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SCIENCE FORUM

Vision, challenges and
opportunities for a Plant Cell
Atlas
Abstract With growing populations and pressing environmental problems, future economies will be

increasingly plant-based. Now is the time to reimagine plant science as a critical component of

fundamental science, agriculture, environmental stewardship, energy, technology and healthcare.

This effort requires a conceptual and technological framework to identify and map all cell types, and

to comprehensively annotate the localization and organization of molecules at cellular and tissue

levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and

engineering plant development, physiology and environmental responses. A workshop was convened

to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the

current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to

overcome them.
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Location-to-function knowledge
can unlock new discoveries in
plant science
The relationship between the sequence, struc-

ture and function of a protein has been explored

from many angles, from biophysics to drug dis-

covery (Brausemann et al., 2017;

Rajendran et al., 2018; Shang et al., 2020).

This long-standing paradigm has driven the

development of innovative technologies in imag-

ing, mass spectrometry, genomics and bioinfor-

matics (Camp et al., 2019; Mallis et al., 2020;

Nakane et al., 2020). Yet an evolving paradigm

stating that the location of molecules is essential

for their function at all scales, from molecular

complexes to cells, organs, organisms and whole

communities, also holds true (Figure 1).

At the molecular level, compelling examples

of the location-to-function paradigm include the

multi-enzyme complexes that work as molecular

machines (so-called ‘metabolons’) to channel

intermediate metabolites and produce specific

molecular products in a highly controlled manner

(Obata, 2019).

At the cellular level, the partitioning of pro-

teins and lipids into organelles – and even
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Figure 1. Location-to-function paradigm. The illustration shows the levels of organization of a plant (left) and a

few examples highlight how location determines function at each level (right). At the molecular level, functions of

protein complexes can be determined by their localization in membrane microdomains (Jarsch et al., 2014) or by

dynamic protein interactions (Obata, 2019). At the cellular level, a protein can be located differentially through

transport mechanisms, including vesicle trafficking (Goring and Di Sansebastiano, 2018) and nuclear

translocation (Marchive et al., 2013), regulating its function. At the tissue level, cell position can drive its fate into

a specialized cell type (Shao and Dong, 2016). Metabolic pathways can operate specifically in specialized cell

types across tissues (Marchive et al., 2013; Schlüter and Weber, 2020). At the next level, the existence of non-

Figure 1 continued on next page
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membrane microdomains within organelles –

plays crucial roles in molecular trafficking and

signal transduction, which have great impacts in

many biological processes such as plant devel-

opment and defence responses (Jarsch et al.,

2014; Xing et al., 2019; Yu et al., 2020;

Heinze et al., 2020; Shimizu et al., 2021). The

differential location of a single molecule can

determine one of several alternative functions

(see, for example, Smirnoff and Arnaud, 2019).

Protein function can also be dynamically regu-

lated by a change in location, such as the activa-

tion of transcription factors by translocation into

the nucleus (Jiang et al., 2020; Marchive et al.,

2013; Ramon et al., 2019; Pastor-

Cantizano et al., 2020). Furthermore, protein

translocation to different cellular domains results

in different functional outcomes (see for

instance, Kim et al., 2020).

At the tissue level, C4 photosynthesis is a

classic example of how differential molecular

localization between cell types enhances plant

performance: differential expression of enzymes

in bundle sheath and mesophyll cells in C4 plants

can concentrate CO2 in close proximity to

Rubisco, which is not possible in C3 plants where

the enzymes are present, but not differentially

expressed between the cells (Schlüter and

Weber, 2020).

Considering the opportunities in science and

technology today, we contend that this ‘loca-

tion-to-function’ paradigm will likely usher in

conceptual leaps and transformative technolo-

gies, as was the case for the structure-to-func-

tion paradigm.

One particular area of potential success is

agriculture, as the success of molecular

approaches for crop improvement depends on a

detailed understanding of the spatio-temporal

regulation of genes and proteins and the pro-

duction of metabolites (see Wang et al., 2008

for an example of how controlling the location

of gene expression impacts rice grain size and

yield). The timing of expression is also a key

determinant in imparting functional specification

and influencing traits. For instance, engineered

early expression of WRINKLED1 (WRI1, an AP2

class transcription factor) during maturation

increased Arabidopsis seed size and oil content

(Kanai et al., 2016). More recently, an ambitious

goal to globally sequester extra CO2 into roots

was established, which predicates on under-

standing what controls the development of a

specific tissue, periderm, and the cell-type-spe-

cific expression of suberin, a lipophilic polymer

found in plant cell walls. These examples illus-

trate how a thorough understanding of the cell-

or tissue-specific expression of plant genes may

Figure 1 continued

cell-autonomous transcription factors can transverse intercellular scales across plant organs (Han et al., 2014).

Also, an organ-dependent post-translational proteome has been described as a mechanism of protein function

regulation (Uhrig et al., 2019). At the organism level, plant interaction with biotic (Harrison et al., 2002) and

abiotic factors (Michaud et al., 2017) can occur through a localized cue perception.

2021 2026 2031 Post -2031 

Develop community supported evaluation metrics 

Data simulation, validation, and curation 

Develop data benchmarking platforms and analysis challenges 

Generate single cell maps of reference species 

Develop perturbation and spatial maps of reference species 

Establish requirements 

Develop PCA web portal 

Establish challenge competition programs 

Develop community supported tool foundry 

Annual conferences, quarterly workshops, training events, outreach programs 

Figure 2. PCA milestones. PCA milestones for the next 10 years and beyond in data generation (yellow bars), data

analysis (purple bars), software development (green bars), and building PCA community (orange bar).
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enable the development of more effective bio-

technological tools to facilitate crop improve-

ment, plant resilience and climate change

mitigation. Currently, these spatially- or cell-

type-resolved expression data are missing or

incomplete for most crop plants and there is no

centralized repository for their integration.

These shortcomings limit the rapid development

of improved crops based on location-to-function

data.

Unlocking location-to-function: The
first Plant Cell Atlas (PCA)

The PCAworkshop

Establishing a comprehensive picture of where

molecules are located and how their locations

inform function in higher plants will require con-

certed efforts from diverse groups of scientists.

To catalyze such a community, a series of work-

shops were organized by Carnegie Institution for

Science, New York University and Stanford Uni-

versity scientists around the topic of a cell atlas

for plants, a framework to generate and synthe-

size molecular and cellular data on the develop-

ment, dynamic functions and specialization of

plant cells. This effort would also strive to

Figure 3. A conceptual diagram of a PCA user interface. An example of a PCA user interface that integrates

various data types from molecular, biochemical, cellular and evolutionary contexts to connect location to function.

Shown are example data types that would be seamlessly connected to enable easy navigation and discovery (FL:

fluorescence).
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determine the state of the field, identify neces-

sary components and people and discuss a path

forward. Three workshops were held virtually

during May and June of 2020. Over 400 scien-

tists participated, of which 70% were early-

career researchers, and 33% non-US based

(Rice et al., 2020). Attendees of this first series

of workshops became the basis of the PCA com-

munity. Following the success of the inaugural

meeting, two technology-oriented workshops on

single-cell sequencing and spatial proteomics

and a career planning workshop were held virtu-

ally in 2021, respectively attracting 273, 253 and

42 participants. Additional workshops and sym-

posia will be announced on the PCA website.

The PCA goals

The goal of the PCA is to bridge gaps in knowl-

edge, providing critical localization, dynamics

and interaction information at the cellular and

subcellular levels. The participants in the PCA

Research Coordination Network envision a set of

concrete milestones over the next decade to

reach that vision, based on community goals set

during these meetings in 2020 and 2021

(Figure 2).

1. Identify and quantify relative abundan-
ces of all definable cell types in every
organ of several strategically selected
reference species (e.g. a single-celled
organism, a non-vascular plant, a eudi-
cot, a monocot).

2. Profile the developmental trajectory of
every specialized cell type in each organ
in the reference species through single-
cell sequencing.

3. Develop a ‘reference’ clearinghouse
where new experiments based on sin-
gle-cell profiling can be mapped onto
comprehensive atlases representing the
diversity of known transcriptional states
among cell types.

4. Profile the responses of major organ
systems to a common set of environ-
mental perturbations at a single-cell
resolution.

5. Determine the intraspecific variation of
developmental trajectories and environ-
mental responses at a single-cell
resolution.

6. Establish data integration platforms and
community-supported data standards
to better enable data integration.

7. Develop a community-supported data
benchmarking platform that will accom-
plish simulation and validation of data
and evaluation metrics.

8. Determine protein subcellular localiza-
tion, interactions and dynamics in the
major cell types of leaves, roots and
flowers for every gene in reference
species.

9. Curate empirical datasets and develop
data analysis and visualization tools
through community-driven challenges
(e.g., the DREAM single-cell transcrip-
tomics challenge; Alonso et al., 2019;
Pham et al., 2020).

10. Establish mechanisms for fostering new
collaborations and funding for data
generation, data integration as well as
new technology and method develop-
ment or adoption for plants.

Some of these goals can be accomplished

quickly, as already existing technologies such as

single-cell and single-nucleus RNA-seq make

them realistic. Others require the development

of technologies to collect information at the sin-

gle-cell level. As technology and discovery

reshape the vision of the PCA, new aspirations

should emerge from the community. Nonethe-

less, these ambitious milestones represent key

gaps in knowledge that will accelerate plant

research (if addressed) and are feasible to

achieve given the opportunities presented by

recent technological advances. The PCA com-

munity can enable this vision in several ways.

The PCA vision

First, the participants in the PCA Research Coor-

dination Network envision a one-stop, user-

friendly website with illustrated and graphical

details about cellular organization across differ-

ent developmental stages. This information,

modeled after findable, accessible, interopera-

ble and reusable (FAIR) data principles, could be

widely accessed and used to advance research

and develop educational tools (Figure 3;

Wilkinson et al., 2016). Although single-cell

genomics data (mostly transcriptomic) have

been generated and analyzed in individual stud-

ies for several years, how well the broader com-

munity can use these datasets in comparative

analyses has been limited. This is largely due to

the difficulty in integrating and comparing data

generated by different methods, growth condi-

tions and collection methods. The PCA will be

critical in harnessing the power of single-cell

data by establishing and promoting community-

supported best practices in sample preparation,

data generation, analysis and integration –

including data benchmarking platforms, evalua-

tion metrics and reference cell maps for major
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organ/cell types in model species. Important

considerations for such infrastructure include

how data will be gathered, curated and stored

in order to integrate resources and contributions

from different laboratories. It is necessary to

develop and incentivize standards for both data

collection (i.e. experimental protocols) and cura-

tion to allow integration of disparate datasets

into a unified resource such as the PCA. This

should include application programming interfa-

ces (APIs) for programmatic access to ensure

that PCA is accessible to all in a FAIR format.

Similar standards have been produced for

instance for plant phenotypic data

(Papoutsoglou et al., 2020).

Second, we challenge and support the com-

munity to create a 4D representation of a devel-

oping plant from root to fruit (Henkhaus et al.,

2020) with data collected from single-cell omics

platforms (genomics, epigenomics, transcrip-

tomics, proteomics and metabolomics) for each

cell or cell type that are mapped onto tissue

atlases of organ development. The data col-

lected from the single-cell platforms form the

basis of these atlases and serve as a reference

for mapping further experimental data (e.g.

from perturbation experiments). The PCA efforts

include integration of not only single-cell omics

data, but also spatiotemporal dynamics of single

cells and their connection to cell types and

developmental trajectories. It therefore facili-

tates a comprehensive understanding of how

different complex tissues and organs are formed

during plant growth and development.

Third, we wish to generate excitement and

awareness about the potential for plant science

research to address society’s most pressing chal-

lenges in agriculture, food security, bioenergy,

resource management, as well as ecosystem

stewardship and robustness in response to cli-

mate change. The PCA community needs to

overcome the growing gap between ongoing

research and societal perception with public

communication and education. The PCA efforts

should include outreach, training and education

of the general public to understand the motiva-

tions, successes and limitations of this research.

The initiative will help to build public awareness

of how translational research that arises from

model organisms can positively impact society

and help feed the world. It will also demonstrate

how understanding plants as foundational

Figure 4. People and culture. Major stakeholders of the PCA are described. The goal is to establish a broad

network of collaboration between developers and users through the creation of an accessible platform,

educational tools and outreach activities. The PCA community should strive to be inclusive, diverse and

transparent.
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components of the ecosystem helps to predict

and mitigate the consequences of climate

change, and to be better stewards of the planet.

Without these efforts, we fear that growing

skepticism about science will impair the ability

to aid society with the power of plant research,

as apparent in the non-evidence-based regula-

tion of gene editing in the European Union (Jor-

asch, 2020; Ruffell, 2018; Zimny et al., 2019).

Fourth, we see the PCA embracing new tech-

nologies and fostering multidisciplinary collabo-

rations. The PCA will aim to build a community

by introducing research tools to new users, and

by facilitating interactions among scientists,

engineers and breeders worldwide. These goals

can be met by organizing in-person events and

online workshops with presentations from

domain experts, followed by breakout rooms for

targeted discussions and networking. The multi-

disciplinary nature of the PCA has enormous

potential for accelerating the fundamental

understanding of plant cells and how they con-

nect to the whole organism, and for translating

fundamental discoveries to agriculturally impor-

tant crops across the globe. The dream of the

PCA initiative in this regard is to actively engage

applied plant scientists and breeders by facilitat-

ing the formation of joint national and interna-

tional funding schemes across scientific

disciplines. This will allow diverse communities

Figure 5. PCA research framework. Building the PCA will require cooperation and coordination between plant

science, technology and data infrastructure. Plant scientists will use new technologies to generate data at the

single-cell level, which will be integrated by data scientists into the PCA infrastructure through manual and

automated curation. This data integration will enable the development of new technologies and drive new

hypotheses and investigations for plant scientists, who will then contribute additional data to the PCA resource.
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to benefit from each other’s expertise and for

ideas and technologies to be transferred from

lab to land. Enhancement in research translat-

ability will address globally relevant societal

questions that are aligned with the UN Sustain-

able Development Goals (Biermann et al.,

2017; Costanza et al., 2016; Griggs et al.,

2013), including food sustainability (Goals # 1–

3), resources to tackle climate change (Goal #13)

and the overall survival of the biosphere (Goals #

14–15). We envision that starting with a compre-

hensive cell atlas of model organisms will help to

better understand non-model species and even-

tually expand to an ecosystem-scale analysis of

interactions between organisms.

Inspiration from similar projects

What the participants in the PCA Research Coor-

dination Network envisage is ambitious and not

yet available for any system. However, examples

of components of our vision will serve as guides.

Among the animal whole organism atlases

(Lähnemann et al., 2020), the mouse brain and

adult mouse cell atlases are models for compre-

hensive coverage and community accessibility

(Rosenberg et al., 2018; Saunders et al., 2018;

Zeisel et al., 2018; Tabula Muris Consortium,

2018; Han et al., 2018). The Human Cell Atlas’

data portal already includes data from 55 organs

and 12 million cells, and it is becoming a model

for making community-generated single-cell

data available at a single portal, along with APIs

and data analysis pipelines made easily accessi-

ble. In addition, the OpenWorm project pro-

vides an excellent example for modeling,

visualizing and simulating various aspects of the

biology and behavior of an organism

(Szigeti et al., 2014). For plants, response to

the environment would serve as an analogous

level to behavior. EMBL-EBI’s Single Cell Expres-

sion Atlas recently started hosting plant single-

cell transcriptome data, which is an exciting

development (Papatheodorou et al., 2020).

Finally, the Global Natural Product Social Molec-

ular Networking initiative provides a model for a

one-stop-shop web infrastructure to enable data

generation, integration, analysis and publication

from mass spectrometry (Wang et al., 2016).

The envisioned PCA community
The PCA will be developed, maintained and

used by a global community with diverse scien-

tific, technical, creative and educational back-

grounds (Figure 4). Helped by rapidly evolving

online tools that increase inclusivity and

transparency, the initiative should seek ways to

facilitate the engagement, communication and

collective decision-making among all groups

involved. This work will aim to be grounded in

active listening, psychological safety, teamwork,

mutual respect and integrity. An inclusive and

bottom-up ethos will underpin the development

of global biological databases built with scien-

tific rigor and transparency.

The participants in the PCA Research Coordi-

nation Network anticipate that the success of

the PCA will hinge on an open and frequent dia-

logue between developers and users, with facili-

tation and guidance from a steering group.

Recruiting scientists from diverse disciplines as

well as from different career stages will be cru-

cial in the successful development of the PCA. In

particular, the initiative should continue to pro-

vide an opportunity for early-career researchers

and foster the development of future leaders in

plant biology.

Developers

The mission of the PCA community will be

achieved by groups who will contribute to the

development and maintenance of the database,

as well as those who generate or use the data

and provide inputs for improvement. Developing

the PCA database will be done with the exper-

tise of scientists, software engineers, modelers,

scientific illustrators and animators coming

together to fine-tune the display of cellular orga-

nization and collecting information. Data and

computational scientists will have to be involved

in the curation and annotation of data. Engage-

ment will extend to consortia pursuing similar

activities in different biological systems (e.g.,

Human Cell Atlas). As the PCA will heavily

depend on data visualization, user interface and

experience design will also benefit from advisors

in art and design fields. Additionally, collabora-

tion with cartographers will enhance the under-

standing of spatial mapping for developing the

PCA database. These influences from outside

the field of plant research will complement and

bolster the expertise of plant scientists in the

PCA community.

Users

The participants in the PCA Research Coordina-

tion Network expect several types of users. One

of the major user groups will be the data gener-

ators, which will involve plant scientists from

many disciplines, including single-cell profiling,

protein-protein interactions, cell and
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developmental biology, imaging or synthetic

biology. To engage scientists from different

career stages and areas of plant science, it will

be important to develop mechanisms attributing

and giving credit to data contributors. Another

type of users will be researchers who wish to

explore the PCA data to make discoveries.

Engaging these users through a bottom-up pro-

cess driven by their needs will be required for a

vital and thriving PCA. Finally, the third group of

users, both within and outside of the research

community, are those who will access the PCA

for educational purposes. Simple and intuitive

interfaces combined with an attractive display of

information and compelling visualizations will

attract a large number and range of educators

seeking information for teaching.

Integrating the PCA in the wider
bioinformatics community

Robust computational infrastructure develop-

ment will be essential to support the research,

community-building and outreach activities of

the PCA (Figure 5). We envision the PCA

infrastructure (that is, the technologies, stand-

ards and computational platforms used by

developers to build a framework to house and

make available the PCA-relevant data) to have a

seamless integration of multi-omics data with

localization data at multiple scales of the plant.

A governance structure, contribution guide and

code of conduct for participants in infrastructure

development should be established to define

and support community values. These values

include open-source development, FAIR princi-

ples and outcomes-based planning and imple-

mentation. Stakeholders should be included in

the decision-making process. To implement

these values, existing efforts with similar values

and goals should be leveraged. For example,

the DREAM challenges group could be lever-

aged for developing data analysis, visualization

and access tools (Pham et al., 2020).

While new tools and resources will be needed

to build a PCA community platform, existing

resources should be strong guiding principles

when developing the PCA infrastructure.

The PCA should make efforts to liaison with data

Figure 6. Knowledge gaps to fill for the PCA. Several limitations inherent to plants (shown as pieces of a jigsaw

puzzle) must be overcome to enhance the understanding of plant cells as biological systems. To characterize the

unique molecular attributes of each cell type composing a plant, plant biologists will need to develop reliable

methods to broadly access the different cell types across various plant species. Also, single-cell multi-omics

technologies will be necessary to get a deeper understanding of plant cell processes across all layers of molecular

regulation. This data must be gained in the context of functional annotation of the cells. This would require the

identification of reliable marker genes for each type of plant cell-. Ultimately, the spatiotemporal distribution of

the molecular attributes of each cell will help to understand their dynamic regulation during plant cell

development and in response to environmental stresses. Integrating the information collected using

bioinformatics tools will enable the characterization of regulatory networks at a single-cell resolution and

comparative analyses across plant species at the cellular level. This data will fuel the establishment of new

synthetic biology strategies to enhance plant biology.
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repositories, knowledge bases and data analysis

hubs such as ATTED, eFP Browser,

ePlant, Ensembl Plants, Gramene, MaizeGDB,

TAIR, The 1001 Arabidopsis Genomes pheno-

type database, NCBI’s GEO, EMBL-EBI’s Expres-

sion Atlas, AraPheno and others

(Obayashi et al., 2007; Sullivan et al., 2019;

Howe et al., 2020; Tello-Ruiz et al., 2021; Port-

wood, 2018; Berardini et al., 2015;

Seren et al., 2016; Barrett et al., 2005;

Papatheodorou et al., 2020; Waese et al.,

2017). For example, OMERO is a global consor-

tium effort aiming to standardize biological

imaging data, which includes data depository as

well as image processing software to translate

image files into a universal format. Cross-species

information may be mapped to the latest phylo-

genetic tree updated by the Tree of Life Web

Project and Bioschemas. Engagement should

also extend to consortia that are undertaking

related work in other organisms, such as the

Human Cell Atlas. To create a collaborative

research environment, projects such as Synapse,

Cyverse and KBase could be evaluated for stra-

tegic partnership. To develop a framework to

represent the PCA at multiple scales, it will be

important to implement conceptual frameworks

such as the common coordinate framework

(Rood et al., 2019), developmental trajectories

(‘pseudo-time’) and spatial gradients (‘pseudo-

space’; Stewart et al., 2019).

Driving the community forward

The PCA will receive diverse sets of data from

different types of techniques and experiments,

many of which are constantly pushing the

boundaries of the state of the art. As such, the

PCA needs to position itself and its community

at the frontier of plant biology, looking out for

emerging findings and technologies. This could

be achieved through online workshops that

enable pioneering researchers and developers

to introduce emerging technologies to the com-

munity. Other training activities might include

hands-on workshops on single-cell, spatially

resolved experimental techniques, data annota-

tion and analysis tutorials, as well as hackathons

and virtual office hours to help novice code

developers, data scientists and other

researchers.

Gaps in knowledge: How the PCA
could address unresolved
questions in plant science
Many unresolved questions in plant biology

require new technologies and approaches that

the PCA could drive forward, as well as benefit

from. Examples of such major knowledge gaps

are described here (see also Figure 6).

Plant development

The PCA could unlock answers to questions that

require understanding the molecular changes in

cells during development. The potential to char-

acterize embryonic development comprehen-

sively at single-cell resolution and in the

multicellular context of complex tissues could

help decipher the ‘rules’ underlying the earliest

stages of plant tissue formation (ten Hove

et al., 2015). In post-embryonic development,

plant meristems are remarkable multicellular

machines, continually producing new cells that

must be specified to fate and then guided

through phases of maturation (Esau, 1953; Sin-

nott, 1960). A major challenge is to understand

the mechanisms that coordinate these cell matu-

ration and fate specification events within meris-

tems. Furthermore, plants present a fascinating

contrast to mammalian systems with respect to

the plasticity they maintain (Borges, 2008). For

example, perennial plants often show meriste-

matic plasticity, where only a subset of meris-

tems per season are activated, and with the

meristematic activity frequently modulated in

response to external and internal cues

(Tylewicz et al., 2018). The power of single-cell

omics to capture the dynamic molecular coordi-

nation of tissue maturation at fine scales prom-

ises to help advance these classic questions in

plant development (McFaline-Figueroa et al.,

2020).

Response to the environment

As for problems in development, how plants

respond to environmental stimuli requires under-

standing the molecular changes taking place in

individual cells and how these changes are com-

municated cell to cell, across tissues and among

organisms. An example can be found in how the

threat of invasion of foreign biota into cellular

and intercellular spaces often induces localized

hypersensitive responses of programmed cell

death (Jones and Dangl, 2006; Ngou et al.,

2021). The question remains as to how the sig-

nals induced at the attack sites are communi-

cated to neighboring cells and propagated to
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distal regions. Do hidden pre-patterned states

among seemingly homogenous cells help the

plant anticipate attacks? Or is there heterogene-

ity in cellular responses that could reveal a more

complex response to infection? How do these

processes differ between susceptible and resis-

tant plant varieties? Heterogeneous responses

to infection around invasion sites, as well as dif-

ferences in molecular signals that correlate with

cellular immunity, could provide new insights

into how successful defense responses are

coordinated.

A parallel set of questions emerge from biotic

interactions involved in symbioses, such as the

ancient association of land plants with mycor-

rhizal fungi, or more recent symbioses like those

formed by members of the nitrogen-fixing

Fabids clade (Wang and Qiu, 2006). In the latter

case, infection by the symbiont through the root

hairs takes place asynchronously, so bulk sam-

pling often leads to profiles that are a heteroge-

neous mixture of cell states (Libault et al.,

2010). Can new technologies help to gain a dis-

crete view of how individual cells respond to the

symbiont over time? Can fresh insights be

gained into plant-symbiont interactions by

studying root cells and specialized symbiont

structures (i.e., arbuscules, nodules) simulta-

neously? In addition, can the chain of cellular

communication in the plant throughout the

stages of microbial colonization be better under-

stood? Lastly, by comparing these processes

across plants with differential symbiotic specific-

ities, is it possible to start understanding the

hallmarks of a robust symbiotic relationship?

Box 1. Major challenges in building a PCA.

1. Isolating plant cells and subcellular compartments. Efficient strategies for dissociating plant cells away from their struc-
tural context are needed to understand biological processes at the single-cell level. The fidelity and utility of methods
requires extensive validation for collecting single-cell information across tissues and species.

2. Lack of well-characterized, cell-type-specific marker genes in non-model species. The functional characterization of plant
cell types based on their transcriptomes suffers from the small pool of plant marker genes. The major limitation of the
most widely applicable technology (Visium, 10x Genomics) is its relatively coarse resolution that would obscure the
boundaries between several cell layers in plant tissues.

3. Incomplete annotation of plant genomes. Approaches that account for gene duplication, gene loss, and the potential for
functional swapping among paralogs are required in plants. Comparison of individual transcript isoforms is difficult with
current technologies. Efforts are needed to develop long-read technology to single-cell applications, or other strategies
that can provide sequencing coverage to whole transcripts.

4. Need to integrate multiple components of the cell, such as nucleic acids (DNAs and RNAs), proteins, lipids, and metabo-
lites. Addressing this challenge requires the development of multi-omics capabilities at cellular resolution, coupled with
computational approaches that can integrate the data (Libault et al., 2017).

5. Plasticity of plant phenotypes. Plant phenotypes can be highly plastic according to changes in the environment. Efforts to
establish reference atlases should ensure that standards in metadata description for growth conditions are established
and adhered to.

6. Need to develop innovative strategies to functionally characterize plant genes at the single-cell level. Single-cell genetic
technologies should be adapted to plant cells for high-throughput characterization of gene function in specific cells and
cell types. For example, combining CRISPR-Cas9 technology with cell-type-specific inducible systems enabled the crea-
tion of genetic mosaics (Decaestecker et al., 2019; Wang et al., 2020). In addition, studies of proteins are limited to the
whole plant-based tissue analyses. Approaches are needed for investigating single-cell or cell-type-specific proteomics in
a high-throughput manner (Balasubramanian et al., 2021).

7. Limited resources. The plant science community is small compared to its animal or human counterparts and having access
to more resources is a long-term challenge. Despite this, this community is relatively open and collaborative, making
efforts to standardize aspects of single-cell experimental and analytical strategies potentially an easier barrier to
surmount.
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Cellular evolution

From rhizoids to pollen, plants have evolved

many new specialized cell types, allowing adap-

tation to new ecological niches. In addition, spe-

cific cell types in the root harbor molecular

mechanisms to perceive and respond to environ-

mental stimuli, suggesting they may act as ‘gate-

keepers’ for these responses (Henderson and

Gilliham, 2015). What new perspectives on cel-

lular evolution could we gain by producing com-

parable single-cell omics data sets on

strategically selected species within the plant

kingdom? Previous attempts to use expression

patterns of homologous genes in distantly

related species to assess functional orthology

have provided insights (Adamski et al., 2020).

However, bulk tissues collected in different spe-

cies may have substantially different composition

of cell types (Huang and Schiefelbein, 2015).

Furthermore, the presence of novel cell types in

some species may be obscured in whole organ

samples (Kajala et al., 2021). By focusing on the

fundamental unit of organs – cell types and cell

states – comparative studies of species repre-

senting key plant lineages could identify minimal

molecular toolkits driving conserved

plant cellular functions. In addition, these single-

cell approaches could highlight the differences

in developmental pathways that lead to pheno-

typic diversity and adaptation to a myriad of

environmental conditions.

Technical challenges faced in the
development of the PCA
Critical challenges must be overcome to achieve

the data generation, analysis and software

development milestones of the PCA (Figure 2).

Many mirror those faced by the larger single-cell

initiatives that include animal models

(Lähnemann et al., 2020), but we focus here on

those that specifically affect the plant research

community (summarized in Box 1).

Isolating individual plant cells

A major challenge is dissociating plant cells: due

to their rigid cell walls, some tissues and many

species are recalcitrant to digestion

(Himmel et al., 2007; Yoo et al., 2007). This

feature limits the ability to sample mature tissues

that often mediate environmental stresses. In

addition, it can be difficult to isolate even young,

meristematic cells in some key species that pres-

ent cellular innovations. One emerging approach

that has the potential to address this issue in

plants is single-nucleus profiling, which avoids

the need for cell wall digestion (Giaco-

mello, 2021). Such nuclear isolation methods

have already shown promise (Farmer et al.,

2021; Marand et al., 2021). Recently developed

proximity labeling approaches bypass the need

for isolating cells or organelles by tagging pro-

teins and RNAs near a target protein in living

cells and organisms. These methods can profile

components of protein complexes, dynamic pro-

tein-protein interactions, specific cell types and

subcellular locations of proteins or RNAs

(Zhang et al., 2019a; Mair et al., 2019;

Huang et al., 2020; Kim et al., 2019;

Wang et al., 2019).

Tracking cell provenance

Another challenge is mapping cells (or nuclei)

back to their tissue location in the whole plant.

Methods that can rapidly and conveniently gen-

erate ‘ground truth’ markers of cell types in situ

will be especially important as more tissues and

species with few existing markers are profiled.

Adapting so-called spatial transcriptomic

approaches to plants will be a critical tool. In

particular, untargeted methods (that is, methods

based on unbiased sequencing rather than

hybridization of a limited set of predefined

probes) have the potential for the resolution and

throughput needed (Giacomello et al., 2017). In

addition, nomenclature systems will be neces-

sary to link the reference maps from different

species that have varying organ anatomy and

specialized cell types. The hierarchical approach

proposed by the common coordinate framework

for humans can serve as a starting point

(Rood et al., 2019). However, unlike the coordi-

nate systems used in animal organ atlases which

focus on accounting for differences between

individuals, plant coordinate systems should

instead be geared toward discovering differen-

ces among representative species and popula-

tions. Any such system should be able to

accommodate differences in cell type composi-

tion (Huang and Schiefelbein, 2015) and the

development of novel cell types (Kajala et al.,

2021).

Gene homology

Another set of issues surrounds gene homology

in comparisons across populations and species.

Plants have a well-known capacity for duplication

at many scales, ranging from single gene to

whole genome. An informative molecular profil-

ing of cells will require high-quality genome

annotations that consider the gene family
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expansion, gene loss and complex orthology

relationships which frequently occur when exten-

sive gene duplication follows speciation. Sub-

functionalization and neofunctionalization can

complicate assumptions about functional ortho-

logs. On the other hand, difficulty identifying

distant homologs that share low sequence simi-

larity could obscure functional conservation.

Advancement in sequence alignment methods,

such as incorporating structural information,

could help to discover these distant homologs

(Morton et al., 2020). This will probably be an

iterative process, where increased resolution of

gene expression at the highly resolved cellular

or subcellular level could allow inferences about

functional orthology across species in large gene

families.

Building the database and
infrastructure of the PCA
Collection, standardization, curation, integration

and visualization of data are key elements of a

PCA platform, and the core PCA infrastructure

should function as a data resource onto which

services and tools are built.

Experimental and analytical standards

Establishing a vetted and community-approved

set of experimental and analytical standards will

be important. Such an approach was key to the

success of the Encyclopedia of DNA Elements

project, which ensured that data from multiple

international laboratories were easily compared

and integrated (ENCODE Project Consortium,

2011). Likewise, the 1001 Arabidopsis Genomes

website provided a user-friendly interface to

download all sequencing data as phases were

completed – allowing the community to begin

analyses and discoveries even before publication

– and was complemented with an interactive

tool to explore phenotypes (Seren et al., 2016)

and their genomic associations (Togninalli et al.,

2018). The standards were made easily available

and updated over time as technologies

advanced.

These platforms serve as data infrastructure

blueprints as well as knowledge banks and inspi-

ration. This would allow the PCA to be extended

from an atlas of a single reference species and

clone, to a set of atlases capturing natural varia-

tion (within and between species) in cell types

and functions. For example, the interactive PCA

platform could hyperlink the gene found in each

tissue or cell type to the web portal of that gene

in natural variation panels of the species of

interest (such as the AraGWAS

Catalog, Togninalli et al., 2020). Data structure

scaffolds in the PCA could also be created so

that the template can be replicated across geno-

types of a species (e.g. different ecotypes) or

different species, and allow users to select their

desired organism or compare between the

atlases.

Data visualization and exploration tools

In addition to data analysis and interpretation,

the PCA infrastructure should include tools that

provide effective ways to visualize real or virtual

plant cells, and the dynamic processes that form

and define them. This could enable hypothesis-

generating in silico experiments that predict

how plant cell types would respond to stimuli, or

the properties of cells with a set of desired fea-

tures. Creating these digital cells, tissues and

other structures would require developing

modeling, simulation, artificial intelligence, as

well as data visualization and exploration tools

similar to those being set up for other projects

such as the OpenWorm (Sarma et al., 2018).

Computational modeling and simulation-based

predictions could then inform experimental

work, the results of which could feed back into

the PCA to improve models and predictions

(Radivojević et al., 2020; Zhang et al., 2020).

Curating the PCA databases

To achieve the PCA’s vision of building a 4D

representation of a developing plant, a wealth

of existing data, resources and tools will need to

be leveraged. For example, it is now routine to

deposit next-generation sequencing, processed

expression data, proteomics, metabolomics and

protein structures in numerous repositories

worldwide (Deutsch et al., 2017;

Kaminuma et al., 2010; Leinonen et al., 2011;

NCBI Resource Coordinators,

2018; wwPDB consortium, 2019). A combina-

tion of automated searches and manual curation

of datasets from existing data repositories can

be used to build the PCA data infrastructure.

Reference genome databases such as TAIR, Phy-

tozome, Gramene, EnsemblPlants and others

that provide gene and pathway annotation

resources (e.g. Gene Ontology) could enable an

initial assessment of gene structure, location and

function (Berardini et al., 2015;

Goodstein et al., 2012; Howe et al., 2020;

Tello-Ruiz et al., 2021; The Gene Ontology

Consortium, 2019).
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Building a platform that brings these data

together with data exploration and visualization

tools that allow a user to explore at multiple

scales, from molecular to cellular to organismal,

is a challenge. To this end, single-cell datasets

should be made available in both raw and proc-

essed data formats and linked from the public-

facing PCA website. This resource could addi-

tionally be populated using automated literature

search tools, followed by manual curation by the

PCA community. A selection of high-quality ‘ref-

erence’ single-cell datasets directly hosted by

the PCA may also prove to be useful for bench-

marking purposes. For all datasets, curation

standards should be imposed to include minimal

metadata falling into several categories:

(1) experimental metadata should include a proj-

ect name, details regarding how plants were

grown, treated and sampled, as well as quality

control metrics and definitions used to evaluate

sample integrity; (2) cell metadata should

include a cell identifier (where applicable), cell

type annotations and other cell-level data that

have come from standard or specific analysis of

the dataset; and (3) gene metadata that include

structural and functional annotations should be

required.

In addition to providing links to data reposi-

tories, the PCA portal should include web-based

tools to generate, access and query relevant

data and metadata using a standardized ontol-

ogy for metadata, similar to the Single Cell

Expression Atlas (Papatheodorou et al., 2020)

and the Human Cell Atlas implementation of

metadata types. This will facilitate interoperabil-

ity of datasets. Depending on the data type,

scripts that implement standardized pipelines

for single-cell data analysis could also be made

available that reflect the current best practices,

including those that implement methods for

cross-platform and multimodal data integration

as well as label transfer (e.g., Lotfollahi et al.,

2020; Hie et al., 2019; Korsunsky et al., 2019;

Kang et al., 2021; Stuart et al., 2019). Version-

controlled source code that demonstrates analy-

ses using the information in the PCA as a start-

ing point should also be made available. These

resources should promote greater use of the

rapidly growing number of single-cell datasets.

Multiscale networks can provide an intuitive

method to discretize and integrate different

data types (Duran-Nebreda and Bassel, 2017).

Other informatics frontiers that will be useful to

explore include multi-dimensional image visuali-

zation and analysis tools such as Napari and

Squidpy (Sofroniew et al., 2021; Palla et al.,

2021), graph-based knowledgebases for inte-

grating datasets (e.g., Reactome;

Fabregat et al., 2018), natural language proc-

essing for automating curation (Braun and Law-

rence-Dill, 2020), as well as machine learning

and artificial intelligence methods for integrating

heterogeneous data (Ma et al., 2020).

Challenges to the PCA infrastructure

Despite the widespread availability of data types

described above, additional data that need to

be integrated to achieve the PCA vision (metab-

olomics, imaging and phenotypic observations)

are currently available in a variety of heteroge-

neous sources such as data sharing platforms

(e.g. EMBL-EBI, Dryad, Figshare, and Zenodo),

institutional data repositories, researcher web-

sites or embedded within scientific publication

records. A lack of centrality in data deposition

makes these data less accessible.

In addition, methods for data standardization

and curation will be critical tools to mitigate

challenges with existing data, create best practi-

ces for collecting new data and ensure consis-

tency to allow for data exchange and

interoperability (Sansone et al., 2012). Experi-

ments, datasets and other resources should be

described in sufficient detail to be easily accessi-

ble and reproducible. Validating data with

resource description frameworks is a means to

ensure data compliance against the conceptual

model it follows, data consistency and complete-

ness. Data records and metadata should be

machine-readable by using standardized vocab-

ularies (i.e. cell type ontologies; Bard et al.,

2005) to enable interoperability. Existing solu-

tions and concepts of such ontologies are

broadly applied in vertebrates and are available

for plants, though they need to be widely

adopted by the PCA community

(Avraham et al., 2008; Bard et al., 2005

; Diehl et al., 2016; Ilic et al., 2007; Xia and

Yanai, 2019). Mapping ontologies to the 4D

representation of the PCA will facilitate linking

and visualizing the growing knowledge of plant

cells.

Originality of the PCA infrastructure

The long-term vision for the PCA infrastructure

is similar in scope to other moonshot ideas such

as the Human Cell Atlas (Regev et al., 2017),

the Transparent Plant (Henkhaus et al., 2020)

and the Virtual Plant (Kost, 2001). However, the

PCA vision is different in several important ways.

The Human Cell Atlas is for a single organism
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Box 2. The chloroplast structure, function and dynamics illustrate PCA needs.

As highlighted here, technical solutions are needed to overcome key questions and challenges in chloroplast biology. The chlo-

roplast is an important organelle in the plant kingdom, which is responsible for harvesting and converting light into chemical

energy and sequestering carbon dioxide. Whereas much is known about chloroplast form and function, many aspects of chloro-

plast biology remain to be elucidated, especially in the context of the ‘location-to-function’ paradigm and proteostasis (Fig-

ure 7). The chloroplast is organized into several compartments (Solymosi et al., 2018; Figure 7A). This suborganellar

compartmentalization allows for highly efficient and specialized metabolism, optimized light-driven electron transport, redox

reactions and more (Rolland et al., 2018). The function and organization of chloroplasts greatly varies across the plant lineage

and cell types (Pinard and Mizrachi, 2018; Figure 7B). For example, microalgae typically have a single chloroplast with a car-

bon-concentrating organelle called the pyrenoid (Barrett et al., 2021). In plants that can perform C4 photosynthesis, the chlor-

oplasts in the bundle sheath and mesophyll cells have different compositions and functions (Edwards et al., 2004). A few

plants even perform C4 photosynthesis within individual chlorenchyma cells where C4 function is obtained by spatial separation

of function between dimorphic chloroplasts located in central and peripheral cytoplasmic compartments within the same cells

(Erlinghaeuser et al., 2016; Edwards et al., 2004). In most land plants, the epidermal cells of leaves (except in guard cells)

are devoid of chloroplasts but instead contain non-photosynthetic plastids, whereas aquatic plants are enriched in chloroplasts

in their epidermal cell layer (Larkum et al., 2017; Han et al., 2020; Figure 7C). Recently Arabidopsis epidermal plastids have

been shown to act in defense equipped with plant immune components (Irieda and Takano, 2021). Furthermore, different

environmental conditions change the chloroplast proteome as well as relative positions of chloroplasts and their parts at vari-

ous scales (Kong and Wada, 2014; Figure 7D). Finally, the chloroplast life cycle includes various transformations in form and

function from birth to differentiation to senescence, and how these transformations occur is an understudied frontier

(Llorente et al., 2020; Solymosi et al., 2018; Figure 7E). It is still not fully understood how chloroplast and other types of plas-

tids differentiate, adapt, function and integrate their activities within specific cell types. Single-cell technologies bring promise

for solving key challenges in cell-type and species-specific differentiation of plastids. Examples of key technologies and how

they could contribute to a range of PCA-related question are listed below:

. Affinity tagging of plastids using cell-type-specific promotors driving the expression of tagged proteins that associate to
the plastid surface. Recently this approach has been developed for Arabidopsis thaliana mitochondria (Niehaus et al.,
2020; Kuhnert et al., 2020). Successful cell-type-specific plastid affinity purification would resolve molecular features,
properties and associated functions of plastid with high precision. This could include determination of plastid RNA, pro-
tein and metabolite populations through high sensitivity, state of the art RNA-seq profiling and mass spectrometry
techniques.

. Time-resolved plastid-targeted proximity labeling techniques to understand intra-plastid protein organization and
dynamics. Recently, proximity labeling approaches have been successfully implemented in plants. They enable discovery
of proteins that interact with specific regions of a bait protein, as well as identify localized protein interactions at high
spatial and time-resolved resolutions (Huang et al., 2020; Mair et al., 2019; Zhang et al., 2019b). This novel approach
would enable resolving intra-plastid protein organization and dynamics for different cell types and photosynthetic and
non-photosynthetic plastids.

. Technology to detect and track retrograde signaling pathways from plastids to nuclei in response to, for example, sin-
glet O2, protein folding stress, redox and metabolites. These retrograde pathways involve a range of small molecules
and likely also protein signaling cascades (Jiang and Dehesh, 2021; Muñoz and Munné-Bosch, 2020; Pesaresi and
Kim, 2019). Non-invasive, high-resolution and high-sensitivity imaging technologies should be developed or adapted to
address this challenge.

. Plastid-localized reporter systems (biosensors) to monitor pH, calcium, ATP and redox potential. There are now many
such reporters (Isoda et al., 2021; Okumoto and Versaw, 2017) and a fluorescent ATP sensor protein that allows the
measure of ATP concentrations in the plastid and cytosol (Voon et al., 2018). Functional relationships between biophys-
ical and biochemical parameters could be probed through the systematic application of reporter systems in plastids.

. Plastid protein lifetime reporter technologies to understand cell-type-specific proteostasis. A novel protein lifetime
reporter system has only been applied to address N-degron pathways in the cytosol (Zhang et al., 2019b). Adaption to
plastids would resolve the complexities of plastid proteome remodeling in response to development and (a)biotic
changes (Bouchnak and van Wijk, 2019).

. Synthetic biology to engineer novel plastid metabolic pathways. Plastids are excellent targets for metabolic engineering
through synthetic biology: they have their own genome and generally tolerate high levels of ‘foreign’ protein without
significantly impacting function or proteostasis (Boehm and Bock, 2019; Jensen and Scharff, 2019).
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with over 200 cell types, whereas the PCA com-

munity embraces cell atlas data from a diverse

array of plants. A typical plant has about 100 cell

types (https://www.ebi.ac.uk/ols/ontologies/po;

Ilic et al., 2007). Understanding the diversity

and origin of cell types across the plant lineage

will be a central part of the initiative, as illus-

trated in Box 2 with the chloroplast as an exam-

ple. The PCA is an essential step towards

realizing the vision of a Transparent Plant, a sim-

ulated environment where virtual plants can be

built from parts and behaviors (Henkhaus et al.,

2020). In order to materialize such a simulation

environment, where the parts are and how they

work together must be understood. Finally, we

see the Virtual Plant database (Katari et al.,

2010) as an essential component of the PCA

vision and infrastructure.

Potential sources of funding for
the PCA
The PCA will require adequate funding to

achieve its full potential – including translational

impact for agriculture (Bartuska, 2017;

Bol et al., 2018; Gök et al., 2016; Hu, 2020;

Jaffe et al., 2015; Rosenbloom et al., 2015).

As the PCA has an international reach, programs

that facilitate collaboration across borders will

be valuable in advancing the goals of the initia-

tive, such as partnering programs by the Bio-

technology and Biological Sciences Research

Council (BBSRC) in the United Kingdom, Euro-

pean Commission’s Horizon Europe and the

United States’ Fulbright scholars program. Simi-

lar programs exist that foster alliances between

scientists from the US with those in Japan,

Israel and Germany; and between India and

other countries. As big data, nanotechnology,

computation and artificial intelligence have now

become an integral part of biological research,

funds to support the interdisciplinary vision of

PCA will be important to foster integration of

these disciplines.

While governments are the major sources of

funding for basic research, their level of funding

has been steadily decreasing (Khan et al.,

2020). Foundations are the major source of pri-

vate basic research funding and are less con-

strained by time, politics and topic. They have a

high potential for funding initiatives in emerging

areas such as the PCA. However, it is challeng-

ing for foundations and individuals to find wor-

thy initiatives. To fill this gap, the Science

Philanthropy Alliance was established. One of

their success stories is the Chan Zuckerberg

Initiative providing substantial funds to develop

technologies for the Human Cell Atlas initiative.

Such a partnership for the PCA would take its

vision to new heights.

Industry is another potential source of fund-

ing. Over 70% of applied research and develop-

ment in the US is funded by industry

(Khan et al., 2020). A thorough understanding

of plant systems is essential for designing effec-

tive agro-biotech solutions leading to new crop

varieties, and to innovative crop protection

products that can leverage sustainable food pro-

duction. A partnership with the PCA initiative

would accelerate development of new solutions

for customers of the agbiotech industry. Thus,

funding and collaborations, ranging over multi-

ple disciplines and countries, and multiway inter-

actions amongst academia, industry and

philanthropy will be essential to realize the vision

of the PCA.

Conclusion and outlook
Future economies will be increasingly plant-

based. Biomass is projected to be a major

source of primary energy by 2050 (Reid et al.,

2020), plant-based meat and dairy products are

already transforming the food industry

(Shepon et al., 2018), and plant-based vaccines

against several diseases are increasingly being

researched (reviewed by Shahid and Daniell,

2016). With the rapidly changing climate, econ-

omy and values in our society, now is the time to

reimagine plant science as a critical component

of the future not only for agriculture, but also

the environment, energy, health care,

manufacturing and technology.

Today, plant science constitutes a minority of

life sciences in terms of funding and workforce.

To meet the demands of the future economy,

we need to strengthen plant science, attract tal-

ent from other fields and train the next genera-

tion of plant scientists (Henkhaus et al., 2020).

In 2004, the evolutionary biologist John Avise

wrote that ‘‘despite nearly three decades of

experience with recombinant DNA techniques,

the ultimate contribution to the broader human

enterprise remains uncertain’’ (Avise, 2004).

Two decades after this statement, in 2020,

recombinant DNA technology ushered in the

beginning of an end to a global pandemic that

cost millions of lives, through a record-breaking

runtime of development and deployment of

mRNA and DNA-based viral vaccines. While still

at its infancy, we hope that the PCA initiative

has the potential to serve as a nucleator,
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bringing together scientists and engineers from

a wide range of fields to solve fundamental

problems in plant biology with innovative solu-

tions from emerging technologies.
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