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Chapter 1

Introduction

At the start of any PhD, the student is given the noble goal of solving problems
that push the boundary of our knowledge if only ever so slightly. The trouble
with this goal is that, although it is easy to find problems beyond our under-
standing, it is frustratingly difficult to actually make any progress on them. A
common approach that makes the life of a theoretical physicist more pleasant
is to ignore some of the infinite complexity that nature presents us with and
instead study simplified models that capture as much of the phenomology we
are interested in whilst remaining tractable. This thesis concerns one such
model that has been the center of my work over the last four years.

Before delving into the specifics of this thesis and the model at its centre, let
us take a step back and see how the study of this model and others with similar
properties has come to be. This story begins with Hans Bethe’s solution to
the one-dimensional Heisenberg model in 1931 [5], which showed how one can
deal exactly with the nearest neighbour interactions in the spin chain. For
some time however, the result lay mostly dormant until it was used to solve
another at first sight rather different model: whereas in the Heisenberg chain
the particles are situated at fixed positions, it was next applied to a continuum
model instead. This work was done by Elliot Lieb and Werner Liniger in 1963,
who showed how Bethe’s Ansatz could be used to solve the one-dimensional
model of spinless bosons interacting via a delta function interaction potential
[6, 7]. This put the Bethe Ansatz on the map for good and it has since been
used to calculate the partition function for the six-vertex model by Lieb [8, 9],
the eight-vertex model in the zero field case by Rodney Baxter [10], and the
solution of the one-dimensional model of fermions interacting through a delta
function interaction potential by Chen Ning Yang [11] to name some of the
most famous examples. The latter two examples also spawned what we now
call the Yang-Baxter equation which plays a central role in the Algebraic Bethe
Ansatz and spawned the mathematical research area of quantum groups.

Models that can be solved using the Bethe Ansatz have the special property
that a single interaction between multiple particles can be described as mul-
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tiple interactions between only two particles. This property can be taken to
be the defining feature of quantum integrable systems, although some discus-
sion remains as to how to best characterize integrability [12]. Beyond being
a mathematical property thas has allowed for a wealth of exact results to
be discovered, advances in the field of ultra-cold atoms have made some of
these integrable models an experimental reality [13, 14]. One experiment in
particular, describing the lack of equilibration of a one-dimensional Bose gas
prepared in an out-of-equilbrium initial state, showcased the interesting be-
haviour integrable quantum systems can exhibit even in the presence of the
integrability-breaking perturbations present in experiments [15]. Since then
the study of integrable models has become an important pillar for the study of
out-of-equilibrium physics and helped improve our understanding of strongly
correlated physics in one dimension [16–25].

This thesis is centred around the Lieb-Liniger model, describing a one-
dimensional gas of Bosons with ultra-local interactions which we introduce in
Chap. 2. We show how to solve this model using the coordinate Bethe Ansatz
and discuss its spectrum. Although the Lieb-Liniger model is a continuum
model, the structure of its Bethe Ansatz solutions is the simplest among the
integrable models. As a result, many of its equilibrium properties are well un-
derstood, including thermodynamic properties as well as correlation functions
of local operators [26–29]. A crucial ingredient for the calculation of local
correlation functions is produced by the Algebraic Bethe Ansatz, which allows
for the efficient calculation of matrix elements of some physically important
operators with respect to the eigenstates [30–34]. We give an overview of the
Algebraic Bethe Ansatz and discuss how it can be leveraged to obtain efficient
expressions for the matrix elements of physically important operators with re-
spect to eigenstates of the model. Finally, we discuss how the thermodynamic
limit of the model can be taken leading to the Thermodynamic Bethe Ansatz
[35].

Having described the Lieb-Liniger model and its spectrum, we turn to the
calculation of its correlation functions. We discuss how the Lehmann repre-
sentation gives rise to a summation over the matrix elements of eigenstates in
Hilbert space. Although there exist some partial analytical results, in general
one has to resort to explicit numerical summations over intermediate states in
order to evaluate such summations. In Chap. 3 we consider algorithms aimed
at efficiently evaluating such summations numerically with as few eigenstates
as possible. In order to find the right rare eigenstates important to the calcu-
lation at hand we develop Hilbert space exploration algorithms which leverage
the properties of the integrable model. We start by discussing the general
principles of the type of Hilbert space exploration algorithms we developed
and then start building our algorithm step by step. Ultimately we arrive at
an efficient algorithm matching the performance of existing algorithms at zero
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temperature and providing additional advantages at finite temperature [1].
These Hilbert space exploration algorithms again play an important role

when we consider a global quench in the interaction strength of the Lieb-
Liniger model in Chap. 4. In this chapter we start by discussing how the time
evolution of the ground state following such a quench is equivalent to diagonal-
izing a perturbed Hamiltonian. The resulting object is infinite-dimensional, so
in order to make progress we introduce a truncation of the Hilbert space such
that we can diagonalize the corresponding truncated matrix numerically. Fur-
thermore, we show how the procedure can be recast into an iterative numerical
renormalization group scheme allowing us to consider large truncated bases.
What follows next is a discussion of how to cleverly choose the truncated basis
in order to obtain optimal convergence. This approach is built upon Hilbert
space exploration algorithms like the ones discussed in Chap. 3 and allows us
to deal with far larger system sizes than one can consider using the coordinate
Bethe Ansatz [2].

After this chapter, we switch gears and consider the statistical properties of
the matrix elements of the Lieb-Liniger model in Chap. 5. We start by inves-
tigating the scaling of the matrix element distributions of the single and two
particle-hole sectors with system size and its implications. Then we present
a surprising result regarding the off-diagonal matrix elements between two
different macrostates followed by a discussion on sampling microstates corre-
sponding to a given thermal state. The sampling algorithm that follows from
this is then used to study the statistical properties of typical states. One of
the key insights of this chapter is the surprisingly slow convergence we observe
with system size, often requiring hundreds of particles, as well as the subtleties
that arise when sampling typical states [3]. We finish the thesis with a short
summary.

Due to the numerical nature of much of the material in this thesis, a lot
of work went into the development of the code used to generate the data.
In order to allow the interested reader to study the implementations of the
algorithms presented here, we have made the code available at

https://github.com/AJJMdeKlerk/MERG.
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Chapter 2

The Lieb-Liniger model

Having motivated the general themes of this thesis, in this chapter we review
the properties of the Lieb-Liniger model relevant for what is to come. We
start by introducing its Hamiltonian in Sec. 2.1, after which we solve it using
the coordinate Bethe Ansatz in Sec. 2.2. In Sec. 2.3 we discuss properties of
its spectrum and in Sec. 2.4 we summarize how Algebraic Bethe Ansatz can
be used to obtain explicit expressions for the matrix elements of physically
important operators. We give an overview of the thermodynamic limit of the
Lieb-Liniger model in Sec. 2.5.

2.1 The Hamiltonian

The Lieb-Liniger model [6, 7] describes one-dimensional bosons with a delta
function interaction potential, so its Hamiltonian can, in first quantised form,
be written as

H =

N∑
i=1

− ~2

2m

∂2

∂x2i
+ 2c

∑
i<j

δ(xi − xj)

 . (2.1)

where we have N particles and xi is the position of the ith particle. Fur-
thermore, c represents the interaction strength and m the mass. We take
~ = 1 = 2m to define our units. In the following we will often consider the
second quantised form of this Hamiltonian, which with ~ and 2m set to one
reads

H =

∫
dx
[
∂xΨ

†(x)∂xΨ(x) + cΨ†(x)Ψ†(x)Ψ(x)Ψ(x)
]
. (2.2)

Here Ψ† is the bosonic creation operator which satisfies the canonical commu-
tation relations, i.e. [

Ψ(x),Ψ†(y)
]
= δ(x− y). (2.3)

In the limit where the interaction strengh vanishes, i.e. where c = 0, we are
dealing with free bosons so we can readily diagonalise the Hamiltonian using
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a Fourier transform. In the opposite limit where the bosons are infinitely re-
pulsive, i.e. for c → ∞, we can map the problem to that of non-interacting
spinless fermions in one dimension [36]. How to solve the model for the inter-
mediate regime is the topic of the next section.

2.2 The eigenstates

One of the reasons for studying the Lieb-Liniger model is that we can solve
its Schrödinger equation to obtain the complete spectrum. The spectrum was
first solved using something we now call the coordinate Bethe Ansatz, inspired
by Bethe’s solution to the one-dimensional Heisenberg spin chain [5–7]. It is
within the context of this original approach that we solve the model here.

2.2.1 Coordinate Bethe Ansatz

The Bethe ansatz approach to solving the Lieb-Liniger model begins by con-
sidering the fundamental domain DN , which for N particles is defined as

DN = {x ∈ RN | x1 < x2 < · · · < xN}. (2.4)
Note that the restriction of the problem to this domain does not constitute
a loss of generality as we can extend this solution to RN by invoking the
symmetry requirements of the wavefunction when exchanging particles.

The Bethe ansatz is then that the wavefunction is a superposition of all
permutations of plane waves with quasi-momenta λj (often called rapidities)
and amplitudes Aσ that are at this stage undetermined giving

ΨN (x) =
∑
σ∈SN

Aσe
∑N

j=1 iλσ(j)xj . (2.5)

where SN is the group of permutations of the numbers {1, . . . , N}. The
coefficients Aσ can then be determined by the boundary conditions for the
fundamental domain arising from the delta function interaction potential for
two-particle collisions. This gives

Aσ = (−1)[σ]
∏

1≤l<j≤N

(λσ(j) − λσ(l) + ic), (2.6)

where (−1)[σ] is the sign of the permutation. Imposing periodic boundary
conditions on the Bethe wave function gives rise to what are called the Bethe
equations, which determine the values of the rapidities λj , which read

eiλjL =
∏
l 6=j

λj − λl + ic

λj − λl − ic
. (2.7)

Any set of rapidities {λi}1≤i≤N satisfying Eq. (2.7) thus gives rise to an
eigenstate of the Lieb-Liniger model.
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2.2.2 The quantum number representation

Instead of considering the Bethe equations directly, it is useful to take the
logarithm of Eq. (2.7) resulting in the logarithmic Bethe equations

λj +
2

L

N∑
k=1

atan
(
λj − λk

c

)
− 2πIj

L
= 0. (2.8)

where we introduced the quantum numbers {Ij}1≤j≤N which are integers when
N is odd and half-odd integers when N is even. The quantum numbers are
more than a mathematical necessity introduced by the logarithm, they turn
out to be a convenient way of uniquely labelling the eigenstates. There is a
one-to-one correspondence between the quantum numbers and the rapidities
which respects the ordering, meaning that if Ij > Ik then λj > λk due to
the monotonic nature of the second term on the left hand side of Eq. (2.8).
Consequently, no two quantum numbers can be equal since then the wavefunc-
tion formally vanishes. How to solve the logarithmic coordinate Bethe Ansatz
Equations is discussed in Appendix A.

The solvability of the model is a result of the fact that all interactions
can be reduced to two-body interactions, a hallmark of integrability. Another
special property of the Lieb-Liniger model, also sometimes used to characterize
integrability, is that it has infinitely many non-trivial commuting conserved
charges whose eigenvalues are given by

Qn =

N∑
j=1

λn
j (2.9)

for any n ∈ N. The first conserved charge, which represents the momentum,
can also be expressed in terms of the quantum numbers via

P =
∑
j

λj =
2π

L

∑
j

Ij . (2.10)

The second conserved charge Q2 also has an important physical interpretation
as it represents the energy.

2.3 The spectrum

The usefulness of the representation of an eigenstate by its quantum numbers
goes beyond it being a tool to solve the Bethe equations or as a visualisation
tool. It also allows us to obtain a better understanding of the excitation
spectrum in terms of two types of elementary excitations. We turn to this
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Figure 2.1

characterization of the spectrum after discussing the structure of the ground
state.

The ground state of the Lieb-Liniger model is the eigenstate for which the
quantum numbers are as close to zero as possible. Since the quantum numbers
are not allowed to coincide and they can only take on integer or half odd
integer values, this results in a configuration like a Fermi sea. To be precise,
the quantum numbers of the ground state are given by{

−N + 1

2
,−N + 1

2
+ 1, . . . ,

N − 1

2

}
. (2.11)

We can therefore define a Fermi momentum in analogy with the Fermi sea,
given by kF = π

L(N − 1
2) so that kF is between the last occupied and first

unoccupied mode. Note that although the quantum number configuration
corresponding to the ground state does not depend on the interaction strength,
the corresponding rapidities, which can be obtained by solving the logarithmic
Bethe Ansatz equations, do. The dependence of the ground state energy as a
function of the interaction strength is shown in Fig. 2.1a.

The ground state energy can be decomposed into the kinetic and an inter-
action energy part, whose energy densities are given by

εpot = c〈0|Ψ†(0)Ψ†(0)Ψ(0)Ψ(0)|0〉 (2.12)
εkin = 1

L〈0|HLL|0〉 − εpot (2.13)
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where |0〉 represents the ground state. The relative importance of either con-
tribution to the ground state energy is shown in Fig. 2.1b. We see that as the
interaction strength increases, the relative importance of the potential energy
decreases. The value of the interaction strength where both are equal lies
around 4.35. Although the exact value of the interaction strength at which
the kinetic and potential energy contributions are equal is state and thus tem-
perature dependent, we take c = 4 as the threshold separating the weakly and
strongly interacting regimes.

Having identified the ground state, let us turn to the excited states. Any
excited state can of course be characterized by its quantum numbers, but we
can also introduce a language of excitations that organizes the excited states
into families of states. This classification will prove useful for the discussions
in Chapter 3 in particular. Before discussing this classification, let us discuss
a way of visualizing the quantum numbers of an eigenstate as well as some
common nomenclature.

In order to introduce a way of visualising the quantum numbers, consider a
set of quantum numbers {Ii}i≤5, which we assume to be ordered, an assump-
tion we retain for the remainder of this thesis. Since no two quantum numbers
can be the same, we can think of them as five particles on a one-dimensional
lattice, which can be visualized as follows:

· · · ◦
-4

•
-3

◦
-2

•
-1

•
0

•
1

◦
2

•
3

◦
4
· · ·

The numbers below the circles represent the quantum numbers corresponding
to the position on the line, so this state represents {−3,−1, 0, 1, 3}. In this
thesis we visualize the quantum numbers in order to illustrate the principles of
our algorithms. For this purpose we are not interested in the absolute values
of the quantum numbers, but rather only the differences between the quantum
numbers allowing us to drop the numbers below the circles going forward.

For such eigenstates it is often convenient to talk about particles and holes.
In this context we define them by fixing an eigenstate, the reference state,
defined by some quantum numbers {IRS

i }i≤N . Then for any other N particle
state {Ii}i≤N , the quantum numbers Il which do not occur in {IRS

i }i≤N are
called particles whereas the lattice positions which are now empty as a result
are called holes. As an example, let us take the five particle ground state
which can be visualized as

· · · ◦ ◦ • • • • • ◦ ◦ · · ·

as the reference state. Then we can label the particles and holes for the
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Figure 2.2

following three states with a p and h respectively.

· · · ◦ •
p
◦
h
• • • • ◦ ◦ · · ·

· · · ◦ •
p
◦
h
• • • ◦

h
•
p
◦ · · ·

· · · ◦ ◦ • • ◦
h
• • ◦ •

p
· · ·

Note that we always have an equal number of particles and holes enabling us
to talk about particle-hole pairs.

Now suppose we again take the ground state as the reference state and
from it we wish to create some excited state. This can of course be done in
many ways, but the simplest way is by hopping one of the outermost quantum
numbers to the nearest vacant site. This creates a particle-hole pair at the
edge of the Fermi sea which looks like

· · · ◦ ◦ • • • • ◦
h
•
p
◦ · · ·

Now there are two possibilities to increase the momentum and energy further
without creating additional particle-hole pairs. Either we move the particle
further away from the Fermi sea, or we move the hole further into the bulk of
the Fermi sea of quantum numbers.

Moving the particle further away from the edge of the Fermi sea gives rise to
what are called the type I excitations, the first three of which can be visualized
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as
◦ ◦ ◦ ◦ • • • • • ◦

h
•
p
◦ ◦ ◦

◦ ◦ ◦ ◦ • • • • • ◦
h
◦ •

p
◦ ◦

◦ ◦ ◦ ◦ • • • • • ◦
h
◦ ◦ •

p
◦

Under the restrictions that we can create only one particle-hole pair each of
these represent the highest energy state we can create for a given momentum
change. After all, the energy of an eigenstate is equal to the sum of the squares
of its rapidities, so we maximize the energy for a given momentum transfer in
the one-particle hole sector by creating the highest possible quantum number.
Furthermore, the energy is strictly increasing as we increase the momentum
transfer as shown in Fig. 2.2a.

Moving the hole further into the Fermi sea gives rise to what are called the
type II excitations, of which the first three can visualized as

◦ ◦ ◦ ◦ • • • • • ◦
h
•
p
◦ ◦ ◦

◦ ◦ ◦ ◦ • • • • ◦
h
• •

p
◦ ◦ ◦

◦ ◦ ◦ ◦ • • • ◦
h
• • •

p
◦ ◦ ◦

The type II states are the one particle-hole states with the lowest energy
for a given momentum since for a given jump in momentum they keep the
distribution as tightly packed around zero as possible. As the hole moves
further inward, it initially increases the energy further and further until we
hit the middle of the Fermi sea. After this point, we are taking negative
quantum numbers and putting them on the right edge of the Fermi sea which
increases the energy again as shown in Fig. 2.2b. The energies of the other
eigenstates with a single particle-hole pair lie between the curves of the type I
and type II excitations. States with more particle-hole pairs are of course not
restricted to this region in (k, ω) space.

2.4 Matrix elements

Although the coordinate Bethe ansatz provides a convenient framework for
finding the eigenstates of the Lieb-Liniger model, it is not suitable for deter-
mining the norms of eigenstates or more general overlaps between eigenstates
in a computationally tractable manner. To this end, a set of tools has been de-
veloped that we refer to as the Algebraic Bethe Ansatz. The results obtained
through the Algebraic Bethe Ansatz play an important role throughout the
rest of this thesis, but since we do not use the formalism directly only a cursory
outline is given here, for more information we refer the reader to [26].
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2.4.1 An overview of Algebraic Bethe Ansatz

Rather than starting from a Hamiltonian and finding the corresponding eigen-
states, the Algebraic Bethe Ansatz starts from the more general problem of
considering a Hilbert space H and asking if we can construct a complete set
of local operators {Q̂n} on this space which are in involution, i.e. that satsify
[Q̂n, Q̂m] = 0 for all m,n ∈ N. The problem of finding a complete set of local
operators in involution can be rephrased by introducing an operator-valued
function T (λ) of the form

T (λ) =
∞∑
n=0

Q̂nλ
n (2.14)

called the transfer matrix. The idea is that if we can find such a transfer
matrix satisfying

[T (λ), T (µ)] = 0 (2.15)

for all λ and µ, we have discovered a model where infinitely many charges in
involution. Furthermore, by taking any of the charges as the Hamiltonian we
ensure that the operators are constants of motion.

The task of finding an integrable model is now reduced to finding a transfer
matrix satisfying Eq. (2.15). In order to simplify the solution to this problem,
one introduces an auxilliary vector space A along with a new operator-valued
function T (λ) acting on A⊗H, called the monodromy matrix, satisfying

TrAT (λ) = T (λ) (2.16)

which also satisfies the equivalent of Eq. (2.15), i.e.

[TrA1T (λ),TrA2T (µ)] = 0. (2.17)

The advantage of introducing the auxilliary space and the monodromy matrix
is that now we can rewrite Eq. (2.17) to give

0 = [TrA1T1(λ),TrA2T2(µ)] (2.18)
= TrA1⊗A2 [T1(λ)⊗ T2(µ)− T2(µ)⊗ T1(λ)] (2.19)

where the indices indicate on which auxilliary space the operators act. This
implies that rather than having to find a transfer matrix which commutes with
itself, we have to find an intertwining operator for the monodromy matrix, i.e.
an operator R acting on the tensor product of auxilliary spaces satisfying

R12(λ, µ)T1(λ)⊗ T2(µ)R
−1
12 (λ, µ) = T2(µ)⊗ T1(λ). (2.20)
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Considering the intertwining relations for three monodromy matrices reveals
a consistency condition that the intertwining operator has to satisfy called the
Yang-Baxter equation given by

R12(λ, µ)R13(λ, ν)R23(µ, ν) = R23(µ, ν)R13(λ, ν)R12(λ, µ). (2.21)

Thus the problem of finding an integrable model reduces to defining a mon-
odromy matrix and finding the corresponding intertwining operator satisfying
the Yang-Baxter equation.

Given a monodromy matrix for A = C2, as is the case for the Lieb-Liniger
model, we can consider its matrix elements

T (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
(2.22)

whose commutation relations are fixed by the corresponding R matrix. These
matrix elements, which themselves are operators acting on the Hilbert space,
can in turn be used to construct the states in Hilbert space by assuming a
psuedovacuum state |0〉 and acting on it with B(λ), which acts as the creation
operator. In order to ensure that the pseudovacuum is also an eigenstate of
the conserved charges it is sufficient to require that it is an eigenstate of A(λ)
and D(λ), with eigenvalues a(λ) and d(λ) respectively, while it is annihilated
by C(λ), which acts as the annihilation operator. Repeatedly applying B(λ)
to this pseudovaccum gives rise to new states given by

|λ〉 =
M∏
j=1

B(λj)|0〉. (2.23)

which are eigenstates of the transfer matrix provided that the {λj}Mj=1 satisfy
the Bethe equations. This algebraic description of eigenstates forms the basis
for the determination of the overlaps between two states of the form described
in Eq. (2.23) of which at least one satisfies the Bethe Ansatz equations as
detailed by Slavnov’s theorem [30]. This theorem underpins all the matrix
element expressions we present in the following section.

For completeness, we note that the Lieb-Liniger model can be constructed
from the Algebraic Bethe Ansatz for A = C2 as mentioned previously and by
taking

R(λ, µ) =


f(λ, µ) 0 0 0

0 g(λ, µ) 1 0
0 1 g(λ, µ) 0
0 0 0 f(λ, µ)

 (2.24)

where the functions f and g are given by

f(λ, µ) =
µ− λ+ ic

µ− λ
and g(λ, µ) =

ic

µ− λ
. (2.25)
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The eigenvalues of A and B that ensue are, in turn, given by

a(λ) = e−iλL/2 and d(λ) = eiλL/2. (2.26)

The norm of eigenstates, which can also be obtained from taking the limit of
Slavnov’s theorem, confirming an earlier conjecture by Gaudin [37], can be
expressed in terms of the determinant of a N ×N matrix N giving

〈λ|λ〉 = cN
∏
j<l

(λj − λl)
2 + c2

(λj − λl)2
detN (2.27)

where

Njl = δjl

(
L+

N∑
k=1

K(λj , λk)

)
−K(λj , λl) (2.28)

with
K(λ, µ) =

2c

c2 + (λ− µ)2
. (2.29)

2.4.2 Physically important operators

Although it is already rare that we can determine the full spectrum of an
interacting integrable model, knowledge of the spectrum alone is not sufficient
to do the calculations we present in this thesis. For the chapters that follow
we need an additional ingredient, which are the matrix elements of physically
important operators with respect to the eigenstates. Throughout this thesis
we consider the density operator

ρ(x) = Ψ†(x)Ψ(x) (2.30)

as well as the g2 operator

g2(x) = Ψ†(x)Ψ†(x)Ψ(x)Ψ(x). (2.31)

For both these operators, efficient expressions for their matrix element with
respect to the eigenstates of the Lieb-Liniger model have been determined
using the Algebraic Bethe Ansatz [33, 34, 31].

The off-diagonal matrix elements of the density operator, up to normaliza-
tion by the norm as given in Eq. (2.27), for states |λ〉 and |µ〉 none of whose
rapidities are equal are given by

〈µ|ρ(0)|λ〉 =
N∏
a=1

(
V +
a − V −

a

) N∏
b,d=1

(
λb − λd + ic

µb − λd

)

× i(Pλ − Pµ)

V +
p − V −

p
det [1 + U(λp)] (2.32)
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where

Pλ =
N∑
i=1

λi (2.33)

V ±
j =

N∏
m=1

µm − λj ± ic

λm − λj ± ic
(2.34)

Ujk(λp) =
i

V +
j − V −

j

∏N
m=1(µm − λj)∏N

m=1,m 6=j(λm − λj)
[K(λj , λk)−K(λp, λk)] (2.35)

K(a, b) =
2c

c2 + (a− b)2
(2.36)

and V ±
p is V ±

j as defined above with λj replaced by an arbitrary complex
number λp. So, like the equation for the norm of an eigenstate, it requires the
computation of a matrix of size N ×N . The normalized matrix elements for
the diagonal density operator on the other hand follows directly from trans-
lational symmetry and is given by the density of particles for the state under
consideration.

The off-diagonal matrix elements of g2(0) with respect to two Bethe states
|λ〉 and |µ〉 which have no rapidities in common can again be expressed in
terms of a single determinant of size N ×N similar to the expression for the
off-diagonal density operator. The equations read

〈µ|g2(0)|λ〉 =
N∏
a=1

(
V +
a − V −

a

) N∏
b,d=1

(
λb − λd + ic

µb − λd

)

× (−1)NJ

6c(V +
p − V −

p )(V +
s − V −

s )
det [1 + V (λp)] (2.37)

where

Eλ =

N∑
i=1

λ2
i (2.38)

J = (Pλ − Pµ)
4 + 3(Eλ − Eµ)

2 − 4(Pλ − Pµ)(Q3,λ −Q3,µ) (2.39)

Vjk(λp) =
i

V +
j − V −

j

∏N
m=1(µm − λj)∏N

m=1,m 6=j(λm − λj)

× [K(λj , λk)−K(λp, λk)K(λs, λj)] (2.40)

and V ±
j is the same as defined in Eq. (2.34) and we have introduced another

arbitrary complex number λs.
Expressions for the diagonal matrix elements of the g2 operator have also

been derived in [33], but rather than having to compute the determinant of a
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single matrix of size N2, it involves a sum over 1
2N(N − 1) such matrices. As

such, the computation of this matrix element is computationally costly, but
it turns out that we can leverage the Feynman-Hellman theorem to compute
these matrix elements in a more efficent manner. The Feynman-Hellman the-
orem states that for any normalised eigenstate |φ〉 with energy Eφ and any
parameter α the following identity holds

∂αEΨ = ∂α〈φ|H|φ〉 = 〈φ|∂H
∂α

|φ〉 (2.41)

This result follows directly from expanding the middle expression and using

∂α〈φ|φ〉 = 0. (2.42)

In the case of the Lieb-Liniger model we can consider α to be the interaction
strength, so that for any normalized Bethe state |λ〉〉 we get

∂cEλ = 〈λ|
∫ L

0
dxΨ†(x)Ψ†(x)Ψ(x)Ψ(x)|λ〉 (2.43)

= L〈λ|Ψ†(0)Ψ†(0)Ψ(0)Ψ(0)|λ〉. (2.44)

This means that the Feynman-Hellman theorem can be used to commpute the
diagonal elements of g2 provided that we can find a way to obtain ∂cEλ.

In order to compute ∂cEλ we need to compute the derivatives of the ra-
pidities with respect to the interaction strength. These can be computed by
solving the equations obtained by taking the derivative of the Bethe equations
with respect to the interaction strength. This gives

∂cλj +
1

L

N∑
k=1

2c(∂cλj − ∂cλk)

c2 + (λj − λk)2
− 1

L

N∑
k=1

2(λj − λk)

c2 + (λj − λk)2
= 0. (2.45)

The Jacobian of these equations is, like for the regular Bethe Equations, equal
to the Gaudin matrix. Since the Gaudin matrix is positive definite a solu-
tion exists, it is unique, and can be efficiently determined using the Newton
Rhapson-method described in Appendix A.

A property of the matrix elements crucial to the algorithms we discuss in
Chapter 3 and 4, is that on average, the off-diagonal matrix elements are
largest when the bra and ket states share the most quantum numbers. 1 To

1Here it is good to note that the value of the quantum numbers that they do not share
is of secondary importance. For example, even when one of the quantum numbers Ij and
the corresponding rapidity λj go off to ±∞, the term in the logarithmic Bethe equations,
corresponding to the rapidity at infinity evaluates to ±π/L which effectively shifts Ik by
∓1/2. Thus even a massive change in one quantum number shifts the other quantum numbers
only a little.
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see why, note that Slavnov’s formula for the overlap 〈µ|λ〉 between a Bethe
state |λ〉 and an arbitrary set of rapidities |µ〉 has poles for coinciding rapidities
[26]. As such, overlaps between Bethe states are maximal when the number of
(close to) coinciding rapidities is maximal. The matrix elements of the density
and g2 operators are derived from this formula for the overlaps by determining
the action of the operator under consideration on the bra or ket and using the
overlap formula. For example, acting with Ψ(0) on a Bethe state results in a
superposition of states where one of the rapidities is removed and the others are
shifted due to the interactions. Therefore, the off-diagonal matrix elements of
the density operator are maximal when the bra and ket differ by one quantum
number. As the number of differing quantum numbers increases, the matrix
element becomes smaller due to the smaller number of (close to) coinciding
rapidities. Similarly, the off-diagonal matrix elements of the g2 operator are
maximal when the bra and ket differ by one or two quantum numbers. The
importance of the number of differences between the quantum numbers of the
bra and ket is also influenced by the interaction strength, with its importance
diminishing as the interaction strength decreases.

2.5 The thermodynamic limit

Thus far we have considered the Lieb-Liniger model for some finite number of
particles at some length L with periodic boundary conditions. In this section
we discuss how to take the thermodynamic limit, i.e. the limit where N,L →
∞ at a fixed finite density N/L, leading to what is called the Thermodynamic
Bethe Ansatz [35]. Although the later chapters do not use the thermodynamic
description of states directly, it is necessary to understand the language of
thermal states we will employ.

Before we can take the thermodynamic limit of the logarithmic Bethe equa-
tions, we have to define a continuum version of the sets of quantum numbers
we have been considering. In order to define this continuum limit we have to
rescale the quantum numbers since the quantum numbers themselves diverge
in the limit where N,L → ∞ due to the fact that they are all distinct. We
can define a density distribution for a set of quantum numbers {Ij}Nj=1 as

ρ(x) =
1

L

N∑
j=1

δ

(
x− Ij

L

)
. (2.46)

This allows us to rewrite the logarithmic Bethe Ansatz equations from Eq.
(2.8) as

λ(x) +

∫ ∞

−∞
dy 2 atan

(
λ(x)− λ(y)

c

)
ρ(y) = 2πx (2.47)
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where λ(x) is a real-valued function representing the continuum limit of the
rapidities, which is defined for all x ∈ R by this relation. The complement
of the density of the occupied quantum numbers is called the hole density,
defined by

ρh(x) =
1

L

N∑
{n}

δ
(
x− n

L

)
. (2.48)

where the {n} are the integers or half-odd integers unequal to any quantum
number of the state under consideration. In the thermodynamic limit these
densities can be described by smooth functions in x satisfying

ρ(x) + ρh(x) =

∫ ∞

−∞
dyδ(x− y) = 1 (2.49)

Note that in contrast to our conventions at finite size, any quantum number
is called a particle and any vacant site is called a hole.

The densities of the particles and the holes can also be expressed in rapidity
space using the relation between λ and x described by Eq. (2.47) by

ρ(λ) = ρ(x(λ))
dx(λ)

dλ
and ρh(λ) = ρh(x(λ))

dx(λ)

dλ
. (2.50)

Here ρ(λ) is called the root density. These definitions allow us to rewrite the
Bethe Ansatz equations as

λ(x) +

∫ ∞

−∞
dµ 2 atan

(
λ− µ

c

)
ρ(µ) = 2πx (2.51)

Differentiating this equation with respect to λ gives rise to what is called the
Lieb equation, reading

2π + 2π

∫ ∞

−∞
dµ 2c

(λ− µ)2 + c2
ρ(µ) = ρ(λ) + ρh(λ). (2.52)

This relation determines ρ(λ) given ρh(λ) and vice versa. Analogously to the
finite size case, the conserved quantities are given by the moments in terms of
the rapidities, only now we need to take in to account the root density giving
for example

p =
P

L
=

∫ ∞

−∞
dλλρ(λ) (2.53)

e =
E

L
=

∫ ∞

−∞
dλλ2ρ(λ) (2.54)

whereas the density is given by n =
∫∞
−∞ dλρ(λ).
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At finite system size there are many distinct eigenstates whose distribution
of rapidities approximate a given root distribution. To understand this, let
us consider partitioning the real line into intervals of size dλ called boxes.
Then each box has a certain number of particles and holes fixed by the root
distribution, which gives

Lρ(λ)dλ : number of particles in [λ, λ+ dλ] (2.55)
Lρh(λ)dλ : number of holes in [λ, λ+ dλ]. (2.56)

An eigenstate satisfying these constraints is said to have the right box occu-
pation numbers. The number of such eigenstates for the given partition into
boxes can be computed to be

[L(ρ(λ) + ρt(λ)])!

[Lρ(λ)dλ]![Lρh(λ)dλ]!
= exp(dS). (2.57)

Assuming that dλ � L−1 such that each box can fit many rapidities at the
system size L we are interested in, we can approximate this formula using
Stirling’s formula which gives

dS = Ldλ[(ρ(λ) + ρh(λ)) ln(ρh(λ) + ρh(λ))

− ρh(λ) ln ρh(λ)− ρ(λ) ln ρ(λ)] (2.58)

where S =
∫
dS is the entropy corresponding to the root distribution.

It should be pointed out that the correspondence between a root distri-
bution, the macrostate, and the corresponding eigenstates at finite size, the
microstates, with the definitions above depends on the partitioning of the real
line we choose. In Chapter 5 we take a closer look at the implications this
has. For now, we note that we can find the best approximation of the root
distribution at a given finite size N by considering

z(λ) = L

∫ λ

−∞
dµρ(µ) (2.59)

to obtain a set of rapidities {λi} corresponding to all the rapidities for which
z(λ) crosses an integer value. These rapidities can then through the Bethe
Ansatz equations be turned into a set of integers after rounding. The resulting
state is what we call the representative state corresponding to the macrostate,
i.e. the root distribution.

In order to find the root distribution at a given temperature T one considers
the saddle point equations for the partition function in the grand canonical
ensemble which gives rise to the Yang-Yang equation which reads

ε(λ) = λ2 − µ− T

2π

∫ ∞

−∞
dµK(λ, µ) ln(1 + e−ε(µ)/T ). (2.60)
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Here µ represents the chemical potential and ε(λ) is related to the particle and
hole densities through

ρh(λ)

ρ(λ)
= eε(λ)/T . (2.61)

Simultaneously solving the Yang-Yang equation together with Eq. (2.61) and
Eq. (2.52) while ensuring ρ(λ) ≥ 0 and ρh(λ) ≥ 0 as well as∫ ∞

−∞
ρ(λ)dλ =

N

L
(2.62)

gives rise to a thermal root distribution.
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Chapter 3

Hilbert space exploration algorithms

To see how the need for Hilbert space scanning algorithms arises, consider
the computation of the dynamical structure factor in the ground state of the
Lieb-Liniger model, given by

S(k, ω) =

∫ L

0
dx
∫

dte−ikx+iωt〈ρ(x, t)ρ(0, 0)〉 (3.1)

=
2π

L

∑
α

|〈0|ρk|α〉|2δ(ω − Eα − E0), (3.2)

where ρk is the Fourier transform of the density operator. In order to nu-
merically approximate Eq. (3.2), we need a set of eigenstates |α〉 for which
we compute the energies Eα, the matrix elements 〈0|ρk|α〉, and perform the
summation. As the Lieb-Liniger model possesses an infinite number of eigen-
states, an evaluation of the sum in Eq. (15) neccessitates a truncation and the
accuracy of the calculation depends on the number of eigenstates and their
matrix elements 〈0|ρk|α〉. The convergence is quantified by the f sum rule
[38], which states that ∫ dω

2π
ωS(k, ω) =

Nk2

L
. (3.3)

Given Eq. (3.3), we can convert the contributions to the summation in Eq.
(3.2) into a weighing function for a given eigenstate |α〉 given by

wf (α) =
L

Nk2
(Eα − E0) |〈0|ρk|α〉|2 (3.4)

for k 6= 0 such that the summation over the weights of all eigenstates |α〉
at a fixed momentum value gives 1. When considering the summation over
the weights of Eq. (3.4), there are two contributing factors that determine
the importance of an eigenstate, its energy and the matrix element. For the
Lieb-Liniger model it turns out that most matrix elements except for a tiny
portion of states are vanishingly small, dominating the effect the energy has.
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Therefore our focus lies primarily on finding those states for which the matrix
elements are large in order to get a good saturation of the sumrule. Hilbert
space scanning algorithms are designed to preferentially generate eigenstates
for which for example w(|α〉) = |〈0|ρk|α〉|2 or w(|α〉) = (Eα − E0)|〈0|ρk|α〉|2
are maximal [39, 40, 29].

Another problem where the need for generating appropriate eigenstates
arises, is when choosing a basis for truncated spectrum methods [41–43]. Con-
sider a quench of the Lieb-Liniger model where we change the interaction
strength at t = 0 from ci to cf . Truncated spectrum methods can be used
to compute the time evolution of the initial state |Ψ0〉 in terms of a set of
eigenstates of the Lieb-Liniger model at interaction strength cf , i.e.

|Ψ0(t)〉 =
∑
α

bαe
−iEαt|α〉 (3.5)

where bα = 〈α|Ψ0〉 are the coefficients being approximated by the truncated
spectrum methods. However, the accuracy of the expansion in Eq. (3.5)
depends on the choice of basis states |α〉. By choosing a weighing function
that approximates 〈α|Ψ0〉 we can leverage our scanning algorithms to generate
a close to ideal basis for this quench [2].

In this chapter, we develop novel Hilbert space exploration algorithms, in-
spired by those implemented in abacus, which we compare to abacus by
considering the dynamical structure factor. We show that at zero tempera-
ture the performance of our algorithms is virtually identical to those in aba-
cus, whereas we note that our algorithm performs more optimally for the
finite temperature calculation. We also compare abacus to our algorithms
for generating an optimal basis for computing local observables following a
quench in the interaction strength [2]. In this case we notice a more dramatic
increase in performance at finite temperature, highlighting the advantages of
our approach for problems where states with multiple particle-hole excitations
relative to the thermal state play an important role.

We start by reviewing the general principles of Hilbert space scanning algo-
rithms in Sec. 3.1. We then continue by writing down the simplest algorithm
that satisfies the general rules we require of all scanning algorithms in Sec.
3.2. This initial algorithm does not target a specific momentum sector, but
with a simple addition to the rules of the algorithm it can be made to do so,
as we show in 3.3. In Sec. 3.4 we show how this simple algorithm can be
improved upon by adding additional rules relating to the preservation of the
number of particle-hole pairs. In Sec. 3.5 we show how the algorithm can be
improved even more not by adding additional rules, but by cleverly prioritiz-
ing certain parts of the calculation. The resulting algorithm is then compared
to the existing state of the art in Sec. 3.6, where we show the advantages of
our algorithm for finite temperature computations. We conclude and discuss
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how our insights are relevant to scanning algorithms for the spin chain in Sec.
3.7. The work in this chapter was done in collaboration with J.-S. Caux [1].

3.1 Scanning Algorithms

The algorithms for exploring Hilbert space that we present in this chapter can
all be generally described as generating a single-rooted tree where each node
represents an eigenstate. The algorithms differ in the rules that determine
which new eigenstates are generated from a given node, resulting in trees
with different topologies even when they are generated from the same initial
eigenstate, which we will herein call the seed state. In some cases, the seed
state for an algorithm will be directly related to the observable we are trying
to compute (for example, for the calculation of the dynamical structure factor,
Eq. (3.2), the seed state will be the ground state) while for other problems
it may not be (this is the case for the quench problem, which we discuss
later). This approach using tree-building algorithms, was shown to be very
successful for the computation of correlation functions in integrable models
[40]. The purpose of this chapter is to introduce new algorithms for scanning
and comparing their properties for different problems.

There are two properties we require of all of our Hilbert space exploration
algorithms:

1. Uniqueness: No eigenstate should come up more than once when gener-
ating a tree of eigenstates.

2. Completeness: All eigenstates in a pre-defined sector of Hilbert space
must occur in the tree if we give the algorithm infinite computation
time.

Property 1 ensures that we can use the eigenstates generated in a tree to per-
form a summation such as the ones in Eq. (3.2) and Eq. (3.5) without having
to separately keep track of which eigenstates we already included. Property 2
comes from the fact that we want to be able to approximate summations such
as the one in Eq. (3.2) arbitrarily well given infinite computational resources.
If some states would not be generated by the algorithm, this would not be
possible.

In the absence of a UV cut-off, any momentum sector of the Lieb-Liniger
model is infinite dimensional even in a finite volume system. Therefore we
can never truly generate the full corresponding tree with finite computational
resources. As such, it is not only relevant what the final tree would look like,
but also how it is built, i.e. what it looks like after some finite time. In order
to ensure that we spend our time wisely, we can pause the generation of new
eigenstates from certain branches of the tree. The goal here is to pause the
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generation of eigenstates in the algorithm until they are the most important
ungenerated eigenstates that are remaining. The result is that after some
finite time we end up with a truncated tree where most of the nodes on the
outside of the tree could be used to generate additional new eigenstates.

The way in which we determine which branches to pause at a given time and
the interplay between this and the rules for growing the tree as determined
by our algorithm can have a strong influence on the way the tree is grown
and therefore the quality of our algorithm. To see this, consider an algorithm
that satisfies the completeness and overcounting criteria. Now suppose we run
this algorithm for some time which gives rise to a growing tree as depicted
in Fig. 3.1. The dot-filled nodes represent eigenstates whose weight is below
some threshold value whereas the weight of the stripe-filled nodes is bigger,
allowing us to visually distinguish between high-weight and low-weight nodes.
The algorithm showcased here is not ideal since the high-weight nodes 7 and 8
are generated after the low-weight nodes 5 and 6. When scaled up this means
we can, at finite runtime, miss important states because they are effectively
locked behind low-weight states. In an ideal algorithm the descendents of a
node would therefore always have a lower weight than the parent node.

The extent to which the descendents of nodes have a weight lower than their
parents depends on an interplay between the rules of the algorithm and the
weighing function considered. Therefore there may be some algorithms which
are more compatible with certain weighing functions and others that are more
compatible with others. For the Lieb-Liniger model, which we consider in this
thesis, we can identify a criterion that is common to the weighing functions
we want to consider. This criterion is the number of particle-hole excitations
as it is closely related to the matrix element value of the operators we want to
consider as explained in Chapter. 2. This allows us to create close to optimal
algorithms for this system.

3.2 A basic scanning algorithm

One of the simplest ways of generating a new set of quantum numbers from
a given set is by changing one of the quantum numbers by ±1, the minimal
possible value provided that this does not render two quantum numbers equal.
Such a change can be identified with a particle hopping to the left or right on
the lattice, where a particle hopping to the right looks like

· · · ◦ • ◦ • • • ◦ • ◦ · · ·
↓

· · · ◦ ◦ • • • • ◦ • ◦ · · ·

24



0

(a) Zeroth step

0

1 2

(b) First step

0

1

3

2

(c) Second step

0

1

3

2

4

(d) Third step

0

1

3

2

4

5 6

(e) Fourth step

0

1

3

7 8

2

4

5 6

(f) Fifth step

Figure 3.1: Illustration of the state of the tree after the first six steps of
a non-optimal algorithm. The dot-filled circles represent eigenstates whose
weight is smaller than some threshold value, whereas the stripe-filled circles
represent eigenstates whose weight is larger than the same threshhold. An
optimal algorithm would therefore not generate stripe-filled circles after dot-
filled circles, which we see occuring in the fifth step of the algorithm.
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and a particle hopping to the left looks like

· · · ◦ • ◦ • • • ◦ • ◦ · · ·
↓

· · · • ◦ ◦ • • • ◦ • ◦ · · ·

In both cases the first line represents the quantum numbers of the initial state
and the line following that represents the quantum numbers of its descendent
where one coloured particle has hopped to a neighbouring lattice site.

Such particle hops can be used to formulate rules for generating descendents
and building a tree, but we need to impose rules to avoid overcounting. We
start with an algorithm where the descendents of a node are those where a
single particle has hopped one position to the right or left provided that this
does not result in a collision of particles. In the following we identify the issues
with this algorithm and propose solutions, the result of which will be our first
real scanning algorithm which does not overcount states.

The first issue we consider is that when a particle first moves to the right
and then back it will result in the same state we started with. Without any
restrictions we can generate subtrees that look like

· · · ◦ • ◦ • • • ◦ • ◦ · · ·
↓

· · · ◦ • ◦ • • ◦ • • ◦ · · ·
↓

· · · ◦ • ◦ • • • ◦ • ◦ · · ·

The first rule of our scanning algorithms is therefore that once a particle has
moved to either the left or the right, it can only continue moving in that
direction. We refer to particles that have moved to the right as rightmovers
whereas we refer to particles that have moved to the left as leftmovers. In our
visualizations we colour the leftmovers blue and the rightmovers orange.

The second issue is due to there being no preferred ordering of moving
particles to the left or right, as with the current rules the following subtree
could be generated

· · ·
↙

◦ ◦ • • • ◦ ◦ · · ·
↘

◦ • ◦ •
↓
• ◦ ◦ ◦ ◦ • •

↓
◦ • ◦

◦ • ◦ • ◦ • ◦ ◦ • ◦ • ◦ • ◦

Here we see that the bottom two states are the same even though they are
not the same node in the tree and no particle has changed direction. In order
to avoid overcounting we impose the rule that if a state has a rightmover then
its descendents can not have additional leftmovers. In the subtree we just
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considered this means that the state on the bottom right would not have been
generated as there is already a rightmover (the right most particle in the above
figure).

The final issue that arises is similar to the previous one, only now it involves
only moves to the left or right. To understand the issue, note that with our
current rules the following subtree could be generated

· · ·
↙

◦ • • ◦ • • ◦ · · ·
↘

• ◦ • ◦
↓
• • ◦ ◦ • • •

↓
◦ • ◦

• ◦ • • ◦ • ◦ • ◦ • • ◦ • ◦

Again, we see that the two lowest configurations of integers are identical,
despite being on different branches of the tree. This issue can be avoided by
only allowing particles to hop to the left if they are the rightmost leftmover or
to its right. This would rule out the configuration on the bottom right, as it
is generated by creating a leftmover to the left of the existing leftmover. We
can run into the same problem when considering rightmovers giving rise to

· · ·
↙

◦ • • ◦ • • ◦ · · ·
↘

◦ • ◦ •
↓
• • ◦ ◦ • • ◦

↓
• ◦ •

◦ • ◦ • • ◦ • ◦ • ◦ • • ◦ •

which can be avoided by only allowing particles to hop to the right if they are
the leftmost rightmover or to its left.

The rules we have imposed thus far constitute the first scanning algorithm
that is complete and does not count the same state twice as we will show
shortly. For now, let us summarise the rules of the algorithm.

Let {Ii}i≤N be the set of quantum numbers at a node. We denote the
leftmoving and rightmoving quantum numbers by {ILj }j≤NL

and {IRj }j≤NR

respectively.

• Move quantum numbers to the right: Generate a descendent for
every Il ∈ {Ii}i≤N for which Il /∈ {ILj }j≤N , Il ≤ IR0 , and Il + 1 6= Il+1 if
l 6= N with quantum numbers given by {Ii + δl,i}i≤N .

• Move quantum numbers to the left: If {IRk } = ∅ generate a descen-
dent for every Il ∈ {Ii}i≤N such that Il ≥ ILNL

, and Il−1 6= Il − 1 if l 6= 0
with quantum numbers given by {Ii − δl,i}i≤N .

The maximal number of descendents is therefore 2N . What remains is the
proof that this algorithm generates a tree containing every set of allowed
quantum numbers exactly once regardless of the seed state chosen.
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Consider an arbitrary seed state {ISSi }i≤N and an arbitrary target state
{Ĩi}i≤N . In order to show completeness and the absence of overcounting it is
sufficient to show that the target state occurs in the generated tree precisely
once. This is equivalent to there being one way of applying the rules of the
algorithm to get from the seed state to the target state. The quantum numbers
of the node we consider at an intermediate step of the algorithm will be denoted
by {Ii}i≤N .

Since our algorithm does not allow particles to hop to the left in the presence
of rightmovers, we first have to move all particles for which Ĩl < ISSl . We first
consider the leftmost particle of this type with index l and claim that we can
move it all the way to its target position without collisions. To show this,
assume the contrary, which implies that l 6= 1 and ISSl−1 ≥ Ĩl. However, since l
was the index of the leftmost particle that had to move to the left, we know
that Ĩl−1 ≥ ISSl−1. Combining these statements gives Ĩl−1 ≥ ISSl−1 ≥ Ĩl which
is a contradiction. Repeating this argument for all quantum numbers of the
seed state that have to be decreased to reach the target state starting with
the smallest one, we can move all such quantum numbers to the right position
in a unique way.

Having fixed the quantum numbers that have to be decreased, we are left
with quantum numbers for which Ĩl ≥ ISSl . This time we claim that we can
start from the rightmost particle for which this inequality holds and the rules
of our algorithm allow it to be put in its place without collisions. To prove this,
we again assume the contrary which implies that l 6= N and that Il+1 ≤ Ĩl.
However, since Il was the rightmost quantum number that had to be increased,
and since we already fixed the leftmovers we have that Il+1 = Ĩl+1. Together
this gives Ĩl+1 = Il+1 ≤ Ĩl giving the contradiction we require. This finishes
the proof of completeness as well as showing that there is no overcounting.

Throughout the remainder of this chapter, we refer to the scanning algo-
rithm developed in this section as stepwise scanning (SWS).

3.3 Imposing momentum conservation

In the previous section we introduced a scanning algorithm that would gen-
erate every state in Hilbert space exactly once, given infinite computational
resources. However, often we are interested in a particular momentum sector,
so for such problems it is not particularly well-suited. After all, it would mean
that we are only interested in a tiny subset of the states that we generate. In
this section we introduce a variant of the previous algorithm which restricts
itself to a given momentum sector.

To turn stepwise scanning into an algorithm that generates descendents
whose momentum is equal to that of their parent, we combine the rules we
have for moving particles to the left and right. The momentum of a state
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is proportional to the sum of the quantum numbers, Eq. (2.10), so moving
one particle one step to the right and another one step to the left ensures
that momentum remains preserved. Furthermore, this approach eliminates
the second problem we encountered in the previous section due to which we
imposed the rule that no particle can hop left in the presence of rightmovers.
The resulting algorithm goes as follows.

Let {Ii}i≤N be the set of quantum numbers at a node. We denote the
leftmoving and rightmoving quantum numbers by {ILj }j≤NL

and {IRj }j≤NR

respectively.

• Generate rightmovers: Generate an intermediate descendent Cr for
every Il ∈ {Ii}i≤N such that Il /∈ {ILj }j≤NL

, Il ≤ IR0 , and Il + 1 6= Il+1

if l 6= N .

• Generate leftmovers: For every intermediate descendent Cr generate
a descendent for every Il ∈ {ICr

i }i≤N such that Il /∈ {ICr,R
j }j≤NCr,R

,
Il ≥ ILNCr,L

, and Il − 1 6= Il−1 if l 6= 0.

The scanning routine described here, which we call momentum preserving
stepwise scanning (SWS-MP), generates at most N2 descendents in contrast
to the at most 2N descendents in regular stepwise scanning. The difference
arises due to the fact that we imposed momentum conservation, which led us
to essentially apply first the first step of regular stepwise scanning, generating
at most N intermediate descendents, and then applying the second step of the
stepwise scanning algorithm to these intermediate descendents.

To show that this algorithm is also complete in the sense that it can generate
any state whose momentum is equal to that of the seed state, consider a
random seed state {ISSi }i≤N and a random target state {Ĩi≤N} with the same
momentum. There are indices k ∈ {k1, . . . , kNL

} such that Ĩk ≤ ISSk as well
as indices l ∈ {l1, . . . , lNR

} such that Ĩl ≥ ISSl which represent the indices of
what will become the leftmovers and rightmovers respectively. Note that the
size of these sets of indices can be different, as momentum preservation only
requires the number of hops to the right and left to be preserved. In order to
reach the target state from the seed state we again have to start by moving
the leftmost leftmover, i.e. Ik1 , and the rightmost rightmover, i.e. INR

. The
proof that these particles can hop to their target positions without collisions
is exactly the same as the proof of completeness for regular stepwise scanning,
so for that we refer the reader to the previous section. The same argument
holds for the rightmovers being able to move to their target positions. Since
there is still a unique order of moves by which we can reach the target state
given the seed state, we also have no overcounting.

To understand the problems that arise when we try to apply this algorithm
to situations where the momentum of the states we want to scan for is not
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equal to the natural candidate for the seed state, consider the example of the
dynamical structure factor, see Eq. (3.2). Here the reference state we are
interested in is the ground state |0〉 and we want to use a scanning algorithm
to find the states |α〉 at some fixed value of momentum most important to
the summation. However, since the states in the intermediate summation do
not belong to the same momentum sector as the ground state we cannot use a
momentum preserving stepwise scanning algorithm in order to find them. In
principle we can choose some other state from the targeted momentum sector
and use it as a seed state to the algorithm, but this raises the question of which
state to choose. Even though in the limit where we have infinite computational
resources this does not matter, it does affect what the tree looks like after a
finite amount of time. After all, a bad choice can lead to the situation where
important contributions are only generated after a long time because they are
far down in the tree or are "hidden" as descendents of unimportant states. In
fact, it is unclear if there even exists a seed state that would not lead to a
Bethe tree with undesirable properties in this case.

In order to avoid having to choose a seed state for the target momentum
sector, we choose to tweak the rules of the scanning algorithm such that we can
use a given reference state (in the case of the dynamical structure factor, the
ground state) despite its momentum not being equal to that of the momentum
sector we are interested in. After all, we want to generate the states with few
particle-hole pairs first as these are the states we generally expect to have the
largest matrix elements for local operators. Taking the reference state to be
the seed state ensures that these few particle-hole states are generated because
the rules of our algorithm generate descendents with at most two additional
particle-hole pairs. In order to generate states in the targeted momentum sec-
tor from a given reference state we add the rule that if the momentum of a
node is smaller than the target momentum, its descendents are generated by
following the first step of the algorithm, whereas if it is larger the rules of the
second step are used. Note that applying only one of the two steps of momen-
tum preserving stepwise scanning generates descendents whose momentum is
changed by the minimal amount compared to their parent state. As such,
there can be no overshooting of the target momentum sector. Furthermore,
every branch created from the seed state reaches the target momentum sector
in ktargetL

2π steps or dies off before then.
In order to assess the quality of this algorithm, we consider again the dy-

namical structure factor introduced in Eq. (3.2). Starting from the ground
state, we can generate a tree of eigenstates where we use the weighing function
that selects for states which contribute most strongly for the saturation of the
f sum rule as defined in Eq. (3.3). For now, we generate descendents node
by node starting each time with one of the highest weight nodes as we elabo-
rate on more in section 3.5. The results for this calculation for three different

30



values of the interaction strength are shown in Fig. 3.2a, b, c We see that
in all three cases we reach close to optimal convergence with very few states
meaning the most important states are generated first.

At finite temperature, we can do the same calculation provided that we
replace the ground state with the representative state of the thermal state
we wish to consider [26]. The calculation of the dynamical structure factor
at finite temperature is inherently more difficult, but it also turns out that
the simple scanning algorithm we have developed is not optimal for the finite
temperature case. To understand why, consider Fig. 3.2d, e, f where we
again consider the the f sumrule convergence. Besides the significantly poorer
rate of convergence, we observe clear plateaus where convergence stagnates.
This indicates that the algorithm is not successfully generating the states that
contribute to the finite-temperature correlation function most strongly first.
In the next section we propose changes to our algorithm that lead to better
convergence.

3.4 Imposing additional constraints

Thus far we have proposed algorithms where we generate descendents by mov-
ing quantum numbers by the minimal amount at each step of the algorithm,
assuming this minimal change would result in the most important states first
being generated first. However, it turns out that there is a property of the
quantum numbers defining an eigenstate which is an important indicator of
its importance for most of the weighing functions we are interested in that
we have ignored thus far. This property is the number of particle-hole pairs
of a state with respect to a given state of importance to the calculation at
hand, herein the reference state. In this section we present algorithms that
use knowledge of this property to produce more efficient algorithms.

What makes the number of particle-hole pairs, introduced in Sec. 2.3,
an important property to consider is that generally the fewer particle-hole
pairs a state has, the bigger the off-diagonal matrix element between it and
the reference state for local operators. This means that the states with few
particle-hole pairs are generally those with the largest weights, meaning we
should generate them first. For the regular and momentum preserving stepwise
scanning algorithms, however, a descendent can have fewer particle-hole pairs
than its parent. For example, consider a seed state given by

◦ • ◦ • ◦ • ◦ ◦ ◦

then it generates the following subtree where a particle and hole annihilate
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Figure 3.2: Saturation of the f sumrule with the number of states included
in the summation. Starting from the ground state for (a)-(c) and the repre-
sentative thermal state at T = 1 for (d)-(f), we generated 10,000 states using
momentum preserving stepwise scanning for a target momentum of k = π,
and N = 128 = L. We plot the sum rule saturation after every 200 states
for c = 1 in (a) and (d), for c = 4 in (b) and (e), and for c = 16 in (c) and
(f). Convergence is near perfect after very few states in the zero temperature
case, whereas in the finite temperature case convergence is poor for the num-
ber of states considered. Furthermore, the interaction strength is seen to be
an important variable in the finite temperature case, with smaller interaction
strengths corresponding to poorer convergence.
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Taking on board that matrix elements of local operators depend upon the
number of particle-hole excitations in a structured way, we can modify the
previously proposed algorithms to more efficiently explore the Hilbert space.

One way to proceed is to simply forbid the annihilation of particle-hole pairs
within a modified algorithm. However, this approach comes at a cost since
adding this restriction to the rules of the regular and momentum preserving
stepwise scanning algorithms breaks completeness. In order to regain this nec-
essary feature, we allow quantum numbers that have not moved yet to hop into
the position of a hole if it lies between it and one of the neighbouring quantum
numbers. For example, this allows the following subtree to be generated:

◦ • ◦ • •
↓
• ◦ • ◦

•
p
◦
h
◦ • •

↓
• ◦ • ◦

•
p
• ◦ ◦

h
• • ◦ • ◦

Note that this means that this allows for quantum number jumps of more than
one position. Applying these changes to stepwise scanning scanning leads to
the following rules, which constitute the leapwise scanning algorithm (LWS).

Let {Ii}i≤N be the set of quantum numbers at a node. We again denote the
leftmoving and rightmoving quantum numbers by {ILj }j≤NL

and {IRj }j≤NR

respectively. Furthermore, we label the positions of the holes as {Ihj }j≤Nh
and

the particles by {Ipj }j≤Np .

• Generate higher momentum descendents: Generate a descendent
for every Il ∈ {Ii}i≤N for which Il /∈ {ILj }j≤NL

, Il ≤ IR0 , and either

◦ Il+1 6= Il+1 if l 6= N with quantum numbers given by {Ii+δl,i}i≤N ,
or

◦ there exists a k such that Il < Ihk < Il+1 with quantum numbers
given by {Ii + δi,l(I

h
k − Ii)}i≤N

• Generate lower momentum descendents: If {IRk } = ∅ generate a
descendent for every Il ∈ {Ii}i≤N such that
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◦ Il ≥ ILNL
, (Il − 1) /∈ {Ihj }j≤Nh

, and Il−1 6= Il − 1 if l 6= 0 with
quantum numbers given by {Ii − δl,i}i≤N

◦ there exists a k such that Il−1 < Ihk < Il with quantum numbers
given by {Ii + δi,l(I

h
k − Ii)}

The proof that this algorithm is complete and does not overcount carries over
directly from the proof for the stepwise scanning algorithm.

Like stepwise scanning, leapwise scanning is not suitable for targeting a
fixed momentum sector. One step towards a solution of this problem is to,
like before, combine the first and second step of the leapwise scanning algo-
rithm. However, in the current case the resulting algorithm does not preserve
momentum since the momentum increasing move from the first step and the
momentum decreasing momentum from the second step may not cancel. The
solution to this issue is the same as the solution to the problem we had with
momentum preserving leapwise scanning algorithm when we wanted to con-
sider a target momentum sector whose momentum was different from that of
the reference state. We generate the momentum increasing descendents for
states whose momentum is smaller than the target momentum and momen-
tum decreasing descendents for states whose momentum is larger. For states
at the right momentum we combine the steps as we do in momentum pre-
serving stepwise scanning. This algorithm, which we refer to as momentum
preserving leapwise scanning (LWS-MP), can be summarised as follows.

Let {Ii}i≤N be the set of quantum numbers at a node. We denote the
leftmoving and rightmoving quantum numbers by {ILj }j≤NL

and {IRj }j≤NR

respectively. Furthermore, we label the positions of the holes as {Ihj }j≤Nh
and

the particles by {Ipj }j≤Np .

• Generate rightmovers: Generate an intermediate descendent Cr for
every Il ∈ {Ii}i≤N such that Il /∈ {ILj }j≤N , Il ≤ IR0 and either

◦ Il+1 /∈ {Ihj }j≤Nh
, and Il+1 6= Il+1 if l 6= N with quantum numbers

given by {Ii + δl,i}i≤N , or
◦ there exists a k such that Il < Ihk < Il+1 with quantum numbers

given by {Ii + δi,l(I
h
k − Ii)}i≤N

• Generate leftmovers: For every intermediate descendent Cr generate
a descendent for every Il ∈ {ICr

i }i≤N such that Il /∈ {IRj }j≤NR
, Il ≥ ILNL

,
and either

◦ (Il − 1) /∈ {Ihj }j≤Nh
, and Il−1 6= Il − 1 if l 6= 0 with quantum

numbers given by {Ii − δl,i}i≤N , or
◦ there exists a k such that Il−1 < Ihk < Il with quantum numbers

given by {Ii + δi,l(I
h
k − Ii)}
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Figure 3.3: Comparison of the saturation of the f sumrule with the number
of states included in the summation between momentum preserving stepwise
(SWS-MP) and momentum preserving leapwise (LWS-MP) scanning. Starting
from the ground state for (a)-(c) and the representative thermal state at T =
1 for (d)-(f), we generate 10,000 states for a target momentum of k = π,
and N = 128 = L. We plot the sum rule saturation after every 200 states
for c = 1 in (a) and (d), for c = 4 in (b) and (e), and for c = 16 in (c)
and (f). Convergence is identical for both momentum preserving stepwise
and leapwise scanning zero temperature, but not for the finite temperature
case where momentum preserving leapwise scanning performs better. The
plateaus at large and intermediate interaction strengths are barely noticeable
for momentum preserving leapwise scanning whereas they remain pronounced
in the case where c = 1.
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If the momentum of the node is smaller than the target momentum, we only
do the first step and the intermediate descendents become the descendents.
On the other hand, if the momentum of the node is smaller than the target
momentum we apply the second step to the node. The proof that the resulting
algorithm is complete and does not overcount is the same as the proof for the
momentum preserving stepwise scanning algorithm.

At zero temperature momentum preserving leapwise scanning gives the
practically the same results as momentum preserving stepwise scanning as
can be seen in Fig. 3.3a, b, c. To understand this, note that at T = 0 we
start from the ground state which consists of a single block of neighbouring
quantum numbers without holes. The only initial excitations that are then
allowed by our rules are ones that move the outermost quantum numbers out
leaving behind holes. This in turn gives space for more particle-hole pairs to
be created, but no jumps over vacant positions that are not holes will occur
during momentum preserving leapwise scanning. As a result, the descendents
generated by momentum preserving stepwise and leapwise scanning as well as
the resulting trees are virtually the same.

At finite temperature momentum preserving leapwise scanning outperforms
momentum preserving stepwise scanning as can be seen in part Fig. 3.3d,
e, f. In this case, we start from a seed state where there is no longer a
zero temperature Fermi sea, but instead there are vacant positions between
the quantum numbers, i.e. the quantum numbers of the seed state are no
longer of the form {a, a+1, a+2, . . . } but rather something like {a, a+3, a+
4, a + 7, . . . } for example. Therefore, when descendents are generated where
quantum numbers neighbouring vacant positions are moved, they leave behind
holes surrounded by vacant positions. For momentum preserving leapwise
scanning, states with the same number of particle-hole excitations can be
created in such a scenario by letting another quantum number jump over
the vacant positions to this newly created hole position, whereas in the case of
momentum preserving stepwise scanning a bunch of intermediate states would
have to be created. Not having to generate these intermediate states is what
leads to the increase in efficiency.

3.5 Beyond the topology of the tree

The algorithms we have introduced thus far determine the topology of the
tree corresponding to a given seed state and target momentum sector, but
they do not determine the order in which the nodes of the tree are generated.
For the numerics displayed in the previous sections we adopted the rule that,
by default, we pause all branches and after each step of generating new de-
scendents we find the highest weight state all of whose descendents we then
generate. However, in Fig. 3.3d, e, f, we saw that this approach produces
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plateaus which indicate that less important states are generated before their
more important counterparts. The main reason for this is that at a given
node there are descendents with different levels of importance (as, for exam-
ple, they have different numbers of particle-hole excitations). By generating
all descendents of a node at the same time, states with more particle-hole pairs
can be generated before states with fewer particle-hole pairs further down the
tree. In this section we show how splitting the descendents of the momentum
preserving leapwise scanning algorithm into three groups and treating them
separately results in a more efficient algorithm.

The division of the descendents of a given node into three groups is done
based on the number of additional particle-hole pairs they have compared to
their parent, which is either zero, one, or two. Given a node of the tree, we
expect the states in the group of descendents with the same number of particle-
hole pairs as the parent node to be of similar importance as the parent. Since
we always consider the paused node with the highest weight, its descendents
with the same number of particle-hole pairs are the ones we expect to be
the most important unexplored eigenstates. Therefore we always start by
generating these descendents if they have not yet been generated. In constrast
to regular momentum preserving leapwise scanning, we do not also generate
the descendents with additional particle-hole pairs at the same time.

Once we have generated the descendents with the same number of particle-
hole pairs for a given node, we can generally not yet forget about this node
as we could previously, since we still have to generate some of its descendents
with additional particle-hole pairs. Therefore, we store it in a different list
which tracks the states for which the descendents with no additional particle-
hole pairs have been generated. Furthermore, we give it a weight by choosing
a random descendent with an additional particle-hole pair and computing its
weight, which is then used to weigh the parent node in this secondary list.
Having populated both the initial list of paused nodes and this secondary list,
we can choose to generate new descendents by either considering a state from
the original list and generating more states with the same number of particle-
hole pairs as their parent, or by considering a state from the secondary list, and
generating the descendents of the node with one additional particle-hole pair.
Which choice we make depends on where the state with the highest weight is,
as it could be in the first list where its weight is that of the eigenstate, whereas
in the second list it would be the weight of a randomly chosen descendent with
an additional particle-hole pair.

In some cases, the full list of descendents would also have included states
with two additional particle-hole pairs with respect to their parent node. In
this case we follow a similar procedure and move the node from the secondary
list to a third where we keep nodes whose descendents with zero and one
additional particle-hole pair have been generated and associate to it another
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Figure 3.4: Comparison of the saturation of the f sumrule with the number
of states included in the summation between momentum preserving leapwise
scanning (LWS-MP) and improved momentum preserving leapwise scanning
(ILWS-MP). Starting from the ground state for (a)-(c) and the representative
thermal state at T = 1 for (d)-(f), we generate 10,000 states for a target mo-
mentum of k = π, and N = 128 = L. We plot the sum rule saturation after
every 200 states for c = 1 in (a) and (d), for c = 4 in (b) and (e), and for c = 16
in (c) and (f). Convergence at zero temperature sees a tiny improvement for
improved momentum preserving leapwise scanning to regular momentum pre-
serving leapwise scanning and remains near perfect for very few states. At
finite temperature, we see a dramatic increase in performance in both overall
convergence as well as the number of states required to achieve this conver-
gence for improved momentum preserving leapwise scanning, eliminating all
plateaus. Still, absolute convergence remains a challenge at lower values of
the interaction strength for the number of states considered regardless of the
algorithm used.
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representative weight obtained by computing the weight of one of the states
with two additional particle-hole pairs. We then repeat the procedure outlined
above with three lists. The resulting procedure is what we refer to as improved
momentum preserving leapwise scanning (ILWS-MP).

The advantage of this approach is that, at the cost of computing at most
two additional matrix elements per node, we can ensure that we are generat-
ing the states most important to the calculation under consideration. Despite
this representing an additional computational effort, it can still represent a net
gain as it can allow us to generate far fewer states for a given accuracy of the
calculation under consideration. Whether the additional cost of computing
these matrix elements is worth it can depend, for example, on the seed state
under consideration. To illustrate this, consider the zero temperature dynam-
ical structure factor calculation whose results are illustrated in Fig. 3.4a, b,
c. Here we see that the performance the of regular and improved momentum
preserving leapwise scanning is virtually identical. On the other hand, when
considering the finite temperature equivalent as illustrated in Fig. 3.4d, e, f,
we see a big difference in performance. The algorithm where we allow some
descendents to be generated at a later point in time outperforms the algorithm
where all descendents are generated. Not only does it generate the same states
quicker, but it also appears to achieve higher sum rule saturations in part be-
cause the algorithm where all descendents are generated gets stuck generating
unimportant states.

3.6 Comparison to the state of the art

In this section, we compare the improved momentum preserving leapwise scan-
ning algorithm to the most recent version of the state of the art software for
the computation of correlation functions in the Lieb-Liniger model called aba-
cus [40]. In Sec. 3.6.1 we consider the dynamical structure factor at zero and
finite temperature. Since abacus was developed in part to compute the dy-
namical structure factor, it makes it the ideal candidate for a fair comparison.
In Sec. 3.6.2 we consider the generation of an optimal basis for the interaction
quench. In both cases, we use commit 08c85cf590 of abacus as available at
https://jscaux.org/git/jscaux/ABACUS. This version of abacus generates a
tree topologically equivalent to the one generated by stepwise scanning, gener-
ating all its descendents by moving quantum numbers by at most one position.
The difference between abacus and our momentum preserving stepwise scan-
ning is the way the tree is built. Most crucially, abacus deals with the need
to generate states with few particle-hole pairs by forcing the generation of
branches of the tree where a particle and hole recombine. Therefore we can
view it as stepwise scanning with forced recombinations, which we refer to
with its abbreviation (SWS-FR) throughout this section. As we shall see, this
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is not the optimal way to deal with finite temperature states.

3.6.1 The dynamical structure factor

For the ground state dynamical structure factor calculation, illustrated in Fig.
3.5a, b, c, we see that the performance of SWS-FR and our improved momen-
tum preserving leapwise scanning routine are virtually identical. Similarly to
the discussion comparing momentum preserving stepwise and leapwise scan-
ning, there is not a lot of freedom on how to generate the states when starting
from the ground state. The differences which do exist are caused by states
being generated in a different order due to a different way of building the same
tree.

At finite temperature, we observe an increase in performance for the im-
proved momentum preserving leapwise scanning compared to SWS-FR for all
values of the interaction strength as illustrated in Fig. 3.5. At finite temper-
ature, the seed states we consider no longer consist of a contiguous block of
quantum numbers with empty positions between neighbouring quantum num-
bers being introduced. In this case, creating a new particle-hole pair leaves a
hole that may not neighbour another quantum number that has not moved yet.
For the improved momentum preserving leapwise scanning algorithm, states
with the same number of particle-hole pairs can be direct descendents of this
state by allowing the quantum number to move by more than one position.
For example, we saw that we can have subtrees like

◦ • ◦ • •
↓
• ◦ • ◦

•
p
◦
h
◦ • •

↓
• ◦ • ◦

•
p
• ◦ ◦

h
• • ◦ • ◦

For the stewpwise scanning algorithm with forced recombinations such jumps
are not allowed, forcing it to first create an additional particle-hole pair and
move it to annihilate the initial hole leading to the following subtree:

◦ • ◦ • •
↓
• ◦ • ◦

•
p
◦
h
◦ • •

↓
• ◦ • ◦

•
p
◦
h
•
p
◦
h
•
↓
• ◦ • ◦

•
p
• ◦ ◦

h
• • ◦ • ◦

The difference may look innocent in this simple example, but as the distances
between quantum numbers in the initial state grow and the number of such
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Figure 3.5: Comparison of the saturation of the f sumrule with the number of
states included in the summation between the improved momentum preserving
leapwise scanning (ILWS-MP) and momentum preserving stepwise scanning
with forced recombinations. Starting from the ground state for (a)-(c) and the
representative thermal state at T = 1 for (d)-(f), we generate 10,000 states
for (a)-(c) and 100,000 states for (d)-(f) for a target momentum of k = π,
and N = 128 = L. We plot the sum rule saturation after every 200 states for
c = 1 in (a) and (d), for c = 4 in (b) and (e), and for c = 16 in (c) and (f).
Convergence at zero temperature is virtually identical, whereas the improved
momentum preserving scanning outperforms SWS-FR at finite temperature.
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Figure 3.6: Comparison of the histograms of the f sumrule weights between
the improved momentum preserving leapwise scanning (ILWS-MP) and SWS-
FR. Starting from the representative thermal state at T = 1, we generate
10,000 states for a target momentum of k = π, and N = 128 = L. We plot
the resulting histogram for c = 1 in (a), for c = 4 in (b), and for c = 16 in
(c). We see that the improved momentum preserving leapwise scanning and
SWS-FR find the same states with very large weights (those on the left), but
SWS-FR generates more less important states (the states on the right).

isolated quantum numbers increases, the number of additional states that have
to be generated in order to reach all states with the same number of particle-
hole pairs grows rapidly.

The fact that SWS-FR generates such less important intermediate states
can be seen from Fig. 3.6. where we consider the histograms of the first
100,000 states generated by each algorithm. In these histograms, the x axis
measures the importance of an eigenstate for the saturation of the f-sum rule,
where the importance decreases as x increases. The rightmost gray part of
the histograms represent the intermediate states that are generated too soon
due to the sub-optimal topology of the tree that SWS-FR is building. Since
this problem is related to the topology of the tree, it occurs independently of
the interaction strength considered.

3.6.2 Generating a basis for the interaction quench

Another way to benchmark our algorithm is by considering the problem of
a quench in the interaction strength from ci to cf [2]. In this case, we want
to find an approximate expansion of some initial eigenstate |Ψ0〉 of H(ci) in
terms of eigenstates of H(cf ). Truncated spectrum methods can be used to
obtain the expansion coefficients bα in

|Ψ0(t)〉 =
∑
α

bαe
−iEαt|α〉. (3.6)
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Figure 3.7: Comparison of the sum of eigenstate weights with the number of
states included in the summation between the improved momentum preserving
leapwise scanning (ILWS-MP) and momentum preserving stepwise scanning
with forced recombinations (SWS-FR). Starting from the ground state for
(a)−(c) and the representative thermal state at T = 1 for (d)−(f), we generate
10,000 states and 100,000 states respecitvely for a target momentum of k = π,
and N = 128 = L. We plot the sum rule saturation after every 200 states for
c = 1 in (a) and (d), for c = 4 in (b) and (e), and for c = 16 in (c) and (f).
The differences between SWS-FR and the improved momentum preserving
leapwise scanning for the sums at zero temperature are small whereas at finite
temperature the latter outperforms SWS-FR by a large margin.

43



0

2500

5000

7500

10000

0 5 10 15

− log
∣∣∣ ⟨0|g2|µ⟩ωµ

∣∣∣

C
o
u
n
t

ILWS-MP
SWS-FR

(a) c = 1, T = 1

0

5000

10000

15000

0 5 10 15 20

− log
∣∣∣ ⟨0|g2|µ⟩ωµ

∣∣∣
C
o
u
n
t

ILWS-MP
SWS-FR

(b) c = 4, T = 1

0

10000

20000

30000

10 20

− log
∣∣∣ ⟨0|g2|µ⟩ωµ

∣∣∣

C
o
u
n
t

ILWS-MP
SWS-FR

(c) c = 16, T = 1

Figure 3.8: Comparison of the histograms of the first 10,000 states gener-
ated by SWS-FR and the improved momentum preserving leapwise scanning
(ILWS-MP) for the basis generation problem at k = 0 and N = 128 = L at
T = 1. We see that there is some overlap in which states are generated by
both algorithms for the large weight states (on the left) but we also see that
SWS-FR generates far more low weight states. At larger interaction strengths,
we see that these lower weight states generated by SWS-FR are grouped in
two distinct bumps.

In order to obtain an expansion that captures the time evolution following the
quench accurately, we need to choose our basis states |α〉 wisely. In [2] we
showed that a good estimate of the importance of an eigenstate |α〉 is given
by

w(|α〉) =
∣∣∣∣ 〈Ψ0|g2|α〉
EΨ0 − Eα

∣∣∣∣ . (3.7)

The task of our scanning algorithms is therefore to generate the eigenstates
with the largest weights.

In order to compare our algorithm to the momentum preserving stepwise
scanning algorithm with recombinations, we compare the sums of the weights
generated having generated i eigenstates as shown in Fig. 3.7. We see that
at zero temperature, the results from the improved momentum preserving
leapwise scanning are only marginally better than those of SWS-FR, which can
again be explained by the fact that at zero temperature the topology of trees
generated by both algorithms is identical. At finite temperature however, we
see a much more pronounced difference than we saw for the finite temperature
calculation of the dynamical structure factor.

So why is the difference between SWS-FR and the improved momentum
preserving leapwise scanning for this basis generation problem so much more
pronounced compared to the finite temperature dynamical structure factor
calculation? Note that the f sum rule for the dynamical structure factor is
dominated by the one particle-hole sector, which both algorithms are perfectly
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capable of generating in full, as it contains at most N states at fixed momen-
tum. For the basis generation problem considered here however, the states
contributing most strongly are those in the two particle-hole sector (states
in the one particle-hole sector cannot have the same momentum as the seed
state). The process of generating a given state in the two particle-hole sector
is however very different between the improved momentum preserving leap-
wise scanning and SWS-FR. As we mentioned, SWS-FR is forced to generate
intermediate states, of which there are increasingly many as temperature in-
creases. The improved momentum preserving leapwise scanning on the other
hand allows for jumps of quantum numbers by more than one position allow-
ing it to generate these states without intermediate states resulting in a more
efficient calculation. The choice of topology of the tree combined with the
versatile way of building the tree is thus what allows the algorithm to focus on
the contributions that are most important at a given point in the calculation,
as illustrated by the histograms of contributions in Fig. 3.8

In order to substantiate our claim that our algorithm outperforms SWS-FR
due to the different topology of the tree, consider Fig. 3.9. Here we see a
breakdown of the histograms of weights generated by either the improved mo-
mentum preserving leapwise scanning (a) through (c) or SWS-FR (d) through
(f) based on the number of particle-hole sectors the states whose weights
are displayed are from previously shown in Fig. 3.8 based on the number of
particle-hole pairs of a given contribution. We see that SWS-FR spends its
time generating a lot of unimportant states from the three and four particle-
hole sectors in order to generate the important contributions from the two
particle-hole sector. Since for the improved momentum preserving leapwise
scanning any state can be generated without intermediate states with more
particle-hole pairs, it is able to avoid such problems. We therefore conclude
that the improved momentum preserving leapwise scanning algorithm is bet-
ter suited for dealing with problems at finite temperature than algorithms
that are not able to strictly preserved the number of particle-hole pairs like
stepwise scanning or SWS-FR. We have seen that this is especially true if the
calculation under consideration is not one domtinated by the one particle-hole
sector.

3.7 Conclusions

Despite the powerful analytical tools that have been developed for integrable
systems, performing a numerical evaluation over eigenstates is still often an in-
evitable step required to compute correlation functions. It is therefore crucial
that we have good Hilbert space exploration algorithms that allow us to accu-
rately and efficiently approximate such summations. Here we have reviewed
the basic principles that such an algorithm has to satisfy and developed a
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Figure 3.9: Breakdown of the histograms shown in Fig. 3.8 based on the
number of particle-hole pairs for improved momentum preserving leapwise
scanning (ILWS-MP) (a)-(c) and SWS-FR (d)-(f). We see that the bumps
of unimportant states generated by SWS-FR are states from the three and
four particle-hole sectors whereas improved momentum preserving leapwise
scanning is capable of sticking to lower particle-hole sectors.

number of concrete examples that satisfy these criteria. Starting from the
most basic algorithm satisfying these basic principles, we considered its short-
comings one by one and proposed solutions resulting in incremental changes
that led us to the final algorithm. Finally, we compared this algorithm to the
state of the art for the dynamical structure factor at zero and finite tempera-
ture as well as the problem of generating an efficient basis for a quench in the
interaction strength.

Overall, our algorithms can be viewed as an algorithm for building a single-
rooted tree where every node of the tree represents an eigenstate and the
algorithm specifies the topology of the tree. Since the tree is infinite and we
only have finite computational resources it is also important in what order
the nodes of the tree are generated as this determines what the tree looks
like after some finite time. A key characteristic for the importance of a state
is the number of particle-hole pairs it has with respect to the seed state. In
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order to avoid having to consider less relevant states with more particle-hole
pairs we chose our final algorithm to have a topology where any node with
n particle-hole pairs can be generated without having to generate nodes with
more particle-hole pairs. This topology, in combination with a clever way of
choosing the order in which to generate new states is what led to the most
efficient algorithm.

Comparing our final algorithm to the current version of the state of the
art library abacus showed that we outperform the latter when considering
the dynamical structure factor at finite temperature as well as the problem
of generating an efficient basis for a quench in the interaction strength at fi-
nite temperature. In the latter case the difference is particularly pronounced,
emphasizing the importance of the choice of topology. After all, the reason
that our algorithm outperforms abacus is primarily due to the fact that if
abacus wants to generate certain states with n particle-hole pairs it has to go
through states with more particle-hole pairs. The examples considered show
that the improved momentum preserving leapwise scanning algorithm offers
significant advantages for finite temperature calculations. One of the main ad-
vantages is due to the topology of the tree being generated, which allows any
state from the n particle-hole sector to be generated without generating states
from higher particle-hole sectors. This is especially important when consider-
ing calculations not dominated by the one particle-hole sector as the number
of intermediate states required to construct a state from the n particle-hole
sector grows dramatically with increasing n at finite temperature. Improved
momentum preserving leapwise scanning is therefore more suited to dealing
with problems involving for example the g2 and g3 operators, the latter being
relevant to modelling three-body losses. Because of these advantages, future
versions of abacus will incorporate this approach to be better equiped to deal
with finite temperature calculations.

In this chapter we considered calculations where the number of particles
of the states we explore is equal to the number of particles of the reference
state. However, for some problems this is not the case (e.g. when calculating
the Green’s function). In these cases additional difficulties arise for finite
temperature states since in this case the number of particle-hole pairs is no
longer well-defined. Future research is required to come up with strategies to
efficiently deal with these problems. Another interesting direction for future
research direction would be the extension of the ideas in this paper to spin
chains. Despite their differences, such as the existence of string solutions, the
spin chain and the Bose gas also share key characteristics. For example, the
quantum numbers of the spin chain can be viewed as a multi-level version of
those of the Bose gas, each lattice representing the quantum numbers of a
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given string sector which can be visualized as:

...
2-strings: · · · ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ · · ·
1-strings: · · · ◦ ◦ • • • • ◦ • ◦ · · ·

An algorithm like the one we developed can then be applied to the quantum
numbers of every string sector. However, additional complications due to the
differences are bound to arise. For example, in the spin chain more care has to
be taken to avoid overcounting since a given eigenstate can be represented by
multiple quantum number configurations. Furthermore, additional constraints
such as the magnetization, as well as the periodicity of the momentum will
require careful consideration.
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Chapter 4

Quenching the interaction strength

Having reviewed the solution of the Lieb-Liniger model and discussed the
Hilbert space exploration algorithms required to compute correlation func-
tions, we turn our attention to out-of-equilibrium dynamics in this chapter.
In particular, we consider the dynamics following a quench in the interaction
strength of the Lieb-Liniger model. The interest in the dynamics of isolated
quantum systems is related to fundamental questions regarding the nature of
equilibration in isolated quantum systems. The investigation of such ques-
tions however is made difficult by the absence of general methods by which
we can compute the time evolution accurately up to long times. Even for the
Lieb-Liniger model, where a lot of tools are available due to its integrability,
analytical results are limited to situations where the model before the quench
is at c = 0 or c = ∞, which are the effectively non-interacting limits [44, 45].

In this chapter we develop a new numerical approach for computing the
overlaps based on the truncated spectrum approach [46]. Our approach fo-
cusses on finding the optimal set of computational basis states consisting of
eigenstates of the final Hamiltonian to expand the initial state in. Computing
the overlaps of the computational basis states numerically allows us to calcu-
late the real-time dynamics and access the long time limit using the diagonal
ensemble [47]. The explicit problem we consider is that of the interaction
quench in the Lieb-Liniger model, for which we provide proof-of-principle cal-
culations for small system sizes, albeit beyond what can be achieved with
coordinate Bethe asnsatz calculations [48, 49].

Recently, the truncated spectrum approach and derived methods have been
successfully used to compute overlaps and dynamics for the Ising field theory
[50–52, 46, 53] and the sine-Gordon model [54–56, 46, 53]. The difference
between the approach taken in these cases and the one we adopt here, is that
we work explicitly with a computational basis of eigenstates of an interacting
integrable system. As such, strong correlations are already built into the
basis states, whereas the aforementioned results are obtained by using non-
interacting bases of the Ising field theory and the sine-Gordon model. Even
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more importantly, we show that the conventional energy-ordered truncated
spectrum approach is inappropriate for the problem we consider and introduce
alternative ordering metrics which reduces the computational cost by orders
of magnitude.

We start by discussing how the problem of the interaction quench can be
formulated in terms of a perturbed Hamiltonian in Sec. 4.1 and we discuss
what an ideal truncation scheme would look like. Following this, we start
by considering the conventional approach and show how we can overcome its
limitations leading us to the high overlap states truncation scheme in Sec.
4.2. In the process, we discover that high energy states can be important
showing that truncating the perturbed Hamiltonian by choosing an energy
cutoff limits the accuracy of the results that can be obtained. Furthermore,
we find a better metric for selecting and ordering the computational basis
states based on matrix elements of the perturbing operator. These insights,
combined in the high overlap states truncation scheme allows us to construct
the initial state to better accuracy and at a lower computational cost. With
this newly minted algorithm, we compute the real-time dynamics of correlation
functions following the quench in Sec. 4.3 and compute the long time limit
using the diagonal ensemble.

In Sec. 4.4 we study strongly non-perturbative quenches, where numerical
renormalization group approaches within the high overlap truncation scheme
need some modification. A modified algorithm, the matrix element renormal-
ization group, is detailed in this section. We illustrate problems of the high
overlap states truncation scheme and the success of the matrix element renor-
malization group in computing non-equilibrium dynamics following strongly
non-perturbative quenches. Furthermore, we introduce a general version of
the matrix element renormalization group algorithm able to deal with excited
states as well as ground states. We conclude in Sec. 4.5, where we also suggest
a number of future directions for studies. The work in this chapter was done
in collaboration with J.-S. Caux and N.J. Robinson [2].

4.1 Formulating the problem

In this chapter we consider a quench of the repulsive Lieb-Liniger model in the
interaction strength from some initial interaction strength ci > 0 to another
interaction strength cf > 0. This means that we initialize the system in
an eigenstate of the initial Hamiltonian H(ci), unless mentioned otherwise we
choose the ground state, and time evolve it using the final Hamiltonian H(cf ).
The time evolution of the ground state of the initial Hamiltonian, which is not
an eigenstate of the final Hamiltonian, is therefore non-trivial.

Analytical approaches, such as for example the quench action [57, 58], are
centred around the overlaps between the initial state and the eigenstates of
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the final Hamiltonian under which it evolves. After all, given these overlaps,
we can expand the initial eigenstate as

|Ψ0〉 =
∞∑
n=0

|λ〉 〈λ|Ψ0〉︸ ︷︷ ︸
the overlaps

(4.1)

in terms of the Bethe states |λ〉 of H(cf ). This expansion in turn determines
the time evolution of the initial state by adding the appropriate phase factors,
which gives

|Ψ0(t)〉 ≡ e−iHLL(cf )t|Ψ0〉 =
∞∑
n=0

e−iEλt|λ〉〈λ|Ψ0〉, (4.2)

where Eλ is the energy of |λ〉 with respect to H(cf ). Unfortunately, it is
not generally known how to compute these overlaps even in cases where the
powerful tools of the Algebraic Bethe Ansatz are applicable, despite progress
in a few cases [44, 59–73]

Due to the limited success of analytical methods for computing the overlaps,
it is a natural question to ask if numerical methods can be used instead.
Since the expression for the time evolved state depends on the expansion
of the initial state in terms of the eigenstates of the final Hamiltonian, we
should aim to determine the corresponding overlaps numerically. In cases
where the initial Hamiltonian can be constructed in terms of the eigenbasis
of the final Hamiltonian, these overlaps can be determined by diagonalization
of the Hamiltonian. However, for the interaction quench under consideration
here, we are dealing with a continuum bosonic model, rendering the Hilbert
spaces infinite dimensional. This necessitates the truncation of the Hilbert
space of the final Hamiltonian in order to be able to represent the Hamiltonian
as a finite matrix we can diagonalize. This process of truncating the Hilbert
space is called the truncated spectrum approach.

It should be noted that our knowledge of the spectrum of the final Hamil-
tonian allows us to work directly with strongly correlated basis states. This is
different to how the truncated spectrum appraoch has previously been used to
tackle out-of-equilibrium dynamics [50, 51, 74, 75, 53, 76, 55, 56], as usually
the computational basis used consists of non-interacting bosons or fermions.
In such cases, both the initial state and eigenstates of the final Hamiltonian
have to be expanded in the computational basis.

Knowledge of the spectrum of the final Hamiltonian in itself is however
not enough to successfully use the truncated spectrum approach. We also
have to be able to construct the initial Hamiltonian in terms of this set of
basis states. For the case at hand here, this is achieved through knowledge of
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matrix elements obtained using the Algebraic Bethe Ansatz [33, 34]. To see
this, note that we can write relate the initial and final Hamiltonian by

H(ci) = H(cf ) + (ci − cf )

∫ L

0
dxΨ†(x)Ψ†(x)Ψ(x)Ψ(x). (4.3)

From this formulation, we see that we can view the initial Hamiltonian as a
perturbation of the final Hamiltonian. We emphasize however, that we put
no restrictions on the difference (ci − cf ), so the perturbation need not be
small in any sense. In the zero momentum sector, which is the relevant sector
to the problem under because g2 is a momentum-preserving operator and the
initial state we consider has zero momentum, the matrix elements of the initial
Hamiltonian are given by

〈µ|H(ci)|λ〉 = δµ,λEλ + (ci − cf )L〈µ|
(
Ψ†(0)

)2(
Ψ(0)

)2|λ〉. (4.4)

Here the |µ〉, and |λ〉 on the right hand side are again the eigenstates of
H(cf ) for some finite number of particles N . For such finite size systems, a
determinant expression for the matrix element on the right hand side has been
derived, as discussed in Sec. 2.4.2. The basis we choose for the expansion we
also call the computational basis states.

4.2 Developing a High Overlap States Truncation Scheme

Having discussed how an expansion of the initial state in terms of the com-
putational basis can be found by diagonalization of a truncated Hamiltonian,
the question that presents itself is which states of the computational basis we
should include in order to obtain optimal convergence of physical quantities.
Suppose we can order the states of the computational basis according to the
magnitude of their overlaps with the initial state, i.e. according to |〈λ|Ψ0〉|2.
In this case, we can obtain an approximate expansion of the time evolved wave
function by included the Ntot states with the highest weight, giving

|Ψ(t)〉approx =

Ntot∑
n=0

e−iEλt|λ〉〈λ|Ψ0〉. (4.5)

In this expansion, the norm of the time evolved wave function is saturated up
to

s(Ntot) = 1−
Ntot∑
n=0

|〈λ|Ψ0〉|2 . (4.6)

As a result, the errors of bounded operators A(t) evaluated for the approximate
time evolved state are themselves bounded by εmax given by

εmax

[
A(t)−A(t)approx

]
= s(Ntot)maxm,n(Am,n). (4.7)
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Here Am,n = 〈m|A|n〉 are the matrix elements of A with respect to the mth and
nth states of the computational basis. As a result, we can make the maximal
error εmax arbitrarily small by making s(Ntot) arbitrarily small.

Unfortunately, as mentioned previously, we do not a priori know the over-
laps. The remainder of this section is concerned with developing a method that
comes as close as possible to this optimal truncated basis. The method we ar-
rive at after several steps we call the high overlap state truncation scheme and
draws inspiration from the conventional truncated spectrum aproach. Rather
than present directly the final algorithm and show it works well, we show also
the process that led us there since we deem it insightfull.

4.2.1 The truncated spectrum approach

Since the Hilbert space of the Lieb-Liniger model is infinite dimensional, its
Hamiltonian is represented by an infinite dimensional matrix. Furthermore,
the perturbed Hamiltonian we introduced in the formulation is dense in the
computational basis of eigenstates of the final Hamiltonian. To come to an
expansion of the initial state and in order to find the corresponding approxi-
mate numerical values of the overlaps 〈λ|Ψ0〉 we have to truncate the Hilbert
space in some manner.

To start, let us consider the standard approach [41–43, 46] in the case where
the perturbing operator is renormalization group relevant. In this case, the
following holds:

1. The diagonalization of the Hamiltonian leads to a strong mixing of the
low-energy states of the computational basis, i.e. the low-energy eigen-
states are superpositions of many states.

2. The diagonalization of the Hamiltonian leads to a weak mixing of the
high-energy states, i.e. the computational basis states are approximate
eigenstates of the perturbed Hamiltonian.

3. A consequence of the previous points is that low-energy and high-energy
states in the computational basis cannot strongly couple.

Given the presumed decoupling of the low and high energy states of the
computational basis, the simplest truncation method would be to introduce
an energy cutoff Λ. This is the approach taken by Yurov and Zamalodchikov in
their original papers where they considered perturbed conformal field theories
[41, 42]. Given such a cutoff, we can consider the convergence of quantities
we are interested in, such as the energy of the approximate ground state, as a
function of the cutoff energy. An example of this is shown in Fig. 4.1 where
we consider the interaction quench for the ground state starting from from
ci = 20 to cf = 10 for the case of ten particles at unit density. What allows us
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Figure 4.1: A combined plot of the number of states Ns below a given energy
cutoff Λ and the relative error (E(Λ) − Eexact)/Eexact of the approximate
ground state energy E(Λ) obtained by including all Ns states below the cutoff.
The system parameters considered for this plot are ci = 20, cf = 10, N = 10 =
L.

to make this comparison is that we know the ground state energy of H(ci) so
that we can measure convergence by considering (E0−Eexact)/Eexact. For the
data we were able to generate, the convergence of the energy of the ground
state can be fitted with an exponential function.

Although a very natural approach to take, convergence with the cutoff en-
ergy Λ is slow for many models [46]. Furthermore, the number of states can
grow very rapidly with the cutoff energy, which quickly renders us unable to
diagonalize the truncated Hamiltonian. For the case at hand here, this can
clearly be seen from Fig. 4.1, which we remind the reader concerns a calcu-
lation for a mere 10 particles. In order to deal with these limitations, various
techniques have been developed [46]. In the next section, we show how the nu-
merical renormalization group can be utilized to deal with the rapidly growing
number of states as the cutoff increases.

4.2.2 The numerical renormalization group extension

To overcome the issue with the rapidly growing number of states as a function
of the cutoff energy Λ, we adopt an iterative procedure proposed by Konik
and Adamov [43]. This procedure enriches the ideas from Zamalodchikov’s
truncated spectrum approach [41, 42] with the ideas from Wilsons’s numerical
renormalization group [77]. The resulting procedure can be summarized as
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follows:

1. Generate a computational basis {|λi〉}1≤i≤Ntot and order the computa-
tional basis states in order of increasing energy as measured by the final
Hamiltonian.

2. Construct the truncated perturbed Hamiltonian for the first Ns +∆Ns

states of the reordered computational basis and diagonalize it to obtain
Ns + ∆Ns approximate1 eigenstates {i}1≤i≤Ns+∆Ns and corresponding
approximate energies {Ẽ1, . . . , ẼNs+∆Ns}.

3. Discard the ∆Ns approximate eigenstates with the largest energies from
the set of approximate eigenstates obtained by diagonalizing the trun-
cated perturbed Hamiltonian.

4. Add the first ∆Ns states from the computational basis that have thus far
not been part of the truncated basis and add them to the Ns approximate
eigenstates kept from step three forming a new truncated basis.

5. Construct the truncated Hamiltonian in terms of this new truncated
basis and diagonalize it to generate new approximate eigenstates and
energies.

6. Return to step three.

Steps three through five are repeated, continually updating a set of Ns ap-
proximate eigenstates and energies until we exhaust the computational basis
or until we are satisfied with the convergence reached. Note that for ev-
ery round of the procedure we diagonalize a truncated Hamiltonian of size
(Ns + ∆Ns)

2. Despite having to repeat this procedure many times in order
to exhaust the computational basis, this can be more efficient than having to
diagonalize a single N2

tot matrix as would be required for the standard trun-
cated spectrum approach. In fact, using the renormalization group extension
allows computational bases of hundreds of thousands or even millions of states
to be exhausted [78, 79], for which it would be impossible to diagonalize the
full truncated perturbed Hamiltonian.

To illustrate the performance of the numerical renormalization group ex-
tension, see Fig. 4.2 where we consider the quench from ci = 20 to cf = 10 for
N = 10 = L where the parameters for the numerical renormalization group are
Ns = 600 and ∆Ns = 200. Here we consider the convergence of the ground
state energy E0 as a function of the number of computational basis states.

1They are of course the numerically exact eigenstates of the truncated pertrubed Hamilto-
nian we consider here, but this makes them only approximate eigenstates of the full perturbed
Hamiltonian.
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Figure 4.2: Comparison between the truncated spectrum approach (TSA)
and its extension with the numerical renormalization group (NRG-E) for the
convergence of the approximate ground state energy E0 with the number
of basis states. We consider the quench where ci = 20 and cf = 10 for
N = 10 = L. The parameters for the numerical renormalization group ex-
tension are Ns = 600 and ∆Ns = 200, where the first step containing 800
states corresponds to an energy cutoff of Λ ≈ 50. We plot half the NRG-E
steps and see excellent agreement between its results and the results from
full diagonalization as obtained using the truncated spectrum approach (left
panel). However, as intended, the numerical renormalization group extension
is capable of considering larger computational bases (right panel).
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In the left panel we see that the results between the full truncated spectrum
approach agree with those obtained via the numerical renormalization group
extension despite the modest size of the truncated Hamiltonian in this case.
In the right panel we see that this extension enables us to deal with 280, 000
states, which is far more than we would be able to deal with if we stuck to di-
agonalizing the full truncated Hamiltonian. For the 280, 000 states conisdered
here, the energy of the ground state has converged to below 3.5%, which cor-
responds to about 11% of the Fermi energy. For reference, this is significantly
smaller than the level spacing E1 − E0 for the parameters we consider.

4.2.3 Ordering by an alternative metric

Although the numerical renormalization group extension allows us to consider
large computational bases, slow convergence of the ground state energy with
the size of the computational basis can still prevent us from reaching our
desired accuracy. For example, if we wish to reach a precision of 2% for
the parameters considered in Fig. 4.2, we would likely have to exhaust a
computational basis of over a million states. However, a closer look at the
right panel in Fig. 4.2 indicates that perhaps a smaller computational basis
could achieve similar convergence. To see why, note that the convergence of the
energy appears to follow a step-like structure. This means that in many steps
the new states of the computational basis states we introduce do not affect
the convergence of the ground state energy in a meaningful way. Therefore,
if we could eliminate these unimportant contributions and instead focus on
those strongly affecting convergence, we could obtain the same convergence
with fewer states. The question we have to ask ourselves is then if we can
replace the energy as the ordering metric in order to prioritize the important
states.

One alternative ordering that can be considered is based on previous works
[79–82, 46] where one takes an ordering metric based on the matrix elements
of the perturbing operator with respect to the lowest energy eigenstates of the
initial Hamiltonian, i.e. ∣∣∣〈λ|g2(0)|Ẽj〉

∣∣∣ , j = 0, 1, 2. (4.8)

where |Ẽj〉 are the lowest energy eigenstates of H(ci). The idea behind this
ordering metric is that it allows us to find the states in the computational basis
which hybridize most strongly with the low energy states we are interested in.
However, we cannot evaluate Eq. (4.8) directly since we do not know the off-
diagonal matrix elements of the g2 operator between eigenstates at different
values of the interaction strength. We first have to construct an expansion of
the lowest energy eigenstates in terms of the computational basis. This can
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Figure 4.3: The quantum number configurations corresponding to the 100
highest weight computational basis states according to the matrix element
metric as defined in Eq. (4.8) for the interaction quench from ci = 20 to
cf = 10 at N = 10 = L. The sample of highest weight states shown here
came from a total basis of 273, 358 states, which is the same computational
basis used in 4.2. Note that some of the high weigh states have high energy
excitations.
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be done by using the truncated spectrum approach for a small subset of the
computational basis we are interested in and then using the weight defined in
4.8 to reorder the rest of the computational basis.

To gain insight into the effect of this reordering of the computational basis
based on the metric defined in Eq. (4.8), we visualize the quantum number
configurations of the first one hundred states after reordering in Fig. 4.3. We
see that this matrix element ordering is significantly different to the order-
ing by energy as many of the high weight states have pairs of highly excited
quantum numbers compared to the ground state configuration. One can even
think of grouping different configurations together in families of states where
the same quantum numbers move out further and further, think e.g. con-
tributions 4-8,10,12,. . . which can be characterized as being in the ground
state configuration where the two outermost quantum numbers have become
excited and are moving away to infinity. Interestingly, the higher energy states
of this family have higher weights according to the matrix element metric, the
complete opposite way they would be ordered according to the energy metric.
Furthermore, we see that the ground state of the final Hamiltonian is the third
highest weight state according to this metric.

1. Convergence of the ground state energy
The reordering shown in Fig. 4.3 is not what we a priori would have ex-
pected, but proves its merit by leading to massive improvements in con-
vergence as shown in Fig. 4.4. Here we see that after a mere seven steps
of the renormalization group procedure, corresponding to 2000 states,
the matrix element ordered procedure obtains convergence better than
energy ordered routine does after considering 100, 000 states. Further-
more, we see that the procedure with the reordered basis quickly plateaus
indicating that the computational basis states considered in those steps
do not contribute appreciably to the convergence of the ground state
energy. Although approximately the same threshold is reached, the al-
ternative ordering proves very promising. Therefore we consider only
such alternative metrics based on matrix elements from now on.
One of the limiting factors at this stage, is that the convergence we can
achieve is limited by the quality of the computational basis we generate.
Furthermore, we have thus far generated bases based on an energy cutoff
after which we computed weights for the computational basis states ac-
cording to Eq. (4.8) which can also be costly computationally. A better
approach would be to leverage the Hilbert space exploration algorithms
we considered in Chapter 3 to generate a more optimal basis that is gen-
erated in the right order so that no additional reordering is required. We
consider this approach in Sec. 4.2.4, but before then let us investigate
the results we have generated thus far further.
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Figure 4.4: A comparison of the convergence of the ground state energy for
the truncated spectrum approach extended by the numerical renormalization
group where we either order the computational basis states by their energy
(NRG-E) or the matrix element metric defined in Eq. (4.8) (NRG-ME). Again
the parameters we consider are ci = 20, cf = 10, N = 10 = L and Ns = 600,
∆Ns = 200 for a total of about 280,000 basis states. The results comparing the
regular truncated spectrum approach and the energy ordered renormalization
group extension (NRG-E) were previously presented in Fig. 4.1. For the
new results using the reordered basis (NRG-ME) however, we see a massive
improvement in convergence of the ground state energy (which is also observed
for other low-lying excited states).
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Figure 4.5: The overlaps of the computational basis states, i.e. eigenstates of
the Lieb-Liniger model at H(10) with the approximate ground state at H(20).
We obtain the overlaps by constructing the approximate ground state using
the renormalization group extension of the truncated spectrum approach on
the basis reorderd according to Eq. (4.8). We show the overlaps after step 50
and step 100, showing that the large overlaps are well-converged, which is not
surprising given the convergence pattern observed in Fig. 4.4.

2. The overlaps: Convergence and structure
Thus far we have considered the convergence of the ground state energy,
which gives us a quantitative way of measuring convergence since we
know the exact ground state energy from the Bethe ansatz solution of
the model. While useful, this convergence of the energy is not the only
relevant quantity whose convergence we are interested in. For example,
for the time evolved wave function, which forms the basis for computing
the time evolution of observables, the overlaps are the central objects.
Of course, our formulation of the quench in terms of a truncated Hamil-
tonian was precisely chosen to obtain these overlaps, so let us consider
their convergence in by plotting the log of the square of the overlap of a
computational basis state versus its energy for two well-separated steps
in the procedure as shown in Fig. 4.5. We see that the large overlaps
have converged well, which is not the case for the smaller overlaps, which
are likely also affected by floating point errors. Fortunately, these small
overlaps are not of physical importance, as we argued at the start of Sec.
4.2.
One subtlety that should be addressed, is that although the large over-
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laps in Fig. 4.5 have converged with respect to the numer of steps of
the renormalization group procedure, we would obtain different overlaps
if we chose a different computational basis. After all, the diagonaliza-
tion of the Hamiltonian returns normalized states and there are further
strongly contributing states with energies above the effective energy cut-
off Λ ≈ 180 we have considered thus far. Regardless, this does not nec-
essarily mean that physical quantities are not well-converged, as we will
discuss shortly. Besides the convergence of the overlaps, Fig. 4.5 shows
that the energy of a state is not a good indicator of the size of its overlap.
In particular, there appear to be rare sets of states, whose energies are
large, whose overlaps dominate those of the majority of states.

Having confirmed that the overlaps converge with the number of steps
of the renormalization group procedure for a fixed computational basis,
let us take a closer look at the structure of the high overlap states. For
the quench from cf = 20 to cf = 10, the quantum number configurations
corresponding to the 100 highest overlap states are shown in Fig. 4.6,
starting from the highest overlap states on the bottom. We see that the
largest overlap state is the ground state of the final Hamiltonian, and
the next most important states are those with two particle-hole pairs of
increasingly larger energies. The energies can be increased either by the
outermost particles moving away further from the Fermi sea, or by holes
moving further into the Fermi sea. This structure can be understood in
conjunction with Fig. 4.5 where we see that as the energy increases, the
maximal overlap decreases.

If we compare the prediction for the highest overlap states presented in
Fig. 4.3, we see many of the same states, albeit ordered in a different
way. This reordering is immaterial as long as the states are included in
the same step of the renormalization group procedure. However, it also
indicates that the ordering metric used to produce this prediction is not
ideal. In the next section we introduce an alternative metric, which aims
to predict the highest overlap states more accurately and in a way that
does not require us to first compute approximate low-energy eigenstates.

4.2.4 Introducing a preferential scanning routine

Thus far we have shown that reordering the computational based on infor-
mation about the perturbing operator can lead to massive improvements in
convergence when compared to a traditional energy ordering. Currently our
procedure is limited by the fact that we have to first generate a computational
basis for which we compute some weighing function which requires us to first
produce some approximate low-energy eigenstates using the truncated spec-
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Figure 4.6: The quantum number configurations corresponding to the 100
highest overlap states for the interaction quench from ci = 20 to cf = 10 at
N = 10 = L. The overlaps are computed using the numerical renormalization
group procedure with the reordered basis according to 4.8 using Ns = 600 and
∆Ns = 200. The largest overlap states are the ones at the bottom.
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trum approach. If we wish to achieve better convergence, we have to eliminate
the implicit energy cutoff that comes with this approach, since we saw clearly
that high energy states can have large overlaps. For example, Fig. 4.5 shows
that there are computational basis states with energies between 100 and 1000
which have square overlaps as large as 10−4.

Given the extensive discussion on Hilbert space exploration algorithms in
Chapter 3, a natural question to ask is if we can come up with a weighing
function for the eigenstates of the final Hamiltonian that accurately predicts
the importance of a state. We could use the metric in Eq. (4.8), but it raises
the question which states we use to first compute the approximate low-energy
eigenstates and we already saw that it did not reproduce the optimal ordering
of computational basis states. Instead, we look to perturbation theory for a
better weighing function.

For the results obtained thus far, we saw that the ground state of the
final Hamiltonian has the largest overlap with the ground state of the initial
Hamiltonian, which we are trying to find an expansion for. The second order
perturbative expansion for the ground state of the initial Hamiltonian is then
given by

|Ψ0〉 = |0〉+ (ci − cf )L
∑
m 6=0

〈m|g2(0)|0〉
E0 − Em

|m〉. (4.9)

Here the integers label eigenstates of the final Hamiltonian, with 0 labelling
the ground state. Given this expansion, a natural weight for a given eigenstate
presents itself, namely

w (|m〉) =
∣∣∣∣ 〈m|g2(0)|0〉
Em − E0 + ε

∣∣∣∣ , (4.10)

which is the estimate of the overlap from second order perturbation theory up
to a numerical factor ε introduced to avoid a divergence for the case where
n = 0 (we take ε = 0.1). Given this weighing function, we can very efficiently
generate a close to optimal computational basis, as shown in Sec. 3.6.2.

Let us consider the 400 highest weight states of the computational basis
generated using the weighing function introduced in Eq. (4.10) for the quench
from ci = 20 to cf = 10 for ten particles at unit density as shown in Fig.
4.7. We see that the ordering here is significantly different to the ordering
we obtained by using the matrix element metric from Eq. (4.8), and instead
much more in line with the numerical results for the states with the highest
overlaps shown in Fig. 4.6. Furthermore, it is clear from Fig. 4.7 that the
computational basis generated in this way is not only ordered differently to the
basis obtained by considering an energy cutoff. After all, already in the first
400 states we see states with highly excited quantum numbers, corresponding
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Figure 4.7: The quantum number configurations corresponding to the 400
highest highest weight states for the interaction quench from ci = 20 to cf = 10
at N = 10 = L according to Eq. (4.10). The quantum number number
configurations and their ordering are similar to those of the highest overlap
states in Fig. 4.6, i.e. the preferential scanning routine generates an efficient
basis.
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to high energy eigenstates that would be excluded when considering an energy
cutoff. Furthermore, having gotten rid of the energy cutoff opens the way to
achieving better convergence as we discuss in the following sections.

The procedure of doing a preferential Hilbert space scan based on the per-
turbative expansion for the overlap is what we call the high overlap states
truncation scheme (HOSTS).

4.2.5 Checking convergence within the high overlap states trun-
cation scheme

With the high overlap states truncation scheme, we are freed of the energy
cutoff that was limiting the convergence we were able to obtain previously.
For example, in Fig. 4.4 we were able to find a decent ordering of the com-
putational basis which sped up convergence compared to the energy ordering,
but the energy cutoff was limiting the total convergence we could reach (about
3.5%). The preferential scanning routine introduced in the previous section is
not limited in this way, allowing us to reach convergence to much less than one
1% whilst at the same time significantly decreasing the computational cost.

In the following sections, we study in more detail the convergence of the
energy but also the convergence of the overlaps and local expectation values.
For all these quantities, a question we should ask is if we can extrapolate these
results to obtain the exact result. If this extrapolation can be done is unclear
since there exists for example no scaling law for the energy as a function of
the size of the computational basis. However, since our scheme is centred
around the weight of eigenstates based on matrix elements of the perturbing
operator it is a natural candidate to be used in an extrapolation scheme. For
example, we can plot the convergence of the quantity we are interested in
versus the lowest weight state included in the computation for a given level
of convergence. We will show that this leads to a reasonable extrapolation
scheme.

1. Convergence of the energy

To substantiate our claim that the high overlap state truncation scheme
can achieve better convergence, see Fig. 4.8(a). Here we show the con-
vergence of the energy versus the number of states of the computational
basis included in the calculation. For the results shown here, a com-
putational basis is generated by running abacus for 30 seconds and
reordering the states according to Eq. 4.10 since abacus does not al-
ways generate states in the perfect order. This gives us an ordered basis
consisting of 220, 743 states which we use for the numerical renormal-
ization group procedure with Ns = 540 and ∆Ns = 160. Even for basis
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Figure 4.8: The convergence of the ground state energy for the quench from
ci = 20 to cf = 10 using the high overlap states truncation scheme. (a) The
ground state energy versus the number of basis states. (b) The ground state
energy versus the lowest weight included in a given step of the renormalization
group procedure for two different total basis sizes. In both cases the computa-
tional bases were generated using abacus and the numerical renormalization
group was performed using Ns = 540 and ∆Ns = 160. The ground state en-
ergy is converged to well below 1% for a couple of thousand basis states, which
represents a huge improvement compared to the energy ordered procedure we
started with, see Fig. 4.4.
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Figure 4.9: The overlaps of the computational basis states at different steps of
the numerical renormalization group procedure using the high overlap states
truncation scheme for the quench from ci = 20 to cf = 10 for N = 10 = L
using Ns = 540 and ∆Ns = 160. In (a) we show all of the overlaps whereas in
(b) we focus on the low energy region of the plot to enable an easier comparison
to Fig. 4.5.

sizes of a couple of thousand states, which would be accessible with ex-
act diagonalization, we see that this results in excellent convergence of
below 0.5%. To indicate the improvement this represents, recall that
for the energy ordered renormalization grup procedure the ground state
energy was only converged up to over 3% after 200, 000 states.
In Fig. 4.8(b) we consider the extrapolation scheme discussed in Sec.
4.2.5 for which we plot the convergence of the ground state energy versus
the lowest weight included per step. Comparing the results for two
different total basis sizes shows that there is some dependence on the
total basis size for small values of the lowest included weight, which
means that for the algorithm used to generate these plots not all states
above a given value had been generated.

2. Convergence of the overlaps
Having seen how the high overlap states truncation scheme is able to
achieve excellent convergence, let us return to the convergence of the
overlaps. The convergence of the overlaps for the quench from ci = 20
to cf = 10 is shown in Fig. 4.9 for three different steps of the renor-
malization group procedure. From studying this figure, we can draw a
couple of conclusions.
First of all, we see the preferential scanning routine indeed generates the
high overlap states. Note that this is not a trivial statement since we
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only used the second order perturbation theory formula for the overlaps
to select states whereas here we consider the numerical overlaps deter-
mined using a non-perturbative method. Secondly, we again see that
only the energy of a state is not a good indicator of its overlap as the
maximal overlap as a function of the energy is a slowly decreasing func-
tion. For example, by just the thirteenth step of the renormalization
group procedure we are probing states with energies of order 10, 000,
which is enormous compared to the exact ground state energy given by
26.9684027 . . .. Finally, there appear to be families of states, as alluded
to previously in Sec 4.2.3, whose overlaps at high energies could in prin-
ciple be extrapolated.
Let us compare the results obtained in Fig. 4.9 using the preferential
state generation to the overlaps computed using the original basis ob-
tained by choosing an energy in Fig. 4.5. We see that for similar bases
sizes, preferential scanning probes far higher energies and also that it on
average yields larger overlaps, showing that the method is successful.

3. Convergence of local expectation values
Thus far we have considered only the convergence of the energy of the
initial state and the convergence of the overlaps with the number of steps
of the renormalization group procedure. One can however wonder if this
is sufficient to guarantee convergence for other properties of the initial
state. In this section we focus on local properties of the initial state we
constructed. In particular, we compare the convergence of expectation
values of local operators for the constructed state to the known exact
values. Knowledge of the exact values comes again from the fact that
H(ci) is integrable. This verification will allow us that we are not merely
reproducing a state of the same energy, but also capturing more of its
structure.
The first local observable we consider is the diagonal matrix element of
the density operator. Since the final Hamiltonian we consider conserves
particle number and system is translationally invariant, the diagonal
matrix elements of the density operator are equal to N/L for all com-
putational basis states. Since the approximate eigenstate of the initial
Hamiltonian we construct is a superposition of these states, the same
holds true for the expansion.
Another set of local expectation values we consider are those of the op-
erators appearing in the Hamiltonian. Since the energy converges, so
should these local expectation values, but we can also explicitly verify
this. To do so, let us consider the local expectation values of the opera-
tors that make up the Hamiltonian, namely the kinetic part ∂xΨ†(0)∂xΨ(0)
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Figure 4.10: The difference between the exact value of the g2(0) expectation
value in the ground state and the expecation value of the approximate eigen-
state we construct using HOSTS for the quench from ci = 20 to cf = 10 at
N = 10 = L. In (a) we show convergence with the number of states whereas
in (b) we show convergence with the lowest weight, as given by Eq. (4.10),
included in a given step.

and the interacting part g2(0) = Ψ†(0)Ψ†(0)Ψ(0)Ψ(0). Their conver-
gence is shown in Fig. 4.10 and 4.11, where we compare the expctation
values to the exact values for the ground state of H(ci). We see that the
expectation values of the g2(0) operator have not converged as well as
those of the kinetic energy. This is not inconsistent with the convergence
of the energy since for large values of the interaction strength the kinetic
energy term dominates the interaction energy2 Overall, we see that we
are correctly reproducing the expecation values of the local operators
appearing in the Hamiltonian for the constructed states. Furthermore,
we obtain reasonable results after extrapolating the values of the local
operators as a function of the lowest included weight.

4.3 Non-equilibrium dynamics from the high overlap states
truncation scheme

Now that we have successfully developed a method to numerically determine
the overlaps for the ground state undergoing a quench in the interaction
strength, we can compute the non-equilibrium dynamics following the quench.
As mentioned in Sec. 4.2.1, determining the non-equilibrium dynamics given
the overlaps is in principle straightforward using Eq. (4.2) truncated to the

2This is point is exaggerated in the limit where c goes to infinity and we end up in
the Tonks-Girardeau limit in which the system can be mapped to one of non-interacting
fermions.
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Figure 4.11: The convergence of the expectation values for the approximate
ground state of ∂xΨ†(0)∂xΨ(0) minus the exact value. We consider again the
quench from ci = 20 to cf = 10 at N = 10 = L. Here the exact value of
〈0|∂xΨ†(0)∂xΨ(0)|0〉 is given by 2.22032.

first Ntot terms giving as in Eq. (4.5). In this section we use this expansion
to first determine the return amplitude and the fidelity before moving on to
the time evolution of g2(t).

4.3.1 The return amplitude and the fidelity

The first out-of-equilibrium quantity we consider is called the return ampli-
tude, which is defined as

〈Ψ0|Ψ0(t)〉 ≈
Ntot∑
n=0

e−iEλt |〈λ|Ψ0〉|2 . (4.11)

The interest in this quantity arises from the potential non-analyticity of

f(t) = − lim
L→∞

1

L
log 〈Ψ0|Ψ0(t)〉 (4.12)

The fidelity is another quantity of interest which is given by

F(t) = |〈Ψ0|Ψ0(t)〉|2, (4.13)

i.e. it is the absolute value squared of the return amplitude.
We will use the results for the return amplitude and the fidelity to investi-

gate differences in convergence between out-of-equilibrium quantities and the
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Figure 4.12: The real part of the return amplitude as defined in Eq. (4.11)
(left) and the fidelity as defined in Eq. (4.13) (right) for the quenched ground
state from ci = 20 to cf = 10 at N = 10 = L. We show the aformentioned
quantities for three different sizes of the computational basis. Furthermore,
kF = π(N − 1)/L is the Fermi momentum as discussed in Sec. 2.3. Both the
return amplitude and the fidelity are seen to converge rapidily with the size of
the computational basis as compared to the energy as we investigated in Fig.
4.8.

energy and local expectation values we have considered thus far. It is generally
unclear if convergence in one case implies convergence in the other. What we
do know is that the energy is an unbounded operator which makes that the
terms in Eq. (4.5) are unbounded, whereas each term appearing in Eq. 4.11 is
bounded by one. Therefore it is perhaps unsurprising that we observe quicker
convergence for the return amplitude and the fidelity, which show excellent
convergence for (very) small computational basis, as shown in Fig. 4.12.

It should be noted that computing the return amplitude and the fidelity
is easy since it only involves a single summation over Ntot overlaps which we
have already determined. This will no longer be the case when we consider
the time evolution of expecation values of operators in which case we will see
that we have to evaluate and sum at least N2

tot matrix elements.

4.3.2 Time evolution of local observables

Consider an operator O and suppose we are interested in the time evolution of
its expectation value with respect to |Ψ0(t)〉. In constrast to the calculation of
the return amplitude and the fidelity, this involves summing over N2

tot terms
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Figure 4.13: The time evolution of the expectation values of g2(t) for the
ground state following a quench in the interaction strength from ci = 20 to
cf = 10 at N = 10 = L. Here, kF = π(N − 1)/L is the Fermi momentum
as discussed in Sec. 2.3. We show results for three different sizes of the
computational basis, which shows that the time evolution has converged even
for the small basis sizes considered.
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given by

〈O(t)〉i ≡ 〈Ψ0(t)|O|Ψ0(t)〉,

=

Ntot∑
n,m=0

e−it[En−Em]〈Ψ0|m〉〈m|O|n〉〈n|Ψ0〉. (4.14)

Besides the fact that this involves summing over N2
tot terms rather than just

Ntot as was the case for the return amplitude and the fidelity, it also involves
computing the matrix elements 〈m|O|n〉, which in itself can be computation-
ally difficult.

Having seen rapid convergence for the return amplitude and the fidelity for
small computational bases, we can hope that the same will be true for the
time evolution of more general local quantities. Here we consider the operator
O to be g2, whose matrix element expressions we discussed in Sec. 2.4.2. In
Fig. 4.13 we show the time time evolution of

g2(t) = 〈Ψ0(t)|g2(0)|Ψ(t)〉 (4.15)

for the quench from ci = 20 to cf = 10 at N = 10 = L. Again we see excellent
convergence for the same small computational bases.

The small computational bases required to obtain convergence for the time
evolution in this section and the previous one indicate that we will be able to
compute the time evolution for observables for larger particle numbers with
reasonable computational resources as well. An example of this can be seen
in Sec. 3.

1. Comparison to the coordinate Bethe ansatz
In order to check the time evolution results we converge to are indeed
correct, we compare to results known from the literature. Not a lot
of results for quenches in the interaction strength at finite values of
the interaction strength are present in the literature due to the lack of
analytical expressions for the overlaps. An exception are some results
regarding the time evolution of g2(0) using the coordinate Bethe ansatz
presented in [49]. In this section, a quench from ci = 100 to cf =
3.7760 for N = 5 is considered and the subsequent time evolution is
computed. The approach is exact, but limited to small system sizes
since the coordinate Bethe ansatz approach scales extremely poorly with
system size. In fact, the computation of g2(t) involves dealing with a
summation over (N !)2 terms.
The extreme difference in the interaction strength considered in [49] rep-
resents a challenging quench due to the difference in energy density of
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Figure 4.15: The convergence of the diagonal ensemble prediction for g2(0) as
a function of the size of the computational basis (left) and its time evolution
compared to the extrapolated value in the diagonal ensemble (right). Again
we consider the quench from ci = 20 to cf = 10 for N = 10 = L. The
extrapolated value from the diagonal ensemble is compared to the dynamics
obtained using Ntot = 3500 as shown previously in Fig. 4.13.

the ground state before and after t = 0. This likely leads to the creation
of many excitations making it a challenging scenario to test our method
on. Additional numerical difficulties are introduced when considering
uneven numbers of particles due to the presence of rapidities close to
zero. As a result, we compare the coordinate Bethe Ansatz results for
N = 5 to numerical data obtained for N = 4 (we discuss the case where
N = 6 later). We present the time evolution data for g2(t) in Fig. 4.14.
We observe excellent agreement up to the revival time which is relevant
due to this being a small periodic system. More importantly, this com-
parison shows that we are able to capture all the physics relevant to the
non-equilibrium dynamics at a significantly reduced computational cost.

2. The long time limit: the diagonal ensemble
Thus far we have shown that we can determine the out-of-equilibrium
dynamics of observables at finite times, but we can also determine the
long time limit of the dynamics. In this limit the problem simplifies,
as is well-studied in the literature (see e.g. [47]). In our case, we have
determined the overlaps, so we can directly consider the long time limit
in the diagonal ensemble to be [47]

〈O〉DE =
∑
j

〈j|O|j〉 |〈j|Ψ0〉|2 . (4.16)

This is related to the long time limit of the time-averaged expectation
values in the limit where the system is also large (see e.g. the appendix
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Figure 4.16: Example calculation showing (a) the energy convergence of the
initial state; (b) the time evolution of the fidelity for N = 20 particles, for the
quench ci = 20 → cf = 10.

of [49]), i.e.

lim
T→∞

1

T

∫ T

0
dt〈Ψ0(t)|O|Ψ0(t)〉 → 〈O〉DE. (4.17)

It turns out that if O equilibrates sufficiently quickly, the long time limit
is actually equal to the result in the diagonal ensemble

lim
t→∞

〈Ψ(t)|O|Ψ(t)〉 → 〈O〉DE. (4.18)

as shown in for example [83]. Therefore we can use the diagonal ensemble
to determine the long time limit from the overlaps.
We show results obtained for the diagonal ensemble for the g2 operator
using the high overlap states truncation scheme Fig. 4.15. In the left
panel we consider the convergence of the diagonal ensemble result with
growing size of the computational basis and extrapolate to find the result
at Ntot → ∞. Then we compare this result obtained via extrapolation
in the right panel to the dynamics of g2(t) previously shown in Fig. 4.13.
We see that fitting a straight line to the convergence data fits very well
and that the resulting infinite basis value agrees with the finite time
dynamics up to fluctuations. The presence of fluctuations in this case
are unsurprising since we are still only dealing with ten particles.

3. An example with larger numbers of particles
So far, we have examined quenches with relatively small numbers of
particles, N = 4, 6, 10. It is worth emphasizing that even for these num-
bers of particles, exact calculations via the coordinate Bethe ansatz are
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computationally expensive, and exact calculations with N = 10 corre-
sponding to summing ∝ (N !)2 ∼ 1.3× 1013 terms. To even contemplate
exact evaluation for N = 20 particles, ∝ 5.9 × 1036 terms, seems fu-
tile. Instead the high overlap states truncation scheme, in combination
with the numerical renormalization group, gives one a handle on such
problems.
Here, we consider the ci = 20 → cf = 10 quench for a larger numbers of
particles (N = 20) as an illustrative example.
Results for the energy convergence and the time evolution of the fidelity,
F(t), are shown in Fig. 4.16.

4.4 Introducing the Matrix Element Renormalization Group

In this section, we consider a perturbing operator (ci − cf )Lg2(0) whose ma-
trix elements, with respect to some of the computational basis states, are large
compared to the energy difference between these states and the unperturbed
ground state. We call quenches for which the perturbing operator satisfies
this property “strongly non-perturbative”. In such cases relying solely on the
metric (4.10) discussed in the previous section, which was motivated by lead-
ing order perturbation theory, is no longer justified. Higher order terms are
expected to be relevant and, as a result, we need to modify the way we select
and order states. Not only this, but we need to re-examine the assumptions
behind the numerical renormalization group procedure discussed in Sec. 4.2.2,
and modify these accordingly. In the final part of this section we show how
the resulting procedure allows us to not only treat quenches where the initial
state is a ground state, but also those where it is an excited state.

As matrix elements of the perturbing operator become large, contributions
of a given computational basis state to the ground state mediated via other in-
termediate computational basis states can become relevant. This corresponds
to the second order terms in Eq. (4.9) no longer being negligible compared to
the first order terms. However, such contributions are not considered in the
standard numerical group procedure as discussed in Sec. 4.2.2. As a result,
these contributions are missed when states are not by chance included in the
same step of the renormalization group procedure. We will see that these con-
tributions can play an important role for strongly non-perturbative quenches,
so they need to be taken into account.

An illlustration of how naively applying the algorithms developed thus far
can lead to inaccurate results for strongly non-perturbative quenches is shown
in Fig. 4.17. Initially the differences between the results obtained using the
numerical renormalization group and full diagonalization are small, but as the
number of iterations increases, the discrepancy becomes larger.
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Figure 4.17: An example calculation showing that for strongly non-
perturbative quenches there can be a large discrepancy between the results
from full diagonalisation and the NRG-extension of HOSTS. We consider
the ci = 100 → cf = 3.7660 quench for N = 6 particles, cf. Fig. 4.14.
N +∆Ns = 800 is fixed within each data set.

4.4.1 The matrix element renormalization group algorithm for
the ground state

To deal with the problem for strongly non-perturbative quenches discussed in
the previous section, we develop a reworking of the numerical renormalization
group procedure that we refer to as the matrix element renormalization group.
The main differences between the matrix element renormalization group and
the conventional renormalization group algorithm are:

1. All the approximate eigenstates obtained at each step of the algorithm
(from diagonalization of a truncated Hamiltonian) are kept, unlike in
the conventional case where one discards ∆Ns states at each iteration.

2. When introducing new computational basis states, we select which of the
previously obtained approximate eigenstates to include in the Hamil-
tonian using a weighing function based on the quadratic terms in the
perturbation-series expansion of the wave function (4.9) instead of in-
cluding the approximate eigenstates with the lowest energies.

The matrix element renormalization group takes seriously the idea that ma-
trix elements of the perturbing operator, rather than energies, are the impor-
tant quantity when operators are not strongly renormalization group relevant.
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The central idea is that computational basis states |λj〉 newly included at a
given step can mediate strong coupling between the approximate ground state
and approximate “excited states” obtained at an earlier iteration. These “ap-
proximate states” must then be included in the truncated Hamiltonian at this
diagonalization step to ensure an accurate description of the ground state.
So, instead of blindly removing the high energy approximate “excited states”
at each step of algorithm (as in the conventional numerical renormalization
group), we keep all approximate eigenvectors, and at each iteration include
the states most important for mediating the coupling between the approxi-
mate ground state and the newly added states from the computational basis.

Let |Ω〉 be the ground state of the final Hamiltonian, then the steps of the
matrix element renormalization group are as follows:

1. Generate the computational basis via preferential state generation from
the ground state |Ω〉. Order the states in the computational basis ac-
cording to the metric in Eq.(4.10), to obtain {|λj〉}.

2. Construct a truncated Hamiltonian from the first Ns + ∆Ns computa-
tional basis states, {|λ1〉, . . . , |λNs+∆Ns〉} and diagonalize this Hamilto-
nian to obtain the first approximate eigenstates

{
|1〉, . . . , |Ns + ∆Ns〉

}
with energies {E1, . . . , ENs+∆Ns}. These approximate eigenstates re-
place the first Ns + ∆Ns states in the computational basis, and are
ordered such that Ẽ1 < · · · < ẼNs+∆Ns .

3. Define a new basis of Ns+∆Ns eigenstates for the truncated Hamiltonian
by adding the next ∆Ns states from the computational basis {|λj〉} to
the approximate eigenvector with the lowest energy |1〉 as well as the
Ns − 1 approximate eigenstates {|i〉}i>1 whose “second order weight”,
given by

w2 (|i〉) =
∑
j

〈i|δH|λj〉〈λj |δH|1〉
(Ẽ1 − Ej)(Ẽ1 − Ẽi)

. (4.19)

is largest. Here δH = cLg2(0) is the perturbing operator (see Sec. 4.1,
the sum ranges over all ∆Ns newly added computational basis states,
and Ej = E(|λj〉) are the energies of the newly added computational
basis states.

4. Construct the truncated Hamiltonian in this new basis and diagonalize
it to obtain Ns +∆Ns new approximate eigenstates. These newly con-
structed approximate eigenstates replace the states in the computational
basis used to construct the truncated Hamiltonian.

5. Return to the third step.
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This process is continued, obtaining new approximate eigenstates after each
cycle of steps 3 to 5, until the required convergence of the ground state energy
is reached or the computational basis is exhausted.

The matrix element renormalization group has some slight disadvantages
when compared to the conventional numerical renormalization group. Firstly,
it is more memory intensive: a complete set of approximate eigenstates must
be retained in the procedure, while in the conventional routine we only need
keep track of Ns such approximate eigenstates.3 Secondly, the matrix element
renormalization group has a higher computational burden since it requires
the computation of the second order weight for all approximate eigenvectors
at the start of each iteration. However, we have seen that the conventional
numerical renormalization group fails to produce accurate results for strongly
non-perturbative quenches (see Fig.4.17) so these savings in memory and com-
putations compared to the matrix element renormalization group are moot.

There are a couple of alternative, complementary, schemes that could be
used to construct the initial state. Firstly, there exist “sweeping” improve-
ments of the conventional numerical renormalization group (see, e.g., their
discussion in [46]). If succesful however, this additional would certainly come
at a higher computational cost than directly using the matrix element renor-
malization group. Secondly, one could invoke iterative diagonalization (via,
e.g., Lanczos or Davidson) within a given truncated basis. In such a proce-
dure, one would have to check convergence of results with basis size, but one
can (in principle) deal with very large bases. How quickly such iterative diag-
onalization converges, with our matrix being dense, is not clear. We have not
explored this avenue, but it is an interesting direction for future works.

4.4.2 Results from the matrix element renormalization group
for the ground state

With the matrix element renormalization group algorithm in place, we can
employ it to tackle problems that are inaccessible to the conventional numerical
renormalization group.

However, first we check that the matrix element renormalization group cor-
rectly reproduces results in cases where the conventional numerical renormal-
ization group approach works. This is a basis sanity check: can we reproduce
the initial state and its dynamics in these simpler cases. Our first example
is ci = 20 → cf = 10 quench studied earlier in this chapter. We present the
convergence of the energy and the overlaps in Figs. 4.18(a)–(b). In particular,
Fig. 4.18(b) should be compared to Fig. 4.9 obtained previously. We see ex-
cellent agreement between the conventional numerical renormalization group

3In practice, since we need at most Ns approximate eigenvectors at any one time, these
eigenvectors do not have to be stored in memory.
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Figure 4.18: Top row: Matrix element renormalization group (MERG) and
numerical renormalization group (NRG) for the ci = 20 → cf = 10 quench for
N = 10 particles, computed within the high overlap states truncation scheme.
(a) The convergence of the initial state energy as a function of number of basis
states; (b) the convergence of the overlaps at different steps of the MERG
procedure (cf. Fig. 4.9). Bottom row: MERG and full diagonalization results
for the N = 4 particle quench ci = 100 → cf = 3.7660: (c) the convergence
of the energy of the initial state with the number of basis states; (d) the time
evolution of g2(t) with 2500 basis states.
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Figure 4.19: The convergence of the initial state energy E0 for N = 6 particle
quench ci = 100 → cf = 3.7660 obtained with the matrix element renormal-
ization group (MERG). MERG is performed with Ns = 720 and ∆Ns = 80.
Conventional numerical renormalization group approaches break down in this
scenario (for the same Ns,∆Ns) as shown in Fig. 4.17. Full diagonalization
results, for the same number of basis stats, are shown for comparison.

and the matrix element renormalization group in this scenario.
As a second check, we turn our attention to the harder quench considered

in the previous section for N = 4 particles, ci = 100 → cf = 3.7660. Here
we check against full diagonalization of the truncated Hamiltonian (as the
required number of states for excellent convergence is rather small), as shown
in Figs. 4.18(c)–(d). The matrix element renormalization group gives results
in excellent agreement with full diagonalization of the same basis, both in
terms of energy of the initial state, Fig. 4.18(c), and the non-equilibrium
dynamics of observables, Fig. 4.18(d).

With the matrix element renormalization group correctly reproducing both
full diagonalization (in small bases) and conventional numerical renormaliza-
tion group (in large bases) results, we examine the problematic scenario dis-
cussed in the previous section. In this strongly non-perturbative quench, the
matrix element renormalization group is vital for correctly constructing the
initial state. In scenarios where the conventional numerical renormalization
group fails to produce results which agree with results obtained by diagonal-
ization of the full truncated Hamiltonian, such as the one illustrated in Fig.
4.17, the matrix element renormalization group continues to produce results
that agree with great accuracy as is shown in Fig. 4.19.
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ci = 100 → cf = 3.7660 in the Lieb-Liniger model starting from the ground
state at ci. Exact data (dashed line) computed via the coordinate Bethe
ansatz with N = 5 particles (from Ref. [49]) is compared to matrix element
renormalization group (MERG) calculations with N = 6 particles.

In Fig. 4.19 we see a number of features. Firstly, we note that the agree-
ment between the results obtained by full diagonalisation of the truncated
Hamiltonian and using the matrix element renormalization group are in ex-
cellent agreement. Secondly, regardless of the procedure, the convergence of
the initial state energy shows some plateaus and jumps, which implies that
the metric (4.10) is not the perfect one. Understanding how to construct the
most convergent metric for a given problem is an outstanding challenge, which
requires further investigations. Thirdly, we see that for N = 6 particles the
problem is very challenging: By including 50, 000 states, we still only achieve
initial state energies correct to within ∼ 5.5% (∼ 10% w.r.t. the Fermi en-
ergy). Whilst a better ordering metric might improve this, it still seems likely
that strongly nonperturbative quenches will present a significant numerical
challenge. This is further supported by Fig. 4.20, where we show the time
evolution of g2(t) as compared to results from the coordinate Bethe ansatz
discussed previously. We see that even a truncated wave function (4.5) with
50, 000 states included does not accurately realize the short time dynamics of
observables. At longer times, once the steady state plateau is approached (and
high energy modes have dephased, effectively averaging to zero), the truncated
wave function does describe g2(t) well.
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4.4.3 The matrix element renormalization group algorithm for
excited states

In contrast to conventional renormalization group techniques, which at most
target the first few excited states in addition to the ground state, the matrix
element renomalization group can also be used to target more highly excited
states. Furthermore, the algorithm can construct these states without the
need to construct all the states of lower energy making the procedure a more
efficient tool to target excited states than the methods discussed thus far. In
order to do so we have to make some changes to the algorithm described in
Sec. 4.4.1.

To understand why we need to change the algorithm in Sec. 4.4.1 in or-
der to consider excited states, let us consider what happens if we replace the
ground state with an excited state in the algorithm. This state will henceforth
be referred to as the seed state. First of all, the preferential state generation
routine leads to a different computational basis, as we now consider |0〉 in
Eq.(4.10) to be an excited state. In particular, the ground state may not
have a high weight according to this metric, so it may not even be included
in the computational basis obtained via preferential state generation. Second
of all, the algorithm retains the lowest energy approximate eigenstate |E1〉
at every step, and selects the approximate eigenstates most relevant to this
approximate eigenstate based on the second order weight. This means that
the selection rules are still set to promote the convergence of the lowest energy
eigenstate, rather than an excited state. Finally, it is generally unclear which
eigenstate of the perturbed Hamiltonian corresponds to which of the approx-
imate eigenstates obtained by the algorithm, as energies of different excited
states can be very similar and even degenerate.

Before we discuss how we resolve these issues, note that every step of the
algorithm represents a mapping between the states used to construct the trun-
cated Hamiltonian and the approximate eigenstates obtained by diagonaliza-
tion. To identify which of the approximate eigenstates a given state used in
the basis for the truncated Hamiltonian is mapped to, we compute the over-
laps between this state and all newly obtained approximate eigenstates. The
approximate eigenstate with the largest overlap is then said to be its image
provided that the RG-step is “small enough”. This allows us to track the
approximate eigenstate derived from the seed state throughout the procedure.

The main assumption behind our method of tracking the seed state is that
the number of states added at every step of the routine is small enough, so
that no single iteration wildly changes the (image of) the seed state. What
step size is small enough for this assumption to hold depends on the quench
and seed state under consideration.4 However, there are some general methods

4It may happen that no step size is small enough when we consider a very strong quench
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by which one can check if an appropriate step size has been chosen. Firstly,
one can consider the overlaps computed at each iteration of the routine and
verify that there is only one state with a significant overlap. Secondly, one can
rerun the routine with a smaller step size and check that it produces the same
results. With the preferential scanning routine in place, by which the most
significantly states are identified and included first, the start of the routine
is where the changes are most drastic and therefore the procedure is most
likely to break down there. As a result, the checks proposed here need not be
time-consuming.

Now that we have established how we can track the seed state, we note
that we can replace the lowest energy approximate eigenstate with the image
of the seed state in the second order metric used in Eq. (4.20). This change,
together with the replacement of the ground state with an arbitrary seed state
in the preferential scanning routine results in a routine designed to optimize
the convergence of the approximate eigenstate associated to the seed state.
The resulting algorithm can be summarized as follows.

Let |Ω〉 be some eigenstate of the final Hamiltonian, which in this case can
be an excited state, then the steps of the matrix element renormalization group
are as follows:

1. Generate the computational basis via preferential state generation from
the seed state |Ω〉. Order the states in the computational basis according
to the metric in Eq. (4.10), to obtain {|j〉}.

2. Construct a truncated Hamiltonian from the first Ns + ∆Ns computa-
tional basis states, {|λ1〉, . . . , |λNs+∆Ns〉} and diagonalize this Hamilto-
nian to obtain the first approximate eigenstates {|1〉, . . . , |Ns +∆Ns〉}
with energies {Ẽ1, . . . , ẼNs+∆Ns}.

3. Compute the overlaps between |Ω〉 and the newly acquired approximate
eigenvectors {|1〉, . . . , |Ns+∆Ns〉}. Then relabel the approximate eigen-
states such that |1〉 refers to the approximate eigenstate with the largest
overlap.

4. Take the next ∆Ns computational basis states |λj〉 and compute the
“second order weight” for each of the approximate eigenstates |i〉 with
i > 1 obtained in previous steps:

w2 (|i〉) =
∑
j

〈i|δH|λj〉〈λj |δH|1〉
(Ẽ1 − Ej)(Ẽ1 − Ẽi)

. (4.20)

and/or a highly excited state.
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Here δH = cLg2(0) is the perturbing operator (see Sec. 4.1, the sum
ranges over all the newly added computational basis states, and Ej =
E(|λj〉) are the energies of the newly added computational basis states.

5. Form a truncated basis consisting of |1〉, the Ns − 1 states in {|i〉
}
i>1

with the largest w2-weight, and the ∆Ns computational basis states
introduced in step 4, construct the truncated Hamiltonian in this basis
and diagonalize it to obtain Ns + ∆Ns new approximate eigenstates
{|1′〉, . . . , |(Ns +∆Ns)

′〉}.

6. Compute the overlaps between |1〉 and the newly acquired approximate
eigenvectors, and replace |1〉 by the approximate eigenvector with the
largest overlap. Replace the remaining approximate eigenvectors used
to form the truncated basis in step 5 with the remaining newly obtained
approximate eigenvectors.

7. Return to the fourth step.

This process is continued, obtaining new approximate eigenstates after each
cycle of steps 4 to 6, until the required convergence of the eigenstate is reached
or the computational basis is exhausted.

This version of the matrix element renormalization group is not more mem-
ory intensive than the routine presented for constructing ground states and it
is only slightly more computationally intensive. The additonal computational
cost comes from computing the overlaps at each iteration.

4.4.4 Results from the matrix element renormalization group
for excited states

As mentioned in Sec. 4.4.3, one of the subtleties that arises when considering
the matrix elemenent renormalization group for excited states is that, even
though we know that we construct an approximate eigenstate of the perturbed
Hamiltonian, we do not necessarily know a priori what eigenstate this will
correspond to. For the interaction quench considered here, the most natural
eigenstate of H(ci) to end up with when starting from an eigenstate of H(cf ) is
the eigenstate with the same quantum numbers. In this section we show some
preliminary results to verify this claim, although we do note that to assert
with more certainty that this claim is true, more properties of the eigenstates
other than the energies would have to be considered. This is left to future
works.

Consider again the quench from ci = 20 to cf = 10. In the following we
present the results obtained from running the algorithm three times with three
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different seed states, whose doubled quantum numbers are given by

State A: {−9,−7,−5,−3,−1, 1, 3, 5, 7, 9} (4.21)
State B: {−11,−7,−5,−3,−1, 1, 3, 5, 7, 11} (4.22)
State C: {−17,−13,−9,−5,−1, 1, 5, 9, 13, 17}. (4.23)

The results for the energy convergence of the approximate eigenstates corre-
sponding to these seed states obtained from the matrix element renormaliza-
tion group are shown in Fig. 4.21. In order to keep track of the convergence,
we again consider the percentual error of the energy only this time with re-
spect to a different target energy of the each of the runs. The target energy
Eexact is taken to be the energy of the eigenstate of H(ci) with quantum num-
bers identical to those of the seed state under consideration. We note that
even though we only consider data for the energy convergence here, we have
still computed the expansion of the approximate eigenstates in terms of the
eigenstates of the initial basis, so could still compute the time evolution of
operators if we please to do so.

The rate of convergence of the run seeded by the lowest excited state, state
B, is comparable to the convergence when considering the ground state, state
A. On the other hand, when considering a run seeded by a highly excited state,
state C, the convergence shows characteristics reminding us of the strongly
non-perturbative quenches considered in Sec. 4.4.2. Also, in order to keep
track of the right approximate eigenstate throughout the procedure, we had to
significantly alter the parameters characterizing the size of the renormalization
group steps to Ns = 75 and ∆Ns = 25.

The fact that considering higher energy states requires a decrease in step
size is what currently limits how high the energy of the seed states may be. To
overcome this limitation, we would have to reorder the computational basis
so that single steps of the procedure do not change the targeted approxi-
mate eigenstate as violently. Nevertheless, even without such alterations, our
current algorithm goes beyond what one could target using the conventional
renormalization group techniques we discussed at the start of this paper, be-
cause in that case one would have to construct all lower energy eigenstates.

4.5 Conclusions

Even in the presence of integrability, the computation of non-equilibrium dy-
namics following a quantum quench remains a great challenge for theory. Well-
controlled numerical approaches are vital for accessing the physics away from
analytically tractable limits, including for the cases of finite-time dynamics
of observables. Here we have presented a proof-of-principle investigation of
finite-c to finite-c quenches in the Lieb-Liniger model using a high overlap

88



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1.0×104 2.0×104 3.0×104 4.0×104 5.0×104

(E
−
E

ex
a
ct
)/
E

ex
a
ct

Number of basis states

State A
State B
State C

Figure 4.21: The convergence of the states A, B, and C, for the N = 10 particle
quench ci = 20 → cf = 10 obtained using the matrix element renormalization
group (MERG). For state A, and B, MERG is performed with Ns = 700 and
∆Ns = 100, whereas for state C, MERG is performed with Ns = 75 and
∆Ns = 25.

states truncation scheme, in combination with full diagonalization, the numer-
ical renormalization group, and a new matrix element renormalization group
algorithm. We have worked with interacting computational basis states, which
intrinsically have built-in strong correlations, and we have systematically con-
structed initial states in terms of high overlap states, for quenches starting
from ground states as well as excited states. Using these, we have computed
both real-time dynamics and the long-time limit of physical observables fol-
lowing a quench.

In our development of a high overlap states truncation scheme, and the
matrix element renormalization group, we have highlighted the important role
played by the ordering of the computational basis. Applying the conventional
metric, energy of the computational basis states, we observe poor convergence
of properties of the initial states. This poor convergence means applying
conventional “truncated spectrum methods” (in their naive form) requires the
use of unfeasibly many computational basis states. By modifying the metric,
to a “matrix element” focused one that takes into account the structure of the
operator coupled to the quench parameter, we achieve orders-of-magnitude
improvement in the convergence of properties of the initial state with truncated
Hilbert space size. This was studied in Sec. 4.1. Along the way, we were able
to develop a routine that preferentially generates the states with high overlap
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following a quench, and this enabled efficient convergence of the initial state
energy to sub-percent precision.

This improved convergence opened the door to computing non-trivial non-
equilibrium dynamics for numbers of particles far beyond the reach of brute
force computations. This was discussed in Sec. 4.3. Convergence of real-time
non-equilibrium dynamics of local observables with the number of computa-
tional basis states was surprisingly fast: for N = 10 particles ci = 20 → cf =
10 quench, well-converged results for time evolution of g2(0) are obtained with
just thousands of states (some of which are of very high in energy). The long-
time limit was also shown to be efficiently accessed via the diagonal ensemble,
with results agreeing with the intermediate time dynamics, as expected.

In the case of strongly non-perturbative quenches, we found that conven-
tional numerical renormalization group improvements have to be significantly
modified to achieve accurate results. This modification, the so-called matrix
element renormalization group, takes seriously that the properties of the per-
turbing operator should govern the whole procedure. We found this modifica-
tion to be necessary in the “large quench” studied previously in the literature
[49], ci = 100 → cf = 3.7660, when considering more than four particles.
Our results were compared to the coordinate Bethe ansatz results of Zill et
al. [49], and were found to be in excellent agreement. We note, however, that
such strongly non-perturbative quenches remain challenging problems, with
the quench projecting the initial state on to many states with sizable overlaps.
This makes it tough to tackle even relatively small numbers of particles, even
with our computationally efficient approach. This seems like an insurmount-
able problem with introducing additional approximations, beyond the scope
of this work, or alternative Hilbert space ordering metrics.

Finally, we considered the construction of excited states of the perturbed
Hamiltonian. We wrote down a variant of the matrix element renormaliza-
tion group algorithm able to directly construct excited states of a perturbed
Hamiltonian in terms of the eigenbasis of another Hamiltonian without hav-
ing to construct all lower energy eigenstates. This allows one to consider
more highly excited states than one normally could using the truncated spec-
trum approach and focusses the computational resources on this particular
eigenstate rather than it being a less well-converged side-product of trying
to converge the approximate eigenstate representing the ground state of the
perturbed Hamiltonian.

The presented high overlap states truncation scheme, combined with full
diagonalization and renormalization group improvements, can be applied to
many other models and scenarios. Perhaps the most interesting is to con-
sider the case with integrability-breaking where, provided matrix elements of
the integrability-breaking terms are known, one can directly apply the same
approach. This enables, for example, non-perturbative studies of prether-
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malization (see, e.g., Refs. [84–87, 23]) in continuum quantum gases. Other
interesting directions include extensions to other integrable continuum mod-
els, such as two-component Bose and Fermi gases or the sine-Gordon regime
away from the ultra-relevant perturbation limit [55]. Finally, we would like
to point out that the method developed in this paper provides, in principle,
all the ingredients necessary to compute for example the time evolution of the
entanglement entropy. In order to come to a tractable computation one can
convert the overlaps coming from the NRG-routines to a root distribution and
then use the quasi-particle picture formulas for the entanglement entropy, see
e.g. [88, 89]. However, in order to ascertain the accuracy of results obtained in
this way, a careful quantitative study of finite-size effects is required in order
to determine if we can accurately match results in the thermodynamic and
scaling limits. We leave addressing this challenge to future work.

Extending these methods to lattice models should also be possible, using
strongly correlated integrable eigenstates. Such an algorithm may complement
existing ones: being able to tackle longer times, but smaller systems, than
the time-dependent density matrix renormalization group, but larger system
sizes than exact diagonalization. It may also be interesting to implement the
ideas behind the matrix element renormalization group to lattice and impurity
models, invoking a Wilsonian numerical renormalization group-like picture
with strongly correlated basis states. These points remain for future works.

The approach implemented within this chapter for simulating continuum
one-dimensional models provides an alternative, complementary approach to
continuum matrix product state methods [90, 91]. Utilizing the solvability
of a proximate integrable point, time evolution is easy within our approach
and can be performed to long times with high precision. This opens the door
to novel, non-perturbative studies of non-equilibrium dynamics in models of
relevance to cold atomic gases.
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Chapter 5

Properties of matrix elements

The previous chapters have shown the central role played by the matrix ele-
ments to the computation of correlation functions as well as the time evolution
following a quantum quench. For both problems we were interested in the rare
eigenstates whose matrix elements are most important to the calculation at
hand. In this chapter we study the matrix elements in the Lieb-Liniger model
in more detail. In particular, we consider not only the rare eigenstates whose
matrix elements with respect to some given operator are largest but also the
statistics of matrix elements of the typical states. The results presented in
this chapter are part of an ongoing investigation in collaboration with F.H.L.
Essler, N.J. Robinson and J.-S. Caux [3]. The paper that we are preparing on
the subjects discussed in this chapter also features numerical and analytical
results for the infinitely repulsive limit, but since my contribution concerned
the interacting limit I will restrict the discussion here to the latter.

5.1 The one particle-hole sector

The states with few particle-hole pairs are disproportionally important to the
calculation of, for example, the dynamical structure factor as we saw in Chap-
ter 3. For this calculation the single particle-hole sector is most the most
important one due to the nature of the density operator as explained in Sec.
2.4. In this section we consider the matrix elements of the density operator for
this important sector of atypical states with respect to the ground state as well
as representative thermal states. We do so at a fixed value of the momentum
so that there are at most N such states to consider rather than considering
the entire infinite family of states with a single particle-hole pair we would
otherwise have to deal with.

For concreteness, at any particle number N and interaction stregth c we
consider the corresponding representative state {Iri }Ni=1 describing the ground
state or the best finite size approximation for the T = 10 thermal state at unit
density. It is with respect to this reference state that we define the number of
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particle-hole pairs and compute the off-diagonal matrix elements. To generate
a state with a single particle-hole pair at a momentum value k, we have to
increase one of the quantum numbers of {Iri } by kL

2π . Trying this addition for
every quantum number and seeing if it results in a valid state, containing no
coinciding quantum numbers, gives us all states with a single particle-hole pair
at the desired momentum.

The first step to understanding the matrix elements in this sector is to find
the scaling with system size. To do so, we generate the states |µ〉 with a
single particle-hole pair w.r.t. the reference state |λ〉 and compute both their
energy difference ω = Eµ − Eλ as well as their off-diagonal matrix elements.
By rescaling the matrix elements until the results for different system sizes
collapse allows us to determine the scaling with system size. For T = 0 we
observe that the matrix elements scale with a fractional power in L for all
values of c giving

|〈0|ρ|µ〉|2 ∼ g(µ, λ)

L∆(c)
(5.1)

as shown in Fig. 5.1a, b, c. At zero temperature, the scaling of matrix elements
have previously been investigated by comparing Luttinger liquid theory to the
explicitly known form factor expressions [92]. However, these results are only
valid for excitations around the Fermi sea, which is no longer the case when
we consider the entire single particle-hole sector with holes in the middle of
the Fermi sea.

At finite temperature the scaling formula no longer involves a fractional
power in system size. It however does feature an exponential factor giving

|〈λ|ρ|µ〉|2 ∼ h(µ, λ)

L2
e−Lf(µ,λ). (5.2)

as shown in Fig. 5.1d, e, f. At first glance one might expect this exponential
factor to be related to the entropy, but this is not the case. This indicates that
the matrix element statistics of the single particle-hole sector deviates from
the predictions we would obtain by applying the Eigenstate Thermalization
Hypothesis [93]. Interestingly, the 1

c expansion can be used to accurately
predict the value of the matrix elements in the one particle-hole sector away
from the large interaction strength limit [94, 3].

Knowledge of the scaling of the off-diagonal matrix elements of the density
operator can be used to gauge the relative importance of these states in, for
example, the dynamical structure factor calculation. To see why, recall that
the sumrule weight of an eigenstate |µ〉 is given by

wf (µ) =
L

Nk2
(Eµ − Eλ) |〈λ|ρk|µ〉|2 (5.3)

For T = 0 this implies that the sum over the f sumrule contributions of the
single particle-hole sector scales as L−∆(c) whereas at finite temperature it does
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Figure 5.1: The rescaled off-diagonal density matrix elements versus the energy
difference ω of the state compared to the ground state in (a)-(c) and the
thermal state at T = 10 in (d)-(f). In both cases we consider kets at k = π
and unit density. At zero temperature, the values of delta we obtain are
∆(1) ≈ 1.22, ∆(4) ≈ 1.03, and ∆(16) = 1.005.
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Figure 5.2: The relative importance of the 1ph sector. We see that in all cases
the importance of the single particle-hole sector decreases more slowly with
system size when compared to the finite temperature case. Furthermore, we
see that the decrease in importance of the single particle-hole sector is slower
at larger values of the interaction strength.

not imply a clear scaling of the sum due to the fact that the exponential factors
in that case are state-dependent. It is however clear from the exponential
suppression that at finite temperature the importance of the single particle-
hole sector vanishes much more rapidly as can be seen in Fig. 5.2. One
way of understand this difference is that at finite temperature there are many
more multi particle-hole states where all but one particle-hole pair are soft
modes. Such states carry similar weights to the pure single particle-hole states,
diminishing their relative importance. Of course the importance of the single
particle-hole sector in absolute terms at fixed system size depends also on
the interaction strength, where its importance increases with the interaction
strength.

5.2 The two particle-hole sector

In constrast to the sector of states with a single particle-hole pair with respect
to the representative state, the two particle-hole sector contains an infinite
number of eigenstates, even at fixed momentum. One way of eliminating
this problem is by introducing an energy cutoff in addition to the momentum
restriction. However, even with a cutoff in the energy, the number of states
grows very rapidly with system size making it difficult to generate the entire
two particle-hole sector for large system sizes as is necessary to determine the
scaling relations. An alternative approach is to sample the two particle-hole
sector with a cutoff rather than generate it exhaustively. This is the approach
we take in this section.

We impose a cutoff on the two particle-hole sector by restricting the max-
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imal and minimal values a rapidity can take. Note that this implicitly also
introduces an energy cutoff, although we are still unable to generate all states
up to the cutoff for all but the smallest system sizes. Therefore we choose
to sample this space of states instead. Let N = L be the system size under
consderation and let {Iri } be the quantum numbers of the state with respect
to which we want to consider the two particle-hole sector. Then the steps of
the sampling procedure used to generate states with two particle-hole pairs at
some momentum ∆k = 2π∆I

L 6= 0 with rapidities in [λmin, λmax] are as follows:

1. Determine which two quantum numbers will be changed by picking two
random integers k, l ∈ {1, . . . , N} such that k 6= l.

2. Estimate the bounds on the quantum numbers for the randomly chosen
quantum numbers such that the rapidity bounds are respected: Replace
λl and λk in {λr

i }1≤i≤N by the maximal and minimal rapidity. We
replace the larger of the two by λmax and the smaller rapidity by λmin.
Plugging the resulting rapidities {λi}1≤i≤N into the Bethe equations for
λmin and λmax and solving for the corresponding quantum numbers gives
us an estimate of the quantum number bounds Imin, Imax corresponding
to this choice of the cut-off.

3. Change the randomly selected quantum numbers by adding to Il a ran-
dom non-zero integer from [Imin − Il, Imax − Il]\{0}. Since we target a
fixed momentum sector, this also determines the change in Ik. If the
resulting state does not satisfy the rapidity bounds, it is discarded.

The procedure outlined above generates a single eigenstate with two particle-
hole pairs compared to the initial state {Iri }1≤i≤N .

Let us now consider the results we obtain when we use this procedure to
generate 10, 0001 states with respect to the ground state at unit density for
different system sizes and interaction strengths. It is clear from Fig. 5.3a,
b, c that the matrix element distributions collapse if we multiply the matrix
elements by the square of the system size. This implies that the scaling of the
matrix element satisfies

|〈λ|ρ|µ〉|2 ∼ 1

L4
(5.4)

where |µ〉 and |λ〉 differ by two particle-hole pairs. Thus we no longer observe
the fractional scaling we encountered in the zero temperature case for the
single particle-hole sector.

Whereas the scaling of the matrix elements of the two particle-hole sector
are the same regardless of the interaction strength at zero temperature, this

1We have studied the number of states required to obtain consistent results by generating
data for multiple sampling sizes and comparing the results. We are confident that the
conclusions we draw throughout this chapter are not effected by sampling sizes.
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Figure 5.3: Distributions of the rescaled off-diagonal density matrix elements
of the 10, 000 states |µ〉 obtained for different system sizes via sampling of the
two particle-hole sector with respect to the ground state in (a)-(c) and the
thermal state at T = 10 in (d)-(f) both represented by |λ〉. In either case
we consider a momentum difference of between ket and bra of k = π and all
states have unit density.
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Figure 5.4: The rescaled size of the matrix element versus the momentum
jump of the first particle of the corresponding state. The data displayed here
is a random sampling of 10% of the data shown in Fig. 5.3.
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is not the case for the finite entropy states. For example, in 5.3d we see that
at c = 1 the distributions collapse after multiplying the matrix element by
L2 taking the logarithm of the resulting square and dividing by the system
length. The corresponding scaling relation for the matrix elements is therefore

|〈λ|ρ|µ〉|2 ∼ h(µ, λ)

L4
e−Lf(µ,λ). (5.5)

much like the one observed in Eq. (5.2). However, when we consider the
distributions at c = 16 in Fig. 5.3f the data nearly collapses when performing
the same rescaling as we do in the zero temperature case. At c = 4 neither
scaling relation yields a collapse indicating that there is a cross-over between
the weakly and strongly interacting regime.

In order to understand these differences in scaling relations, let us consider
how the sectors with different numbers of particle-hole pairs are connected.
We know that in all cases the f -sumrule is satisfied as described in Eq. (3.2)
and Eq. (3.3), which is independent of the interaction strength. Since the
number of states in a sector grows more strongly the more particle-hole pairs
are allowed, the matrix elements of states with more particle-hole pairs have
to be suppressed more strongly in order to preserve the sumrule. Furthermore,
there is an interplay between the size of the matrix elements and the energy
since both contribute to the f -sumrule, which has to remain unchanged. The
fact that we see a stronger suppression of the matrix elements in the weakly
interacting regime is consistent with the fact that in this case the density of
states at a given energy is higher.

Considering the distributions of matrix elements can be convenient for de-
termining the scaling relations, but from this we cannot deduce which prop-
erties of a state matter for the size of the matrix element. Note that there are
two properties which distinguish the different two particle-hole states, namely
which quantum numbers we turn into particle-hole pairs and how we distribute
the momentum jumps amongst these particle-hole pairs. In Fig. 5.4 we plot
the momentum jump of the first particle versus the size of the rescaled matrix
element for 10% of the points we obtained via sampling. We see that generally
as one of the two jumps is small, i.e. around k1 = 0 and k1 = π, the matrix
elements are smallest. This corresponds to the so-called soft modes, where one
of the particles moves only a little. Another observation we can make based
on Fig. 5.4 is that for a fixed value of k1 the spread of matrix element values
is larger for smaller values of the interaction strength. This indicates that as
the interaction strength decreases, which quantum numbers are moved has a
bigger influence on the resulting matrix element.

What the implications of the scalings determined in this section are to the
importance of the two particle-hole sector is more difficult to determine than
for the single particle-hole sector. After all, the number of states in the single
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particle-hole sector is finite and scales with N whereas here we are considering
an infinite sector. Furthermore, the number of soft modes increases with
system size whilst their matrix elements decrease. It is therefore inconclusive
from these results if the sumrule contribution of the two particle-hole sector
increases or decreases as system size increases. Furthermore, this may be state-
dependent since there are more soft modes possible for states with a higher
entropy.

5.3 Matrix elements between different macrostates

Thus far we have considered the matrix element between a reference state and
the corresponding one and two particle-hole sectors. Despite their differences,
such states still correspond to the same macrostate in the thermodynamic
limit. In this section we consider the scaling of matrix elements when we con-
sider microstates corresponding to different macrostates instead. We do so by
considering the representative states at different temperatures. In particular,
we consider the thermal states at T = 0, 5 and T = 10 at unit density for both
c ∈ {1, 4, 16} at different system sizes and compare the off-diagonal matrix el-
ements of the g2 operator2 as shown in Fig. 5.5. We consider the g2 operator
in this section rather than the density operator because we will be comparing
the representative states at different temperatures, which all have a vanishing
momentum. This is due to the fact that the root distributions are symmetric,
i.e. a root distribution ρ(x) satisfies ρ(x) = ρ(−x).

In Sec. 2.4.2 we argued that as states become increasingly different (in terms
of their quantum numbers), their off-diagonal matrix elements of physically
important local operators such as the density operator and the g2 operator
become smaller. Here we are looking at an extreme case of dissimilarity, the
states do not even correspond to the same macrostate. Therefore we expect
the matrix elements to vanish rapidly, but the question remains as to how
these matrix elements approach zero in the thermodynamic limit. If these
matrix elements would follow the Eigenstate Thermalization Hypothesis [93],
they would be of the form

〈λ|g2|µ〉 = f(ω,E)e−S(E)/2Rij (5.6)

where ω = Eµ−Eλ and E = (Eµ+Eλ)
1
2 and Rij is a real or complex random

number with mean zero and variance one. However, from Fig. 5.5 we see that
in actuality the dominant scaling suppresses the matrix elements much more

2Due to the rapidly vanishing nature of the matrix elements of the between microstates
corresponding to different macrostates arbitrary precision numerics is quickly required as
the number of particles increases.
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Figure 5.5: Scaling of the off-diagonal matrix elements between the finite size
representative states at for T ∈ {0, 5, 10} and N = L ∈ {64, 128, 256, 512}.

strongly giving
|〈λ|g2|µ〉|2 ∼ e−L2g(λ,µ). (5.7)

Rather than just being a numerical observation, the same scaling of the off-
diagonal matrix elements can also be derived analytically for the off-diagonal
matrix elements of the field operator in the c → ∞ limit [3].

5.4 Sampling macrosates

In Sec. 2.5 we explained that the relation between eigenstates at finite size and
root distributions is one-to-many. Until now we have used the representative
state to play the role of the thermal state. In this section we investigate the
surprisingly subtle problem of sampling eigenstates corresponding to a given
macrostate.

5.4.1 Microcanonical Sampling

Since the thermal state represents the maximal entropy state at a given energy
density, one way of sampling microstates corresponding to this macrostate is
by randomly generating states at the same energy density. Provided that we
do so in an unbiased way, the proportion of microstates corresponding to the
thermal state approaches one as we increase the system size. In this section
we consider a sampling of states at a given energy density by imposing a
cutoff in quantum number space and sampling every allowed state with equal
probability.

More precisely, the procedure required to generate a N particle state we
consider can be formulated as follows:

1. Choose maximal and minimal quantum numbers Imax and Imin.
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2. Construct the set of allowed quantum numbers {I1, . . . IM} between Imin
and Imax and randomly shuffle this set using for example the Fischer-
Yates shuffle algorithm.

3. Pick the N first entries of the quantum numbers after the shuffle as the
quantum numbers of the state.

This procedure uniformly samples the space of states respecting the quantum
number bounds which we will refer to as the microcanonical sampling proce-
dure. In order to ensure that we sample the thermal state we are interested
in, we compute the energy of each state we generate in this way. If the energy
of the state is within some designated window around the energy density of
the thermal state we keep the state whereas we discard it otherwise. From
now on we take the energy window to be ω ∈ [−1, 1], where ω is the difference
in energy of a microstate with respect to the reference state.

In this procedure an important role is played by the cutoff chosen for the
quantum numbers since this determines which part of Hilbert space we are
sampling. When considering results produced using this procedure we there-
fore have to ensure that our results are independent of the cutoff chosen. This
is the case when the overwhelming majority of eigenstates we are interested in
are included in the portion of Hilbert space being sampled by our algorithm.
Unfortunately, the number of states grows rapidly with an increasing cutoff
making it difficult to consider big variations in the cutoff.

First we consider the density function of 100, 000 quantum numbers gen-
erated using the microcanonical sampling for a window of size 1 around the
energy of the representative states of T = 10 thermal states at unit density
for c = 1, 4, 16. The results of this sampling are show in 5.6a, b, c for two
different choices of the cutoff. The dataset labelled ∆Imax = 0 refers to a
quantum number cutoff equal to the largest and smallest quantum numbers
of the representative states whereas the second dataset increases Imax by 5
and decreases the lower bound by the same amount. We can see how well
the resulting normalized distributions coincide to the thermodynamic result
shown in black. The data generated using the smaller cutoff, is lower in the
middle and falls off more slowly until the cutoff whereas for the larger cutoff
the agreement for most quantum numbers is approximately good up to the
cutoff3. Surprisingly, the momentum distribution of the states sampled agree
well despite their differences on the level of the root density as shown in Fig.
5.6d, e, f. The differences become more pronounced when considering the dis-
tributions of the third moment Q3 as shown in Fig. 5.6g, h, i. This is to be
expected as it is much more sensitive to large rapidities, where these samplings
are bound to differ.

3The larger cutoff dataset presented here is the best we can achieve with the computa-
tional means available to us.
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Figure 5.6: A comparison of the results obtained by sampling 100, 000 states
with ω ∈ [−1, 1] using the microconical sampling procedure for two different
values of the quantum number cutoff at T = 10 and unit density. For the
data labelled by ∆Imax = 0, the cutoff is equal to the maximal and minimal
quantum number of the representative state, whereas for ∆Imax = 5 they
are increased/decreased by 5. In (a)-(c) we compare the root distribution in
the thermodynamic limit with normalized histograms of the sampled quantum
numbers. We also consider the resulting normalized momentum distributions
in (d)-(f) as well as the normalized distributions of the third moment in (g)-(i).
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Although this method is easy to formulate, implement, and known to gen-
erate unbiased samples of the macrostate4, it also has significant downsides.
The most important limitation is that the computational cost of running the
algorithm scales exponentially with system size. This makes it impossible to
use it to properly consider scaling with system size or generate results not
troubled by finite size effects. Furthermore, the cutoff also artificially restricts
the portion of Hilbert space we are sampling and increasing it is exponentially
hard. Finally, it can only be used to sample the entropically most likely states,
i.e. the thermal states rather than general root distributions.

5.4.2 Box Sampling

The most commonly used method of sampling a macrostate is based on the
derivation of the entropy in Sec. 2.5. The idea is to divide the allowed quantum
numbers at finite size into boxes and to compute the number of quantum
numbers a given box has to hold from the root distribution. Then shuffling
the quantum numbers around in their respective boxes does not change the box
occupation number and therefore generates microstates corresponding to the
macrostate we used to determine the box occupation numbers. The problem
with this approach, commonly called box sampling, at the sizes we are able to
access is that the results depend strongly on our choice of boxes.

Practically, the box sampling procedure we employ works as follows. Let
N = L be the system size under consideration and let {Iri } be the quantum
numbers of the representative state. Then the steps of the box sampling
procedure we employ are as follows:

1. Choose the number of boxes Nb.

2. Compute the minimal box size ∆ such that Nb boxes can fit all the
quantum numbers of the representative state, i.e. choose the minimal
integer ∆ such that Ir1 +∆ ∗Nb ≥ IrN .

3. Center the boxes w.r.t. the state, i.e. choose the starting point of the
first box Is such that |Is − Ir1 |2 + |Is +Nb ∗∆− IrN |2 is minimal.

4. Determine the box occupation numbers, i.e. the number of quantum
numbers of the representative in a given box {Oi}i≤Nb

, which ranges
from Is +∆ ∗ (i− 1) to Is +∆ ∗ i.

5. Generate a set of quantum numbers {Ii} by randomly choosing Oi unique
quantum numbers for each box.

4Provided that we consider large enough system sizes.
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The procedure outlined above generates a single microstate characterised by
quantum numbers {Ii}.

An illustration of the results from such a sampling procedure are shown
in Fig. 5.7. Here the aforementioned dependence on the number of boxes
that one chooses is visible. Furthermore, Fig. 5.7d - i show that the resulting
momentum and third moment distributions are much more narrow compared
to the results from microcanonical sampling. The latter can be understood
from the fact that the portion of Hilbert space sampled by the box sampling
routine is smaller than that sampled by our microcanonical sampling routine.
One can expect this discrepancy between the two methods of sampling to di-
minish as we increase both the system size as well as the number of boxes.
This procedure is regularly followed to obtain the thermodynamic limit by
letting the system size go to infinity first and then the number of boxes. How-
ever, it turns out that, despite its appeal, in this approach the effects due to
the finite number of boxes are not well-controlled. After an extensive study of
these finite size effects, where we considered systems with up to hundreds of
particles, we have therefore decided to look for alternative sampling methods
not troubled by such problems.

5.4.3 Random Weighted Sampling

Having observed the problem with the complexity of the microcanonical sam-
pling in Sec. 5.4.1 and the problem with the ambiguities of box sampling in
Sec. 5.4.2, the question arises if we can sample the root distribution in a less
ambiguous yet efficient way. One approach that comes to mind is to consider
all possible integers with a very large cutoff and associate to them probabili-
ties based on the value of the root distribution at this point forming a discrete
probability distribution. In order to generate a state from this distribution
we have to pick N distinct integers, which can be achieved by removing a
quantum number from the discrete probability distribution after it has been
picked and rescaling the remaining probabilities.

This gives rise to the following procedure. Let N = L be the system size
under consideration and let {Iri } be the quantum numbers of the representative
state. Then the steps of the box sampling procedure which we call random
weighted sampling (RWS) we employ are as follows:

1. Choose a cutoff Imax = −Imin and generate the set of allowed integers
between the maximal and minimal values {I1, . . . , IM}.

2. Associate a weight ρ(I1) to each of the integers and normalize by the
sum to obtain a discrete probability distribution.

3. Pick a quantum number from the set of allowed quantum numbers
weighted by their probabilities and afterwards remove it from the set
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Figure 5.7: A comparison of the results obtained by sampling 50, 000 states
with using the box sampling procedure where the number of boxes is equal to
4 and 6 at T = 10 and unit density. In (a)-(c) we compare the root distribu-
tion in the thermodynamic limit with normalized histograms of the sampled
quantum numbers. We also consider the resulting normalized momentum
distributions in (d)-(f) as well as the normalized distributions of the third
moment in (g)-(i). In the latter case we also compare to the results obtained
using the microcanical sampling procedure previously shown in Fig. 5.6.
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and rescale to retain normalization of the discrete probability distribu-
tion.

4. Repeat the previous step until N integers have been chosen.

If the energy density of the resulting state is within some designated window
around the energy density of the thermal state we keep the state whereas we
discard it otherwise. We note that even though there is a cutoff in quantum
number space due to the infinite dimensionality of the Hilbert space, it does
not carry the same implications as the cutoff in the microcanonical sampling
procedure. For example, it can be taken such that ρ(Imax) is tiny so that
we can capture the root density with a minimal computational burden. Also,
we can again only keep states in some designated energy window to allow
for a better comparison with the other methods we considered thus far. One
of the downsides of this algorithm is that it requires us to construct discrete
probability distributions at each step. This numerical overhead can be avoided
by implementing a more efficient yet equivalent method as discussed in [95].

Despite its appeal, there is a subtlety associated to sampling in this way.
Namely, the resulting integers are not distributed according to the root distri-
bution. This is caused by the rescaling step after we have removed an integer
from the discrete probability distribution. To see this in detail, let us consider
a simple example where we have three possible integers {I1, I2, I3} which we
sample with probabilities {p1, p2, p3}. Sampling two states from this, we can
obtain six different results with the following probabilities given by

(I1, I2) with probability p1
p2

1−p1
(I1, I3) with probability p1

p3
1−p1

(5.8)
(I2, I1) with probability p2

p1
1−p2

(I2, I3) with probability p2
p3

1−p2
(5.9)

(I3, I1) with probability p3
p1

1−p3
(I3, I2) with probability p3

p2
1−p3

(5.10)

From this, we can calculate the probability of drawing I1 is equal to

p1

(
p2+p3
1−p1

+ 1
1−p2

+ 1
1−p3

)
= p1

(
1 + p2

1−p2
+ p3

1−p3

)
(5.11)

rather than p1.
One of the ways to make this algorithm work is by determining the initial

discrete probability distribution not based on the root distribution, but instead
sample a different distribution P̃ specifically chosen such that sampling it gives
us quantum numbers distributed according to the root distribution. This can
be done numerically by starting from a random P̃ , sampling it a bunch of
times and turn the results into a discrete probability distribution. Where the
resulting discrete probability distribution differs from the discrete probability
distribution describing the root density add the difference to P̃ taking care
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not to accidentally create negative probabilities. The resulting probability
distribution P̃ , which we call the prior, is then what we use in the second
step of the random weighted sampling algorithm to determine the discrete
probability distribution.

In Fig. 5.8 we compare the results obtained using random weighted sam-
pling with an appropriately determined prior to the root distribution and the
results from microcanonical sampling. We see in Fig. 5.8a b c that the ran-
dom weighted sampling algorithm is able to capture well the root distributions
apart from some minor deviations at the outermost tails. However, when con-
sidering the momentum and Q3 distributions in Fig. 5.8d, e, f, g, h, i we see
that the difference between this sampling approach and the microcanonical
sampling start to differ as the interaction strength is decreased. Before draw-
ing a definite conclusion about the cause of these differences, let us consider
another alternative sampling method.

5.4.4 Direct Random Sampling

The random weighted sampling algorithm introduced in the previous section
seemed capable of sampling the root distribution well, but did not fully agree
with the microcanonical sampling for the observables we considered at smaller
values of the interaction strength. In this section we propose another way of
sampling the root distribution and compare the results to the random weighted
sampling algorithm. Rather than determining a prior discrete probability
distribution and sampling it without replacement, we instead do the following.

1. Choose a cutoff Imax = −Imin and generate the set of allowed integers
between the maximal and minimal values {I1, . . . , IM}.

2. For every Il ∈ {I1, . . . , IM} draw a random number ul from (0, 1) and
compute their weight w(Il) = ρ(Il)− ul.

3. Choose the N quantum numbers for which the weight is largest to con-
struct the resulting state.

Again we keep only states with energy densities within some designated win-
dow and discard them otherwise. This procedure we call direct random sam-
pling (DRS).

In Fig. 5.9 we see that the direct random sampling approach, like the ran-
dom weighted sampling routine, captures the root density correctly up to some
minor mismatch in the outermost tails. Also, the momentum and Q3 distribu-
tions of both approaches agree. However, this also means that neither method
agrees with the microcanonical sampling at c = 1 and c = 4 for the parameters
considered. In particular, the root distributions generated by DRS and RWS
do a better job at capturing the tails of the thermodynamic root distribution,
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Figure 5.8: A comparison of the results obtained by sampling 100, 000 states
with ω ∈ [−1, 1] using the microconical sampling procedure and the random
weighted sampling routine at T = 10 and unit density. In (a)-(c) we compare
the root distribution in the thermodynamic limit with normalized histograms
of the sampled quantum numbers. We also consider the resulting normalized
momentum distributions in (d)-(f) as well as the normalized distributions of
the third moment in (g)-(i).
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Figure 5.9: A comparison of the results obtained by sampling 100, 000 states
with ω ∈ [−1, 1] using the direct random sampling procedure and the random
weighted sampling routine at T = 10 and unit density. In (a)-(c) we compare
the root distribution in the thermodynamic limit with normalized histograms
of the sampled quantum numbers. We also consider the resulting normalized
momentum distributions in (d)-(f) as well as the normalized distributions of
the third moment in (g)-(i).

111



Also, they generate broader momentum and Q3 distributions compared to the
microcanonical sampling approach. If it were not for the limitations imposed
by the cutoff, the microcanonical would be the most unrestrictive form of sam-
pling and would therefore yield the widest momentum and Q3 distributions.
The fact that RWS and DRS generate broader distributions at c = 1 and c = 4
therefore indicates that the mismatch is due to the cutoff that is necessarily
imposed when implementing the microcanonical sampling routine.

Given these considerations, we conclude that DRS and RWS are capable of
generating microstates corresponding to a given root distribution in an unam-
biguous way. Furthermore, unlike the microcanonical sampling approach, they
are able of correctly capturing the tails of the distribution and they are much
more computationally efficient, allowing us to use them in order to sample
states with hundreds of particles. The data for all of the figures in the remain-
der of this chapter have been generated using the random weighted sampling
routine.

5.5 Matrix element statistics

Having developed an efficient and unbiased method of sampling the microstates
of a given macrostate in the previous sections, we use this section to illustrate
how these methods can be used to study the statistics of matrix elements.

5.5.1 Diagonal matrix elements

Let us start by considering the diagonal matrix elements of the g2 operator.
Note that we do not consider the diagonal matrix elements of the density op-
erator as they are all equal to the particle density. The different microstates
corresponding to a given macrostate should agree on the diagonal matrix ele-
ment in the thermodynamic limit if the latter is to make sense. We verify this
by sampling microstates from the thermal state at T = 10 and unit density
and computing the corresponding diagonal matrix elements as shown in Fig.
Fig. 5.10. As the system size increases, the variance of the sampled matrix
elements decreases according to

σ〈λ|g2|λ〉 ∝ aL−1
2 + bL−1 + . . . (5.12)

as shown in Fig. 5.10b. Furthermore, means of the distributions of sampled
diagonal matrix elements can be nicely extrapolated to their value in the
thermodynamic limit as shown in Fig. 5.10a.
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Figure 5.10: The means and variances of the diagonal g2 matrix elements for
states sampled according to the eandom weighted sampling algorithm from
the thermal state at T = 10 at unit density and with ω ∈ [−1, 1]. Each point
is calculated using a sampling size of 50, 000 states.

5.5.2 Off-diagonal matrix elements

Now that we have verified that the diagonal matrix elements behave as ex-
pected, the question arises if we can say anything about the off-diagonal matrix
elements between typical states and the representative state. To investigate
this, we consider typical states at a given momentum, which we sample by
generating states using the random weighted sampling procedure. Having
generated such microstates, we can compute the off-diagonal matrix elements
with respect to the representative state of the macrostate.

Unlike in previous cases, we are considering matrix elements between states
which differ by extensively many particle-hole pairs. This introduces some
numerical dificulties due to the smallness of the resulting matrix elements and
the complicated formulas required to compute them, see Sec. 2.4.2. In order
to ensure that our numerical evaluation of these formulas is correct, we use
arbitrary precision numerics to compute the matrix elements. Furthermore,
we can verify our calculations by not only computing the matrix element but
also its transpose. Although mathematically equivalent, the two problems are
numerically quite distinct (we observe a mismatch between the matrix element
and its transpose when insufficient precision is used to do the calculations).
The fact that our routines produce agreeing results gives us confidence in the
validity of the resulting matrix element distributions.
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The matrix element distributions obtained by sampling are shown in Fig.
5.11. We see that after a rescaling and a shift, the matrix element distributions
for the different system sizes collapse. This means that the matrix elements
scale like

〈λ|O|µ〉2 ∝ e−aO(c)L log(L)−bO(c)L (5.13)

where aO and bO are coefficients which depend on the system size as well as the
operator under consideration. This collapse is more complete for the weakly
interacting regime, whereas for larger values of the interacting strength we are
still plagued by some finite size effects. Remarkably, a Fréchet distribution
appears to describe the distributions well for all values of the interaction sts
well for both operators and all values of the interaction strength. The fact
that we can fit a Fréchet distribution in all these cases5 raises the question
if this fact is universal to a larger class of systems to which the Lieb-Liniger
model belongs.

5.6 Conclusions

The central role played by the matrix elements in the calculation of correlation
functions makes them a worthy subject of study. For integrable models the
computation of correlation functions is generally dominated by a select set
of atypical states with few particle-hole pairs. In this chapter we started by
studying such atypical states in the form of the single and two particle-hole
sectors in order to further quantify some of the commonly known intuitions
regarding their importance.

For the single particle-hole sector we determined the scaling relations and
found a distinct difference between the zero temperature and finite entropy
case, where in the zero temperature case we observed a power law decay with
system size in constrast to an exponential scaling at finite temperature. Mov-
ing on to the two particle-hole sector we saw a shift from different power law
scalings depending on the interaction strength for the single particle-hole sec-
tor to a uniform power law decay with system size. Furthermore, for the finite
temperature case we found a crossover between an exponential scaling of the
matrix elements in the weakly interacting limit to a power law scaling in the
strongly interacting regime.

Having considered the atypical states, we moved on to the matrix elements
between representative states corresponding to different macrostates. One
might expect the matrix elements between such typical states to have prop-
erties similar to typical state in non-integrable models. If that were the case,
the matrix elements between typical states would be suppressed entropically

5A Fréchet distribution also excellently fits the distribution of the off-diagonal matrix
elements of the field operator in the infinitely repulsive limit [[cite:fhlesslerbenodate]].
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Figure 5.11: The rescaled off-diagonal matrix elements of the density oper-
ator in (a)-(c) and the g2 operator in (d)-(f) between randomly generated
microstates with ω ∈ [−1, 1] corresponding to the T = 10 thermal state at
unit density and the its representative state.
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according to the Eigenstate Thermalization Hypothesis. We discovered how-
ever, that the matrix elements between macrostates of the g2 operator are
suppressed much more strongly than entropically.

In order to study the typical states in more detail, the need arose for unbi-
ased and efficient sampling algorithms generating microstates corresponding
to a given macrostate. Starting with a simple microcanonical sampling, which
requires the introduction of a cutoff in quantum number space, we discovered
that it was numerically difficult to property capture the tails of the root distri-
bution with this approach. This fact, in combination with the poor scaling of
the numerical cost with system size, made us conclude that it is an unsuitable
method to study the scaling relations of matrix elements.

Moving on, we considered the box sampling approach. Surprisingly, for this
approach we encountered encountered a strong dependence on the box num-
ber, which persisted even for large system sizes. Furthermore, the portion of
Hilbert space sampled by box sampling in the finite case is too restrictive and
the method does not capture the root distribution well. As such, this method
was also deemed unsuitable. To overcome these limitations we developed
two independent approaches which we dubbed random weighted sampling and
direct random sampling. These approaches reproduce the targeted root distri-
butions well and are numerically efficient, making them suitable for studying
the matrix element statistics of typical states.

Using these new sampling methods we were finally able to consider the ma-
trix elements of typical states. We started by considering the diagonal matrix
elements and verified that the standard deviations of the resulting distribu-
tions vanish in the thermodynamic limit. Following this, we considered the
off-diagonal matrix elements of both the density and the g2 operator between
a fixed representative state and sampled typical states. We discovered that,
for all operators and interaction strengths we considered, we can fit a Fréchet
distribution to the distributions of off-diagonal matrix elements between the
representative state and the typical microstates. This surprising result raises
the question if this result is particular to the Lieb-Liniger model or simply rep-
resents an example from a larger class of systems sharing the same statistical
properties.
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Summary

Throughout this thesis we considered different types of problems, but all were
centred around the same model, the Lieb-Liniger model. Therefore we be-
gan this thesis by introducing the Lieb-Liniger model, which describes a one-
dimensional gas of Bosons, in Chapter 2. We started this chapter by reviewing
the coordinate Bethe Ansatz, which yields the spectrum and a convenient de-
scription of eigenstates in terms of sets of quantum numbers. After a brief
discussion of the Algebraic Bethe Ansatz, we summarized some of the major
results obtained using this approach, namely the matrix element expressions
for physically important operators such as the density operator. Finally, we
considered the thermodynamic limit of the formalism whose derivation gives
rise to a correspondence between eigenstates at finite size, called microstates,
with root distributions in the thermodynamic limit, called macrostates.

In order to go from calculating individual microstates to correlation func-
tions generally requires the numerical evaluation of summations over eigen-
states in Hilbert space. Since there are infinitely many eigenstates in Hilbert
space, such summations have to be truncated in order to evaluate them nu-
merically. The question is if and how we can obtain accurate results in the
presence of such a truncation. In an effort to obtain the best possible results,
we devoted Chapter 3 to the study of Hilbert space exploration/scanning algo-
rithms aimed at finding the eigenstates most important for a given calculation.
Starting from a basic example of a scanning algorithm, we made stepwise im-
provements until we ended up with an approach which outperforms previously
available algorithms for finite temperature calculations.

Having discussed Hilbert space exploration algorithms, we turn to the prob-
lem of computing the time evolution following a quench in the interaction
strength. We rephrased the problem so that it is equivalent to diagonalizing
a perturbed Hamiltonian in terms of a basis of Bethe states. In this formula-
tion the problem can be approximately solved numerically by truncating the
Hamiltonian and diagonalizing it. The resulting problem, of choosing which
eigenstates to include in the calculation of the truncated Hamiltonian, bears
clear similarity to the problem of choosing which eigenstates to prioritise in
the calculation of a correlation function. By choosing an appropriate weighing
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metric for eigenstates we can therefore use the same scanning algorithms to
most accurately capture the time evolution following the quench for a given
size of the truncated Hamiltonian.

Even with an optimally chosen basis, however, limitations associated to
the maximal size of the truncated basis we can consider remain. These lim-
itations can be overcome by introducing an iterative renormalization-group
based scheme we call a High Overlap State Truncation Scheme. With this
approach we are able to consider truncated bases of hundreds of thousands of
eigenstates. However, applying this approach to a quench from the strongly
interacting regime to a regime at intermediate interaction strength, reveals a
discrepancy between the results obtained using the iterative scheme and the
full diagonalization of the corresponding truncated Hamiltonian. We resolve
this issue by modifying the iterative scheme resulting in what we call the
Matrix Element Renormalization Group approach.

In Chapter 5 we switched gears and studied the more fundamental prop-
erties of matrix elements in the Lieb-Liniger model. We determined scaling
relations for the one and two particle-hole sectors, which further quantified
existing intuitions regarding their diminishing importance as we increase sys-
tem size or consider finite entropy states. Moving on, we considered matrix
elements between microstates corresponding to different macrostates, which
revealed a surprising deviation from the type of scaling behaviour expected
the Eigenstate Thermalization Hypothesis.

In order to study the statistics of matrix elements of typical states required
a mechanism of sampling microstates corresponding to a given macrostate.
We considered different existing methods and concluded that they are limited
to small system sizes or generate biased data. To resolve this we developed two
independent alternatives whose results agree beautifully. These algorithms al-
lowed us to study the diagonal and off-diagonal matrix elements for system
sizes up to hundreds of particles. In the off-diagonal case this resulted in distri-
butions following a Fréchet distribution, which has not yet been encountered
in the study of matrix element statistics.
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Samenvatting

In dit proefschrift behandelen we verschillende vraagstukken waarbij de gemene
deler het onderliggende model is. Daarom beginnen we in hoofdstuk 2 van dit
proefschrift met het introduceren van dit model, het Lieb-Liniger model, dat
een één-dimensionaal gas van bosonen beschrijft. Allereerst introduceren we de
Bethe Ansatz die ons in staat stelt de eigenwaardes van het model te bepalen en
tevens een beschrijving van eigentoestanden aan de hand van kwantumgetallen
biedt. Na een korte herhaling van de Algebraïsche Bethe Ansatz behandelen
we enkele van de belangrijkste resultaten die door middel van deze methode
afgeleid zijn. Voor het Lieb-Liniger model zijn dit de matrixelementen van
belangrijke fysische operatoren zoals bijvoorbeeld de dichtheidsoperator. Als
laatste leiden we in dit hoofdstuk de thermodynamische limiet van het model
af. Hieruit komt ook een correspondentie voort tussen eigentoestanden in het
eindige geval en eigenfuncties in de thermodynamische limiet, die we vanaf nu
macrotestanden noemen.

Om de stap te zetten van het berekenen van individuele eigentoestanden
naar het berekenen van correlatiefuncties moeten we een (numerieke) som-
matie doen over de eigentoestanden. Gezien er oneindig veel van zulke eigen-
toestanden bestaan is het doorgaans noodzakelijk om dergelijke sommaties
te benaderen door middel van een eindige sommatie. De vraag is of en hoe
we ondanks deze benadering accurate resultaten kunnen verkrijgen. In een
poging om tot het best mogelijke resultaat te komen wijden we hoofdstuk 3 aan
het ontwikkelen van algoritmes die de belangrijkste eigentoestanden voor een
gegeven sommatie proberen te vinden. Beginnend met een zo simpel mogelijk
algoritme brengen we stapsgewijs verbeteringen aan. Dit leidt uiteindelijk tot
een algoritme dat beter presteert dan bestaande methodes voor gevallen waar
de temperatuur eindig is.

Na deze discussie over zoekalgoritmes voor eigentoestanden wenden we ons
tot het bepalen van de tijdsevolutie na een plotselinge verandering in de sterkte
van de interacties tussen de deeltjes in het Lieb-Liniger model. Dit probleem
herformuleren we zodat het opgelost kan worden door het diagonalizeren van
een verstoorde Hamiltoniaan opgesteld in een basis van Bethe toestanden.
Wederom is een benadering noodzakelijk om het probleem numeriek op te
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kunnen lossen omdat ook de verstoorde Hamiltoniaan oneindig groot is. Dit
doen we door een eindige basis van Bethe toestanden te kiezen en de re-
sulterende afgekapte Hamiltoniaan te beschouwen in plaats van de originele.
Om deze benadering zo goed mogelijk te laten zijn moeten we wederom de
juiste Bethe toestanden weten te kiezen. Door een passende wegingsfunctie
te kiezen kunnen we de algoritmes uit het vorige hoofdstuk gebruiken om een
zo nauwkeurig mogelijke benadering van de tijdsevolutie te vinden voor een
gegeven grootte van de afgekapte Hamiltoniaan.

Zelfs met een optimaal gekozen verzameling van Bethe toestanden blijft
de grootte van de verstoorde Hamiltoniaan die we kunnen diagonalizeren een
beperking, wat zijn weerslag heeft op de validiteit van de benadering. Deze
beperking kan weggenomen worden door een iteratieve procedure te introduc-
eren die gebaseerd op de numerieke renormalizatiegroep. Met deze methodiek
kunnen we bases bestaande uit honderdduizenden eigentoestanden beschou-
wen wat, in combinatie met onze zoekalgoritmes, uitstekende resultaten oplev-
ert. Als we echter een zeer drastische verandering van de interacties tussen de
deeltjes beschouwen, treden er problemen op met de iteratieve aanpak. Om
ook in dit geval de meest accuraat mogelijke resultaten te behalen maken we
verdere aanpassingen aan de iteratieve aanpak. Dat resulteert in een nieuw
algoritme dat nog steeds grote bases kan beschouwen, maar waarvoor ook in
alle gevallen de iteratieve procedure accurate resultaten oplevert.

In hoofdstuk 5 bestuderen we de fundamentele eigenschappen van de ma-
trixelementen van eigentoestanden. We bepalen onder andere de schalingsre-
laties voor de sectoren van eigentoestanden die het belangrijkst zijn voor de
meeste correlatiefuncties. Deze relaties kwantificeren veel van de bestaande
intuities over hoe het belang van deze sectoren verandert als we grotere syste-
men of toestanden met een eindige entropie beschouwen. Verder bestuderen we
de matrixelementen tussen eigentoestanden behorend tot verschillende macro-
toestanden. De schalingsrelatie die hieruit voortkomt toont een verrassende
afwijking van het gedrag dat verwacht zou worden aan de hand van de ETH6.

Het bestuderen van de statistiche eigenschappen van matrixelementen van
typische eigentoestanden vereist een algoritme dat op willekeurige wijze eigen-
toestanden genereert die behoren tot een gegeven macrotoestand. We beschou-
wen allereerst verschillende bestaande methodes en concluderen dat deze niet
volledig onbevooroordeeld zijn of alleen gebruikt kunnen worden voor kleine
systemen. Daarom ontwikkelen we alternatieve methodes die ons in staat
stellen de matrixelementen te bestuderen voor systeemgrootten van wel hon-
derden deeltjes. De daarmee behaalde resultaten tonen een niet eerder in deze
context geobserveerde statistiche distributie, de Fréchet distributie.

6Eigenstate Thermalization Hypothesis
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Appendix A

Solving the Bethe Ansatz Equations nu-
merically

The logarithmic Bethe Ansatz Equations represent a system of non-linear
coupled equations for the rapidities. In order to solve this system for a given
set of quantum numbers the Newton-Rahpson algorithm can be used. In this
appendix we review the algorithm first for the one-dimensional case and then
for the multi-dimensional case after which we discuss how the method can be
used to solve the Bethe Ansatz Equations.

A.1 The Newton-Raphson algorithm

A.1.1 The one-dimensional case

Consider a function f : R → R and suppose we are interested in finding one
of its roots x∗. Starting from some point x0 we can linearise the function f
around this given initial point provided that f ′(x0) 6= 0, giving

f(x0 + ε0) = f(x0) + ε0f
′(x0) +O(ε20). (A.1)

Neglecting the higher order terms, we can find the value of ε0 for which the
linearisation intersects with the real axis, which is given by

ε0 = − f(x0)

f ′(x0)
(A.2)

Taking this zero of the linearization, provided that f ′(x0) is non-zero, as the
new starting point and repeating the linearization step gives rise to a sequence
of points {x0, x1, x2, . . . }, where the xi are given by

xi = xi−1 −
f(xi−1)

f ′(xi−1)
. (A.3)

A sufficient condition for this procedure to converge is that f(x) has a root
and is convex provided that f ′(x0) = 6= 0.
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A.1.2 The N-dimensional case

Let us now instead consider a function g : RN → RN . We can generalise the
procedure described in the previous section as follows, first consider the Taylor
expansion of g around some x0, i.e.

g(x0 + ε0) = g(x0) + Jg(x0) · ε0 +O(ε20) (A.4)

where Jg is the jacobian of g. Then we can again find a root of the linearisation
by solving for ε0 which gives

ε0 = −Jg−1(x0)g(x0) (A.5)

This procedure again gives rise sequence {x0,x1,x2, . . . }, which converges if g
has a root and the Jacobian is positive-definite in addition to the requirement
that Jg(x0) 6= 0.

A.2 Solving the Bethe Ansatz Equations

In order to use the Newton-Raphson algorithm to solve the logarithmic Bethe
equations, we have to know the corresponding Jacobian. Consider the action
given by

S({λ}) = L

2

∑
j

λ2
j +

N∑
l=j+1

Φ(λj − λl)− 2πIjλj

 . (A.6)

which is called the Yang-Yang action where

Φ(z) =

[
2z atanz

c
− c ln

(
1 +

z2

c2

)]
(A.7)

The extremum conditions are the logarithmic Bethe equations for the Lieb-
Liniger model, i.e.

∂

∂λj
S({λ}) = λjL+ 2

∑
l

atan
(
λj − λl

c

)
− 2πIj . (A.8)

The Jacobian of the logarithmic Bethe equations is therefore given by the
Hessian of the Yang-Yang matrix called the Gaudin matrix whose entries are
given by

∂2

∂λj∂λl
S({λ}) = δjl

{
L+

N∑
m=1

2c

(λj − λm)2 + c2

}
− 2c

(λj − λl)2 + c2
. (A.9)

This is again the Gaudin matrix, whose determinant describes the norm of an
eigenstate. Since the Gaudin matrix is positive definite, using the Newton-
Raphson method can be used to solve the logarithmic Bethe Ansatz Equations.
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