
VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho

Performance of Sparse Binding Arrays for
Or-Parallelism

Vítor Santos Costa, Manuel Eduardo Correia, and Fernando Silva.

{ vsc,mcc,fds }@ncc.up.pt

LIACC, Universidade do Porto

Rua do Campo Alegre, 823

4150 Porto, Portugal

June 19, 1996

Abstract

One important problem in the design of novellogic programming systems is the support
of severa! forms of implicit parallelism. A new binding model, the Spa.rse Binding Array
(SBA), has been proposed for the efficient and simplified integration of Independent-And,
Determinate-And and Or-parallelism. In this paper we report on the use of tbis model for
pure Or-parallelism.

T he work discusses the major implementation issues in supporting this binding model for
pure Or-parallelisrn. We show that an implementation based on this Binding model is more
efficient then the original Aurora using tbe traditional Binding Array model [16] . Moreover,
we explain how the notion of a variable leuel can be used to reduce overheads of the Or
parallel system. Ou r results in supporting pure or-parallelism sbow that the approach ís very
promising for combined parallel systems.

1 Introduction

151

One of the advantages of logic programming is the fact that one ca.n exploit implicit par
allelism in logic programs. The most re levant forms of parallelism are Or-parallelism, as
exploited in t he Aurora (11 , 4] and Muse (1, 10) systems, Independent And-parallelism, as
exploited in &-Prolog (9], and dependent And-parallelism, as exploited in the committed
choice languages or in Andorra-I [14). Most recently, resea.rch has been concentrated on
integrating the different forms of p·arallelism in a single combined system.

Or-parallelis m is one of t he maio forms of parallelism to include in a combined sys
tem. But before this can be achieved two maio problems must be a.ddressed : scheduling
and variables bindings representation. The scheduling problem ca.n be addressed rather

!52 XVI Congresso da Sociedade Brasileira de Computação (SBC)

orthogonally to the other forms of parallelism. In contrast, bindings representation affects
ali forms of parallelism.

The problem in binding a variable arises because each may have severa) different bind
ings in different or-branches. Quite a few very different approaches (7) have been presented
to tackle this problem. Two successful ones are copying, as used in Muse [1), and binding
arrays, as used in Aurora.

In the copying approach, each worker maintains its own copy of the path in the search
tree it is exploring. Whenever there is some work to be shared, the worker t hat is looking
for work copies the entire path up to the current node of the worker that it is sharing.
Sharing between workers only happens through an auxiliary data structure associated with
choice-points.

In the binding array approach the work stacks are shared. To obtain an efficient access,
each worker maintains a private data structure, the binding array. The binding array gives
the worker quick access to the binding of a variable. It is implemented as an array, indexed
by th;e number of variables that have been created in the current branch. This number
is also stored in the variable itself which gives constant-time access to private variable
bindings.

Both schemes have problems when t he system is extended with And-parallelism. In the
case of copying, the main problem is what to copy because workers working in And-parallel
will be at different points in the search tree. The ACE system addresses t his problem for
a combination of Or-parallelism with Independent And-parallelism. The same happens for
the Penny [12) parallel implementation for AKL.

In the case of binding arrays the main problem are workers working in And-parallel,
hence that share the same Team Binding Array, that may want to place t heir variables in
the same binding array positions. A solution to the binding array problem is the PBA [8),
and the SPBA (5) data structures. These data structures use indi rection to address the
binding array management problem. They present a very general solut ion to the problem,
but introduce an extra dereferencing layer in the binding array scheme.

In this paper we introduce a novel data structure, the Sparse Binding Array, or SBA.
The Sparse Binding Array simplifies the traditional binding array and naturally allow
the representation of Independent and-computations running in Or-parallel. A variable's
binding array entry is not associated with a relative position in the search tree branch
where it was created, as in the BA approach, but with the variable's memory address.

The paper is organized as follows. We first describe the sparse binding array data
structure, comparing it with the traditional binding array. We next discuss some important
implementation issues and explain how leveis are used to obtain variable age. We then
discuss in detail how the Aurora system was extended to support the SBA data-structure,
and give a preliminary performance analysis for a standard set of benchmarks. We finish
with our conclusions ij.lld proposals for further work.

VIU Simp. de Arg. de Computadores e Proc. de Alto Desempenho 153

2 The Sparse Binding Array

We first define some terminology. A worker is a processing agent, usually a process running
on a separate processar. A team is a group of workers that share the same bindings, that
is, that are running in And-parallel. We assume that Or-parallelism is exploited by having
these teams running in Or-parallel, as in Andorra-I, or as in the C-tree model (6] .

In our model, as in the original SRI model, the environment, choice-point and global
stacks, trai! and code segment are ali shared between workers. Following the cactus stack
concept, each worker has its area of work on the stacks, where he writes and from where
other workers can only read. The exception to this rule is the choice-point stacks. To fetch
Or-parallel work, workers will need to change shared choice-points. In this case, access is
synchronized.

Each team keeps a private set of bindings for shared variables. Therefore these data
structures are shared between workers in a team, and are not shared between teams. We
say that a team 's binding array shadows the shared variables. The key idea in the binding
array concept is that for each variable in the stacks there is a single, uniquely identified,
binding array slot that is the same for any team. This allows for fast access to a binding
from a variable.

To implement the concept, the SRI model "binds" each variable X to the number of
variables N between X and the root of the computation tree. To find out the private
binding o f the variable X at S H ARE D _PT R, it is sufficient to search for the following
value:

PRIVATE_VALUE = BA.BASE(•(SHARED.PTR)J

where P RIV AT E_V ALUE represents the value we are looking for, BA_BASE repre
sents the origin of the corresponding binding array, and SHARED_PTR represents the
position of the shared variable, with *(SH AREDYTR) giving the value X.

In the Binding Array approach each new variable is initialized with an offset that
actually serves as a pointer to the binding array. Also notice that binding array cells are
allocated sequentially, that is, the entry for V;+1 immediately follows the entry for V;.

Unfortunately the scheme breaks down when we do not know the number of variables
between a variable X and the root of the tree. This is the case when we have And
parallelism.

To address this problem, the Sparse Binding Array extends the original binding array
with the further restriction that this variable position must be unique, that is, no other
currently accessible variable may have the same binding arra.y offset. In this wa.y, if severa!
workers in a. team crea.te variables a.t the sa.me time, they are guaranteed never to use the
same binding array slot.

To implement this concept, the SBA uses a. direct mapping from the global stack to
the global binding array, and from the local stack to the local binding array. The mapping
is from pointers to a. shared stack to pointers to the corresponding binding arra.y and is as
follows:

154 XVI Congresso da Sociedade Brasileira de Computação (SBC)

SHARED.PTR ~ SHARED.PTR+ (BA.BASE- STACK.BASE)

Thua. the private value can be obtained u followe:

PRIVATE_v AWE = SHARED.PTR[BA.BASE- STACK.BASE]

where ST AC K J3 AS E represents the base o f the corresponding stack. Aga.in we ha.ve
a. consta.nt-time opera.tion, giving fast access. This access ca.n be ma.de quite fast if we
know before-ha.nd STACKJJASE a.nd BAJJASE. In fact, by using a. sha.red memory
interface such as MMAP or SHM we ma.y indeed know the two values a.t compile-time.

Note also tha.t for each va.ria.ble in the local a.nd global stacks, we are crea.ting a.t least
as ma.ny "virtual" copies in the SBA. We ha.ve used the word virtual beca.use most of this
memory will never be actually used, only requested. As we shall discuss in more deta.il
la.ter, modern Opera.ting Systems only actua.lly a.lloca.te memory that is being used.

3 Sparse Binding Array Implementation Issues

•In this section we discuss in deta.il two importa.nt issues in the SBA. First, we discuss the
'Problem of va.ria.ble representa.tion in the SBA, and next we discuss in more deta.il the
problem of memory alloca.tion. It is clea.r tha.t some space allocated for the SBA will be
wasted. This problem ca.n be offset by the a.dva.nta.ges of a simpler memory ma.nagement
scheme a.nd by the support for Independent And-pa.rallelism.

3.1 Variable Representation iri the SBA

If we use the SBA as t he underlying system for the ma.na.gement of environment space
what· should be the value of a. varia.ble cell?

Ili the BA scheme a cell's va.lue is a.n index into the binding a.rray. In the PBA[8] scheme
the cell value is required to determine the location of its private environment va.lue. In the
SBA it is the a.ddress of the cell tha.t is used.

Both the BA a.nd the PBA ca.refully maintain the cell value as a.n indica.tion of va.ri
a.ble age. This is necessary because in a. pa.rallel implementation we cannot just compare
a.ddresses to obta.in ages. In the SBA scheme, we do not need to use indexes, but we still
require va.ria.ble age ma.intena.nce to a.void conditional bindings a.nd to trim the trai! when
we cut.

We could ha.ve preserved the Aurora. scheme. Aurora. uses two counters, one for local
a.nd other for global va.ria.bles.

A first possible simplifica.tion isto use a single counter. A more interesting simplification
is to a.void ha.ving a. counter, a.nd instea.d to use a variable leve/ representing the number
of choice points a.bove it in the execution tree. If we ca.refully design our systems to
alwa.ys a.lloca.te memory in such wa.y tha.t a.ny private segment of bra.nch will alwa.ys be
composed of memory chunks in ascending order (as it is the case in Aurora.) then va.riable

VIII Simp. de Arg. de Computadores e Proc. de Alto. Desempenho lSS

age can be simply determined by the lexicographic order of the pair (variable...level,
variable_address) .

The main advantage is that instead of updating an index each time a variable is created,
the levei will be updated only when a choice point is allocated.

A second problem we needed to address with this scheme was t he cut. When we
have cut, severa! cboice-points are discarded. If we are at levei O, cut to levei M, and
bind a variable created at levei N, where M < N <O, a binding to the variable is still
deterministic. The obvious solution would be to reset the counter to M . The problem
is that the next time we create a c,hoice-point, its levei would be M + 1, hence every
variable already created at leveis between M + 1 < O would be considered to be bound
unconditionally, when in fact t hey can only be bound conditionally.

The solution to t his problem isto use two counters. One counter, level-top representa
the levei we have reached so far , whereas level-uncond represents the levei for uncondi
tional variables.

Privac.c operat.ions with levei• are u fo lloW"a:

new- var : •SHARED-ADRESS = lovol-top:

conditional : (• SH ARED-ADRESS < lovol-uncond)

try : 8-thvel • ltvd-uncond • level-top • level-top+1:

rc try : level-top • level-uncond • B-+leval ;

truRt : hvd-top • B-+level-1: leva l-uncond • 8 -+parent-+level i

cut : level-uncond. 18-+ltv tl;

Note that the approach is similar to the way Aurora manipulates the binding array
counlers. As in Aurora, the major problem arises when we have shared and private parts
of t he search tree. We discuss the problems in further detail in section 4.3

3.2 Trusting the underlying Operating System

One of our motivations in designing the SBA was the improvements in Operating System
supporl for memory allocation. Modem operating systems support the direct mapping of
files in shared memory. Page frames for this mapping are allocated lazily (each time they
are referenced) and !ater written to the mapped file in disk. Consequently while virtually
we may have requested a big chunk of address space the operating system only allocates a
much smaller number of page-frames and supporting swap space.

Note that the operating system takes automatic care of the dynamic allocation of
memory and mapped file disk blocks each time a reference is made to a non allocated
page. Current file operating system implementations are also optimized to only use a
small number of real pbysical disk blocks . This means that the actual amount of physical
memory we need is not what we ask for, but what we use.

156 XVI Congresso da Sociedade Brasileira de Computação (SBC)

The question for the SBA is therefore of how much more memory we use in the Sparse
Binding Array. The answer is that the pages we will need in the Or-parallel implementation
are the pages where variables were created, and later on referenced. These pages consist
of variables plus environment control information, for the local stack, and variables plus
compound terms constructors and atoms, for the heap.

Notice also that when these system pages are no longer in use the operating system
automatically pages them out of memory. As a consequence the only thing t hat t he system
implementar has to do when using SBA isto map memory space and leave to the underlying
operating system the task of its efficient maintenance.

Finally, we must not forget the fact that we are using the WAM [15) as the underlying
execution engine. As it is well known, the WAM has very good memory locality properties.
The SBA inherits these properties.

4 The Or-Parallel Implementation of the SBA

As a first step towards a combined SBA based and-or system we h ave studied SBA 's
implementation in Aurora. We concluded that the necessary changes were reasonably
small as can be seen in detail with the discussion that follows.

4.1 Memory Allocation

We preserved Aurora's memory allocation for the shared stacks but investigated two ap
proaches for the SBA implementation in Solaris 2.4 .

MMAP: a larse chunk ofmemory wa.a allocated for thc SBA. Unfortunn.te ly in ou r cxperiencewe found out t he ""AP routines
had .e vere problems. There were wide variations o{ performance betwecn runs. Also, the JtMA.P best performance wl.LS

obtaincd when we actually aJiocatcd ali thc mcmory first. I f we did not ask fo r the mcmory immcdiatcly, t hcrc would
bc a scvcrc dc~radation in performance.

MALLOC: thc alternativc was to use aalloc to a llocatc spacc for the binding array. Surprisingly this gavc much more
stable performance in our platform, and has since been used in lhe benchmarks.

The actual space we ask for the SBA "shadows" ali the stacks. These include code
space, choicepoint stack, and trail, which need to be shadowed. In practice t his should nol
matter, as the space is only vil"lually allocated.

In any case we can keep the offset BA_BAS E- ST AC [(..BASE fixed and known at
compile-time. In order to save space, Aurora does not have a fixed BA J3AS E value [4).
which results in worse performance versus the SBA system.

4.2 Engine in Private Region

Most of the time the Aurora engine will be executing private work. As we explained,
execution in the SBA rnodel could follow the exact execution in Aurora, the only difference
being the macros for variable access.

VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 157

After introducing the "levei" scheme, we had to make changes to other operations,
such as choicepoint manipulation and cut. These changes follow the principies presented
in section 3.1. To s~pport shallow backtracking [3] the actual implementation for Aurora
is slightly more complex than in a traditional WAM (15] .

A problem arises with the implementation of tail recursion in Aurora. Aurora keeps
a free variable in every environment in order to calculate the age for the environment.
In order to recover space it tests whether this age is younger than the age for the last
choicepoint. The SBA implementation uses the same approach, giving each environment
an extra slot with its age. Environments can be recovered if they are younger or if they
have the same age as level-uncond.

Whenever it creates a choice-point Aurora verifies i f there is an overfiow of the binding
array. This is not done within SBA thus accelerating choice-point creation.

4.3 Parallel Work

Parallel Work happens in Aurora when the engine enters a shared area of the search-tree,
or when the engine calls a scheduler.

Work in the shared area can be: moving up the tree to backtrack, moving down the
tree to select new work, and cutting shared work. Using sparse binding arrays does not
force any changes to this scheme. Problems only arise with the new level-based scheme. In
this case it is necessary to reset leveis whenever we backtrack to shared areas of the tree,
or whenever we create new work. Note that when creating work we never perform tru•t
in the shared area because we cannot be sure someone else is exploring an alternative. The
choice-point has been created before, hence the operation is always a retry. In Aurora
the retry is always followed by creating an embryonic choice-point. These rules had to be
followed very carefully.

5 Initial Performance Evaluation

We have measured the timings and speedups obtained both from Aurora with SBA and
Aurora with Binding Arrays (table 1 and table 2). We have used an 8-CPU SparcCenter
2000 with 256MB of maio memory, 1MB cache per CPU, running Solaris 2.4. The system
was in multi-user mode. Both versions of Aurora were compiled with gcc -02. We uaed
the standard Aurora benchmark set. The scheduler ~e use is the distribution releaee of
the Brístol scheduler (2], as ported to the Sparc (13].

With one worker the SBA is between 10 and 15% faster then Aurora. Increasing the
number of workers, the SBA generally. outperforms Aurora, although for higher number of
workers Aurora comes dose and sometimes actually performs better then SBA.

We believe that the better seqtiential performance is explained by the advantages of
the SBA: easy calcUtatiun of the BA address, and the use of leveis for age comparison of
variables.

158 XVI Congresso da Sociedade Brasileira de Computação (SBC)

As regards speedups, we think Aurora can achieve better speedups because:

• Aurora. ha.s worst one-worker performance, and therefore ha.s coa.rser ta.sk-gra.nula.rity.
This mea.ns tha.t scheduling overheads will be less significant.

• Ta.sk-switching in the SBA is more expensive beca.use the page working set is bigger.

We expect the speedups to improve by using the newer relea.ses of t he Brístol scheduler.
Fina.lly note that these results are still preliminary. Further tests and opt imizations

sha.ll be carried out.

num.workers
Goalo (•TU.u] I 2 3 4 5 6 7
parael •200 1.62 u~p.42) u~P·4~ 1 1 .2~!_1 .30) 1.25(1.30) 1.26(1.29) 1.27(1.27)
puael: •200 6.36 3.64(1.74) 3.20(1.99) 2.83(2.24) 2.71(2.35) 2.61(2.43) 2.54(2.50)
para•3 • 200 1.32 1.03(1.29) 1.04(1.28) 1.13(1.17) 1.16(1.15) 1.20(1.1 1) 1.24(1.07)
parae4 • 60 5.81 2.97(1.96) 2.28(2.55) 1.88(3.09) 1.69(3.44) 1.55(3.76) 1.46(3.98)
~ae5 •lO 3.88 2.04(1.89) 1.45(2.66) 1.20(3.23) 1.04(3.72) 0.92(4.20) 0.87(4.44)
db4 •100 2.52 1.58(1.60) 1.19(2.12) 1.02(2.48) 0.92(2.73) 0 .90(2.82) 0.86(2.94)
db6 •100 3.27 2.03(1.61) 1.45(2.25) 1.23(2.65) 1.14(2.88) 1.07(3.08) 1.03(3.17)
i'ar.er •1000 2.96 2.48(1.19) 3.09(0.96) 3.61(0.82) 3 .96(0.75) 4.21(0.70) 4.5 1(0.66)
houae • 200 4.09 2.69(1.52) 2.38(1.72) 2.20(1.85) 2.10(1.94) 2.04(2.01) 1.98(2.08)
&·queenal •tO 7.00 3.58(1.95) 2.44(2.87) 1.85(3.79) 1.52(4.61) 1.29(5.43) 1.13(6.18)
8-queena2 •10 17.99 8.89(2.02) 5.98(3.01) 4.50(4.00) 3.70(4.86) 3.11 (5.79) N/A
tina •10 14.68 8 .20(1.79) 5.48(2.68) 4.38(3.35) 3.62(4.05) N/ A N/ A
••2 •100 10.03 5.35(1.88) 4.05(2.48) 3.10(3.23) 2.63(3.81) 2.33(4.30) 2.10(4.77)
AVEUGE 1.68 2.15 2.56 2.89 3.07 3.00

Ta.ble 1: Performance of SBA on a. Spa.rcCenter 2000

num.workcn
Ooala (•Tiaea) I • 4 5 ~

paratl • 200 1.88 1.1~!' ·5~! 1.1~\!·6~! 1.18(1.58) 1.20(1.5~! 1.2~\L5~~ 1.2~!1.48)
paraa2 •200 7.00 3.78(1.85) 3.07(2.28) 2.73(2.56) 2.61(2.88) 2.56(2.73) 2.62(2.68)
paraa3 • 200 1.49 1.10(1.36) 1.11(1.34) 1.18(1.26) 1.19(1.25) 1.24(1.20) 1.30(1.15)
paraa4 •50 6.07 3.25(1.87) 2.44(2.49) 1.96(3. 10) 1.76(3.45) 1.63(3.72) 1.54(3.96)
parae5 •to 3.99 2.13(1.87) 1.50(2.66) 1.24(3.22) 1.05(3.78) 0.94(4.22) 0 .87(4.59)
db4 • 100 2.57 1.50(1.71) 1.15(2.24) 0.98(2.63) 0 .89(2.90) 0 .88(3.00) 0.85(3.05)
db6 •100 3.15 1.82(1.73) 1.32(2.39) 1.18(2.88) 1.08(2.91) 1.04(3.04) 0 .99(3.19)
t~L~Wer •1000 3.24 2.36(1.37) 3.07(1.08) 3.63(0.89) 3.95(0.82) 4.16(0.78) 4.49(0.72)
houaa •200 4.38 2.63(1.66) 2.37(1.84) 2.18(2.00) 2.09(2.09) 1.99(2.19) 1.97(2.21)
8-quaanal •tO 8.14 3.84(2.12) 2.59(3.15) 2.08(3.96) 1.66(4.90) 1.40(5.83) 1.19(6.84)
e-quaana2 •lO 20.08 9.75(2.08) 6.37(3.15) 4.79(4.19) 3 .89(5.16) 3.32(6.04) 2.92(6.88)
tiaa •tO 15.57 7.95(1.96) 5.51(2.83) 4.21(3.70) 3.47(4.49) 2.94(5.30) 2.62(5.94)
••2 uoo 10.24 5.42(1.89Í 3.75(2.73Í 3.03(3.38Í 2.51(4.07Í 2.24(4.58Í 2.07(4.94Í
AVEUGE 1.77 2.29 2.70 3.08 3.40 3.66

Ta.ble 2: Performan0475 Tc 0.8 Tc 5.9001 0 0020387
0.294 g.1329 0 053 Tc 0.541 058Í

VIII Simp. de Arg. de Computadores c Proc. de Alto Desempenho 159

6 Conclusions

We presented the Sparse Binding Array, an efficient environment represent.ation scheme
designed to support both lndependent And- and Or-parallelism. The scheme can be eas
ily ported to traditional Binding Array based systems. In this paper we show that the
ensuing implementation can actually outperform the corresponding Binding Array based
implementation, at least in sequential execution.

We believe this approach to be very promising for combined parallel systems, as the
binding model directly supports lndependent And-parallelism and Determinate And-parallelism

Acknowledgments

The authors would like to acknowledge and thank for the contribution and support that
Gopal Gupta, Enrico Pontelli , K. Shen, and Manuel V. Hermenegildo gave to this work.
This work has been supported· by the J NICT PROLOPPE project and by the NATO
MAPLE project. Manuel Eduardo Correia thanks JNICT for supporting bis research.
Vítor Santos Costa tbanks the Universidade Federal do Rio de Janeiro for supporting his
current research.

References

[1] I<. A. M. Ali and R. Karlsson. The Muse Or-parallel Prolog Model and its Perfor
mance. In Proceedings o/ lhe Norlh American Conference on Logic Programming,
pages 757- 776. MIT Press, October 1990.

[2] A. Beaumont, S. M. Raman, P. Szeredi, and D. H. D. Warren. Flexible Scheduling of
OR-Parallelism in Aurora: The Brístol Scheduler. In PARLE91: Conference on Par
aliei Archileclures and Languages Europe, volume 2, pages 403-420. Springer Verlag,
June 1991.

[3] M. Carlsson. On the efficiency of optimised shallow backtracking in Compiled Prolog.
In Proceed~ngs o/ the Sixth lnternational Conference on Logic Programming, pages
3- 15. MIT Press, June 1989.

[4] M. Carlsson. Design and lmplemenlati9n of an OR-Parallel Prolog Engine. SICS
Dissertation Series 02, The Royal Institute of Technology, 1990.

[5] G. Gupta, V. S. Costa, and E. Pontelli. Shared Paged Binding Array: A Univer
sal Datastructure for Parallel Logic Programming. In Proceedings of the Twelveth
lnternational Conference on Logic Programming, to appear.

[6] G. Gupta, M. Hermenegildo, and V. S. Costa. And-Or Parallel Prolog: A Recompu
tation based Approach. New Generation Computing, 11(3,4):77ü-782, 1993.

160 XVI Congresso da Sociedade Brasileira de Computação (SBC)

(7] G. Gupta and B. Jayara.man. On Criteria for Or-Parallel Execution Models of Logi<
Progra.ms." In Proceedings of the North American Conference on Logic P1·ogramming,
pages 604-623. MIT Press, October 1989.

[8] G. Gupta and V. Santos Costa. And-Or Parallelism in Full Prolog wit h Paged Binding
Arrays. In LNCS 605, PARLE'92 Para/lei Architectures and Languages Eu1·ope, pages
617-632. Springer-Verlag, June 1992.

(9] M. V. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploiting lnde
pendent And-Parallelism. In Proceedings of the Seventh lntemational Conference on
Logic Programming, pages 253- 268. MIT Press, June 1990.

(10] R. Karlsson. A High Performance O R-para/lei Prolog System. SICS Dissertation Series
01, The R.oyal Institute of Technology, 1991.

(11] E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, D. H. D. Warren,
A. Calderwood, P. Szeredi, S. Haridi, P. Brand, M. Carlsson, A. Ciepelewski, and
B. Hausman. The Aurora or-parallel Prolog system. In l ntem ational Conference on
Fifth Generation Computer Systems 1988, pages 819-830. ICOT, Tokyo, J apan , Nov.
1988.

(12] J. Montelius and K. A. M. Ali. An And/ Or-Parallel lmplementation of AKL. Proc.
NSF /ICOT Workshop on Parallel Logic Programming and its Environments, CIS-94-
04, University of Oregon, Mar. 1994.

(13] V. Santos Costa, M. E. Correia, and F. Silva. Aurora and Friends on the Sun (Ex
tended Abstract) . In 2nd COMPULOG NET Workshop on Parallelism and lmple
mentation Technologies, Madrid, 1994. ·

(14] V. Sa.p.tos Costa, D. H. D. Warren, and R. Yang. Andorra... I: A Parallel Prolog System
·that Transparently Exploits both And- and Or-Parallelism. In Third ACM SIGPLA N
Symposium on Principies & Practice of Para/lei Programming PPOPP, pages 83- 93.
ACM press, April 1991. SIGPLAN Notices vol 26(7), July 1991.

(15] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI
International, 1983.

[16] D. H. D. Warren. The SRI model for or-parallel execution of Prolog-abst ract design
and implementation issues. In Proceedings of the 1987 Symposium on Logic Program
ming, pages 92-102, 1987.

