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A B S T R A C T

Curvilinear reinforcement fibres allow to tailor the elastic properties of composite laminates in space, leading
to Variable Stiffness Composite Laminates (VSCL). In this work, the aeroelastic stability of VSCL cylindrical
shells under a supersonic airflow along the axial direction is analysed in order to verify if curvilinear fibres
can be used to increase the flutter speed. A linear mathematical model for thin circular cylindrical VSCL
shells is developed for that purpose. The aerodynamic pressure caused by the supersonic airflow is modelled
recurring to the linearised piston theory. The p-version of the finite element method is used to transform the
differential equations of motion from partial to ordinary. Using the latter, eigenvalue problems are defined to
obtain the natural frequencies and mode shapes of vibration, and the critical flutter conditions. Various types
of curvilinear fibre paths are explored, to find paths that result in higher values of critical flutter free stream
pressure. The values are compared with the ones of conventional, constant stiffness, composite laminated
shells.
1. Introduction

Fibre reinforced composite laminates are used in various industries
due to advantageous material properties, which include high stiffness
and strength-to-weight ratios [1]. Another advantage of these materials
is that designers can select the fibre directions and the layup in order
to approach desired properties. In comparison to the more traditional
straight fibres, curvilinear fibres increase the level of design flexibility,
enabling enhanced tailoring towards the loads that the structure is
expected to withstand. Laminated shells with curvilinear fibres can
be designated as variable stiffness composite laminated (VSCL) shells.
They find potential application in the aeronautic industry, where high
ratio between stiffness and weight is crucial. Examples include parts of
the fuselages of aircraft and rockets. Here, the study of flutter is impor-
tant, as this aeroelastic instability may result in damage or catastrophic
failure [2]. Considering this, a question arises: can the implementation
of variable stiffness properties on composite laminated shells improve
the mechanical performance against aeroelastic flutter? The present
work has the goal of helping to answer this question. Specifically, this
paper addresses the aeroelastic flutter phenomenon caused by an axial
airflow at supersonic speed, along the external surface of a variable
stiffness composite laminate, thin, circular cylindrical shell.

Since curvilinear fibres can be used to achieve a composite material
with advantageous properties, various authors have addressed this type
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of composites. Efforts have been made to exploit the design possibili-
ties [3–5], to deal with challenges in the design and optimisation [3,5]
and with issues related to manufacturing processes [6–8]. As these re-
view papers show, the justified interest in VSCLs led to a large number
of publications; for the sake of conciseness, the following paragraphs
only mention publications directly related to the topics of this paper:
VSCL cylindrical shells, aeroelastic problems in VSCLs, flutter on closed
cylindrical shells in other materials. By ‘‘closed’’ it is meant that the
cross section contains a full circle.

One of the first analysis on VSCL shells was presented by Tatting [9],
who explored the effectiveness of the variable stiffness concept when
applied to cylindrical shells. Governing equations were derived, buck-
ling was analysed, optimisation methods applied and attention was
given to the Brazier effect. Blom et al. [10,11] optimised the fundamen-
tal frequency of vibration and the buckling response of VSCL cylinders.
Blom et al. [10–12] also addressed the influence of tow-drop areas, gaps
and overlaps, on the stiffness and strength of VSCL shells. ABAQUS was
employed in [10–12]. Wu et al. [13,14] and Pan et al. [15] addressed
the design of VSCL shells, with particular consideration given to manu-
facturing aspects of the process. Furthermore, in [16], Wu et al. carried
out a structural assessment of VSCL shells resorting to experimental
and analytical methods. Nik [17] optimised VSCL structures (mostly
plates, but cylindrical shells are also addressed), to maximise buckling
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Nomenclature

Latin Letters

𝑎∞ Speed of sound
𝐸𝑖𝑖 Young’s moduli
𝑓𝑟 Shape function along the 𝜉 coordinate, for

transverse displacement 𝑤0
𝐟 𝐟𝐮, 𝐟 𝐟𝐯, 𝐟 𝐟𝐰 Shape function vectors for 𝑢0, 𝑣0 and 𝑤0 displace-

ment components
𝐺12 Shear modulus
𝑔𝑟 Shape function along the 𝜉 coordinate, for

membrane displacements
𝑔𝑢𝑟, 𝑔𝑣𝑟 Shape functions along the 𝜉 coordinate, for

membrane displacements 𝑢0 and 𝑣0
ℎ𝑢𝑟, ℎ𝑣𝑟, ℎ𝑤𝑟 Shape functions along the 𝜃 coordinate, for

displacement 𝑢0, 𝑣0 and 𝑤0
ℎ Cylindrical shell’s thickness
𝐊 Stiffness matrix
𝑘𝑥𝑥, 𝑘𝜃𝜃 Shell’s change of curvature in the polar coordi-

nate system
𝑘𝑥𝜃 Shell’s twist in the polar coordinate system
𝑙 Cylindrical shell’s length
𝐌 Mass matrix
𝑀𝑖𝑗 Internal moment resultants per unit length
𝑀 Mach number
𝑚 Number of axial waves for free vibration/flutter

modes
𝐍 Shape function matrix
𝑁𝑖𝑗 Internal force resultants per unit length
𝑛 Number of circumferential waves for free vibra-

tion/flutter modes
𝑛𝑐𝑟𝑖𝑡 Number of circumferential waves of the first

mode that achieves flutter
𝐩 External pressure vector
𝑝∞ Free stream static pressure
𝑝𝑎 Aerodynamic pressure
𝑝𝑐𝑟𝑖𝑡 Critical flutter free flow static pressure
𝑝𝑚, 𝑝𝑜, 𝑝𝑡 Number of shape functions used from the 𝑔, 𝑓 and

ℎ sets of shape functions
𝑝𝑡𝑜𝑡 Total number of degrees of freedom
𝐪 Coefficient vector for stability analysis
𝐪𝐭 Generalised coordinates vector
𝑅 Shell’s middle surface radius
𝑟𝜓 Fibre path turning radius
𝑡 Time variable
𝑢, 𝑣, 𝑤 Displacement components along the 𝑥, 𝜃 and 𝑧

coordinates
𝑢0, 𝑣0, 𝑤0 Middle surface displacement components along

the 𝑥, 𝜃 and 𝑧 coordinates
𝑣𝑖𝑗 Poissons ratio’s
𝑥, 𝜃, 𝑧 Cylindrical coordinates

Greek Letters

𝜖𝑖𝑗 Components of strain tensor
𝛾 Air’s specific heat ratio
𝛾𝑖𝑗 Engineering shear strains

load and in-plane stiffness, where manufacturing induced defects were
considered. Rouhi et al. [18] manufactured a VSCL cylindrical shell and
tested it for buckling conditions. An improvement in the buckling load
2

𝜓 Fibre ply angle
𝜌 Material volumetric mass density
𝜌𝑓𝑙𝑢𝑖𝑑 Fluid volumetric mass density
𝜎𝑖𝑗 Components of stress tensor
𝜉 Adimensional axial coordinate
𝜔𝑖 Natural frequency of vibration of the 𝑖𝑡ℎ mode
𝛺 Eigenvalue in aeroelastic problems

was achieved using curvilinear fibres, compared to a quasi-isotropic
counterpart. Labans and Bisagni [19] carried out numerical analysis
and experimental tests to determine buckling and vibration modes of
VSCL shells. Almeida et al. [20] presented a methodology to optimise
VSCL cylindrical shells under axial compression, using an optimisation
concept based on the manufacturing characteristics of the Tailored
Fibre Placement process; post-buckling was also analysed.

In [21], the modes of vibration of VSCL open, cylindrical, shal-
low shells were studied in the linear regime, using a 𝑝-version of
the finite element type model. In a follow up, the non-linear modes
were analysed [22]. Both in [21,22], the curvature of the shell’s mid-
dle surface led curvilinear fibres to have consequences not found in
modes of vibration of plates. Ritz-based procedures - which can be
considered to be a 𝑝-version finite element type method [23] - have
been applied to analyse VSCL shells, requiring far fewer degrees of
freedom than procedures based on ℎ-version type finite elements [24–
26]. Multi-part structural geometries were represented as an assembly
of shell-like domains. With this approach, Sciascia et al. investigated
the natural modes of vibration, buckling modes, linear transient and
dynamic stability of general VS doubly-curved shells, with and without
prestress [24–26].

Some works - Refs. [27–35] - have been published on aeroelastic
instability of VSCL plates. The latter group of references addressed
supersonic flutter and divergence on VSCL plates by the 𝑝-version FEM,
from the linear to the non-linear regimes. In [36], aeroelastic instabil-
ities of hybrid composite laminated plates with carbon nanotubes and
curvilinear fibres are investigated.

Supersonic flutter on isotropic, closed, cylindrical shells has been
analysed in diverse publications, including [37–43], mostly reviewed
in Chapter 15 of [44]. Mentioning just the more recent of those ref-
erences, Amabili and Pellicano [42] considered imperfections of the
geometry of the cylindrical shells and showed it has an effect on flutter
onset; a multi-degree of freedom model was employed and non-linear
oscillations studied. Sabri and Lakis [43] presented a finite element
method based on Sander’s shell theory, with fast convergence to analyse
circular cylindrical shells subjected to external supersonic flow.

Flutter of non-isotropic and/or non-homogeneous closed circular
cylindrical shells has also been analysed. The effects of temperature,
damping and geometric properties on the flutter stability of sandwich
shells were studied in [45]. Chen and Li [46] studied flutter onset
and the ensuing limit cycles on composite laminated cylindrical shells.
Avramov et al. [47] studied the limit cycle oscillations of cylindrical
shells reinforced by carbon nanotubes and under a supersonic flow. The
aeroelastic stability of axially functionally graded cylindrical shells is
investigated in [48], it is proposed to add a lumped mass to eliminate
the mode coalescence associated with flutter.

In spite of the potential of VSCL for aeronautic applications, aeroe-
lastic supersonic instabilities on variable stiffness composite laminated
cylindrical shells have not yet, to the best of the authors knowledge,
been studied. This is the topic of analysis of the present article. In
Section 2, the equations of motion for a thin circular cylindrical shell
are established based on Love’s first approximation assumptions. The
linear model is then implemented recurring to a p-version finite element
method (p-FEM), which is also described. The aerodynamic forces

created by the axial airflow at supersonic speeds are modelled using
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Fig. 1. Cylindrical shell dimensions, coordinate system and displacement components (perspective and cross sectional views).
the linear piston theory with a correction factor to account for the
curvature, then the calculation of the critical free stream pressure for
the occurrence of flutter can be made. In Section 3, a convergence test is
presented and the model is verified. In Section 4, curvilinear fibre paths
that, in comparison to unidirectional fibre paths, increase the value of
the free stream static pressure at which flutter occurs are searched for.
Finally, Section 5 concludes the paper.

2. Mathematical model

In this section, the linear model for thin variable stiffness composite
laminated circular cylindrical shells under an axial supersonic airflow
is presented. Since the analysis addresses critical flutter speeds, not the
ensuing oscillations, a linear model suffices [2]. According to [1], a
shell can be considered as thin if, in the limit (Qatu writes ‘‘probably
smaller for composite materials’’), the thickness is smaller than (1/20)th

of the smallest wave length of the motion and/or radii of curvature
of the shell. Only very thin shells will be analysed in this work, so
that a thin shell model provides a reasonable approximation. Axial
variation of stiffness is considered, with fibre paths shifting along
the circumferential direction. Gaps and overlaps in the fibre distri-
bution [49,50] and geometric imperfections may significantly affect
the vibrations of circular cylindrical shells [44,51]; however, in this
first work imperfections are not considered. Piston theory was chosen
to model the pressure due to the supersonic axial airflow, because it
provides useful insights, is relatively straightforward and has a low
computational cost [2,52]. Naturally, the aeroelastic model cannot be
used in the subsonic and transonic regimes.

The relevant dimensions, the coordinate system and the components
of displacement of points on the middle surface are represented in
Fig. 1.

Love’s first approximation hypotheses [53] are considered. This en-
ables the elasticity problem to be reduced from a 3D to a 2D problem by
considering that the strains in each point of the body can be expressed
as a function of strains and curvature changes on the middle surface.
This simplification allows the derivation of Eqs. (1)

𝜖0𝑥𝑥 =
𝜕𝑢0
𝜕𝑥

(1a)

𝜖0𝜃𝜃 =
1
𝑅
𝜕𝑣0
𝜕𝜃

+
𝑤0
𝑅

(1b)

𝛾0𝑥𝜃 =
1
𝑅
𝜕𝑢0
𝜕𝜃

+
𝜕𝑣0
𝜕𝑥

(1c)

𝑘 = −
𝜕2𝑤0 (1d)
3

𝑥𝑥 𝜕𝑥2
𝑘𝜃𝜃 =
1
𝑅2

𝜕𝑣0
𝜕𝜃

− 1
𝑅2

𝜕2𝑤0

𝜕𝜃2
(1e)

𝑘𝑥𝜃 =
1
𝑅
𝜕𝑣0
𝜕𝑥

− 2
𝑅
𝜕2𝑤0
𝜕𝑥𝜕𝜃

(1f)

which are valid for the specific case of cylindrical shells (page 262
of [1]).

A composite laminated shell is composed of several layers. In each
layer, constant stiffness composite laminates maintain a constant tow
angle 𝜓 , whereas in variable stiffness composite laminates the tow
angle varies along the spacial coordinates. Four types of curvilinear
fibre paths are considered here: linear angle variation paths with 1
segment, constant in-plane curvature (in this article, ‘‘in-plane’’ refers
to the surface obtained by extending the shell over one plane) path with
1 segment, linear angle variation paths with 2 segments and constant
in-plane curvature path with 2 segments. These are respectively defined
by mathematical expressions dependent on parameters 𝑇0 and 𝑇1, seen
in Eqs. (2)–(5) and are schematically represented in Fig. 2. The 𝜉
coordinate is used as an adimensional axial coordinate that varies
between −1 and 1 and that relates to the 𝑥 coordinate as 𝑥 = 𝑙

2 ⋅ (𝜉+1).
Throughout this work, the notation ⟨𝑇0, 𝑇1⟩ is used to refer to a linear
angle variation path with one segment; ⟨𝑇0, 𝑇1⟩𝑐 is used to refer to a
constant in-plane curvature path with one segment, ⟨𝑇1, 𝑇0, 𝑇1⟩ is used
to refer to a linear angle variation path with two segments and ⟨𝑇1,
𝑇0, 𝑇1⟩𝑐 is used to refer to a constant in-plane curvature path with two
segments.

𝜓(𝜉) = (𝑇1 − 𝑇0) ⋅
𝜉 + 1
2

+ 𝑇0 (2)

𝜓(𝜉) = arcsin

{

sin(𝑇0) + [sin(𝑇1) − sin(𝑇0)] ⋅
𝜉 + 1
2

}

(3)

𝜓(𝜉) = (𝑇1 − 𝑇0) ⋅ |𝜉| + 𝑇0 (4)

𝜓(𝜉) = arcsin
{

sin(𝑇0) + [sin(𝑇1) − sin(𝑇0)] ⋅ |𝜉|
}

(5)

For the constitutive model, a relation between the force and moment
resultants and the strain components can be established, giving rise to
expression (6).

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝑁𝑥𝑥
𝑁𝜃𝜃
𝑁𝑥𝜃
𝑀𝑥𝑥
𝑀𝜃𝜃

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16
𝐴12 𝐴22 𝐴26 𝐵12 𝐵22 𝐵26
𝐴16 𝐴26 𝐴66 𝐵16 𝐵26 𝐵66
𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16
𝐵12 𝐵22 𝐵26 𝐷12 𝐷22 𝐷26

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝜖𝑥𝑥
𝜖𝜃𝜃
𝜖𝑥𝜃
𝑘𝑥𝑥
𝑘𝜃𝜃

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

(6)
⎩

𝑀𝑥𝜃
⎭

𝐵16 𝐵26 𝐵66 𝐷16 𝐷26 𝐷66
⎩

𝑘𝑥𝜃
⎭
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Fig. 2. Tow path representation for (a) linear variation of fibre orientation, (b) constant in-plane curvature, (c) linear variation of fibre orientation with two segments, (d) constant
in-plane curvature with two segments (𝑇0 = 70◦, 𝑇1 = 0◦).
Fig. 3. Laminae stacking sequence and nomenclature.
The coefficients of the matrix are expressed in Eqs. (7), where 𝑄
(𝑘)
𝑖𝑗

is a coefficient of the elastic matrix of the layer 𝑘 on the cylindrical
coordinate system. The index 𝑘 refers to each layer in the order that is
established by the stacking sequence represented in Fig. 3, where 𝑛𝑙 is
the total number of layers of the shell.

𝐴𝑖𝑗 =
𝑛𝑙
∑

𝑘=1
𝑄

(𝑘)
𝑖𝑗 (ℎ𝑘 − ℎ𝑘−1) (7a)

𝐵𝑖𝑗 =
1
2

𝑛𝑙
∑

𝑘=1
𝑄

(𝑘)
𝑖𝑗 (ℎ

2
𝑘 − ℎ

2
𝑘−1) (7b)

𝐷𝑖𝑗 =
1
3

𝑛𝑙
∑

𝑘=1
𝑄

(𝑘)
𝑖𝑗 (ℎ

3
𝑘 − ℎ

3
𝑘−1) (7c)

To arrive at the coefficients of the elastic matrix on the cylindrical
coordinate system, the transformation matrices shown in Eqs. (8) and
(9) are used; they establish the relations between the stresses and
strains in the material coordinate system and the cylindrical coordinate
4

system, where 𝑚 = cos(𝜓) and 𝑛 = sin(𝜓). The material coordinate
is referenced to with the indices 1, 2 and 3, that correspond to the
direction parallel to the fibres, to its perpendicular in a plane tangent
to the shell’s surface and to the perpendicular to the shell’s surface,
respectively.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎𝑥𝑥
𝜎𝜃𝜃
𝜎𝑧𝑧
𝜎𝜃𝑧
𝜎𝑥𝑧
𝜎𝑥𝜃

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚2 𝑛2 0 0 0 −2 ⋅ 𝑚 ⋅ 𝑛
𝑛2 𝑚2 0 0 0 −2 ⋅ 𝑚 ⋅ 𝑛
0 0 1 0 0 0
0 0 0 𝑚 𝑛 0
0 0 0 −𝑛 𝑚 0

𝑚 ⋅ 𝑛 −𝑚 ⋅ 𝑛 0 0 0 𝑚2 − 𝑛2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜎1
𝜎2
𝜎3
𝜎23
𝜎13
𝜎12

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(8)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝜖1
𝜖2
𝜖3
𝛾23
𝛾13

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚2 𝑛2 0 0 0 𝑚 ⋅ 𝑛
𝑛2 𝑚2 0 0 0 −𝑚 ⋅ 𝑛
0 0 1 0 0 0
0 0 0 𝑚 −𝑛 0
0 0 0 𝑛 𝑚 0

2 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝜖𝑥𝑥
𝜖𝜃𝜃
𝜖𝑧𝑧
𝛾𝜃𝑧
𝛾𝑥𝑧

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

(9)
⎩

𝛾12
⎭

−2 ⋅ 𝑚 ⋅ 𝑛 2 ⋅ 𝑚 ⋅ 𝑛 0 0 0 𝑚 − 𝑛
⎩

𝛾𝑥𝜃
⎭
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𝑄

𝑄

𝑄

𝛥

t
p
o
t

T
s

c
s

−

o
i
p
a
b
p
m

𝑝

𝐍

V
s

𝐟

T
o
a
H
c
E
d
s
i
v
f
𝑣

𝑓

ℎ

w

Lastly, considering that the coefficients of the elastic matrix of the layer
𝑘 on the material coordinate system 𝑄𝑘𝑖𝑗 are given by Eq. (10), the
expressions for 𝑄

(𝑘)
𝑖𝑗 can be obtained, as seen in Eqs. (11), [1,54].

11 =
𝐸11
𝛥

(10a)

𝑄22 =
𝐸22
𝛥

(10b)

66 = 𝐺12 (10c)

12 = 𝐸11
𝜈21
𝛥

= 𝐸22
𝜈12
𝛥

(10d)

= 1 − 𝜈12𝜈21 (10e)

𝑄11 = 𝑄11𝑚
4 + 2(𝑄12 + 2𝑄66)𝑚2𝑛2 +𝑄22𝑛

4 (11a)
𝑄12 = (𝑄11 +𝑄22 − 4𝑄66)𝑚2𝑛2 +𝑄12(𝑚4 + 𝑛4) (11b)
𝑄16 = (𝑄11 −𝑄12 − 2𝑄66)𝑚3𝑛 + (𝑄12 −𝑄22 + 2𝑄66)𝑚𝑛3 (11c)
𝑄22 = 𝑄11𝑛

4 + 2(𝑄12 + 2𝑄66)𝑚2𝑛2 +𝑄22𝑚
4 (11d)

𝑄26 = (𝑄11 −𝑄12 − 2𝑄66)𝑚𝑛3 + (𝑄12 −𝑄22 + 2𝑄66)𝑚3𝑛 (11e)
𝑄66 = (𝑄11 − 2𝑄12 +𝑄22 − 2𝑄66)𝑚2𝑛2 +𝑄66(𝑚4 + 𝑛4) (11f)

Eqs. (6) and (7) are similar to the ones of traditional laminated
composite shells [1]. However, in a variable stiffness cylindrical shell,
coefficients 𝐴𝑖𝑗 , 𝐵𝑖𝑗 and 𝐷𝑖𝑗 change with the spatial coordinates, be-
cause so do 𝑚 and 𝑛 in Eq. (11). In this study, they are functions of
the axial coordinate. Furthermore, the 𝐵𝑖𝑗 coefficients are null when
here is lamination symmetry about the middle surface of the shell. This
roperty is taken advantage of, since exploring the effects of asymmetry
n a composite laminated shell is not the goal of this study. Also, note
hat for balanced layer setups, like [𝜓,−𝜓]𝑠, the terms 𝐴16 and 𝐴26 are

null, and in the cases of cross ply laminates, where each laminate tow
angle is either 0◦or 90◦, coefficients 𝐴16, 𝐴26, 𝐷16 and 𝐷26 are null.

hese relations are valid for variable stiffness as they are for constant
tiffness composite laminated shells.

The equations of motion here used are the ones derived for thin
ylindrical shells in [1], where Hamilton’s principle was applied. Con-
idering body forces 𝑝𝑖, in directions 𝑖 = 𝑥, 𝜃 and 𝑧, these equations are

𝜕𝑁𝑥𝑥
𝜕𝑥

+ 1
𝑅
𝜕𝑁𝑥𝜃
𝜕𝜃

+ 𝑝𝑥 = 𝜌ℎ
𝜕2𝑢0
𝜕𝑡2

(12a)

1
𝑅
𝜕𝑁𝜃𝜃
𝜕𝜃

+
𝜕𝑁𝑥𝜃
𝜕𝑥

+ 1
𝑅2

𝜕𝑀𝜃𝜃
𝜕𝜃

+ 1
𝑅
𝜕𝑀𝑥𝜃
𝜕𝑥

+ 𝑝𝜃 = 𝜌ℎ
𝜕2𝑣0
𝜕𝑡2

(12b)

𝑁𝜃𝜃
𝑅

+
𝜕2𝑀𝑥𝑥

𝜕𝑥2
+ 2
𝑅
𝜕2𝑀𝑥𝜃
𝜕𝜃𝜕𝑥

+ 1
𝑅2

𝜕2𝑀𝜃𝜃

𝜕𝜃2
+ 𝑝𝑧 = 𝜌ℎ

𝜕2𝑤0

𝜕𝑡2
(12c)

The cylindrical shell is submitted to an axial supersonic airflow
n the outer surface, along the 𝑥 axis, while the internal surface
s submitted to the undisturbed atmospheric pressure. The resulting
ressure is represented using the linear piston theory [2,55], with
curvature correction term [42,44,56,57]. This provides a relation

etween the surface’s displacement and velocity and the aerodynamic
ressure 𝑝𝑧, which renders a computationally inexpensive aerodynamic
odel. Hence, the aerodynamic pressure is given by

𝑧 = −
𝛾𝑝∞𝑀2
√

𝑀2 − 1
⋅

[

𝜕𝑤
𝜕𝑥

− 1

2𝑅
√

𝑀2 − 1
⋅𝑤

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Piston 1

−
𝛾𝑝∞𝑀2
√

𝑀2 − 1
⋅

1
𝑀𝑎∞

(

𝑀2 − 2
𝑀2 − 1

)

⋅
𝜕𝑤
𝜕𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Piston 2

(13)

Force components 𝑝𝑥 and 𝑝𝜃 are considered to be null.
The aerodynamic pressure difference between the outer and internal

surfaces at each point in space and time may be approximated by the
linear equation (13) for 1.6 < 𝑀 < 5, [42,46]. This is a local, zero
memory relation, since the pressure at a given position and time does
5

i

not depend upon the motion at other positions and previous times [2].
This equation has terms that depend on the first time derivative of
the displacements and terms that do not. It is convenient to distin-
guish them, so they will be designated as ‘Piston 1’ and ‘Piston 2’,
respectively, as discriminated in the equation.

The ordinary differential equations representing the problem at
hand are derived following a p-version finite element method [23]
approach, here based on Galerkin’s method. In this problem, where the
geometry is simple and there are no discontinuities, the convergence
rate of the p-version FEM is superior to the one of the h-version FEM;
furthermore, although more than one element can naturally be used,
a single element is enough, precluding the assembly stage [23,58–61].
The displacement vector d is as seen in Eq. (14), where N is the shape
function matrix, Eq. (15), and the generalised coordinates 𝐪𝐭 (𝑡) are
time-dependent functions.

𝐝 =

⎧

⎪

⎨

⎪

⎩

𝑢0
𝑣0
𝑤0

⎫

⎪

⎬

⎪

⎭

= 𝐍 ⋅ 𝐪𝐭 (𝑡) (14)

=
⎡

⎢

⎢

⎣

𝐟 𝐟𝐮 𝟎 𝟎
𝟎 𝐟𝐟𝐯 𝟎
𝟎 𝟎 𝐟𝐟𝐰

⎤

⎥

⎥

⎦

(15)

ectors 𝐟 𝐟 𝐢, with 𝐢 = 𝐮, 𝐯,𝐰, are represented in Eqs. (16) and are the
hape functions vectors for the 𝑢0, 𝑣0 and 𝑤0 displacement components.

𝐟𝐮 = {𝑔𝑢1ℎ𝑢1, 𝑔𝑢1ℎ𝑢2,… , 𝑔𝑢𝑖ℎ𝑢𝑝𝑡, 𝑔𝑢(𝑖+1)ℎ𝑢1, 𝑔𝑢(𝑖+1)ℎ𝑢2,… , 𝑔𝑢𝑝𝑚ℎ𝑢𝑝𝑡} (16a)

𝐟 𝐟𝐯 = {𝑔𝑣1ℎ𝑣1, 𝑔𝑣1ℎ𝑣2,… , 𝑔𝑣𝑖ℎ𝑣𝑝𝑡, 𝑔𝑣(𝑖+1)ℎ𝑣1, 𝑔𝑣(𝑖+1)ℎ𝑣2,… , 𝑔𝑣𝑝𝑚ℎ𝑣𝑝𝑡} (16b)

𝐟 𝐟𝐰 = {𝑓1ℎ𝑤1, 𝑓1ℎ𝑤2,… , 𝑓𝑖ℎ𝑤𝑝𝑡, 𝑓𝑖+1ℎ𝑤1, 𝑓𝑖+1ℎ𝑤2,… , 𝑓𝑝𝑜ℎ𝑤𝑝𝑡} (16c)

hese bidimensional shape functions are obtained by the combination
f unidimensional shape functions, out of three sets: the 𝑓 set for the
xial variation of the transversal displacement 𝑤0, composed of the
ermite cubics for the first four functions, Eq. (17), and by the so-
alled Rodrigues form of Legendre polynomials for the other functions,
q. (18) [58,62]; the 𝑔 set for the axial variation of the membrane
isplacements 𝑢0 and 𝑣0, composed of the linear shape functions repre-
ented in Eq. (19) for the first two functions and by the set represented
n Eq. (20) for the following [58,62]; and the ℎ set for the angle
ariation of the displacements, composed of a subset of cosine functions
or the 𝑢0 and 𝑤0 displacements and a subset of sine functions for the
0 functions, Eqs. (21) [63–66].

1(𝜉) =
1
2
− 3

4
𝜉 + 1

4
𝜉3 (17a)

𝑓2(𝜉) =
1
4
− 1

4
𝜉 − 1

4
𝜉2 + 1

4
𝜉3 (17b)

𝑓3(𝜉) =
1
2
+ 3

4
𝜉 − 1

4
𝜉3 (17c)

𝑓4(𝜉) = −1
4
− 1

4
𝜉 + 1

4
𝜉2 + 1

4
𝜉3 (17d)

𝑓𝑟(𝜉) =
Int(𝑟∕2)
∑

𝑛=0

(−1)𝑛(2𝑟 − 2𝑛 − 7)!!
2𝑛𝑛!(𝑟 − 2𝑛 − 1)!

𝜉𝑟−2𝑛−1 , 𝑟 > 4 (18)

𝑔1(𝜉) =
1
2
− 1

2
𝜉 (19a)

𝑔2(𝜉) =
1
2
+ 1

2
𝜉 (19b)

𝑔𝑟(𝜉) =
Int(𝑟∕2)
∑

𝑛=0

(−1)𝑛(2𝑟 − 2𝑛 − 5)!!
2𝑛𝑛!(𝑟 − 2𝑛 − 1)!

𝜉𝑟−2𝑛−1 , 𝑟 > 2 (20)

ℎ𝑢𝑟(𝜃) = ℎ𝑤𝑟(𝜃) = cos(𝑟𝜃) (21a)

𝑣𝑟(𝜃) = sin(𝑟𝜃) (21b)

here 𝑟!! = 𝑟(𝑟 − 2)...(2 or 1), 0!! = (−1)!! = 1, and Int(𝑟∕2) denotes the

nteger part of 𝑟∕2. Terms where negative values appear in (...)!! or in
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the factorial are not calculated. The numbers of shape functions used
from the ℎ, 𝑔 and 𝑓 unidimensional sets are represented by 𝑝𝑡, 𝑝𝑚 and
𝑜. The total number of degrees of freedom is 𝑝𝑡𝑜𝑡 = (2 ⋅ 𝑝𝑚 + 𝑝𝑜) ⋅ 𝑝𝑡.

By considering or by disregarding the 𝑓1, 𝑓2, 𝑓3, 𝑓1, 𝑔1 and 𝑔2 func-
ions, it is possible to account for the geometrical boundary conditions
f the shell. These functions are also required to connect elements,
lthough this is not relevant in this particular work, because a single 𝑝
lement is enough to represent the shell.

In this work, two type of boundary conditions were considered:

• both ends clamped

0 = 𝑣0 = 𝑢0 =
𝜕𝑤0
𝜕𝑥

= 0, for 𝑥 = 0 and 𝑥 = 𝑙; (22)

• both ends simply supported

0 = 𝑣0 =𝑀𝑥 = 𝑁𝑥 = 0, for 𝑥 = 0 and 𝑥 = 𝑙. (23)
As said, Galerkin method is applied to derive the finite element

matrices. For that purpose, the dynamic equilibrium equations (12)
are multiplied by approximation functions. The resulting equations
are integrated by parts in the domain; we only consider boundary
conditions that allow to eliminate terms where evaluations at 𝜉 = 0 and
𝜉 = 𝑙 are performed. Due to continuity, all differences between terms
evaluated at 𝜃 = 0 and 𝜃 = 2𝜋 are null as well. Only after the integration
by parts are internal forces and moments per unit length replaced, using
the relations in Eq. (6). The ordinary differential equations of motion
obtained in this way can be written as

𝐌 ⋅
d2

d𝑡2
𝐪𝐭 (𝑡) +𝐊 ⋅ 𝐪𝐭 (𝑡) = 𝐩(𝑡) (24)

where 𝐌 represents the mass matrix, 𝐊 the structural stiffness matrix
and vector 𝐩 contains the generalised forces due to fluid–structure
interaction. The diverse terms that constitute matrices 𝐌 and 𝐊 can
be found in Appendix A.

When there is no interaction with air, vector 𝐩(𝑡) - Eq. (24) - is null.
To find the modes of vibration in this conservative problem, one can
assume that 𝐪𝐭 (𝑡) = 𝐪 ⋅ cos(𝜔 ⋅ 𝑡) which results in Eq. (25) that defines a
generalised eigenvalue problem.

𝐊 ⋅ 𝐪 = 𝜔2 ⋅𝐌 ⋅ 𝐪, (25)

The eigenvalues, 𝜔2
𝑖 , with 𝑖 taking values from 1 to 𝑝𝑡𝑜𝑡, correspond

to the squared natural frequencies of vibration; each eigenvector 𝐪𝑖
ultiplied by the shape function matrix defines the correspondent
atural mode shape. Therefore, the motion under free vibration of a
iven natural mode is equal to 𝐍 ⋅ 𝐪𝑖 ⋅ cos(𝜔𝑖 ⋅ 𝑡).

Including the terms of Eq. (13), when Galerkin’s Method is applied
o Eqs. (12), the ordinary differential equations of motion can be
ritten in the following form

⋅
d2

d𝑡2
𝐪𝐭 (𝑡) + 𝐅𝐏𝐢𝐬𝐭𝐨𝐧 𝟐 ⋅

d
d𝑡
𝐪𝐭 (𝑡) +

(

𝐊 + 𝐅𝐏𝐢𝐬𝐭𝐨𝐧 𝟏
)

⋅ 𝐪𝐭 (𝑡) = 0 (26)

Matrices 𝐅𝐏𝐢𝐬𝐭𝐨𝐧 𝟏 and 𝐅𝐏𝐢𝐬𝐭𝐨𝐧 𝟐 are explicitly given in Appendix B. It is
noticeable that 𝐅𝐏𝐢𝐬𝐭𝐨𝐧 𝟏 affects the system’s stiffness and 𝐅𝐏𝐢𝐬𝐭𝐨𝐧 𝟐 appears
as a viscous damping term (physically, though, this term can introduce
energy in the system, instead of damping the oscillations).

By introducing the vector of state space coordinates, composed
of sub-vectors 𝐲𝐭 = d

d𝑡𝐪𝐭 (𝑡) and 𝐪𝐭 (𝑡) that represent the velocity and
displacement fields, respectively, Eq. (26) is rearranged into Eq. (27).
[

𝐌 𝟎
𝟎 −𝐌

]

{

d
d𝑡𝐲𝐭 (𝑡)
d
d𝑡𝐪𝐭 (𝑡)

}

+
[

𝐅𝐏𝐢𝐬𝐭𝐨𝐧 𝟐 𝐊 + 𝐅𝐏𝐢𝐬𝐭𝐨𝐧 𝟏
𝐌 𝟎

]{

𝐲𝐭 (𝑡)
𝐪𝐭 (𝑡)

}

=
{

𝟎
𝟎

}

(27)

By assuming that
{

𝐲𝐭 (𝑡)
𝐪𝐭 (𝑡)

}

=
{

𝐲
𝐪

}

⋅ 𝑒𝛺⋅𝑡 (28)

he generalised eigenvalue problem seen in Eq. (29) is obtained
[

−𝐌 𝟎
]{

𝐲
}

=
[

𝐅𝐏𝐢𝐬𝐭𝐨𝐧 𝟐 𝐊 + 𝐅𝐏𝐢𝐬𝐭𝐨𝐧 𝟏
]{

𝐲
}

(29)
6

𝟎 𝐌 𝐪 𝐌 𝟎 𝐪
Table 1
Convergence study of the lowest natural frequency 𝜔1 for a three layered, cross-ply
[0◦/90◦/0◦] circular cylindrical shell with C-C boundary conditions (𝑅 = 1 m, 𝑙∕𝑅 = 5,
ℎ∕𝑅 = 0.002, 𝐸22 = 7.6 GPa, 𝐸11∕𝐸22 = 2.5, 𝐺12 = 4.1 GPa, 𝑣12 = 0.26, 𝜌 = 1643 kg∕m3).
𝑝𝑚 𝑝𝑜 𝑝𝑡 𝑝𝑡𝑜𝑡 𝜔1 [Hz] DIF %

4 4 4 48 34.8120 170.9
7 7 7 147 13.0928 1.841
10 10 10 300 12.8672 0.086
13 13 13 507 12.8583 0.017
16 16 16 768 12.8561 0

4 14 14 308 12.8661 0.078
7 14 14 392 12.8600 0.030
10 14 14 476 12.8593 0.025

14 4 14 448 12.8914 0.275
14 7 14 490 12.8701 0.109
14 10 14 532 12.8643 0.064

14 14 4 168 22.0536 71.54
14 14 7 294 12.8584 0.018
14 14 10 420 12.8584 0.018
14 14 14 588 12.8583 0.017

Eigenvalues 𝛺 are complex conjugate pairs that contain a real
component Re(𝛺) and an imaginary part Im(𝛺). The eigenvectors are
also complex conjugate pairs. It may be worth noting that by adding the
complex conjugates, the dynamic response only presents a real compo-
nent. Nonetheless, in the numerical tests we will only look at one of
the terms (hence complex, in general). The real part of the eigenvalues
affects the damping of the system and the dynamic response tends to a
stable equilibrium solution if this value is negative. The imaginary part
represents the frequency of the oscillating movement. Flutter occurs for
flow conditions where the real component of at least one eigenvalue
𝛺 changes to a positive value and the imaginary component – the
frequency – is not null. If the change in the real component coincides
with a null imaginary part (frequency), the structure became statically
unstable; this phenomenon is called divergence [2].

3. Convergence and verification

As standard when FEM models are implemented, convergence tests
were carried out with the intention of determining the number of
degrees of freedom required for the results to converge to a solution. In
the present specific model, it is also interesting to analyse the number
of degrees of freedom related to the diverse displacement components
and, within each of these, the importance of axial and radial functions.

The results of one of the convergence tests performed are presented
in Table 1. This regards the computation of the fundamental natural
frequency of composite laminated cylindrical shell clamped at both
ends. It is recalled that 𝑝𝑚, 𝑝𝑜, 𝑝𝑡 and 𝑝𝑡𝑜𝑡 are the number of shape
functions used from the 𝑔, 𝑓 and ℎ sets and the total number of degrees
of freedom, respectively, and that sets 𝑔 and 𝑓 are functions of 𝜉, whilst
set 𝑡 contains functions of 𝜃. The relative differences with respect to the
solution computed with 𝑝𝑚 = 𝑝𝑜 = 𝑝𝑡 = 16 are given in column DIF %.

The table is divided in four sections, with the last three focusing
on convergence with the variation of the number of functions of a
single type. It is verified that four membrane shape functions and
four transverse shape functions for the longitudinal direction lead
to accurate results. More radial shape functions (the functions of 𝜃,
number 𝑝𝑡) are needed for convergence, because the respective mode
shape of vibration (not shown) has several waves in the circumferential
direction. If we wish to study only this mode, loosing the generality of
the FEM model, the number of degrees of freedom can be reduced by
choosing only the necessary functions of 𝜃.

Values obtained for the free vibration of circular cylindrical shells
by the model described in this document are compared with values
found in the literature in Tables 2 and 3, which present a comparison

√

𝜌∕𝐸 for two
of the adimensional frequency parameter 𝛺 = 𝜔𝑅 22
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c
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Table 2
Frequency parameters 𝛺 = 𝜔𝑅

√

𝜌∕𝐸22 for a three layered, cross-ply [0◦/90◦/0◦] circular cylindrical shell with C-C and S-S
boundary conditions (𝑙∕𝑅 = 5, ℎ∕𝑅 = 0.002, 𝐸22 = 7.6 GPa, 𝐸11∕𝐸22 = 2.5, 𝐺12 = 4.1 GPa, 𝑣12 = 0.26, 𝜌 = 1643 kg∕m3, 𝑚 = 1).
n C-C boundary conditions S-S boundary conditions

Present work Ref. [66] Ref. [67] Present work Ref. [66] Ref. [68] Ref. [69]

1 0.303168 0.303318 0.303609 0.248635 0.248637 0.248635 0.248634
2 0.166909 0.167166 0.167527 0.107203 0.107206 0.107203 0.107202
3 0.099194 0.099440 0.099667 0.055087 0.055090 0.055087 0.055085
4 0.064400 0.064607 0.064699 0.033790 0.033793 0.033790 0.033788
5 0.046171 0.046322 0.046345 0.025794 0.025796 0.025794 0.025790
6 0.038128 0.038233 0.038222 0.025877 0.025878 0.025877 0.025873
Table 3
Frequency parameters 𝛺 = 𝜔𝑅

√

𝜌∕𝐸22 of the fundamental natural frequency for a four layered, angle-ply circular cylindrical shell with C-C and
S-S boundary conditions (𝑙∕𝑅 = 4, ℎ∕𝑅 = 0.01, 𝐸11∕𝐸22 = 20, 𝐺12∕𝐸22 = 0.65, 𝑣12 = 0.25).
Lamination C-C boundary conditions S-S boundary conditions

Present work Ref. [70] Ref. [71] Present work Ref. [70] Ref. [71]

[+30◦∕ − 30◦]𝑠 0.1827 0.1818 0.1827 0.1237 0.1233 0.1232
[+45◦∕ − 45◦]𝑠 0.1768 0.1760 0.1789 0.1196 0.1195 0.1193
[+60◦∕ − 60◦]𝑠 0.1801 0.1780 0.1796 0.1097 0.1094 0.1093
Table 4
Critical free stream pressure 𝑝𝑐𝑟𝑖𝑡 for the occurrence of flutter for S-S boundary
onditions of circular cylindrical shells with the following parameters: 𝐺12 = 𝐸11∕[2 ⋅
(1+𝑣12)], ℎ = 0.0001015 m, 𝑅 = 0.203 m, 𝜌 = 8900 kg∕m3, 𝑀 = 3, 𝑎∞ = 213 m∕s, 𝛾 = 1.4,
𝑙 = 0.381 m, 𝑣12 = 0.35, 𝐸11 = 𝐸22 = 110 ⋅ 109 GPa, 𝑝𝑚 = 𝑝𝑜 = 10, 𝑝𝑡 = 30.

Reference 𝑝𝑐𝑟𝑖𝑡 [Pa] 𝑛𝑐𝑟𝑖𝑡
Present work 3864 25
FEM Ref. [41] 3875 26
FEM Ref. [43] 3599 26
Analytical Ref. [72] 3792 25

Table 5
Critical free stream pressure 𝑝𝑐𝑟𝑖𝑡 for the occurrence of flutter for S-S boundary
onditions of circular cylindrical shells with the following parameters: 𝐺12 = 𝐸11∕[2 ⋅
(1+𝑣12)], ℎ = 0.0001015 m, 𝑅 = 0.203 m, 𝜌 = 8900 kg∕m3, 𝑀 = 3, 𝑎∞ = 213 m∕s, 𝛾 = 1.4,
𝑙 = 0.406 m, 𝑣12 = 0.33, 𝐸11 = 𝐸22 = 89 ⋅ 109 GPa, 𝑝𝑚 = 𝑝𝑜 = 10, 𝑝𝑡 = 30.

Reference 𝑝𝑐𝑟𝑖𝑡 [Pa] 𝑛𝑐𝑟𝑖𝑡
Present work 2757 25
Analytical Ref. [39] 2896 24
FEM Ref. [43] 2633 25

different cases of constant stiffness shells; 𝑚 corresponds to the number
of axial waves of a given natural mode shape, and 𝑛 corresponds to the
number of circumferential waves. The results are very close to those
found in the literature.

To close this section, a comparison of the critical values of free
stream static pressure, 𝑝𝑐𝑟𝑖𝑡, that result in the occurrence of aerody-
namic flutter is made. Results are presented in Tables 4 and 5.

The values of the critical free stream pressure computed by the
different authors differ more than in the natural frequencies case.
However, the critical stream pressure values of the present approach
are still reasonably close to those found by other authors, with the
absolute value of the relative difference ranging from 0.2% to 7%. A
difference between the number of waves of the critical flutter mode
shape is also observed. This difference may come from the fact that the
corresponding 𝑝𝑐𝑟𝑖𝑡 is sometimes close to the values of 𝑝𝑐𝑟𝑖𝑡 of modes
with a different number of circumferential waves and a slight difference
in the mathematical/numerical model may result in different modes
achieving flutter first. It is also found that the critical flutter modes
may correspond to mode shapes with a high number of circumferential
waves and, therefore, this should be considered when choosing the
number of shape functions used from the ℎ set.
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Table 6
Shell and airflow parameters for the performed tests.

Young’s modulus 𝐸11 126.3 GPa
Young’s modulus 𝐸22 8.765 GPa
Shear modulus 𝐺12 4.92 GPa
Poisson’s ratio 𝜈12 0.334
Shell’s volumetric mass 𝜌 1557 kg∕m3

Shell’s thickness ℎ 0.0001015 m
Shell’s axial length 𝑙 0.406 m
Shell’s radius 𝑅 0.203 m
Mach 𝑀 3.5
Air’s adiabatic exponent 𝛾 1.4
Air’s speed of sound 𝑎∞ 213 m∕s

4. Supersonic flutter of fibre reinforced composite laminated
cylindrical shells

In this section, various fibre paths are tested with the objective
of finding curvilinear paths that enable an increase of the critical
free stream static pressure 𝑝𝑐𝑟𝑖𝑡 associated with aeroelastic instabilities.
Unless stated otherwise, it is considered that the circular cylindrical
composite shell and the airflow have the properties stated in Table 6.
These parameters were chosen to be similar to those found in Refs. [32,
37,43,72]. There is no viscous or structural damping and the shell is
composed of 12 layers [±𝜓]𝑠 with a balanced and symmetric setup,
where the tow angle 𝜓 might be constant or a function of the axial
coordinate. No manufacturing defects and material imperfections are
considered. More fibre paths than those found in this section were
tested, the results shown are a selection.

4.1. Shells with clamped boundary conditions

First, numerical tests were performed in order to find lamination
parameters that increase the value of 𝑝𝑐𝑟𝑖𝑡. C-C boundary conditions are
considered. Five fibre paths were tested: constant angle, linear variation
of fibre orientation (with 1 and 2 segments) and constant in-plane
curvature (with 1 and 2 segments). The last four are represented in
Fig. 2.

Fibre paths must have a turning radius 𝑟𝜓 that respects a minimum
value. This is important to avoid defects promoted by in-plane bending
deformations, such as local buckling and wrinkling of the inner edges
of the fibres, which can cause a decline in mechanical properties.
Therefore, in the performed tests, a minimum turning radius of 635 mm
is considered (which is a typical value for the minimum turning radius

of a 32 tow course with 3.175 mm wide tows [11]). In addition to that,
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Fig. 4. 𝑝𝑐𝑟𝑖𝑡 and 𝑛𝑐𝑟𝑖𝑡 for various values of 𝑇0 of a CSCL cylindrical shell.
to avoid problematic scenarios in manufacturing, the tow angle 𝜓 at
any point of the structure respects the condition 𝜓 ∈ [0◦, 85◦].

Also, as seen in the model validation, flutter occurs for mode shapes
with high numbers of circumferential waves, and, therefore, tests are
performed with a number of shape functions that allow up to 𝑛 = 25
circumferential waves. For the 𝑇0 and 𝑇1 parameters of each type of
fibre path that resulted in the highest value of 𝑝𝑐𝑟𝑖𝑡, an additional
test was performed with a number of shape functions that allowed
up to 𝑛 = 40 circumferential waves, to further validate the results.
Furthermore, the number of shape functions used from the 𝑔 and 𝑓
set are, respectively, 𝑝𝑚 = 8 and 𝑝𝑜 = 8. These parameters were
chosen to achieve an acceptable balance between processing time and
result accuracy. Naturally, mode shapes with an extremely high number
of circumferential (more than 25) and axial waves are not reliably
represented, except for the previously mentioned cases where higher
values of 𝑛 were employed in order to verify the results accuracy.

Lastly, to calculate the critical free stream pressure 𝑝𝑐𝑟𝑖𝑡 at which
flutter occurs, plots are developed where the eigenvalues 𝛺 of gener-
alised eigenvalue problem (29) are calculated for various values of 𝑝∞.
The eigenvalue problem is solved for values of 𝑝∞ with a resolution
of 20 Pa. Therefore, calculations are made for 𝑝∞ ∈ {0, 20, 40, 60,
80, 100, . . . } [Pa]. Then, a linear interpolation is made between the
calculated values to find 𝛺 for any 𝑝∞.

An iterative process, where fibre path parameters 𝑇0 and 𝑇1 are
progressively tweaked, is adopted to find fibre paths that increase
the value of 𝑝𝑐𝑟𝑖𝑡. Since not all possibilities are explored, the highest
value found for 𝑝𝑐𝑟𝑖𝑡 is not necessarily the highest possible. By applying
an optimisation process [3], further improvements may eventually
be achieved. Nonetheless, higher values of 𝑝𝑐𝑟𝑖𝑡 are obtained using
curvilinear instead of straight fibres.

4.1.1. Constant stiffness composite laminates
Firstly, the tow angle of a straight fibre that enables the biggest in-

crease of 𝑝𝑐𝑟𝑖𝑡 was searched for. For these paths, the only parameter that
exists is 𝑇0. Various values of 𝑇0 were tested, by sequential increments
of 10◦, and then, around high values of 𝑝𝑐𝑟𝑖𝑡, 𝑇0 was varied by 5◦. The
results obtained can be seen in Fig. 4.

A maximum value of 𝑝𝑐𝑟𝑖𝑡 = 1474 Pa was obtained for 𝑇0 = 55◦. The
corresponding shapes – real part, imaginary part and absolute value
– are represented in Fig. 5; the number of circumferential waves is
8

𝑛𝑐𝑟𝑖𝑡 = 20. On the other hand, the minimum value of pressure obtained
is 𝑝𝑐𝑟𝑖𝑡 = 32 Pa for 𝑇0 = 40◦, corresponding to a shape with a number
of circumferential waves equal to 𝑛𝑐𝑟𝑖𝑡 = 3. This shape can be seen
in Fig. 6. In the figure captions, designation ‘‘flutter mode shape’’ is
employed to designate shapes assumed by the shell when flutter arises;
this designation will be often applied in the article.

It is noticeable that a small change in tow angle can originate a
significant difference in 𝑝𝑐𝑟𝑖𝑡. Additionally, it is seen that for different
values of 𝑇0, flutter can be achieved by modes with different numbers
of circumferential and axial waves, hence with different shapes. The
variation of the critical flutter pressure with 𝑇0 will be explained in a
sub-section below, where the modes of vibration of modes that couple
in flutter are addressed.

When dealing with curvilinear fibre paths, the value of 𝑝𝑐𝑟𝑖𝑡 = 1474
Pa is used as a benchmark, with the goal of finding tow paths that
surpass this value.

4.1.2. VSCL with linear angle variation paths: 1 segment
The linear angle variation type fibre path, with one segment, is anal-

ysed in this section. The starting parameters for the iteration process
were ⟨55◦, 55◦⟩, which correspond to the constant angle fibre path that
led to the highest critical pressure in the former section. From there,
parameter tweaks were progressively made in search for an increase of
the value of 𝑝𝑐𝑟𝑖𝑡. The results of the tests performed are presented in
Table 7, along with the minimum turning radius 𝑟𝜓 of each path.

It is seen in Table 7 that the values of 𝑝𝑐𝑟𝑖𝑡 can be significantly
increased by using curvilinear fibres. The highest value with an admis-
sible curvature radius is highlighted and corresponds to the ⟨40◦, 80◦⟩
fibre path. Comparing the maximum values of 𝑝𝑐𝑟𝑖𝑡 obtained with the
straight fibre path, 1474 Pa, and with this curvilinear fibre path, 2368
Pa, a relative increase of 60.7% is observed. The flutter mode shape
corresponding to the ⟨40◦, 80◦⟩ fibre path is plotted in Fig. 7. This shape
contains 𝑛𝑐𝑟𝑖𝑡 = 16 circumferential waves.

As a verification test, the values of 𝑝𝑐𝑟𝑖𝑡 for ⟨60◦, 50◦⟩ and ⟨50◦, 60◦⟩
were calculated and the same result, 𝑝𝑐𝑟𝑖𝑡 = 1697 Pa, was obtained.
This is as expected, since the paths are similar, but symmetric with
respect to a longitudinal line. Additionally, Table 7 contains paths
deemed to be invalid, for not respecting the minimum turning radius
manufacturing constraint. From these paths, the highest value obtained
is 𝑝 = 3287 Pa, which further shows the potential of the variable
𝑐𝑟𝑖𝑡
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Fig. 5. Critical flutter mode shape of a CSCL shell with 𝑇0 = 55◦(𝑛𝑐𝑟𝑖𝑡 = 20).
Fig. 6. Critical flutter mode shape of a CSCL shell with 𝑇0 = 40◦(𝑛𝑐𝑟𝑖𝑡 = 3).
Fig. 7. Critical flutter mode shape of a VSCL shell with a ⟨40◦ , 80◦⟩ fibre path (𝑛𝑐𝑟𝑖𝑡 = 16).
stiffness concept for the improvement of the critical flutter speed, even
if, with the manufacturing constraints here accepted, the fibre path
corresponding to the latter value is not achievable. A justification for
the improvements in 𝑝𝑐𝑟𝑖𝑡 is provided in Section 4.1.6 of this paper.

4.1.3. VSCL with constant in-plane curvature paths: 1 segment
Now, constant in-plane curvature fibre paths, still one segment, are

examined. The path parameters corresponding to the highest value of
𝑝𝑐𝑟𝑖𝑡 obtained for a linear angle variation fibre path, one segment, was
used as a starting point for the iterative procedure. The results obtained
in these tests are given in Table 8.

The value of 𝑝𝑐𝑟𝑖𝑡 for a ⟨40◦, 80◦⟩𝑐 tow path is equal to 2149 Pa.
This value is lower than the one corresponding to a shell with the
linear angle variation path ⟨40◦, 80◦⟩, which is equal to 𝑝𝑐𝑟𝑖𝑡 = 2368
Pa. Naturally, even though parameters 𝑇 and 𝑇 have the same value,
9

0 1
the two paths differ, in this case leading to a worse performance of
the constant in-plane curvature fibre path, one segment. The relative
difference in the value of 𝑝𝑐𝑟𝑖𝑡 is −8.8%.

However, Table 8 reveals that higher values of 𝑝𝑐𝑟𝑖𝑡 were found for
the constant in-plane curvature tow paths than for the linear angle
variation paths, both with one segment. One reason for this is the
fact that a bigger difference between 𝑇0 and 𝑇1 can be achieved using
the constant in-plane curvature tow path, since the manufacturing
constraint restricts less severely this type of path. Therefore, for the
same minimum turning radius allowed, there is more freedom on the
parameters choices.

The highest value of critical free stream pressure obtained, 𝑝𝑐𝑟𝑖𝑡 =
3164 Pa, is highlighted; it corresponds to the ⟨25◦, 85◦⟩𝑐 path. This value
of 𝑝𝑐𝑟𝑖𝑡 corresponds to an increase of 114.7% in relation to the highest
value obtained for a constant angle path. The flutter mode shape is
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Fig. 8. Critical flutter mode shape of a VSCL shell with a ⟨25◦ , 85◦⟩𝑐 fibre path (𝑛𝑐𝑟𝑖𝑡 = 16).
Table 7
Critical free stream pressure 𝑝𝑐𝑟𝑖𝑡 for shells with linear angle variation fibre paths
⟨𝑇0 , 𝑇1⟩.
𝑇0 [◦] 𝑇1 [◦] 𝑟𝜓 [m] 𝑝𝑐𝑟𝑖𝑡 [Pa]

55 55 – 1474
60 50 3.6189 1697
50 60 3.6189 1697
50 80 1.2063 1922
40 80 0.7592 2368
40 75 0.8676 2328
40 85 0.6748 2280

Inadmissible Paths (𝑟𝜓 < 635 mm):

𝑇0 [◦] 𝑇1 [◦] 𝑟𝜓 [m] 𝑝𝑐𝑟𝑖𝑡 [Pa]

30 80 0.5372 2805
20 80 0.4126 3237

Table 8
Critical free stream pressure 𝑝𝑐𝑟𝑖𝑡 for shells with constant in-plane curvature paths
⟨𝑇0 , 𝑇1⟩𝑐 .
𝑇0 [◦] 𝑇1 [◦] 𝑟𝜓 [m] 𝑝𝑐𝑟𝑖𝑡 [Pa]

40 80 1.1871 2149
30 85 0.8182 2909
25 85 0.7078 3164
25 80 0.7222 3134

Table 9
Critical free stream pressure 𝑝𝑐𝑟𝑖𝑡 for shells with linear angle variation fibre paths
⟨𝑇1 , 𝑇0 , 𝑇1⟩.
𝑇0 [◦] 𝑇1 [◦] 𝑟𝜓 [m] 𝑝𝑐𝑟𝑖𝑡 [Pa]

30 50 0.6715 323
55 80 0.8111 1803
55 85 0.6759 1816
60 85 0.9305 1659

Inadmissible Paths (𝑟𝜓 < 635 mm):

𝑇0 [◦] 𝑇1 [◦] 𝑟𝜓 [m] 𝑝𝑐𝑟𝑖𝑡 [Pa]

80 30 0.2686 119
30 80 0.2686 2896

graphically represented in Fig. 8, which corresponds to a mode shape
with 𝑛𝑐𝑟𝑖𝑡 = 16 circumferential waves, similarly to the one obtained in
the ⟨40◦, 80◦⟩ tow path.

4.1.4. VSCL with linear angle variation paths: 2 segments
The design flexibility of VSCL shells can be further improved by

dividing the fibre path into different sections, each with its own shape
and 𝑇0 and 𝑇1 parameters, as long as the continuity of the fibre is
ensured. This concept is now tested with paths with two anti-symmetric
segments.
10
Firstly, tests were performed for fibre paths with two segments with
linear angle variation ⟨𝑇1, 𝑇0, 𝑇1⟩, whose results are seen in Table 9.
Higher values of 𝑝𝑐𝑟𝑖𝑡 were achieved with the linear angle variation
fibre paths with 1 segment. This is due to that fact that, while the
fibre path allows to create more complex paths, the minimum turning
radius manufacturing constraint further restricts the difference that
the parameters 𝑇0 and 𝑇1 can have between them, which may not be
beneficial to the structure’s mechanical properties. For instance, for the
parameters of 𝑇0 = 30◦and 𝑇1 = 80◦, the fibre path with 1 segment has
a minimum turning radius of 𝑟𝜓 = 537.2 mm, while the path with 2
segments has a minimum turning radius of 𝑟𝜓 = 268.6 mm, which is
considerably lower. Table 9 contains inadmissible paths, due to their
turning radius, that further illustrate this point. A value of 𝑝𝑐𝑟𝑖𝑡 = 2896
Pa was obtained for the path ⟨80◦, 30◦, 80◦⟩, which is a higher result
than those found for the paths with 1 segment. Unfortunately, as it was
stated, manufacturing shells with this fibre path would likely result out-
of-plane tow buckling, that would harm the mechanical performance of
the structure. Analysing the inadmissible paths, it is seen that different
values of 𝑝𝑐𝑟𝑖𝑡 are obtained by swapping the values between 𝑇0 and 𝑇1,
as it would be expected. In contrast with the fibre paths with 1 segment,
fibre paths with 2 segments with swapped 𝑇0 and 𝑇1 parameters are not
symmetric versions of each other and, therefore, the obtained value of
𝑝𝑐𝑟𝑖𝑡 should not be the same.

Regarding the admissible paths, the biggest value of 𝑝𝑐𝑟𝑖𝑡 was ob-
tained for the ⟨85◦, 55◦, 85◦⟩ fibre path, which is highlighted and corre-
sponds to 𝑝𝑐𝑟𝑖𝑡 = 1816 Pa. This is equal to a relative increase of 23.2%
regarding the highest obtained value of 𝑝𝑐𝑟𝑖𝑡 for the constant angle
paths. The corresponding flutter mode shape is graphically represented
in Fig. 9, and it has 𝑛𝑐𝑟𝑖𝑡 = 16 circumferential waves.

4.1.5. VSCL with constant in-plane curvature paths: 2 segments
Similarly to the previously tested fibre path, the constant in-plane

curvature path can also be divided into 2 segments. The results ob-
tained are presented in Table 10, where the pattern observed in pre-
vious tests repeats itself. Comparing the constant in-plane curvature
path with 1 and 2 segments, the one with 1 segment tends to yield
higher values, due to the fact that the manufacturing constraint of
the minimum turning radius, in the case of the path with 2 segments,
restricts more severely the values that the 𝑇0 and 𝑇1 parameters can
have. It is noticed that, in these cases, a bigger difference between the
𝑇0 and 𝑇1 parameters tends to increase the value of 𝑝𝑐𝑟𝑖𝑡.

The values of 𝑝𝑐𝑟𝑖𝑡 of the ⟨85◦, 55◦, 85◦⟩𝑐 fibre path and the
⟨85◦, 55◦, 85◦⟩ path were calculated and compared. For the constant
curvature one, the value of 𝑝𝑐𝑟𝑖𝑡 = 1779 Pa was obtained, which
corresponds to a relative difference of −2.0% in relation to the one
obtained for the linear angle variation path with 2 segments.

Even though the obtained value for the same parameters of 𝑇0 and
𝑇1 is lower for the constant in-plane curvature path than for the linear
angle variation path (both with 2 segments), this type of path has a
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Fig. 9. Critical flutter mode shape of a VSCL shell with a ⟨85◦ , 55◦ , 85◦⟩ fibre path (𝑛𝑐𝑟𝑖𝑡 = 16).
Fig. 10. Critical flutter mode shape of a VSCL shell with a ⟨85◦ , 45◦ , 85◦⟩𝑐 fibre path (𝑛𝑐𝑟𝑖𝑡 = 17).
Table 10
Critical free stream pressure 𝑝𝑐𝑟𝑖𝑡 for shells with constant in-plane curvature fibre paths
⟨𝑇1 , 𝑇0 , 𝑇1⟩𝑐 .
𝑇0 [◦] 𝑇1 [◦] 𝑟𝜓 [m] 𝑝𝑐𝑟𝑖𝑡 [Pa]

55 85 1.1466 1779
45 85 0.7022 2146
45 80 0.7310 2136
50 85 0.8820 1953

bigger flexibility in the definition of 𝑇0 and 𝑇1, which allowed achieving
better results overall. The biggest value of 𝑝𝑐𝑟𝑖𝑡 obtained for this type
of path is highlighted in Table 10 and is equal to 2146 Pa. This value
corresponds to the ⟨85◦, 45◦, 85◦⟩𝑐 path, and its critical flutter mode
shape has 𝑛𝑐𝑟𝑖𝑡 = 17 circumferential waves as represented in Fig. 10.

4.1.6. Frequency analysis
In the tests performed on clamped shells, a significant increase

of the value of 𝑝𝑐𝑟𝑖𝑡 was achieved by using curvilinear fibres. In this
section, the relation between the increase of 𝑝𝑐𝑟𝑖𝑡 and the imaginary
part of the eigenvalues Im(𝛺) is analysed.

The highest obtained value of 𝑝𝑐𝑟𝑖𝑡 for a constant angle fibre path
is 𝑝𝑐𝑟𝑖𝑡 = 1474 Pa and corresponds to the 𝜓 = 55◦path. In all tests
performed with curvilinear fibres, the ⟨25◦, 85◦⟩𝑐 fibre path was the one
that led to the highest value of 𝑝𝑐𝑟𝑖𝑡, specifically 𝑝𝑐𝑟𝑖𝑡 = 3164 Pa, which
represents a relative increase of 114.7% in relation to the highest value
obtained for a constant stiffness shell. These two fibre paths are chosen
for the comparison of oscillation frequencies.

Fig. 11 contains the Re(𝛺) and Im(𝛺) plots along 𝑝∞ of the critical
flutter mode and its corresponding coupled mode of the shells with
these two paths. In the Im(𝛺) plot, the evolution of the frequency of
the modes with 𝑝∞ can be analysed. As expected, the frequencies of
the modes start at different values and, at a higher value of 𝑝 , they
11

∞

converge. For 𝑝∞ = 0 Pa, null aerodynamic pressure, the value of Im(𝛺)
corresponds to the value of the natural frequencies of the shell without
fluid–structure interaction.

The natural frequencies of these modes are equal to 1844 rad/s and
1961 rad/s for the CSCL shell, and they are equal to 1052 rad/s and
1522 rad/s on the VSCL shell; hence, the difference between the two
values is significantly higher for the VSCL shell. This higher difference
results in higher values of 𝑝𝑐𝑟𝑖𝑡, since, in the Im(𝛺) plot, the values start
further apart and, therefore, require a higher value of 𝑝∞ to converge.
The natural mode shapes of vibration, without aerodynamic effects, of
all these cases are represented in Fig. 12.

The natural frequencies and mode shapes of vibration of the modes
involved in flutter are strongly affected by the fibre paths. Therefore,
the latter can be adjusted to increase the difference between of the
natural frequencies of vibration of those modes, leading to an increase
of the critical flutter pressure.

4.2. Simply supported boundary conditions comparison

In the previous section, it was demonstrated that curvilinear fibre
paths can be used to achieve larger critical flutter pressures in cylin-
drical shells with clamped edges. In this section, the highest values
of 𝑝𝑐𝑟𝑖𝑡 obtained for each type of fibre path with clamped edges are
compared to the same paths, with the same parameters and number
of shape functions used, but with simply supported edges. The goal is
to investigate how the boundary conditions affect the values of 𝑝𝑐𝑟𝑖𝑡
and associated flutter mode shapes. The results obtained can be seen
in Table 11.

It is generally seen that the values of 𝑝𝑐𝑟𝑖𝑡, for the same fibre path,
tend to decrease in shells with simply supported edges. Figs. 13–17
contain the graphical representation of the critical flutter mode shapes
of the shells with S-S boundary conditions and with the 𝜓 = 55◦,
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Fig. 11. 𝛺 versus 𝑝∞, critical flutter mode and corresponding coupled mode: (a) Re(𝛺), constant stiffness shell with 𝜓 = 55◦; (b) Im(𝛺), constant stiffness shell with 𝜓 = 55◦; (c)
Re(𝛺), shell with a ⟨25◦ , 85◦⟩𝑐 fibre path; (d) Im(𝛺), shell with a ⟨25◦ , 85◦⟩𝑐 fibre path.
Table 11
Critical free stream pressure 𝑝𝑐𝑟𝑖𝑡 and number of circumferential waves of the
corresponding mode 𝑛𝑐𝑟𝑖𝑡 for shells with C-C and S-S boundary conditions.

Fibre path C-C boundary conditions S-S boundary conditions

𝑛𝑐𝑟𝑖𝑡 𝑝𝑐𝑟𝑖𝑡
[Pa]

𝑛𝑐𝑟𝑖𝑡 𝑝𝑐𝑟𝑖𝑡
[Pa]

𝜓 = 55◦ 20 1474 18 1065
⟨40◦ , 80◦⟩ 16 2368 14 2111
⟨25◦ , 85◦⟩𝑐 16 3164 14 2870
⟨85◦ , 55◦ , 85◦⟩ 16 1816 15 1426
⟨85◦ , 45◦ , 85◦⟩𝑐 17 2146 15 1708

the ⟨40◦, 80◦⟩, the ⟨25◦, 85◦⟩𝑐 , the ⟨85◦, 55◦, 85◦⟩ and the ⟨85◦, 45◦, 85◦⟩𝑐
paths, and they can be compared with Figs. 5, 7, 8, 9 and 10 for
their shell counterpart with C-C boundary conditions, respectively.
The flutter mode shapes of each path, clamped and simply supported
boundary conditions, differ not only because in the cylindrical shells
with S-S edges slope is obvious at one of the extremities, but also
because the flutter mode shapes of S-S shells have a different number
of circumferential waves.

Furthermore, as an example, the Re(𝛺) and Im(𝛺) plot in relation
to 𝑝∞ for the ⟨40◦, 80◦⟩ path was obtained to compare the differences
between a shell with C-C boundary conditions and S-S boundary con-
ditions. The plots are present in Fig. 18. As it was previously stated,
12
it is seen that, in this case, Re(𝛺) becomes positive for a lower value
of 𝑝∞ for a shell with simply supported edges. Analysing the variation
of Im(𝛺), it is seen that lower values for the vibration frequency
under flutter were obtained for the shell with S-S boundary conditions.
However, the values of 𝑝𝑐𝑟𝑖𝑡 decrease much less (about 12%) then the
values of the wind-off natural frequencies of vibration (roughly 30%)
with the change to softer boundaries. This is an alert to the fact that
𝑝𝑐𝑟𝑖𝑡 is not necessarily increased by making a structure stiffer; to delay
couple mode flutter, it is important to increase the difference between
the natural frequencies of vibration of the modes that interact.

By reviewing Table 11, it is seen that, even though there is a
general decrease in the values of 𝑝𝑐𝑟𝑖𝑡 for the S-S boundary conditions,
the curvilinear fibre paths still result in higher values of 𝑝𝑐𝑟𝑖𝑡 than
the calculated constant angle path. This in spite of the fact that the
true potential of the variable stiffness concept is not fully explored in
Table 11, because, while a certain fibre path might be the ideal for a
shell with C-C boundary conditions, it is not necessarily ideal path for
a shell with S-S boundary conditions.

Table 12 contains the values of 𝑝𝑐𝑟𝑖𝑡 for 3 different linear angle vari-
ation paths of shells with C-C boundary conditions and S-S boundary
conditions. These 3 paths have the same value for the 𝑇0 parameter, but
the 𝑇1 parameter was slightly tweaked with the intent to understand if
the highest value of 𝑝𝑐𝑟𝑖𝑡 is obtained for the same fibre path parameters
in shells with different boundary conditions. A fuller parametric study
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Fig. 12. Natural mode shapes of vibration and their corresponding natural frequencies and type of fibre path.
Fig. 13. Critical flutter mode shape of a CSCL shell with 𝑇0 = 55◦and S-S boundary conditions (𝑛𝑐𝑟𝑖𝑡 = 18).
is not carried out, because it is not the goal of this section to find the
fibre paths with the highest possible values of 𝑝𝑐𝑟𝑖𝑡 when boundary
conditions are S-S, but – as said – to investigate how the boundary
conditions affect the values of 𝑝𝑐𝑟𝑖𝑡 and associated flutter mode shapes.

Of the 3 tested paths, the highest value of 𝑝𝑐𝑟𝑖𝑡 was obtained with
the ⟨40◦, 80◦⟩ tow path in the case of the shell with C-C boundary
conditions, and it was obtained with the ⟨40◦, 85◦⟩ tow path in the
case of the shell with S-S boundary conditions, thus showing that the
13
ideal path to increase the value of 𝑝𝑐𝑟𝑖𝑡 is not the same for shells with
different boundary conditions.

The various numerical tests show that the effect of the fibre path on
the value of critical flutter pressure is complex to predict. The solution
to improve the shells behaviour against flutter does not resume to
trying to adjust the shells stiffness to avoid a certain flutter shape mode,
since the critical flutter mode shape may change from fibre path to fibre
path, or with a change in the boundary conditions.
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Fig. 14. Critical flutter mode shape of a VSCL shell with a ⟨40◦ , 80◦⟩ tow path and S-S boundary conditions (𝑛𝑐𝑟𝑖𝑡 = 14).

Fig. 15. Critical flutter mode shape of a VSCL shell with a ⟨25◦ , 85◦⟩𝑐 tow path and S-S boundary conditions (𝑛𝑐𝑟𝑖𝑡 = 14).

Fig. 16. Critical flutter mode shape of a VSCL shell with a ⟨85◦ , 55◦ , 85◦⟩ tow path and S-S boundary conditions (𝑛𝑐𝑟𝑖𝑡 = 15).

Fig. 17. Critical flutter mode shape of a VSCL shell with a ⟨85◦ , 45◦ , 85◦⟩𝑐 tow path and S-S boundary conditions (𝑛𝑐𝑟𝑖𝑡 = 15).
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Fig. 18. 𝛺 variation along 𝑝∞ of the critical flutter mode and its corresponding coupled mode of a shell with a ⟨40◦ , 80◦⟩ tow path: (a) Re(𝛺), C-C shell; (b) Im(𝛺) C-C shell;
(c) Re(𝛺) S-S shell; (d) Im(𝛺) S-S shell.
Table 12
Critical free stream pressure 𝑝𝑐𝑟𝑖𝑡 for shells with C-C and S-S boundary conditions and
linear angle variation paths.
⟨𝑇0 , 𝑇1⟩

Fibre path C-C boundary conditions S-S boundary conditions
𝑝𝑐𝑟𝑖𝑡 [Pa] 𝑝𝑐𝑟𝑖𝑡 [Pa]

⟨40◦ , 80◦⟩ 2368 2111
⟨40◦ , 85◦⟩ 2280 2177
⟨40◦ , 75◦⟩ 2328 2060

5. Conclusions

A model to determine the critical values of free stream static pres-
sure, 𝑝𝑐𝑟𝑖𝑡, on thin, variable stiffness composite circular cylindrical
shells under supersonic flow was presented. In the numerical tests,
constant stiffness (CSCL) and variable stiffness (VSCL) shells with four
types of fibre paths were compared. The minimum turning radius
manufacturing constraint was considered on the VSCL shells.

Firstly, shells clamped at both ends were analysed. CSCL shells were
used as a benchmark to surpass by shells with curvilinear fibres. A
relative increase of around 115% in relation to the constant stiffness
shell with the highest critical pressure was obtained using curvilinear
fibres. Higher values of critical pressure were obtained for fibre paths
15
that have large differences between the fibre path parameters 𝑇0 and
𝑇1. The manufacturing curvature constraint proved to significantly limit
the possible increase of 𝑝𝑐𝑟𝑖𝑡; if this constraint can be reduced, even
higher values of 𝑝𝑐𝑟𝑖𝑡 will be obtained.

VSCL with paths defined over one and two segments were exam-
ined. The manufacturing curvature constraint restricted more severely
the choice of fibre path parameters in the two segment tow paths
here implemented. Hence, even though these paths possess more com-
plex geometries than one segment tow paths, lower maximum criti-
cal pressures were obtained for the tow paths with two segments as
implemented here than for the ones with one segment.

For the same values of parameters 𝑇0 and 𝑇1, linear angle variation
paths provide larger critical pressures than constant ‘in-plane’ curvature
paths. However, both for one and two segment paths, higher critical
pressures were obtained with constant curvature paths, rather than
using linear angle variation. Again, this occurred because the linear
angle variation path was more restricted by the curvature constraint.

The natural frequencies of vibration, without airflow, of the CSCL
and VSCL shells for which 𝑝𝑐𝑟𝑖𝑡 achieved the highest values were
compared. The difference between the values of the natural frequencies
of the modes that couple when flutter occurs were higher in the shell
with a curvilinear fibre path. This explains why using curvilinear fibres
led to an increase of the value of 𝑝 .
𝑐𝑟𝑖𝑡
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Finally, shells with simply supported edges were compared with
clamped shells. The change in boundary conditions not only altered
the value of 𝑝𝑐𝑟𝑖𝑡, but also the critical mode shape that achieved flutter
first. The ideal fibre path for a shell with C-C boundary conditions
may not be ideal for a shell with S-S boundary conditions, because
the relation between the fibre orientation at the boundaries and the
stiffness changes with the change in the boundary constrains.

In summary, it has been proven that variable stiffness composite
laminates present a great capacity to postpone aeroelastic supersonic
flutter of circular cylindrical shells. Nonetheless, as a follow up study,
it would be interesting to implement an optimisation algorithm in
conjunction with a more general fibre path definition, to increase even
further the values of critical flutter pressure achieved using VSCL.
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Appendix A

The stiffness and mass matrices can be written as

𝐊 =
⎡

⎢

⎢

⎣

𝐊𝐮𝐮 𝐊𝐮𝐯 𝐊𝐮𝐰
𝐊𝐯𝐮 𝐊𝐯𝐯 𝐊𝐯𝐰
𝐊𝐰𝐮 𝐊𝐰𝐯 𝐊𝐰𝐰

⎤

⎥

⎥

⎦

(30)

𝐌 =
⎡

⎢

⎢

⎣

𝐌𝐮𝐮 𝟎 𝟎
𝟎 𝐌𝐯𝐯 𝟎
𝟎 𝟎 𝐌𝐰𝐰

⎤

⎥

⎥

⎦

(31)

ith

𝑢𝑢,𝑘𝑜 =
2𝑅
𝑙 ∫

1

−1

d𝑔𝑢𝑖
d𝜉

𝐴11
d𝑔𝑢𝑗
d𝜉

d𝜉 ∫

2𝜋

0
ℎ𝑢𝑚ℎ𝑢𝑛 d𝜃

−2∫

1

−1
𝑔𝑢𝑖𝐴16

d𝑔𝑢𝑗
d𝜉

d𝜉 ∫

2𝜋

0
ℎ𝑢𝑚

dℎ𝑢𝑛
d𝜃

d𝜃

+ 𝑙 1
𝑔𝑢𝑖𝐴66𝑔𝑢𝑗 d𝜉

2𝜋 dℎ𝑢𝑚 dℎ𝑢𝑛 d𝜃

(32)
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2𝑅 ∫−1 ∫0 d𝜃 d𝜃
𝐾𝑢𝑣,𝑘𝑜 =
2𝑅
𝑙 ∫

1

−1

d𝑔𝑢𝑖
d𝜉

𝐴16
d𝑔𝑣𝑗
d𝜉

d𝜉 ∫

2𝜋

0
ℎ𝑢𝑚ℎ𝑣𝑛 d𝜃

−∫

1

−1
𝑔𝑢𝑖(𝐴12 + 𝐴66)

d𝑔𝑣𝑗
d𝜉

d𝜉 ∫

2𝜋

0
ℎ𝑢𝑚

dℎ𝑣𝑛
d𝜃

d𝜃

+ 𝑙
2𝑅 ∫

1

−1
𝑔𝑢𝑖𝐴26𝑔𝑣𝑗 d𝜉 ∫

2𝜋

0

dℎ𝑢𝑚
d𝜃

dℎ𝑣𝑛
d𝜃

d𝜃

(33)

𝑢𝑤,𝑘𝑜 = −∫

1

−1
𝑔𝑢𝑖𝐴12

d𝑓𝑤𝑗
d𝜉

d𝜉 ∫

2𝜋

0
ℎ𝑢𝑚ℎ𝑤𝑛 d𝜃

− 𝑙
2𝑅 ∫

1

−1
𝑔𝑢𝑖𝐴26𝑓𝑤𝑗 d𝜉 ∫

2𝜋

0
ℎ𝑢𝑚

dℎ𝑤𝑛
d𝜃

d𝜃
(34)

𝑣𝑢,𝑘𝑜 =
2𝑅
𝑙 ∫

1

−1

d𝑔𝑣𝑖
d𝜉

𝐴16
d𝑔𝑢𝑗
d𝜉

d𝜉 ∫

2𝜋

0
ℎ𝑣𝑚ℎ𝑢𝑛 d𝜃

−∫

1

−1
𝑔𝑣𝑖(𝐴12 + 𝐴66)

d𝑔𝑢𝑗
d𝜉

d𝜉 ∫

2𝜋

0
ℎ𝑣𝑚

dℎ𝑢𝑛
d𝜃

d𝜃

+ 𝑙
2𝑅 ∫

1

−1
𝑔𝑣𝑖𝐴26𝑔𝑢𝑗 d𝜉 ∫

2𝜋

0

dℎ𝑣𝑚
d𝜃

dℎ𝑢𝑛
d𝜃

d𝜃

(35)

𝑣𝑣,𝑘𝑜 =
2𝑅
𝑙 ∫

1

−1

d𝑔𝑣𝑖
d𝜉

𝐴66
d𝑔𝑣𝑗
d𝜉

d𝜉 ∫

2𝜋

0
ℎ𝑣𝑚ℎ𝑣𝑛 d𝜃

−2∫

1

−1
𝑔𝑣𝑖𝐴26

d𝑔𝑣𝑗
d𝜉

d𝜉 ∫

2𝜋

0
ℎ𝑣𝑚

dℎ𝑣𝑛
d𝜃

d𝜃

+ 𝑙
2𝑅 ∫

1

−1
𝑔𝑣𝑖𝐴22𝑔𝑣𝑗 d𝜉 ∫

2𝜋

0

dℎ𝑣𝑚
d𝜃

dℎ𝑣𝑛
d𝜃

d𝜃

+ 2
𝑙𝑅 ∫

1

−1

d𝑔𝑣𝑖
d𝜉

𝐷66
d𝑔𝑣𝑗
d𝜉

d𝜉 ∫

2𝜋

0
ℎ𝑣𝑚ℎ𝑣𝑛 d𝜃

− 2
𝑅2 ∫

1

−1
𝑔𝑣𝑖𝐷26

d𝑔𝑣𝑗
d𝜉

d𝜉 ∫

2𝜋

0
ℎ𝑣𝑚

dℎ𝑣𝑛
d𝜃

d𝜃

+ 𝑙
2𝑅3 ∫

1

−1
𝑔𝑣𝑖𝐷22𝑔𝑣𝑗 d𝜉 ∫

2𝜋

0

dℎ𝑣𝑚
d𝜃

dℎ𝑣𝑛
d𝜃

d𝜃

(36)

𝐾𝑣𝑤,𝑘𝑜 = − 4
𝑙2 ∫

1

−1

d𝑔𝑣𝑖
d𝜉

𝐷16
d2𝑓𝑤𝑗
d𝜉2

d𝜉 ∫

2𝜋

0
ℎ𝑣𝑚ℎ𝑤𝑛 d𝜃

− 𝑙
2𝑅3 ∫

1

−1
𝑔𝑣𝑖𝐷22𝑓𝑤𝑗 d𝜉 ∫

2𝜋

0

dℎ𝑣𝑚
d𝜃

d2ℎ𝑤𝑛
d𝜃2

d𝜃

− 3
𝑅2 ∫

1

−1
𝑔𝑣𝑖𝐷26

d𝑓𝑤𝑗
d𝜉

d𝜉 ∫

2𝜋

0

dℎ𝑣𝑚
d𝜃

dℎ𝑤𝑛
d𝜃

d𝜃

2
𝑙𝑅 ∫

1

−1

d𝑔𝑣𝑖
d𝜉

(𝐷12 + 2𝐷66)
d𝑓𝑤𝑗
d𝜉

d𝜉 ∫

2𝜋

0
ℎ𝑣𝑚

dℎ𝑤𝑛
d𝜃

d𝜃

−∫

1

−1
𝑔𝑣𝑖𝐴26

d𝑓𝑤𝑗
d𝜉

d𝜉 ∫

2𝜋

0
ℎ𝑣𝑚ℎ𝑤𝑛 d𝜃

− 𝑙
2𝑅 ∫

1

−1
𝑔𝑣𝑖𝐴22𝑓𝑤𝑗 d𝜉 ∫

2𝜋

0
ℎ𝑣𝑚

dℎ𝑤𝑛
d𝜃

d𝜃

(37)

𝑤𝑢,𝑘𝑜 = ∫

1

−1
𝑓𝑤𝑖𝐴12

d𝑔𝑢𝑗
d𝜉

d𝜉 ∫

2𝜋

0
ℎ𝑤𝑚ℎ𝑢𝑛 d𝜃

+ 𝑙
2𝑅 ∫

1

−1
𝑓𝑤𝑖𝐴26𝑔𝑢𝑗 d𝜉 ∫

2𝜋

0
ℎ𝑤𝑚

dℎ𝑢𝑛
d𝜃

d𝜃
(38)

𝐾𝑤𝑣,𝑘𝑜 =
4
𝑙2 ∫

1

−1

d𝑓𝑤𝑖
d𝜉

𝐷16
d2𝑔𝑣𝑗
d𝜉2

d𝜉 ∫

2𝜋

0
ℎ𝑤𝑚ℎ𝑣𝑛 d𝜃

+ 𝑙
2𝑅3 ∫

1

−1
𝑓𝑤𝑖𝐷22𝑔𝑣𝑗 d𝜉 ∫

2𝜋

0

dℎ𝑤𝑚
d𝜃

d2ℎ𝑣𝑛
d𝜃2

d𝜃

+ 3
𝑅2 ∫

1

−1
𝑓𝑤𝑖𝐷26

d𝑔𝑣𝑗
d𝜉

d𝜉 ∫

2𝜋

0

dℎ𝑤𝑚
d𝜃

dℎ𝑣𝑛
d𝜃

d𝜃

2
𝑙𝑅 ∫

1

−1

d𝑓𝑤𝑖
d𝜉

(𝐷12 + 2𝐷66)
d𝑔𝑣𝑗
d𝜉

d𝜉 ∫

2𝜋

0
ℎ𝑤𝑚

dℎ𝑣𝑛
d𝜃

d𝜃

+∫

1

−1
𝑓𝑤𝑖𝐴26

d𝑔𝑣𝑗
d𝜉

d𝜉 ∫

2𝜋

0
ℎ𝑤𝑚ℎ𝑣𝑛 d𝜃

+ 𝑙 1
𝑓𝑤𝑖𝐴22𝑔𝑣𝑗 d𝜉

2𝜋
ℎ𝑤𝑚

dℎ𝑣𝑛 d𝜃

(39)
2𝑅 ∫−1 ∫0 d𝜃
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𝐾𝑤𝑤,𝑘𝑜 =
8𝑅
𝑙3 ∫

1

−1

d2𝑓𝑤𝑖
d𝜉2

𝐷11
d2𝑓𝑤𝑗
d𝜉2

d𝜉 ∫

2𝜋

0
ℎ𝑤𝑚ℎ𝑤𝑛 d𝜃

−16
𝑙2 ∫

1

−1

d𝑓𝑤𝑖
d𝜉

𝐷16
d2𝑓𝑤𝑗
d𝜉2

d𝜉 ∫

2𝜋

0
ℎ𝑤𝑚

dℎ𝑤𝑛
d𝜃

d𝜃

+ 4
𝑙𝑅 ∫

1

−1

d𝑓𝑤𝑖
d𝜉

(𝐷12 + 2𝐷66)
d𝑓𝑤𝑗
d𝜉

d𝜉 ∫

2𝜋

0

dℎ𝑤𝑚
d𝜃

dℎ𝑤𝑛
d𝜃

d𝜃

− 4
𝑅2 ∫

1

−1
𝑓𝑤𝑖𝐷26

d𝑓𝑤𝑗
d𝜉

d𝜉 ∫

2𝜋

0

dℎ𝑤𝑚
d𝜃

d2ℎ𝑤𝑛
d𝜃2

d𝜃

+ 𝑙
2𝑅3 ∫

1

−1
𝑓𝑤𝑖𝐷22𝑓𝑤𝑗 d𝜉 ∫

2𝜋

0

d2ℎ𝑤𝑚
d𝜃2

d2ℎ𝑤𝑛
d𝜃2

d𝜃

+ 𝑙
2𝑅 ∫

1

−1
𝑓𝑤𝑖𝐴22𝑓𝑤𝑗 d𝜉 ∫

2𝜋

0
ℎ𝑤𝑚ℎ𝑤𝑛 d𝜃

(40)

𝑀𝑢𝑢,𝑘𝑜 =
𝑙𝑅
2
𝜌ℎ∫

1

−1
𝑔𝑢𝑖𝑔𝑢𝑗 d𝜉 ∫

2𝜋

0
ℎ𝑢𝑚ℎ𝑢𝑛 d𝜃 (41)

𝑀𝑣𝑣,𝑘𝑜 =
𝑙𝑅
2
𝜌ℎ∫

1

−1
𝑔𝑣𝑖𝑔𝑣𝑗 d𝜉 ∫

2𝜋

0
ℎ𝑣𝑚ℎ𝑣𝑛 d𝜃 (42)

𝑤𝑤,𝑘𝑜 =
𝑙𝑅
2
𝜌ℎ∫

1

−1
𝑓𝑤𝑖𝑓𝑤𝑗 d𝜉 ∫

2𝜋

0
ℎ𝑤𝑚ℎ𝑤𝑛 d𝜃 (43)

By way of example, Eq. (32) is used to explain the relations between
he diverse indexes. Here, symbols 𝑘 and 𝑜 identify a term of the matrix;
oth vary from 1 to 𝑝𝑚 ⋅𝑝𝑡. Symbols 𝑖 and 𝑗 vary from 1 to 𝑝𝑚 according
o the following rules

= Int 𝑘 − 1
𝑝𝑡

+ 1 (44)

𝑗 = Int 𝑜 − 1
𝑝𝑡

+ 1 (45)

where Int(∙) is an operator that rounds down a number (a rational
number, in this case) to an integer. Symbols 𝑚 and 𝑛 vary from 1 to
𝑝𝑡 according to

𝑚 = 𝑘 − 𝑝𝑡 ⋅ (𝑖 − 1) (46)

𝑛 = 𝑜 − 𝑝𝑡 ⋅ (𝑗 − 1) (47)

Appendix B

By applying Galerkin’s method, the terms on the right-hand side
of Eq. (13) lead to the following matrices that are due to the fluid–
structure interaction,

𝐅𝐏𝐢𝐬𝐭𝐨𝐧 𝟏 =
⎡

⎢

⎢

⎣

𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝐅𝐬

⎤

⎥

⎥

⎦

,𝐅𝐏𝐢𝐬𝐭𝐨𝐧 𝟐 =
⎡

⎢

⎢

⎣

𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝐅𝐮

⎤

⎥

⎥

⎦

(48)

with

𝐹𝑠,𝑘𝑜 =
𝛾𝑝∞𝑀2
√

𝑀2 − 1
⋅ 𝑅∫

1

−1
𝑓𝑤𝑖

d𝑓𝑤𝑗
d𝜉

d𝜉 ∫

2𝜋

0
ℎ𝑤𝑚ℎ𝑤𝑛 d𝜃

−
𝛾𝑝∞𝑀2
√

𝑀2 − 1
⋅

1

2𝑅
√

𝑀2 − 1
⋅
𝑙𝑅
2 ∫

1

−1
𝑓𝑤𝑖𝑓𝑤𝑗 d𝜉 ∫

2𝜋

0
ℎ𝑤𝑚ℎ𝑤𝑛 d𝜃

(49)

and

𝐹𝑢,𝑘𝑜 =
𝛾𝑝∞𝑀2
√

𝑀2 − 1
⋅

1
𝑀𝑎∞

⋅
(

𝑀2 − 2
𝑀2 − 1

)

⋅
𝑙𝑅
2 ∫

1

−1
𝑓𝑤𝑖𝑓𝑤𝑗 d𝜉 ∫

2𝜋

0
ℎ𝑤𝑚ℎ𝑤𝑛 d𝜃

(50)

here indexes 𝑖, 𝑗, 𝑘, 𝑚, 𝑛 and 𝑜 vary as described in Appendix A.
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