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Resumo

Durante o parto vaginal, existem várias posições que podem ser adotadas pela mãe para es-
tar mais confortável e para ajudar no processo do parto. As posições verticais estão associadas a
vários benefícios clínicos, apesar da posição supina ser a mais adotada durante o parto na maioria
das unidades de saúde. As posições escolhidas são, na realidade, muito influenciadas por fatores
relacionados com a monitorização e intervenção durante o segundo estadio do trabalho de parto,
uma vez que existe uma evidência científica limitada sobre qual a posição mais favorável. Re-
centemente, a bioengenharia computacional tem mostrado bastantes avanços nesta área através da
aplicação de técnicas computacionais na investigação clínica, substituindo os estudos in vivo em
animais.

Nesta tese, foi utilizado um modelo de elementos finitos validado composto pelos músculos
do pavimento pélvico, pelos ossos da cintura pélvica e pela cabeça do feto para simular partos
vaginais. Este modelo foi modificado de forma a imitar duas posições que podem ser adotadas
durante o parto: uma que permite o movimento livre do cóccix e outra em que este movimento é
mais restrito devido, por exemplo, à presença da cama por baixo da mulher. Para melhor entender
os benefícios e riscos destas posturas, foram modeladas as articulações sacroilíacas, sacrococcígea
e a sínfise púbica. Foi estudada a abertura da sinfíse púbica, o movimento do cóccix e do sacro e o
impacto no tecido cortical deste ossos, os efeitos provocados nos músculos do pavimento pélvico
da mulher, assim como as forças de reação na cabeça do feto.

Os resultados obtidos mostram que no modelo que imita posições de parto nas quais o movi-
mento do cóccix está restringido ocorre uma abertura da sínfise púbica de 6 mm para permitir a
passagem da cabeça do feto, sem ocorrer rutura desta articulação. Por outro lado, no modelo que
permite um maior movimento do cóccix ocorre uma menor abertura da sínfise púbica (3 mm),
uma vez que o movimento e rotação do cóccix permitem um aumento da área disponível para a
passagem da cabeça do feto. Assim, neste trabalho, esta posição mostra ser mais benéfica para
os ossos da cintura pélvica da mulher, apesar de ser obtido um campo de tensões um pouco mais
elevadas nos músculos do pavimento pélvico.

Globalmente, os resultados obtidos permitem concluir que diferentes posições do parto levam
a diferenças no espaço disponível na pelve feminina, pelo que determinadas posições podem ser
adotadas durante o segundo estadio do trabalho de parto objetivando reduzir o risco de obstruções
durante o parto e de desenvolvimento de diversas disfunções.
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Abstract

During a vaginal delivery, there are various positions that the mother can adopt to be more
comfortable and to help the process of labor. Upright birthing positions are associated with sev-
eral clinical benefits, yet supine positions are still most common during delivery in most health
centers. The positions chosen are, in fact, very influenced by factors related to the monitoring and
intervention during the second stage of labor since there is limited scientific evidence to support an
ideal birthing position. More recently, computational bioengineering is experiencing major break-
throughs in this field through the application of computational techniques in the medical research,
replacing in vivo animal studies.

In this thesis, a validated finite element model composed of the pelvic floor muscles, the pelvic
girdle bones, and a fetus head was used to simulate vaginal deliveries. This model was modified to
mimic two birthing positions: one that allows the free movement of the coccyx and other in which
this movement is more restricted due to, for example, the presence of a bed under the woman. To
better understand the benefits and risks of these maternal positions, the pubic symphysis, sacroiliac
and sacrococcygeal joints were modeled. The influence of birthing positions on the widening of
the pubic symphysis, the movement of coccyx and sacrum, the stress related to the cortical tissue
of these bones and the effects induced in the pelvic floor muscles of the woman were analyzed, as
well as the reaction forces in the fetus head.

The results obtained show that in the model that mimics birthing positions in which the move-
ment of the coccyx is restricted a 6 mm widening of the pubic symphysis occurs to allow the
passage of the fetus head, without occurring rupture of this joint. In contrast, a lower widening of
the pubic symphysis (3 mm) occurs in the model that allow the movement of the coccyx, since the
movement and rotation obtained for the tip of the coccyx allows an increase in the space for the
passage of the fetal head. In this work, this position appears to be more beneficial for the pelvic
girdle bones of the mother but slightly higher stresses were detected in the pelvic floor muscles.

Globally, the results obtained allow to conclude that different birthing positions lead to changes
in the female pelvic space, so certain positions can be adopted by the mother during the second
stage of labor to reduce the risk of obstructed labor and the development of several dysfunctions.

iii



iv



Acknowledgements

I would like to express my sincere gratitude to Professor Dulce Oliveira and Professor Marco
Parente for their consistent support, guidance, motivation and flexibility during the development
of this work. Without their dedicated involvement, my thesis could not be accomplished. My
deepest appreciation extends to Professor Renato Natal for the opportunity and confidence given,
and the encouragement to face new challenges.

I gratefully acknowledge the support received from Portuguese FCT under research project
UIDB/50022/2020 and from the project NORTE-01-0145-FEDER-030062 (SIM4SafeBirth) cofi-
nanced by NORTE2020, through FEDER.

I would like to express my thanks to all my friends who went through hard times together,
cheered me on, and celebrated each accomplishment despite long distances between us, which, in
some cases, includes being on another continent.

Most importantly, none of this could have happened without my family. My deepest thank
goes to my parents for providing me unfailing support and continuous encouragement throughout
the process of researching and writing this thesis. I would like to thanks my sister and brother for
all their understanding and endless patience. Also, I express my thanks to Cookie and Flash for
their company.

v



vi



“Tell me and I forget, teach me and I may remember, involve me and I learn.”

Benjamin Franklin

vii



viii



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Anatomy 5
2.1 Female Pelvis and Perineum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Pelvic Girdle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Pelvic Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Perineum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Pelvic Floor Dysfunction . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Fetus Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Labor 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Fetus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Fetal Head Diameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Maternal Pelvis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Maternal Pelvic Diameters . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Classification of the Pelvis . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Musculoskeletal System Changes of Pregnancy . . . . . . . . . . . . . . 21

3.4 Birthing Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1 Upright (Vertical) Positions . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Horizontal Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Cardinal Movements in Labor . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Computational Solid Mechanics 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Preliminary Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Configuration and Motion of Continuum Bodies . . . . . . . . . . . . . 29
4.2.2 Material and Spatial Descriptions . . . . . . . . . . . . . . . . . . . . . 30
4.2.3 Deformation Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.4 Strain Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.5 Stress Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Principle of Virtual Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.1 Hyperelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

ix



x CONTENTS

4.5.1 Discretized Equilibrium Equations . . . . . . . . . . . . . . . . . . . . . 41
4.5.2 Linearization of the Virtual Work Principle . . . . . . . . . . . . . . . . 42
4.5.3 ABAQUS® Finite Element Software . . . . . . . . . . . . . . . . . . . . 43

5 Finite Element Simulations 45
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Finite Element Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.1 Pubic Symphysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.2 Sacrum and Coccyx . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.3 Pelvic Floor Muscles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.4 Fetus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Final Remarks and Future Work 67
6.1 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

References 69

Appendix A 73
A.1 Article submitted to Computer Methods and Programs in Biomedicine Journal . . 73



List of Figures

2.1 Pelvis and perineum (Moore et al., 2006) . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Pelvis (Martini et al., 2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Joints and ligaments of the pelvis (Standring, 2016) . . . . . . . . . . . . . . . . 9
2.4 Floor and walls of pelvis (Moore et al., 2006) . . . . . . . . . . . . . . . . . . . 10
2.5 Boundary separating pelvis from perineum (Moore et al., 2006) . . . . . . . . . . 10
2.6 Superficial and deep layers of perineum viewed from below (Martini et al., 2012) 11
2.7 The fetal skull (adapted from Macdonald et al. (2011)) . . . . . . . . . . . . . . 14

3.1 Examples of fetal lie (Gabbe et al., 2017) . . . . . . . . . . . . . . . . . . . . . 16
3.2 Fetal presentations and positions in labor: left occipitanterior (LOA); left occipito-

posterior (LOP); left occipitotransverse (LOT); right occipitanterior (ROA); right
occipitotransverse (ROT); right occipitoposterior (ROP) (Gabbe et al., 2017) . . . 17

3.3 Diameters of the fetal skull (adapted from Hacker et al. (2016)) . . . . . . . . . . 17
3.4 Stations of the fetal head (Gabbe et al., 2017) . . . . . . . . . . . . . . . . . . . 18
3.5 Pelvic planes (Posner et al., 2013) . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Pelvic inlet diameters (Posner et al., 2013) . . . . . . . . . . . . . . . . . . . . . 19
3.7 Plane of least dimensions (Posner et al., 2013) . . . . . . . . . . . . . . . . . . . 20
3.8 Pelvic outlet dimensions (Posner et al., 2013) . . . . . . . . . . . . . . . . . . . 20
3.9 Pelvis types (Posner et al., 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10 Upright Positions: (a) semi-sitting position (Simkin, 2002), (b) sitting on a low

stool (Simkin, 2002), (c) kneeling over chair seat (Simkin, 2002), (d) hands-to-
knees position (Simkin, 2002), (e) squatting position with bar (Simkin, 2002), (f)
standing position (Lowdermilk, 2011) . . . . . . . . . . . . . . . . . . . . . . . 23

3.11 Horizontal Positions: (a) pure side-lying lateral position (Macdonald et al., 2011),
(b) semi-prone lateral position (Macdonald et al., 2011), (c) semi-recumbent po-
sition (Lowdermilk, 2011), (d) lithotomy (Perry et al., 2014), (e) supine position
(Lowdermilk, 2011), (f) dorsal position (Perry et al., 2014), (g) knee-elbow posi-
tion (Perry et al., 2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.12 Cardinal movements in labor (Gabbe et al., 2017) . . . . . . . . . . . . . . . . . 27

4.1 General motion of a deformable body (adapted from Kim (2015)) . . . . . . . . 30
4.2 Positive stress components of the traction vectors tei (adapted from Holzapfel (2002)) 33
4.3 ABAQUS®/Standard flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Finite element model of the mother showing the pelvic girdle bones in brown, the
pelvic floor muscles in light red and the supporting structures in dark red . . . . . 46

5.2 Dimensions of the levator hiatus . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Finite element model of the sacrum and coccyx with cortical bone in black and

trabecular bone in brown (lateral view) . . . . . . . . . . . . . . . . . . . . . . . 47

xi



xii LIST OF FIGURES

5.4 Pelvic diameters of the model: A, transverse diameter; B, interspinous diame-
ter; C, obstetric conjugate diameter; D, sagittal outlet diameter; E, intertuberous
diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Finite element model with the modeled ligaments: 1, sacroiliac ligaments; 2, su-
perior pubic ligament; 3, inferior pubic ligament; 4, sacrospinous ligament; 5,
sacrotuberous ligament . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 Finite element model of the sacrum and coccyx in brown and the sacrococcygeal
joint in grey (posterior view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.7 Diameters of the fetal skull: 1, suboccipitobregmatic diameter; 2, suboccipitofrontal
diameter; 3, occipitofrontal diameter; 4, mentovertical diameter; 5, submentobreg-
matic diameter (adapted from Parente et al. (2010)) . . . . . . . . . . . . . . . . 50

5.8 Reference line from the inferior border of the pubic symphysis to the inferior
border of the sacrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.9 Curve in black used to evaluate the displacement of the sacrum and coccyx . . . 52
5.10 Model of pelvic floor muscles in red and curve, in black, used to evaluate stress

and stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.11 3D solid elements used to simulate the interpubic disc of the pubic symphysis and

the synovial part of the sacroiliac joints: (a) anterior view of pubic symphysis; (b)
lateral view of sacrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.12 Finite element model of the pelvic floor muscles in red with the identification of
the fixed nodes in black . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.13 Finite element model of the fetus head with the identification of the reference point
used to control its movement (P1) . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.14 Widening of pubic symphysis during the vertical descent of the fetus head . . . . 57
5.15 Maximum principal stresses in MPa in the superior and inferior pubic ligaments

of the non-mob. coccyx model and mob. coccyx model during the vertical descent
of the fetus head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.16 Movement of coccyx during the vertical descent of the fetus head . . . . . . . . . 59
5.17 Rotation of coccyx during the vertical descent of the fetus head . . . . . . . . . . 60
5.18 Displacement of sacrum and coccyx in x-axis along the normalized path at the

sagittal plane of these bones in a vertical descent of the fetus head of 48 mm and
65 mm. The black dashed line corresponds to the begining of the sacroccygeal joint 61

5.19 Distribution of the maximum principal stresses in MPa on the sacrum and coccyx,
in the cortical bone tissue, in the (a) non-mob. coccyx model and (b) mob. coccyx
model, at the moment of maximum movement of the coccyx . . . . . . . . . . . 62

5.20 Maximum principal stresses in MPa calculated along the normalized path at the
most inferior portion of the pelvic floor muscles (figure 5.10) at the peak stresses
instant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.21 Distribution of the maximum principal stresses in MPa on the pelvic floor muscles
at the peak stresses instant in the (a) non-mob. coccyx model and (b) mob. coccyx
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.22 Stretch ratio calculated along the defined path at the most inferior portion of the
pelvic floor muscles (figure 5.10) during the vertical descent of the fetus head . . 64



List of Tables

5.1 Maternal pelvic diameters considered . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Constitutive material parameters for the pelvic floor muscle . . . . . . . . . . . . 53
5.3 Material properties of the sacrum and coccyx . . . . . . . . . . . . . . . . . . . 54
5.4 Material properties and cross sectional area of the ligaments . . . . . . . . . . . 54

xiii



xiv LIST OF TABLES



Nomenclature

{λ1,2,3} Principal stretches

I4,5 Pseudo-invariants arinsing directly from anisotropy

: Double product

α Activation variable

λ̄ f Fiber stretch ratio in the direction N of the underformed fiber

C̄ Right Cauchy-Green strain tensor with the volume change eliminated

F̄ Deformation gradient with the volume change eliminated

ĪC
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Chapter 1

Introduction

1.1 Context

Globally, millions of births occur every year. However, maternal morbidity and mortality is

unacceptably high. For example, everyday in 2017, approximately 810 women died from pre-

ventable causes related to pregnancy and childbirth (World Health Organization, 2019). One of

the main causes are biomechanical complications (Hemmerich et al., 2019), so several studies

have been developed to analyze the mechanisms of labor through computational models, since

studies in pregnant women are difficult and involve ethical constraints (Parente et al., 2008, 2009;

Oliveira et al., 2016; Hemmerich et al., 2019).

During pregnancy and labor, there are many hormonal and biomechanical changes in the

mother to ensure pelvic girdle stability. The mechanism of labor and the likelihood of safe vaginal

delivery depend largely on the bony architecture of the pelvis. The second stage of labor cor-

responds to the moment when the fetus moves through the birth canal, ending with the birth of

the baby. To facilitate the passage of the fetus through the birth canal, pelvic ligament relaxation

occurs during pregnancy and, as a consequence, pubic symphysis can be more flexible and wider

during labor. Furthermore, during this stage, there are several postures that can be adopted by the

mother and the outcomes may vary according to the birthing position assumed.

In the past, the majority of women adopted a wide range of birthing positions, such as squat-

ting, kneeling or sitting positions. Supine position was only used when labor lasted very long or

was very difficult and exhausting. Nevertheless, during the second half of the twentieth century,

there was a growing awareness among obstetricians and the supine position became popular, al-

though its widespread use was not based on scientific evidence (Gupta and Nikodem, 2000). In re-

cent years, some birthing positions adopted during the second stage of labor have shown potential

benefits in promoting optimal maternal and neonatal outcomes, since maternal positions serve as

the non-medical intervention to facilitate the progress of childbirth. Through an analysis of several

studies, it was verified that the supine and semi-recumbent positions are the most adopted birthing

positions in several countries, such as Autralia (Shorten et al., 2002), United States of America

(Nieuwenhuijze et al., 2012) and Malawi (Zileni et al., 2017) (56%, 83% and 91%, respectively).

1



2 Introduction

The adoption of other positions is only observed in a small number of women since there is some

apprehension of both mother and healthcare professionals (Nieuwenhuijze et al., 2012). Adopting

a hostile position, the person giving birth might suffer from several negative outcomes, such as

perineal trauma, post-partum urinary incontinence and greater blood loss. The fetus has also a

higher probability of complications, such as fetal heart rate abnormalities, brachial plexus injury

and clavicle fracture. Unfortunately, there is no evidence to support the most ideal maternal posi-

tion, so it becomes important to understand the benefits and consequences of assuming different

birthing positions.

For this purpose, it is fundamental to consider computational bioengineering, which is a re-

cent field that takes advantage of the latest computational capabilities to deal with biomedical

problems. This method aims at replacing the animal research that has been used as a method

of study, involving painful procedures that leave animals injured, living impaired or even dead.

Through computational modeling, it is possible to simulate biological complex systems, allowing

to perform analysis and evaluations of the human performance and, consequently, new surgical

concepts can be developed and the postoperative surgical outcomes can be assessed. Therefore,

advances in this area contribute to numerous innovations and developments in the medical field

and there is an improvement in quality of life. In the particular case of childbirth, it possibili-

tates, for example, the comparison of maternal outcomes, as well as newborn outcomes, aiming to

decrease their morbillity and mortality.

1.2 Motivation and Objectives

During the second stage of labor, the fetus passes through the birth canal and, to make the

most informed and appropriate decisions, it is fundamental a clear understanding of the dynamic

structure of the female pelvis. On one hand, it is crucial to clarify the adaptation that the maternal

pelvis may undergo by allowing the widening of the pubic symphysis to facilitate the passage of

the fetus. On the other hand, different birthing positions lead to changes in the available space

in the pelvis and, although there are some comparative studies in terms of obstetrical, fetal, and

maternal outcomes, the most ideal maternal position has been controversial and the biomechan-

ics of birth positioning are not yet fully understood. This study might also help to explain some

dysfunctions associated with pregnancy and delivery. To the best of our knowledge, only few stud-

ies perform a biomechanical analysis using computational models of the musculoskeletal system

changes that occur during pregnancy in the woman’s body, and the changes in the pubic symphysis

are not considered.

This work aims at contributing to a better knowledge associated with the widening of the pubic

symphysis and the biomechanics of different positions that can be adopted during the second

stage of labor, as well as their resulting pathophysiological consequences. For this purpose, a

modification of a validated computational model is required in order to incorporate the pelvic

kinematics under load conditions resulting from selected birthing positions. In this way, it is

necessary to include the pelvic joints in the model and to analyze and validate the behavior of
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the pubic symphysis and the sacrococcygeal joint. Two birthing positions can be considered:

one that allow and other that do not allow the movement of the coccyx, mimicking vertical and

horizontal positions, respectively. It is possible to simulate the mechanism of labor during the

second stage, assuming these two birthing positions, with the fetus in the vertex presentation and

an occipitanterior position. Hence, this work involves the following objectives:

• Model the pelvic joints, such as pubic symphysis, sacroiliac and sacrococcygeal joints;

• Study the influence of birthing positions on the widening of the pubic symphysis;

• Analyze the movement of sacrum and coccyx and the impact on the cortical bone tissue;

• Analyze the effects induced in the pelvic floor muscles of the woman;

• Verify the impact on the fetus head through the reaction forces obtained.

1.3 Organization

To achieve the goals presented, this work is structured in different chapters. Chapter 2 presents

a description of the anatomy of female pelvis, perineum, the main pelvic floor dysfunction and

fetus head. Chapter 3 focuses on the process of labor, explaining the fetus and the maternal pelvis

implications. It also reviews the main birthing positions and the mechanisms of labor. In chapter

4 there are present some solid mechanics preliminary concepts, some constitutive equations and

the finite element method since it possibilities to analyze the effects of mechanical stresses and

strains and interactions of different components and tissues on clinical outcomes. The overall

structure of the ABAQUS® software is outlined to better understand its functioning. Chapter 5

presents the finite element model used in this study, as well as the modifications implemented

and the methodology adopted. The results of the numerical simulations performed as well as an

analysis and discussion of the results obtained are also included. Finally, the ultimate conclusions

and some suggestions for future work are delineated in chapter 6.



4 Introduction



Chapter 2

Anatomy

2.1 Female Pelvis and Perineum

The hip bones and the sacrum, which form the skeletal ring, as well as the cavity therein and

the region where the trunk and lower limbs meet form the pelvis. Anatomically, the pelvis is the

part of the body surrounded by the pelvic girdle (bony pelvis) and also integrates the pelvis cavity,

the pelvic floor and the perineum (Standring, 2016).

(a) Medial view of left half of bisected lower
trunk

(b) Anterior view of posterior half of coronally
sectioned lower trunk

Figure 2.1: Pelvis and perineum (Moore et al., 2006)

The human pelvic can be divided into two compartments: greater (false) and lesser (true)

pelvis, as it can be seen in figures 2.1a and 2.1b. The greater pelvis is surrounded by superior

pelvic girdle, which includes the ilium and pubis above the lineae terminales (the iliac arcuate

line, pectineal line and pubic crest). The lesser pelvis bordered by the inferior pelvic girdle, i.e.,

it is formed from the pubis, sacrum, ischium, ilium, the ligaments that interconnect these bones,

and the muscles that line their inner surfaces. It contains the pelvic organs, including the urinary

bladder, the rectum and parts of the reproductive organs. The lesser and greater pelvis are separated

by the oblique plane which passes through the sacral promontory posteriorly, the arcuate line on

5
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the ilium, the iliopectineal linea and the posterior surface of the pubic crest; this plane is known as

pelvic inlet. The pelvis outlet is formed by the ischiopubic rami, ischial tuberosities, sacrotuberous

ligaments and distal sacrum. Therefore, the lesser pelvis is situated between the pelvic inlet and

pelvic outlet and the greater pelvis is the part of the pelvis superior to the pelvic inlet (Standring,

2016; Moore et al., 2006).

The perineum corresponds to the perineal compartment that is separated from the pelvic cavity

by the fascia covering the inferior aspect of the pelvic diaphragm (formed by the levator ani and

coccygeus muscles) and surrounded by the pelvic outlet (Moore et al., 2006).

2.1.1 Pelvic Girdle

The pelvic girdle involves the paired hip bones (each composed of the ilium, ischium and pu-

bis) and the sacrum (figure 2.2a and figure 2.2b). The right and left pubic bones articulate anteri-

orly at the pubic symphysis (a secondary cartilaginous joint) and the sacrum articulates posteriorly

with the two iliac bones at the sacroiliac joint. The pelvic girdle has various functions: serves as

a weight-bearing and protective structure, as an attachment for trunk and lower limb muscles, and

as the skeletal framework of a birth canal capable of accommodating passage of fetus (Standring,

2016; Moore et al., 2006).

2.1.1.1 Bones of the Pelvic Girdle

With regard to the ilium, it includes the upper acetabulum and expanded area above it; the

ischium includes the posteroinferior acetabulum and bone posteroinferior to it; finally, the an-

teroinferior acetabulum is formed from the pubis (Standring, 2016; Moore et al., 2006).

The ilium has upper and lower parts and three surfaces. The lower part forms a little less than

the upper two-fifths of the acetabulum and the upper part has gluteal (an extensive rough area),

sacropelvic (posteroinferior part of the medial iliac surface, which is divided into iliac tuberosity

and auricular and pelvic surfaces) and iliac (iliac fossa) surfaces. The superior border of the ilium

is the iliac crest and it has a curve that follows the contour of the ala between the anterior and

posterior superior iliac spines. On its external aspect, the body participates in formation of the

acetabulum (Standring, 2016; Moore et al., 2006).

The ischium, the inferoposterior part of the hip bone, has a body, which forms the posteroin-

ferior part of the acetabulum, and ramus, which completes the boundary of the obturator foramen.

The ischial tuberosity is formed by the large posteroinferior protuberance of this bone. The ischial

spine projects posteromedially near the junction of the ramus and body. The concavity between

the ischial spine and the ischial tuberosity is the lesser sciatic notch (Standring, 2016; Moore et al.,

2006).

The pubis is the ventral part of the hip bone and forms a median cartilaginous pubic symphysis

with its fellow. It also helps to form an inferior ramus, which contributes to the bony borders of

the obturator foramen. The pubic crest is a thickening on the anterior part of the body of the pubis

and it ends laterally as a prominent swelling, the pubic tubercle. The conjoined inferior rami of
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the ischium and pubis forms the pubic arch and the angle at which the converge is known as the

subpubic angle. The width of this angle is determined by the distance between the right and the

left ischial tuberosities (Standring, 2016; Moore et al., 2006).

(a) Anterior view

(b) Posterior view

Figure 2.2: Pelvis (Martini et al., 2012)

2.1.1.2 Joints and Ligaments of the Pelvic Girdle

As mentioned before, the medial surfaces of the pubic bones articulate at the pubic symphysis,

a secondary cartilaginous joint. They are covered by hyaline cartilage and connected by fibrocar-

tilage, varying in thickness and constituting the interpubic disc. This disc is generally wider in

women. The main ligaments joining the bones are the superior pubic ligament, which connects

the bones above, extending to the pubic tubercles, and the arcuate pubic ligament, which connects

the lower borders of the symphysial pubic surfaces bounding the pubic arch (Standring, 2016).

The sacroiliac joint occurs between the sacral and iliac auricular surfaces (figure 2.3a). The

auricular surfaces have curvatures and irregularities that restrict movements and contribute to the

considerable strength of the joint in transmitting weight from the vertebral column to the lower

limbs. The ligaments of the sacroiliac joint are the anterior, interosseous and posterior sacroiliac,

iliolumbar, sacrotuberous and sacrospinous ligaments (figure 2.3a). The thin anterior sacroiliac

ligaments are the anterior part of the fibrous capsule of the synovial part of the joint and it connects
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the third sacral segment to the lateral side of the preauricular sulcus. The interosseous sacroiliac

ligament is the major bond between the bones and it fills the irregular space posterosuperior to

the joint. The posterior sacroiliac ligament overlies the interosseous ligament and it consists of

several weak fasciculi connecting the intermediate and lateral sacral crests to the posterior superior

iliac spine and posterior end of the internal lip of the iliac crest. The sacrotuberous ligament is

attached to the posterior superior iliac spine, the posterior sacroiliac ligaments, lateral sacral crest

and the lateral margins of the lower sacrum and upper coccyx. The sacrospinous ligament extends

from the ischial spine to the lateral margins of the sacrum and coccyx anterior to the sacrotuberous

ligament (Standring, 2016).

In relation to the lumbosacral joints, the anterior intervertebral (IV) joint is where L5 and S2

vertebrae articulate and there is a L5/S1 IV disc between them (figure 2.1a). They also articulate

at two posterior zygapophysial joints (facet joints) between the articular processes of these verte-

brae. These joints are further strengthened by iliolumbar ligaments radiating from the transverse

processes of the L5 vertebra to the ilia (Moore et al., 2006).

The sacrococcygeal joint is a secondary cartilaginous joint and the anterior and posterior sacro-

coccygeal ligaments are long strands that reinforce this joint (Moore et al., 2006). The sacroc-

cygeal joint typically is articulated by a fibrocartilagenous disc, composed of hyaline cartilage.

It can also be a synovial joint in some cases and, when this is the case, the joint is more mobile

(Hwang, 2015).

2.1.2 Pelvic Cavity

The largest continuous visceral cavity of the human body is formed by the abdomen and pelvis,

which is known as the abdominopelvic cavity (figures 2.1a and 2.1b). The pelvic cavity, the

inferoposterior part of the abdominopelvic cavity, has a funnel shape and corresponds to the space

bounded peripherally by the bony, ligaments, muscular pelvic walls and floor. Inferiorly, the

pelvic cavity is limited by the musculofascial pelvic diaphragm, which is suspended above (but

descends centrally to the level of) the pelvic outlet, forming a bowl-like pelvic floor. Posteriorly,

it is bounded by the coccyx and inferiormost sacrum, with the superior part of the sacrum forming

a roof over the posterior half of the cavity (Moore et al., 2006).

2.1.2.1 Walls of Pelvic Cavity

The pelvic cavity has an anteroinferior wall, two lateral walls, a posterior wall and a floor (fig-

ures 2.4a and 2.4b). The anteroinferior wall is formed by the bodies and rami of the pubic bones

and the pubic symphysis. The right and left hip bones, each of which includes an obturator fora-

men closed by an obturator membrane, form the lateral pelvic walls; the obturator fascia covers

the medial surfaces of the obturator internus muscles and it is thickened centrally as a tendinous

arch, providing attachment for the pelvic diaphragm. The posterior pelvic wall consists of muscu-

loligamentous walls, which are formed by ligaments associated with the sacroiliac joints (anterior

sacroiliac, sacrospinous, and sacrotuberous ligaments) and piriformis muscles. The piriformis
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(a) Anterior view

(b) Posterior view

Figure 2.3: Joints and ligaments of the pelvis (Standring, 2016)

muscles, which arise from the superior sacrum, lateral to its pelvic foramina occupy much of the

greater sciatic foramen (Moore et al., 2006).

2.1.2.2 Floor of Pelvic Cavity

The pelvic floor (figures 2.4a and 2.4b) is composed by the ligamentous supports of the cervix

and the pelvic and urogenital diaphragms and lies within the lesser pelvis, separating the pelvic

cavity from the perineum. The pelvic diaphragm is formed by the coccygeus and levator ani

muscles. The coccygeus muscles arise from the lateral aspects of the inferior sacrum and coccyx,

whereas the levator ani is attached to the bodies of the pubic bones anteriorly, the ischial spines

posteriorly and a thickening in the obturator fascia (the tendinous arch of the levator ani) between

the two bony sites on each side. The levator ani muscles are composed by three parts (puborectalis,

pubococcygeus and iliococcygeus), noting that an anterior gap between the medial borders of them
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(a) Superior view: green corresponds to the antero-inferior
wall, blue to the lateral wall, and red to the posterosuperior
wall (b) Medial view

Figure 2.4: Floor and walls of pelvis (Moore et al., 2006)

of each side (urogenital hiatus) gives passage to the urethra and vagina (Standring, 2016; Moore

et al., 2006). The urogenital diaphragm is formed by two muscles: the deep transverse perineal

and the sphincter urethrae (figure 2.6).

2.1.3 Perineum

The perineum includes external genitalia, perineal muscles, and anal canal, and it is separated

from the pelvis by the inferior fascia of the pelvic diaphragm (levator ani muscle), as can be seen

in figure 2.5. Considering the anatomical position, the perineal region, which corresponds to the

surface of the perineum, is the narrow region between the proximal parts of the thighs.

Figure 2.5: Boundary separating pelvis from perineum (Moore et al., 2006)

Concerning the osseofibrous structures forming the boundaries of the perineum (Moore et al.,

2006), anteriorly there is the pubic symphysis, anterolaterally the ischiopubic rami, laterally the

ischial tuberosities, posterolaterally the sacrotuberous and posteriorly the inferiormost sacrum and

coccyx.

The perineum, when the lower limbs are abducted, corresponds to a diamond-shaped area and

it is divided by an imaginary transverse line joining the anterior ends of the ischial tuberosities into
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two triangles. The urogenital triangle, anterior to this line, is closed by the perineal membrane,

which stretches between the two sides of the pubic arch, covering the anterior part of the pelvic

outlet. The anal triangle lies posterior to this line and the major features of it are the anal canal and

its orifice, the anus, lying centrally surrounded by ischio-anal fat. The perineal membrane fills the

anterior gap in the pelvic diaphragm (the urogenital hiatus) but is perforated by the urethra and by

the vagina. The membrane and the ischiopubic rami to which it attaches provide a foundation for

the vulva, which is the superficial feature of the triangle (Moore et al., 2006).

The central point of the perineum corresponds to the midpoint of the line joining the ischial

tuberosities and is the location of the perineal body, which is the central tendon of the perineum.

It contains collagenous and elastic fibers and both skeletal and smooth muscle. The perineal body

lies deep to the skin, with relatively little overlying subcutaneous tissue, posterior to the vestibule

of the vagina and anterior to the anus and anal canal. It is the site of convergence and interlacing

of fibers of several muscles, as it can be seen in figure 2.6, including: bulbospongiosus; external

anal sphincter; superficial and deep transverse perineal muscles; and smooth and voluntary slips

of muscle from the external urethral sphincter, levator ani, and muscular coats of the rectum.

Superiorly, the perineal body blends with the rectovesical or rectovaginal septum and anteriorly

with the posterior border of the perineal membrane (Moore et al., 2006).

Figure 2.6: Superficial and deep layers of perineum viewed from below (Martini et al., 2012)

2.1.4 Pelvic Floor Dysfunction

Pelvic floor function and continence can be damaged by direct anatomical injury (as in vaginal

delivery, which results in dilatation and stretching of the pelvic floor). The principal types of

female pelvic floor dysfunction can manifest as urinary and/or fecal incontinence and as prolapse

of the female reproductive organs (Donelson and Minocha, 2002).

Female urinary incontinence is often attributed to the consequences of pregnancy and child-

birth since it is more common among pregnant women compared with other groups of women.

A link between urinary incontinence and parity has already been demonstrated. Childbirth may
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have pelvic floor laxity as a consequence of weakening and stretching of the muscles and con-

nective tissue during delivery. As a result of spontaneous lacerations and episiotomies, damage

may occur. The stretching of the pelvic tissues during vaginal delivery may damage the pudendal

and pelvic nerves and also the muscles and connective tissue of the pelvic floor (Donelson and

Minocha, 2002).

Bowel dysfunctions include different clinical problems such as fecal incontinence and consti-

pation. Pelvic outlet obstruction is a common cause of constipation and is attributed to muscular

dysfunction of the pelvic floor. For example, a rectocele is a herniation or protrusion the ante-

rior rectal wall into the vagina and is associated with pelvic laxity and, during vaginal delivery

or chronic straining, damage to the rectovaginal septum, pelvic floor muscles, and the pudendal

nerves may occur. Also, the descending perineum syndrome occurs as a result of the injury of

the sacral or pudendal nerves or damage to the pelvic floor muscles and it occurs consequent to

childbirth or chronic straining at stool (Donelson and Minocha, 2002).

The most common factor of fecal incontinence in women is obstetric trauma. Concerning the

effects of pregnancy, when parturition occurs, there is stretching of the levators and the vaginal

wall, stretching and tearing of the rectovaginal septum and compression of the pudendal nerves

against the pelvis sidewall. The incidence of sphincter injury is higher in patients with perineal

tears and, after a third degree tear (involving the sphincter muscle), some patients developed fecal

incontinence symptoms. Similar to tears, episiotomies are associated with incontinence and it can

be also associated with an increased risk of sphincter injury (Donelson and Minocha, 2002).

Genital prolapse refers to weakening or loss of support to the pelvic organs (bladder, vagina,

uterus, and rectum), which results in a herniation of those pelvic organs. There are several types

of genital prolapse (Donelson and Minocha, 2002), including:

• vaginal vault prolapse, which corresponds to herniation of the vaginal vault (the expanded

region of the vaginal canal at the internal end of the vagina) caused by many factors, such as

loss of support or weakening of specific ligaments; uterine prolapse (herniation of the uterus

caused by the loss of support of some ligaments);
• cystocele, which is the herniation of the anterior vaginal wall and bladder;
• enterocele, which corresponds to the herniation of the superior portion of the posterior vagi-

nal wall caused by tearing, stretching, or a combination of the two, of the posterior vaginal

wall endopelvic fascia;
• rectocele, corresponding to the herniation of the inferior portion of the posterior vaginal wall

and rectum also caused by tearing, stretching, or a combination of the two, of the posterior

vaginal wall endopelvic fascia.
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2.2 Fetus Head

The skull (figures 2.7a and 2.7b) consists of the cranium, facial skeleton, and mandible. The

cranium may be subdivided into the calvaria, also known as cranial vault, and the basicranium

(cranial base) (Standring, 2016). It protects the brain, which is subjected to pressure during labor,

and has an ability to change shape to adapt to the process of labor in response to uterine con-

tractions and the size and shape of the pelvis. It is divided into three main regions: vault, base

and face (figures 2.7a and 2.7b). The vault comprises two frontal bones, two parietal bones, two

temporal bones and one occipital bone. The soft fibrous tissues that link some bones of the skull

are known as sutures and there are four: frontal, sagittal, lambdoidal and coronal. A fontanelle is a

membranous, non-ossified area of the skull where three or more sutures meet and the most signifi-

cant are: anterior fontanelle or bregma, posterior fontanelle, anterolateral or temporal fontanelles,

posterolateral or mastoid fontanelles (Macdonald et al., 2011).

Since the fetal skull presents an incomplete ossification and many bones are still in various

elements that are united by fibrous tissue or cartilage, it has a unique capacity to flex during birth.

This enables the adaptation to prolonged compression to enhance its passage through the birth

canal. The adaption process described, which enables the bones of the skull override each other as

a result of pelvic girdle pressures, is known as molding (Macdonald et al., 2011). Consequently,

the diameters of the skull can increase or decrease. The flexion or extension degree of the fetus

head is influenced by its presentation and position in relation to the pelvic brim and this also

determines the precise realignment of the skull bones during labor and delivery (Macdonald et al.,

2011).
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(a) Lateral view

(b) Superior view

Figure 2.7: The fetal skull (adapted from Macdonald et al. (2011))



Chapter 3

Labor

3.1 Introduction

During a normal labor, painful regular uterine contractions occur in order to stimulate progres-

sive effacement and dilatation of the cervix with descent of the fetus, through the pelvis. Then, the

spontaneuos vaginal birth of the fetus occurs as well as the expulsion of the placenta and mem-

branes. This sequential pattern can de divided into three stages: the first stage, which consists of

latente phase, during which cervical effacement and early dilation occur, and active phase, during

which more rapid cervical dilatation occurs; the second stage, which also consists of two phases,

the passive stage (during which the cervix is fully dilated, but there are no voluntary or incoluntary

expulsive efforts) and the active stage (during which the woman begins to push either voluntarily

or involuntarily); the third stage is from the birth of the baby to the expulsion of the placenta and

membranes (Macdonald et al., 2011; Hacker et al., 2016; Posner et al., 2013).

Concerning the second stage, as labors progresses, the fetus is moved through the birth canal

and, due to the forces that occur, various twists and turns of it are induced, which causes it to

respond to the contours and planes of the maternal pelvis. It is important to note that it is necessary

to take advantage of the available space and, to do so, the widest presenting diameter of the fetal

head should enter the pelvis in the widest diameter. Nevertheless, specific physiology of individual

women, different maternal birthing positions and fetal pairs can require different mechanisms

(Macdonald et al., 2011).

3.2 Fetus

There are several fetal variables that influence the process of labor (Gabbe et al., 2017):

• the fetal size that can be estimated clinically, but it is a method subject to a large degree of

error;

• the fetal lie, which refers to the longitudinal axis of the fetus relative to the longitudinal

axis of the uterus. It can be classified as longitudinal, transverse, or oblique (see figure 3.1),

noting that only fetuses in the longitudinal lie can be safely delivered vaginally;

15
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Figure 3.1: Examples of fetal lie (Gabbe et al., 2017)

• presentation, associated with the fetal part that directly overlies the pelvic inlet, and, in a

fetus presenting in the longitudinal lie, the presentation can be cephalic (vertex) or breech;

• attitude, which refers to the position of the head with regard to the fetal spine (the degree

of flexion and/or extension of the fetal head) and it is fundamental to note that the flexion of

the head is important to facilitate engagement of the head in the maternal pelvis.

• position of the fetus, which is associated with the relationship of the fetal presenting part

to the maternal pelvis (see figure 3.2). At onset of labor, the left occipitanterior position is

considered as optimum when compared with other fetal positions for initiationg the normal

mechanism of labor (Gabbe et al., 2017; Webb et al., 2011; Ahmad et al., 2014).

3.2.1 Fetal Head Diameters

Concerning the dimensions of the fetal skull, there are several important diameters, as it is

shown in figure 3.3, since the anteroposterior diameter presenting to the maternal pelvis depends

on the degree of flexion or extension of the head. Thus, it is important to know the various di-

ameters as they can differ in length. When the fetal chin is optimally flexed onto the chest, the

suboccipitobregmatic diameter, which extends from the undersurface of the occipital bone at the

junction with the neck to the center of the anterior fontanelle, presents at the pelvic inlet. The

occipitofrontal diameter, which extends from the external occipital protuberance to the glabella,

corresponds to the presenting anteroposterior diameter when the head is deflexed, as in an occip-

itoposterior presentation. The supraoccipitomental diameter extends from the vertex to the chin

and in a brow presentation it is the presenting anteroposterior diameter. In face presentations, the

presenting anteroposterior diameter is the submentobregmatic and it extends from the junction of

the neck and lower jaw to the center of the anterior fontanelle. Regarding the transverse diame-

ters of the fetal skull, there are two: the biparietal, which is the largest transverse diameter and

extends between the parietal bones, and the bitemporal, which is the shortest transverse diameter

and extends between the temporal bones (Hacker et al., 2016).
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Figure 3.2: Fetal presentations and positions in labor: left occipitanterior (LOA); left occipitopos-
terior (LOP); left occipitotransverse (LOT); right occipitanterior (ROA); right occipitotransverse
(ROT); right occipitoposterior (ROP) (Gabbe et al., 2017)

(a) Superior view (b) Lateral view

Figure 3.3: Diameters of the fetal skull (adapted from Hacker et al. (2016))

3.3 Maternal Pelvis

During parturition, the fetus will pass through the birth canal and, therefore, the bony pelvis

as well as the resistance provided by the soft tissues have to be taken into consideration.

Thus, engagement occurs when the widest diameter of the fetal presenting part has passed

through the pelvic inlet. Moreover, a measure of descent of the fetus through the birth canal

is known as station and the current standard classification (-5 to +5) is based on the distance

(in centimeters) of the leading bony edge from the ischial spines and the midpoint (0 station)
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corresponds to the plane of the maternal ischial spines, as it can be seen in figure 3.4 (Gabbe et al.,

2017).

Figure 3.4: Stations of the fetal head (Gabbe et al., 2017)

3.3.1 Maternal Pelvic Diameters

In obstetrics, to determine the female pelvis capacity for childbearing, it is important to analyze

the diameters of the pelvis, which correspond to the main measurements for assessing the capacity

of the maternal pelvis (Gabbe et al., 2017). The pelvic planes are imaginary flat surfaces passing

across the pelvis at different levels and they are used for the purposes of description (figures 3.5a

and 3.5b).

(a) Sagittal view (b) Coronal section

Figure 3.5: Pelvic planes (Posner et al., 2013)

3.3.1.1 Pelvic inlet

Concerning the pelvic inlet (figures 3.6a and 3.6b), the transverse diameter corresponds to

the maximum distance between similar points on opposite sides of the pelvic inlet and this is its

largest measurement. The diagonal conjugate diameter corresponds to the distance from the sacral
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promontory to the inferior margin of the pubic symphysis. The distance of the middle of the

sacral promontory to the superior aspect of the pubic symphysis is known as the true or anatomic

conjugate diameter, whereas the obstetric conjugate represents the actual space available to the

fetus and extends from the middle of the sacral promontory to the closest point on the convex

posterior surface of the symphysis pubic. The distance from the iliopubic ramus to the opposite

sacroiliac joint is known as the oblique diameter. The posterior sagittal diameter extends from

the anteroposterior and transverse diameters to the middle of the sacral promontory (Hacker et al.,

2016; Gabbe et al., 2017).

(a) Anteroposterior view (b) Sagittal section

Figure 3.6: Pelvic inlet diameters (Posner et al., 2013)

3.3.1.2 Plane of Greatest Diameter

The anteroposterior diameter extends from the midpoint of the posterior surface of the pubis

to the junction of the second and third sacral vertebrae. The transverse diameter is the widest

distance between the lateral borders of the plane (Hacker et al., 2016; Gabbe et al., 2017).

3.3.1.3 Plane of Least Diameter (Midplane)

This is the most important plane of the pelvis (figures 3.7a and 3.7b). The anteroposterior

diameter extends from the lower border of the pubis to the junction of the fourth and fifth sacral

vertebrae. The limiting factor of the midpelvis is the interspinous (or transverse) diameter, which

corresponds to the measurement between the ischial spines. The posterior sagittal diameter ex-

tends from the midpoint of the bispinous diameter to the junction of the fourth and fifth sacral

vertebrae (Hacker et al., 2016; Gabbe et al., 2017).

3.3.1.4 Pelvic Outlet

Concerning the pelvis outlet, although being rarely of clinical significance, there are four

measurements that can be made (figures 3.8a and 3.8b). The anatomic anteroposterior diameter is

measured from the apex of the coccyx to the midpoint of the lower rim of the pubic symphysis,

whereas the obstetric anteroposterior diameter extends from the inferior margin of the pubis to the

sacrococcygeal joint. The distance between the ischial tuberosities at the lower borders of their
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(a) Anteroposterior view (b) Sagittal section

Figure 3.7: Plane of least dimensions (Posner et al., 2013)

medial surfaces is known as the transverse or bituberous diameter. The posterior sagittal diameter

extends from the middle of the transverse diameter to the sacrococcygeal joint (Hacker et al., 2016;

Gabbe et al., 2017).

(a) Inferior view (b) Sagittal section

Figure 3.8: Pelvic outlet dimensions (Posner et al., 2013)

3.3.2 Classification of the Pelvis

There is a wide variation in the female pelvis and, based on the general bony architecture,

the pelvis may be classified into four basic types, as can be seen in figure 3.9, according to the

classification of Caldwell and Moloy: gynecoid, which is found in approximately 50% of women;

android, found in less than 30% of women; anthropoid, which is found in approximately 20% of

women; and platypelloid, found in only 3% of women (Hacker et al., 2016).

Figure 3.9: Pelvis types (Posner et al., 2013)

Concerning the gynecoid pelvis, it is round at the inlet, with straight sidewalls, far-spaced

ischial spines and well-curved sacrum. The android pelvis has a triangular inlet, with convergent
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sidewalls with prominent spines and with a shallow sacral curve. The anthropoid pelvis is much

larger anteroposterior than transverse diameter, with sidewalls that do not converge and ischial

spines that are not prominent but are close. This pelvis type is more often associated with delivery

in the occipitoposterior position. Finally, the platypelloid pelvis has an oval-shaped inlet (short

anteroposterior and wide transverse diameter), with straight or divergent sidewalls, a posterior

inclination of a flat sacrum and a wide bispinous diameter (Hacker et al., 2016).

This classification separates female pelvis with favorable characteristics for vaginal delivery

(gynecoid, anthropoid) from those that are less favorable (android, platypelloid), in order to deter-

mine whether a given fetus will be able to safely negotiate a given pelvis (Hacker et al., 2016).

3.3.3 Musculoskeletal System Changes of Pregnancy

During pregnancy, the female body undergoes many hormonal and anatomic changes that af-

fect the musculoskeletal system. These changes occur naturally during pregnancy and often cause

pain on the pelvic region, ranging in intensity from mild to severe pain. The pain starts during

pregnancy and often dissappears soon after childbirth. Pregnancy-related pelvic pain includes

pain from the posterior pelvis and/or from the pubic symphysis.

A progressively increasing anterior convexity of the lumbar spine (lordosis) is often observed.

This corresponds to a compensatory mechanism that allows the woman’s center of gravity to

be kept over her legs and also prevents the enlarging uterus from moving the center of gravity

anteriorly. However, this modification as low back pain as a consequence (Gabbe et al., 2017).

Ligamentous laxity is another physiologic change of pregnancy and it is often associated with

the production of the hormone relaxin, which levels increase in the third trimester. Due to the

relaxation of the pelvic ligaments, it allows the joints of the pelvis to become more flexible to the

fetus to pass. Weight gain combined with ligamentous laxity increase joint discomfort and there

is an increasing mechanical strain on the sacroiliac and pelvis (Borg-Stein et al., 2005). This is

consistent with what was found in several studies where the pelvic area was compared between

pregnant and nonpregnant women: the former had a larger area than the latter (Hemmerich et al.,

2019; Reitter et al., 2014).

The sacroiliac joint takes part in the flexion and extension of the lumbar spine and, in female

joints, in terms of mobility, it facilitates the demands of pregnancy and parturition. The sacroiliac

joints oppose this rotation and, consequently, cause an increase of mechanical tension of the pelvic

ligaments. It is important to note that, to observe a small amount of motion in the sacroiliac joints,

it is required a significant force, as it occurs during the pregnancy (Sipko et al., 2010; McGrath,

2004; Aldabe et al., 2012).

Concerning the pubic symphyseal region, there are several disorders during pregnancy and

parturition. As mentioned before, the symphysis pubis is a fibrocartilaginous structure and there

are some ligaments enveloping the joint. It is believed that relaxin increases pelvic laxity and

predisposes separation of the pubic symphysis, by altering the structure of collagen (Aldabe et al.,

2012). Therefore, the nonpregnant woman’s symphysis pubis gap is, approximately, 4-5 mm

and it is normal to widen 2-3 mm, without discomfort, during the third trimester of pregnancy.
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Consequently, there is an increase in the diameters of the pelvic brim and cavity outlet to facilitate

delivery of the fetus (Jain et al., 2006). However, widening of 10 mm or greater can occur and it

is considered pubic symphysis separation, or pubic symphysis diastasis. Several factors have been

associated with this condition, such as rapid labor, larger birth weight of the infant, delivery using

instrumentation, cephalopelvic disproportion, abnormal presentation of the infant, and excessive

forceful abduction of the thighs during delivery (Hwang, 2015).

The sacrococcygeal joint enables a small amount of flexion and extension of the coccyx. Flex-

ion is produced by contraction of levator ani muscle whilst extension is mostly passive. It is

considered that coccyx can be extended by approximately 5-15 degrees and flexed by approxi-

mately 5-22 degrees (Woon and Stringer, 2012). Nonetheless, coccydynia can occur, which is

defined as pain in the coccyx region and it is typically the result of traumatic etiology. Postpar-

tum coccydynia is an exampke and it has been estimated that approximately 7% of women suffer

from this condition. Two chracteristic lesion have been described in postpartum coccydynia, both

of which are thought to be the result of the coccyx being pushed rearwards by the child’s head

(Hwang, 2015).

3.4 Birthing Positions

There is a wide range of positions for giving birth that can be adopted, but the most widely

used is based on the work of François Mauriceau, which is called the semi-recumbent or the French

birthing position (Gupta and Nikodem, 2000). Maternal positions can be classified into two main

groups, depending on the angle made by the horizontal plane and the line linking the midpoints

of the third and fifth lumbar vertebrae: when the angle is greater than 45 degrees it is considered

upright or vertical, otherwise it is labeled horizontal. It is important to note that this definition

can vary, since there are some studies that define upright position by an angle greater than 30

degrees (Desseauve et al., 2017). In relation to the upright positions, they include the siting,

kneeling, squatting and standing positions, with their variations. On the other hand, the lateral,

semi-recumbent, lithotomy, supine, knee-elbow and dorsal positions, as well as their variants, are

considered horizontal (Atwood, 1976).

3.4.1 Upright (Vertical) Positions

3.4.1.1 Sitting Position

In the sitting position, a woman rests mostly on her buttocks, although she may rely on some

support (Atwood, 1976). This type of position includes semi-sitting and sitting upright. In semi-

sitting, figure 3.10a, a woman sits with her trunk at an angle greater than 45 degrees to the bed and

she can be supported by pillows or bedrest. In sitting upright position, figure 3.10b, a woman sits

in bed supported by a person or on a birthing stool or similar birthing aid (Huang et al., 2019).
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3.4.1.2 Kneeling Position

Kneeling positions include upright kneeling and all fours’ position. Upright kneeling position,

figure 3.10c, a woman rests mainly on her knees and may place her arms in different positions to

distribute the weight between knees and her feet. Consequently, all fours’ position, also known as

hands-to-knees position, a woman supports herself on either the palms of her first (figure 3.10d)

(Huang et al., 2019; Atwood, 1976).

3.4.1.3 Squatting Position

In the squatting position, a woman’s weight rests essentially on her feet, but her knees are

considerably bent and she may lean or pull on some support (figure 3.10e). The squatting position

is often regarded as the most natural position (Huang et al., 2019).

3.4.1.4 Standing Position

In the standing or erect position, a woman’s weight is essentially on her feet and her knees

may be bent slightly or not at all (Atwood, 1976), as can be seen in figure 3.10f.

(a) (b) (c) (d)

(e) (f)

Figure 3.10: Upright Positions: (a) semi-sitting position (Simkin, 2002), (b) sitting on a low stool
(Simkin, 2002), (c) kneeling over chair seat (Simkin, 2002), (d) hands-to-knees position (Simkin,
2002), (e) squatting position with bar (Simkin, 2002), (f) standing position (Lowdermilk, 2011)
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3.4.2 Horizontal Positions

3.4.2.1 Lateral Position

Lateral positions, also known as side-lying positions, include pure side-lying position and

exaggerated Sims positions (semi-prone). In pure side-lying position, figure 3.11a, a woman rests

on either side of her body with her legs either bent at right angles with her upper legs raised and

supported. In lateral-prone, lateral Sims or exaggerated Sims positions, figure 3.11b, a woman lies

on her side with lower arm behind (or in front of) her trunk, her lower leg extended, and her upper

hip and knee flexed 90º or more, she rolls partly toward her front (Huang et al., 2019; Atwood,

1976).

3.4.2.2 Semi-recumbent Position

In the semi-recumbent position, figure 3.11c, a woman rests on her back which is supported at

an angle. Her feet may either be drawn up to her buttocks or be fully extended (Atwood, 1976).

3.4.2.3 Lithotomy Position

In the lithotomy position, figure 3.11d, the woman rests on back, her legs are neither bent with

her feet flat on the surface, placed in stirrups, straight leg supports or held by attendants (Huang

et al., 2019).

3.4.2.4 Supine Position

In the supine position, figure 3.11e, the woman lies flat on her back or with her trunk slightly

raised (< 45º to the horizontal), her legs may be out straight, bent with her feet flat on the bed, in

the leg rests or drawn up and back toward her shoulders (Huang et al., 2019).

3.4.2.5 Dorsal Position

In the dorsal position, figure 3.11f, the weight of the woman rests mainly on her back and her

legs are fully extended (Atwood, 1976).

3.4.2.6 Knee-elbow

In the knee-elbow, also known as knee-chest, figure 3.11g, the woman either squats or kneels

with a large part of her weight supported by her hands or elbows (Atwood, 1976).
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.11: Horizontal Positions: (a) pure side-lying lateral position (Macdonald et al., 2011),
(b) semi-prone lateral position (Macdonald et al., 2011), (c) semi-recumbent position (Lowder-
milk, 2011), (d) lithotomy (Perry et al., 2014), (e) supine position (Lowdermilk, 2011), (f) dorsal
position (Perry et al., 2014), (g) knee-elbow position (Perry et al., 2014)

3.5 Cardinal Movements in Labor

The changes in the position of the fetal head during its passage through the birth canal corre-

spond to the cardinal movements. A rotation of the fetal head is required to successfully negotiate

the birth canal due to the asymmetry of the shape of the birth canal. As it can be seen in figure

3.12, there are seven movements (Gabbe et al., 2017; Hacker et al., 2016):

1. Engagement - This movement refers to the passage of the widest diameter of the presenting

part to a level below of the pelvic inlet. It is an important clinic prognostic sign because

it demonstrated that, at least at the level of the pelvic inlet, the maternal bony pelvis is

sufficiently large to allow descent of the fetal head.

2. Descent - Descent corresponds to the downward passage of the presenting part through the

pelvis, but it is not continuous.

3. Flexion - As the fetal head descends owing to the shape of the bony pelvis and the resistance

offered by the soft tissues of the pelvic floor, its flexion occurs passively. Complete flex-

ion usually occurs only during the course of labor and corresponds to present the smallest

diameter of the fetal head (the suboccipitobregmatic diameter) for optimal passage through

the pelvis.
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4. Internal Rotation - This movement refers to rotation of the presenting part from its original

position as it enters the pelvic inlet to the anterioposterior position as it passes through the

pelvis. It is a movement that results from the shape of the pelvis and the pelvic floor muscu-

lature. As the head descends, the occiput of the fetus rotates toward the pubic symphysis or,

less commonly, toward the hollow of the sacrum, allowing the widest portion of the fetus to

negotiate the pelvis at its widest dimension.

5. Extention - Extension occurs once the fetus has descended to the level of the introitus. The

base of the occiput is in contact with the inferior margin at the symphysis pubis and, at this

point, the birth canal curves upward. The fetal head is delivered by extension and rotates

around the pubic symphysis.

6. External Rotation - This movement is also known as restitution and it refers to the return

of the fetal head to the correct anatomic position in relation to the fetal torso. Further

head rotation may occur as the shoulders undergo an internal rotation to align themselves

anteroposteriorly within the pelvis.

7. Expulsion - The anterior shoulder delivers under the symphysis pubis, followed by the

posterior shoulder over the perineal body. After the shoulder, the rest of the body is usually

delivered without difficulty.
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Figure 3.12: Cardinal movements in labor (Gabbe et al., 2017)
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Chapter 4

Computational Solid Mechanics

4.1 Introduction

Computational bioengineering takes advantage of the latest computational capabilities to deal

with biomedical problems. Through computational modeling, it is possible to assess new surgical

concepts and postoperative surgical outcomes. Since it is not restricted to ethical constraints, it

is a powerful and valuable tool that contributes to numerous innovations and developments in the

medical field.

For this purpose, and from a mechanical perspective, it is important to consider the principles

of continuum mechanics since they provide mathematical frameworks for modeling the behav-

ior of matter. This continuum mechanics approach has been widely adopted for the analysis of

biological tissues.

Furthermore, it is fundamental to consider the finite element method possibilities the analy-

sis and determination of the effects of mechanical stresses, strains and interactions of different

components in complex geometries by reducing them into a finite number of elements with simple

geometries. Consequently, this method is often used to model and simulate biological components.

4.2 Preliminary Concepts

4.2.1 Configuration and Motion of Continuum Bodies

A continuum approach is usually used to describe macroscopic systems, which leads to the

continuum theory. A fundamental assumption therein states that a body, denoted by B, may be

viewed as having a continuous distribution of matter in space and time and it is considered to have

a composition of a (continuous) set of particles, represented by P ∈ B. Hence, in a macroscopic

study of a body, mass and volume are continuous functions of continuum particles and it is known

as a continuum body (Holzapfel, 2002).

In figure 4.1, it is represented a continuum body B with particle P ∈ B embedded in the three-

dimensional Euclidean space at a given instant of time t. The continuum body B moves in space

29
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Figure 4.1: General motion of a deformable body (adapted from Kim (2015))

from one instant of time to another, and the placement of the body B is denoted as configuration

ΦΦΦ(B) of body B (Holzapfel, 2002).

A configuration of the body B is a one-to-one mapping which places all the particles of B in

the Euclidean space. The motion of the body B is associated with the vector field ΦΦΦ that defines

the new location x of a particle X for a fixed t:

x = ΦΦΦ(X) (4.1)

Considering a given particle X that occupies the position (x, t), in a given instance, its position,

which is associated with the place x at time t, is given by:

X = ΦΦΦ
−1(x) (4.2)

4.2.2 Material and Spatial Descriptions

In finite deformation analysis, it is necessary to have a careful distinction between the coor-

dinate systems that can be chosen to describe the behavior of the body whose motion is under

consideration. The so-called material (or referential) description is a characterization of the mo-

tion, or any other quantity, with respect to the material coordinates X1,X2,X3 and time t, given by

equation 4.1. In the material description, also referred to as Lagragian description or Lagragian

form, attention is paid to a particle, so it is observed what happens to the particle as it moves. The

so-called Eulerian (or spatial) description, or Eulerian form, corresponds to a characterization of

the motion, or any other quantity, with respect to the spatial coordinates x1,x2,x3 and time t, given

by equation 4.2. In the spatial description, attention is paid to a point in space, and it is study

whats happens at the point as time changes (Holzapfel, 2002).

4.2.3 Deformation Gradient

A motion of a body will generally change its shape, position and orientation. A continuum

body which is able to change its shape is said to be deformable (Kim, 2015). Taking into consider-

ation the equation 4.1, it is said that, for a given point P in the undeformed configuration, a unique
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point Q exists in the deformed configuration and this mapping relation can be written as:

x = ΦΦΦ(X, t) = X+u(X, t) (4.3)

where u(X, t) is the displacement of point P.

In figure 4.1, neighboring points P′ and Q′ at infinitesimal distances from P and Q are denoted

by vectors dX and dx, respectively, in the two geometries. Note that the vector dX deforms to dx.

Assuming continuous mapping, the relationship between differential elements dX and dx can be

expressed as follows:

dx =
∂x
∂X

dX⇒ dx = FdX (4.4)

where F is known as the deformation gradient that maps elemental vectors of the reference config-

uration to elemental vectors in the spatial configuration. It is a tensor which associates a material

line element dX in B to the spatial line element dx in ΦΦΦ(B). If F = 1, then dX = dx, which means

that there is no deformation. Even if an infinitesimal volume in the undeformed geometry can

increase or decrease its size, it cannot shrink to a point, i.e., a zero volume. Mathematically, this

means that the determinant of deformation gradient must be positive:

detF≡ J > 0 (4.5)

This property is important to make a valid mapping of ΦΦΦ(X, t) during large deformation (Kim,

2015).

4.2.4 Strain Measures

At this stage, it is necessary to determine the material elements changes in terms of (second-

order) strain tensors associated with both reference or current configuration (Bonet and Wood,

2008).

Taking into account the change in the scalar product of two elemental vectors dX1 and dX2,

since they deform to dx1 and dx2, the stretching (change in length) and changes in the enclosed

angle between the two vectors will be involved. Therefore, considering the equation 4.4, the spatial

scalar product dx1 ·dx2 can be written in terms of the material vectors dX1 and dX2:

dx1 ·dx2 = dX1 ·CdX2 (4.6)

where C corresponds to the right Cauchy-Green deformation tensor, which is known as material

tensor quantity and it is given in terms of the deformation gradient as F as:

C = FT F (4.7)

On the other hand, the initial material scalar product dX1 ·dX2 can be written in terms of the
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spatial vectors dx1 and dx2:

dX1 ·dX2 = dx1 ·b−1dx2 (4.8)

where b is the left Cauchy-Green or Finger tensor and it is a spatial tensor quantity:

b = FFT (4.9)

The change in scalar product can be found in terms of the material vectors dX1 and dX2 and

the Lagrangian or Green strain tensor E as:

1
2
(dx1 ·dx2−dX1 ·dX2) = dX1 ·EdX2 (4.10)

where the material tensor E is

E =
1
2
(C− I) (4.11)

Alternatively, the same change in scalar product can be expressed with reference to the spatial

elemental vectors dx1 and dx2 and the Eulerian or Almansi strain tensor e as:

1
2
(dx1 ·dx2−dX1 ·dX2) = dx1 · edx2 (4.12)

where the material tensor e corresponds to

e =
1
2
(I−b−1) (4.13)

4.2.5 Stress Measures

Motion and deformation give rise to interactions between the material and neighboring ma-

terial in the inferior part of the body. This leads to stress, which has a physical dimension force

per unit of area, and it is responsible for the deformation of material. However, depending on the

area used, the definition of stress changes, so, when a large deformation occurs, it is important to

clarify what area is used (Bonet and Wood, 2008).

A deformable body is considered during a finite motion and, for that body, a traction vector t
can be defined using the area of the differential element da, the force df acting on it, and the unit

normal vector n of the area as:

t = lim
da→0

df
da

= σσσn (4.14)

where σσσ is the Cauchy stress tensor, which refers to the deformed geometry as a reference for

both force and area. It is often known as true stress and it is always symmetric. Therefore, there

are six independent stress components acting at a certain point of a body, with σ12 = σ21,σ13 =

σ31,σ23 = σ32. For each stress component σi j, it is adopt the mathematically logical convention

that the first index characterizes the component of the vector t at a certain point in the direction

of the associated base vector ei, and the second index characterizes the plane that t is acting on,

which is described by the direction of the base vector e j, as can be seen in figure 4.2.
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Figure 4.2: Positive stress components of the traction vectors tei (adapted from Holzapfel (2002))

It is important to note that, to define stress tensors based on the undeformed geometry, it is

necessary to know both configurations and, therefore, it is possible to define the Kirchhoff stress

from the Cauchy stress as follows:

τττ = Jσσσ (4.15)

where J represents its Jacobian defined by J = detF.

Considering the same force df, the differential area dA and the unit normal N in the unde-

formed geometry, another traction vector T can be defined as:

T = lim
dA→0

df
dA

= PT N (4.16)

where P is known as the first Piola-Kirchhoff stress tensor and the force is associated with the

deformed geometry and the area with the undeformed geometry.

Moreover, it is possible to obtain a relationship between the Cauchy stress tensor and the first

Piola-Kirchhoff stress tensor:

P = JσσσF−T (4.17)

The Cauchy stress is symmetric, but since the deformation gradient is not, the first Piola-

Kirchhoff stress tensor will also not be symmetric. This particularity restricts its use and it actually

led to the definition of the material or Second Piola-Kirchhoff stress tensor and it can be defined

as it follows:

S = PF−T = JF−1
σσσF−T (4.18)

The second Piola-Kirchhoff stress tensor is symmetric and can be visualized as force per unit

undeformed, except that forces that are regarded as acting within the undeformed solid rather than

on the deformed solid.

4.3 Principle of Virtual Work

Various problems in computational mechanics want to find an approximate (finite element)

solution for deformations, displacements, forces, stresses, or other variables in a solid body sub-

jected to some series of events. The force and moment equilibrium have to be maintained at all

times over an arbitrary volume of the body to find the exact solution (Bonet et al., 2017).
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The principle of conservation of linear momentum states that the rate of change of the total

linear momentum of a continuum medium equals the vector sum of all external forces acting on

the body. Therefore, it can be written the following equation of motion:

∂σσσ

∂x
+ f = ρ

∂ 2u
∂ t2 (4.19)

where ρ represents the mass density if the deformed solid, f is the body force vector (per unit

volume) and σσσ the Cauchy stress distribution. These equations must be satisfied for any continuum

in motion and are also called Cauchy’s Equations of Motion. If the acceleration vanishes, the

following static equilibrium equation is obtained:

∂σσσ

∂x
+ f = 0 (4.20)

The principle of virtual work (Bower, 2010) is a different way of rewriting partial differential

equation for linear moment balance in an equivalent integral form. Therefore, it forms the basis

for the finite element method and corresponds to the equilibrium of the work done by both internal

and external forces with small, arbitrary, virtual displacements that satisfy kinematic constraints.

Supposing that a deformable solid is subject to the loading that induces a displacement field

u(x) and a velocity field v(x), the loading consists of a prescribed displacement on a part of the

boundary (S1), together with a traction t applied to the rest of the boundary (S2). The loading

induces a Cauchy stress and its distribution within the solid is denoted by σi j.

It is necessary to define a kinematically admissible velocity field δv(x), satisfying δv = 0 on

S1, which corresponds to an arbitrary differentiable vector field. As a consequence, the virtual

velocity gradient and virtual stretch rate are denoted, respectively, as:

δL =
∂δv
∂x

(4.21)

δD =
1
2

(
∂δv
∂x

+

(
∂δv
∂x

)T
)

(4.22)

Consequently, the principle of virtual work can be stated, noting that the stress, body force and

traction are in equilibrium if, and only if, the rate of the work done by Cauchy stresses on the rate

of deformation of any virtual velocity field are equal to the rate of work done by the traction and

body forces acting on the body (external forces). Therefore, the principle of virtual work can be

written as:

∫
V

σσσ : δD dV +
∫

V
ρ

dv
dt

δv dV =
∫

V
f δv dV +

∫
S2

tδv dA (4.23)

The Gauss’s theorem can be applied as well as some statements regarding the properties of the

Cauchy Stress to prove this result. Thus, concerning the Gauss’s theorem, it defines the theorem
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as an quality relationship between surface integrals and volume integrals:

∫
S

n · ()dS =
∫

V

∂

∂x
· ()dV (4.24)

where ( ) is any continuous function-scalar, vector or tensor. Also, some statements regarding the

properties of the Cauchy Stress can be used:

σi jδDi j =
1
2

σi j

(
∂δvi

∂x j
+

∂δv j

∂xi

)
=

1
2

(
σ ji

∂δvi

∂x j
+σi j

∂δv j

∂xi

)
=σ ji

∂δvi

∂x j
=

∂

∂x j
(σ jiδvi)−

∂σ ji

∂x j
δvi

(4.25)

Applying these to the first term on the right-hand side of the principle of virtual work, it

becomes: ∫
V

σσσ : δD dV =
∫

V

∂σσσδv
∂x

dV −
∫

V

∂σσσ

∂x
δv dV (4.26)

Applying the Guass theorem to same term and replacing it in equation 4.23, it becomes:

∫
S2

(σσσ ·n) δv dA−
∫

V

∂σσσ

∂x
δv dV +

∫
V

ρ
dv
dt

δv dV =
∫

V
fδv dV +

∫
S2

tδv dA (4.27)

Concerning the equation 4.14, it is obtained:

∫
V

f δv dV +
∫

V

∂σσσ

∂x
δv dV =

∫
V

ρ
dv
dt

δv dV (4.28)

4.4 Constitutive Equations

The stresses produced in a body, which result from the deformation of the material, are related

to material straining. Constitutive models aim to develop mathematical models for representing the

real behavior of matter, and, consequently, they depend on the type of material under consideration

and can be dependent or independent of time. They may also satisfy certain physical principles,

but they are generally fit to experimental measurements since they cannot be calculated using

fundamental physical laws.

4.4.1 Hyperelasticity

Materials for which the constitutive behavior is only a function of the current state of defor-

mation are generally known as elastic. Under such conditions, any stress measure at a particle

is a function of the current deformation gradient F associated with that particle. In the particular

case when the work done by the stresses during a deformation process is dependent only on the

initial state at time t0 and the final configuration at time t, the behavior of a material is said to be

path-independent and it is called hyperelastic (Bonet and Wood, 2008).

A hyperelastic material assumes the existence of a Helmholtz free-energy function Ψ, which

is defined per unit undeformed volume. In the particular case in which Ψ = Ψ(F) is a function

of F or some strain tensor, the Helmholtz free-energy function is referred to as the strain-energy
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function or stored-energy function and the first Piola-Kirchhoff stress tensor can be calculated as

(Holzapfel, 2002):

P =
∂Ψ(F)

∂F
(4.29)

Taking into account the symmetric Cauchy stress tensor, i.e, σ = J−1PFT = σT :

σ = J−1F
(

∂Ψ(F)
∂F

)T

(4.30)

It is presumed that Ψ can be obtained from physical experiments, which defines a given mate-

rial.

The strain-energy function can be represented in equivalent forms. It is known that Ψ must

remain invariant under rigid body rotations, which means that it is independent of the rotational

part of F = RU. Consequently, it can be concluded that a hyperelastic material depends on the

stretching part of F, i.e. the symmetric right stretch tensor U.

Since the right Cauchy-Green tensor and the Green-Lagrange strain tensor are given by C=U2

and E = (U2− I)/2, Ψ can be expressed as a function of the six components of the symmetric

material tensors C, E, respectively:

Ψ(F) = Ψ(C) = Ψ(E) (4.31)

and it is possible to reduce the constitutive equations for hypereleastic materials at finite strains.

Thus, it can be deduced that: (
∂Ψ(F)

∂F

)T

= 2
∂Ψ(C)

∂C
FT (4.32)

which gives an important reduced form of the constitutive equation for hyperelastic materials,

namely:

σ = J−1F
(

∂Ψ(F)
∂F

)T

= 2J−1F
∂Ψ(C)

∂C
FT (4.33)

Alternative expressions may be obtained for the Piola-Kirchhoff stress tensors P (which is not

symmetric) and S (which is symmetric):

P = 2F
∂Ψ(C)

∂C
(4.34)

S = 2
∂Ψ(C)

∂C
=

∂Ψ(E)
∂E

(4.35)

4.4.1.1 Isotropic Hyperelastic Materials

Isotropy is a property based on the physical idea that the response of the material, when stud-

ied in a stress-strain experiment, is the same in all directions. Thus, the strain-energy function can
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be restricted by a particular property that the material may possess. One example of an (approxi-

mately) isotropic material with a wide range of applications is rubber (Holzapfel, 2002).

Taking into account the Material or Lagragian description, the constitutive relation has to be

independent of the coordinate frame selected, since the material has the same property for all

directions (Holzapfel, 2002; Bonet and Wood, 2008). Therefore, Ψ must be only a function of the

invariants of C:

Ψ(C,X) = Ψ(I1, I2, I3,X) (4.36)

The invariants of C can be defined as:

I1(C) = tr(C) (4.37)

I2(C) =
1
2
(I2

1 −C : C) (4.38)

I3(C) = det(C) = J2 (4.39)

By means of the chain rule of differentiation, it is found:

∂Ψ(C)

∂C
=

∂Ψ

∂ I1

∂ I1

∂C
+

∂Ψ

∂ I2

∂ I2

∂C
+

∂Ψ

∂ I3

∂ I3

∂C
(4.40)

The derivates of the invariants with respect to C can be obtained after some algebra. Recalling

the constitutive equation 4.35 and substituting these derivates into equation 4.40, the second Piola-

Kirchhoff stress can be obtained:

S = 2
[(

∂Ψ

∂ I1
+ I1

∂Ψ

∂ I2

)
I− ∂Ψ

∂ I2
C+ I3

∂Ψ

∂ I3
C−1

]
(4.41)

For isotropic hyperelastic materials, the spatial counterpart of the constitutive equation can be

obtained from the previous equation. The relationship between the Cauchy stress and the second

Piola-Kirchhoff stress is given by equation 4.18. Thus, replacing S in this relation by equation

4.41 and multiplying the tensor variables I, C, C−1 and FT from the right hand side and F from

the left hand side, it is possible to obtain the following equation in terms of the left cauchy-green

tensor B:

σσσ = 2J−1
[(

∂Ψ

∂ I1
+ I1

∂Ψ

∂ I2

)
b− ∂Ψ

∂ I2
b2 + I3

∂Ψ

∂ I3
I
]

(4.42)

However, this expression still involves derivates with respect to the invariants of the material

tensor C. Since b and C have the same eigenvalues, their invariants are identical, so:

I1(b) = tr(b) = tr(C) = I1(C) (4.43)
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I2(b) =
1
2
(I2

1 −b : b) =
1
2
(I2

1 −C : C) = I2(C) (4.44)

I3(b) = det(b) = J2 = det(C) = I3(C) (4.45)

Consequently, the derivates that appear on equation 4.42 are also with respect to the invariants

of b.

If the strain-energy function Ψ is an invariant, Ψ is also a function of the principal stretches
{λa} ,a=1,2,3. Therefore, Ψ can be represented in the form:

Ψ = Ψ(C) = Ψ(λ1,λ2,λ3) (4.46)

It is necessary to note that:

I =
3

∑
a=1

N̂a⊗ N̂a (4.47)

C−1 =
3

∑
a=1

λ
−2
a N̂a⊗ N̂a (4.48)

Substituing these equations into equation 4.41, the second Piola-Kirchhoff stress tensor can be

obtained:

S =
3

∑
a=1

(
2

∂Ψ

∂ I1
+4

∂Ψ

∂ I2
λ

2
a +2I3

∂Ψ

∂ I3
λ
−2
a

)
N̂a⊗ N̂a (4.49)

Since λ 2
a are the eigenvalues of C, the invariants can also be obtained by:

I1 = λ
2
1 +λ

2
2 +λ

2
3 (4.50)

I2 = λ
2
1 λ

2
2 +λ

2
1 λ

2
3 +λ

2
2 λ

2
3 (4.51)

I3 = λ
2
1 λ

2
2 λ

2
3 (4.52)

Differentating these equations and substituting them into equation 4.49, the following expres-

sion can be reached using the chain rule:

S =
3

∑
a=1

SaaN̂a⊗ N̂a; Saa = 2
∂Ψ

∂λ 2
a

(4.53)

Considering the relationship with the second Piola-Kirchhoff stress tensor, the Cauchy stress

can be obtained once again:

σσσ = J−1FSFT =
3

∑
a=1

2
J

∂Ψ

∂λ 2
a
(FN̂a)⊗ (FN̂a) (4.54)
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4.4.1.2 Incompressible Hyperelastic Materials

Incompressible materials (Holzapfel, 2002; Bonet and Wood, 2008) can sustain finite strains

without noticeable volume changes. They keep the volume constant throughout a motion and are

characterized by the incompressibility constraint:

J = 1 (4.55)

To obtain general constitutive equations for incompressible hyperelastic materials, the strain-

energy function is given by:

Ψ = Ψ(F)− p(J−1) (4.56)

where the strain-energy Ψ is defined for J = detF = 1 and the scalar p serves as an indetermi-

nate Lagrange multiplier which can be identified as a hydrostatic pressure and it may only be

determined from the equilibirum equations and the boundary conditions.

Differentiating equation 4.56 with respect to F and taking into account that:

∂J
∂F

= JFT (4.57)

a constitutive equation for the first Piola-Kirchhoff stress tensor P can be obtained:

P = −pFT +
∂Ψ(F)

∂F
(4.58)

Multiplying the previous equation by F−1 on the left hand side, it is possible to obtain the

second Piola-Kirchhoff stress S:

S = −pF−1FT +F−1 ∂Ψ(F)
∂F

=−pC−1 ∂Ψ(C)

∂C
(4.59)

Nevertheless, if we multiplying instead equation 4.58 by F−T from the right hand side, the

Cauchy stress is obtained:

σσσ = −pI+
∂Ψ(F)

∂F
FT =−pI+Fe

∂ (F)
∂F

T

(4.60)

4.4.1.3 Transversely Isotropic Hyperelastic Materials

Materials composed of a matrix material and one or more families of fibers and are known

as composite materials or fiber-reinforced composite (Holzapfel, 2002). This type of material

is heterogenous since it has different compositions throughout the body. In the bioengineering

field, biological tissues are heterogenous composite materials made of cells and molecules of the

extracelluar matrix. In the case of muscle tissue, it is composed by collagen fibers that are coated

by an extracelular matrix, which is composed of collagens, laminins, fibronectin and proteoglycans

(Grzelkowska-Kowalczyk, 2016).
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A material reinforced with one family of fibers has a single preferred direction and the stiffness

of the material in that direction is much higher than in the direction orthogonal to the fibers. It is

possible to consider that the material response along direction orthogonal to this preferred direction

is isotropic. This corresponds to the simplest representation of material anisotropy, which is called

transversely isotropic with respect to this preferred direction.

Considering transversely isotropic materials with an incompressible isotropic matrix material,

the embedded fibers can be extensible or inextensible. In order to describe the properties of the

fiber family and its interaction with the other material constituents, two pseudo-invariants I4 and

I5 arises directly from the anisotropy and are defined by:

I4 = λ
2 = a0 ·Ca0, I5 = a0 ·C2a0 (4.61)

where λ is the stretch in the fiber in the direction defined in the reference configuration by a unit

vector field a0.

When the embedded fibers are extensible, and assuming incompressibility of the isotropic

matrix material (I3 = 1), the strain-energy function Ψ can be represented in terms of the remaining

four independent invariants:

Ψ = Ψ[I1(C), I2(C), I4(C,a0), I5(C,a0)]−
1
2

p(I3−1) (4.62)

When the embedded fibers are inextensible, which means that λ = 1 and I4 = 1. Assuming

incompressibility of the isotropic matrix material (I3 = 1), the strain-energy function Ψ can be

written as:

Ψ = Ψ[I1(C), I2(C), I5(C,a0)]−
1
2

p(I3−1)− 1
2

p(I4−1) (4.63)

where I1 and I2 are responsible for the hyperelastic isotropic matrix material and I5 is responsible

for the fibers.

Applying the chain rule, the second Piola-Kirchhoff stress tensor S can be obtained from

equation 4.35:

S = 2
∂Ψ(C,a0⊗a0)

∂C
= 2

5

∑
a=1

∂Ψ(C,a0⊗a0)

∂ Ia

∂ Ia

∂C
(4.64)

Obtaining the derivates ∂ Ia/∂C from 4.61, it is possible to reach the following expression:

S = 2
[(

∂Ψ

∂ I1
+ I1

∂Ψ

∂ I2

)
I− ∂Ψ

∂ I2
C+ I3

∂Ψ

∂ I3
C−1 +

∂Ψ

∂ I4
a0⊗a0 +

∂Ψ

∂ I5
(a0⊗Ca0 +a0C⊗a0)

]
(4.65)

which extends the constitutive equation 4.41. Due to the relation between the stress tensors, the

expression for the Cauchy stress is obtained:

σσσ = 2J−1
[(

∂Ψ

∂ I1
+ I1

∂Ψ

∂ I2

)
B− ∂Ψ

∂ I2
B2 + I3

∂Ψ

∂ I3
I+ I4

∂Ψ

∂ I4
a0⊗a0 + I4

∂Ψ

∂ I5
(a0⊗Ba0 +a0B⊗a0)

]
(4.66)
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4.5 Finite Element Method

One of the numerical methods used for solving differential equations that describe many en-

gineering problems is the finite element method. Therefore, to solve these problems, in finite

element method the domain of the body is divided into small regions known as elements. Each

element has a set of nodes that are used to connect this element with other elements used in the

discretization of the body. The displacement of the material points of an element is approximated

using a set of shape functions and the displacements of the nodes and possibly their derivates with

respect to the spatial coordinates. Taking into account the principle of virtual work, the finite

element formulation stablishes the equilibrium equations. For a given material and loading con-

ditions, its solution is given by a deformed configuration in a state of equilibrium. To obtain this

new equilibrium position, the Netwon-Raphson iterative solution is applied, which requires the

linearization of the virtual work (Kim, 2015; Bonet et al., 2017).

4.5.1 Discretized Equilibrium Equations

The displacement field can be approximated by interpolation functions (shape functions),

where n denotes the number of nodes per element, (Bonet et al., 2017) and it is given as:

u(x)≈
n

∑
i=1

Ni(X)ui (4.67)

where the position vector at the begining of each iteration is represented by X, the shape func-

tions defined within the finite element correspond to Ni(X) and ui represents the unknown nodal

displacement. Considering the interpolation of equation 4.67 and that the virtual field δu must be

compatible with all kinematics constraints, it can be written as:

δu≈
n

∑
i=1

Ni(X)δui (4.68)

Moreover, the virtual work equation 4.23 can be rewritten in terms of the virtual displacement:

δW =
∫

V
σσσ : δe dV −

∫
V

f ·δu dV −
∫

S2

t ·δu dA (4.69)

Equation 4.69 can be approximated by a variation over the finite set of δui, from the discretiza-

tion process. Thus, for an arbitrary node (a) of the element (e), it may be written by:

δW (e) =
∫

V (e)
σσσ : (δua⊗Na) dV −

∫
V (e)

f · (Naδua) dV −
∫

S(e)2

t · (Naδua) dA (4.70)

Consequently, equation 4.70 can be rearranged, since the virtual nodal displacement are inde-

pendent of the integration. Also, the virtual work per element (e) per node (a) can be expressed in
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terms of internal and external equivalent nodal forces, F(e)
int a and F(e)

ext a, respectively:

δW (e) = δua ·
(∫

V (e)
σσσNa dV −

∫
V (e)

Naf dV −
∫

S(e)2

Nat dA
)
= δua · (F(e)

int a−F(e)
ext a) (4.71)

where F(e)
int a =

∫
V (e) σσσNa dV and F(e)

ext a =
∫

V (e) Naf dV −
∫

S(e)2
Nat dA.

Since the virtual work equation must be satisfied for any arbitrary virtual displacement and

the equilibrium conditions require that δW e = 0, the discretized equilibrium equations, in terms

of nodal residual force R(e)
f a, emerge as:

R(e)
f a = (F(e)

int a−F(e)
ext a) = 0 (4.72)

After summing the contribution of every nodes and elements, which corresponds to the assem-

bling process, the global equilibrium equation in the discretized form can be written as:

R f = (Fint −Fext) = 0 (4.73)

4.5.2 Linearization of the Virtual Work Principle

The principle of virtual work has been presented in section 4.3 and, considering a trial solution

ϕk, it can be linearized in the direction of an increment ∆u in Φk as (Bonet et al., 2017):

δW (ϕk,δu)+D∆uδW (ϕk,δu) = 0 (4.74)

where the operator D denotes directional derivetive of the virtual work equation at ϕk in the direc-

tion of ∆u and finding it is fundamental, noting that it corresponds to the change in δW due to ϕk

changing to ϕk +∆u. Thus, to bring the internal forces into equilibrium with the external forces,

this is necessary in the Newton-Raphson procedure to adjust the configuration ϕk. The lineariza-

tion of the equilibrium equation (Bonet et al., 2017) will be considered in terms of internal and

external work components as:

D∆uδW (ϕk,δu) = D∆uδWint(ϕk,δu)−D∆uδWext(ϕk,δu) = 0 (4.75)

Although the definition of the directional derivate is complex, the final expression can be state

in the discretized form as:

D∆uδW (ϕk,δu) = δuT Ku (4.76)

where K = ∂∆σσσ

∂∆εεε
corresponds to the stiffness matrix.

Taking into account equation 4.73, and substituting equation 4.76 into equation 4.74, it can be

obtained:

R f +Ku = 0 (4.77)
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which provides the basis of the iterative Newton-Raphson scheme, that can be formulated as:

Ku =−R f (xk); xk+1 = xk +u (4.78)

4.5.3 ABAQUS® Finite Element Software

ABAQUS® is a software for finite element analysis and computer-aided engineering. It is

based on the finite element method and can solve problems ranging from simple linear analysis to

the most challenging nonlinear simulations. It consists in a vast product set, which includes, for

example: ABAQUS/CAE® (Complete ABAQUS® Enviornement) that is used for the modeling

and analysis of mechanical components and assemblies, as well as to visualize the finite element

analysis result; and ABAQUS/Standard® that is a general-purpose analysis product that can solve

a wide range of linear and nonlinear problems.

The software contains an extensive library of elements and the most common materials already

defined, but, for complex problems, it enables the development of an user subroutine, known as

UMAT, to consider specific constitutive equations to calculate the stiffness matrix and the stresses.

To better understand the overall structure and functing of the software, figure 4.3 shows a basic

flow chart of data and actions from the start of an ABAQUS®/Standard analysis to the end of a

step.
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Figure 4.3: ABAQUS®/Standard flowchart



Chapter 5

Finite Element Simulations

5.1 Introduction

Childbirth can be both psychologically and mechanically traumatic for the mother. Despite

being a natural process, it involves extensive physiologic changes in the mother to allow the pas-

sage of the fetus through the birth canal. Vaginal birth is not a passive process implying uterine

contractions to push a rigid body through a fixed aperture. This leads to a significant stretching

of the levator musculatures and of the pudendal nerves, being responsible for several dysfunctions

(Donelson and Minocha, 2002) and requiring a successful negotiation of the pelvis. Therefore, it

is important to take into account the position that the mother assume during the second stage of

labor and the associated maternal outcomes.

In this work, a validated finite element model of the pelvic bones, pelvic floor muscles, and

the fetus was modified in order to mimic two birthing positions: one that allows free movement

of the coccyx and the other in which it is more restricted. It is important to note that, taking into

account section 3.4, in the majority of horizontal birthing positions sacrum and coccyx movement

is restricted due to the presence of the bed under them, unlike to what happens in most of vertical

birthing positions. This is the main difference that distinguish the two positions considered.

Ligament laxity is a physiological change that occurs during pregnancy, therefore some mus-

culoskeletal changes that are observed during labor were also considered in the biomechanical

model, such as the widening of the pubic symphysis that may occur to facilitate the passage of the

fetus. In this way, the movements of the fetal head during the second stage of labor in the vertex

presentation and an occipitanterior position were simulated. Hence, it is intended to be study the

biomechanical changes caused by different childbirth positions. Knowing the risk and benefits

of each position, pregnant women may decide on the birthing position adopted during the second

stage of labor. The prediction of the childbirth outcomes may help to prevent mother and/or fetus

complications.

45
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5.2 Materials and Methods

5.2.1 Finite Element Model

The three-dimensional (3D) finite element model presented in figure 5.1 was constructed using

a geometrical data point-set obtained from an embalmed 72 years old female cadaver Janda et al.

(2003) as it is fully explained in Parente et al. (2008).

Figure 5.1: Finite element model of the mother showing the pelvic girdle bones in brown, the
pelvic floor muscles in light red and the supporting structures in dark red

Regarding the mother, the biomechanical model includes the pelvic floor muscles and the

supporting structures. Figure 5.1 illustrates the pelvic floor muscles in light red and the supporting

structures in dark red. The latter is divided into three structures, as it can be seen in figure 5.2: the

two lateral meshes represent the arcus tendinous, obturator fascia and the obturator internus, and

the posterior mesh represents the different connections between muscles of the pelvic floor and

the sacrum. All these structures were modeled using hexahedral elements with hybrid formulation

(C3D8H).

The finite element model of the mother also includes the pelvic girdle, which consists of paired

hip bones, each composed of the ilium, ischium and pubis, sacrum and coccyx. These bones were

modeled using triangular shell elements with reduced integration (S3R). Taking into account the

birthing positions that were simulated, the sacrum and coccyx are important bones in terms of the

space available for the passage of the fetus. These bones were modeled considering the existing

two types of bone tissue and using FEMAP® 2020.1 software. Thus, the bone tissue that forms

the hard exterior (cortex) of bones, known as cortical bone, was modeled using triangular shell

elements with reduced integration (S3R) and with a thickness of 2 mm (Zhao et al., 2012). The

internal tissue of the skeletal bone, known as trabecular bone, was modeled using tetrahedral

elements with hybrid formulation (C3D4H). Figure 5.3 illustrates the finite element model of the
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Figure 5.2: Dimensions of the levator hiatus

sacrum and coccyx, considering its cortical bone tissue in black and its trabecular bone tissue in

brown.

Figure 5.3: Finite element model of the sacrum and coccyx with cortical bone in black and trabec-
ular bone in brown (lateral view)

The maternal pelvic diameters presented in figure 5.4 were modified according to the measures

on pelvimetry obtained by Michel et al. (2002), which are listed in table 5.1. The initial pubic

symphysis gap is 4.05 mm, which is in accordance with Jain et al. (2006).

Table 5.1: Maternal pelvic diameters considered

Diameters [mm]
Transverse 129

Interspinous 110
Obstetric conjugate 124

Sagittal outlet 115
Intertuberous 124



48 Finite Element Simulations

(a) Anterior view (b) Lateral view

(c) Posterior view

Figure 5.4: Pelvic diameters of the model: A, transverse diameter; B, interspinous diameter; C,
obstetric conjugate diameter; D, sagittal outlet diameter; E, intertuberous diameter

In the pubic symphysis and sacroiliac joints, the main ligaments were modeled, based on

anatomic data available in the literature (Standring, 2016). The anterior, interosseous and posterior

sacroiliac ligaments were simulated using several linear truss elements (T3D2), as well as the

sacrospinous and sacrotuberous ligaments. In order to give numerical stability to the simulation,

linear beam elements (B31), using a low Young modulus, were superimposed to the truss elements

mesh of the sacrospinous and sacrotuberous ligaments, providing a residual bending stiffness. In

the pubic symphysis, the superior and inferior pubic ligaments were also modeled using linear

truss elements (T3D2). Figure 5.5 illustrates the biomechanical model of the mother with the

mentioned ligaments modeled.

To ensure a correct simulation of the motion of the pelvis joints and to provide some stability

to the simulation, 3D solid elements were added in the joints area. In the sacroiliac joint, a group

of wedge elements with hybrid formulation (C3D6H) were added in the auricular surfaces of the
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(a) Anterior view

(b) Posterior view

Figure 5.5: Finite element model with the modeled ligaments: 1, sacroiliac ligaments; 2, superior
pubic ligament; 3, inferior pubic ligament; 4, sacrospinous ligament; 5, sacrotuberous ligament

ilium and sacrum in each sacroiliac joint to mimic the synovial part of this joint. In the pubic

symphysis, another group of 3D solid elements was added to mimic the interpubic disc.
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In this study, two different birthing positions were mimicked: one in which the coccyx is

mobile and another in which its movement is restricted. The sacrococcygeal joint corresponds to

a symphysis between the sacrum and coccyx and its mobility aims to increase the anteroposterior

diameter of the pelvis during labor. The movement of the coccyx is only possible when there is

no surface (for example, a bed) under the woman. In the majority of vertical birthing positions,

the sacrum and coccyx are free to move and, in the majority of horizontal birthing positions, the

movement of these bones is more restricted due to the presence of the bed under them. Thus, in

the mob. coccyx model, the sacrococcygeal joint was considered. The biomechanical model of

the sacrum, coccyx and sacrococcygeal joint is shown in figure 5.6.

Figure 5.6: Finite element model of the sacrum and coccyx in brown and the sacrococcygeal joint
in grey (posterior view)

Regarding the fetus, the head was modeled using tetrahedral elements (C3D4) and the principal

diameters presented in figure 5.7 are the following, according to Parente et al. (2010): biparietal

diameter 9.0 cm; bitemporal diameter, 7.5 cm; suboccipitobregmatic diameter, 9.5 cm; suboccip-

itofrontal diameter, 10.5 cm; occipitofrontal diameter, 11.5 cm; mentovertical diameter, 13.0 cm;

submentobregmatic diameter, 9.5 cm.

Figure 5.7: Diameters of the fetal skull: 1, suboccipitobregmatic diameter; 2, suboccipitofrontal
diameter; 3, occipitofrontal diameter; 4, mentovertical diameter; 5, submentobregmatic diameter
(adapted from Parente et al. (2010))
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To verify the influence of the birthing position on the pubic symphysis gap, sacrum, coccyx

and pelvic floor muscles, the second stage of a birth in vertex presentation and occipitanterior

position was simulated assuming the two mentioned maternal positions. The model in which

the coccyx has a restricted movement will be designated as non-mobile coccyx model (non-mob.

coccyx model) and the other model in which the coccyx is free to move will be designated as

mobile coccyx model (mob. coccyx model). Abaqus® software 2018 (Dassault Systèmes Simulia

Corp., Providence, RI, USA) was used to perform the numerical simulations. For this purpose,

the widening of the pubic symphysis gap, the stress related to the pubic ligaments, the movement

and rotation of coccyx, the stress related to the cortical bone of sacrum and coccyx, the stretch and

stress related to the pelvic floor muscles and the reaction forces on the fetus head were evaluated.

Concerning to the pubic symphysis, the distance between the narrowest points of the symphy-

seal gap was measured and, knowing that the initial gap is 4.05 mm, the widening of this joint was

calculated. The movement of coccyx was measured using a reference line that was drawn from the

inferior border of the symphysis to the inferior border of the sacrum, as shown in figure 5.8. The

Figure 5.8: Reference line from the inferior border of the pubic symphysis to the inferior border
of the sacrum

distance from the tip of the coccyx to this reference line was calculated based on equation 5.1 and

the difference in movement was obtained. The rotation of the tip of the coccyx around the z-axis

was also obtained.

dist((x1,y1),(x2,y2),(x0,y0)) =
|(y2− y1)x0− (x2− x1)y0 + x2y1− y2x1|√

(y2− y1)2 +(x2− x1)2
(5.1)

To evaluate the displacement along the x-axis of both sacrum and coccyx, a curve was defined

along the sagittal plane of these bones, as it is shown in figure 5.9.

Concerning the pelvic floor muscles, a curve was defined on the most inferior part of the pelvic

floor mesh, as shown in figure 5.10. The length of this curve during the simulation was measured

and, knowing its initial value, the evolution of the stretch values for the curve was obtained. Note
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Figure 5.9: Curve in black used to evaluate the displacement of the sacrum and coccyx

that the stretch ratio is defined as the ratio between the current tissue length to the original tissue

length. The stress of the pelvic floor muscles were also measured along this curve, considering

the position of the fetus head causing the maximum stress value. At this moment, the stress

distribution throughout all the pelvic floor muscles were analyzed. Lastly, the reaction forces on

the fetus head, in the medial-lateral direction, were obtained.

Figure 5.10: Model of pelvic floor muscles in red and curve, in black, used to evaluate stress and
stretch

5.2.2 Materials

To govern the deformation of the pelvic floor muscles, the theory of continuum mechanics

was considered, allowing to analyze several mechanical properties. As mentioned before, soft tis-

sues have material and geometric nonlinear characteristics. In the case of muscle tissues, they are

heterogenous composite materials composed by collagen fibers that are coated by an extracelular

matrix. To account for the muscle behavior, it was necessary to simulate both passive and active

finite strain responses of the muscle, where contributions of different parts of the tissue microstruc-

ture were taken into account, such as the contribution of: the extracellular matrix that endows the

tissue strength and resilience (Ψm); the fibers (Ψ f ), both passive elastic part (ΨPE) and active part

(ΨSE), responsible for muscle contraction and with an initial direction that corresponds to the di-

rection of the maximum principal stress in the element when applying pressure to the muscle; and

the volumetric contribution to enforce the incompressibility condition (Ψvol). For this purpose, the
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constitutive model used to represent these physical properties was the quasi-incompressible trans-

versely isotropic hyperelastic model proposed by Martins et al. (1998) and already successfully

used by Parente et al. (2008), as follows:

Ψ = Ψm(ĪC
1 )+Ψ f (λ̄ f ,α)+Ψvol(J) (5.2)

where

Ψm = c
[
eb(ĪC

1 −3)−1
]

(5.3)

Ψ f =

ΨPE︷ ︸︸ ︷
A
[
ea(λ̄ f−1)2−1

]
+

ΨSE︷ ︸︸ ︷
T M

0

∫
λ̄ f

1
fSE(λ

M,α)dλ
M (5.4)

Ψvol =
1

D1
(J−1)2 (5.5)

In these definitions, c, b, A, a, D1 and T M
0 are constants, ĪC

1 is the first invariant of the right

Cauchy-Green strain tensor, C, with the volume change eliminated, i.e:

ĪC
1 = tr(C̄) = tr(F̄T F̄) = J−2/3tr(C) (5.6)

λ̄ f represents the fiber stretch ratio in the direction N of the undeformed fiber:

λ̄ f =
√

NT C̄N =
√

C̄ : (N⊗N) (5.7)

In equation 5.6, F̄ is the deformation gradient with the volume change eliminated and J the

volume change. Regarding equation 5.4, for the function fSE(λ
M,α), the following expression

was used:

fSE = α

 1−4(λ M−1)2 for 0.5 < λ M < 1.5

0 otherwise
(5.8)

which means that for 0.5 ≥ λ M ≥ 1.5 the muscle produces no energy. The level of activation is

controlled by the internal variable α ∈ [0,1].

The constitutive parameters considered in Parente et al. (2009) were applied and they are listed

in table 5.2.

Table 5.2: Constitutive material parameters for the pelvic floor muscle

Material Parameters
c = 0.00185 MPa
b = 1.173
A = 0.0280 MPa
a = 0.6215
D1 = 1.0×10−4 MPa−1

T M
0 = 0.682 MPa
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For the supporting structures, the Neo-Hookean constitutive model, used in several other

biomechanical studies, was considered (Peña et al., 2006). The Neo-Hookean model (Kim, 2015)

is a simple and reliable formulation of a hyperelastic model. It was derived from molecular chain

statistics considerations in which vulcanized rubber is regarded as a three-dimensional network of

long-chain molecules that are connected at a few points. It is described by the following expres-

sion:

Ψ(C) = c10(ĪC
1 −3)+Ψvol(J) (5.9)

where c10 =
µ

2 . The constant µ is the shear modulus of linear elasticity. Ψvol is the volumetric

contribution presented in equation 5.5.

Regarding the pelvic girdle bones, they were considered as rigid structures. Limiting the bone

deformations, this approach facilitates the convergence of the simulation. However, since the main

difference between the two birthing positions simulated is the mobility of the sacrococcygeal joint,

the sacrum and coccyx were considered as deformable structures. Thus, it was fundamental to

consider the contribution of both cortical and trabecular tissues to bone strength. The cortical

bone corresponds to the denser and stronger of the two types of bone tissue, so it can withstand

compressive forces. On the other hand, the trabecular bone has more open spaces and supports

shifts in weight distribution. The material properties of these tissues were obtained from the work

of Wu et al. (2018) and are listen in table 5.3.

Table 5.3: Material properties of the sacrum and coccyx

Young’s Modulus [MPa] Poisson Coeff.
Cortical bone 6140 0.3

Trabecular bone 1400 0.3

The sacroiliac joint is a synovial joint that, in females, facilitates the demands of pregnancy

and parturition, since the ligaments involved enable the motion of this joint. Consequently, these

movements can affect the pelvis dimensions. The pubic symphysis is a nonsynovial, slightly

movable joint. In many species, including in humans, the cartilaginous pubic symphysis of the

pregnant female is gradually replaced by fibrous connective tissue, forming flexible and elastic

ligaments between the two pubic bones. The ligaments modeled in these joints are tension-only

elements and the material properties were obtained from Lei et al. (2015) and are listen in table

5.4.

Table 5.4: Material properties and cross sectional area of the ligaments

Ligaments Cross Sectional Area [mm2] Young’s Modulus [MPa] Poisson Coeff.
Sacroiliac 5.64 350 0.495

Sacrospinous 7.45 29 0.495
Sacrotuberous 8.04 33 0.495
Superior Pubic 3.33 19 0.495
Inferior Pubic 5.72 20 0.495
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Ligaments are fibrous connective tissues that have to manage two opposite functions which are

to ensure joint stability and joint mobility. Animal studies provide some insight into the mecha-

nisms underlying the characteristics of ligaments in humans. For example, there is evidence which

indicates the involvement of female sex hormones in modulating the knee joint laxity, which in-

cludes the medial collateral ligament, a complex apparatus that acts as the primary static stabilizer

of the knee joint (Dehghan et al., 2016). Thus, and taking into account that there is little ex-

perimental data on the mechanical properties of the pubic ligaments, a Neo-Hookean constitutive

model was applied to the 3D solid elements, used to simulate the pubic symphysis, the synovial

part of the sacroiliac joints (see figure 5.11) and the sacrococcygeal joint, considering the material

properties of the medial collateral ligament of the knee described in Orozco et al. (2018), similar

to what was done in another study (Li et al., 2006): c10 = 6.43 MPa and D1 = 1.0×10−4 MPa−1.

Since the stiffness introduced by these 3D elements is low, the overall stiffness of the joints is

mainly provided by the pelvic ligaments, modeled with the truss elements.

(a) (b)

Figure 5.11: 3D solid elements used to simulate the interpubic disc of the pubic symphysis and
the synovial part of the sacroiliac joints: (a) anterior view of pubic symphysis; (b) lateral view of
sacrum

Concerning the fetus head, the material properties considered correspond to those of a material

with high stiffness, such that the fetus can be considered rigid when compared with the pelvic

floor, similarly to other numerical simulations of vaginal delivery (Oliveira et al., 2016). Taking

into account that the main purpose of this work is to study the movement of the sacrum and coccyx

and the widening of the pubic symphysis during a vaginal delivery, using this approach will reduce

the fetus deformations and facilitate the convergence of the simulation.

5.2.3 Boundary Conditions

For the boundary conditions, a tie constraint was applied between the two supporting structures

of the pelvic floor muscles (the lateral structures that include the arcus tendinous, obturator fascia,

and the obturator internus) and the pubic bones. As a consequence, this constraints each of the

nodes of the supporting structures (slave surface) to have the same motion as the point on the
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pubic bones (master surface) to which it is closest. Furthermore, the nodes of the supporting

structures that represent the different connections between the pelvic floor muscles and the sacrum,

illustrated in black in figure 5.12, were considered fixed. Concerning the pelvic girdle bones, the

sacrum nodes in the articular faces were fixed. A tie constraint was also applied between the

sacrospinous and sacrotuberous ligaments and the fetal head.

Figure 5.12: Finite element model of the pelvic floor muscles in red with the identification of the
fixed nodes in black

According to the cardinal movements, the vertical descent of the fetal head and its flex-

ion/extension in vertex presentation and occipitanterior position were imposed by controlling the

displacement and rotation of the reference point belonging to the model. Figure 5.13 illustrates

the finite element model of the fetus head with the identification of the reference point.

Figure 5.13: Finite element model of the fetus head with the identification of the reference point
used to control its movement (P1)

5.3 Results and Discussion

Childbirth is a natural but complex process and there are several factors that need to be con-

sidered for proper management of delivery. In this work, numerical simulations assuming two

different birthing positions (mob. coccyx model and non-mob coccyx model) were performed,
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with the fetus in vertex presentation and occipitanterior position. The effects induced in the ma-

ternal pelvic girdle and in her pelvic floor muscles by the passage of the fetus head were analyzed.

As mentioned before, the fetus descent and head extension were controlled, but the remain-

ing degrees of freedom were left free. Therefore, even though the occipitoanterior position was

simulated, the bones and pelvic floor imposed some constraints on the fetal head movements

and, consequently, the predominant position was the left occipitanterior position, which has been

adopted as the optimal fetal position (Webb et al., 2011).

5.3.1 Pubic Symphysis

During pregnancy and labor, the pubic symphysis can be more flexible and wider, aiming to

facilitate the passage of the fetus through the birth canal. This physiological change was analyzed

in the simulations performed. In figure 5.14, it is shown the widening of the pubic symphysis gap

during the vertical descent of the fetus head.

Figure 5.14: Widening of pubic symphysis during the vertical descent of the fetus head

The maximum value occurs at, approximately, a vertical descent of the fetus head of 65 mm,

which corresponds to the moment when the fetus begins the head extension. Comparing the two

models, the non-mob. coccyx model has a maximum widening of 6.3 mm, while the mob. coccyx

model presents a maximum value of 3.2 mm. According to Jain et al. (2006) and Hwang (2015),

a displacement of 2-3 mm of the pubic symphysis without discomfort is expected, but a displace-

ment higher than 10 mm can also occur and, in this case, it is considered a pubic symphysis dias-

tasis. Thus, in the selected positions, there is no rupture of this joint, despite the non-mob. coccyx

model presents a higher widening. Regarding the mob. coccyx model, the widening verified after

a 90 mm descent is related to the movement in the ventral, cranial direction of the coccyx, as seen

in figure 5.16. This movement of the coccyx induces a decrease in the pelvic space available and,
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as a consequence, it is necessary an increase of the pubic symphysis gap of the model to allow the

passage of the fetal head.

The maximum principal stresses in the pubic ligaments were also obtained during the vertical

descent of the fetus head (figure 5.15).

Figure 5.15: Maximum principal stresses in MPa in the superior and inferior pubic ligaments of
the non-mob. coccyx model and mob. coccyx model during the vertical descent of the fetus head

Analyzing these results, it can be noted that the peak of stresses in the pubic ligaments occur at

the same instance of the peak of the widening of the pubic symphysis. As expected, the maximum

principal stresses measured in the non-mob. coccyx model are higher than in the mob. coccyx

model. In the superior pubic ligaments, the maximum value obtained in the non-mob. coccyx

model is 14.25 MPa and in the mob. coccyx model is 8.99 MPa. On the other hand, in the

inferior pubic ligaments, the maximum value obtained in the non-mob. coccyx model is 6.29 MPa

and in the mob. coccyx model is 2.88 MPa. This difference between the superior and inferior

pubic ligaments is due to the fact that, as the pubic symphysis undergoes an approximately equal

widening across all the joint, its narrowest points are in the most superior portion, as shown in

figure 5.5. Furthermore, these values are consistent with the results from the widening of the

pubic symphysis, since in the former model a higher widening of this joint occurs.

It is important to note that, during pregnancy, the levels of hormone relaxin increase, and

ligamentous laxity occurs, which predisposes the widening of the pubic symphysis by altering

the structure of collagen (Jain et al., 2006). However, the material properties considered for the

superior and inferior pubic ligaments do not take into account this change in their characteristics,

since no studies were found regarding the mechanical properties.
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5.3.2 Sacrum and Coccyx

Concerning to sacrum and coccyx, a small amount of flexion and extension can occur at the

sacrococcygeal joint. Flexion is produced by contraction of the levator ani muscles and the coccyx

moves in a ventral, cranial direction. When the extension of coccyx occurs, it moves in a caudal,

dorsal direction, according to Bø et al. (2001). In this way, the difference in distance from the tip

of the coccyx to the reference line illustrated in figure 5.8 was calculated, as explained before, and

the results obtained for the movement of coccyx during the vertical descent of the fetus head are

shown in figure 5.16.

Figure 5.16: Movement of coccyx during the vertical descent of the fetus head

The peak of maximum movement of the tip of the coccyx occurs in both models at, approx-

imately, the same instant of maximum widening of the pubic symphysis, i.e. 65 mm of vertical

descent of fetus head. This instance corresponds to the moment when the fetus begins the head

extension. In the mob. coccyx model, the maximum movement of the coccyx is 3.3 mm and, in

the non-mob. coccyx model, this value is 2.2 mm. This displacement verified in the non-mob coc-

cyx can be explained by the fact that, during the second stage of labor, it is required a successful

negotiation of the maternal pelvis. Although the restricted movement of the coccyx allowed in

this model, the fetal head presses this bone, causing a small movement that does not imply a high

rotation of it, unlike what happens in the mob. coccyx model, as it is seen in figure 5.17.

The rotation of the tip of the coccyx was also evaluated and the results are shown in figure

5.17.

The peak of rotation occurs at, approximately, the same instance of the peak of the movement

of this bone, as expected. Analyzing the maximum value obtained in both models, there is a very

significant divergence between them. The non-mob. coccyx model has a rotation of 3.6◦, while

the mov. coccyx model has a rotation of 15.7◦. During the passage of the fetal head, in the mob.

coccyx model, a higher rotation and movement of the tip of the coccyx occurs, compared to the

non-mob. coccyx, since the widening of the pubic symphysis of the former is much lower than the
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Figure 5.17: Rotation of coccyx during the vertical descent of the fetus head

latter. This is due to the fact that, in the non-mob. coccyx model, the movement of the coccyx is

more restricted. Regarding the end of the simulation, which is when the pelvic bones tend to return

to their original position, a flexion of the coccyx is observed. This movement can be explained by

the fact that, in this joint, not all existing ligaments were modeled since the focus of this work is

not the study of the ligaments themselves, but the movement of the coccyx.

According to a study on the movement of the coccyx during pelvic floor muscles contraction,

it was found that the coccyx has an average movement of 8.1 mm± 5.4 mm. During straining, this

bone presents a mean movement of 3.7 mm± 2.8 mm. The mean change from rest to contractions

measured in degrees was 15.0◦ ± 10.2◦, and from rest to straining 12.9◦ ± 10.9◦ (Bø et al., 2001).

Thus, it is possible to verify that the values obtained are in accordance with Bø et al. (2001) and,

consequently, withing the physiological limits of the sacrococcygeal joint. Note that if the move-

ment of the fetus head imposes an excessive displacement of the tip of the coccyx, lesions in the

sacrococcygeal ligaments or even coccyx fracture may occur (Hwang, 2015). Regarding fractures

of the coccyx, they are, in the majority of the cases, associated with instrumented deliveries and

the sitting position (Maigne et al., 2012).

To analyze the displacement on the x-axis that both the sacrum and coccyx suffered, a curve

was defined in the sagittal plane of the sacrum and coccyx as shown in the figure 5.9. The results

are presented in figure 5.18. For each of the two models, two curves were obtained during two

different moments: the blue and red dashed curves were obtained when the vertical descent of the

fetus head was 48 mm and the solid ones at the peak of maximum movement of the coccyx, which

corresponds to a vertical descent of the fetus head of 65 mm. The black dashed line represents the

beginning of the sacrococcygeal joint.

It can be observed that, in both instants, a higher displacement on the x-axis occurs when

the normalized curve intersects the beginning of the sacrococcygeal joint, represented by a black

dashed line. Thus, it is verified that the coccyx is the most affected bone, compared to the sacrum,

by the movement of the fetus head. Regarding the displacement analyzed at the moment that
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Figure 5.18: Displacement of sacrum and coccyx in x-axis along the normalized path at the sagittal
plane of these bones in a vertical descent of the fetus head of 48 mm and 65 mm. The black dashed
line corresponds to the begining of the sacroccygeal joint

corresponds to the beginning of the movement of the coccyx, i.e. a vertical descent of the fetus

head of 48 mm, as it can be seen in figure 5.16, lower values were obtained compared to the

displacement observed at the peak of the movement of the coccyx, i.e. at a vertical descent of

the fetus head of 65 mm. In this instance, a displacement of 7.6 mm occurs in the mob. coccyx

model, which is higher than the displacement of 1.2 mm that occurs in the non-mob. coccyx

model. These results are consistent with those obtained for the movement and rotation of coccyx,

presented previously.

To study the impact on the sacrum and coccyx, the distribution of the maximum principal

stresses on the cortical zone of these bones was analyzed in the peak coccyx movement instant.

The results are shown in figure 5.19.

It is shown that higher maximum principal stresses are located on the most inferior part of the

sacrum, sacrococcygeal joint, and coccyx. Regarding the non-mob. coccyx model, it has a larger

zone of high stresses, compared to the mob. coccyx model. This is consistent with the results of

the displacement in the x-axis of these bones, since in the non-mob. coccyx model occurs a small

displacement of the most inferior part of the sacrum. This is due to the fact that, in the non-mob.

coccyx model, the coccyx has more restricted mobility, causing a greater impact on the cortical

bone of sacrum and coccyx.
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Figure 5.19: Distribution of the maximum principal stresses in MPa on the sacrum and coccyx,
in the cortical bone tissue, in the (a) non-mob. coccyx model and (b) mob. coccyx model, at the
moment of maximum movement of the coccyx

The biomechanics of pelvic fractures are not yet thoroughly understood because of its com-

plex geometry and structure. Ricci et al. (2018) considered an ultimate tensile strength, i.e. the

maximum stress that the cortical bone can withstand, that comprises values between 80 MPa and

120 MPa. Since the maximum stress value observed in this study is 40 MPa, it can be assumed

that no significant injuries were caused. It is important to note that, during pregnancy, there are

significant changes in maternal calcium and bone metabolism, since a large transfer of calcium

to the fetus occurs. This can lead to changes in cortical and trabecular bone mass, structure, and

dynamics (Sowers et al., 2000). However, these changes were not considered in the mechanical

properties of the bones, since it is a topic still under investigation.

Globally, it is verified that different maternal positions cause changes in the available space

for the passage of the fetal head. More specifically, positions in which the movement of the

coccyx is more restricted, the widening of the pubic symphysis needs to be higher to allow for

the space needed for the fetal head to pass. Furthermore, the obtained results suggest that the

birthing positions that enable a higher movement of sacrum and coccyx, such as the majority of

the vertical positions, coccyx can move more easily and, consequently, a lower widening of the

pubic symphysis occurs. On the other hand, in horizontal positions, the force of the bed under

these bones may close the pelvis. These results are consistent with the study developed by Reitter
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et al. (2014), in which the impact of the different positions on pelvic dimensions were evaluated

by comparing pregnant and non-pregnant women. It was verified that the changes in the maternal

pelvis were more pronounced in pregnant women, suggesting a dynamic component in the female

pelvis that may be more pronounced during parturition to facilitate birth. It was also observed that

the vertical position, more specifically kneeling squat position, has higher diameters compared to

the horizontal position (supine dorsal position), with the anteroposterior outlet presenting the most

significant difference between the two positions. Note that the anteroposterior outlet corresponds

to the distance from the tip of the coccyx to the low tip of the pubic symphysis. Furthermore,

Desseauve et al. (2017) examinated how birthing positions affect maternal, fetal and neonatal

outcomes. Regarding the maternal outcomes, it was concluded that change to a more upright

position for birthing is advantageous for the woman in the second stage of labor.

5.3.3 Pelvic Floor Muscles

Concerning the pelvic floor muscles, the maximum principal stresses were measured along the

defined path at the most inferior portion of the pelvic floor muscles (figure 5.10) at the point of the

simulation where its maximum occurs, as it is shown in figure 5.20.

Figure 5.20: Maximum principal stresses in MPa calculated along the normalized path at the most
inferior portion of the pelvic floor muscles (figure 5.10) at the peak stresses instant

To better understand the impact of the vertical descent of the fetus head in all model of the

pelvic floor muscles, the distribution of the maximum principal stresses at the peak stresses instant

was observed. The results are shown in figure 5.21.

In the non-mob. coccyx model, the instant analyzed corresponds to a vertical descent of the

fetus head of 77 mm and, in the mob. coccyx model, to a vertical descent of 70 mm. In the mob.

coccyx model, a higher pelvic space is available and, consequently, higher values of maximum

principal stress were observed (approximately, 2.5 MPa) in the left area of the levator ani muscles,
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Figure 5.21: Distribution of the maximum principal stresses in MPa on the pelvic floor muscles at
the peak stresses instant in the (a) non-mob. coccyx model and (b) mob. coccyx model

more specifically the pubococcygeal muscle. These differences in the instant analyzed and in the

values obtained are due to small variations that may occur regarding the cardinal movements at the

level of the fetal head, since there are some different in the space available in the mother’s pelvis

in both models.

Comparing these results with the obtained by Parente et al. (2009), it is observed that the peak

of stresses occurs only in the most posterior area of the levator ani muscles. This can be explained

by the fact that, in the present study, the predominant fetal position was the left occipitanterior

position and, in the mentioned study, it was the occipitanterior position.

A stretch ratio was also calculated along the defined path at the most inferior portion of the

pelvic floor muscles (figure 5.10) during the vertical descent of the fetus head. The results are

shown in figure 5.22.

Figure 5.22: Stretch ratio calculated along the defined path at the most inferior portion of the
pelvic floor muscles (figure 5.10) during the vertical descent of the fetus head

It can be noted that, for an initial length of 17.1 cm, the maximum stretch ratio value obtained
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is 1.7, being similar in both models. Parente et al. (2008) also simulated the movements of the

fetus during birth. Comparing the results, it is verified that the maximum stretch ratio occurs in

different instances, due to the different fetal positions simulated and the restrictions imposed by

the maternal pelvis, as explained before.

5.3.4 Fetus

The reaction forces in the medial-lateral direction exerted in the fetus head during its vertical

descent were analyzed. In the model in which the movement of the coccyx is not restricted, i.e. the

mob. coccyx model, a maximum reaction force of 175 N was obtained, while, in the other model,

it was obtained a value of 239 N was obtained for the maximum reaction force in the medial-lateral

direction. It was also verified that the peak instant of maximum value for the reaction forces is

coincident with the moment of the vertical descent of the fetus head where the maximum principal

stress occurs in both models: 70 mm in the non-mob. coccyx model and 77 mm in the mob. coccyx

model.

Oliveira et al. (2016) performed numerical simulations of the vaginal delivery and the forces

against fetal descent were obtained. Considering the model with the same constitutive model, a

maximum value of 202 N was observed, which is similar to the results obtained in this study for

the reaction forces in the medial-lateral direction exerted in the fetus head. The differences can be

explained by the occipitanterior fetal position simulated in the mentioned study.
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Chapter 6

Final Remarks and Future Work

6.1 Final Remarks

Vaginal delivery is a natural process that involves extensive physiologic changes in the mother

and, consequently, several injuries can occur. Birthing positions serve as a non-medical interven-

tion to facilitate labor, and different positions lead to different maternal and fetal outcomes. In this

way, computational modeling has been used to replace in vivo animal studies, taking into account

clinical, technical, and ethical reasons. These models can be used to simulate the mechanisms of

labor and to better understand the biomechanics of different birthing positions. Accordingly, this

may be a step further to understand how different maternal positions may influence the physiolog-

ical outcomes of childbirth.

In this work, a finite element model simulates the fetal head movements during birth in vertex

presentation and occipitanterior position, assuming two maternal positions: one that allows the

movement of the coccyx and the other in which its movement is more restricted. This difference

is based on the fact that, in the majority of the horizontal positions, such as supine and lithotomy

positions, there is a bed under the sacrum and coccyx limiting its movement, unlike what happens

in most vertical positions, such as kneeling and squatting positions. Thus, the space available for

the passage of the fetus varies. Furthermore, the biomechanical model also takes into account the

widening of the pubic symphysis that can occur during labor. Due to the constraints imposed by

the bones and pelvic floor, the fetal head assumed a left occipitanterior position.

The numerical simulations performed showed that, in birthing positions in which the move-

ment of the coccyx is restricted, a higher widening of the pubic symphysis occurs to allow the

passage of the fetus head, without rupture. As a consequence, the cortical bone tissue of coc-

cyx and the most inferior portion of sacrum suffer a higher impact. Knowing the ultimate tensile

strength of this bone tissue, it can be assumed that no significant injuries occur. Analyzing the

pelvic floor muscles, the left part of the levator ani muscles and the pubococcygeal muscle are

the areas of greatest stress. Regarding the model that mimics the birthing positions that allow the

movement of the coccyx, the widening of the pubic symphysis is lower and within the expected

values. The movement and rotation measured in the tip of coccyx were higher, but also within the
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physiological limits of the sacrococcygeal joint. The maximum stress value obtained for the pelvic

floor muscles is higher because there are some variations in the movements of the fetus head since

there is a higher space available to the passage of the fetus head in the model in which the coccyx

is free to move. The left area of the levator ani muscles, more specifically the pubococcygeal

muscle, are the most solicited muscles during delivery.

Therefore, it was verified that different birthing positions lead to changes in the maternal

pelvic space, so certain positions can be adopted by the mother during the second stage of labor to

reduce the risk of obstructed labor and the development of several dysfunctions. More specifically,

positions in which the coccyx is free to move, a higher space is available for the passage of the

fetal head. In this study, this birthing position appears to be more beneficial for the pelvic girdle

bones of the mother.

Nevertheless, the problem studied is very complex and it is necessary to take into account the

limitations and simplifications involved regarding the geometry of the biomechanical model and

the mechanical properties attributed to the pelvic girdle bones, pelvic ligaments, and the fetal head.

During pregnancy and labor, there are several hormonal changes in women that can influence

the characteristics of bone tissues as well as ligaments; however, no studies were found on the

mechanical properties of these structures in pregnant women.

6.2 Future Work

For future work, it would be important to perform experimental studies of pubic ligaments of

pregnant women in order to include the effect of hormonal changes that occur during pregnancy.

It would also be interesting to simulate more specific birthing positions, i.e. to consider the

different diameters of the woman’s pelvis that each position implies. The influence of different

pelvis types can also be a valuable modification to be studied.

In this work, the fetal head was considered a rigid structure, but it would be interesting to

characterize the mechanical properties of the fetus and take them into account in the simulation.

This modification to the model would allow the study of other variables such as the molding of the

fetus head.
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ABSTRACT 

Background and Objective:  

During vaginal delivery, several positions can be adopted 

by the mother to be more comfortable and to help the labor 

process. The positions chosen are very influenced by 

factors such as monitoring and intervention during the 

second stage of labor. However, there is limited evidence 

to support the most ideal birthing position. This work aims 

at contributing to a better knowledge associated with the 

widening of the pubic symphysis and the biomechanics of 

vertical and horizontal birthing positions that can be 

adopted during the second stage of labor, as well as their 

resulting pathophysiological consequences. 

 

Methods:  

A validated computational model composed by the pelvic 

floor muscles attached to the bones, and a fetus head was 

used to simulate vaginal deliveries. This model was 

modified to mimic two birthing positions: one that allows 

the free movement of the coccyx as in vertical positions 

and other in which this movement is more restricted as in 

horizontal positions. The widening of the pubic symphysis 

was also considered to facilitate the passage of the fetus 

head.  
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Results:  

The results obtained showed that in positions in which the 

movement of the coccyx is restricted, as in most horizontal 

positions, a widening of 6 mm of the pubic symphysis 

occurs. In contrast, in positions in which the coccyx is free 

to move, as in most vertical positions, a lower widening of 

the pubic symphysis occurs (3 mm), appearing to be more 

beneficial for the mother's pelvis, but slightly higher 

stresses were detected in the pelvic floor muscles.  

 

Conclusions:  

Globally, the results obtained allow to conclude that 

different birthing positions lead to changes in the female 

pelvic space, so certain positions can be adopted by the 

mother during the second stage of labor to reduce the risk 

of obstructed labor and the development of several 

dysfunctions. More specifically, positions in which the 

coccyx is free to move, a higher space is available for the 

passage of the fetal head. 

 

Keywords: Childbirth, Pubic Symphysis, Finite Element 

Method, Biomechanical Modeling 
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INTRODUCTION 

The mechanisms of labor and the likelihood of safe vaginal 

delivery depend largely on the bony architecture of the 

pelvis [1]. Maternal morbidity and mortality is unacceptably 

high and one of the main causes are biomechanical 

complications [2]. 

To facilitate the process of labor, ligament relaxation 

occurs during pregnancy and pubic symphysis can be 

more flexible and wider [3]. During the second stage of 

labor, several maternal postures can be adopted and the 

outcomes may vary [4].  Birthing positions can be classified 

into two main groups, depending on the angle made by the 

horizontal plane and the line linking the midpoints of the 

third and fifth lumbar vertebrae: when the angle is greater 

than 45° (or 30°) it is considered vertical, otherwise it is 

horizontal [5]. Regarding horizontal positions, such as 

supine and lithotomy positions, globally the coccyx 

movement is restricted due to the presence of the bed 

under it. In contrast, most of vertical positions, such as 

kneeling and squatting positions, allow the coccyx to move 

as the fetus descends. 

In the past, women assumed a wide range of birthing 

positions and supine position was only used when labor 

lasted a long time or was very difficult and exhausting. 

More recently, there has been a growing awareness 
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among obstetricians and the supine position become 

popular, although its widespread use was not based on 

sound scientific evidence [6]. Therefore, it becomes 

important to understand the effects of different birthing 

positions. It is crucial to clarify the adaptation that the 

maternal pelvis may undergo by allowing the widening of 

the pubic symphysis. Knowing the risk and benefits of each 

position, pregnant women may decide on the birthing 

position adopted, which may help to prevent 

complications.  

This work aims at contributing to a better knowledge 

associated with the widening of the pubic symphysis and 

the biomechanics of different positions. For this purpose, a 

finite element model of the mother and the fetus was 

modified to mimic two birthing positions: one that allows 

free movement of the coccyx and the other in which it is 

more restricted. This is because, in the majority of 

horizontal positions, the sacrum and coccyx movement is 

restricted, unlike in most vertical positions. Some pelvic 

joints were considered, allowing the widening of the pubic 

symphysis. The movements of the fetus during the second 

stage of labor in the vertex presentation and occipitanterior 

position were simulated. 
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MATERIALS AND METHODS 

A three-dimensional (3D) finite element model validated for 

vaginal deliveries was used [7]. The mother’s model 

includes the pelvic floor muscles and the supporting 

structures (arcus tendinous, obturator fascia, obturator 

internus and different connections between the muscles of 

the pelvic floor and the sacrum) that were modeled using 

hexahedral elements with hybrid formulation (C3D8H).  

To account for the muscle behavior, the contributions of 

different parts of the tissue were considered, such as the 

contribution of: the extracellular matrix that endows the 

tissue strength and resilience (Um); the fibers (Uf), both 

passive elastic part (UPE) and active part (USE), responsible 

for muscle contraction; and the volumetric contribution to 

enforce the incompressibility condition (Uvol). A quasi-

incompressible transversely isotropic hyperelastic model 

[8] already successfully applied [7] was used: 

𝑈 = 𝑈𝑚(𝐼1
�̅�) + 𝑈𝑓(𝜆�̅�, 𝛼) + 𝑈𝑣𝑜𝑙(𝐽)             (1) 

where 

𝑈𝑚 = 𝑐 [𝑒
𝑏(𝐼1

𝐶̅̅ ̅−3) − 1]   (2) 

𝑈𝑓 = 𝐴 [𝑒
𝑎(𝜆𝑓̅̅̅̅ −1)

2
− 1]

⏞          
𝑈𝑃𝐸

+ 𝑇0
𝑀 ∫ 𝑓𝑆𝐸(𝜆

𝑀, 𝛼)𝑑𝜆𝑀
𝜆𝑓̅̅̅̅

1

⏞              
𝑈𝑆𝐸

        (3) 

𝑈𝑣𝑜𝑙 =
1

𝐷1
(𝐽 − 1)2                 (4) 
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In these definitions, c, b, A, a, D1 and T0
M are constants, 

𝐼1
�̅�  is the first invariant of the right Cauchy-Green strain 

tensor, C, with the volume change eliminated: 

𝐼1
�̅� = 𝑡𝑟 (�̅�) =  𝑡𝑟 (𝑭𝑻̅̅̅̅  �̅�) = 𝐽−2/3 𝑡𝑟(𝑪)  (5) 

where �̅� is the deformation gradient with the volume 

change eliminated, J the volume change and 𝜆�̅� the fiber 

stretch ratio in the direction N of the undeformed fiber:  

𝜆�̅� = √𝑵𝑇�̅� 𝑵 =  √�̅� ∶ (𝑵 ⨂ 𝑵)           (6) 

Regarding Equation (3), the following expression was 

used:  

𝑓𝑆𝐸 =  𝛼 {
1 − 4(𝜆𝑀 − 1)2    for 0.5 < 𝜆𝑀 < 1.5 

0                           otherwise
    (7) 

meaning that for 0.5 ≥ 𝜆𝑀 ≥ 1.5 the muscle produces no 

energy. The level of activation is controlled by α ϵ [0,1]. The 

constitutive parameters were retrieved from the literature 

[9]: c = 0.00185 MPa, b = 1.173, A = 0.0280 MPa, a = 

0.6215, D1 = 1.0x10-4 MPa-1 and T0
M = 0.682 MPa.   

The mother’s model also includes the pelvic girdle bones: 

the hip bones, sacrum and coccyx. The maternal pelvic 

diameters were modified according to Michel et al.[10] 

(Table 1) and the initial pubic symphysis gap was 4.05 mm 

[11]. 
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Table 1 – Maternal pelvic diameters considered 

Diameters [mm] 

 

Transverse (A) 129 

Interspinous (B) 110 

 

Obstetric 

conjugate (C) 
124 

Sagittal outlet (D) 115 

 

Intertuberous (E) 124 

 

The pelvic girdle bones were modeled using rigid triangular 

shell elements with reduced integration (S3R). Limiting the 

bone deformations, this approach facilitates the 

convergence of the simulation. Since the sacrum and 

coccyx are important bones in the space available for the 

passage of the fetus, the cortical and trabecular bone 

tissues were modeled using FEMAP 2020.1 software and 
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the material properties (Table 2) were obtained from Wu et 

al.[12]. The former was modeled using triangular shell 

elements with reduced integration (S3R) with 2 mm of 

thickness [13] and the latter using tetrahedral elements 

with hybrid formulation (C3D4H).  

Table 2 – Material properties of the sacrum and coccyx 

 
Young’s Modulus 

[MPa] 

Poisson’s 

Ratio 

Cortical Bone 6140 0.3 

Trabecular 

Bone 
1400 0.3 

 

In the pubic symphysis, the superior and inferior pubic 

ligaments were modeled as tension-only elements (linear 

truss elements (T3D2)). The sacroiliac, sacrospinous and 

sacrotuberous ligaments were also simulated using 

several linear truss elements (T3D2), based on anatomic 

data [14]. To give numerical stability to the simulation, 

linear beam elements (B31), using a low Young modulus, 

were superimposed to the truss elements mesh of the 

sacrospinous and sacrotuberous ligaments, providing a 

residual bending stiffness. The material properties applied 

were obtained from Lei et al.[15] and are listen in Table 3.  
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Table 3 – Material properties and cross-sectional area of 

the ligaments 

Ligaments 

Cross-

Sectional 

Area [mm2] 

Young’s 

Modulus 

[MPa] 

Poisson’s 

Ratio 

Sacroiliac 5.64 350 0.495 

Sacrospinous 7.45 29 0.495 

Sacrotuberous 8.04 33 0.495 

Superior Pubic 3.33 19 0.495 

Inferior Pubic 5.72 20 0.495 

 

The biomechanical model of the mother is shown in Figure 

1. 

 

Figure 1 - Finite element model of the mother with the 

modeled ligaments:  1, sacroiliac ligaments; 2, superior 

pubic ligament; 3, inferior pubic ligament; 4, sacrospinous 

ligament; 5, sacrotuberous ligament. 

 

In this work, two birthing positions were mimicked: in the 

mobile coccyx model (mob. coccyx model), the coccyx is 

mobile and, in the non-mobile coccyx model (non-mob. 
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coccyx model), its movement is more restricted. The 

sacrococcygeal joint was considered in the mob. coccyx 

model, as it is illustrated in Figure 2. 

 

 

Figure 2 – Finite element model of the pelvic girdle bones 

with the sacrococcygeal joint. Illustration of the reference 

line from the inferior border of the pubic symphysis to the 

inferior border of the sacrum. 

 

To ensure a correct simulation of the motion of the pelvis 

joints and to provide some stability to the simulation, 3D 

solid elements were added in the joints area. In the 

sacroiliac joint, a group of wedge elements with hybrid 

formulation (C3D6H) were added to mimic the synovial 

part of this joint. In the pubic symphysis, another group of 

3D solid elements was added to mimic the interpubic disc. 

A Neo-Hookean constitutive model was applied to these 

elements and to the sacrococcygeal joint elements[16]: 

𝑈 (𝑪) = 𝑐10(𝐼1
�̅� − 3) + 𝑈𝑣𝑜𝑙(𝐽)  (8) 
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where c10 is a material constant. Due to little experimental 

data on the pelvic ligaments, the material properties of the 

medial collateral ligament of the knee [17] were 

considered, similar to what was done in Li et al.[18]: c10= 

6.43 MPa and D1= 1.0×10−4 MPa−1. The stiffness 

introduced by these elements is low, so the overall 

stiffness of the joints is mainly provided by the pelvic 

ligaments. 

Regarding the fetal model, the head was modeled using 

tetrahedral elements (C3D4) [19]. The material properties 

considered correspond to those of a material with high 

stiffness, such that it can be considered rigid when 

compared with the pelvic floor to reduce the fetus 

deformations and facilitate the convergence of the 

simulation [20]. 

For the boundary conditions, a tie constraint was applied 

between the two supporting structures of the pelvic floor 

muscles (the arcus tendinous, obturator fascia, and the 

obturator internus) and the pubic bones. This constrains 

the supporting structures to have the same motion as the 

pubic bones. The nodes of the supporting structures that 

represent the different connections between the pelvic 

floor muscles and the sacrum were considered fixed. The 

sacrum nodes in the articular faces were fixed. A tie 

constraint was also applied between the sacrospinous and 
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sacrotuberous ligaments and the fetal head. According to 

the cardinal movements, the vertical descent of the fetal 

head and its flexion/extension were imposed by controlling 

the displacement and rotation of the reference point 

belonging to the model [7]. 

In this way, the second stage of a birth in vertex 

presentation and occipitanterior position was simulated 

using Abaqus software 2018.  

 

RESULTS 

During numerical simulations, the fetus descent and head 

extension were controlled, but the remaining degrees of 

freedom were left free. Even though an occipitanterior 

position was simulated, the bones and pelvic floor imposed 

some constraints and the predominant position was the left 

occipitanterior. 

Regarding the pubic symphysis, its widening was analyzed 

(Figure 3) based on the distance between the narrowest 

points of the symphyseal gap. The maximum value occurs 

at, approximately, a vertical descent of the fetus head of 

65 mm, which corresponds to the moment when the fetus 

begins the head extension. The non-mob. coccyx model 

has a maximum widening of 6.3 mm, while the mob. 

coccyx model presents a maximum value of 3.2 mm.  
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Figure 3 - Widening of pubic symphysis during the vertical 

descent of the fetus head. 

 

The maximum principal stresses in the pubic ligaments 

were also obtained (Figure 4). The peak of stresses in 

these ligaments occur at the same instance of the 

maximum widening of the pubic symphysis and the 

stresses measured in the non-mob. coccyx model are 

higher than in the mob. coccyx model. Regarding the 

superior pubic ligaments, the maximum value in the non-

mob. coccyx model is 14.25 MPa and in the mob. coccyx 

model is 8.99 MPa. In the inferior pubic ligaments, the 

maximum value obtained in the non-mob. coccyx model is 

6.29 MPa and in the mob. coccyx model is 2.88 MPa. 
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Figure 4 - Maximum principal stresses in MPa in the 

superior and inferior pubic ligaments of the non-mob. 

coccyx model and mob. coccyx model during the vertical 

descent of the fetus head. 

 

At the sacrococcygeal joint, a small amount of flexion and 

extension of the coccyx can occur. Flexion is produced by 

contraction of the levator ani muscles and the coccyx 

moves in a ventral, cranial direction; when extension 

occurs, the coccyx moves in a caudal, dorsal direction [21]. 

Figure 5 shows the difference in distance from the tip of 

the coccyx to the reference line also illustrated in Figure 2. 
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Figure 5 - Movement of coccyx during the vertical descent 

of the fetus head. 

 

The rotation of the coccyx was also obtained (Figure 6). 

 

 

Figure 6 - Rotation of coccyx during the vertical descent 

of the fetus head. 

 

The peak of maximum movement and rotation of the 

coccyx occurs at, approximately, the same instant of 

maximum widening of the pubic symphysis. In the mob. 

coccyx model, the maximum movement of the coccyx is 

3.3 mm and, in the non-mob. coccyx model, is 2.2 mm. 

Analyzing the maximum rotation obtained, there is a very 
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significant divergence between them: the non-mob. coccyx 

model has a rotation of 3.6°, while the mob. coccyx model 

has a movement of 15.7°.  

To analyze the displacement on the x-axis that the sacrum 

and coccyx suffered, a curve was defined in the sagittal 

plane of these bones (Figure 7). For each model, two 

curves were obtained during two different moments: the 

blue and red dashed curves were obtained when the 

vertical descent of the fetus head was 48 mm and the solid 

curves at the peak of maximum movement of the coccyx, 

i.e. a vertical descent of the fetus head of 65 mm. The 

black dashed line represents the beginning of the 

sacrococcygeal joint. Regarding the beginning of the 

movement of the coccyx (vertical descent of 48 mm), lower 

displacement values were obtained compared to what was 

observed at the peak of the movement of the coccyx 

(vertical descent of the fetus head of 65 mm), in which a 

displacement of 7.6 mm occurs in the mob. coccyx model, 

while in the other model occurs a displacement of 1.2 mm. 
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Figure 7 - Displacement of sacrum and coccyx in x-axis 

along the normalized path at the sagittal plane  of  these  

bones  in  a  vertical  descent  of  the  fetus  head  of  48  

mm  and  65  mm. The black dashed line corresponds to 

the beginning of the sacrococcygeal joint. 

 

The distribution of the maximum principal stresses on the 

cortical zone of these bones was also analyzed in the peak 

coccyx movement instant. The higher stresses are located 

on the most inferior part of the sacrum, sacrococcygeal 

joint, and coccyx, being 40 MPa the maximum value 

obtained. In the non-mob. coccyx model, a larger zone of 

high stresses was observed, compared to the mob. coccyx 

model.  

Concerning the pelvic floor muscles, the maximum 

principal stresses were measured along the defined path 

at the most inferior portion of these muscles when its 

maximum occurs (Figure 8). In the non-mob. coccyx 
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model, the instant analyzed corresponds to a vertical 

descent of the fetus head of 70 mm and, in the mob. 

coccyx model, to a vertical descent of 77 mm. These 

differences are due to small variations that may occur 

regarding the cardinal movements at the level of the fetal 

head, since there are some different in the space available 

in the mother's pelvis in both models. To better understand 

the impact of the vertical descent of the fetus head in all 

model of the pelvic floor muscles, the distribution of the 

maximum principal stresses at the peak stresses instant 

was also observed. In the mob. coccyx model, higher 

stress values were observed in the left area of the levator 

ani, namely in the pubococcygeal muscles.  

 

Figure 8 - Maximum principal stresses calculated at the 

peak stresses instant along the normalized path in the 

lower portion of the pelvic floor muscles, identifying the 

initial (normalized length = 0.0) and final (normalized 

length = 1.0) position. 
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A stretch ratio, defined as the ratio between the current 

tissue length to the original tissue length, was also 

calculated along the defined path at the most inferior 

portion of the pelvic floor muscles. For an initial length of 

17.1 cm, the maximum value obtained is 1.7 in both 

models.  

The reaction forces in the medial-lateral direction exerted 

in the fetus head during its vertical descent were also 

analyzed. In the mob. coccyx model, a maximum reaction 

force of 175 N was obtained, while, in the other model, it 

was obtained a value of 239 N. The peak instant of 

maximum value for the reaction forces is coincident with 

the moment of the vertical descent of the fetus head where 

the maximum principal stress occurs in both models. 

 

DISCUSSION 

In this work, a finite element model simulates the fetal head 

movements during birth in vertex presentation and 

occipitanterior position, assuming two birthing positions: 

one that allows the movement of the coccyx and other in 

which its movement is more restricted. Due to the 

constraints imposed by the bones and pelvic floor, the fetal 

head assumed a left occipitanterior position, which has 

been adopted as the optimal fetal position [22]. 
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During labor, a displacement of 2-3 mm of the pubic 

symphysis without discomfort is expected, but, when a 

displacement higher than 10 mm occurs, it is considered a 

pubic symphysis diastasis [3]. Thus, in the selected 

positions, there is no rupture of this joint, despite the non-

mob. coccyx model presents a higher widening, causing 

higher stresses in the pubic ligaments of this model. 

Regarding the mob. coccyx model, the widening of the 

pubic symphysis verified after a 90 mm descent is related 

to the movement in the ventral, cranial direction of the 

coccyx, as seen in Figure 5. This movement induces a 

decrease in the pelvic space available to allow the 

passage of the fetal head and, therefore, it is necessary an 

increase of the pubic symphysis gap. Note that, during 

pregnancy, ligamentous laxity occurs, predisposing the 

widening of the pubic symphysis [11]. However, this 

change was not take into account since no studies were 

found regarding the mechanical properties. 

During the passage of the fetal head, in the mob. coccyx 

model, a higher movement and rotation of the coccyx 

occurs since the widening of the pubic symphysis of the 

former is much lower than the latter.  Regarding the end of 

the simulation, the pelvic bones tend to return to their 

original position and a flexion of the coccyx is observed, 

because, in this joint, not all existing ligaments were 
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modeled since the focus of this work is not the study of the 

ligaments themselves.  

According to a study on the movement of the coccyx during 

pelvic floor muscles contraction, it was found that the 

coccyx has an average movement of 8.1±5.4 mm, which 

measured in degrees is 15.0±10.2°. During straining, this 

bone presents a mean movement of 3.7 ± 2.8 mm and 

12.9±10.9° [21]. The values obtained are in accordance 

with these and, consequently, within the physiological 

limits of the sacrococcygeal joint.  

In Figure 7, it can be observed that a higher displacement 

on the x-axis occurs when the normalized curve intersects 

the beginning of the sacrococcygeal joint. It is verified that 

the coccyx is the most affected bone by the movement of 

the fetus head. The small movement verified in the non-

mob coccyx is due to the successful negotiation of the 

maternal pelvis that is required. Due to the restricted 

mobility of the coccyx, a greater impact on the cortical bone 

of the sacrum and coccyx is observed. Although the 

biomechanics of pelvic fractures are not yet thoroughly 

understood, the ultimate tensile strength comprises values 

between 80 and 120 MPa [23]. Since the maximum stress 

value observed in this study is 40 MPa, it can be assumed 

that no serious injuries occur. Note that, during pregnancy, 

there are several changes in maternal calcium and bone 
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metabolism [24], but these changes were not considered 

since it is a topic under investigation. 

These results suggest that in the birthing positions that 

enable a higher movement of the sacrum and coccyx, such 

as the majority of the vertical positions, coccyx can move 

more easily and a lower widening of the pubic symphysis 

occurs. In horizontal positions, the force of the bed under 

these bones may close the pelvis, causing a higher 

widening of the pubic symphysis. These results are 

consistent with Reitter et al.[25] that verified that the 

changes in the maternal pelvis are more pronounced in 

pregnant women to facilitate birth. It was observed that the 

vertical position has higher diameters compared to the 

horizontal position, with the distance from the tip of the 

coccyx to the low tip of the pubic symphysis presenting the 

most significant difference between the two positions. 

Desseauve et al.[5] also concluded that change to a more 

upright position for birthing is advantageous for the woman 

in the second stage of labor. 

The stresses obtained in the pelvic floor muscles can be 

compared with other study [9], in which the peak of 

stresses occurred only in the most posterior area of the 

levator ani muscles. This can be explained by the different 

fetal positions simulated. Regarding the stretch ratio, 

Parente et al.[7] examined the maximum value obtained. It 
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is verified that the maximum stretch ratio occurs in different 

instances, due to the restrictions imposed by the maternal 

pelvis and the different fetal positions simulated. 

In Oliveira et al.[20], numerical simulations of the vaginal 

delivery were performed and a maximum value of 202 N 

for the reaction force was observed, which is similar to 

results obtained in this study. 

To conclude, different birthing positions lead to changes in 

the maternal pelvic space, so certain positions can be 

adopted by the mother during the second stage of labor to 

reduce the risk of obstructed labor and the development of 

several dysfunctions. More specifically, positions in which 

the coccyx is free to move, like most of the vertical 

positions, have a higher space available for the passage 

of the fetal head, appearing to be more beneficial for the 

pelvic girdle bones of the mother. The left area of the 

levator ani muscles, particularly of the pubococcygeal 

muscle, is the most solicited.  

Nevertheless, the problem studied is very complex and it 

is necessary to consider some limitations and 

simplifications involved. For future work, it would be 

important to perform experimental studies of pubic 

ligaments of pregnant women and to simulate more 

specific birthing positions. 
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