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The extracellular matrix (ECM) is an essential component of the heart that imparts
fundamental cellular processes during organ development and homeostasis. Most
cardiovascular diseases involve severe remodeling of the ECM, culminating in the
formation of fibrotic tissue that is deleterious to organ function. Treatment schemes
effective at managing fibrosis and promoting physiological ECM repair are not yet in
reach. Of note, the composition of the cardiac ECM changes significantly in a short
period after birth, concurrent with the loss of the regenerative capacity of the heart. This
highlights the importance of understanding ECM composition and function headed for
the development of more efficient therapies. In this review, we explore the impact of
ECM alterations, throughout heart ontogeny and disease, on cardiac cells and debate
available approaches to deeper insights on cell–ECM interactions, toward the design of
new regenerative therapies.

Keywords: heart, extracellular matrix, cardiac ontogeny, cardiovascular diseases, decellularization, fibrosis,
regeneration

INTRODUCTION

The heart is one of the least regenerative organ systems in mammals, which partially explains
the high mortality and morbidity rates of cardiovascular diseases (Virani et al., 2020). Long
considered a post-mitotic organ and well-illustrated by deficient myocardium renewal capacity, it is
nowadays known to retain cardiomyocyte turnover throughout life (Beltrami et al., 2001; Bergmann
et al., 2009; Bergmann and Jovinge, 2014; Lázár et al., 2017) although at levels incompatible with
the restoration of tissue function in disease or after injury (Porrello et al., 2011). For example,

Abbreviations: ADAMTs, A disintegrin and metalloproteinase with thrombospondin repeats; AV, Atrioventricular; BMP,
Bone morphogenetic protein; cFB, Cardiac fibroblasts; ECM, Extracellular matrix; EndoMT, Endocardial-to-mesenchymal
transition; EMT, Epithelial-to-mesenchymal transition; E, Embryonic day; FN, Fibronectin; FSTL1, Follistatin-like 1;
GAGs, Glycosaminoglycans; HA, Hyaluronic acid; LOX, Lysyl oxidase; MI, Myocardial infarction; miRNAs, MicroRNAs;
MMPs, Matrix metalloproteinases; NCCs, Neural crest cells; P, Postnatal day; SDS, Sodium dodecyl sulfate; SPARC,
Secreted protein acidic and cysteine rich; TAZ, Transcriptional coactivator WWTR1; Tbx18, T-box transcription factor
18; Tcf21, Transcription factor 21; TGF-β, Transforming growth factor β; TNC, Tenascin-C; TSP, Thrombospondin; YAP,
Yes-associated protein; Wnt, Wingless-related integration site; Wt1, Wilms’ tumor 1; 3D, Three-dimensional.
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cardiomyocytes lost after myocardial infarction (MI) are not
replaced by new muscle, and instead, nonfunctional fibrotic tissue
is deposited in the affected region (replacement fibrosis).

Effective regeneration of the mammalian heart is observed
only during fetal–neonatal stages and requires triggering the
proliferation of preexisting cardiomyocytes (Robledo, 1956;
Herdrich et al., 2010; Porrello et al., 2011; Uygur and Lee,
2016; Sampaio-Pinto et al., 2018). This regenerative capacity
falls abruptly in the first days after birth, which coincides with
the final phase of cardiomyocyte maturation and concomitant
cessation of proliferative activity (Quaini et al., 2002; Porrello
et al., 2011; Notari et al., 2018; Sampaio-Pinto et al., 2018; Ye
et al., 2018; Zhu et al., 2018). Despite this time limitation, the
neonatal regenerative capacity has been widely dissected toward
identification of pro-regenerative mechanisms. However, most
studies are yet centered on the cellular compartment of the heart,
overlooking the role of the extracellular matrix (ECM) in this
response (Bassat et al., 2017).

Herein, the relevance of the ECM for healthy and
diseased hearts and the importance of addressing the
ECM for new cutting-edge regenerative therapies will be
revisited and discussed.

CARDIAC ECM

The ECM constitutes a complex network of fibrillary (fibrillar
collagens) and non-fibrillary (composed by the basement
membrane, proteoglycans, and glycoproteins) components
within the extracellular space that have both signaling and
structural functions (Chute et al., 2019). New proteomic
approaches have revealed that 90% of cardiac ECM is
composed of 10 different proteins, from which serum
albumin, collagens (collagens I, III, and IV), non-collagenous
glycoproteins [fibronectin (FN) and laminin], proteoglycans,
glucosaminoglycans (GAGs), and elastins are the most common
(Lindsey et al., 2018). The fibrillar collagenous matrix comprises
essentially type I (over 80%) and type III (over 10%) collagens
(Weber, 1989) anchored to the myocardial cell basement
membranes through collagen type IV and FN (Bashey et al.,
1992; McCurdy et al., 2010). In addition, ECM works as a
reservoir of anchored growth factors, cytokines, chemokines,
proteases [e.g., matrix metallopeptidases (MMPs)], proteases
inhibitors [e.g., tissue inhibitors of metalloproteinases (TIMPs)],
and noncoding RNAs such as microRNAs (miRNAs) (Hynes,
2009; Jourdan-Lesaux et al., 2010; Fan et al., 2014).

Spatially, ECM is organized into two main regions, the
basement membrane/pericellular matrix and interstitial matrix.
The basement membrane/pericellular matrix constitutes a tissue
specialized network of ECM molecules that involve each cell,
promoting cell polarity and function (e.g., differentiation and
migration) via cell surface receptors, such as integrins, through
an outside–in signaling (Corda et al., 2000; LeBleu et al., 2007;
Valiente-Alandi et al., 2016). This ECM compartment is mainly
composed of FN, collagen IV, laminin, procollagens, hyaluronic
acid (HA), and proteoglycans (Chang et al., 2016). As for the
interstitial matrix, ECM molecules, such as collagens I and III,

granting structural and mechanical support to the tissue, are
main constituents.

The cell modulatory nature of the extracellular
microenvironment results from a continuous remodeling
of ECM composition and structural rearrangement, but also by
the formation of bioactive peptides, known as matrikines, via
enzymatic degradation of the ECM macromolecules (Maquart
et al., 1999, 2005). These alterations affect cell function but
also promote ECM remodeling in a feedback loop. ECM
remodeling occurs in waves, a consequence of the tight control
between synthesis and degradation, and generates active
extracellular niches that regulate different cellular responses,
namely, proliferation, migration, cell fate decisions, and even
cell death. Cardiac fibroblasts (cFBs) are majorly responsible
for ECM production and remodeling under homeostatic and
pathological conditions, but other cells also contribute to the
synthesis of ECM, particularly to the basement membrane, such
as endothelial cells, smooth muscle cells, and cardiomyocytes
(Aggeler, 1988; Pelouch et al., 1993; Corda et al., 2000; Anderson
and Hinds, 2012; Bax et al., 2019).

Several transmembrane cell surface molecules such as
CD44 and integrins, among others, mediate the bidirectional
communication between cells and their environment (Valiente-
Alandi et al., 2016). Integrin-mediated adhesions are the
most frequent and well-described cell–ECM interactions
(Howard and Baudino, 2014). Integrins are a large family of
transmembrane receptors composed by α and β subunits and
splice variants with different ligand specificities that undergo
several conformational changes that impact integrin–ECM
affinity (Ross, 2004; Askari et al., 2009). The integrin subunits
expressed on cardiomyocytes throughout heart development
and their ECM ligands have been extensively reviewed elsewhere
(Ross, 2004). Integrin receptors interact directly or indirectly
with different molecules, such as focal adhesion kinases, and
with actin cytoskeleton filaments that, upon activation, trigger
several signaling cascades regulating cellular processes (Askari
et al., 2009). ECM–integrin–cytoskeleton linkage also mediates
mechanotransduction signaling (Sun et al., 2016; Jansen et al.,
2017). The mechanism that links integrin signaling with well-
recognized mechanotransduction pathways, e.g., YAP/TAZ
[Yes-associated protein (YAP) and transcriptional coactivator
with PDZ-binding motif (TAZ)], is not completely understood,
but the possibility of a direct correlation between integrins and
YAP/TAZ signaling has recently emerged (Elbediwy et al., 2016;
Chakraborty et al., 2017; Sabra et al., 2017; Martino et al., 2018).
Integrins and actin filaments have been demonstrated to interact
directly or indirectly with protein adaptors, such as vinculin,
talin, and α-actinin (Schwartz, 2010). Indeed, transduction
of mechanical changes observed on intracellular (formation
of stress fibers) and extracellular spaces (ECM stiffness) is an
important regulator of cardiomyocyte behavior through the
regulation of the expression of mechanosensitive genes such egr-
1, iex-1, and c-fos (Engler et al., 2008; Jaalouk and Lammerding,
2009; Martino et al., 2018).

Heart morphogenesis, maturation, and pathophysiology result
from intrinsic factors related to the cellular transcriptional
landscape, but also extrinsic cues from the ECM. Comprehension
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of ECM dynamics and cell modulatory properties is crucial for
the establishment of in vitro culture systems that recapitulate
in vivo-like microenvironments, but also for development of
more effective heart therapies.

ROLE OF ECM IN CARDIAC ONTOGENY

Embryonic and Fetal Heart
Throughout heart development, the ECM supports a tight
spatiotemporal regulation of different cellular processes and
progresses from a high hydrated gel rich in morphogenic
molecules to a structurally defined collagen network
poor in morphogens.

At E7.5, myocardial precursors, also known as primary and
secondary heart fields, migrate to the midline of the embryo
forming the heart tube (Figure 1, cardiac crescent). A primitive
heart ECM derived from endoderm, mainly composed by
chondroitin sulfate, collagens I and IV, laminin, fibulin, fibrillin,
and FN, orchestrates the migration of these precursors (Little and
Rongish, 1995; Lockhart et al., 2011). Among these molecules,
FN promotes the migration of myocardial precursors toward the
embryo midline by temporal modulation of cell adhesion and
polarity. Consequently, FN mutation leads to aberrant formation
of the heart such as cardia bifida, resulting in embryonic lethality
(Linask and Lash, 1988; George et al., 1993; Trinh and Stainier,
2004; Mittal et al., 2013).

At E8.0, the heart has a tubular shape and is composed of two
cell layers—the myocardium (outer layer) and the endocardium
(inner layer)—separated by an amorphous matrix-denominated
cardiac jelly (Figure 1, heart tube). The cardiac jelly consists
of a network of ECM molecules enriched in HA; collagens
I, III, and IV; laminin; FN; fibrillin; perlecan; fibulin-1; and
thrombospondin (TSP) (Little and Rongish, 1995; Männer and
Yelbuz, 2019). The heart expands by the contribution of second
heart field (SHF) cells and undergoes a series of looping events
at E8.5 (Figure 1, looping heart). Although mechanisms behind
heart looping are not completely understood, HA is one of
the most abundant molecules in the cardiac jelly. While the
removal of HA by enzymatic degradation does not affect heart
looping progression, the absence of HA leads to extensive
alterations in heart tissue hemodynamics (Baldwin et al., 1994;
Grandoch et al., 2018; Petz et al., 2019). In addition, ECM has
a determinant function on the morphogenesis of specific heart
substructures such as trabeculae, valve formation, atrial and
ventricular septation, and outflow tract remodeling.

Myocardial Trabeculation and Compaction
Trabeculae formation is initiated at day E8.0 of mouse
development with the sprouting of the endocardium toward
the myocardium. At this stage, the myocardium is multilayered
and presents a compact and discontinued (clusters) layer of
cardiomyocytes (premature trabeculae cardiomyocytes). At E8.5,
endocardial sprouting develops through the cardiac jelly, forming
distinct columns that anchor with the compact myocardium—
the endocardium touchdowns. Endocardial ridges are formed
between the touchdowns, creating domes enriched in HA and

FN, and clusters of cardiomyocytes, forming the trabecular units.
The cardiomyocytes at the trabecular units organize in a radial
disposition and grow in a radial fashion (trabecular extension),
peaking around E14.5, concurrent with a progressive reduction
of ECM content. Endocardial sprouting and touchdown are
regulated by Notch signaling by promoting the expression of
several ECM proteases, such as Adamts1, Mmp2, and Hyal2
(Table 1; Del Monte-Nieto et al., 2018). The abrogation or
overexpression of NOTCH1 signaling has been demonstrated to
cause ventricular dysplasia and trabecular defects or ventricular
hypertrabeculation, respectively (Grego-Bessa et al., 2007; Chen
et al., 2013; Zhao et al., 2014; D’Amato et al., 2016). On the
other hand, neuregulin-1 signaling, a downstream target of
Notch, promotes the synthesis of ECM components necessary
for trabecular growth (Table 1; Passer et al., 2016; Del Monte-
Nieto et al., 2018). Thus, trabeculation of the heart is a process
dependent not only on ECM synthesis but also on spatial
and temporal regulation of ECM degradation (Stankunas et al.,
2008; Lockhart et al., 2011; Del Monte-Nieto et al., 2018).
Myocardial trabeculation and compaction are two fundamental
processes for proper cardiac chamber maturation. Both processes
depend on Notch signaling and entail the degradation of
the cardiac jelly for proper heart morphogenesis (Sandireddy
et al., 2019). In particular, ventricular compaction has been
demonstrated to be regulated by other molecules, such as
Slc39a8 zinc transporter and Sema3E/plexinD1 signaling, which
positively regulates several ECM proteases from the ADAMTS
family (Adamts1,5,7,17) (Table 1; Lin et al., 2018; Sandireddy
et al., 2019). ADAMTS9 has been also pointed as essential to
myocardial compaction by promoting versican degradation as
demonstrated by ADAMTS9 haploinsufficient mice that develop
abnormal projections and a “spongy” ventricular wall, resembling
human hearts with left ventricular non-compaction congenital
cardiomyopathy (Table 1; Kern et al., 2010; Lockhart et al., 2011;
Sarma, 2011).

Atrioventricular and Outflow Tract Cushions
Atrioventricular (AV) and outflow tract cushions form by the
differentiation of the local endocardium that, around E9.5,
undergoes endocardial-to-mesenchymal transition (EndoMT),
invading the neighboring cardiac jelly deposits (Figure 1,
looping heart). The cardiac cushion ECM is enriched in
HA and proteoglycans (versicans V0 and V1, perlecan, and
glypicans) which confer these regions the consistency of a
hydrated gel (Baldwin et al., 1994; Lockhart et al., 2011).
Other ECM components are also identified on these acellular
structures such as FN, collagens, laminin, nephronectin,
tenascin-C (TNC), vitronectin, fibulin-1, fibulin-2, fibrillin, and
enzymes (chondroitin-6-O-sulfotransferase-1 and chondroitin-
6-O-sulfotransferase-14) (Patra et al., 2011). The content of
HA in cardiac cushions is crucial for correct valve formation.
Both the impairment and overproduction of HA result in
valve malformations and the development of congenital defects
(Baldwin et al., 1994; Petz et al., 2019). Bone morphogenic protein
(BMP) and transforming growth factor β (TGF-β) signaling are
major regulators of heart morphogenesis in mice and avians,
including AV septation by modulating cardiac cushion ECM
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FIGURE 1 | Overview of mouse heart development, maturation, and aging. FN from primitive ECM paves the way for the migration of cardiac progenitor cells
(cardiac crescent) to the embryo midline. Upon fusion, cardiac progenitor cells form the heart tube. The latter is constituted by two cell layers—the myocardium
(outer layer) and the endocardium (inner layer)—separated by an amorphous matrix known as the cardiac jelly. The heart starts looping (looping heart) toward the
formation of a four-chambered organ. In parallel, endocardial cells invade the cardiac cushion, that is, an extensive accumulation of cardiac jelly at primitive valve
structures, and undergo EndoMT, forming valve tissue cells. The heart evolves, and the size of the myocardium increases while cardiomyocytes proliferate and
mature at the compact and trabecular layers, respectively. Compaction and trabeculation are regulated by the transient expression of nephronectin and by the
enzymatic degradation of the versican promoted by ADAMTs (fetal heart). After birth, the ECM undergoes extensive remodeling characterized by a decrease in
hyaluronic acid, FN, and proteoglycans. At the same time, cardiomyocytes cease proliferation and finalize maturation, acquiring robust sarcomeres and a
rod-shaped morphology (postnatal–adult heart). Aging contributes to functional impairment by the loss of cardiomyocytes and formation of fibrotic tissue (aged
heart). Blue box, specific morphological events regulated by the ECM; black box, variations on ECM composition throughout ontogeny.
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TABLE 1 | Summary table of the signaling pathways that regulate ECM dynamics and associated cell function.

Heart
ontogeny/disease

Heart structures Signaling pathways ECM remodeling Cellular impact References

Embryonic/fetal heart
development

Trabeculae Neuregulin 1 ECM synthesis:
• HA
• Fibronectin

Polarized
cardiomyocyte division

Passer et al., 2016; Del
Monte-Nieto et al.,
2018

Notch 1 ECM proteolysis:
• ADAMTS1
• MMP2
• HYAL2

Del Monte-Nieto et al.,
2018

Myocardial
compaction

Notch 1
Slc39a8
Sema3E/plexinD1

ECM proteolysis:
• ADAMTS1,5,7,9,17
• MMP2
• HYAL2

Del Monte-Nieto et al.,
2018; Lin et al., 2018;
Sandireddy et al., 2019

Atrioventricular and
valve cushions

BMP2 ECM synthesis:
• HA
• Versican

Cardiac cushion
mesenchyme migration

Inai et al., 2013

BMP4 (inhibition)* Nephronectin
ECM reduced proteolysis:
• HAS2

Restriction of
atrioventricular channel
differentiation and
cardiac jelly swelling

Patra et al., 2011

TGF-β3 ECM synthesis:
• Periostin
• Collagen 1

Differentiation of the
cushion mesenchyme
into fibroblasts

Norris et al., 2009

Outflow tract
remodeling

SMAD4 ECM proteolysis:
• MT1-MMP

NCC migration Jia et al., 2007

Myocardium β1-integrin* Fibronectin Cardiomyocyte
proliferation

Ieda et al., 2009

YAP/TAZ*
ERK*

Soft ECM
Agrin

Snider et al., 2008; von
Gise et al., 2012;
Bassat et al., 2017

Postnatal–adult heart Myocardium YAP/TAZ
downregulation*

Stiff ECM Inhibition of
cardiomyocyte
differentiation

von Gise et al., 2012

Adult heart ischemia Epicardium,
myocardium

TGF-β/Smad3
Hippo downregulation

ECM synthesis:
• Periostin
• Collagen 1

Epicardial cells EMT
into fibroblast-like cells
Fibroblast activation
(myofibroblasts)

Liu et al., 2015;
Piersma et al., 2015;
Travers et al., 2016;
Ramjee et al., 2017

*ECM downstream signaling pathways.

composition, cellular invasion, and differentiation (Ma et al.,
2005; Jiao et al., 2006; Prados et al., 2018). Specifically, BMP2
signaling has been implicated in HA and versican production by
the chick cardiac cushion mesenchyme promoting its migration
in vitro (Inai et al., 2013). On the other hand, studies in
zebrafish suggested that nephronectin, an ECM component of
the cardiac cushions, inhibits BMP4-Has2 signaling restricting
AV channel differentiation and cardiac jelly swelling (Patra et al.,
2011). TGF-β3 signaling further contributes to the AV valve
maturation in mice by promoting the differentiation of the
cushion mesenchyme into fibroblasts through the expression
of periostin and collagen I production (Table 1; Norris et al.,
2009; Lockhart et al., 2011). Periostin-knockout mice (Kii et al.,
2006) and PerilacZ-null mice (Rios et al., 2005) exhibit both valve
and septal defects (Snider et al., 2008; Lockhart et al., 2011).
Collagen XVIII, a non-fibrillar form of collagen, is also expressed
during early AV cushion development (Carvalhaes et al., 2006).
Col18a1 knockdown leads to thickening of the endothelial
basement membrane surrounding the AV valves (Utriainen et al.,
2004; Lockhart et al., 2011) with no compromise of the heart

function, despite causing hydrocephalus and decreased kidney
filtration capacity (Utriainen et al., 2004; Hamano et al., 2010).
While periostin and collagen XVIII can be detected in early
heart development in the AV and outflow tract cushions and
throughout the ventricular wall, as the heart matures, they
become confined to specific areas, namely, the valves (Lockhart
et al., 2011; González-González and Alonso, 2018).

Outflow Tract Development and Remodeling
Outflow tract development is a process that results from the
remodeling of the vasculature and the migration of distinct cell
types, endothelial/endocardial cells and cardiac neural crest cells
(NCCs). Endocardial cells undergo epithelial-to-mesenchymal
transition (EMT), invading the ECM-enriched cardiac cushions
with the NCCs migrating to the nascent aortopulmonary septum
and outflow tract cushion (Jiang et al., 2000). Smad signaling
has been shown to impact NCC migration by regulating several
vasculature/remodeling [e.g., Id(1–4)] and ECM organization-
related (e.g., MMPs) genes in mice (Jia et al., 2007; Moskowitz
et al., 2011). Specifically, Smad4 inactivation in NCCs induce
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a reduction of Id gene expression, which negatively impacts
ECM proteinase MT1–MMP expression. Similar observations
were reported upon Id1/Id3 inactivation studies. The reduction
of MT1–MMP expression affects migration of NCCs, as it
translates in accumulation of ECM along the route of OFT caudal
movement (Table 1; Jia et al., 2007).

Cardiomyocyte proliferation during fetal development is
responsive to the surrounding embedding ECM. Ieda et al.
(2009) demonstrated that ECM secreted by embryonic cFB
at E12.5 favors cardiomyocyte proliferation more than adult
ECM. ECM molecules secreted by embryonic cFB such as FN,
TNC, hyaluronan, and proteoglycan link protein 1 have been
shown to promote different cellular responses. Thus, while FN
favored cardiomyocyte proliferation via β1-integrin signaling,
hyaluronan enhanced cell adhesion in an integrin-independent
manner (Table 1; Ieda et al., 2009). A similar mitogenic effect
of FN has also been reported by Williams et al. (2014) while
culturing cardiomyocytes on tissue culture plates coated with
enzymatically digested fetal (E18–E19) heart tissue-derived ECM.

Even though the ECM qualitatively remains the same until
birth, alterations of ECM molecule abundance and arrangement
within the myocardium are observed. For example, laminin
networks evolve from a punctuated patch-like deposition in the
fetal heart (E11.5–E15) to a more extensive deposition in the
developing basal membrane of cardiomyocytes in the neonatal
heart and then to a contiguous layer along the basal membrane
in the adult heart (Price et al., 1992; Yang et al., 2015). Laminin
modulates cell adhesion by interacting with cell receptors such as
integrins and forming a transmembrane link to the cytoskeleton
via dystroglycan and dystrophin (Henry and Campbell, 1996;
Okada et al., 2016). Deficiency on laminin expression results in
muscular dystrophies and dilated cardiomyopathy at birth or
early childhood, associated with metabolic deficiencies (Cox and
Kunkel, 1997; Oliviéro et al., 2000; Yap et al., 2019).

The relevance of the ECM in heart development has been
recently strengthened by the generation of three-dimensional
(3D) mouse heart organoids in vitro in the presence of the
laminin–entactin (LN/ET) complex and exogenous fibroblast
growth factor 4 (FGF4). These organoids formed from self-
organizing embryoid bodies, resulting in structures with atrium-
and ventricle-like contractile structures (Lee et al., 2020).

Postnatal Heart
After birth, the heart undergoes severe alterations at the cellular
and extracellular levels to adapt to physiological requirements
of the growing body. The ECM is largely remodeled, involving
a decline in the abundance of ECM molecules serving as
morphogenic cues such as FN, HA, and proteoglycans, along
with a concomitant increase in structural molecules, such as
collagens I and III and laminin (Kim et al., 1999; Ieda et al.,
2009; Williams et al., 2014). These alterations result in a more
structured ECM that confines each cardiomyocyte individually,
resembling a honeycomb-like organization (Figure 1; Robinson
et al., 1988; Pelouch et al., 1993). These alterations coincide
with the timing when the regenerative capacity of the heart
ceases. Hence, one can argue that alterations at the ECM may
be involved in the transition from a regenerative period to a

reparative period. In agreement with this perspective, P1 but
not P7 cardiac ECM fragments are able to stimulate cell cycle
activity of neonatal cardiomyocytes. An elegant study by Notari
et al. (2018) demonstrated that pharmacological inhibition of
lysyl oxidase (LOX), an ECM cross-linking enzyme using 3-
aminopropionitrile, a LOX inhibitor previously described to
reduce lung ECM stiffness in newborn mice (Mammoto et al.,
2013), could rescue the regenerative capacity of P3 hearts. Similar
evidences were observed in vitro, wherein Yahalom-Ronen et al.
(2015) demonstrated that culture of neonatal cardiomyocytes
in rigid surfaces leads to enhanced myofibrillar organization
and facilitates karyokinesis. Conversely, compliant surfaces
promoted cardiomyocyte rounding, sarcomere disorganization,
and cytokinesis. These findings demonstrate that the increase in
ECM stiffness around birth might dictate the transition from
a regenerative period to a reparative period, strengthening the
relevance of the regulatory role of ECM mechanical properties.

YAP is a downstream effector of the Hippo pathway, a well-
conserved mechanotransduction pathway on mammals with an
important role during embryo development in the regulation
of proper organ size. In the heart, YAP/TAZ activity has been
mainly implicated in embryonic heart development, in postnatal
growth, and in response to injury by promoting cardiomyocyte
proliferation through the activation of cell cycle-related genes,
such as Ccna2, Ccnb1, Cdc2, Aurka, Aurkb, and Cdc25b (von Gise
et al., 2012; Xin et al., 2013; Mosqueira et al., 2014; Singh et al.,
2016). The decline of cardiomyocyte proliferation observed post
birth seems to correlate with a reduction in YAP expression and
increase of YAP phosphorylation (inactivation) observed with
aging (Table 1; von Gise et al., 2012). Deletion of Yap in the
heart hampers neonatal regeneration at P2 and elicits a fibrotic
response similar to what is observed in older animals. In fact,
overexpression of a constitutively active form of YAP in the heart
of 4-week-old mice enhances cardiac function after MI. These
studies collectively show that biomechanical alterations at the
ECM around birth may influence cardiomyocyte cycling activity
and subsequently impact the regenerative capacity of the heart.

Aging Heart
Cellular aging is characterized by an accumulation of defective
molecules and organelles at the cytoplasm and decline of
reparative mechanisms. Thus, with age, cardiomyocytes
accumulate dysfunctional mitochondria, oxidized proteins such
as advanced glycation end products (AGE), and lipofuscin
particles, denoted as “cellular garbage” (Kilhovd et al.,
1999; Terman et al., 2008). These age-related alterations are
progressively deleterious, resulting in a decrease in the number
of cardiomyocytes and subsequent pathological hypertrophy
of the remaining cardiomyocytes, inflammation, and gradual
development of cardiac fibrosis (Bernhard and Laufer, 2008).

Heterochronic parabiosis studies suggest the participation
of the extracellular milieu on cardiomyocyte aging by
demonstrating that systemic factors impact age-related
cardiomyocyte hypertrophy (Loffredo et al., 2013). Hypertrophic
cardiomyocytes have a higher demand on oxygen and energy,
creating a low-oxygen environment with consequent free
radical production and cellular damage, as reviewed in
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Meschiari et al. (2017). To compensate for the progressive
cardiomyocyte loss, the ECM content increases, in particular
collagen I (Figure 1; Bernhard and Laufer, 2008; Spadaccio
et al., 2015; Horn and Trafford, 2016; Meschiari et al., 2017).
Along with the increased collagen deposition and cross-linking,
the ECM degradation capacity also augments through the
production of MMPs, predominantly MMP9 (Meschiari et al.,
2017). Increased MMP activity also attenuates angiogenic
activity, contributing to the formation of a deleterious hypoxic
environment (Yabluchanskiy et al., 2014).

The excessive accumulation of ECM and imbalance on ECM
degradation lead to tissue scarring and cardiac dysfunction.
Interstitial fibrosis has a detrimental effect on myocardial
function by interfering with cardiomyocyte electrical coupling.
The latter is characterized by an accumulation of collagen
that separates cardiomyocytes, expediting the emergence of
arrhythmogenic events and, in worst cases, sudden cardiac death
(Stein et al., 2008; Nguyen et al., 2014).

ECM IN DISEASE/FIBROTIC HEART

Contrary to the regenerative response observed in neonates, the
adult heart responds to an insult largely through the development
of cardiac fibrosis. While at the start of the reparative process
some ECM molecules secreted are similar to those seen in
the regenerative response [e.g., FN (Konstandin et al., 2013)
and TNC (Kasprzycka et al., 2015)], once cardiomyocytes have
exited the cell cycle, upregulation of these ECM constituents
is no longer enough, by itself, to induce proliferation. The
result is the net accumulation of a collagen-rich ECM in the
myocardium and subsequent formation of a stiff scar (Ieda et al.,
2009; Hortells et al., 2019). Differences in cell surface receptor
expression during development may influence cell response
to injury and explain the shift from regeneration to repair.
Integrin subunits, for example, are known to vary temporally,
by cell type and with disease (Israeli-Rosenberg et al., 2014).
A unique integrin profile can be observed in myocytes vs.
fibroblasts or endothelial cells, in fetal vs. neonatal or adult
myocytes, and in normal vs. pathological hearts (e.g., normal
vs. failing or post-MI tissue). In cardiomyocytes, the integrin
heterodimers most highly expressed are α1β1, α5β1, and α7β1,
predominantly collagen-, FN-, and laminin-binding receptors,
respectively (Israeli-Rosenberg et al., 2014). While the α5 subunit
is prevalent in fetal and neonatal cardiomyocytes, α7 replaces α5
at the onset of postnatal development and becomes the main
subunit detected in mature adult cardiomyocytes (Brancaccio
et al., 1998; Israeli-Rosenberg et al., 2014).

Cardiac Fibrosis as a Response to Injury
Cardiac fibrosis can be reactive, in response to chronic stress
(such as inflammation, pressure overload, and aging) without
involving cardiomyocyte death, or reparative, when replacing
lost cardiomyocytes as observed during MI (Kong et al., 2014).
Several other conditions can result in progressive cardiac fibrosis
such as hypertrophic cardiomyopathy, toxic insults (e.g., alcohol
and anthracyclines), and metabolic disturbances such as diabetes

and obesity, as reviewed in Kong et al. (2014). Regardless of the
pathological trigger, excessive fibrosis in the myocardium may
have a variety of deleterious consequences (Berk et al., 2007).
In fact, clinical evidence correlates adverse outcomes in patients
with heart failure with increased and stiffer cardiac ECM. Patients
with heart failure with preserved ejection fraction (HFpEF)
show an expansion of the interstitial ECM network, associated
with coronary microvascular rarefaction and inflammatory
activation, as reviewed by Paulus and Tschöpe (2013) and
Mohammed et al. (2015).

The fibrotic remodeling of the heart results from the
relative contribution of several cell types either by directly
producing matrix proteins (fibroblasts) or by indirectly secreting
fibrogenic mediators (macrophages, mast cells, lymphocytes,
cardiomyocytes, and vascular cells). Common to all conditions
associated with cardiac fibrosis, fibroblast transdifferentiation
into secretory and contractile myofibroblasts is a key event that
drives the fibrotic response (Kong et al., 2014).

Epicardium as the Major Source of
ECM-Producing Cells
Lineage tracing studies revealed that the prominent source of
cFBs, including those activated as response following injury, is
a subset of cells originating from the embryonic epicardium
(Russell et al., 2011; Zhou et al., 2011, 2012; van Wijk et al.,
2012). These cells undergo EMT and migrate into the myocardial
wall (Zhou et al., 2008; Ali et al., 2014; Moore-Morris et al.,
2014; Hortells et al., 2019; Quijada et al., 2020) as reveled by
basic helix–loop–helix (bHLH) transcription factor 21 (Tcf21)
(Acharya et al., 2012), T-box transcription factor 18 (Tbx18)
(Cai et al., 2008), and Wilms’ tumor 1 (Wt1) (Zhou et al.,
2008) reporter mouse lines (Pérez-Pomares et al., 2002; Braitsch
et al., 2012; Greulich et al., 2012; Braitsch and Yutzey, 2013).
These transcription factors repress genes encoding epithelial
adhesion molecules (E-cadherin, claudins, and occludens) and
the activation of mesenchymal genes (N-cadherin, collagens, and
FN) necessary for ECM production and cell migration (Lamouille
et al., 2014; Quijada et al., 2020). This transdifferentiation process
is also relying on TGF-β, BMP, Wingless-related integration
site (Wnt), and retinoic acid (RA) signaling, reviewed in detail
elsewhere (von Gise and Pu, 2012; Braitsch and Yutzey, 2013).

After development, the epicardium becomes relatively
dormant; however, despite the differences in duration of
regeneration and the nature of the specific injury insult,
reactivation of embryonic epicardial potential is conserved in
zebrafish and neonatal mouse heart regeneration (Lepilina et al.,
2006; Jopling et al., 2010; Kikuchi et al., 2010, 2011b; Chablais
et al., 2011; González-Rosa et al., 2011, 2012; Porrello et al.,
2011; Schnabel et al., 2011; Wang et al., 2011; González-Rosa
and Mercader, 2012; Mercer et al., 2013). Similarly, studies using
mouse models of cardiovascular disease and human diseased
hearts show that the regulatory programs that promote the cFB
lineage development are reactivated in the adult cardiac fibrotic
response (Zhou et al., 2011; Braitsch et al., 2013). Although
full recapitulation of the embryonic program has not been
definitively established, several observations point toward at
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least some degree of epicardial involvement post injury (Lepilina
et al., 2006; Kikuchi et al., 2010, 2011b; González-Rosa et al.,
2011, 2012; Porrello et al., 2011; Schnabel et al., 2011; Wang et al.,
2011; Jesty et al., 2012; Smits and Riley, 2014).

This way, Tcf21, Tbx18, and Wt1 serve as markers of both
developmental and injury-induced epicardial-derived fibroblasts
in zebrafish and mammalian adult hearts (Kikuchi et al., 2011a;
Braitsch et al., 2013; Ali et al., 2014; Moore-Morris et al., 2014;
Kanisicak et al., 2016). Resident cardiac mouse fibroblasts labeled
with Col1a1-GFP, PDGFRα, and Tcf21 transgenic alleles display
the ability to proliferate after injury and give rise to a majority
of cells in the fibrotic scar (Acharya et al., 2012; Kanisicak
et al., 2016). Myofibroblasts, labeled by periostin, emerge from
Tcf21 lineage-traced epicardium-derived fibroblasts when mice
are subjected to MI or left ventricle pressure overload and are a
major source of ECM (Kanisicak et al., 2016; Fu et al., 2018).

The epicardium responds to ischemic injury (e.g., MI) through
major signaling pathways. Among them, TGF-β/Smad3 is the
key intracellular pathway promoting cell activation, namely,
fibroblasts, and fibrogenesis (Travers et al., 2016; Table 1).
Wnt signaling is activated by the expression of Wnt1 by
epicardial cells upon ischemia reperfusion damage in vivo, in
a mouse model, and in vitro, epicardial cells undergo EMT
and adopt a fibroblast-like phenotype when treated with Wnt1
(Duan et al., 2012). Crossing WT1Cre with βcateninflox/flox mice
specifically abrogated Wnt signaling in epicardial cells, and as
a result, there were minimal expansion of the epicardium post
ischemia reperfusion injury and reduced collagen deposition
in the subepicardium (Duan et al., 2012). Hippo signaling,
which normally keeps cFBs in the resting state, is inactivated
after cardiac injury, resulting in spontaneous transition toward
a myofibroblast state that favors fibrosis and remodeling
(Liu et al., 2015; Piersma et al., 2015; Ramjee et al., 2017;
Johansen and Molkentin, 2019). Also involved in the postnatal
epicardial response to the ischemic stress is Notch signaling, by
modulating the differentiation of profibrotic myofibroblasts and
thus counteracting the effects of the profibrotic TGF-β (Ali et al.,
2014; Nistri et al., 2017).

ECM Dynamics in Cardiac Fibrosis
Following cardiomyocyte death, subjacent to cardiac insult,
dynamic changes in the composition of the ECM act as regulators
of the cellular responses leading to cardiac repair (Dobaczewski
et al., 2010). The repair process can be divided into three
overlapping phases: an inflammatory phase, a proliferative phase,
and a maturation phase (Figure 2). At the extracellular space, four
key events occur during repair, namely, the degradation of the
interstitial matrix, production and resolution of the provisional
ECM, and lastly, scar formation.

The death of cardiomyocytes after MI triggers an
inflammatory reaction through the release of inflammatory
mediators (cytokines and chemokines) that leads to the
recruitment of leukocytes and neutrophil activation, revised
in detail by Ong et al. (2018). Inflammation increases vascular
permeability, resulting in extravasation of plasma proteins like
fibrin, fibrinogen, and FN, and increases MMP expression
and activity, leading to degradation of the interstitial matrix

generating bioactive fragments (matrikines) that contribute
to the activation of the inflammatory cascades. Consequent
formation of a fibrin- and FN-based matrix network formed
from the extravasated plasma proteins, known as provisional
ECM, enriched with growth factors (PDGF, FGF, VEGF, and
TGF families) and inflammatory cytokines secreted by various
cell types, serves as a highly permeable conduit for infiltrating
inflammatory cells (Dobaczewski et al., 2006; Bujak et al., 2008;
Saxena et al., 2013; Takawale et al., 2015; Barker and Engler, 2017;
Frangogiannis, 2017). Fibroblasts and other resident cells can
adhere to this matrix, enabling fibroblast migration and inducing
fibroblast proliferation and transdifferentiation to start the
repair of the damaged areas (Serini et al., 1998; Rybarczyk et al.,
2003; Chistiakov et al., 2016). Fibroblasts in the provisional ECM
secrete other ECM molecules, such as proteoglycans, hyaluronan,
and versican, that stabilize this provisional matrix (Wight and
Potter-Perigo, 2011). Clearance of dead cells and ECM debris by
phagocytes induces the release of anti-inflammatory mediators
necessary for the resolution of the inflammatory phase, marking
the transition to the proliferative phase. At this point, the ECM
is enriched with matricellular proteins that modulate cellular
phenotype, activate proteases and growth factors, and impinge on
signaling cascades (Murphy-Ullrich and Sage, 2014). During the
proliferative phase, growth factors secreted by mononuclear cells
and macrophages activate myofibroblast-mediated deposition
of large amounts of structural ECM proteins. The provisional
matrix is degraded, and cellular FN is secreted primarily by
fibroblasts and macrophages. Cellular FN containing extra
domain A together with TGF-β and mechanical tension were
required for myofibroblast transdifferentiation (Hinz et al.,
2007; Shu and Lovicu, 2017). ECM structural proteins are then
deposited to preserve the integrity of the myocardial wall (Zymek
et al., 2006; Nielsen et al., 2019). While most matricellular
proteins are rare or absent in the healthy myocardium, they are
highly upregulated following cardiac injury. These proteins do
not play a structural role but modulate cell function, promote
matrix assembly, and protect the myocardium from adverse
remodeling, as reviewed in Frangogiannis (2017). They include
TSPs, TNC and TNX, osteopontin (OPN), secreted protein
acidic and cysteine rich (SPARC), periostin, osteoglycin, and
members of the cellular communication network factor (CCN)
family (Dobaczewski et al., 2010; Kong et al., 2014). Recently, a
different role of myofibroblasts has been described, as these cells
were found capable of engulfing dead cells and acquiring an anti-
inflammatory phenotype. The findings show that myofibroblasts
cooperate with infiltrating macrophages to remove dead cells,
raising the hypothesis that myofibroblast-mediated engulfment
may itself activate the production of ECM proteins independently
of macrophages (Nakaya et al., 2017).

Some studies suggest that the end of the proliferative
phase and beginning of the maturation phase are marked by
apoptosis of the majority of the myofibroblasts—to eliminate
the granulation tissue cells from the infarcted area—however,
the mechanism behind this proapoptotic process has not been
fully investigated (Zhao et al., 2004; Xue and Jackson, 2015). The
collagen content increases, and the upregulation of enzymes such
as LOX induces collagen cross-linking (Al-U’datt et al., 2019).
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FIGURE 2 | ECM dynamics during tissue repair after MI. Progressive changes in the composition of the ECM occur during the three overlapping phases of the injury
response: inflammatory, proliferative, and maturation phases. At the extracellular space, the main remodeling events encompass the degradation of the interstitial
matrix (dark yellow lines), production and resolution of the provisional ECM (green lines), and lastly, scar formation (blue lines). Firstly, the release of inflammatory
mediators by dead cells leads to the recruitment of leukocytes and neutrophil activation (pink cells) and increases vascular permeability and MMP expression and
activity. The latter degrades the interstitial matrix (yellow), generating bioactive fragments (matrikines) that contribute to the inflammatory cascade. From the
extravasated plasma proteins, a fibrin- and FN-based matrix network is formed (provisional ECM, green). This transient ECM is rich in growth factors and
inflammatory cytokines and serves as a highly permeable conduit for cells. Fibroblasts (gray cells) adhere to this matrix, initiate the repair of the damaged area
through proliferation and differentiation in myofibroblasts (myoFBs), and secrete different ECM molecules, such as proteoglycans (PGs), hyaluronan, and versican,
that stabilize this provisional ECM. During the proliferative phase, myoFBs deposit large amounts of structural ECM proteins, mostly collagens, to preserve the
integrity of the myocardial wall, and the provisional matrix is degraded. As the maturation phase initiates, the collagen content increases, and enzymes such as LOX
are upregulated, inducing collagen cross-linking and the formation of a rigid scar.

Therefore, a rigid scar is formed without contractility and
relaxation capacity, ultimately leading to heart stiffening,
electrical signaling impairment, and consequent heart failure
(Miragoli et al., 2007; Richardson et al., 2015; Murtha et al.,
2017). The existence of endogenous mechanisms that restrain
the matricellular signals to protect the myocardium from
progressive fibrosis, when a mature ECM environment is formed,
remains to be explored.

ECM MODULATION

Despite the advances on the role of the ECM in cardiac
pathophysiology, the mechanisms that drive the feedback
communication between ECM remodeling and cell response

are not fully elucidated due to their intricate nature. Hence,
the establishment of ex vivo model systems replicating the
native myocardium is central to address further fundamental
mechanistic questions.

Decellularization as a Methodology to
Deconstruct ECM Composition,
Structure, and Bioactivity
First, insights on the relevance of cell–ECM cross talk in the
heart came forth through the observation of two-dimensional
(2D) immunostainings of tissue sections and the analysis of
pathophysiological alterations resultant of mutations in ECM-
related genes or perturbations in related signaling pathways.
The development of decellularization methodologies facilitated
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further structural (Silva et al., 2016) and proteomic analyses
(e.g., mass spectrometry) of the extracellular contents (Mayorca-
Guiliani et al., 2017) by providing ECM protein enrichment
as a result of the cellular content removal (cellular “noise”)
(de Castro Bras et al., 2013; Naba et al., 2015; Silva et al.,
2016). Decellularization separates tissue ECM by the removal
of cells and their associated material. This is achieved by
applying, alone or in combination, chemical (buffers and
detergents), enzymatic (trypsin and DNase), and physical
(agitation and sonication) agents delivered using different
techniques (perfusion, immersion, and agitation) (Beacham et al.,
2007; Ott et al., 2008; Badylak et al., 2011; Crapo et al., 2011;
Gillies et al., 2011; Figure 3). Ultimately, the central goal of
decellularization is to obtain a balance between clearance of
cellular materials and the retention of a close-to-native ECM.

Sodium dodecyl sulfate (SDS) is the most common detergent
used for cardiac tissue decellularization. SDS concentration
and duration of exposure affects greatly the preservation and
integrity of the ECM. High SDS concentrations induce protein
denaturation, collagen fibril disruption, and removal of GAGs
(Gilbert et al., 2006; Crapo et al., 2011). In contrast, low
SDS concentrations have been shown to preserve important
ECM features, such as coil structures identified on fetal mouse
heart ECM (Silva et al., 2016). Hence, reliable comparisons of
different ECM microenvironments require the use of similar
preparation methods. A versatile decellularization protocol
working efficiently on distinct organs and also on the same tissue
but on different ontogenetic stages (young and adult tissues)
or health status has been recently reported (Silva et al., 2016,
2019; Garlikova et al., 2017; Pinto et al., 2017). This approach
mitigates differences resultant from the application of distinct
decellularization protocols, allowing fair comparisons on ECM
composition and functional alterations across tissues, age, and
normalcy vs. disease status (Perestrelo et al., 2020).

FIGURE 3 | Cardiac decellularization. Decellularization aims to remove the
cellular compartment of a tissue, while preserving the composition and
architectural arrangement of the ECM. This can be achieved by combined
application of physical, enzymatic, and chemical treatments.

Decellularization can be performed on tissues/organs or on
cells cultured in vitro as monolayers or aggregates (Beacham
et al., 2007; Nair et al., 2008). The latter in vitro models facilitate
manipulation of ECM-related genes (e.g., gene knockdown) to
expose the role of specific ECM molecules (Ott et al., 2008;
Williams et al., 2014; Silva et al., 2016; Pinto et al., 2017).
For instance, Kong et al. (2018) using different approaches,
including CRISPR/Cas9-mediated knockout of hyaluronan
synthase 2 (the enzyme necessary to produce hyaluronan),
found that hyaluronan inhibits vascular calcification involving
BMP2 signaling. Despite being straightforwardly obtained and
manipulated, in vitro-derived ECM misses to recreate the native
organ ECM complexity. To the contrary, tissue-derived ECM
often preserves native biochemical and mechanical properties,
constituting an attractive alternative for studying the impact
of ECM on complex scenarios such as age, disease, and
injury as well as for therapeutic applications in regenerative
medicine. Decellularized tissues were readily translated into
the clinic as surgical scaffolds since ECM molecules are
highly preserved across species, permitting the application of
allogenic and xenogenic tissue-derived ECM. These applications
demonstrated low immunogenicity while promoting specific
cell functions (Wicha et al., 1982; Badylak, 2004; Gilbert
et al., 2006; Crapo et al., 2011; Svystonyuk et al., 2020).
Decellularization methodologies have evolved toward whole-
organ decellularization by improvements such as the delivery
of decellularization agents through the vasculature (perfusion)
which promotes clearance of cellular remnants in situ (Ott et al.,
2008; Badylak et al., 2011). Nevertheless, tissue-derived ECM
holds limitations related both to batch-to-batch variability and to
contaminants remaining after ineffective cell removal.

The development of decellularization methods opened new
avenues to a more detailed assessment of tissue-derived ECM and
of in vitro ECM–cell interactions. This will ultimately lead the
way to the development of ECM-based therapies.

Cardiac ECM-Based Strategies for
Regeneration and Repair
Excessive ECM, common to several cardiac pathologies, is an
obstacle for normal organ function (Richardson et al., 2015), and
clinical therapeutic strategies to control cardiac fibrosis are still
on the horizon (Tzahor and Poss, 2017).

Previously reported ECM-derived therapies for MI
encompass: (i) the delivery of decellularized cardiac ECM
(Johnson et al., 2014; Wang et al., 2019), (ii) scaffolds
functionalized with ECM-derived proteins or peptides (Zhang
et al., 2019), and (iii) biomaterials that mimic the ECM
(Youngblood et al., 2018; Yuan et al., 2019) and that are
able to deliver soluble cytokines/growth factors (Rufaihah
et al., 2017), miRNAs (Bheri and Davis, 2019), or cells
(Chakravarti et al., 2018).

Cardiac-derived ECM, obtained by decellularization, has
the benefit of conserving the organ-specific ECM architecture
and composition and ensuing retention of biochemical cues
that favor recellularization (Kc et al., 2019) and has shown
promising results in animal models (Wainwright et al., 2012;
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Sarig et al., 2016; Wang et al., 2016) and for human applications
(Rego et al., 2019). However, decellularized matrices still pose
many technical challenges that need to be addressed to meet
clinical standards (Kc et al., 2019). Unfortunately and due to
the complex composition of tissue-derived ECM, most authors
do not attempt to discriminate which ECM factors or properties
(e.g., architecture and stiffness) contribute to the observed
beneficial effect.

Our growing knowledge on cardiac ECM function paves
the way for new and promising therapeutic targets that
can not only repair the injured heart but also induce
cardiac regeneration. Recently, peptides generated from
the degradation of ECM proteins have gained increasing
attention for therapeutic application as increasing evidence
supports that these molecules regulate various processes
during cardiac repair and homeostasis (Ricard-Blum and
Vallet, 2019). For example, p1158/p1159, the products of
MMP2- and MMP9-mediated degradation of type I collagen,
has been shown to promote angiogenesis and to reduce scar
formation after MI (Lindsey et al., 2015). Canstatin, the
product of MMP2-mediated degradation of type IV collagen,
has been shown to regulate cardiomyocyte calcium channel
activity (Imoto et al., 2018) and to reduce hypoxia-induced
cardiomyocyte apoptosis (Okada et al., 2016). Tumstatin, the
product of MMP9-mediated degradation of type IV collagen,
protects cardiomyocytes against reactive oxygen species

(ROS)-induced apoptosis (Yasuda et al., 2017), and on the other
hand, endostatin, a cleaved fragment of type XVIII collagen,
increases the proliferation and migration of myofibroblasts
(Sugiyama et al., 2018).

The extracellular proteins from the SPARC family have
important roles in cellular adhesion, migration, and proliferation
modulating ECM processing and the TGF-β signaling (Bradshaw,
2012). Follistatin-like 1 (FSTL1), for instance, a member of
this family, is a BMP4 antagonist that can improve heart
function after MI (Altekoester and Harvey, 2015) and abrogates
aldosterone-induced cardiac myocyte hypertrophy (Tanaka et al.,
2016). However, only recombinant FSTL1 produced in bacteria
or epicardium-derived, but not myocardium-derived, FSTL1
activates cardiomyocyte proliferation and cardiac regeneration
(Wei et al., 2015). This appears to relate with the glycosylation of
FSTL1 since a single replacement of asparagine with glutamine
in the N-glycosylation site at position 180 of human FSTL1,
hampering glycosylation at this position, was enough to activate
cardiomyocyte proliferation and limit cardiac remodeling post
MI, following the delivery of this modified FSTL1 mRNA to the
mouse myocardium (Magadum et al., 2018).

Another relevant function of the ECM is to work as a reservoir
of bioactive molecules, namely, miRNAs. The latter are also
able to modulate cardiomyocyte proliferation and cardiac repair
(Katz et al., 2016). For example, miR-17–miR-92, miR-199a,
miR-214, miR-222, miR-302–miR-367, and miR-590 can promote

FIGURE 4 | ECM composition during regenerative (fetal/neonate) and reparative (adult) stages. The composition of the ECM changes around birth, resulting in a
stiffer and less regenerative environment. In the fetal–neonatal heart, agrin and periostin stimulate cardiomyocyte proliferation and neovascularization, thus promoting
regeneration of the tissue. During adult heart repair, increased expression of fetal-associated ECM is observed, namely, through the expression of FN and hyaluronan.
However, this reactivation of the fetal program is incomplete, and adult cardiomyocytes are unable to proliferate, resulting in the formation of a collagen-rich scar.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 January 2021 | Volume 8 | Article 621644

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-621644 January 7, 2021 Time: 12:25 # 12

Silva et al. ECM in Cardiac Development, Homeostasis, and Disease

cardiomyocyte proliferation and cardiac regeneration, whereas
miR-15 family miRNAs inhibit cardiomyocyte proliferation and
cardiac repair (Hashimoto et al., 2018; Deshmukh et al., 2019).

An emergent area in cardiac ECM for therapeutic purposes is
the exploitation of young ECM as a source of regenerative targets
as different findings support that severe changes in the ECM
and in fibroblasts may dictate the loss of cardiac regenerative
capacity after birth (Notari et al., 2018; Hortells et al., 2019). In
fact, neonatal cardiac ECM improves myocardial function in vivo,
reduces MI-induced fibrosis, and promotes angiogenesis and
endothelial cell activity while the adult counterpart showed no
beneficial effect (Wang et al., 2019). Consistently, the dystrophin
complex protein agrin, whose expression in the heart decreases
from P1 to P7, is an important regulator of cardiomyocyte
division during the transient neonatal regenerative period (Bassat
et al., 2017). Conditional deletion of Agrn in the cardiac
mesoderm promoted maturation and reduced cell cycle activity
of cardiomyocytes and impaired cardiac regeneration at P1
(Bassat et al., 2017). Bassat et al. (2017) also showed that
intramyocardial administration of recombinant agrin after MI
in a mouse model promotes moderate cardiomyocyte cell cycle
reentry and proliferation on the healthy heart near the injury,
leading to a significant reduction of the scar area 35 days after
MI and improved cardiac function, when compared with the
control. In an in vitro setting, agrin promoted proliferation and
delayed maturation of induced pluripotent stem cell-derived
cardiomyocytes (iPSC-CM) through Dag1, extracellular signal-
regulated kinase (ERK), and YAP signaling. Another example
of an ECM-associated protein highly expressed in the postnatal
heart and barely detectable in the adult heart is periostin
(Snider et al., 2008). The latter promotes cardiac regeneration
by switching differentiated cardiomyocytes into cycling cells,
improving cardiac function after MI (Kühn et al., 2007).
However, whereas periostin-knockout mice showed impaired
regeneration and abundant fibrosis following MI at P1 (Chen
et al., 2017), no effect was reported for periostin knockout
or overexpression on cardiomyocyte proliferation after MI
in adult mice (Lorts et al., 2009). In fact, periostin also
regulates cardiac fibrogenesis as targeted ablation of fibroblasts

expressing periostin precludes adverse cardiac remodeling
(Kaur et al., 2016). This exemplifies how the pleiotropic effect of
different ECM proteins may complicate their direct application
for therapeutic purposes.

CONCLUSION

Regulation of heart formation, homeostasis, and response to
injury derives from intricate interactions between cells and
their extracellular microenvironment. A misbalance on the
expression of ECM and ECM-related molecules often leads
to congenital malformations and development of disease.
Although in vitro studies have exposed the relevance of several
microenvironmental features, the dynamics of the complex 3D
ECM network throughout life and its effect on cardiac cells
remain largely elusive. Recently, different studies revealed that
ECM-associated factors promote neonatal heart regeneration
and that changes on ECM stiffness may limit this capacity to
the first days after birth (Figure 4). These evidences, together
with in vitro studies showing the beneficial properties of young
ECM on cardiac cells, support that tissue engineering and
regenerative medicine strategies aimed at promoting cardiac
regeneration could benefit from mimicking the fetal–neonatal
extracellular environment.
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