
Comptes Rendus

Physique

Johannes Hofmann and Wilhelm Zwerger

Scale Invariance in the Lowest Landau Level

Published online: 13 June 2023

https://doi.org/10.5802/crphys.137

Part of Special Issue: CNRS Gold Medal Jean Dalibard / Médaille d’or du CNRS Jean Dalibard

Guest editors: Yvan Castin (Laboratoire Kastler Brossel (UMR 8552), Département de
physique de l’ENS, Paris, France) and Klaus Mølmer (Institut Niels Bohr, Université de
Copenhague, Danemark)

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Physique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1878-1535

https://doi.org/10.5802/crphys.137
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Physique
Published online: 13 June 2023
https://doi.org/10.5802/crphys.137

CNRS Gold Medal Jean Dalibard / Médaille d’or du CNRS Jean Dalibard

Scale Invariance in the Lowest Landau Level

Invariance d’échelle dans le niveau de Landau

fondamental

Johannes Hofmann∗, a andWilhelm Zwerger∗, b

a Department of Physics, Gothenburg University, 41296 Gothenburg, Sweden
b Technische Universität München, Physik Department, James-Franck-Strasse, 85748
Garching, Germany

E-mails: johannes.hofmann@physics.gu.se (J. Hofmann), zwerger@tum.de
(W. Zwerger)

Abstract. We show that the discrete set of pair amplitudes Am introduced by Haldane are an angular-
momentum resolved generalization of the Tan two-body contact, which parametrizes universal short-range
correlations in atomic quantum gases. The pair amplitudes provide a complete description of translation-
invariant and rotation-invariant states in the lowest Landau level (LLL), both compressible and incompress-
ible. To leading nontrivial order beyond the non-interacting high-temperature limit, they are determined an-
alytically in terms of the Haldane pseudopotential parameters Vm , which provides a qualitative description
of the crossover towards incompressible ground states for different filling factors. Moreover, we show that for
contact interactions ∼ g2δ

(2)(x), which are scale invariant at the classical level, the non-commutativity of the
guiding center coordinates gives rise to a quantum anomaly in the commutator i [ĤLLL,D̂R ] = (2+ℓ∂ℓ)ĤLLL
with the dilatation operator D̂R in the LLL, which replaces the trace anomaly in the absence of a magnetic
field. The interaction-induced breaking of scale invariance gives rise to a finite frequency shift of the breath-
ing mode in a harmonic trap, which describes transitions between different Landau levels, the strength of
which is estimated in terms of the relevant dimensionless coupling constant g̃ 2.

Résumé. Nous montrons que l’ensemble discret des amplitudes de paires Am introduit par Haldane est une
généralisation résolue en moment cinétique du coefficient de contact à deux corps de Tan, qui paramétrise
les corrélations universelles à courte distance dans les gaz quantiques atomiques. Les amplitudes de paires
fournissent une description complète des états invariants par translation et par rotation dans le niveau de
Landau fondamental (LLL), qu’ils soient compressibles ou incompressibles. Au premier ordre non nul au-
delà de la limite de haute température sans interaction, elles sont déterminées analytiquement en fonction
des paramètres Vm du pseudopotentiel de Haldane, ce qui fournit une description qualitative du passage
vers des états fondamentaux incompressibles pour différents taux de remplissage. De plus, nous montrons
que pour les interactions de contact g2δ

(2)(x), qui sont invariantes d’échelle au niveau classique, la non-
commutation des coordonnées du centre de giration donne naissance à une anomalie quantique dans le
commutateur i [ĤLLL,D̂R ] = (2+ℓ∂ℓ)ĤLLL de l’hamiltonien avec le générateur des dilatations D̂R dans le LLL,
qui remplace l’anomalie de Weyl sur la trace en l’absence de champ magnétique. La brisure de l’invariance
d’échelle induite par l’interaction conduit à un déplacement de fréquence du mode de respiration dans un
piège harmonique, qui reflète des transitions entre différents niveaux de Landau et dont nous estimons la
valeur en termes de la constante de couplage sans dimension pertinente g̃ 2.
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1. Introduction

The observation by Tsui, Störmer and Gossard [1] of a Hall conductance σH that is quantized
at fractional values of the fundamental unit σ0 = e2/h in a high-mobility two-dimensional (2D)
electron gas subject to a strong magnetic field B has launched an immense amount of theoretical
work dealing with interacting fermions in the lowest Landau level (LLL). In physical terms,
the LLL is reached in the limit ℓB /aeff

0 → 0 where the magnetic length ℓB = pħ/eB is much
smaller than the effective Bohr radius aeff

0 = ħ2/m∗e2, where e is the electron charge and m∗

its effective mass. Based on Laughlin’s realization that for dominant short-range repulsion the
ground state at filling factors ν= 1/3,1/5. . . (or their particle-hole conjugates at filling 1−ν) forms
an incompressible fluid with a finite excitation gap of order ∆ ≃ e2/ℓB [2], an understanding
of the quantization of σH that does not depend on any microscopic details is provided by an
effective Chern-Simons field theory [3,4]. This description, which is based only on the underlying
symmetries, has been extended by Son and coworkers [5–7], which allows to properly account for
effects like the Hall viscosity [5] or the important issue of particle-hole symmetry at half filling
ν= 1/2 [7].

While completely general, the effective-field-theory description of interacting particles in the
LLL is restricted to incompressible ground states and it is a priori not clear whether further
universal results can be derived beyond this special class of topologically ordered states. It is the
aim of our present work to provide some steps in this direction, mostly restricting ourselves to
the case of bosons in the context of ultracold quantum gases. In the special limit of vanishing
interactions in the LLL, this problem can be mapped to a Gaussian field ψ(x) =∑

m amφm(x)
whose expansion coefficients am define a random polynomial. Its roots determine the location
of vortices, which exhibit an antibunching property [8]. Here, we are instead concerned with the
problem in the presence of interactions, which for Bose gases in 2D are usually described by
an effective pseudopotential V (x) = g2(Λ)δ(x) [9]. Since a delta function interaction does not give
rise to a proper two-body scattering problem in two dimensions, the relevant strength g2(Λ) must
be regularized by a logarithmic running with a cutoff Λ. As discussed below, for states within the
LLL, this renormalization turns out to be absent and g2(Λ) → (ħ2/m∗)g̃ 2 can be replaced by a
dimensionless constant g̃ 2 = p

8πa/ℓz , which is determined by the 3D scattering length a and
the transverse confinement length ℓz [9].

An effective magnetic field for neutral particles may be induced by rotating the gas with a finite
angular frequency Ω [9]. In the stationary rotating frame, the Hamiltonian Ĥ of the nonrotating
system is changed to

Ĥ → Ĥ −ΩL̂z , (1)

where L̂z is the angular momentum operator. This gives rise to a uniform effective magnetic
field (eB)eff = 2m∗Ω directed along the rotation axis z, reflecting the mathematical similarity
between the Coriolis and Lorentz force (here, we keep m∗ as the atomic mass to avoid confusion
with the angular momentum quantum number m introduced below). Note that, in contrast to
the electronic problem, the effective magnetic length ℓB = √ħ/(eB)eff = pħ/2m∗Ω now scales
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inversely with the mass m∗, while the effective cyclotron frequency ωc = 2Ω is independent of
it. In the presence of an additional harmonic confinement with frequency ω, the single-particle
levels in the x, y-plane are then of the form [9]

E (n)
j =ħ(ω−Ω) · j +ħ(ω+Ω) ·n , (2)

where we drop a constant zero-point energy ħω. In the limit Ω→ ω− and for given n = 0,1, . . .,
these energies group into a series of degenerate levels labelled by their angular momentum
m = j −n = −n,−n +1. . ., which constitute an analog of the nth Landau level. In particular, the
LLL corresponds to n = 0 with a degenerate set of single-particle levels labelled by the angular
momentum quantum number m = j ≥ 0. In the following, we use as a characteristic length scale
the harmonic oscillator length

ℓ=
√

ħ
m∗ω

, (3)

which differs by a factor of
p

2 from the effective magnetic length ℓB in the LLL limit. Quite
generally, the restriction to the LLL requires that |Vm |/ħω→ 0 in order to suppress transitions
between different Landau levels, where |Vm | is the characteristic magnitude of the Haldane
pseudopotentials formally introduced in Eq. (8) below. For bosons, the dominant interaction is
V0 = ħω · g̃ 2/2π [10], which arises from the standard zero-range pseudopotential with scattering
length a discussed above. Exceptions arise, however, if the short-range scattering length is tuned
to zero or in the presence of dipolar interactions, where—in a minimal model—both V0 and V2

need to included [11]. Note that since the dimensionless parameter g̃ 2 parametrizes an s-wave
interaction, it takes the same form for any rotation frequency and is thus independent of the
magnetic length ℓB , cf. App. A. The condition V0/ħω∼ g̃ 2 ≪ 1 for staying in the LLL corresponds
to the perturbative limit with respect to the harmonic oscillator spacing, for which the running
of the interaction strength due to the renormalization of the coupling is negligible. Since g̃ 2 ≲ 0.1
generically, the LLL condition is well obeyed in practice1.

For bosons, the filling factor ν = n2 (πℓ2) in the LLL (n2 is the 2D particle density) may take
arbitrary large values. In particular, for a gas with N particles in a rotating harmonic trap [9],

ν≃ (
N (1−Ω/ω)/g̃ 2

)1/2 (4)

scales like
p

N at a fixed value of 1−Ω/ω≪ 1. In the regime of large filling factors ν≫ 1, which
is the one that has been explored mostly so far, bosons can be described in terms of a coherent
state picture. In particular, the ground state is a regular array of vortices, which is predicted to
melt into a strongly correlated vortex liquid at around ν≃ 10 [12] (for a review, see Ref. [10]). From
Eq. (4), the condition for reaching filling factors of order unity requires 1−Ω/ω≲ g̃ 2/N , which
places the gas very close to an unstable configuration where the harmonic trap can no longer
overcome the centrifugal force. As a result, a number of alternative routes have been proposed
to realize Bose gases in the LLL in a regime where mean-field theory no longer applies, such as
optical flux lattices [13,14] or periodically driven systems, where a nonvanishing gauge field arises
in the effective Floquet Hamiltonian [15, 16]. This idea has been implemented successfully in a
recent experiment by Léonard et al [17], where a strongly correlated state with ν = 1/2 has been
observed with N = 2 bosons in an optical lattice. Earlier, the physics of strongly interacting bosons
in the LLL has also been realized with photons in a twisted optical cavity, where the repulsion
results from an effective interaction mediated by Rydberg atoms [18]. Moreover, a quite different
approach to study interacting bosons in the LLL has recently been explored with 23Na atoms that
are geometrically squeezed into the LLL using a rotating saddle trap [19, 20].

1Note that the relevant dimensionless interaction strength within the LLL is set by V0/ħ(ω−Ω) and thus becomes
strong forΩ→ω−.
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This paper is structured as follows: In Sec. 2, we show that the pair amplitudes Am origi-
nally introduced by Haldane [21] via the number of particle pairs with relative angular momen-
tum m may be seen as a generalization of the Tan contact parameter for non-rotating quan-
tum gases with zero-range interactions. The pair amplitudes fully describe fluid states within
the LLL at arbitrary temperature and filling. An explicit result for the Am as a function of the Hal-
dane pseudopotential parameters Vm is derived within a virial expansion. It turns out that, even
at leading order, this allows to describe in qualitative terms the smooth crossover towards in-
compressible ground states, with a non-monotonic behavior of the compressibility as a function
of temperature. Moreover, data for the pair distribution function obtained in the recent exper-
iment by Léonard et al. [17] allows to extract the two lowest Haldane pair amplitudes A0 and
A2 in the strongly correlated state at ν = 1/2. In Sec. 3, we consider the fate of scale invari-
ance and its violation by quantum fluctuations of 2D Bose gases in the presence of rotation. It
is shown that the interaction-induced quantum scale anomaly of the nonrotating system is sup-
pressed in the LLL limit due to the absence of a running coupling constant. Nevertheless, the fre-
quency of the breathing mode, which here describes transitions between different Landau lev-
els, is shifted away from the symmetry-dictated value. In addition, we show that despite the ab-
sence of a running coupling constant, a quantum anomaly is still present in the LLL due to the
non-commutative nature of the guiding center coordinates. The paper ends with a conclusion in
Sec. 4 and contains two appendices that summarize the two-body problem in a rotating trap and
provide details on the virial expansion in the LLL, respectively.

2. Haldane pair amplitudes and Tan-like relations in the LLL

In order to describe interactions in the LLL, we start from the general interaction Hamiltonian

Ĥ int = 1

2

∫
d z1

∫
d z2 V (z1 − z2)ψ̂†(z2)ψ̂†(z1)ψ̂(z1)ψ̂(z2) (5)

with a translation invariant two-body interaction V (z) in the absence of rotation. Here, z = x+ i y
is a complex coordinate and ψ̂†(z) is the creation operator for a particle at position z. To
incorporate the finite rotation Ω → ω−, where the kinetic energy is completely quenched, as
well as the restriction to the LLL, it is convenient to consider a disk geometry in the circular
gauge. Expanding the field operator ψ̂LLL(z) = ∑

mφm(z)âm restricted to the LLL in terms of the
associated single-particle eigenstatesφm(z) = (z/ℓ)m e−z̄z/2ℓ2

/
p
πℓ2m!, the projected interaction

Hamiltonian is given by

Ĥ LLL
int =∑

m

′
Vm

∑
M
ξ̂†

mM ξ̂mM = ∑
m

′
Vm P̂ m . (6)

Here, the projection operator P̂ m =∑
M ξ̂†

mM ξ̂mM is defined in terms of the operator

ξ̂mM = 1p
2

∑
m1,m2

〈mM |m1,m2〉 âm1 âm2 , (7)

which annihilates a two-particle state |mM〉 described by the center-of-mass quantum number
M and a relative angular momentum m. The prime in Eq. (6) restricts the m-summation to odd
or even non-negative integers in the case of fermions or bosons, respectively. In the presence of
both translation and rotation invariance, there is no dependence on the center-of-mass quantum
number M , and the two-body interaction V (z) within the LLL reduces to a discrete set of Haldane
pseudopotential parameters [22]

Vm = 〈
mM

∣∣V̂ ∣∣mM
〉 −−−−→

m≫1
V

(
z=ℓp2m

)
. (8)

Specifically, for a zero-range pseudopotential, only V0 is non-vanishing as discussed above,
while for Coulomb interactions the Vm decay rather slowly as 1/

p
m for m ≫ 1. The projection
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operators P̂ m = Nm Âm are determined by a degeneracy factor Nm , which counts the number of
allowed values of the quantum number M , and the M-independent pair amplitude operators

Âm = ξ̂†
mM ξ̂mM , (9)

which were first introduced by Haldane [21]. Their expectation values Am = 〈Âm〉 are positive by
definition and they depend on the complete set {Vm} of the Haldane pseudoptential parameters
as well as the specific state in question. For m ≫ 1, they approach a trivial constant Am → ν2 since
the expectation value factorizes. In the case of bosons, the Am may be arbitrarily large, while for
fermions, they are bounded from above by Am ≤ 1.

The pair amplitudes defined in (9) provide a generalization of a concept introduced by
Tan [23–25] and by Zhang and Leggett [26] in the context of ultracold gases, for which the inter-
actions are replaced by a pseudopotential that is proportional to the exact scattering length a of
the underlying microscopic two-body potential V (x). Tan derived a set of exact results valid at all
interaction strengths that describe thermodynamic properties as well as the non-analytic short-
distance and short-time structure of the system, which in turn characterize the high-momentum
and high-frequency tails of the system’s response [27]. The central quantity in all of these rela-
tions is the intensive Tan two-body contact density C2. In 2D, at finite temperature, it is defined
by the derivative

∂ f

∂ (ln a2)
= ħ2

4πm∗ C2 (10)

of the free energy density f with respect to the logarithm of the 2D scattering length a2, which
in turn is related to its 3D counterpart a via − ln a2 =p

π/2ℓz /a +const [9]. The contact density
determines the singular behavior g (2)(r ) → (C2/(2πn2)2) ln2 r of the pair distribution function at
short distances and thus describes the anomalous enhancement to detect two particles in close
proximity in the presence of zero-range interactions [27]. Moreover, it sets the strength of the
asymptotic power law n(k) →C2/k4 of the momentum distribution n(k), characteristic for zero-
range interactions in any dimension2. Specifically, one obtains C2 = (n2 g̃ 2)2 in the ground state of
a weakly interacting Bose gas in 2D. In a similar manner, a set of extensive but now dimensionless
“contact coefficients” may be defined for the many-body problem in the LLL by

C (m)
2 ({Vm}) = ∂F

∂Vm
= 〈

P̂ m
〉=∑

M

〈
ξ̂†

mM ξ̂mM

〉
= Nm · Am , (11)

where F = f A is the free energy with A the system area and 〈. . .〉 denotes a thermal average with a
statistical operator ρ̂ ∼ exp(−βĤ LLL

int ). In physical terms, the dimensionless coefficients C (m)
2 are

just the expected number of particle pairs with relative angular momentum m. They determine
the internal interaction energy U = 〈Ĥ LLL

int 〉 =
∑

m VmC (m)
2 and may be viewed as an angular-

momentum resolved generalization of the Tan two-body contact. An immediate consequence
of the definition (11) is the sum rule∑

m

′
C (m)

2 =∑
m

′
Nm

〈
Âm

〉= N (N −1)

2
, (12)

which counts the total number of pairs for fixed finite particle number N . In the limit N ≫ 1,
using the asymptotic result Nm → 2N /ν for the degeneracy factor of a disc, the intensive contact
densities C (m)

2 =C (m)
2 /N are connected with the pair amplitudes by the simple relation

C (m)
2 = 2

ν
Am → 2ν for m →∞, (13)

a result which holds for both bosons and fermions.

2Note that no such power laws appear in the LLL due to the analytic nature of the associated many-body wave
functions.
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The discrete set of pair amplitudes Am or the related contacts C (m)
2 provide a complete

description of translation and rotation invariant many-body states in the LLL. In particular, they
fully determine the associated pair distribution function

n(z1)n(z2)g (2)(z1, z2) = 2
∑

mM

∑
m′M ′

〈mM |z1z2〉
〈

z1z2
∣∣m′M ′〉〈

ξ̂†
mM ξ̂m′M ′

〉
. (14)

Indeed, rotational invariance implies m = m′ and M = M ′. Furthermore, the condition that any
dependence on the center of mass coordinate Z disappears requires that 〈ξ̂†

mM ξ̂mM 〉 does not
depend on M . The summation over M , which runs from M = 0, . . . , ∞ in the thermodynamic
limit N →∞, then just yields a factor of Nm and the pair distribution function reads

g (2)(z) = 2

n2

∑
mM

〈mM |z1z2〉〈z1z2 |mM〉 Am = 1

ν2

∑
m

′ 2

m!

( |z|2
2ℓ2

)m

e−|z|
2/2ℓ2

Am , (15)

a representation that was first derived by Girvin [28] for fluid ground states of fermions, where
only odd values of m = 1,3, . . . appear. For bosons, where the summation runs over even m =
0,2. . ., the pair distribution function approaches a finite value g (2)

B (0) = 2A0/ν2 at vanishing
distance, which is trivially connected to the intensive contact density C2 = C (m=0)

2 for vanishing
relative angular momentum by C2 = ν · g (2)

B (0). The contact coefficients for general values of m
can be expressed in terms of moments of the static structure factor S(q) by using the relation [29]

C (m)
2 =

〈
P̂ m

〉
N

= 2ν+2πℓ2
∫

d 2q

(2π)2 Lm
(
q2ℓ2) [

S(q)−1
]

, (16)

where Lm(x) are Laguerre polynomials. Compared to the definition by Haldane in Ref. [29], we
include in Eq. (16) as the first term the Hartree contribution to the energy, which sets the large-m
behavior. Equation (16) connects the C (m)

2 to the static structure factor

S(q) = 1+n2

∫
d 2x e−i q·x [

g (2)(x)−1
]= 1−e−q2ℓ2/2 + s̄(q) (17)

of the quantum fluid in the LLL. Here, s̄(q) is the projected structure factor in the LLL [30] and
the subtraction in S(q)−1 = s̄(q)−exp(−q2ℓ2/2) removes the diagonal self-interaction elements
in the density summation. Remarkably, Eq. (16) can be inverted, which allows to express the
projected static structure factor

νs̄(q) = ν(1±ν)e−q2ℓ2/4 +4e−q2ℓ2/2
∑
m

′
Ãm Lm

(
q2ℓ2

2

)
(18)

in terms of the connected pair amplitudes

Ãm = Am −ν2, (19)

where the upper or lower sign holds for bosons or fermions, respectively.
The introduction of connected pair amplitudes Ãm , which decay to zero for m ≫ 1, is useful

for a number of reasons. First of all, decomposing Am = ν2 + Ãm guarantees that g (2)(∞) = 1
for translation invariant states from the m-independent contribution A(0)

m = ν2. More precisely,
replacing Am by Ãm on the right-hand side of Eq. (15) gives the nontrivial interaction-dependent
part g (2)(z)−(1±exp(−|z|2/ℓ2)) of the pair distribution function in the LLL for bosons or fermions,
respectively. A second, more important, point is that in the case of fermions at zero temperature,
the connected pair amplitudes Ãm are particle-hole symmetric since the ground state and the
resulting response and correlation functions like the combination νs̄(q) are invariant under
ν→ 1−ν [31] (for a detailed discussion of particle-hole symmetry in the LLL and beyond, see
Ref. [32]).

A quite general result constraining the dependence of the contact coefficients on the set {Vm}
of Haldane pseudopotentials follows from the fact that the free energy F ({Vm}) must be a concave
function of the coupling constants Vm . Indeed, the statistical operator ρ̂eq ∼ exp(−βĤ LLL

int ) in
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thermal equilibrium is a generalized Gibbs ensemble, which maximizes the entropy for given
expectation values of the operators P̂ m with βVm as the associated Lagrange parameters. As a
result, the symmetric matrix of derivatives

∂2F

∂Vm ∂Vn
= ∂C (m)

2

∂Vn
(20)

is negative definite. In particular, for zero-range interactions where only the lowest Haldane pseu-
dopotential parameter V0 is present, the intensive contact C2 =C (0)

2 /N = ν ·g (2)
B (0) is a decreasing

function of the interaction strength, e.g. ∂C2/∂V0 < 0. In physical terms, this reflects the simple
fact that the pair distribution function at vanishing separation decreases monotonically with in-
creasing strength of the repulsion. In this context, it is also instructive to consider the special class
of strongly correlated ground states whose pair amplitudes vanish identically below a given inte-
ger q , i.e. AL

m = 0 for m < q , where q = 2,4. . . in the case of bosons and q = 3,5. . . for fermions [29].
For these states, which include Laughlin’s wave functions for the filling factors ν= 1/q as a special
case, the energy is independent of the corresponding Haldane pseudopotential parameters Vm<q .
Moreover, as a consequence of the complete suppression of pairs with relative angular momen-
tum m < q , the associated pair distribution function vanishes rather quickly like g (2)(z) ∼ |z|2q

for small separations. While states with this property are usually considered as a paradigm for in-
compressible fluids in the LLL, it should be noted that the condition C (m)

2 ≡ 0 for m < q is neither
necessary nor sufficient for incompressibility. Indeed, incompressibility requires that the qua-
dratic term s2 in the expansion s̄(q) = s2(qℓ)2 + s4(qℓ)4 + . . . of the projected structure factor at
zero temperature vanishes. As noted by Girvin, MacDonald and Platzman [30], this gives rise to
a constraint on the pair amplitudes. In terms of their connected part, this can be written in the
particle-hole symmetric form ∑

m

′
(m +1) Ãm =−1

8
ν(1±ν) , (21)

which is obtained directly by expanding Eq. (18). Obviously, fixing Ãm for just the lowest values
of m does not guarantee that this relation is obeyed.

An example where the considerations above are of direct relevance is provided by the recent
experiment by Léonard et al. [17] with bosons in a small optical lattice in the presence of an
effective magnetic field that corresponds to a filling factor ν = 1/2. In particular, the observed
state with flux per unit cell φ/(2π) = 0.27 appears to be a few-body version of an incompressible
fluid of bosons in the LLL. Experimentally, this interpretation is supported by using the Streda
formula, which connects the Hall conductance σH to the observable change in density with
one in flux. As shown in Ref. [17], this gives σH/σ0 = 0.6(2), consistent with the theoretical
result σH/σ0 = ν for a fractional Quantum Hall state. Now, the Streda formula relies on the
assumption of incompressibility which is properly defined only at zero temperature and large
particle numbers. A possible way to check whether the rather small experimental system on a
4×4 lattice can indeed be considered as effectively incompressible is provided by an analysis of
the pair distribution function measured in Ref. [17]. Due to the small system size and the presence
of an optical lattice, a comparison of the experimental results with Eq. (15) for the continuum
problem in the thermodynamic limit is clearly only of a qualitative nature. Yet, it turns out that
the azimuthal average (which restores rotation symmetry) of the measured data g (2)(d) for the
discrete lattice vectors d over a distance r = |d| between r = 0 and about three lattice sites is
sufficient to extract the two lowest Haldane amplitudes A0 and A2. This is shown in Fig. 1, where
the data for the strongly correlated state at flux per unit cell φ/(2π) = 0.27 is compared with
a fit to the exact result (15) for the continuum problem. The available data is described quite
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0 2 4 6
d (sites)

0

1

2

3

g(2
) (|

d|
)

A0 2 = 0.89(6), A2 2 = 2.2(3)
exp. /2 = 0.27 [17]

Figure 1. The data for the angular averaged pair distribution function on a lattice from
Ref. [17] (blue dots) are compared with the exact result (15) for a continuum fluid of bosons
in the LLL (green line). This allows to extract the two lowest Haldane amplitudes A0 and A2

for the strongly correlated state at φ/2π= 0.27, corresponding to a filling ν= 1/2.

well by adjusting the values of the two lowest Haldane amplitudes A0 and A2 in Eq. (15)3. In
particular, the result Ã0/ν2 =−0.89 shows that A0 = ν2(1+ Ã0/ν2) = 0.028 is close to zero, which
is the value attained in a perfect Laughlin state at filling ν = 1/2 with many-body wave function
ψL(z1, . . . zN ) ∼∏

i< j (zi −z j )2 exp(−∑
i |zi |2/2ℓ2). To demonstrate incompressibility as the crucial

requirement for the quantization of σH of course requires large particle numbers N ≫ 1 and a
measurement of g (2)(r ) for larger distances. This would give access to the higher-order Haldane
pair amplitudes and thus a test of the criterion in Eq. (21). Nevertheless, the data so far are
consistent with a strongly correlated state of bosons in the LLL at small filling, which exhibits
almost perfect anti-bunching at short distances.

The results above, some of which (like the representation (15) for the pair distribution func-
tion [28] and the connection (16) between the expectation values of the projectors P̂ m and the
static structure factor [29]) have been derived earlier, are completely general and they apply to
fluid states in the LLL at arbitrary temperature. However, quantitative results for the pair ampli-
tudes Am(ν,β, {Vm}) or contact coefficients for a given set {Vm} of Haldane pseudopotentials can
only be achieved numerically, e.g., by exact diagonalization for small particle numbers N ≲ 10.
In the following, we show that a fully analytic result for the Am is available within a virial expan-
sion. As derived in App. B, the virial expansion in the LLL gives rise to a representation of the fill-
ing fraction in powers of the fugacity z (not to be confused with a complex particle coordinate) of
the form

ν=
∞∑

l=1
lbl z l = b1z +2b2z2 + . . . (22)

with b1 = 1 and

b2 =±1

2
−2

∑
m

′ (
1−e−βVm

)
, (23)

3It is important to note that the extracted values are essentially independent of the choice for the amplitudes
with m ≥ 4, because the single particle wave functions ∼ |z|2m exp(−|z|2/(2ℓ2)) in Eq. (15) are strongly localized near
|z| = r = p

2mℓ, which is beyond the range of the available data for m ≥ 4. For the green line in Fig. 1, the associated

Haldane amplitudes have been choosen to be Am = A(0)
m = ν2, which only affects the behavior beyond |d| ≃ 3.
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where the positive sign holds for bosons and the negative sign for fermions. To leading order in
the fugacity, the pair amplitude

Am = ν2e−βVm +O
(
z3) , (24)

is identical for both cases and yields

Ãm = ν2
(
e−βVm −1

)
+O

(
z3) , (25)

for the connected pair amplitude. Obviously, the connected pair amplitudes vanish in the high-
temperature limit βVm → 0, where g (2)(z) → 1± exp(−|z|2/ℓ2) approaches the pair distribution
function of a non-interacting gas of bosons or fermions in the LLL4. A quite different high-
temperature limit in the LLL has been discussed previously by Jeevanesan and Moroz [33] for
the special case of bosons with zero range interactions. Using a Monte-Carlo approach for
evaluating the classical grand canonical partition function, they have been able to determine the
thermodynamics in the limit V0, |µ|≪ T , where the fugacity z = exp(βµ) is of order one, over the
full range of both negative and positive values of the scaling variable x = µ/

p
V0T , thus covering

the crossover from a dilute vortex fluid to a vortex crystal.
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Figure 2. Isothermal compressibility κT as a function of dimensionless temperature T /V0

for three different filling fractions ν= 1/2,2, and 10.

In the opposite limit of repulsive interactions at low temperatures, where βVm ≫ 1, the pair
amplitudes Am → 0 in Eq. (24) vanish, indicating the complete suppression of pairs with relative
angular momentum m. Remarkably, the evolution from a non-interacting gas towards a strongly
correlated state upon lowering the temperature can be studied even at this leading nontrivial
order in the virial expansion by considering the isothermal compressibility, which reads

κT = 1

n2

dn

dµ

∣∣∣∣
T
= 1

n2

β

πℓ2

[
b1z +4b2z2 +O

(
z3)] . (26)

By eliminating the fugacity z between Eqs. (22) and (26), it is possible to determine the dimen-
sionless compressibility κT V0/(πℓ2) as a function of temperature for different values of the fill-
ing ν. As shown in Fig. 2, this gives rise to a non-monotonic evolution towards states with small
compressibility if the temperature is reduced at a fixed value of the short-range repulsion V0. In

4Note that the result g (2)(z) = 1+exp(−|z|2/ℓ2) effectively describes bosons in the LLL at infinite temperature. This
is quite different from the non-interacting gas at zero temperature considered by Castin et al. [8], where g (2)(z) ∼ |z|2
vanishes quadratically at short distances.
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particular, as expected on physical grounds, the crossover is more pronounced at small filling
fractions, where mean-field theory no longer applies.

It is obvious that our extrapolation of the leading-order results for the pair amplitudes will
not be quantitatively reliable at low temperatures, where the Ãm are no longer small and will also
depend on the particle statistics. Yet, it is remarkable that the expected smooth crossover towards
incompressible ground states, with a maximum of the compressibility κT at some intermediate
temperature of order V0, is already captured by this approximation.

3. Scale invariance and breathing mode in the LLL

Important insights into incompressible fluid ground states of electrons in the LLL were obtained
by considering a model where the repulsion at short distances completely dominates the interac-
tion. For fermions, this is obtained by truncating the interaction Hamiltonian to Ĥ int →V1P̂ 1 with
a single Haldane pseudopotential V1 [22,34]. In the context of ultracold gases, the corresponding
reduced interaction Ĥ int →V0P̂ 0 for bosons is not just an idealized model but it provides a realis-
tic description unless long-range forces become important like in dipolar gases [10, 11]. For this
type of interaction, which only affects pairs of particles with vanishing relative angular momen-
tum m = 0, the bosonic versions of the Laughlin wave functions for filling factors ν = 1/2,1/4. . .
are exact zero-energy eigenstates describing incompressible Bose fluids. Beyond numerical ap-
proaches, however, not much is known about the special features of this model, especially at fill-
ing fractions ν> 1 or at finite temperature. One question, in particular, that we will address in the
following concerns the problem of what happens to the quantum anomaly, which arises due to
the running of the coupling constant in 2D [35, 36] in the absence of rotation. It turns out that
within the LLL, the associated breaking of scale invariance appears in a rather different form,
which is caused by the non-commutative nature of the guiding center coordinates.

In the absence of rotation, it has been shown by Pitaevskii and Rosch [37] that Bose gases in
an isotropic 2D harmonic trap exhibit an infinite sequence of excited states with frequency 2ω.
The existence of an infinite ladder of excited states may be derived in a purely algebraic manner
by noting that the Hamiltonian in the presence of a trap can be written in the form

Ĥω = Ĥ +ω2 Ĉ with Ĉ = 1

2

∫
d 2x x2 ρ̂(x) . (27)

Here, ρ̂(x) is the mass density and Ĉ the generator of special conformal transformations [38–40].
Now, for scale-invariant interactions, the commutator i [Ĥ ,D̂] = 2Ĥ of the Hamiltonian with the
generator D̂ =−i

∑
i ri ·∇ri of dilatations has the same form as in the non-interacting case. Using

the commutators i [Ĥ ,Ĉ ] = ħ2D̂ and i [D̂ ,Ĉ ] = 2Ĉ , it is then straightforward to show that the
operators defined by

L̂± = Ĥ

2ħω − ω

2ħ Ĉ ± i

2
D̂ (28)

act like raising and lowering operators for eigenstates with excitation energy 2nħω. These excited
states correspond to breathing mode excitations, and the scale symmetry implies that their
frequency is not affected by interactions. The full spectrum of the system in a harmonic trap
thus separates into a set of conformal tower states separated by 2ħω that are connected by the
raising and lowering operators L̂±. To ensure a bounded spectrum, there must be a special state
(called a primary state) at the bottom of each tower that is annihilated by L̂− |0〉 = 0. In particular,
the exact ground state is such a primary state [40, 41].

Due to the vanishing commutator [L̂±, L̂z ] = 0, breathing mode excitations generated by the
operator L̂± are monopole excitations, i.e., they do not change the angular momentum quantum
number of the state. Hence, a scale-invariant system placed in a rotating harmonic trap—which
only affects the Hamiltonian as Ĥ → Ĥ −ΩL̂z —will still show breathing mode excitations at fixed
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frequency 2ω irrespective of the rotation frequency Ω, although the primary states themselves
will depend on Ω. However, this argument relies on the assumption that i [Ĥ ,D̂] = 2Ĥ holds in
the absence of rotation. This is not the case, however, for ultracold gases in 2D. Indeed, in order
to obtain a finite value of the 2D scattering length a2, the bare zero-range interaction V (x) =
g2(Λ)δ(2)(x) needs to be regularized by a running coupling constant g2(Λ) =−2πħ2/(m∗ lnΛa2),
cf. App. A. As was shown by Olshanii et al. [35] and by one of the present authors [36], this leads
to an anomalous contribution to the commutator in the form

i
[
Ĥ ,D̂

]= 2 Ĥ + ∂Ĥ

∂ ln a2
= 2 Ĥ + ħ2

4πm
Ĉ 2, (29)

where Ĉ 2 is the Tan contact operator introduced in Eq. (10). The quantum anomaly gives rise to
a shift of the breathing mode frequency away from the scale-invariant value 2ω, which has been
observed in two-component Fermi gases near a Feshbach resonance [42, 43].

Now, for motion within the LLL, the magnetic length provides an intrinsic scale that renders
the zero-range interaction well defined without a cutoff. In explicit form, this may be derived
by noting that, within the LLL, the interaction needs to be expressed in terms of the guiding
center coordinates R̂ j rather than those of the bare particle positions r̂ j (here, j labels the particle
index). Indeed, it is the guiding center operators that commute with the gauge invariant velocity
operators Π̂ j which appear in the quenched kinetic energy of the LLL [21]. Expressing the LLL
projected Hamiltonian

Ĥ LLL
int =PLLLĤPLLL = 1

2

∫
d 2q

(2π)2 Vq f 2(q)
∑
j ̸= l

e i q·(R̂ j −R̂l
)

(30)

in terms of the guiding center operators, the Fourier transform Vq f 2(q) of the effective interac-
tion contains a form factor f 2(q) = exp(−q2ℓ2/4) [21]. Formally, this arises from the LLL projec-
tion of the phase factor e i q·r j and it reflects the nontrivial algebra [ ̂̄ρq , ̂̄ρq ′ ] = 2i sin(ℓ2(q×q′)) ̂̄ρq+q ′

of the projected density operators ̂̄ρq = ∑N
i=1 e−i q·R̂ j first noted by Girvin, MacDonald and Platz-

man [30]. At large momenta qℓ≫ 1, the bare interaction potential Vq is thus suppressed by a
Gaussian envelope f 2(q), which renders the interaction V (R̂) in terms of the guiding center sep-
aration R̂ finite without the need of a cutoff regulator. Specifically, the effective potential within
the LLL associated with a bare contact interaction in 2D becomes

Ṽ (R̂) = g2

∫
d 2q

(2π)2 e i q·R̂ exp

(
−q2ℓ2

4

)
= g2

πℓ2 exp

(
− R̂2

ℓ2

)
. (31)

This is a finite and well defined potential for any fixed value of g2 and it requires regularization
only in the limit ℓ→ 0, for which Ṽ (R̂) → g2δ

(2)(R̂) reduces to a delta-function interaction.
Superficially, therefore, it seems that the anomaly is gone in the LLL. This turns out to be
incorrect, however, as we will show in the following.

To see this, we first note that the LLL projection of the generators Ĉ and D̂ of special conformal
transformations and of dilatations,

PLLLĈPLLL = m∗ℓ2

2

(
L̂z + N̂

)
(32)

PLLLD̂PLLL = N̂ , (33)

reduce to the angular momentum operator and a pure phase factor, respectively. In particular, the
dilatation in the LLL is trivial, reflecting the fact that a finite scale transformation of the particle
coordinate always affects the cyclotron radius as well, which is fixed in a given Landau level.
Now, as pointed out above, the proper dynamical degrees of freedom in the LLL are not the bare
coordinates and the associated derivatives which enter the operators Ĉ and D̂ but the guiding
center operators R̂ j . Correspondingly, a dilatation in the LLL must be defined by R̂ j → λR̂ j with
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some scale factor λ. Denoting the generator of a scale transformation of the guiding centers by
D̂R , its commutator with the interaction Hamiltonian is then of the form

i
[
Ĥ LLL,D̂R

]= (
2+ℓ ∂

∂ℓ

)
Ĥ LLL, (34)

which is valid quite generally for any centrally symmetric interaction potential. As a result of
the non-commutativity [X̂ j , Ŷ l ] = −iℓ2δ j l /2 of the guiding center coordinates, therefore, scale
invariance is violated in the LLL despite the fact that the coupling constant g2 is no longer scale
dependent. In particular, full scale invariance only arises in the classical limit ℓ → 0, where
the guiding center coordinates and the particle coordinates coincide. A corresponding result
holds for fermions in the LLL with a pure V1-interaction of the form V1∇2δ(2)(x). The anomalous
commutator is then of the form i [Ĥ LLL,D̂R ] = (4+ℓ∂ℓ)Ĥ LLL.

A full discussion of the consequences of Eq. (34) for the physics within the LLL is unfortu-
nately beyond the scope of the present work. In the following, therefore, we focus on the ques-
tion of what happens to the breathing mode frequency in a harmonic trap, which has served as
an experimental signature for the breaking of scale invariance for 2D gases in the absence of ro-
tation [42, 43]. It is important to note that this mode represents transitions between neighbor-
ing Landau levels. Indeed, the raising openrator L̂+ defined above acts in a trivial way on states
restricted to the LLL, cf. Eqs. (32) and (33). This point has been emphasized earlier by Watan-
abe [44], who noted that the extent of the gas in the LLL is fixed by its angular momentum. An
excitation that changes the radius of the cloud thus always involves a change in angular momen-
tum, such that monopole excitations like the breathing mode cannot exist solely within the LLL.
In order to discuss the size ∆ω of the breathing mode shift away from the scale-invariant value
2ω, it is necessary to determine the corrections beyond the scale-invariant mean-field equation
of state. In a nonrotating BEC at low densities, this correction was found to give rise to a shift
that is linear in g̃ 2, ∆ω/2ω = g̃ 2/16π, with a numerically small prefactor [35, 36]. On a micro-
scopic level, these corrections to the low-density equation of state are determined from a self-
consistent equation that links the chemical potential and the two-body T-matrix [45], and are
thus tied to the logarithmic renormalization of the coupling constant, cf. App. A, which remains
unchanged for rotating gases. For typical values of the interaction strength g̃ 2 ≃ 0.1, the correc-
tion is numerically small and comparable to the second-order correction. Indeed, the second-
order shift sets the leading order in Fermi gases and for few-body systems. An example of this is
provided by the two-body calculation in App. A. Here, the relative pair energies for m = 0 are En =
2nħω+V0 +HnV 2

0 /2ħω+O (V 3
0 ), where Hn is a harmonic number, which implies an anomalous

breathing mode shift at second order in the interaction strength δω/2ω=V 2
0 /4(n +1) ≃O (g̃ 2

2).

4. Conclusion

In summary, we have discussed a parameterization of interacting bosons and fermions in the
LLL in terms of Haldane’s pair amplitudes Am , which generalize a concept introduced by Tan for
ultracold gases. It provides a description of translation- and rotation invariant states in the LLL
beyond the usually considered case of incompressible phases. We illustrate this by determining
the pair amplitudes in explicit form in terms of the Haldane pseudopotential parameters to lead-
ing order in the virial expansion. Remarkably, even this order provides a physically sensible de-
scription of bosons in the LLL at finite temperatures, which exhibit a maximum in the compress-
ibility at temperatures of order V0. As a concrete application of our results, we have shown that
the data on the pair distribution function in the recent experiment [17] with ultracold bosons
in a periodically driven optical lattice allow to extract the two lowest Haldane pair amplitudes
A0 and A2. They are consistent with a two-body state whose short-range correlations are close
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to that of a Laughlin state at ν = 1/2. Moreover, we have discussed what happens with the clas-
sical scale invariance for zero-range interactions in 2D in the presence of rotation. It has been
shown that the logarithmic running of the coupling constant with momentum is absent in the
LLL. Instead, a different quantum anomaly emerges which is associated with dilatations of the
non-commutative guiding center operators. Finally, we have discussed the well known breathing
mode in a harmonic trap, which now involves transitions between different Landau levels. We
provide an estimate of the shift of its frequency away from the scale invariant result 2ω, which
turns out to be of order g̃ 2

2 ≃ 0.01 for typical interactions. This provides a qualitative understand-
ing of measurements of the radial breathing mode performed by Stock et al. [46] in rotating Bose–
Einstein condensates in a cigar-shaped trap, which do not detect a shift in the breathing mode
frequency beyond effects of trap anharmonicity, consistent with theoretical predictions based on
a scale-invariant equation of state [47].

There are a number of open problems which must be left for future study. First of all, it is
clearly important to determine the shift of the breathing mode frequency in quantitative terms
as a function of the dimensionless coupling constant g̃ 2. On a more fundamental level, a deeper
understanding of the special properties of truncated interactions like Ĥ int =V0P̂ 0 or Ĥ int =V1P̂ 1

for bosons or fermions, respectively, has been provided by Nguyen, Son and Wu [48]. They have
shown that for zero-range interactions of this type, the time-reversal even and the odd response
of incompressible ground states in the LLL at long wavelengths qℓ≪ 1 (but up to arbitrary order
in the ratio ω/∆ between frequency and the gap ∆ [49]) are both determined by a single spectral
function. As a specific consequence, the leading non-vanishing coefficient s4 = (S −1)/8 in the
expansion s̄(q) = s4 (qℓ)4 + . . . of the projected static structure factor is determined by the Wen-
Zee shift S . It is an open problem to see whether further exact results can be derived from the
approach in Ref. [48] about dynamical properties of either bosons or fermions in the LLL, whose
interactions may be truncated to the leading nonvanishing contribution.
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Appendix A. Two-body problem in a rotating harmonic trap

In this appendix, we summarize results for the two-body problem in a rotating harmonic trap,
which for contact interactions relate to well-known results in the absence of rotations [9, 50].
In particular, as discussed in the main text, the solution shows explicitly that the cutoff-
dependence in the strength of the delta-function interaction, which is necessary to regularize
the problem in the absence of rotation, is absent in the LLL.

The Hamiltonian for two particles in a rotating trap separates into a center-of-mass and a
relative part:

H2b = Hcom +Hrel (35)
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Figure 3. Two-particle spectrum of 2D bosons with contact interactions in an isotropic
harmonic trap as a function of interaction strength. Blue lines indicate the relative m = 0
branches, which are affected by the interaction and independent of the rotation frequency.
For illustration, we also include the first noninteracting branches with nonzero angular
momentum forΩ/ω= 0.9. The blue shaded areas indicate the perturbative region.

with

Hrel =−ħ2∇2
r

m∗ + m∗ω2

4
r 2 −ΩLz,r +Vint(r ), (36)

Hcom =−ħ2∇2
R

4m∗ +m∗ω2R2 −ΩLz,R , (37)

where Vint(r ) is the relative two-body interaction potential. It is already apparent from this form
that for contact interactions, which select a relative zero-angular-momentum state, the trap
rotation will not enter. Two-particle bound states are given by poles in the Green’s function

1

g2
−G0

E (0;0) = 0, (38)

where G0
E (r;r′) is the noninteracting two-particle Green’s function projected onto a center-of-

mass eigenstate and evaluated at zero relative separation. Noninteracting eigenstates are〈
r1r2

∣∣nR jR ;n j
〉=φR

N J (R)φr
n j (r) (39)

with

φr
n j (zr ) = (−1) j

√
1

2πℓ2

n!

j !

(
zrp
2ℓ

) j−n

L j−n
n

(
z̄r zr

2ℓ2

)
e−z̄r zr /4ℓ2

(40)

φR
N J (Z ) = (−1) j

√
2

πℓ2

N !

J !

(p
2Z

ℓ

)J−N

L J−N
N

(
2Z̄ Z

ℓ2

)
e−Z̄ Z /ℓ2

. (41)
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For rapidly rotating traps with Ω→ ω−, N and n are Landau level indices and J and j are the
guiding center quantum numbers. The free Green’s function is then given by

G0
E (0;0) =−

∫ ∞

0
d s

〈
0

∣∣∣e(E−Hrel)s
∣∣∣0

〉
=− 1

2πℓ2

∫ ∞

0
d s eE s

∞∑
j=0

e− j 2ħωs

=− 1

2πℓ2

∫ ∞

0
d s

eE s

1−e−2ħωs
.

(42)

As discussed, only the relative m = 0 wave function contributes for the contact interaction.
Performing the summation over all Landau levels in Eq. (42) and introducing a short-time cutoff
m∗/ħΛ2 gives

G0
E (0;0) = m∗

4πħ2

{
γE + ln

(
2m∗ħω
ħ2Λ2

)
+ψ0

(
− E

2ħω
)}

, (43)

where ψ0 is the digamma function. We renormalize in the usual way by setting

g2(Λ) =− 2πħ2

m∗ ln(a2Λ)
, (44)

where a2 is a 2D scattering length. The bound state condition now reads

ln

(
ħ

2ωm∗a2
2

)
= ln

(
ℓ2

2a2
2

)
= γE +ψ0

(
− E

2ħω
)

. (45)

This is of course identical to the bound state equation for contact-interacting particles in a 2D
harmonic trap (with an energy shift by −ħω) [50]. A graphical sketch of the bound states is shown
in Fig. 3 as blue lines. We also include for illustration nonzero angular momentum states, which
are not affected by the contact interaction and which form the Landau levels for Ω→ω−. There
is one bound state branch that evolves from the attractive LLL, and which for ω≪ħ/m∗a2

2 has
the standard bound state energy E =−ħ2e−γE /m∗a2

2.
In order to restrict particle dynamics to the LLL asΩ→ω−, we require that the interaction shift

is small compared to the LL spacing 2ħω. This selects the perturbative regime, which is marked by
the blue shaded area in Fig. 3. Here, the digamma function becomes γE +ψ0(−E/2ħω) → 2ħω/E ,
which gives the energy [50]

E =− 2ħω
ln

(
2a2

2/ℓ2
) . (46)

In this limit, the running of the coupling constant (44) is negligible and the 2D scattering length
can be replaced by the unrenormalized perturbative coupling parameter g2:

E = g2

2πℓ2 =ħω g̃ 2

2π
=V0, (47)

which is precisely the LLL pseudopotential for a relative m = 0 pair, as expected. The LLL limit
ħω/V0 → ∞ then corresponds to the perturbative regime (with respect to the LL level spacing)
that is manifestly scale invariant as established recently for a related case of 2D two-component
Fermi gases [51].

Appendix B. Virial expansion in the lowest Landau level

This appendix summarizes the virial expansion for states restricted to the LLL. We first discuss
the virial expansion of the density operator

n̂(r) =
N∑

i=1
δ(2) (r− ri ) , (48)
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which reads

n(r) = tr
[
e−β(H−µN )n̂(r)

]
Z

= zn(1) + z2 (
n(2) −n(1)Q1

)+O
(
z3) , (49)

where Z = e−βΩ = tr[e−β(H−µN )] =∑∞
N=0 QN zN with QN = trN [e−βH ] is the partition function and

n(N )(r) = trN [e−βH n̂(r)]. Here trN indicates the trace restricted to the N -particle sector. The virial
coefficients then follow from the expansion for ν= (πℓ2)n2 stated in Eq. (22) of the main text.

The single-particle trace for n(1) and Q1 does not involve any interaction corrections and can
be performed exactly using the single-particle states listed after Eq. (5) of the main text. The two-
particle trace is evaluated using a basis of noninteracting two-particle states in a rotating trap
listed in Eqs. (40) and (41), where we restrict the Hilbert space to the LLL level by fixing N = n = 0,
in which case m = j and M = J with an energy of the two-particle state εM ,m =ħ(ω−Ω)(M +m).

Evaluating these few-body expectation values and taking the continuum limit β∆ω → 0 di-
rectly gives the virial expansion of the filling fraction (22) and the isothermal compressibility (26).
Furthermore, the leading-order term in the expansion of the pair distribution function

g (2)(r1,r2) = 1

n(r1)n(r2)

〈∑
i ̸= j

δ(2)(r1 − ri )δ(2) (r2 − r j
)〉

(50)

is set by

g (2)(r) =∑
m

′ 2

m!

(
r 2

2ℓ2

)m

e−βVm e−r 2/2ℓ2 +O (z), (51)

which immediately gives the contact amplitudes (24). A similar calculation for the projected static
structure factor gives

νs̄(q) = ν(
1±ν)

e−
q2ℓ2

4 +4ν2
∑
m

′
e−

q2ℓ2

2

(
e−βVm −1

)
Lm

(
q2ℓ2

2

)
+O

(
z3) , (52)

which is consistent with Eq. (18) using the definition (25). It is straightforward to check that the
leading order terms ∼ z satisfy the Ornstein-Zernike relation, which links the long-wavelength
limit of the static structure factor to the isothermal compressibility,

s̄(q = 0) = nκT, (53)

where the density is given by (22) and the compressibility by (26).
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