for the classification task. 

 
Table 4 summarizes the metrics adopted to evaluate the performances of the object detection models for the 
two tasks. It is notable, and somehow expected, a decrease in performances going from the identification task 
to the classification one, even though, the sharp decrease in performances might be attributed to two specific 
classes rather than the overall performances of the model. Albeit the dip in mAP for the classification task is 



undeniable, the values remain in line with other studies that used object detection models for customized tasks 
(Abdelfattah et al., 2020; Mittal et al., 2020).  
 

Table 4. Summary of evaluation metric 

Metric Identification Classification 

mAP@0.50 83.57 50.62 

AP[.5:.05:.95] 51.56 31.00 

 
The results presented up to now were obtained from the test partitioning of the two datasets. The application 
of the trained models to the whole study area are instead reported in Figure 4. Similarly to the testing set, the 
images of the whole study area are never seen by the models, although in this case the bounding boxes of the 
ground truth are not available for the entire area. For the sake of brevity and clarity, the map shows the 
distribution of the confidence of the prediction over the entire study area only for the identification task. The 
points in red are the towers for which the identification did not occur. The reasons for this might be multiple: 
i) the model might not recognize any tower in the image, ii) the image does not contain the tower because no 
available image of the tower is available, or iii) the image of the tower might be obfuscated by an obstacle that 
was not taken into consideration in our methodology (i.e., a forest, a passing car). Nevertheless, it is possible 
to appreciate a large portion of dark blue points, which indicate the detection of towers with high levels of 
confidence (i.e., above 0.8). Notably, the distribution of the dark blue area is not homogenous. Both the 
northeast and southeast areas of the map show several towers that were not able to be identified. The missing 
predictions might be a consequence of the distance of the towers from the road and/or the morphology of the 
terrain. Another area where it is possible to notice a lower confidence in the predictions is close to the city of 
Porto. This might be expected due to the disturbance that the built environment inevitably brings to the images 
that are taken with Google Street View. 
 

 
Figure 4. Spatial distribution of the prediction confidence over the study area for the identification task. 
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CONCLUSIONS 
 
This study introduced a methodology to perform the automated classification of electricity transmission towers 
based on VGI data, street level imagery and a deep learning object detection model. 
We showed that the deep learning model is able, in most of the cases, to identify the towers in the images with 
a high level of accuracy. This accuracy decreases when the model goes beyond the sole identification also 
assigning a class to the object, but the performances are still in line with similar studies. The outcomes of this 
work have clear ramifications on risk assessment for natural disaster, having as primary objective the 
improvement of the exposure component of this discipline that leans on methods to gather information that do 
not fully explore the information hidden in user generated content. Nonetheless, the methodology advocated 
in this paper still has limitations that need to be addressed but also bright possible developments.  
The main limitations of this methodology can be divided into two categories: the ones related with the 
technological advancements and the ones inherently connected to the nature of the methodology and its subject. 
In fact, power grids are distributed all over the territory and not necessarily close to the roads. For this reason, 
it is particularly challenging to find clear shots of towers that are very far away from roads, and the chances of 
getting obstacles in between the shots increase when increasing the distance. In urban settlements, the problem 
shifts into the need to avoid buildings, which is not always possible in densely populated areas. Belonging to 
the first category are the restrictions imposed by the providers of the images, in this case, Google Street view. 
The quality of the images is not ideal and not in line with the instruments used to take the images, which have 
very high resolutions. Additionally, metadata regarding the camera used to take the picture or the original size 
in pixel of the image are not provided, making it impossible to derive critical information like the height of the 
towers. Also, it is worth mentioning that the size of the datasets, and the number of samples in each class have 
an influence on the training and subsequently on the performances of the models. Collecting and annotating 
images is a time-consuming task that is accentuated by the singular nature of the problem tackled. While the 
collection could be difficult to automate given the need of images containing specific types of towers, the 
annotation can be automated through the usage of unsupervised algorithms that might speed up the process of 
building larger training datasets. Finally, besides the limitations discussed so far, there is also room for 
improvements in the architecture of the model. The integration of additional layers might help increase the 
overall performances of the model at the expense of training and detection time, which for the task envisioned 
is not vital as it would be for real-time detection in videos. Furthermore, the implementation of attention 
mechanisms or innovative padding techniques aimed at obtaining the most important information in the input 
images might be beneficial to the performances of the model, as suggested by Zhu et al., 2021. 
Notwithstanding, the present work offers a glimpse into the potential of the proposed methodology for natural 
hazard risk assessment, laying the foundation for further development towards the construction of detailed 
exposure datasets. 
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