
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Energy- and time-aware scheduling for heterogeneous high-performance
embedded systems

Röder, J.P.

Publication date
2023
Document Version
Final published version

Link to publication

Citation for published version (APA):
Röder, J. P. (2023). Energy- and time-aware scheduling for heterogeneous high-performance
embedded systems. [Thesis, fully internal, Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Oct 2023

https://dare.uva.nl/personal/pure/en/publications/energy-and-timeaware-scheduling-for-heterogeneous-highperformance-embedded-systems(a8efbb4c-7258-4902-a65c-c439dcd10f02).html

E N E R G Y- A N D T I M E - AWA R E S C H E D U L I N G
F O R H E T E R O G E N E O U S H I G H - P E R F O R M A N C E

E M B E D D E D S Y S T E M S

julius philipp röder

This work is partially supported by the European Union Horizon-2020 re-
search and innovation programmes TeamPlay (grant agreement No. 779882)
and ADMORPH (grant agreement No. 871259). Additionally, this work is
supported and partly funded by the HiPEAC project which has received
funding from the European Union Horizon-2020 research and innovation
programme under grant agreement No. 871174 (HiPEAC6 Network). Lastly,
this work is partially supported by CERCIRAS COST Action CA19135

funded by COST Association.

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 444.

Copyright ©2023 by Julius Philipp Röder.

Cover portrait by: Nicoletta Maraschin
Cover design by: Quentin Malgaud
Thesis template: classicthesis by André Miede and Ivo Pletikosić.
Printed and bound by Ipskamp printing

ISBN: 978-94-6473-096-8

E N E R G Y- A N D T I M E - AWA R E S C H E D U L I N G
F O R H E T E R O G E N E O U S H I G H - P E R F O R M A N C E

E M B E D D E D S Y S T E M S

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. P.P.C.C. Verbeek
ten overstaan van een door het College voor Promoties

ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op woensdag 24 mei 2023, te 13.00 uur

door

Julius Philipp Röder

geboren te Bad Kissingen

Promotiecommissie

Promotor: prof. dr. A.D. Pimentel Universiteit van Amsterdam

Copromotores: dr. C.U. Grelck Universiteit van Amsterdam

prof. dr. S.J. Altmeyer Universität Augsburg

Overige leden: prof. dr. ir. C.T.A.M. de Laat Universiteit van Amsterdam

prof. dr. K.B. Akesson Universiteit van Amsterdam

dr. P. Grosso Universiteit van Amsterdam

dr. A.M. Oprescu Universiteit van Amsterdam

dr. M. Völp University of Luxembourg

prof. dr. U.P. Schultz University of Southern Denmark

prof. dr. K.I. Eder University of Bristol

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Dedicated to Maggie and Baloo.

A C K N O W L E D G M E N T S

I am deeply grateful to all those who have supported me throughout my
PhD journey. First, I would like to thank my partner Helena for her patience,
support and love during the ups and downs of the PhD. Clemens, my
supervisor, for taking the time for all the meetings we had, tirelessly reading
my drafts, and for all the enjoyable conversations we had during our various
travels. Ben, thank you for your help with the day-to-day challenges of
the PhD and for being a entertaining friend during our travels and time
off. Lukas, thank you for our lively and seemingly endless discussions
that somehow always got a ”little” sidetracked. Sebastian, thank you for
continuing our collaboration after leaving the UvA, hosting me in Augsburg,
and providing feedback for both my papers and my dissertation. Andy,
thank you for taking the time to read my thesis and providing invaluable
feedback. I am grateful to the committee members for reading my thesis and
taking part in my PhD examination. At this point, I’d also like to express
my gratitude to Lukas and Marco for translating my summary.

I’d like to thank all my friends and colleagues: Mary, Joe, Ralph, Reggie,
Spiros, Giulio, Misha, Tim, Taha, Lukasz, Jelle, Marco, Marius, Hongyun,
Dolly, Xin, Leonardo, Daphnee, Peter, Pooya, Jun, Yang, Huan. I’d like to
thank my friends: Alex, ”The J’s”, Nikita, and Ky. Quentin, Nancy, Steve,
Fanny, Kate, Chris, Charlotte, thank you all for asking how the PhD is going,
it meant a lot to me. Quentin thanks for the awesome cover!

I’d like to thank all the other people in the SNE cluster. Next, I’d like to
thank all people involved in the TeamPlay project - you made the project
enjoyable and informative. I’d also like to thank everyone who made me feel
welcome during my 3 months in Augsburg: Tilmann, Florian, Christoph,
Christian, Martin, Alexander. Also special thanks to my roommates Markus
and Pia!

I would like to thank my family for their continuous support throughout
the PhD. And last, I would like to thank our cats, Maggie (the star of this
cover) for always being a little bit more grumpy than me and Baloo for
always purring for absolutely no reason.

To those with whom I have crossed paths in the last 4.5 years but didn’t
mention by name, thank you from the bottom of my heart.

vii

C O N T E N T S

1 introduction 1

1.1 High-performance embedded systems 3

1.2 Improving efficiency and utilisation of MPSoC 6

1.3 Thesis organisation . 9

1.4 Publications and author contributions 9

2 background 13

2.1 High-performance embedded systems: Odroid-XU4 13

2.1.1 DVFS and Voltage Islands 13

2.2 Task Model Overview . 15

2.3 Scheduling . 17

3 energy measurement 19

3.1 Introduction . 19

3.2 Background & Methodology 20

3.2.1 Power Measurements 21

3.2.2 Sampling Frequency . 22

3.2.3 Setup and Target system 22

3.2.4 Downsampling . 23

3.2.5 Benchmarks . 23

3.2.6 Statistical equivalence testing 24

3.3 Results & Discussion . 27

3.4 Related Work . 30

3.5 Conclusion . 31

4 energy-aware scheduling 35

4.1 Introduction . 35

4.2 System Model . 38

4.2.1 Platform Model . 38

4.2.2 Task Model . 38

4.2.3 Energy Model . 39

4.3 Energy-aware Forward List Scheduling 43

4.3.1 Scheduling Algorithm 44

4.3.2 Scheduling a task. 44

4.3.3 Heterogeneous Energy Ranking 45

4.4 Experimental Setup . 50

4.4.1 Target Platform . 50

4.4.2 Energy Measurements 50

ix

x contents

4.4.3 Application code . 51

4.4.4 DVFS . 53

4.5 Ranking strategies for eFLS . 53

4.5.1 Best standalone ranking 54

4.5.2 Selecting a ranking method sub-set 56

4.6 Comparing eFLS with other non-optimal solutions 59

4.6.1 Single-version vs Multi-version tasks 59

4.6.2 Energy optimising vs Makespan 60

4.6.3 eFLS vs HEFT and eHEFT 61

4.6.4 eFLS vs ARSH-FATI . 62

4.7 Comparing eFLS with an optimal solution 66

4.7.1 ILP formulation . 66

4.7.2 ILP vs eFLS . 69

4.7.3 Energy consumption: predicted vs measured 70

4.8 Related Work . 72

4.9 Conclusion . 74

5 multi-phase scheduling 77

5.1 System Model . 79

5.2 Interference . 81

5.2.1 Cache related delays . 81

5.2.2 Shared resources interference 82

5.2.3 Data in memory interference 82

5.3 Heterogeneous FLS . 82

5.3.1 Scheduling Algorithm 83

5.3.2 Phase Release Time . 86

5.3.3 Updating phase WCET 87

5.3.4 Find and propagate interference across the schedule . 88

5.4 Evaluation . 90

5.4.1 hFLS vs ILP . 90

5.4.2 hFLS vs eFLS vs HEFT 95

5.4.3 Sorting for hFLS . 97

5.5 Related Work . 97

5.6 Conclusion . 98

6 scheduling based on reinforcement learning 99

6.1 Background . 100

6.2 System Model . 101

6.3 RL Scheduling . 102

6.4 RL Scheduler Components . 103

6.5 Experiments . 106

contents xi

6.6 Results . 108

6.6.1 Dataset 1 - FCNN Agent 108

6.6.2 Dataset 2 - FCNN Agent 109

6.6.3 Dataset 1 - GCN Based network 110

6.6.4 Dataset 2 - GCN Based network 110

6.7 Related Work . 111

6.8 Conclusion . 113

7 conclusion 115

7.1 Contributions . 115

7.2 Answers to the research questions 116

7.3 Future Work . 118

7.3.1 Energy Measurements 119

7.3.2 Scheduling Heuristics 119

7.3.3 RL for Scheduling . 120

7.4 Vision and Outlook . 120

bibliography 123

acronyms 133

publications 134

teaching and supervision 136

source code and dataset 137

summary 138

samenvatting 140

1
I N T R O D U C T I O N

Single-board computers that use heterogeneous Multiprocessor System-on-
Chip (MPSoC) have become widely available in the last decade. The hardware
of such single-board computers is similar to modern smartphones and offers
relatively high performance compared to the price. Relevant single-board
computers are, therefore, also called high-performance embedded systems.
As such, it is unsurprising that more and more applications target the hetero-
geneous MPSoC found on high-performance embedded systems. An MPSoC

usually contains multiple different processing elements (e.g., big.LITTLE [1]
and an accelerator). Executing an application on an MPSoC involves deciding
how the application should use the CPU and other available compute units
(e.g., GPU, FPGA).

Deciding how to use the available resources is known as scheduling. In
general, scheduling is the process of assigning tasks (e.g., a task in a ma-
chine shop) to the resources required (and available) for the task (e.g., a
specific machine). Scheduling can be done manually or automatically. In the
following paragraphs, we explore the growing importance of scheduling on
a historical example: the automation of elevators. This example shows how
the applications and available features of elevators evolved over time and
why scheduling, in general is becoming ever more critical.

Let us consider the evolution and automation of elevators. The first electric
elevator was invented in the 1890s and was operated by a human [99].
The first step towards automating elevators was the introduction of the
self-levelling elevator. The operator still controlled the elevator’s speed,
but releasing the controls would let the elevator stop at the next level.
Before this invention, the operator had to stop at precisely the right spot
[28, 42]. The advancement of elevators continued with the introduction
of relay logic and micro-controller-based controls which could execute
more sophisticated control logic/algorithms. Thus, elevator control systems
started to consider different factors such as daily traffic patterns [66]. Despite
this development, manual elevators were still widely used during the first
half of the 20th century due to reluctant passengers. The elevator operator
strikes contributed to the broader adoption of automatic elevators [62].

1

2 introduction

The controller of the first fully automatic elevators was based on relay
logic to control the speed, position and doors. The first automatic elevators
did not do any peak-time passenger prediction or round-time calculations,
but they worked. One could press a button, and the elevator went to the
correct floor, and the door opened at the right spot. The relay logic required
was very reliable, but compared to micro-controllers, relay logic was large,
needed a lot of energy and was maintenance heavy (a large number of
moving parts). Additionally, the relay-controller size increased exponentially
with the number of elevators and floors. Lastly, the control logic was static.
Thus, one could not simply change the scheduling without rewiring the
logic [128]. Therefore, elevator manufacturers had to either take the very
costly step to produce unique logic for each circumstance or provide the
same logic no matter the use case of each elevator.

Today’s applications are vastly more complex from a computational point
of view than making an elevator stop at the right floor. Let us continue with
the elevator example. Modern elevator systems for tall buildings have several
elevator cabins working together. Additionally, different cabins may target
different floors, some even being significantly faster than others to reach the
top of tall buildings quicker [4, 99]. The first versions of these multi-cabin
systems functioned in a static manner. For example, in the morning in an
office building, all elevators return to the ground floor immediately after
completing their task instead of idling on the current floor.

As the available hardware (e.g., CPUs, GPUs) advances, so do multi-
elevator systems. One example is that elevator management, and scheduling
is moving from a statically offline-computed schedule (e.g., based on Monte
Carlo simulation [5, 127]) to more dynamic approaches based on live passen-
ger numbers (e.g., [18, 134]). The dynamic multi-elevator scheduler by Bapin
et al. [18] uses the surveillance cameras in hallways in front of elevators and
inside the cabins to count passengers and the number of waiting people
based on Deep Learning (DL). This information is then used in the elevator
scheduling algorithm to reduce waiting and travel time. The new scheduler
was tested on a 10-storey office building with five elevators. The authors
show that their new scheduler reduces travel time by up to 40%. Thus,
demonstrating the importance of scheduling in the real world.

Using more complex data, such as images or voice information in connec-
tion with deep learning to automate tasks can be observed across a wide
range of application areas, ranging from identifying poachers in wildlife
preserves [74], over identifying health issues in remote areas without access
to good health care [9, 35, 92] to tracking cars in urban areas [45] and fruit

1.1 high-performance embedded systems 3

harvesting [21, 23]. All these examples have one thing in common: the ap-
plications must be executed locally because the context of the applications
often imposes some restriction on the computer that can be made available
or on the data that can be sent.

Take, for example, a wildlife camera that identifies humans in areas where
they don’t belong (i.e., most likely poachers) [74]. On the one hand, the
camera has limited bandwidth (communication via LoRaWAN at 27kbps
[2]), and on the other hand, it has a limited energy and space budget. The
energy budget for such a camera system is limited as it is battery-powered
(and possibly recharged with solar panels). While the amount of space
is not strictly fixed, a large computer would make deploying and hiding
the camera trap significantly more challenging. Slowly uploading pictures
to a remote server where they are analysed is not an option, as poachers
must be identified quickly to notify authorities before more endangered
animals are killed. However, we cannot deploy the camera with a workstation
desktop either. We need powerful yet space-, thermal-, and energy-efficient
computers. Health care [9, 35, 92] and public sector [15, 45] applications may
be more concerned with privacy and security-related issues, thus, prefer to
avoid sending sensitive data.

In conclusion, we need a lot of compute power locally. We need to use
high-performance embedded systems efficiently. Hence, this thesis explores
algorithms for scheduling heavy computational tasks onto different compute
units (e.g., CPU, GPU etc.) available on heterogeneous MPSoC.

1.1 high-performance embedded systems

Figure 1.1: Odroid-XU4

What exactly are high-performance
embedded systems? Throughout
this thesis, we use the Odroid-
XU4 [59], depicted in Figure 1.1,
as a good example of a high-
performance embedded system.
The Odroid-XU4 is a single-board
Commercially-Off-The-Shelf (COTS)
computer with a wide range of built-
in features. It is powered by a Sam-
sung Exynos 5 Octa 5422 [49] MPSoC

with eight cores. The CPU cores are
split between two core type clusters.

4 introduction

The first cluster consists of power-efficient LITTLE cores. And the second
cluster contains high-performance big cores [1]. Additionally, it has an on-
board Mali GPU for graphics-heavy applications or acceleration via OpenCL.
The Odroid-XU4 is a typical representative of a high-performance embedded
system employing a heterogeneous MPSoC.

An absolute definition of high-performance embedded systems that will
hold forever is impossible. As ”high-performance” is a function of time
and shifts as technology advances. In general, high-performance embedded
systems typically can run a complete Linux operating system or a real-
time patched Linux [114]. Strictly speaking MPSoC refers to only a single
component of a high-performance embedded system. However, as the MPSoC

is often the primary defining characteristic of a given high-performance
embedded system, we will use the two terms MPSoC and high-performance
embedded system interchangeably. Additionally, the MPSoC that we consider
have multiple CPU cores and onboard accelerators such as GPUs and offer a
lot of compute power at low energy consumption, small size and a relatively
low cost. Thus, they are well suited to perform computationally heavy tasks
in scenarios that are limited by energy, size and cost.

High-performance embedded systems are in stark contrast to more tra-
ditional embedded systems such as the micro-controllers from the ARM
Cortex-M series 1. Such microcontrollers are often programmed bare-metal
(i.e., no operating system) or with a real-time operating system, but they
cannot run a fully-fledged Linux. Additionally, they often even lack impor-
tant instructions, such as half-, single-, and double-precision floating-point
instructions (most of the ARM Cortex-M series), required for compute-heavy
tasks. Thus, we define an MPSoC as single board computers with multiple-CPU
cores, possibly of different types, with at least one onboard accelerator such as a
GPU. Furthermore, we consider the area of embedded systems to encompass
real-time systems (RTS), Internet of things (IoT), cyber-physical systems (CPS)
and edge computing.

MPSoC systems can be found from various manufacturers; examples range
from systems very similar to the Oroid-XU4, such as the Raspberry Pi [112],
over the Nvidia Jetson lineup with powerful GPU’s [101], all the way to X86

powered boards such as the Latte Panda 3 [85].
MPSoC offer an excellent energy-to-performance ratio but are more chal-

lenging to program than simple single-core CPU based embedded systems.
One must engineer concurrent applications to take advantage of the the-
oretical performance improvements. Let us assume that applications can

1 https://developer.arm.com/ip-products/processors/cortex-m/

https://developer.arm.com/ip-products/processors/cortex-m/

1.1 high-performance embedded systems 5

be broken down into different parts (i.e., different tasks) for concurrent
execution. Engineers must then decide which task is executed where and
when (i.e., on which CPU core). First, tasks behave differently depending on
the core type (e.g., ARM big.LITTLE [1]) chosen for execution. Furthermore,
engineers must consider that different tasks may impact/interfere each other
if executed concurrently. Second, the design space is further increased by
considering onboard GPUs or other accelerators (e.g., Field-Programmable
Gate Array (FPGA)). Again, an engineer must decide which task should take
advantage of the accelerator. This decision may also vary depending on
whether energy consumption, time or some other extra-functional property
is most important. The combination of different target CPU cores, interfer-
ences, available accelerators etc., creates an ample design space and makes
it difficult for engineers to take full advantage of the available hardware.

Achieving high system utilisation when using MPSoC is essential for several
reasons. First, better utilising our computer systems means that companies
can choose to use systems with lower specifications. This, in turn, means
saving resources (e.g., less silicon) and money in large volume products.

Second, the overall energy consumption of the ICT sector is predicted
to increase by 60% between 2022 and 2030 [11]. Reducing the energy con-
sumption of a single embedded device may not have the same impact as
decreasing the energy consumption of a whole data centre. However, the
number of embedded devices is growing rapidly. For example, the number
of active IoT (a sub-category of embedded systems) endpoint connections is
expected to grow by 18% to 14.4 billion devices in 2022. By 2025 the number
of devices is expected to almost double to a total of 27 billion connected
Industrial Internet of things (IIoT) devices [10]. If we do not manage to de-
crease the energy consumption of the sector, it might become too expensive
to maintain the exponential growth of devices. In light of climate change and
the overall CO2 footprint of the IIoT sector, as well as the cost of electricity,
reducing the energy consumption of all devices, is crucial.

Third, individual applications may enormously benefit from, for example,
improved energy efficiency. If one decreases the energy consumption of com-
puters used for human body detection in Unmanned Aerial Vehicles (UAV)
during search and rescue missions [110], then the UAV could fly longer and
cover larger patrol areas. In the case of the cameras identifying poachers [74],
increasing battery life could, for example, lower the maintenance cost.

In summary, the difficulty of programming high-performance embedded
systems, in combination with the need to improve their efficiency and
utilisation, leads to our overarching research question:

6 introduction

How can we further automate and simplify the process of improving the efficiency
and utilisation of heterogeneous high-performance embedded systems?

1.2 improving efficiency and utilisation of mpsoc

Let us start with the first primary goal of this thesis - reducing energy con-
sumption. To improve energy efficiency, we must accurately measure energy
consumption. While researching various energy-measurement methods and
setups, we noticed that both researchers and reviewers of accepted papers
do not seem to value the exact details of energy-measurement setups. Many
authors (e.g., [16, 56, 75, 89, 108, 142]) do not give exact details on how
they measure energy consumption. Thus, the absence of these details is
seemingly not viewed as important enough to influence the review pro-
cess. Authors who give information on the setup (e.g., [76]) do not seem to
consider their setup’s impact on their experiments’ accuracy. One variable
that might impact the accuracy of a measurement setup is the sampling
rate at which we measure power in Watt. Power is a continuous signal and,
thus, needs to be measured sufficiently frequently to obtain an accurate
estimate of the actual power trace. Hence, the power trace is inaccurate if
the sampling rate is too low. An inaccurate power trace also leads to an
erroneous energy consumption estimate which is the area under the power
trace (i.e., integration of the power trace). This leads us to our first research
question:

• RQ 1: What is the impact of the sampling frequency on energy measurement
accuracy?

In Chapter 3, we aim to answer this question by analysing a set of 42100

power traces. Each power trace is measured at a high sampling rate (4kHz).
Then, we show the error resulting from lower sampling rates. Furthermore,
we investigate the minimum required sampling rate that can be considered
equivalent to the original power trace (equivalence testing).

After investigating the impact of the sampling rate, we continue with
our original goal to improve the energy efficiency of MPSoC. We start with
the premise that the applications of interest can be represented as Directed
Acyclic Graphs (DAG). In a DAG, nodes represent tasks in an application,
and edges represent data dependencies (for a more detailed discussion,
see Section 2.2). These tasks in the application must be executed on an
appropriate compute unit. Thus, we must decide when and where a task is
executed or, in other words, how it is scheduled and mapped. Different tasks

1.2 improving efficiency and utilisation of mpsoc 7

have inherently different properties; e.g., some tasks might be more energy
efficient on one type of compute unit (CU) (e.g., CPU, GPU) and others on
another type. One way to improve (e.g., lower the energy consumption) the
execution of a DAG application is, thus, the scheduling of the different tasks.
This leads us to our second research question:

• RQ 2: How can we improve the energy consumption of DAG applications for
heterogeneous high-performance embedded systems through scheduling?

In Chapter 4, we propose a new system model, a fine-grained energy
model and a new energy-aware scheduler. Our new system model uses multi-
version tasks, which have equivalent functional behaviour (i.e., identical
input yields equivalent output), but different non-functional behaviour
(e.g., run-time, energy consumption). Next, we propose a new energy model
that supports Dynamic Voltage and Frequency Scaling (DVFS) [86, 121] as
well as multiple voltage islands [69, 83]. DVFS is a technique used to adjust
the energy consumption and compute power of compute units. Voltage
islands cluster multiple compute units together, and all CU in an island
operate with the same voltage settings. Last, we present a new scheduling
algorithm called energy Forward List Scheduling (eFLS), which can fully use
the new system and energy models. We show that our approach produces
schedules that are more energy-efficient than schedules produced by the
two existing state-of-the-art scheduling algorithms: Heterogeneous Earliest
Finish Time (HEFT) [131] and ARSH-FATI [133]. Additionally, we compare
the solutions derived by our heuristic against optimal solutions derived by
an Integer Linear Programming (ILP) formulation to demonstrate that our
heuristic does not produce solutions that are significantly worse than the
optimal solutions. We make this comparison for sufficiently small problems
as the ILP approach does not scale well to large problems.

Scheduling algorithms, such as eFLS, HEFT and ARSH-FATI, need a total
order of tasks. A DAG provides a partial order. Thus, the first step in many
scheduling algorithms is to rank the tasks before scheduling them. This
leads us to our third research question:

• RQ 3: What is the importance of the ranking algorithm used in our energy-
aware scheduling approach?

In Chapter 4, we show that the ranking used can significantly impact
the final application’s performance. Additionally, we introduce our new
Heterogeneous Energy-aware Ranking (HER) algorithm and compare its
performance against a set of base ranking algorithms.

8 introduction

To utilise not only part of an MPSoC but the entire chip, we do not only
need to use the different CPU cores but also the onboard accelerators. GPU
and other accelerator workloads often need to be launched from the CPU.
Thus, in Chapter 4, we considered tasks that require the GPU to occupy both
the CPU and the GPU for the entire execution time. This results in periods
where a CPU core and the GPU are considered busy, but in fact, one idles.
This leads to our fourth research question:

• RQ 4: How can we increase the hardware utilisation of heterogeneous high-
performance embedded systems?

In Chapter 5, we extend our methodology to split GPU (or other accelera-
tor tasks) into multiple phases. This allows a more fine-grained scheduling
approach and reflects the use of resources in a more realistic manner. There-
fore, we introduce our heterogeneous Forward List Scheduling (hFLS) algo-
rithm and show how it improves hardware utilisation over state-of-the-art
schedulers such as HEFT.

The work in Chapters 4 and 5 heavily relies on the initial ranking of
tasks. Hence, we set out to explore ranking-independent scheduling strate-
gies. Additionally, throughout the work for this thesis, we noticed that the
state space for modern scheduling scenarios is becoming larger and larger
(e.g., DVFS, accelerators, voltage islands, multiple-phases, thermal concerns,
environmental factors that change application behaviour dynamically etc.).
ILP, Genetic Algorithm (GA) and Evolutionary Algorithm (EA) schedulers
are only of limited use as they do not scale well concerning either sched-
uling time or the performance of the solution. This leads us to investigate
Reinforcement Learning (RL) for offline scheduling. RL agents receive the
current state of the environment and a set of potential actions. From this, the
agent calculates the value of each action and then the most valuable action
is passed to the environment. The environment carries out the action and
returns a reward based on which the agent can learn. Thus, RL agents make
decisions sequentially based on the latest information. Additionally, a RL

approach can evaluate all possible actions in one pass. Therefore, our final
research question is:

• RQ 5: To what extent can we use reinforcement learning to replace traditional
scheduling methods?

In Chapter 6, we show the advantages and disadvantages of a multi-core
capable RL based scheduler that is ranking independent. We compare the
RL scheduler for DAG applications against a traditional greedy heuristic.

1.3 thesis organisation 9

We show that our RL approach can produce schedules that are up to 11%
shorter than schedules generated by a greedy heuristic. Additionally, we
show that across a large dataset the RL generated schedules and greedy
heuristic generated schedules perform similarly. The RL generated schedules
are on average 2.8% longer.

1.3 thesis organisation

Figure 1.2 lays out the organisation of the thesis and how the individual
chapters are connected. First, we cover background information in Chapter 2.
Chapter 3 focuses explicitly on the impact of sampling frequency on mea-
surement accuracy. Our findings for Chapter 3 led to the experimental setup
used in Chapter 4. In Chapter 4, we introduce a new task model designed
especially for heterogeneous DVFS-enabled MPSoC. Furthermore, we present
a fine-grained energy model and a new scheduler called eFLS which can
take advantage of DVFS and supports multiple voltage islands. Lastly, we
investigate the impact of different ranking strategies on the performance
of eFLS and introduce and compare HER to established ranking strategies.
In Chapter 5, we introduce a new task model and scheduler (hFLS) that
divides tasks into separate phases. Finally, in Chapter 6, we investigate an RL

approach for scheduling dependent tasks onto a homogeneous multi-core
system without an accelerator. Lastly, in Chapter 7, we draw our conclusions,
answer the research questions and look at future work.

1.4 publications and author contributions

A complete list of publications by the author can be found on Page 135.
Additionally, on Page 137, the links to the published code and datasets can
be found. Below is a list of the authors’ contributions to each paper and how
each paper relates to the research chapters.

Ch.3 J. Roeder, S. Altmeyer, and C. Grelck “Can we trust our en-
ergy measurements? A study on the Odroid-XU4” [144], in 15th
Annual Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT at ECRTS 2022).
J.R. designed the experimental setup, collected the data, car-
ried out the statistical analysis, wrote the paper and did the
final editing.

10 introduction

Ch.4 J. Roeder, B. Rouxel, S. Altmeyer, and C. Grelck “Interdepen-
dent Multi-version Scheduling in Heterogeneous Energy-aware
Embedded Systems” [147], in 13th Junior Researcher Workshop on
Real-Time Computing (JRWRTC at RTNS 2019).
J.R. defined the system model, came up with the ILP formu-
lation, wrote the paper and did the final editing.

J. Roeder, B. Rouxel, S. Altmeyer, and C. Grelck “Energy-
aware scheduling of multi-version tasks on heterogeneous real-time
systems” [148], in Proceedings of the 36th Annual ACM Sympo-
sium on Applied Computing (SAC 2021).
J.R. defined the system model and energy model. Further-
more, J.R. came up with the scheduling heuristic and the
ILP formulation. Lastly, J.R. designed the experimental setup,
collected the data, carried out the statistical analysis, wrote
the paper and did the final editing.

J. Roeder, B. Rouxel, S. Altmeyer, and C. Grelck “Scheduling
multi-version tasks on heterogeneous IoT systems using energy-
aware ranking” [149], in Under review.
This paper is a Journal paper extension of [148]. As such, J.R.
invented the additional algorithms, carried out the required
experiments and analysis, extended the paper and did the
final editing.

Ch.5 J. Roeder, B. Rouxel, and C. Grelck “Scheduling DAGs of
Multi-version Multi-phase Tasks on Heterogeneous Real-time Sys-
tems” [151], in 14th IEEE International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC 2021), Singapore.
IEEE.
J.R. defined the system model and created the scheduling
heuristic and the ILP formulations. J.R. designed the exper-
imental setup, collected the data, carried out the analysis,
wrote the paper and did the final editing.

Ch.6 J. Roeder, B. Rouxel, and C. Grelck “Q-learning for Statically
Scheduling DAGs” [150], in 2020 IEEE International Conference
on Big Data (Big Data).
J.R. defined the system model, created the Reinforcement
Learning based scheduler, designed the experimental setup,
collected the data, carried out the analysis, wrote the paper
and did the final editing.

1.4 publications and author contributions 11

J. Roeder, A.D. Pimentel, and C. Grelck “GCN-based reinforce-
ment learning approach for scheduling DAG applications” [146],
in 19th Artificial Intelligence Applications and Innovations (AIAI
2023).
This paper is an extension of [150]. As such, J.R. invented the
additional algorithms, carried out the required experiments
and analysis, extended the paper and did the final editing.

12 introduction

RQ1: Sampling Frequency Impact

RQ5: AI-based schedulers

RQ2-4: Heuristic-based schedulers

Ch.1: Introduction

Ch.2: Background
High-performance embedded systems, DAG,

Scheduling, Energy

Ch.3: Energy Measurements
Accuracy, sampling rate, equivalence testing

Ch.4: Energy-aware
eFLS algorithm, heterogeneous systems, multi-version,
DVFS, energy model, voltage islands, ranking algorithm

impact, HER algorithm

Ch.5: Multi-phase
hFLS algorithm, hardware utilization, makespan, CRPD

Ch.6: RL-based Scheduler
multi-core, makespan, scheduling time, ranking

independent

Ch.7: Conclusion

Figure 1.2: Thesis organisation, including chapters, keywords and research ques-
tions

2
B A C K G R O U N D

In this Chapter, we discuss and explain core ideas relevant to the rest of
the thesis. First, in Section 2.1, we explore this work’s central example
target system and its features, such as DVFS. Then we give an overview
of the system model used (Section 2.2). Last, we provide an overview of
scheduling principles and explain how a general Forward List Scheduling
(FLS) scheduler works (Section 2.3).

2.1 high-performance embedded systems : odroid-xu4

Throughout this work, we use the Odroid-XU4 [59] as an example of an
MPSoC. The Odorid-XU4 is a single board computer by Hardkernel 1. It is
in many ways representative of other COTS single-board computers such
as the Raspberry Pi platform. Moreover, the Odroid-XU4 is also similar to
many modern smartphones, which come with similar System-on-Chip (SoC).
The main SoC powering the Odroid-XU4 is the Samsung Exynos 5 Octa 5422

[49]. It is an octa-core CPU with four big out-of-order cores for performance
and four in-order energy-efficient LITTLE cores. Additionally, it contains a
Mali-based GPU. Figure 2.1 shows the main parts of the Odroid-XU4 in a
block-diagram. Table 2.1 lists MPSoC boards similar to the Odroid-XU4.

2.1.1 DVFS and Voltage Islands

Changing voltage and frequency dynamically (i.e., DVFS) is a widely used
technique to reduce compute units’ power and energy consumption. It is
used in laptops, desktops, servers, phones etc. For example, the CPU runs
at the lowest clock frequency for most of the time and only increases the
frequency when additional computational power is needed. The OS auto-
matically does this type of DVFS. The DVFS is almost a continuous variable
on some systems. On the Odroid-XU4, DVFS can be done in discrete steps.
The DVFS settings for the LITTLE cores range from 200MHz to 1500MHz
at 100MHz intervals, thus, 14 steps. The range for the big cores is slightly
larger ranging from 200MHz to 2000MHz at 100MHz steps, resulting in 19

1 https://www.hardkernel.com/

13

https://www.hardkernel.com/

14 background

Table 2.1: Examples of systems that we consider to be MPSoC.

Name CPU Accelerator Memory

Latte Panda 3

4x Intel Celeron
N5105

Intel UHD
Graphics

8GB

Nvidia Jetson Nano 4x ARM Cortex-A57

128-core
NVIDIA
Maxwell

4GB

Nvidia Jetson TX2

2x NVIDIA Denver
2 cores, 4x ARM
Cortex-A57

256-core
NVIDIA
Pascal

4GB

Odroid-N2+
4x ARM Cortex-A73,
2x ARM Cortex-A53

Mali-G52 2-4GB

Odroid-XU4

4x ARM Cortex-A15,
4x ARM Cortex-A7

Mali-T628 2GB

Raspberry Pi 4 4x ARM Cortex-A72

Broadcom
VideoCore
IV

1-8GB

possible frequencies. The on-chip Mali-GPU also allows for DVFS ranging
from 177MHz to 600MHz in 7 steps (177MHz, 266MHz, 350MHz, 420MHz,
480MHz, 543MHz, 600MHz).

Voltage, frequency, power consumption, and compute power are all con-
nected. A higher (clock) frequency means we can do more operations per
second; thus, increasing the frequency increases the compute power. How-
ever, increasing the frequency comes at a cost. The gates must be able to
keep up with the clock. Forcing gates to switch faster requires a higher
voltage, increasing power consumption.

The highest DVFS setting results in the highest performance. However, this
results in increased power and energy consumption and high temperatures.
Many systems follow a race-to-idle philosophy where one uses the highest
clock frequency during workload and then the lowest clock frequency when
idle [6, 51, 81]. A more nuanced DVFS approach can help achieve the best
energy efficiency. To achieve higher speeds, one has to increase the voltage
level significantly at the upper end of the DVFS scale, which only results
in diminishing marginal returns. The decrease in execution time is not as
significant as the required voltage increase. This results in convex energy
curves as shown in Figure 2.2. Furthermore, one cannot just use the best

2.2 task model overview 15

Exynos 5422 SoC

CPU

big Island LITTLE Island

Accelerator

GPU Island

DRAM

LPDDR3
2GbyteARM Mali-T628

Cortex A15 Cortex A7

Cortex A15 Cortex A15

Cortex A7

Cortex A7 Cortex A7

 Cache: 2 MB L2 Cache: 512 KB L2

Cortex A15

Figure 2.1: Block diagram of the Exynos 5 Oca 5422 showing the different hardware
components, including the voltage islands.

DVFS settings per core type because different tasks have different sweet spots
even on the same core type, clearly shown in Figure 2.2.

In modern SoC, cores of the same type are often clustered into voltage
islands. This means we cannot determine the DVFS settings per core but only
per island. The Odroid-XU4 has three voltage islands, shown in Figure 2.1 as
the dark green boxes. The LITTLE cores form one island, the big cores form
one island and the Mali-GPU the last island. Thus, all LITTLE cores have the
same DVFS settings, and the same is true for the other islands. Clustering
different sections of SoC into islands comes with the obvious disadvantage
that if we have one busy core at a high DVFS setting, the other idle cores
use more energy than under the lowest DVFS setting. However, clustering
cores/sections of silicon into islands is advantageous as it uses less silicon
than dedicating one island to every core [69].

2.2 task model overview

This section gives an overview of the base task model used throughout
this work. We work with applications represented as Directed Acyclic
Graphs(DAG), hereafter also called task graphs. An example DAG is shown in
Figure 2.3. In a task graph G = (τ,E) the set of nodes/vertices τ represents
the tasks, and the set of edges E represents data dependencies between tasks,

16 background

80
0

10
00

12
00

14
00

16
00

18
00

20
00

MHz

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Jo
ul

e

Energy vs. Frequency for Big Core
backprop
bfs
hotspot
nn
nw
srad

Figure 2.2: Energy consumption required to execute different Rodinia benchmarks
[27] on the big core of the Odroid-XU4 at different clock frequencies.

i.e., a producer task needs to be completed before the corresponding con-
sumer task may start executing. A task can be anything that the user wants
to run on the target system, ranging from simple tasks such as outputting to
a file to complex computations. A task can take any number of inputs and
generate any number of outputs. Additionally, a DAG can have a deadline.

Task 0

Task 4

Task 5

Task 3

Task 2

Task 7 Task 8

Task 6

Task 1
Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Figure 2.3: Example DAG with nine tasks.

2.3 scheduling 17

2.3 scheduling

In this section, we give an overview of scheduling for DAG and, based on
a small example, demonstrate how a simple Forward List Scheduling(FLS)
would work. Let us first start by defining mapping and scheduling. Mapping
and scheduling go hand in hand. Mapping is the process of determining
the core on which a task will be executed. Scheduling is the process of
determining when a task will be executed. Mapping and scheduling can
be done offline (i.e., statically before execution) or online (i.e., dynamically
at runtime). In this thesis, mapping and scheduling are done statically.
Additionally, both are done simultaneously and depend on each other,
i.e., the time at which a task is executed heavily depends on the target core.
From here onwards, scheduling will refer to scheduling both in time and
space.

Task 0

Task 5

Task 4

Task 3

Task 2

Task 7

Task 6

Task 8

Task 1

Figure 2.4: Example ranking of the DAG

shown in Figure 2.3.

Furthermore, according to the
taxonomy proposed by Davis and
Burns [38], our approaches can also
be classified as partitioned, time-
triggered and non-preemptive. Par-
titioned means that a task may not
migrate between processors. Time-
triggered means that our tasks start
executing after a specific amount of
time (in contrast to event-triggered
tasks). And non-preemptive means
that our tasks may not be pre-
empted while being executed.

Let us continue with an exam-
ple application. The application is
represented by the DAG shown in
Figure 2.3. The DAG provides a par-
tial order of tasks. In this example,
Tasks 2 to 5 will be executed after
Task 0 as they must wait for the data
provided by Task 0. However, we cannot definitively say that Task 2 must
be executed before Task 3, as there is no dependency between the tasks.
However, many scheduling algorithms (e.g., FLS, ARSH-FATI [133]) require
a total order of tasks. Thus, before scheduling, we must rank the tasks. Fig-
ure 2.4 shows an example of a total order for the example DAG in Figure 2.3.

18 background

Different ranking algorithms can be used, such as Breadth-First or Depth-
First. Furthermore, if two tasks have the same ”rank”, certain properties
such as the Worst Case Execution Time (WCET) of the tasks can be used as a
tiebreaker.

After ranking, we can use a scheduler such as Forward List Scheduling
to schedule the application. For this example, let us assume that our target
architecture has four cores, two LITTLE cores and two big cores. FLS will try
the next task in the ranking on all available cores and pick the best option
(e.g., lowest energy consumption, shortest makespan). Thus, the first task to
be scheduled is Task 0 (as seen in the ranking in Figure 2.4). FLS tries the task
on each core and then finally schedules it on the core, which leads to the
best local result. Therefore, before arriving at a final output, the scheduler
would also try out cores big - 0, big - 1, LITTLE - 2 and LITTLE - 3. In this
case, core big - 0 and big - 1 are the best options. We pick the first best option
as a tiebreaker, as shown in Figure 2.5a. The best local result depends on
the preferred optimisation target. The scheduler then continues with the
following task (Task 5) and tries it on all cores before deciding on a final
schedule. The scheduler will continue to schedule one task after another in
order of the ranking until all tasks are scheduled. The final schedule of the
example is shown in Figure 2.5b.

Time

LITTLE - 3

LITTLE - 2

big - 1

big - 0 T0

(a) Initial schedule for Figure 2.3 after the first
round of an FLS scheduling algorithm.

T5

T4

T3

T2

T7 T6T8 T1

Time

LITTLE - 3

LITTLE - 2

big - 1

big - 0 T0

(b) Final schedule for Figure 2.3.

Figure 2.5: The two figures show the first and final example schedules for the DAG

shown in Figure 2.3.

3
E N E R G Y M E A S U R E M E N T

This chapter explores the importance of sampling frequency in energy measurements.
We explain and detail important energy measurement concepts relevant to the other
chapters of this thesis. This includes a description of the measurement system that
we use. Furthermore, we introduce the statistical methods required for exploring the
impact of sampling frequency on energy measurements. Overall we answer research
question 2 in this chapter. This includes a visual representation of the error when
using a too low sampling rate.

This chapter is based on:

• J. Roeder, S. Altmeyer, and C. Grelck “Can we trust our energy
measurements? A study on the Odroid-XU4” [144], in 15th Annual
Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT at ECRTS 2022).

• J. Roeder, S. Altmeyer, and C. Grelck “Energy Measurements of 9
Rodinia Benchmarks executed on the Odroid-XU4.” [145], in Dataset
published on UvA figshare.

3.1 introduction

Energy consumption is one of the most critical design criteria for battery-
powered systems. Thus, it is not surprising that decreasing energy consump-
tion from the software side is an essential topic in various research fields
such as IoT, edge computing and cyber-physical systems (e.g., [16, 24, 30, 56,
76, 89, 102, 108, 142, 148]; for a survey see [123]).

A crucial part of energy-related research is measuring energy consump-
tion to show tangible improvements on real hardware. To measure a device’s
energy consumption, we need to measure voltage and current, two contin-
uous signals. Continuous signals are measured in discrete intervals at a
given sampling rate. Theoretically, we need to measure at twice the highest
frequency desired to be measured (Nyquist rate [103]); otherwise, the time

19

20 energy measurement

series might be distorted. However, from a practical point of view, it is
unclear what the highest desired frequency in this case is.

In general, we find that authors and reviewers place little importance on
the measurement setup, as papers do not report the setup or lack details on
the devices and methods used, e.g., [16, 56, 75, 89, 108, 142]. Publications
that report the measurement system used do not investigate or consider the
impact of the measurement setup on the measurements’ accuracy. For ex-
ample, [76] naturally used the energy measurement system (SmartPower2

1)
provided by the manufacturer of their target board (Odroid-XU4). According
to the publication, the SmartPower2 measures at 1Hz. Additionally, we could
not find any studies on the measurement error of the SmartPower2. In this
chapter, we raise substantial doubts about the reliability of low-frequency
measurements. As a community that makes decisions based on energy
consumption, we must know that our experimental setups are reliable.

In this chapter, we systematically investigate the impact of the sampling
frequency on the energy measurement accuracy. More specifically, we mea-
sure the energy consumption of an Odroid-XU4 executing a variety of
benchmarks. The measurement system used samples at a high rate; the
original power traces can then be downsampled. We then compare the
downsampled traces against the original traces. That way, we can alter the
sampling frequency of the voltage and current measurements while keeping
all other variables equal.

The chapter is organised as follows. We provide background information
and detail our methodology in Section 3.2. Section 3.3 covers our results and
discussion. Then in Section 3.4, we discuss related work. Finally, we present
our conclusion in Section 3.5.

3.2 background & methodology

In order to investigate the importance of sampling frequency, we need a
measurement system, a target system, programs to measure and a way to
compare different sampling frequencies. In this section, we start with a short
discussion about power measurements in general. We then dive into the
importance of sampling frequency. Next, we introduce our experimental
setup and the benchmarks used. Lastly, we detail the statistical tests needed.

1 https://www.hardkernel.com/?s=smartpower2&post type=product&lang=en

https://www.hardkernel.com/?s=smartpower2&post_type=product&lang=en

3.2 background & methodology 21

3.2.1 Power Measurements

Power measurements can be done at the AC or DC sources. Discussing and
comparing the advantages of either method is beyond the scope of this work.
However, in general, the AC-DC converter (i.e., power supply) will have
some inefficiencies, and measuring after the converter (i.e., at DC) disregards
that loss. Furthermore, the loss can fluctuate with the load, i.e., power
supplies are most efficient at a given load and have lower efficiency at
lower/higher loads. An additional reason to measure after the converter is
that the energy consumption is most crucial for battery-powered systems,
which use DC.

For an overview of different DC measurement methods, see [97] and [64].
In this chapter, we consider the shunt resistor method, which observes the
voltage drop across a resistor as it is widely used. We place the resistor in
series with the load. And as we know the resistor value, Ohm’s law can
be applied to calculate the current of the load. Furthermore, we can place
the resistor before the load (high side) or after the load (low side). Low
side sensing is cheaper as the amplifier is more straightforward, but it has
some disadvantages compared to high side sensing. More specifically, high
side sensing is not sensitive to ground disturbances and can detect fault
conditions. Therefore, high side sensing is more often used when accurate
measurements are needed. In contrast, low side sensing is mostly used in
mass production systems where accuracy is not as crucial [13]. We will focus
on high side sensing for increased accuracy.

The resistive current sensing method can be deployed directly on a target
board, i.e., the board comes with an integrated power measurement function
(e.g., Odroid-XU+E2 used in [75]). Or the method can be deployed on a
separate device such as the SmartPower2 or Qoitech Otii3. Onboard sensors
are polled from the target system itself and can be polled at different
frequencies. Additionally, onboard sensors are intrusive as the polling of the
sensors impacts the energy consumption of the target.

The voltage drop across the resistor is amplified and converted using an
Analogue-Digital-Converter (ADC). Current sense amplifiers such as the
TI INA250

4 can be combined with an ADC. The ADC then digitises the
information for further analysis.

2 https://www.hardkernel.com/shop/odroid-xue/
3 https://www.qoitech.com/otii/
4 https://www.ti.com/product/INA250

https://www.hardkernel.com/shop/odroid-xue/
https://www.qoitech.com/otii/
https://www.ti.com/product/INA250

22 energy measurement

Once we obtain the voltage and current readings, we can calculate the
power (Watt). Multiple power readings result in a power trace. As we know
the time between different power readings, we can calculate the area under
the trace, resulting in the energy consumption (Joule).

3.2.2 Sampling Frequency

Continuous signals cannot be converted to digital information continuously.
Instead, we have to measure them at discrete intervals. The accuracy of the
measurements heavily depends on the sampling frequency. In theory, to
reproduce an (AC) power signal, one needs to measure voltage and current
at four times the highest sinusoidal frequency [132]. However, the DC con-
sumption is not sinusoidal and instead alternates with the requirements of
the load. In the case of a microcontroller, the current requirements change
with the Dynamic Voltage and Frequency Scaling (DVFS) settings, instruc-
tions per clock and the actual instructions being executed [135]. Thus, the
required sampling frequency depends on the length of the program being
executed and the instruction mix.

3.2.3 Setup and Target system

High-performance embedded systems like the Odroid-XU4 and the NVidia
Jetson Nano are all relatively similar with respect to clock frequency and
CPU architecture. It is an octa-core system with 4 big cores (Cortex-A15), 4

LITTLE cores (Cortex-A7) and a Mali-GPU (T628 MP6). The two separate
core clusters and the GPU all form individual voltage islands (i.e., 3 voltage
islands). The voltage and the frequency can be set separately for each voltage
island. The Odroid-XU4 runs an RT-patched Linux.

The Odroid-XU4 is accompanied by an energy measurement system called
the SmartPower2. However, due to the low sampling frequency (1Hz), we
decided not to use the system. Instead, we measure the energy consumption
of the Odroid-XU4 with the Qoitech Otii on the high side. The Otii has a
maximum measurement error of 0.1% + 150µA (i.e., at higher currents, the
error is approaching 0.1%) and has a sampling frequency up to 4kHz. The
main criticism of the shunt resistor method is that a single shunt is only
helpful in a limited current range [26, 64]. The Otii has multiple shunts
to measure very low currents (10 µA with 0.6% error) up to 5A peaks. It
measures across all shunts simultaneously; thus, switching the current range
(i.e., between shunts) does not result in any loss of data points.

3.2 background & methodology 23

Otii

Odroid-XU4 Fan PSU

PC

Legend:

Data

Power

PSU

PC

Figure 3.1: Measurement setup including: Qoitech Otii, Odroid-XU4, Fan power
supply, and PC

Figure 3.1 shows our setup. The Odroid-XU4 receives its power from the
Otii and is simultaneously connected via the UART pins to the Otii. This
means that the power measurements can be directly linked to messages sent
by the Odroid-XU4. The fan of the Odroid-XU4 is powered via a separate
circuit and thus does not affect the power measurements of the Odroid-XU4.
Before each set of measurements, we calibrate the Otii. Additionally, we
warm up all connected components by executing the heartwall benchmark
50 times.

3.2.4 Downsampling

The Otii continuously samples at 4kHz. Thus, lowering the sampling rate is
impossible; instead, we downsample the results. That means if we sample
at 4kHz but want a sampling rate of 2kHz, we only consider every second
measurement. Thus, unrelated sampling factors do not play a role (e.g., dif-
ferent measurement error on another measurement device). In this chapter,
we investigate 22 sampling rates (in Hz: 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100,
150, 200, 250, 300, 350, 400, 500, 600, 800, 1000, 2000, 4000).

3.2.5 Benchmarks

We use the Rodinia benchmark suite [27] as target programs/tasks. The
suite offers a range of targets (C, OpenCL, Cuda), different algorithms &
workloads and is widely used. Berkeley’s dwarf taxonomy inspired the
suite’s benchmark selection [14]. Each benchmark can further be adjusted
via its input parameters. This leads to an extensive range of run times and
processor loads.

24 energy measurement

We use nine benchmarks (backpropagation, BFS, Heartwall, Hotspot,
Kmeans, LU-Decomposition, Nearest Neighbour, NW, SRAD) out of the
suite as they can be executed on the Odroid-XU4 with minimal adapta-
tions. The other benchmarks would have required significant changes to the
code. Besides the input parameters, we also vary the target DVFS settings
and core. We measure all benchmarks on the LITTLE cores, the big cores,
and the GPU (i.e., OpenCL version). However, two benchmarks (BFS and
SRAD) were only measured on the big and on the LITTLE cores because the
OpenCL versions did not work on the Odroid-XU4. This leads to 842 unique
benchmark/target/DVFS combinations. For each combination, we collected
50 power traces; thus, we collected 42100 power traces. The resulting dataset
is available for download 5[145]. Additionally, the repository containing the
analysis scripts is also available 6.

We do not consider other benchmarks such as STR2RTS [115] or ULPMark
[46] as they are developed for significantly different devices (e.g., micropro-
cessors, ultra-low power IoT systems). However, future work could expand
on the benchmarks and experiment types. Interesting additional benchmarks
include the ADASMark[47] and MLMark[48] tests. Unfortunately, these were
not yet available when the experiments were conducted. Furthermore, the
experiments could also be expanded to include multi-core tests, for example,
running benchmarks on the big and LITTLE cores in parallel.

3.2.6 Statistical equivalence testing

We measure a non-deterministic system (out-of-order pipeline etc.). Addi-
tionally, the measurement system is not perfect and contains some noise.
Thus, we repeat measurements for each combination, as there is not a single
”correct“ value. That also means that downsampling a single time series and
then calculating the error will indicate how much worse a lower frequency is.
However, this approach does not offer a statistical indication. Therefore, we
must analyse all sets and their downsampled counterparts with statistical
tests.

In a regular two-sided t-test, we test if two samples are different. The
null hypothesis is that there is no difference (µD) between the two samples
(Equation (1)).

5 https://doi.org/10.21942/uva.19665564.v1
6 https://bitbucket.org/uva-sne/energymeasurementanalysis/

https://doi.org/10.21942/uva.19665564.v1
https://bitbucket.org/uva-sne/energymeasurementanalysis/

3.2 background & methodology 25

H0 : µD = 0 (1)

H1 : µD! = 0 (2)

Suppose the t-test indicates a significant difference (e.g., p-value smaller
than 0.05). In that case, we can reject the null hypothesis and accept the
alternative hypothesis that the two samples are different (Equation (2)).
Thus, a t-test offers evidence in favour of the alternative hypothesis at a
given confidence level (e.g., 99%). If the t-test is not significant, this is often
counted as support for the null hypothesis, i.e., that there is no difference
between the samples or no effect. However, a non-significant test result often
results from limited statistical power. Thus, it is impossible to know whether
a non-significant result indicates equivalence (absence of an effect) or only
false equivalence and lacks statistical power [111].

Instead of proving the absence of an effect, we can show that the likelihood
of an effect being smaller than a given (low) value to be significant. This is
called equivalence testing. To test for equivalence between two samples, we
use a method called Two One-Sided T-tests (TOST) [111]. As a TOST consists
of two tests, it has two null hypotheses (Equation (3)) and (Equation (4)).
The first test determines if the difference between the two samples (µD) is
smaller than the accepted lower bound (−M). The second one tests if the
difference is larger than the upper bound M.

H01 : µD < −M (3)

H02 : µD > M (4)

Combining both test results in the alternative hypothesis (Equation (5))
that µD falls between −M and M. Thus, if both t-tests are rejected, we have
support for the alternative hypothesis that the difference between the two
samples is smaller than a chosen M [96]. Figure 3.2 visualises the difference
between a normal t-test and a TOST.

H1 : −M < µD < M (5)

The majority of our 842 measurement sets are not normally distributed
(76.0%) according to both the Shapiro-Wilk test [122] and D’Agostino-
Pearson’s test [34]. One randomly picked set (out of 842 sets) of the energy
consumption distributions can be seen in Figure 3.3. It clearly shows that
the values are clustered heavily in the centre with only a few samples in
the tails, hence not representing a normal distribution. Therefore, we use a
non-parametric TOST based on Wilcoxon’s Signed Rank test [137]. We do all
tests at a 99.9% confidence (α = 0.1%).

26 energy measurement

μD=0

μD=0

H1

H0

H1

H1 H02H01

-M M

Two-sided t-test

TOST

Figure 3.2: Comparison of a two-sided t-test and a TOST.

24.2 24.3 24.4 24.5 24.6
Joule

0

2

4

6

8

10

12

Co
un

t

Figure 3.3: An example energy consumption distribution randomly picked from
the 842 different sets. The kurtosis is 1.53, and the skewness is 0.66.

3.3 results & discussion 27

One significant difference between a standard t-test and an equivalence
test is that one needs to determine what (low) difference (M) is acceptable
(i.e., considered to be less than a substantial effect). We analyse the impact
of 8 ”acceptable error“ levels (20%, 10%, 8%, 6%, 4%, 2%, 1%, 0.5%) and the
sampling level required to achieve equivalence at that level across all 842

experiment combinations.

3.3 results & discussion

The 42100 power trace time series can be analysed in multiple different ways.
Table 3.1 summarises basic statistics of all power traces and shows that our
benchmarks/target/DVFS combinations cover a wide range of run times
and power. Overall we observe that the downsampled traces mainly resulted
in a power consumption underestimation (98.9% of the cases) and in very
few cases of overestimation (1.1%).

Table 3.1: Summary statistics for all benchmark executions.

Runtime (s) Power (W)

Mean 9.87 2.99

Min 0.90 1.82

Max 48.15 8.44

Figures 3.4 and 3.5 show one of the power traces. Figure 3.4 shows the
original power trace at the full sampling frequency of 4kHz and Figure 3.5
shows two downsampled versions. The solid blue line in Figure 3.5 shows
how the power trace looks like if we had sampled at 1Hz. Compared to the
original trace, we can see that it misses most of the data. Furthermore, it
also completely misses data at the last second, as the execution time was
3.98 seconds. It is possible to make up for the last missed measurement by
either measuring at second 4 or using the last known measurement. Either
method will still lead to a significant error. The dashed red line shows the
same power trace but downsampled to 10Hz. It already has much more
detail than the 1HZ line but still misses a significant part of the signal.

Figure 3.6 shows the maximum percentage error between the original
energy measurement and the downsampled measurement for each frequency.
Thus, the maximum error observed across all 842 combinations at 1Hz is
80%. The maximum error only drops below 0.5% at a sampling frequency of
500Hz.

28 energy measurement

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

2.0

2.5

3.0

3.5

4.0

4.5

Po
we

r (
W

)

Figure 3.4: Original power trace sampled at 4000Hz.

The maximum error only represents a single measurement and does not
carry any statistical meaning, which is the reason for employing equiva-
lence testing. Figure 3.7 shows the minimum frequency required to achieve
equivalent results for all 842 combinations compared to the full sampling
frequency. Thus, if a measurement error of up to 20% is acceptable, then a
30Hz sampling rate would lead to an equivalent result for all experimental
combinations. At an acceptable error of 0.5%, 600Hz results in an equivalent
result, which indicates a similar level as Figure 3.6.

Lastly, in Figures 3.8 and 3.9, we investigate the relation between the error,
benchmark run-time and sampling frequency. Interpreting the 3D graph
showing the relationship between all three is not straightforward as the
resulting graph contains a lot of non-continuous data points (Figure 3.8). To
ease the interpretation, we smooth the data and the relation between the
three variables using a polynomial, multi-variable regression based on a
Multi-Layer-Perceptron (Scikit-learn: default parameters, hidden layer size =
(64, 128, 256, 512)). This allows us to interpolate the error to other sampling
frequencies and run times. We use 80% of the data for training. The mean
absolute error on the test set is 0.0065.

We use the regression to predict a measurement error given a sampling
frequency and run-time. Plotting the regression for the sampling frequency
range 1Hz to 140Hz and run-times between 0.5 and 40 seconds results in

3.3 results & discussion 29

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (s)

2.0

2.5

3.0

3.5

4.0

4.5
Po

we
r (

W
)

1Hz Sampling Frequency
10Hz Sampling Frequency

Figure 3.5: Downsampled power traces.

Figure 3.9. The figure shows that low sampling frequencies lead to poor
results for the selected benchmarks, even for longer run times. That means
that the selected long-running benchmarks contained a significant amount
of faster peaks that were missed at a low sampling rate. The error for short
tasks remains higher even with higher sampling frequencies. As such, the
results obtained with a SmartPower2 are of limited use in an academic
setting.

For this set of benchmarks, input parameters, target platform, and DVFS
settings, a sampling frequency between 350Hz and 600Hz is sufficient (given
an error of 1% and below). However, much shorter programs might need
significantly higher sampling rates, or one will have to measure the target
task differently. For example, measuring a very short task (a few CPU
cycles) will be missed even at a sampling frequency of 4kHz; thus, artificially
inflating the task could work (e.g., a loop).

In the remainder of this work, we use the same energy measurement
setup described in this chapter. Additionally, we take care to execute suffi-
ciently long-running tasks so that the energy consumption can be measured
accurately.

30 energy measurement

0 250 500 750 1000 1250 1500 1750 2000
Target Frequency (Hz)

0

10

20

30

40

50

60

70

80

M
ax

. E
rro

r (
%

)
Error > 0.5%
Error <= 0.5%

Figure 3.6: Maximum error rate at each artificial frequency across all 842 experiment
sets.

3.4 related work

Cloutier et al. demonstrate that decreasing the sampling frequency from
100Hz to 1Hz results in a significant loss of the power trace detail [30].
However, they do not further investigate the impact of this decrease on
energy measurement accuracy. Additionally, we can show that the accuracy
of measurements at 100Hz is significantly lower than at 4kHz.

Diouri et al. investigate different energy measurement systems for servers
[43]. They conclude that higher sampling rates are not necessarily good
as they can introduce noise that could mask other trends. However, only
because a signal is noisier doesn’t mean that the noise is erroneous and can
thus be disregarded for energy measurements. One can always downsample
a trace or smooth it to investigate possible hidden trends. Furthermore,
server measurements could already be noisier than high-performance em-
bedded systems due to architectural reasons, different target applications
and short background tasks. Looking at Figure 3.4, we cannot confirm that
a high sampling rate masks the trends of an application. Lastly, Diouri et
al. do not investigate if the downsampled traces lead to equivalent energy
measurements.

3.5 conclusion 31

20.0 10.0 8.0 6.0 4.0 2.0 1.0 0.5
Accepted Error (%)

0

100

200

300

400

500

600
Re

qu
ire

d
Fr

eq
ue

nc
y

(H
z)

Figure 3.7: Frequency required to reach equivalence given an acceptable error.

Djupdal et al. [44] develop a high-performance embedded system oriented
energy measurement system. And in [73], the authors describe two high-
sampling frequency power measurement methods (up to 500kHz) for servers
and server components. However, they do not analyse the importance of the
sampling frequency and if lower sampling frequencies can achieve similar
results.

Buschoff et al. [26], and Jiang et al. [77] develop measurement techniques
for low-powered embedded systems. They target devices with long sleep
times that only consume energy in a few fast bursts. In contrast, we focus
on high-performance embedded systems that carry out computationally
demanding tasks.

Nakutis et al. [97] and Hergenröder et al. [64] summarise the different
power measurement methods and highlight the importance of the sampling
frequency. However, neither paper empirically shows the resulting error.

3.5 conclusion

Research into reducing the energy consumption of embedded systems is
popular. Hence, we need to measure the energy consumption of embedded
systems. However, researchers and reviewers alike often pay little attention
and consideration to how to measure energy consumption. One crucial

32 energy measurement

Figure 3.8: Relation between the error, benchmark run-time and the sampling fre-
quency for all power traces downsampled to between 1Hz and 140Hz.

aspect of energy measurements for high-performance embedded systems is
the sampling frequency of the analogue signal.

We show that for a wide range of Rodinia benchmarks executed on the
Odroid-XU4, the minimum sampling rate is 350Hz if a 1% measurement
error is acceptable. Measuring at 1Hz results in errors as high as 80%. This
shows that systems such as the Hardkernel SmartPower2 (measurement sys-
tem accompanying the Odroid-XU4) cannot be used to draw conclusions and
that measurement methods with low sampling rates are only of limited use
in an academic setting. Some papers on reducing the energy consumption
of high-performance embedded systems should be re-evaluated.

To reliably research and investigate methods for reducing energy con-
sumption, we must measure energy consumption accurately. That means we
need to pay more attention to our experimental setup and report our setup
accurately. Careless experimental designs lead to two problems: First, we
potentially focus too much on the wrong methods (false positive conclusion).
Second, we discard methods that do not look promising but are, in reality,
good options (false negative conclusion).

3.5 conclusion 33

Runtim
e (s)

0510152025303540Sampling Frequency (Hz)
0 20 40 60 80 100 120 140

Er
ro

r (
%

)

10

20

30

40

50

60

70

Figure 3.9: Regression analysis of the error with respect to the benchmark run-time
and the sampling frequency.

4
E N E R G Y- AWA R E S C H E D U L I N G

This chapter explores our energy-aware scheduling technique. We define a task
model which integrates multiple versions for dependent tasks. This is followed
by introducing a new fine-grained energy model which can easily be integrated
into scheduling strategies. Next, we propose new energy-aware ranking algorithms
(i.e., establishing a total order) to initialise the Forward List Scheduling heuristics.
The new ranking algorithms are compared against state-of-the-art ranking methods
(BFS with WCET, DFS with WCET, BFS with laxity, and BFS with energy laxity),
and overall our new approach decreases energy consumption by an average of 26.3%
and 27.8% in comparison to two state-of-the-art schedulers (HEFT and ARSH-
FATI). Additionally, our approach generates schedules that are close to optimal
(determined using an ILP) concerning energy consumption. Lastly, we empirically
show that our energy-aware scheduler predictions are close to the actual energy
consumption measured (largest error 15.8%) on an Odroid-XU4 board.

This chapter is based on:

• J. Roeder, B. Rouxel, S. Altmeyer, and C. Grelck “Interdependent
Multi-version Scheduling in Heterogeneous Energy-aware Embedded
Systems” [147], in 13th Junior Researcher Workshop on Real-Time
Computing (JRWRTC at RTNS 2019).

• J. Roeder, B. Rouxel, S. Altmeyer, and C. Grelck “Energy-aware
scheduling of multi-version tasks on heterogeneous real-time systems”
[148], in Proceedings of the 36th Annual ACM Symposium on Applied
Computing (SAC 2021).

• J. Roeder, B. Rouxel, S. Altmeyer, and C. Grelck “Scheduling multi-
version tasks on heterogeneous IoT systems using energy-aware ranking”
[149], in Under review.

4.1 introduction

In recent years, we have seen an ever-increasing number of deployed IoT
and IIoT devices. In 2022 the number of active IoT endpoint connections

35

36 energy-aware scheduling

is expected to grow by 18% to 14.4 billion devices. By 2025 the number of
devices is expected to almost double to 27 billion connected (I)IoT devices
[10]. Not only do we see a significant increase in the number of devices but
also a broader range of possible deployment areas. Especially in the IIoT
domain, such as the medical and public sector, many growth opportunities
exist as more image and big data edge analysis applications are developed
[45, 84, 88, 109]. One recent example of a public sector application is the use
of deep learning for vehicle tracking on the edge [45]. This analysis must be
done on the edge as privacy, security, bandwidth, and storage are all limiting
factors [36, 45]. These types of applications benefit from the growing number
of high-performance heterogeneous single-board computers, such as the
Odroid-XU4 [59] or Nvidia Jetson boards [101], as they offer remarkable
compute power at low energy consumption. Energy consumption is not
only crucial in light of climate change and the overall CO2 footprint of
the (I)IoT sector due to the large number of devices (27 billion by 2025)
but also for individual battery-powered devices where recharging is pro-
hibitively expensive or even impossible. Examples of such applications are
wildlife/poacher camera traps located in remote areas and communicate via
LoRaWAN/Radio etc. (e.g., [74]). Replacing or recharging batteries comes at
a high cost. Thus, the cameras are movement sensor triggered to preserve
energy. However, a movement does not necessarily mean an exciting event
occurred. Additionally, wildlife research requires identified animals and
not full images. Storing or sending all frames from the camera is wasteful.
Hence, many papers focus on deploying edge-based deep learning to these
traps (e.g., [117, 120, 138]). In conclusion, we not only need to reduce the
energy consumption of the overall IoT sector, but we also need to reduce the
energy consumption for the growing number of use cases that require heavy
computations on edge-based battery-powered devices. Hence, the challenge
is to reduce the overall energy consumption on complex, heterogeneous
architectures.

To tackle this challenge, we need to utilise the heterogeneous capacity of
the hardware entirely. This, among others, includes heterogeneous CPUs
(e.g., big.LITTLE [1]) and accelerators (e.g., GPUs). Different compute units
may require architecture-dependent binaries (e.g., CPU vs GPU) due to dif-
ferent instruction set architectures (ISA). The absence of binary compatibility
makes multi-version tasks a natural, if not necessary, starting point for our
work on scheduling for modern heterogeneous IoT platforms. Multi-version
tasks have equivalent functional behaviour (i.e., identical input yields equiva-
lent output) but different non-functional behaviour, namely time and energy

4.1 introduction 37

consumption. As multi-version tasks are required to tackle binary incom-
patibility, we can further exploit this feature and support versions resulting
from, e.g., different compiler flags or different functionally-equivalent al-
gorithms. The necessity to include multiple task versions further increases
the complexity of reducing the overall energy consumption (e.g., balancing
which task and version make use of an accelerator).

Most modern systems allow Dynamic Voltage and Frequency Scaling
(DVFS). For each task, CPU, or GPU type, there is a clock frequency that
minimises energy consumption. A lower frequency leads to longer runtime
and thus increases static energy consumption. A higher frequency leads to
shorter runtime, but the necessary higher voltage increases dynamic energy
consumption. In modern CPUs, the clock frequency cannot be altered per
core but only per core cluster (i.e., voltage island). Hence, we need to pick
the best frequency for each voltage island with respect to the different tasks
executed on that island. We take advantage of DVFS for different voltage
islands to reduce the energy consumption of a whole application consisting
of multiple tasks.

Heterogeneous platforms, multiple task versions, voltage islands and
DVFS extend common scheduling challenges: schedulers now must decide
on which computing unit and at what frequency a task (version) should
be executed to reduce the overall energy consumption. We propose an
offline Forward List Scheduling (FLS) based approach for multi-version task
scheduling, which: 1) fully utilises the heterogeneous CPU and accelerators;
2) takes advantage of per voltage island DVFS; 3) dynamically adjusts the
frequency throughout the application run time; 4) selects the optimal version
of each task with respect to the energy consumption of the whole application.
The motivation to use an offline scheduling approach over a dynamic one is
that the dynamic approach would need to include all versions and DVFS
data in the binary. This introduces prohibitive overhead as all the data has to
be kept in memory. Furthermore, we propose a greedy heuristic instead of
evolutionary algorithms (EA) or genetic algorithms (GA), as EAs and GAs
often require unacceptably long evaluation times [125].

Many relevant applications can be modelled as Directed Acyclic Graphs
(DAG), where the nodes represent different tasks of an application and the
edges represent the dataflow between tasks. From a DAG, we can extract
the partial order of tasks. However, most greedy-, evolutionary- and genetic-
algorithms (e.g.[78, 94, 116, 133]) require a total order of tasks instead. Thus,
we propose a new energy-aware ranking algorithm and explore the effect of
different ranking strategies on our offline heuristic.

38 energy-aware scheduling

The remainder of the chapter is organised as follows: In Section 4.2, we
describe the system model. In Section 4.3, we describe the heuristic algo-
rithm and our new energy-aware ranking algorithm. Section 4.4 details the
experimental setup. In Section 4.5, we investigate the impact of different
ranking algorithms and select a sub-set of ranking algorithms for the remain-
ing sections. Section 4.6 demonstrates the viability of our heuristic scheduler
in comparison to a single-version approach, a makespan heuristic, HEFT
[131] and the energy-aware genetic algorithm-based scheduler ARSH-FATI
[133]. Section 4.7 shows that our heuristic scheduler produces results close
to the optimum and that the predicted energy consumption is close to the
actual energy consumption. In Section 4.8, we discuss related approaches
before concluding in Section 4.9.

4.2 system model

In this section, we first detail our platform model (Section 4.2.1), followed
by the task model (Section 4.2.2) and lastly, we explain our energy model
(Section 4.2.3).

4.2.1 Platform Model

Our approach is fully platform-independent and can be applied to a wide
range of heterogeneous (embedded) system architectures. Our model sup-
ports: multiple voltage islands, DVFS, heterogeneous CPUs, GPU-style ac-
celerators and in-application frequency switching. Additionally, we support
GPU tasks that require not only the GPU but also a CPU core for controlling
the GPU. The only restrictions our approach has is that a voltage island
needs to be homogeneous and that tasks can be bound to a specific core. Our
approach does not limit the number of voltage islands. Each voltage island
can have a differing number of cores and DVFS parameters. We consider
co-processors to be separate voltage islands. Our approach does not limit
the number of different co-processors either.

4.2.2 Task Model

We consider applications represented as Directed Acyclic Graphs (DAG),
hereafter called taskgraphs. In a graph, G = (τ,E) the set of nodes/vertices
τ represents the tasks, and the set of edges E represents data dependencies
between tasks, i.e., a producer task needs to be completed before the cor-

4.2 system model 39

responding consumer task may start executing. Our task model supports
multiple sources and sinks.

Each task τi consists of a (non-empty) set of task versions V . The different
versions of a task τi are functionally equivalent (i.e., they implement an
equivalent input/output relation) but differ in their non-functional proper-
ties. Different versions can be the result of: 1. targeting different functional
units (e.g., big core, LITTLE core or GPU); 2. using varying compilation
flags to, for example, optimise code for energy consumption, binary size,
speed or architecture features [105]; 3. different algorithms or implementa-
tion variants. This results in an ample state space, where picking the best
version for a given task can be challenging. All tasks in the taskgraph must
be executed. However, only one version of each task is executed. Hence, the
scheduler chooses the version to achieve the best trade-off between energy
and performance.

Generator
CPU: C

Task 2
CPU: C

GPU: OpenCL

Task 1
CPU: C

GPU: OpenCL

Task 3
CPU: C

GPU: OpenCL

Storage
CPU: C

Data

Data

Data

Data

Data

Legend
Task

Version

Figure 4.1: Illustration DAG with multi-version tasks.

Figure 4.1 presents a synthetic taskgraph which we use to illustrate our
approach. It consists of five different tasks: one generator task, one storage
task and three computational tasks in between. The tasks have one or two
different versions each. They target different compute unit types: CPU and
GPU. Edges are labelled and represent data transfer (or data dependencies)
between tasks.

4.2.3 Energy Model

Aligned with the state-of-the-art [19, 55, 72] our energy model Equation (6)
consists of a static part (Es) and a dynamic part (Ed). Both static and dynamic
energy consumption are computed during scheduling as they depend on
scheduling decisions (e.g., selected versions, selected frequencies). In contrast
to previous research[19, 55, 72], we consider the impact of frequency on

40 energy-aware scheduling

static energy consumption. Frequencies are not continuous and the dynamic
energy consumption is measured per task.

E = Es + Ed (6)

Power(W)

Time(s)

Dyn. Power Task

Add. Power DVFS

Static Power

Figure 4.2: Energy Model

Figure 4.2 illustrates our energy model based on an example, the x-axis
represents the time, and the y-axis represents the power. The checkerboard
blue box (spanning the complete width of the figure) represents the energy
consumption due to the device being powered up. The crosshatch green
boxes represent the energy consumption required to run at higher frequen-
cies. The third part of our energy model is the dynamic power required to
run a task, represented by the irregular shapes on top of the static power
components.

The static energy consumption (Es), Equation (7), can be split into two
elements Esm and Esf. Firstly, Esm corresponds to the energy consumed
by the board because it is powered on and depends only on the worst-case
duration (i.e., application makespan) it remains powered on. Thus, Esm

is equal to the average measured power, in Watt, required at the lowest
frequency (Waverage) multiplied by the overall schedule makespan (C) of
the application (Equation (8)).

Es = Esm + Esf (7)

Esm = C ∗Waverage (8)

4.2 system model 41

Secondly, Esf corresponds to the additional energy consumption required
to operate the board at a given frequency. As the board consists of multiple
voltage islands, Esf (Equation (9)) corresponds to the consumed energy by
all voltage islands (i ∈ I) at each specific frequency (f ∈ Fi).

Esf =
∑
i∈I

∑
f∈Fi

Ci,f ∗Wi,f (9)

Hence, the time spent on each voltage island at each frequency (Ci,f) is
multiplied by the average additional energy consumption at that frequency
(Wi,f). This time depends on the scheduler’s decisions and, more precisely,
on the Worst-Case Execution Time (WCET) of the selected version for each
task. If a voltage island contains more than one core, it is crucial not to
over-accumulate the time spent in each frequency. The WCET of two tasks
executing concurrently on the same voltage island (i.e., on two cores) should
not be summed up to compute the time spent in a given frequency. Instead,
the longest time of the two tasks must be accounted for. Let us consider
the two task schedule shown in Figure 4.3. Both tasks are scheduled on the
same voltage island (V1) but on different cores. That means that the total
time C1,f at frequency f is 10 and not 13. The same holds for the schedule
in Figure 4.4 where C1,f is equal to 10 and not 12.

0 1 2 3 4 5 6 7 8 9 10

V1-CPU1

V1-CPU2

Time Units

Figure 4.3: Illustration of the total time
(C1,f = 10) computation for
two tasks scheduled at the
same time on a single voltage
island.

0 1 2 3 4 5 6 7 8 9 10

V1-CPU1

V1-CPU2

Time Units

Figure 4.4: Illustration of the total time
(C1,f = 10) computation for
two tasks scheduled on the
same voltage island with an
overlap.

If two tasks are executed on different voltage islands, the WCET of each
task must be accounted for, as the time spent in each frequency is voltage
island specific. Thus, in Figure 4.5 the C1,f of the first voltage island (V1) is
equal to 3, and the C2,f of the second voltage island (V2) is equal to 10.

The dynamic energy consumption depends on the workload executed by
a compute unit at a given frequency. Unlike most existing power models,
we measure the energy consumed by each task version for each frequency
on each corresponding compute unit. Measures are performed a-priori to

42 energy-aware scheduling

0 1 2 3 4 5 6 7 8 9 10

V1-CPU1

V2-CPU1

Time Units

Figure 4.5: Illustration of the total time (C1,f = 3 and C2,f = 10) computation for
two tasks scheduled on two different voltage islands.

scheduling the application and in isolation (all other compute units are
idle, and no other task is executing). To compute the dynamic energy
consumption, we measure the total energy consumption and then subtract
the two static power components (i.e., the energy consumption due to
running at the base DVFS and the additional energy consumption due to
the increased frequency). We work with average power (Waverage) for the
static part.

The total dynamic energy, Equation (10), consumed by an application
Ed is the sum of all selected task versions dynamic energy at a given
frequency targeting a specific compute unit (Ep,u,f). This approach allows
us to better account for different energy requirements of tasks since Balsini
et al. [16] and Vasilakis et al. [136] showed that one-size-fits-all dynamic
energy consumption for the whole application is unrealistic.

Ed =
∑
p∈τ

Ep,u,f (10)

Not all task versions are present in the final energy consumption esti-
mation. The version selection depends on the scheduling decisions. Even
though we skipped this constraint in the above equations for clarity, it is
present in scheduling Algorithm 4.3.1. Splitting static and dynamic energy
consumption allows us to model DVFS for the three voltage islands on
the Odroid-XU4 platform. This concept can be extended to account for all
additional DVFS capable compute units or voltage islands.

Like Guo et al. [55], we neither consider Dynamic Power Management
(DPM) nor the switching cost of changing the frequency of the voltage
islands. DPM refers to a set of techniques that place a system or parts of a
system in a low-power sleep mode [37]. These techniques are only beneficial
when the idle slot is longer than a certain threshold. The idle time might not
be long enough as all CPU cores in a cluster must be idle. Additionally, we
already decrease the frequency to the least possible if all cores in a cluster

4.3 energy-aware forward list scheduling 43

are idle. We do not consider the frequency switching cost as it is comparable
to the cost of context switches in a multitasking environment (i.e., marginal)
[106, 123].

4.3 energy-aware forward list scheduling

Algorithm 4.3.1 Scheduling algorithm

Input: An application DAG composed of a finite set of multi-version tasks (τ) and
a non-empty finite list of cores (Cores).

Output: A schedule.
1: function ListSchedule(τ = τ1, . . . , τn|τx = (v),Cores)
2: Qready← ranking(τ)

3: Qdone← []

4: schedule← new Schedule()

5: while t← Qready.pop front() do
6: //tmpSched: best schedule for the current task
7: tmpSched← new Schedule()

8: tmpSched.energy←∞
9: foreach v ∈ t.versions do

10: foreach u ∈ Cores do
11: if v runs on u then
12: copy← schedule

13: copy.Schedule task(Qdone, t, v,u)
14: copy.Update energy()

15: if copy.energy < tmpSched.energy then
16: tmpSched← copy

17: end if
18: end if
19: end for
20: end for
21: end while
22: schedule← tmpSched

23: Qdone.push back(t)

24: return schedule

25: end function

Our proposed heuristic is based on Forward List Scheduling (FLS). FLS
first orders the tasks and then adds them one by one to the schedule without
backtracking. From here on-wards, we will refer to our energy-aware, multi-

44 energy-aware scheduling

version task scheduling heuristic as eFLS. In Section 4.3.1, we sketch out
the overall eFLS algorithm. Section 4.3.2 describes how we determine the
start time of a given task. In Section 4.3.3, we detail the specifics of our new
energy-aware ranking strategy.

4.3.1 Scheduling Algorithm

Our proposed scheduling algorithm is sketched out in Algorithm 4.3.1. It
uses the taskgraph and a non-empty finite list of cores (Cores) as inputs.
The taskgraph contains task objects that contain all necessary versions and
DVFS information. First, it ranks the tasks in the DAG into a list (Line 2).
Then, a loop iterates over all tasks while tasks that need to be scheduled
exist (Lines 5–23). Each task has a non-empty finite set of versions that are
all tested on all possible cores (Lines 9–10).

The different task versions also account for different frequencies, i.e., the
frequency is a characteristic of v (Line 9). In Line 11 we check if a given
version can be executed on the given core (u). After scheduling the specific
task version to an appropriate core (Line 13, referring to Algorithm 4.3.2),
we compute the energy consumption of the new schedule (Line 14).

The version and mapping resulting in the lowest energy estimation is
selected (Lines 15–16). Thus, the selection of the best core and version is
greedy. And finally, we add the scheduled task to the list of scheduled tasks
Qdone (Line 23). The final schedule is returned when all tasks are scheduled
(Line 24).

Proof of termination. We only loop over a finite set of tasks τ, and each
task has a finite set of versions. Additionally, the number of Cores is finite.
Lastly, all function calls are guaranteed to terminate as they iterate over finite
data structures (e.g., Update energy() iterates over all scheduled tasks.).

Complexity. The complexity of Algorithm 4.3.1 is O((n2 +n× v) + (n3)×
v× u), where n is the number of tasks, v is the number of versions and u is
the number of cores. The first part of the expression (n2+n× v) comes from
the ranking function in Line 2. Algorithm 4.3.1 itself loops over all tasks,
versions and cores (i.e., n× v× u). And lastly the function Sched task() in
Line 13 has a complexity of O(n2).

4.3.2 Scheduling a task.

Algorithm 4.3.2 sketches out the method to determine the start time of
the current task (cur task). For readability, we describe an algorithm that

4.3 energy-aware forward list scheduling 45

assumes one accelerator per accelerator type. However, the algorithm is
easily extendable to multiple accelerators per type. Our approach uses an
As Soon As Possible (ASAP) strategy. Each task must start after its causal
predecessors are finished (Line 2), where ρ is the start time of a task, and
C is the runtime of a task. Then, while there are changes (Line 4) in the
last iteration, we enforce: 1) that there is no overlap between two tasks that
require the same core (Lines 6 – 12); 2) that all tasks running at the same
time on the same CPU voltage island run at the same frequency (Lines
14 – 23) 3) that there is no overlap between versions that require the same
accelerator (Lines 25 – 35).

If any of these three cases happen, the start time (ρ) of the current task
(cur task) is postponed (Lines 9, 18 and 29). Postponing the start of the
current task might not be optimal in the case of non-matching frequencies.
However, we test more than one frequency. If the current task can be executed
at the frequency of the other tasks, this scenario is also explored. The
algorithm compares the different alternatives and selects the best. Lastly, the
task member attributes are updated with the version attributes (Line 37),
and we add the task to the schedule (Line 38).

Proof of termination. Algorithm 4.3.2 is guaranteed to terminate as we
only postpone the current task, which can be moved as far as the end of
the current schedule. In this case, this task would be executed without any
other concurrent task. This ensures that all if-conditions are satisfied and no
more changes would be required.

Complexity. The worst case complexity of Algorithm 4.3.2 is O(n2). Let
us consider an application with n tasks, and all tasks but one have been
scheduled onto a single core system. In the worst-case scenario the last
task, tn, has to be moved past all previously scheduled tasks. If tn is
only postponed once per iteration of the while loop, we need a total of n2

iterations.

4.3.3 Heterogeneous Energy Ranking

Our new energy-aware ranking strategy, Heterogeneous Energy Ranking (HER),
builds on the well-known HEFT [131] ranking strategy and has been devel-
oped to generate rankings that work well for energy-aware scheduling. HER
is one ranking strategy that can be used in Algorithm 4.3.1 Line 2.

Algorithm 4.3.3 sketches out the HER algorithm. It uses the DAG (τ) and
a non-empty finite set of cores (Cores) as inputs, builds the ready queue
(Qready) and returns it. First, it traverses the graph in a reverse fashion

46 energy-aware scheduling

Algorithm 4.3.2 Scheduling of a task

Input: Finite list of scheduled tasks (Qdone), Current task to schedule (cur task)
and its version (version), Current core (cur core).

Output: Add a new task to the schedule.
1: function ScheduleTask(Qdone, cur task, version, cur core)
2: cur task.ρ← maxx∈predecessors(cur task)(x.ρ+ x.C)

3: Change← True

4: while Change do
5: Change← False

6: foreach t ∈ Qdone do
7: if t is mapped on cur core then
8: if t overlaps in time with cur task then
9: cur task.ρ← t.ρ+ t.C

10: Change← True

11: end if
12: end if
13: end for
14: foreach t ∈ Qdone do
15: if t is mapped on cur core.volt island then
16: if t overlaps in time with cur task then
17: if t.freq ̸= version.freq then
18: cur task.ρ← t.ρ+ t.C
19: Change← True

20: end if
21: end if
22: end if
23: end for
24: if version.requires coprocessor() then
25: foreach t ∈ Qdone do
26: if t.requires coprocessor() then
27: if t.coprocessor() == version.coprocessor() then
28: if t overlaps in time with cur task then
29: cur task.ρ← t.ρ+ t.C
30: Change← True

31: end if
32: end if
33: end if
34: end for
35: end if
36: end while
37: cur task.update(version)
38: this.add task(cur task)

39: end function

4.3 energy-aware forward list scheduling 47

(Line 2), i.e., starting with the last task(s). In this case, the traversal algorithm
does not matter, as long as the partial order of the DAG is maintained.
For each task, we calculate the tasks energy consumption (Line 3) using
the version aggregator (version agg). Additionally, we calculate the energy
consumption of the successors (succ agg, Line 4).

The tasks total energy consumption for ranking purposes is then equal
to the sum of the version energy consumption (version energy) and the
successor energy consumption (succ energy, Line 5). Lastly, the Qready list
is built (Line 7) and returned (Line 8). The ready queue is ranked based on
the energy consumption of each task τi.energy, starting with the maximum
energy consumption, i.e., the first task has the highest energy consumption
and thus will be scheduled first.

Proof of termination. We only loop over a finite set of tasks, τ. All tasks
have a finite number of versions and a finite number of successors.

Complexity. The worst case complexity of Algorithm 4.3.3 is O(n2+n×v),
where n is the number of tasks in the DAG. We loop over all tasks and all
successors of a task (n2). Additionally, we loop over all versions for all tasks,
n× v.

Algorithm 4.3.3 Heterogeneous Energy Ranking

Input: An application DAG composed of a finite set of multi-version tasks (τ) and
a non-empty finite set of cores (Cores).

Output: A sorted ready queue (Qready).
1: function HER Sort(τ = τ1, . . . , τn|τx = (v),Cores)
2: for τi ∈ linearise(reverse(τ)) do
3: version energy← version agg(τi,Cores)
4: succ energy← succ agg(successors(τi))

5: τi.energy← version energy+ succ energy

6: end for
7: Qready← Sort(τ,τi.energy)
8: return Qready

9: end function

Version Aggregator. Determining a task’s energy consumption is not
straightforward, as a task can have many different versions with different
target compute units, functionally equivalent implementations and different
DVFS settings. Thus, we must aggregate the energy information from all
different task versions.

A version’s energy consumption could either be only the dynamic energy
consumption (i.e., Ed in Equation (6)) or it could be the total energy con-

48 energy-aware scheduling

sumption (i.e., E in Equation (6)). An argument for using only the dynamic
energy is that the static energy (Es) is heavily dependent on the rest of the
system (e.g., other tasks being executed). On the other hand, using only
the dynamic energy component ignores that a long-running version could
have significantly higher energy consumption than a shorter version, despite
having low dynamic energy consumption. Thus, we investigate both static
and dynamic energy consumption during the version aggregation phase.

Next, we need to tackle how the energy consumption of different versions
is combined/aggregated. The following six different options are explored in
Section 4.5: minimum, average, sum, variance, minimum + variance and minimum
+ standard deviation. Minimum is the natural choice for an aggregator because
we want to minimise energy consumption. Average and sum contain more
information about the other versions; this could increase a task’s priority
if the minimum version cannot be picked due to interference with previ-
ously scheduled tasks. The reason to consider variance is that it increases
the priority of tasks with significant variations in energy consumption be-
tween versions. Thus, this prioritises tasks that have low minimum versions
but where the alternative versions have a much higher energy consump-
tion. Combining minimum and variance/standard deviation allows both
energy-intense tasks and tasks with high variance/standard deviation to be
scheduled first. Using standard deviation over variance might be helpful as
the variance could be larger than the minimum energy consumption and
thus overshadow the minimum. Hence, when using the dynamic minimum
aggregator (Dyn. min.), we use the lowest dynamic energy consumption
across all versions of a specific task. In total, this leads to twelve different
version aggregators.

Let us look at an example to clarify the meaning of the different aggre-
gators and their advantages. Table 4.1 lists the energy consumption of five
different tasks. Each task has at least two versions and, at most, six versions.
Let us assume that all tasks can be scheduled and that all we need to do
is to determine the scheduling order. Table 4.2 shows the different orders
depending on the used version aggregator. Thus, in the case of using the
minimum aggregator, task four (T-4) would be scheduled first as it has the
highest minimum energy consumption (19). Task three has a low priority
when employing minimum, average, and sum aggregators but has a higher
priority when using one of the variance aggregators due to the significant
difference between versions (variance = 5.2). Each aggregator leads to a
slightly different scheduling order.

4.3 energy-aware forward list scheduling 49

Table 4.1: Hypothetical energy consumption of different task-versions.

T-1 T-2 T-3 T-4 T-5

Version 1 15 11 15 20 12

Version 2 12 15 10 19 30

Version 3 16 16 16 n.a. 16

Version 4 13 17 18 n.a. 18

Version 5 14 15 n.a. n.a. 2

Version 6 14 n.a. n.a. n.a. 11

Table 4.2: Hypothetical scheduling order of different tasks depending on the used
version aggregator.

T-1 T-2 T-3 T-4 T-5

Min 2 3 4 1 5

Average 5 3 4 1 2

Sum 2 3 4 5 1

Variance 4 3 2 5 1

Min+Var 5 4 2 3 1

Min+Std 2 4 3 1 5

Successor Aggregator. We consider two options for the successor aggre-
gator: maximum or sum of all successors. Using the maximum ranks tasks by
the largest energy path. Using the sum gives higher importance (i.e., earlier
scheduling slot) to tasks with many successors.

Combining the two successor aggregators with the twelve version ag-
gregator options results in a total of 24 different HER ranking methods.
Together with four base ranking methods, we are considering a total of
28 ranking methods. The base ranking methods are: DFS with WCET as a
tie-breaker, BFS with WCET as a tie-breaker, BFS with laxity as a tie-breaker
and BFS with energy laxity as a tie-breaker. The initial ranking algorithm
has a massive impact on the schedule. Hence, we explore all 28 possible
ranking methods.

50 energy-aware scheduling

4.4 experimental setup

We describe the target hardware in Section 4.4.1, followed by Section 4.4.2,
which details our energy measurement setup. Then we introduce the task-
graph generation (Section 4.4.3) that we use throughout Sections 4.5 to 4.7.
At last, we explain our DVFS approach for the target platform (Section 4.4.4).
This experimental setup is used throughout the rest of the chapter.

4.4.1 Target Platform

Our approach can be used on a wide variety of target platforms, as described
in Section 4.2. However, for the sake of illustration and concrete experimental
validation, we focus on the Odroid-XU4 board from here onward.

The Odroid-XU4 [59] platform is based on the ARM big.LITTLE CPU
architecture [1] complemented by a Mali GPU accelerator [49]. The CPU
is an Exynos 5 Octa 5422 chip [49], which embeds two clusters of four
cores each. One cluster includes energy-efficient in-order Cortex-A7 cores
(LITTLE), while the other provides high-performance, out-of-order, deep-
pipeline Cortex A-15 cores (big). Each cluster forms a separate voltage island,
i.e., the voltage and frequency can only be changed for all cores in a cluster
at the same time. The two core types are ISA-compatible. Each core has its
own L1 cache, and each cluster has a shared L2 cache (512KB for LITTLE
cores, 2MB for big cores). The Mali GPU features six shader cores and shares
the off-chip physical memory with the CPU, thereby avoiding common data
transfer overhead between the CPU and GPU. The GPU is a third voltage
island independent from the CPU.

4.4.2 Energy Measurements

Energy consumption is measured with the Otii system by Qoitech1. It is
a non-intrusive high-side2 power monitor with a sampling rate of 4kHz.
The Otii has a maximum measurement error of 0.1% + 150µA. Thus, at
the lowest measured current of 0.36A, we can expect a maximum error of
0.104%. Therefore, we use the measurement setup introduced in Chapter 3.

1 https://www.qoitech.com/products/standard
2 ”High-side” refers to the placement of the shunt resistor used for current sensing. ”High-side”

means that the shunt resistor is placed between the positive supply and the load. This is
in contrast to ”low-side”, where the current-sense resistor is placed between the load and
ground.

4.4 experimental setup 51

Our target Odroid-XU4 platform communicates the start of software tasks
via UART to the Otii at 115200bps. To ensure fair measurements, we take
the following steps:

• We do not consider the fan’s energy consumption, which is powered
via a separate device.

• We calibrate the Otii device before the experiments.

• We warm up the involved devices by executing tasks before the actual
experiments.

• We measure execution time, power and energy to solution (EtoS) at
the same time.

• We run each experiment 50 times to obtain enough data for statistical
testing and extracting worst-case measurements.

4.4.3 Application code

We are not aware of any high-performance IoT focused benchmarks. How-
ever, we would still like to execute real compute-heavy workloads on actual
hardware. Therefore, we are building our own set of synthetic DAG applica-
tions based on Taskgraphs For Free (TGFF) [41], and the Rodinia benchmark
suite [27]. To build the structure of the graph, we rely on TGFF. Additionally,
TGFF allows us to assign a random number to each node in the graph.
We use this feature to assign a random task type to each node. Then, we
a-posteriori perform a mapping between TGFF task types to Rodinia bench-
mark. Let us assume that TGFF generates the graph in Figure 4.6. The edges
represent data relationships between nodes (see Section 4.2.2), but the exact
type of data is irrelevant for this clarification. Task 2 and Task 3 are pseudo-
randomly assigned types 3 and 6, respectively. Types 3 and 6 are mapped
to the nn and nw Rodinia benchmarks, respectively. Tasks 1 and 4 are two
special task types, namely the source and sink nodes, representing some
housekeeping tasks. There is only one source and sink node in each graph.
Thus, the final application is represented by Figure 4.7. This results in an
extensive collection of randomly generated taskgraphs with executable code.
In order to compare different scheduling methods, we generate random
DAG based applications.

Each task includes all IO, overhead and computations required for the Ro-
dinia benchmark. We work with the following 8 benchmark tasks: heartwall,

52 energy-aware scheduling

Task 1
Type:

Source

Task 2
Type: 3

Task 3
Type: 6

Task 4
Type:
Sink

Figure 4.6: A TGFF generated graph
with randomly assigned
task types. The types
are used to map random
nodes to executable code
in the form of Rodinia
benchmarks.

Task 1
Type:

Source

Task 2
Type: nn

Task 3
Type: nw

Task 4
Type:
Sink

Figure 4.7: The randomly assigned
task types of each node
are mapped to Rodinia
benchmarks. This allows
us to execute randomly
generated DAG applica-
tions with different com-
putational characteristics.

hotspot, k-means, lud, nn, nw, bfs and srad v1. We use these benchmarks be-
cause only these could be executed on the Odroid-XU4 with minor changes.
These changes, among others, ensure thread safety when multiple instances
of the same benchmark are run concurrently. The Rodinia benchmark suit
does not provide a sequential implementation of the benchmarks. There-
fore, we execute the OpenMP implementations on a single thread (i.e., set
environmental variable OMP NUM THREADS to 1). Additionally, we use
the OpenCL implementations of six of these benchmarks to demonstrate
multi-version task scheduling. A similar approach was taken by De Bock et
al. [39], who used TACLe benchmarks [50] for independent tasks. Links to
the dataset and code used in this chapter can be found on page 137.

The energy and timing information required for our approach can be
obtained with different methods, such as measurements or static analysis.
In this chapter, we obtain the information needed through measurements.
The dynamic energy consumption and timing measurements were collected
simultaneously and in isolation for each task. The measurements cover all
possible execution paths of the tasks, and we selected the worst observed
values as the WCET estimates. To further increase the safety of our estima-
tions and to account for contention, we increased the observed WCET by
an arbitrarily chosen safety margin of 30%. The Rodinia tasks are straight-
forward computational tasks. Each execution of one task was done with
the same input data, which determines the computational intensity and
execution path.

4.5 ranking strategies for efls 53

4.4.4 DVFS

Previous papers [19, 31, 40] have shown that the energy consumption of an
application with respect to the frequency follows a convex curve, i.e., the
lowest energy consumption of an application is achieved at a mid-level
frequency. A lower frequency results in long run times and, therefore, higher
static energy consumption. A higher frequency results in a shorter run time,
but the voltage increase required by the frequency increase offsets the shorter
run time [19, 31, 40].

We find similar convex behaviour on the big cores for all selected Ro-
dinia benchmarks. The minimum energy consumption is always achieved
between 1.3GHz and 1.6GHz. Therefore, we consider all frequencies between
1.3GHz and 2GHz (i.e., the maximum clock frequency possible), allowing
for a good trade-off between energy consumption and run time. On the
LITTLE cores, the convex behaviour is not as pronounced as on the big cores
(i.e., increasing the frequency from 1.3GHz to 1.4GHz does not increase the
energy consumption much). The minimum energy consumption is achieved
between 1.3GHz and 1.5GHz (i.e., the maximum clock frequency possible).
Hence, we consider all frequencies between 1.3GHz and 1.5GHz. For the
GPU, we consider all supported frequencies (177MHz to 600MHz).

4.5 ranking strategies for efls

Greedy-, evolutionary- and genetic-algorithms for scheduling of dependent
tasks rely on establishing a total order of tasks instead of a partial order
as is obtained from a Directed Acyclic Graph (DAG) (e.g.[78, 94, 116, 133]).
The exact ranking algorithm used can have a significant impact on the final
schedule. Previous research [116] showed that no ranking algorithm con-
sistently outperforms the others when minimising a schedules makespan.
Hence, previous research schedules all DAGs using multiple ranking meth-
ods and then picks the best resulting schedule [116]. The ranking strategy
which will perform best is unknown before scheduling.

We investigate the impact of different ranking algorithms in an energy-
aware scheduling setting. For this purpose, we generate 500 taskgraphs
with TGFF [41], with an average of 124.8 tasks (minimum = 34 and
maximum = 298). All 500 taskgraphs are scheduled using all 28 differ-
ent ranking algorithms (see Section 4.3.3). In Section 4.5.1, we investigate
which standalone ranking leads to the best schedules with respect to energy
consumption. Then in Section 4.5.2, we explore the scheduling time and

54 energy-aware scheduling

energy-reduction trade-off when selecting a sub-set of the different ranking
algorithms. The sub-set selection is important as computing all 28 schedules
is highly time-consuming.

4.5.1 Best standalone ranking

Figure 4.8 compares the relative energy efficiency of the schedules that result
from the different ranking algorithms. BFS with WCET ranking was chosen
as the baseline and is at 0%. A negative value means that a given ranking
strategy resulted in a better schedule (lower predicted energy consumption)
than BFS with WCET. The HER based ranking that combines average version
dynamic energy consumption with a maximum successor aggregator (Dyn.
avr. max) results in the best schedules on average. It improves the average
predicted energy consumption by almost 5%. Additionally, it also outper-
forms the base ranking methods slightly (0.2%). The base ranking strategy
combines (BFS) Laxity, (BFS) Energy Laxity, BFS (with WCET) and DFS (with
WCET). The classic DFS ranking results in schedules that are, on average,
the worst with more than 15% higher predicted energy consumption.

5 0 5 10 15
Avr. Energy % Change

Dyn. avr. max
Full min max
Full avr. max

Full minAndStd max
Dyn. minAndStd max

Laxity
Dyn. min max
Full sum max
Energy laxity
Full min sum

Dyn. sum max
Dyn. avr. sum
Full avr. sum

Full minAndStd sum
Dyn. minAndStd sum

Dyn. min sum
Full sum sum

Dyn. sum sum
Full var sum
Full var. max

Full minAndVar max
Dyn. minAndVar max

Full minAndVar sum
Dyn. var. max

Dyn. minAndVar. sum
Dyn. variance sum

DFS

Figure 4.8: Average energy estimation increase (%) across different ranking algo-
rithms compared to the energy consumption when ranking DAGs with
BFS. Thus, using Dyn. avr. max results in a 5% decrease on average in
comparison to BFS.

4.5 ranking strategies for efls 55

The five best ranking methods are all HER based and use the max successor
aggregator. They feature the average, minimum and minimum + standard
deviation version aggregators in conjunction with both the dynamic and the
full energy consumption. The two best ranking methods, with respect to
energy consumption, are not significantly different from each other (paired
sample t-test, p-value= 0.73). All other ranking methods differ considerably
from the best ranking method (α = 0.01).

On average, the methods based on summing successors perform worse
than the ones based on the maximum successor aggregator. All variance-
based methods perform worse than non-variance-based HER ranking meth-
ods. The variance seems to play a too significant role in the ranking, i.e., over-
shadowing the minimum. However, most variance-based ranking algorithms
still outperform BFS and DFS ranking. The laxity-based method is ranked
the sixth best, and the energy laxity method takes the ninth spot.

The average across all 500 DAGs does not tell the full story. Looking at the
percentage of DAGs where a ranking method results in the best schedule
(Figure 4.9), with respect to predicted energy consumption (PEC), tells a
slightly different story than Figure 4.8. The first four ranking methods that
result in most schedules with the lowest PEC are Dyn. avr. max, Full min max,
Full MinAndStd max and Full avr. max. Therefore, quite similar to the results
of Figure 4.8 with only minor shifts in ranking. The bigger surprise is the
fifth-best ranking method with respect to the percentage of DAG schedules
with the lowest PEC. Dyn. var. max is ranked 24th in Figure 4.8 with respect
to average predicted energy consumption (3.9% worse on average than Dyn.
avr. max). However, in over 8% of the cases, it results in the best schedule.
In total, 24 out of the 28 rankings result in at least one schedule that is
the best compared to all other rankings. From here onwards, we will only
consider these 24 rankings. Hence, similar to [116], it shows that no ranking
algorithm always yields the best schedule.

Lastly, Figure 4.10 shows the average energy consumption improvement
of a given ranking over the Dyn. avr. max ranking if the given ranking
resulted in a better schedule. Additionally, it shows the number of DAGs for
which a given ranking achieved a better result. So Dyn. avr. sum results in a
better schedule in 114 cases, and these schedules have 1.1 % lower predicted
energy consumption compared to the schedules resulting from the Dyn.
avr. max method. The energy consumption improves by, on average, 1.3%.
The following four ranking methods improved more than 160 graphs: Dyn
MinAndStd max, Full avr. max, Full min max and Full MinAndStd max. Again

56 energy-aware scheduling

0 5 10 15

Dyn. avr. max
Full min max

Full minAndStd max
Full avr. max

Dyn. var. max
Laxity

Dyn. minAndStd max
Energy laxity
Full min sum

Dyn. avr. sum
Dyn. min max
Dyn. sum max

Dyn. minAndStd sum
Full avr. sum

Full sum max
Full minAndStd sum

Full sum sum
Dyn. minAndVar max

BFS
Full minAndVar sum

Dyn. min sum
Dyn. minAndVar. sum

Dyn. sum sum
Full var sum

%
 o

f D
AG

s

Figure 4.9: The chart shows the percentage in which case a given ranking is the
best across all 28 ranking methods across all DAGs. Thus, Dyn. avr. max
results in the best ranking in over 15% of all DAGs.

the one outlier is Dyn. var. max, which improved its 68 DAGs by an average
of 4.4%.

4.5.2 Selecting a ranking method sub-set

Trying all 24 ranking methods and selecting the best schedule takes sig-
nificant time. We aim to select a sub-set of ranking methods to reduce the
scheduling time while producing low-PEC schedules. We start with the
best standalone ranking method (Dyn. avr. max). Then, we add the next
best ranking method one after another to the sub-set of ranking methods
until all 24 methods are used. This results in Figure 4.11, which shows how
the predicted energy consumption of all 500 DAGs improves when adding
additional ranking algorithms to the sub-set. Thus, when scheduling all 500

DAGs with two HER ranking methods (Dyn. avr. max and Full min. max.),
we can decrease the average predicted energy consumption by 0.53% in com-
parison to just using Dyn. avr. max. The second-ranking method added to
the sub-set is the Dyn. var. max. method. It only improves the schedules of 68

DAGs, but these 68 schedules are improved significantly (see Section 4.5.1).
Adding ranking methods to the sub-set significantly changes (at alpha =

1%) the scheduling results until the 17th addition. When adding the 17th
ranking method (i.e., BFS), the average predicted energy consumption of a
schedule is decreased by 1.53%, and the p-value is 0.16 (i.e., not significant).

4.5 ranking strategies for efls 57

0 100 200
DAGs better than

 "Dyn. avr. max"

Dyn. avr. sumDyn. min maxDyn. min sumDyn. sum maxDyn. sum sumDyn. var. maxDyn. minAndVar maxDyn. minAndStd maxDyn. variance sumDyn. minAndVar. sumDyn. minAndStd sumFull avr. maxFull avr. sumFull min maxFull min sumFull sum maxFull sum sumFull var. maxFull minAndVar maxFull minAndStd maxFull var sumFull minAndVar sumFull minAndStd sumDFSBFSLaxityEnergy laxity
0 1 2 3 4

% energy
 improvement

Dyn. avr. sumDyn. min maxDyn. min sumDyn. sum maxDyn. sum sumDyn. var. maxDyn. minAndVar maxDyn. minAndStd maxDyn. variance sumDyn. minAndVar. sumDyn. minAndStd sumFull avr. maxFull avr. sumFull min maxFull min sumFull sum maxFull sum sumFull var. maxFull minAndVar maxFull minAndStd maxFull var sumFull minAndVar sumFull minAndStd sumDFSBFSLaxityEnergy laxity

Figure 4.10: The bottom y-axis shows the number of DAGs that were improved by
a given ranking algorithm over Dyn. avr. max.. The top y-axis shows
the energy consumption improvement in percentage for the DAGs that
improved. Thus, Dyn. var. max improved 68 DAGs by an average of
4%.

Using all 24 ranking methods results in an average 1.54% predicted energy
consumption decrease compared to the schedules resulting from just using
the Dyn. avr. max ranking. Additionally, it decreases the energy consumption
by 2.02% in comparison to the base ranking methods (DFS, BFS, BFS with
laxity, BFS energy laxity).

By using only six ranking methods (i.e., using 25% of ranking methods),
we achieve over 80% of the possible improvements (i.e., 1.26%) and a 1.7%
improvement over the base set. In the rest of the paper, we will make use
of the first six ranking methods added to the sub-set (Dyn. avr. max, Full
min. max., Dyn. var. max., Full avr. max., Full minAndStd max., Laxity). We
use only six ranking methods as this represents a good trade-off between
scheduling time and PEC. Using a larger sub-set of scheduling algorithms
improves the result further but also significantly increases the time required
to schedule a DAG. This is especially prohibitive considering that sched-
uling techniques are becoming more complex to take full advantage of
heterogeneous architectures (e.g., [67, 151]).

Figure 4.12 compares the base set of ranking methods (DFS, BFS, BFS with
laxity, BFS energy laxity) against the aforementioned set. It clearly shows that

58 energy-aware scheduling

0.0 0.5 1.0 1.5
% percentage change

+ Full min max
+ Dyn. var. max
+ Full avr. max

+ Full minAndStd max
+ Laxity

+ Dyn. minAndStd max
+ Full min sum
+ Full avr. sum
+ Energy laxity

+ Dyn. avr. sum
+ Dyn. min max
+ Dyn. sum max

+ Dyn. minAndStd sum
+ Full sum max

+ Full minAndStd sum
+ BFS

+ Full var sum
+ Dyn. minAndVar max

+ Full minAndVar sum
+ Full sum sum

+ Dyn. minAndVar. sum
+ Dyn. min sum
+ Dyn. sum sum

Figure 4.11: The chart shows the average percentage increase when adding one rank-
ing after another to the ranking sub-set. Adding ranking algorithms
leads to statistically significant energy consumption improvements,
including the 16th ranking method. Adding the 17th method does not
lead to significant improvements.

the new sub-set results in up to 23% lower energy consumption, and at most,
the new sub-set results in 2.3% higher PEC, which we deem an acceptable
trade-off. Additionally, 80.6% of new schedules are better, 10.2% of schedules
stayed the same and in 9.2% of the DAGs, the resulting schedule use more
energy.

In conclusion, we can demonstrate that HER-based schedules perform
well. The best standalone HER ranking algorithm produces schedules that
perform on average as well as the schedules of the base set of rankings
but reduces the scheduling time by 75%. Alternatively, when selecting a
ranking sub-set of the six best ranking algorithms, we can decrease the
energy consumption of the generated schedules by up to 23%. Furthermore,
we provide more evidence that not a single ranking method consistently
outperforms all others (e.g., Figure 4.12). Of course, we could remedy this
by using all known rankings; however, there are always more rankings
that might perform better in a given scenario. Thus, while we show that
improvements with respect to the resulting schedule are possible (and can
be pretty significant), this also indicates that future work should focus on
ranking agnostic scheduling methods.

4.6 comparing efls with other non-optimal solutions 59

-25% -20% -15% -10% -5% 0% 5%
Energy Consump. Change

0

25

50

75

100

125

150

of

 O
cc

ur
en

ce
s

Figure 4.12: Histogram of the energy consumption reduction when using the new
sub-set of ranking methods compared to the base set of ranking algo-
rithms.

4.6 comparing efls with other non-optimal solutions

To validate our proposed approach, we conduct a series of experiments. For
this purpose, we use the same 500 taskgraphs as in Section 4.5. First, Sec-
tion 4.6.1 compares a multi-version task eFLS approach to a single-version
task eFLS approach. Next, we contrast our eFLS heuristic to a multi-version
task strategy based on classic FLS (Section 4.6.2). In Section 4.6.3, we compare
our eFLS approach against HEFT [131] and a version of HEFT that we modi-
fied to be energy-aware. Last, we scrutinise if the eFLS heuristic performs as
well as an evolutionary meta-heuristic-based scheduler (Section 4.6.4).

4.6.1 Single-version vs Multi-version tasks

We compare our multi-version task eFLS scheduler against a single-version
task eFLS scheduler. The single-version task scheduler is the same as the
multi-version task scheduler (i.e., the single-version scheduler also uses all
six ranking strategies); however, it has access to only the CPU version or
the GPU version of a task. The version that is available to the single-version
scheduler is the version that has the lowest energy consumption in isolation
(i.e., we pick the most energy-optimal version before scheduling).

If the single-version eFLS scheduler only has access to the CPU versions.
In that case, the multi-version task eFLS solutions are, on average, 16.0%
more energy efficient and have a lower makespan than the single-version
task eFLS solutions. The multi-version task solutions are up to 31.4% more

60 energy-aware scheduling

energy efficient and are at least 8.3% more energy efficient. The histogram
of energy consumption reductions is shown in Figure 4.13.

-35% -30% -25% -20% -15% -10% -5%
Energy Consump. Change

0

10

20

30

40

50

60

70

of

 O
cc

ur
en

ce
s

Figure 4.13: Histogram of the energy consumption reductions when providing
multiple versions to the eFLS scheduler.

These results demonstrate that including the GPU versions is beneficial
with respect to energy consumption. One might argue that instead of using
the CPU versions for all tasks, using only the GPU version for some tasks
will be more beneficial. However, it is unclear before scheduling which task
should be executed on the GPU as this differs per task graph. For example,
the k-means tasks are scheduled on the GPU in 24.2% of the cases, and
the LU decomposition tasks are scheduled on the GPU in 77.0% of the cases.
Combining this knowledge with the fact that there is only one GPU (i.e., GPU
tasks have to run sequentially after each other), it is not surprising that
providing the k-means and LU decomposition GPU versions only to the single-
version eFLS scheduler does not improve the situation. Our results show
that the multi-version schedules are, on average, 12.2% more energy efficient
than the single version approach with the k-means and LU decomposition GPU
versions only. Thus, including multiple versions and letting the scheduler
pick the best one has clear advantages. Decreasing energy consumption by
more than 12% could be a game changer for battery-operated devices.

4.6.2 Energy optimising vs Makespan

Next, we compare our multi-version task eFLS scheduler against a multi-
version task energy-unaware scheduler. We use the same FLS approach as
introduced in Section 4.3; however, instead of selecting the best version
based on energy consumption, we select the best version based on run

4.6 comparing efls with other non-optimal solutions 61

time. This way, we mimic existing methods, e.g., [116]. The energy-unaware
scheduler is only based on DFS with WCET, BFS with WCET and BFS with
laxity ranking, as HER is an energy-specific ranking strategy. Additionally,
in Section 4.6.3 we compare against HEFT [131].

As the FLS schedule focuses purely on minimising makespan, it takes full
advantage of the high clock speeds available on the Odroid-XU4, thereby
increasing the voltage to the maximum. Thus, it is not surprising that the
eFLS generated schedules consume, on average, 26.4% less energy than
the FLS generated schedules, with a standard deviation of 3.2%. The eFLS
solutions are always more energy efficient. They are at least 14.0% more
energy efficient and at most 34.4%. The makespan focus (and thus high
frequency) means that the FLS solutions result in a makespan that is, on
average, 16.8% lower than the makespan of the eFLS solutions. Therefore,
we can show that our approach to minimising energy consumption is valid.

4.6.3 eFLS vs HEFT and eHEFT

We compare our eFLS approach with the well-known HEFT scheduler [131].
For a fair comparison, we added multi-version, DVFS and GPU-scheduling
capabilities to HEFT. Similar to the makespan FLS method in Section 4.6.2,
HEFT focuses purely on minimising the makespan. Therefore, it is not
surprising that the estimated energy consumption of the generated schedules
is, on average, 26.3% higher than the estimated energy of the eFLS schedules.
Additionally, it is estimated that the HEFT schedules use at least 19.6% and,
at most, 38.9% more energy. The histogram of energy consumption change
when moving from HEFT to eFLS is shown in Figure 4.14.

To level the playing field between HEFT and eFLS, we changed the
decision-making in HEFT to use energy consumption instead of the earliest
finish time. The energy-aware HEFT (eHEFT) strategy is only different in
its ranking strategy compared to eFLS. eHEFT offers a significant improve-
ment over standard HEFT with respect to the energy consumption of the
generated schedules.

Overall the eHEFT schedules result in 1.74% higher estimated energy
consumption than eFLS which is significantly different (p-value= 5.35−66).
Figure 4.15 compares the energy consumption of schedules generated by
eFLS to the energy consumption of schedules generated by eHEFT. While
eFLS outperforms eHEFT on average, there are a few DAGs where eHEFT
performs better. The best eHEFT generated schedule results in 2.2% lower
estimated energy consumption than their eFLS counterpart. On the flip side,

62 energy-aware scheduling

-40% -38% -35% -32% -30% -28% -25% -22% -20% -18%
Energy Consump. Change

0

20

40

60

80

of

 O
cc

ur
en

ce
s

Figure 4.14: Histogram of the energy consumption reductions of our eFLS approach
over HEFT.

the best eFLS generated schedules result in 23.0% lower estimated energy
consumption than the eHEFT counterpart. If we repeat the sub-selection
experiment from Section 4.5.2, eHEFT would only be the ninth ranking
strategy that is added. Thus, the imbalance seen in Figure 4.15 and its
low importance in the sub-selection experiment means that we do not add
eHEFT to our ranking strategy selection.

-25% -20% -15% -10% -5% 0% 5%
Energy Consump. Change

0

20

40

60

80

100

120

140

160

of

 O
cc

ur
en

ce
s

Figure 4.15: Histogram of the energy consumption reductions of our eFLS approach
over eHEFT.

4.6.4 eFLS vs ARSH-FATI

As shown by Sheikh and Pasha [123], heterogeneous energy-efficient schedul-
ing methods have primarily focused on optimising the energy consumption

4.6 comparing efls with other non-optimal solutions 63

of multiple independent tasks. The only exception we know of is the ARSH-
FATI algorithm proposed by Ullah Tariq et al. [133]. The authors researched
energy-efficient static scheduling for DAG taskgraphs. The paper focuses on
Smart Networked Systems, and experimental results are simulation-based.
The paper explores scheduling, mapping and DVFS based on population
heuristics. The solutions generated by their approach are 24% more en-
ergy efficient than CA-TMES-Search and 30% more energy efficient than
CA-TMES-Quick [58].

Their approach only selects the per voltage island DVFS once, whereas our
approach can switch between frequency levels at runtime. Additionally, the
approach by Ullah Tariq et al. neither differentiates between task versions
nor considers the GPU. We implemented the proposed meta-heuristic from
the description in their paper and used it to schedule the same taskgraphs
as in the previous parts of Section 4.6. Besides the population size, we used
the same hyperparameters as determined in [133]. The population size in
the original paper was limited to 5; increasing the population size to 500

improved the performance of the meta-heuristic significantly. We restrict the
solving time of ARSH-FATI to 6 hours. If the scheduling takes longer than 6

hours, we still obtain a schedule; however, it might not be the best possible
schedule.

We compare eFLS against ARSH-FATI across three dimensions: scheduling
time, makespan, and energy consumption. Figure 4.16 compares the solving
time required for the ARSH-FATI algorithm and eFLS. The eFLS solving time
equals the sum of all six ranking methods. The largest DAG that ARSH-FATI
solved within the 6-hour time limit comprised 174 tasks. eFLS schedules
the largest DAG with 299 tasks in under 85 minutes. Extrapolating the
ARSH-FATI solving time indicates that ARSH-FATI would require more
than 17 hours to finalise scheduling the DAG of 299 tasks.

Next, Figure 4.17 compares the length of the resulting schedules. We
can see that ARSH-FATI results in longer schedules than eFLS. The DAGs
for which ARSH-FATI exceeded its solving time continue the trend of the
DAGs that were scheduled within the time limit. Thus, it is unlikely that
ARSH-FATI would perform better with a higher time limit. Overall the
schedules generated with eFLS are 46.7% shorter than those generated with
ARSH-FATI.

Figure 4.18 compares the predicted energy consumption of eFLS and
ARSH-FATI schedules. It shows a similar trend as Figure 4.17. The gap
between the two sets of schedules is smaller for DAGs of smaller size.

64 energy-aware scheduling

50 100 150 200 250 300
Number of Tasks

0

10000

20000

30000

40000

50000

60000

So
lv

et
im

e
(s

)

ARSH-FATI extrapolation
eFLS solvetime
ARSH-FATI

Figure 4.16: Graph comparing the solving time required for eFLS and ARSH-FATI.
The graph additionally shows an extrapolation of the ARSH-FATI
solving time, which was capped at 6 hours.

50 100 150 200 250 300
Number of Tasks

2000

4000

6000

8000

M
ak

es
pa

n
(s

)

eFLS
ARSH-FATI
ARSH-FATI solving time exceeded

Figure 4.17: Comparing the makespan resulting from the eFLS and ARSH-FATI
schedulers.

Figure 4.19 shows the improvement of our approach over the ARSH-FATI
meta-heuristic. Our approach produces schedules that are, on average, 27.8%
more energy efficient, at most 43.7% more efficient and at least 15.5% more
energy efficient. Considering only the DAGs that ARSH-FATI completed
within the time limit does not change the results significantly. The eFLS
generated schedules still reduce the predicted average energy consumption
by 27.5%.

Figure 4.18 indicates that ARSH-FATI performs slightly better on smaller
taskgraphs. An additional experiment with smaller taskgraphs (average of
9.78 tasks) suggests that the gap between ARSH-FATI and eFLS is smaller.
However, the eFLS scheduler still produces solutions that are, on average,

4.6 comparing efls with other non-optimal solutions 65

50 100 150 200 250 300
Number of Tasks

500

1000

1500

2000

2500

3000

3500

En
er

gy
 (m

J)

eFLS
ARSH-FATI
ARSH-FATI solving time exceeded

Figure 4.18: Energy consumption reduction of eFLS vs ARSH-FATI with respect to
the number of tasks in a taskgraph.

-50% -45% -40% -35% -30% -25% -20% -15% -10%
Energy Consump. Change

0

10

20

30

40

50

60

70

80

of

 O
cc

ur
en

ce
s

Figure 4.19: Histogram of the energy consumption reductions of our eFLS approach
over the ARSH-FATI meta-heuristic.

17.1% more energy efficient. The significant difference between eFLS and
ARSH-FATI shows that our approach can explore the optimisation state-
space better than the current state-of-the-art approach, both with respect to
makespan and energy consumption, at significantly lower scheduling times.

In conclusion, our experiments show that: multi-version outperforms
single-version, our approach to energy scheduling is valid, and our approach
is better at handling the optimisation space than two current state-of-the-art
approaches.

66 energy-aware scheduling

4.7 comparing efls with an optimal solution

Heuristic algorithms return approximate solutions by nature. Determining
the over-approximation ratio requires comparing the results of the heuristic
with those of an exact method. Fortunately, for scheduling problems, it is
possible to generate optimal solutions using an Integer Linear Programming
(ILP) formulation. However, solving ILP scheduling problems is an NP-hard
problem and thus does not scale well with an increasing number of tasks.
To estimate the over-approximation of our eFLS heuristic, we also introduce
an ILP-based scheduler summarised in Section 4.7.1. Then we compare the
ILP generated solutions to the eFLS generated solutions in Section 4.7.2. At
last, we show that the predicted energy consumption matches the measured
energy consumption (Section 4.7.3).

4.7.1 ILP formulation

An ILP formulation consists of a set of constraints that must be satisfied
and an objective function that will be optimised. In some of the following
constraints, logical operators ∨ and ∧ are used for clarity; these operators
can be linearised using [25].

Objective function. Our goal is to minimise the energy consumption
over all tasks of an application as formalised by Equation (11). The energy
consumption E of a schedule is equal to the sum of the static energy con-
sumption and the dynamic energy consumption, as stated by Equation (6)
in our energy model. Note that Equation (9) is present twice, once for the
energy consumption of the CPU voltage islands (timef,i) and once for the
accelerator voltage islands (acctimef,x).

Map a task to a core. Equation (12) ensures that task p is mapped on one
and only one core u (mp,u = 1). Equation (13) indicates if two tasks, p and
q, are assigned to the same core sp,q = 1.

minimise E = makespan×Waverage +
∑
i∈I

∑
f∈Fi

timef,i ×Wi,f

+
∑

x∈Acc

∑
f∈Fx

acctimef,x ×Wx,f +
∑
p∈τ

Ep (11)

∑
u∈Cores

mp,u = 1,∀p ∈ τ (12)

sp,q =
∑

u∈Cores

mp,u ∧mq,u,∀(p,q) ∈ (τ× τ),p < q (13)

4.7 comparing efls with an optimal solution 67

Prevent overlap on the same core. If two tasks are mapped to the same
core, variable o determines the order of tasks p and q, op,q = 1 means p is
scheduled before q. Thus, Equation (14) enforces that two tasks are executed
in a given order, and only one of the two orders is possible at once.

Equation (15) prevents time-wise overlap of two tasks on the same core,
i.e., q must start after the completion of p, if p is scheduled before q. It uses
a big-M nullification [54] to deactivate the constraint if tasks are scheduled
in the opposite order. M must always be greater than the left-hand side of
the equality; we, therefore, use the sequential makespan of the application
M =

∑
p∈τmax(Cp), as many other papers, e.g., [116].

sp,q = op,q + oq,p,∀(p,q) ∈ (τ× τ),p < q (14)
ρp +Cp ⩽ ρq + (1− op,q)×M,∀(p,q) ∈ (τ× τ),p ̸= q (15)

Data dependencies in taskgraphs. Equation (16) ensures that if one task
p depends on the data of another task q, the start time of p (ρp) is greater
than the end time of q (ρq +Cq).

ρp ⩾ ρq +Cq,∀p ∈ τ,∀q ∈ predecessors(p) (16)

Task version selection. Equation (17) enforces that exactly one version
of each task is selected (ap,i = 1). Each version is mapped to one and only
one core (xp,i,m = 1), Equation (18). And Equation (19) links version and
accepted architecture (xp,i,m). Then, Equation (20) sets the selected mapping
at the task level (wp,m).∑

v∈vp

ap,v = 1,∀p ∈ τ (17)

ap,v =
∑

u∈Cores

xp,v,u,∀p ∈ τ,∀v ∈ vp (18)

xp,v,u = 0,∀p ∈ τ,∀v ∈ vp,∀u ∈ forbidden(v) (19)
wp,u =

∑
∀v∈vp

xp,v,u,∀p ∈ τ,∀u ∈ Cores (20)

Energy & Timing & Frequency. Equations (21) to (23) set the energy, time,
and frequency for each task (Ep, Cp, Fp) to the energy, time and frequency
(Ep,v,u,Cp,v,u,Fp,v,u) of selected version xp,v,u = 1.

Ep =
∑
v∈vp

(xp,v,u × Ep,v,u),∀p ∈ τ,∀u ∈ Cores (21)

Cp =
∑
v∈vp

(xp,v,u ×Cp,v,u),∀p ∈ τ,∀u ∈ Cores (22)

Fp =
∑
v∈vp

(xp,v,u × Fp,v,u),∀p ∈ τ,∀u ∈ Cores (23)

68 energy-aware scheduling

Consistent CPU voltage island. When multiple tasks are mapped on the
same CPU voltage island simultaneously, their frequencies must match as
required by a voltage island. Equation (24) sets on which island i the task p

is mapped (isp,i = 1), while Equation (25) checks if two tasks p,q are on the
same island (sisp,q = 1). Then, Equation (26) checks if two tasks p,q overlap
in time (top,q = 1) (obviously on different cores as enforced by previous
constraints Equation (14)). And Equation (27) forces the frequency of two
tasks p,q to be equal, Fp = Fq, if they are on the same voltage island at the
same time.

isp,i =
∑
u∈i

(wp,u),∀p ∈ τ,∀i ∈ I (24)

sisp,q =
∑
i∈I

(isp,i ∧ isq,i),∀(p,q) ∈ (τ× τ),p < q (25)

top,q = (ρq +Cq) ⩾ ρp ∧ (ρp +Cp) ⩾ ρq,∀(p,q) ∈ (τ× τ),p < q (26)
(sisp,q ∧ top,q)× (Fp − Fq) = 0,∀(p,q) ∈ (τ× τ),p < q (27)

Time spent in each CPU voltage island frequency. To compute the time
spent by each CPU voltage island at each frequency, we must look at each
time quantum if there is a task active. Equation (28) scans all time steps
between 0 and M, which is the longest possible (sequential) schedule, then
set tat,p = 1 if the task p is active at that time. Note that it would be better to
use the makespan of the schedule rather than M, but the makespan results
from the scheduler’s decisions and is therefore unknown when modelling
the problem. Equation (29) then sets the binary variable fai,f,t = 1 if at least
one task is active at time t with frequency f on island i. Finally, Equation (30)
accumulates the time at which the island i runs at frequency f.

tat,p = (t ⩾ ρp)∧ (t ⩽ (ρp +Cp), ∀t ∈ [0;M],∀p ∈ τ (28)
fai,f,t = tap,t ∧ (Fp == f)∧ isp,i,∀t ∈ [0;M],∀i ∈ I,∀f ∈ Fi,∀p ∈ τ (29)
timei,f =

∑
t∈[0;M]

fai,f,t,∀i ∈ I,∀f ∈ Fi (30)

Prevent overlap of tasks on accelerators. On top of preventing tasks from
overlapping on CPU cores (Equation (15)), we also need to prevent tasks
from overlapping on accelerators. Equation (31) determines if task p requires
accelerator x (accp,x = 1). Next Equation (32) determines if two tasks, p
and q, are assigned to the same accelerator (sap,q = 1). If the two tasks are
assigned to the same accelerator, Equation (33) determines the order, which

4.7 comparing efls with an optimal solution 69

is either p and then q (oap,q = 1) or vice versa. Lastly, Equation (34) enforces
the order using the same big-M nullification [54] as in Equation (15).

accp,x =
∑
i∈vp

(acci,p,x × ap,i),∀p ∈ τ,∀x ∈ Acc (31)

sap,q =
∑

x∈Acc

accp,x ∧ accp,x,∀(p,q) ∈ (τ× τ),p < q,∀x ∈ Acc (32)

sap,q = oap,q + oap,q,∀(p,q) ∈ (τ× τ),p < q (33)
ρp +Cp ⩽ ρq + (1− oap,q)×M,∀(p,q) ∈ (τ× τ),p ̸= q (34)

Compute time required at each accelerator frequency. A tasks accelerator
frequency (afap) is based on the chosen version (ap,i) and the accelerator fre-
quency of the version vfai,p (Equation (35)). The time required (acctimef,x)
in each frequency for all accelerators is computed in Equation (36). It sums
up the run time for the different tasks τ for all frequencies Fx if the task is
run on a given accelerator x and if the accelerator frequency matches.

afap =
∑
i∈vp

(ap,i × vfai,p),∀p ∈ τ (35)

acctimef,x =
∑
p∈τ

((accp,x ∧ (afap == f))×Cp),∀x ∈ Acc,∀f ∈ Fx (36)

4.7.2 ILP vs eFLS

To estimate the over-approximation of our eFLS heuristic (Section 4.3) over
the optimal solution, we generate 500 taskgraphs with TGFF [41] and sched-
ule them with both techniques. On average, the generated taskgraphs have
9.78 tasks with a standard deviation of 4.53. We use a different set of
taskgraphs than in Sections 4.5 and 4.6 as the larger taskgraphs used in
those sections are not schedulable by the ILP in a reasonable time frame. We
then compare the predicted energy consumption of the generated schedules,
i.e., we calculate the expected energy consumption of the taskgraph with
respect to the two schedules and compare the energy consumption.

For each technique, the solving time vs the number of tasks can be found
in Figure 4.20. The figure clearly shows that the ILP solving time increases
exponentially with the number of tasks. Hence, demonstrating that the ILP
does not scale well. For many DAGs, the ILP found non-optimal solutions
as the solver ran out of time; these are solutions with gaps more significant
than 0.1%. The ILP approach found optimal solutions, with a gap smaller
than 0.1%, for 45% of the taskgraphs within 24 hours on a 16-core Intel Xeon
Gold 6130 using Cplex. For the remaining 55%, the solver found solutions

70 energy-aware scheduling

5 10 15 20 25
Number of Tasks

0

20000

40000

60000

80000

So
lv

et
im

e
(s

)

eFLS solvetime
ILP: Gap <= 0.1%
ILP: Gap > 0.1%

Figure 4.20: Solving time (s) of the ILP solver vs eFLS heuristic

with a gap larger than 0.1% in 38.2% of the cases and no solution in the last
16.8% of the taskgraphs. Next, we fit an exponential function (y = aet∗x + b)
to the number of tasks and solving time relationship. Using this exponential
fit, we can extrapolate the solving time required by the ILP. For a taskgraph
with 100 tasks, the ILP would need over 12800 days to be solved (approx. 35

years).
The average degradation of eFLS solutions compared to the optimal

solution is 1.6%. The average energy degradation of the eFLS solutions, with
respect to all ILPs with a solution, is 1.64%, which we deem an acceptable
trade-off for shorter scheduling times and better scalability. The degradation
distribution is shown in Figure 4.21 consisting of all ILP solutions, including
the ones without an optimal solution. At best, both methods result in the
same schedule (in 24.6% of the cases). At worst, the eFLS method results in
a schedule that consumes 18.0% more energy.

4.7.3 Energy consumption: predicted vs measured

In this section, we compare the predicted energy consumption from the
scheduler to the actual energy consumption when executed on the Odroid-
XU4 board. There is no significant difference between the predicted makespan
and the actual makespan as we employ a time-triggered approach.

We choose five arbitrary taskgraphs (Table 4.3) from Section 4.7.2 and
execute the applications 50 times on the Odroid-XU4, for both the ILP and
the eFLS generated schedules. An example taskgraph is shown in Figure 4.22.
It consists of 9 tasks, where 5 of the tasks have GPU versions.

4.7 comparing efls with an optimal solution 71

-15% -10% -5% 0% 5% 10% 15% 20%
Energy Consump. Change

100

101

102

of

 O
cc

ur
en

ce
s

Figure 4.21: Distribution of energy degradation of the eFLS scheduler vs the ILP
scheduler for all DAGs where the ILP solver arrived at a solution.
(logarithmic scale)

For the taskgraph in Figure 4.22, both the ILP and the eFLS scheduler
use the GPU for the LU decomposition task and execute the other tasks
on the CPU. The most significant difference between the two schedules is
that the ILP generated schedule mainly executes tasks at 1.3GHz and two
tasks at 1.5GHz, whereas the eFLS schedule executes most tasks at 1.5GHz.
Therefore, the eFLS generated schedule is a little faster and slightly worse at
balancing runtime and energy consumption.

Table 4.3: The maximum and average error of the measured energy consumption vs
the predicted energy consumption for each selected taskgraph for both
the ILP and the eFLS solutions.

Taskgr. #Tasks ILP eFLS Degradation

max. er. avg. er. max. er. avg. er. Pred. Meas.

97 6 -15.6% -15.2% -15.2% -14.6% 7.9% 8.7%

151 7 -12.7% -12.2% -14.6% -14.0% 3.0% 1.0%

159
3

9 -14.8% -14.3% -14.7% -14.2% 2.7% 2.8%

225 10 -15.6% -15.2% -15.8% -15.4% 3.0% 2.7%

320 6 -9.0% -9.0% -9.0% -9.0% 0.0% 0.03%

Table 4.3 shows the error between the measured and the predicted energy
consumption. All predictions overestimate energy consumption, likely due to
the safety margin. The predicted energy consumption is at most off by 15.8%

3 Shown in Figure 4.22

72 energy-aware scheduling

Generator
CPU: C

LU Decomp.
CPU: C

GPU: OpenCL

Heart Wall
CPU: C

GPU: OpenCL

Heart Wall
CPU: C

GPU: OpenCL

Hotspot
CPU: C

GPU: OpenCL

Srad
CPU: C

B.F.-Search
CPU: C

k-N.N.
CPU: C

GPU: OpenCL

Storage
CPU: C

1 int

1 int

1 int

1 int

temperature
array

matrix

frames

temp.
array

neighbors

image

graph
nodes

Legend
Task

Version

Figure 4.22: Illustration DAG composed of Rodinia benchmark tasks from Sec-
tion 4.7.3 (Taskgraph number 159).

and at least by 9.0%. The measured energy consumption degradation of the
eFLS solution is almost the same as the degradation of the predicted energy
consumption. Thus, our predictions can be used to compare scheduling
methods.

4.8 related work

Most research until 2016 focused on energy-efficient scheduling for homoge-
neous multi-core platforms; for surveys, see [17, 52]. The two most explored
techniques were Dynamic Voltage and Frequency Scaling (DVFS) and Dy-
namic Power Management (DPM). DVFS techniques balance clock frequency
and voltage with required system performance, aiming for the best trade-off
between energy consumption and execution time. DPM techniques switch
CPU parts into a low-power state, thereby reducing energy consumption
[17, 52].

In recent years attention has shifted from homogeneous to heterogeneous
systems. Scheduling techniques now account for core mapping, and energy
efficiency of tasks [123]. Most research focuses on two-type cores [79], and on
scheduling independent tasks [123, 129]. In contrast, we address dependent
tasks for multi-type CPUs with on-board GPU. We are also unaware of any
energy-minimising approaches that work with multi-version tasks.

Most previous publications use energy models that rely on a standard
power model that estimates the power consumption based on a static and a
dynamic part [19, 55, 72, 129, 133]. However, this ignores that different tasks

4.8 related work 73

may consume very different amounts of dynamic energy even if the tasks
take the same amount of time (e.g., integer division vs double multiplication
on big cores). Our energy model is based on per-task measurements. Thus,
switching to a different architecture does not require a new power model but
merely re-measuring tasks. Additionally, we do not consider core frequencies
to be continuous, as this does not reflect the actual hardware. Instead, we
consider the true set of available frequencies. Lastly, previous research does
not consider DVFS for static energy consumption.

Unlike Guo et al. [55], we do not only focus on CPU power consump-
tion but also on GPU power. Additionally, we work with time-triggered
dependent tasks instead of independent parallel sporadic tasks. Zahaf et. al.
[141] proposed scheduling approaches for soft real-time tasks running on
heterogeneous multi-core platforms. They introduce integer nonlinear pro-
gramming (INLP) and heuristics to determine the best parallelism for each
independent task. In comparison, we minimise the energy consumption of
dependent tasks executed concurrently. Thammawichai and Kerrigan [129]
work with two-type heterogeneous multiprocessors, focusing on indepen-
dent, preemptive tasks. The three approaches introduced use mixed-integer
nonlinear programming (MINLP), nonlinear programming and a task order-
ing algorithm. Our work focuses on dependent non-preemptive dependent
tasks.

Minakova et al. [94] focus on the heterogeneous scheduling of CNNs
using a genetic algorithm. CNNs usually display a limited number of inter-
task level parallelism (i.e., concurrency); furthermore, the tasks in a CNN
that can be executed simultaneously are often the same (i.e., execution
paths are symmetric). In contrast, our scheduler tackles a broader range
of problems and considers DVFS, voltage-islands and multiple versions.
Lastly, the genetic algorithm proposed in [94] also depends on a form of task
ranking that was not further detailed. Kang et al. [78] also focus solely on
scheduling CNNs across different compute units. In contrast to [94] Kang et
al. take DVFS into account as it impacts execution times. However, compared
to our work, they do not focus on reducing energy consumption nor actively
change the DVFS settings at run-time. Lastly, their proposed scheduler also
relies on first ranking the tasks and then mapping them in order to a given
Compute Unit. The impact of the ranking is not considered. Lastly, Hu et al.
[68] propose a dependent-task DVFS-aware greedy scheduler, but they do
not support voltage islands, accelerators and multi-version tasks.

To summarise, in comparison to previous research, our work focuses on
reducing energy consumption for dependent, time-triggered, multi-version

74 energy-aware scheduling

tasks on single heterogeneous devices. Furthermore, we extend the aspect
of heterogeneity to take a heterogeneous CPU into account and the GPU.
We introduce a more realistic energy model. Additionally, to the best of our
knowledge, we are the first to explore the impact of different ranking algo-
rithms on the quality of the schedules produced. Lastly, our experimentation
is based on the Odroid-XU4, a more modern board than used in previous
research.

4.9 conclusion

The energy consumption and CO2 footprint of the (I)IoT sector is increasing
as the number of deployed devices keeps growing. However, not only does
the number of deployed systems increase, but also the required compute
power. (I)IoT systems are collecting more data that must be processed locally
as devices are limited by bandwidth, privacy and security concerns. Only
storing the data locally and physically collecting it (i.e., swapping the SD
card) regularly is not a solution as the analysis results are often required
fast (i.e., poachers being identified by a camera), and devices may be in
remote locations. Hence, high-performance systems such as the Odroid-XU4

or the Nvidia Jetson boards are becoming widely used due to their high
performance-to-power consumption ratio. On top of this, many application
areas requiring such platforms are battery-powered. All of this means that
we need to reduce the energy consumption of (I)IoT applications. To achieve
this, we need to consider all features of modern hardware. To the best of
our knowledge, we are the first to propose a scheduling approach that
combines heterogeneous CPU and GPU, multi-version dependent tasks, a
fine-grained energy model, an energy-focused ranking algorithm for FLS
and in application frequency and voltage switching.

Our eFLS scheduling heuristic embraces heterogeneity and incorporates
different CPU types, multiple-voltage islands and GPU-style accelerators.
The scheduling heuristic can not only change the frequency at various
intervals in the application but also employs an energy model to determine
its direction that is more fine-grained than previous energy models used in
research. Furthermore, our new ranking algorithm (Heterogeneous Energy
Ranking) and the new ranking sub-set selection makes energy consumption
a first-class citizen with respect to scheduling. Lastly, eFLS scales well with
the size of taskgraphs.

We provide empirical evidence that our new ranking sub-set decreases
the predicted energy consumption by up to 23% in comparison to the base

4.9 conclusion 75

ranking methods (DFS, BFS, BFS with laxity, BFS energy laxity). Additionally,
we demonstrate that our novel multi-version scheduling approach can take
full advantage of a heterogeneous system, reducing energy consumption by,
on average, 16% over a single version approach. We also show that there is
no single best version for all tasks across all taskgraphs. This indicates that
the multi-version approach produces more energy-efficient schedules than a
single-version approach. Furthermore, we show that our eFLS scheduling
approach outperforms a standard FLS scheduler and the state-of-the-art
ARSH-FATI [133] scheduler by, on average, 27.8% with respect to energy
consumption. Lastly, eFLS outperforms HEFT by 26.3% with respect to
predicted energy consumption.

Our energy-aware Forward List Scheduling (eFLS) solutions experience
a mean degradation of only 1.6%, with respect to energy consumption
compared to optimal solutions derived by Integer Linear Programming (ILP).
Lastly, we show that the energy predictions of our scheduling approach
are similar to the measured energy consumption with a maximum error of
15.8%.

In summary, we introduce a new scheduling method that, in combination
with a new ranking method, outperforms previous scheduling methods
and can significantly improve the energy consumption of IoT applications.
Additionally, we are the first to investigate a large variety of potential
ranking algorithms.

5
M U LT I - P H A S E S C H E D U L I N G

This chapter explores our multi-phase scheduling approach, which extends our
previously introduced multi-version approach. The new task model splits a version
of a task into multiple distinct execution blocks or phases. We show that splitting a
version of a task into multiple phases offers substantial advantages with respect to
hardware utilisation. This is followed by a new offline scheduling heuristic that maps
and schedules tasks represented by versions and phases. Then, we demonstrate that
our method significantly improves the schedulability (i.e. number of DAGs with a
final makespan less than the deadline) by up to 11% and 24% in comparison to two
multi-version phase-unaware schedulers (HEFT [131], and eFLS [148] respectively).

This chapter is based on:

• J. Roeder, B. Rouxel, and C. Grelck “Scheduling DAGs of Multi-
version Multi-phase Tasks on Heterogeneous Real-time Systems” [151],
in 14th IEEE International Symposium on Embedded Multicore/Many-
core Systems-on-Chip (MCSoC 2021), Singapore. IEEE.

The survey by Akesson et al. [3] shows that industry increasingly uses
heterogeneous high-performance embedded systems. Companies not only
use platforms with heterogeneous CPUs (e.g., ARM big.LITTLE architecture)
but also employ systems with accelerator-style components such as GPU or
FPGA (e.g., Nvidia Jetson, Odroid-XU4, Odroid-N2+). To increase the overall
performance, taking full advantage of the available heterogeneity is crucial.
Different binary incompatible compute units can be targeted by multiple
alternatives/versions/implementations of a task [7, 67, 148]. Selecting the
best task version depends on the schedule history and the available compute
units. Therefore, we propose a multi-version-aware scheduling approach
that benefits from more scheduling opportunities and, thus, creates more
performant schedules.

Unlike CPUs, accelerators like GPUs require an external action to branch
the application control flow to them, i.e., a CPU core is needed to prepare
data and launch the GPU kernel. Hence, a task targeting a GPU has three
natural phases: 1. a CPU phase that hands control to the GPU, 2. a GPU
phase that does some computations and, 3. a CPU phase that handles

77

78 multi-phase scheduling

post-processing and resuming of the application. To tackle this problem
we propose a new task model that splits tasks into a finer hierarchy of
elements by adding phases, i.e., a task can be divided into phases. Phases
enable more mapping and scheduling opportunities and increase hardware
utilisation. Why can’t we simply model multiple phases of one task as
multiple independent tasks? The different phases of a task are more tightly
coupled than independent tasks with respect to cache lines/memory etc.

Let us compare our proposed multi-phase approach with an approach
that instead reserves both required hardware units for the entirety of the
execution time of the task. Consider two independent tasks executed on
an architecture with one CPU core and one GPU. Task 1 starts with a CPU
phase, followed by a GPU phase and finalises with a CPU phase. The Worst-
Case Execution Time (WCET) of Task 1 is 6 time units, including all phases
in sequence. Task 2 executes on the CPU only and has a WCET of 4 time
units. A synchronous scheduling approach does not consider the different
phases. Instead, it schedules the entire Task 1 in one contiguous sequential
block. A synchronous scheduling approach results in Figure 5.1 with a
total makespan of 10 time units. When scheduling the task in one block,

0 1 2 3 4 5 6 7 8 9 10

CPU1

GPU1
Task 1

Task 2

Time units

Figure 5.1: Motivational example without phases.

the CPU is stalled while executing the GPU phase. By splitting a task into
different phases, we enable the asynchronous use of computing resources
and schedule phases independently. Our approach is, thus, aware of this
phase multiplexing and can rely on it to improve the schedulability rate for
Directed Acyclic Graphs (DAG) with high utilisation, as shown in Figure 5.2
with a makespan of 6.

On top of our new multi-phase task model, we introduce an offline
scheduling heuristic to map and schedule a set of tasks onto heterogeneous
CU. Each task has at least one version, and each version has at least one phase.
The static scheduler chooses which implementation variant of a task is used.
The proposed strategy is formulated as a heuristic based on Forward List

5.1 system model 79

0 1 2 3 4 5 6 7 8 9 10

CPU1

GPU1
Task 1

Task 2

Time units

Figure 5.2: Motivational example with phases.

Scheduling (FLS). According to Davis and Burns [38], our heuristic can be
classified as static, partitioned and time-triggered. Additionally, we support
co-operative scheduling within the application; i.e. fixed preemption points
in each task that can be used to execute another phase or task within the
application.

This chapter builds upon our previous scheduling approach introduced
in Chapter 4, where we tackled energy-aware scheduling for heterogeneous
systems, mainly focusing on Dynamic Voltage and Frequency Scaling (DVFS)
and energy modelling. Additionally, Chapter 4 followed a synchronous
approach where any task requiring the GPU reserved both a CPU core and
the GPU for the entire task length, leading to a CPU core being blocked
while using the GPU and vice versa.

5.1 system model

We consider an application represented by a DAG, hereafter called task graph.
A graph is a tuple G = (D, τ,E), where D is the deadline, τ represents
the set of nodes/vertices, hereafter called tasks, and the set of edges E

represents data dependencies between tasks. Hence, a producer task needs
to be completed before the corresponding consumer task may start executing.
Each task consists of a (non-empty) set of versions V .

The different versions of a task are functionally equivalent (i.e. they im-
plement the same input/output relation) but differ in their structure and
compute unit usage; hence, tasks differ in their non-functional properties
(energy, time, etc.). Different versions can be the result of the following: 1. tar-
geting different functional units; 2. different algorithms or implementation
variants [148]; 3. using varying compilation flags to, for example, optimise
code for energy consumption, binary size, speed, or architecture features
[105].

80 multi-phase scheduling

Furthermore, each version is split into multiple phases. A phase is a
sequential block of code executed on one compute unit. Each phase is
characterised by a tuple p = (C,U), where C is the Worst-Case Execution
Time (WCET) and U is the set of compute units on which it can be executed
and on which the WCET holds.

Figure 5.3 shows a task graph and illustrates different possibilities that
our task model enables. The task graph consists of 9 tasks. Tasks 1, 4, 6 and 7

have one version. Each version consists of one phase that can be executed on
any CPU type, indicated by C. Tasks 0, 2 and 8 have two available versions,
where the first version is again a CPU version (C). The second version is a
multi-phase version, indicated by C-G-C. The C-G-C version indicates that
it is a three phase version, where the first and third phase can be executed
on a CPU core (C) and the second phase (G) targets the GPU. Task 3 has
two versions. The first version is a single phase version that targets big CPU
cores only. The second version is a two phase version (C-A), where the first
phase targets a CPU core (C) and the second phase targets an accelerator
A. Task 5 also has two versions. The first single phase version targets the
LITTLE CPU cores. The second version is a three phase version (C-A-C) that
targets the CPU cores (C) and an accelerator (A).

Task 0
V1: C

V2: C-G-C

Task 5
V1: LITTLE
V2: C-A-C

Task 3
V1: big
V2: C-A

Task 4
V1: C

Task 2
V1: C

V2: C-G-C

Task 6
V1: C

Task 7
V1: C

Task 8
V1: C

V2: C-G-C

Task 1
V1: C

Figure 5.3: Example of a task graph where each task has one or more versions. A
version contains one or more phases. C indicates that the phase can be
executed on any CPU core, whereas big and LITTLE indicate a specific
CPU architecture. G indicates that the phase has to be executed on the
GPU. A stands for accelerator (e.g. FPGA).

We target heterogeneous platforms that embed any type of compute unit,
including different types of CPU (e.g., big.LITTLE architectures), GPU, DSP,
FPGA, and other accelerators. Our approach is fully platform-independent

5.2 interference 81

and can be applied to a wide range of heterogeneous (embedded) system
architectures.

5.2 interference

5.2.1 Cache related delays

Our approach allows for migration. For example, two different CPU phases
of the same version can be executed on different CPU cores. We do not
allow migration during execution, i.e., when a phase starts on a compute
unit, it cannot migrate. Allowing migration of phases from the same task
induces a non-negligible cost due to cache reloads. If two CPU phases of
the same task version share cache lines spawning them on different cores
affects the execution time of the second phase. Figure 5.4 shows an example
of migration where the red part of the last phase of task T0-V0-P3 needs
to reload cache lines (instruction or data) that would have been present if
executed on the same CPU core as the first phase.

t

T0-V0-P2

... ...

GPU

CPU X

CPU Y another task

 T0-V0-P3

Cache load

T0-V0-P1
Shared
cache lines

Figure 5.4: Example of migration. T0 indicates that it is Task 0. V0 indicates that it
is version 0 of Task 0. And P1 through P3 indicates the phase.

Similarly, allowing asynchronous execution between phases has the same
impact on the cache as migration, illustrated in Figure 5.5. Inserting a phase
from another task between two phases of the same task (entanglement) can
evict shared cache lines (both instruction or data). There are no shared cache
lines between different compute unit types (e.g., CPU and GPU); thus, we
assume an empty cache.

t

T0-V0-P2
... ...GPU

CPU X another task T0-V0-P3

Cache reload

T0-V0-P1
Shared
cache lines

Figure 5.5: Example of entanglement. T0 indicates that it is Task 0. V0 indicates that
it is version 0 of Task 0. And P1 through P3 indicates the phase.

82 multi-phase scheduling

This interference cost is well-known for preemption and is called Cache
Related Preemption Delay (CRPD), e.g., [8]. Allowing phases from other tasks
to execute in-between two phases of a task is similar to a preemption
mechanism. Our scheduling strategy accounts for the CRPD by adding an
extra cost to the WCET of a second phase that suffers from it. Computing
the CRPD itself can be performed using many techniques, based on both
static analysis [8] and dynamic analysis [98]. Our scheduling method is not
linked to any particular CRPD analysis. We only require that an extra cost is
added to the WCET in case of migration or entanglement.

5.2.2 Shared resources interference

Scheduling tasks for multi-core platforms requires accounting for hardware
interference due to shared resources, e.g., bus, memory, etc. One possibility is
to isolate the parts of the code that generate interference as phases and ensure
that only one of these phases across all tasks can execute simultaneously.
This approach would be similar to AER [90], or PREM [107]. However,
these methods are unsuitable for our targeted applications and platforms
(Odroid-XU4, Jetson TX2 etc.). The applications we consider (e.g., object
detection) often have no predetermined load-compute-write structure, as
the data might not fit into the cache. Therefore, we follow a more portable
path and add the interference cost into the WCET to form the Worst Case
Response Time (WCRT) of each phase and then schedule phases according
to the WCRT [113].

5.2.3 Data in memory interference

All data transfer between two compute units (e.g., CPU to GPU) is accounted
for in the CPU phases. Thus, we can target both shared memory and dedi-
cated accelerator platforms. We consider memory management to be beyond
the scope of this chapter. In other words, we assume sufficient memory to
be available.

5.3 heterogeneous fls

Our proposed heuristic is based on Forward List Scheduling (FLS). FLS first
orders the tasks and then adds them one by one to the schedule without
backtracking. We use three sorting algorithms: Depth First Search (DFS),
Breadth First Search (BFS), and HEFT ranking [131]. For DFS and BFS, we

5.3 heterogeneous fls 83

use the task WCET as a tie-breaking rule (larger WCET to be scheduled first).
Furthermore, we introduce one additional tie-breaking rule for BFS based
on laxity. Since it is shown in [116] that no sorting algorithm consistently
outperforms the others, we generate four schedules, each resulting from one
sorting strategy / tie-breaking rule combination, and select the one resulting
in the lowest makespan as our heuristic solution. From here on-wards, we
will refer to our heterogeneous, multi-version task scheduling heuristic as
hFLS.

Our approach: We schedule all phases of a (task) version one after another.
This way, we allow for migration between CPU cores or the CPU and an
accelerator or even between multiple accelerators. When scheduling a phase,
the heuristic checks if there is either migration or entanglement between the
current phase and the previous phases of the same task and increases the
WCET with the CRPD of the phase. Scheduling decisions are not changed
retrospectively.

5.3.1 Scheduling Algorithm

Our proposed heuristic is sketched out in Algorithm 5.3.1. It takes as an
input the DAG of the application represented by tasks τ, a set of compute
units CU and a deadline D. It sorts the tasks and creates a list (Line 2), then
it loops over all the tasks in the list (Lines 5 – 45). We try all versions of a
task (Lines 8 – 41), where each version starts with a clean schedule (Line 9).
All phases of a version are scheduled (Lines 10 – 37) and all compute units
CU are tried (Lines 14 – 34).

The scheduler ensures that a phase ph can execute on a given CU (Lines
15 – 16). Then we compute the Release Time (RT) of ph (Line 19). We
evaluate if the RT and mapping suffer from either migration or entanglement
interference and update the WCET of ph (Line 20). If the specific RT or
mapping results in interference, the RT is recalculated (Line 22) with the
new WCET. Section 5.3.2 explores the RT calculations. Section 5.3.3 explores
the WCET update. After the RT and WCET updating steps, ph is, added to
the schedule (Line 24).

Adding phase ph to the schedule could mean that a previously scheduled
phase of a different task now suffers from interference. Thus, Line 26 finds
and propagates such interference through the schedule. The interference
propagation algorithm is explored in Section 5.3.4.

The best core mapping for a phase depends not only on the makespan

but also on the release time. An earlier release time of the first phase could

84 multi-phase scheduling

lead to a better makespan for the latter phases (Lines 29). The best core for
a phase is saved in bestCoreSchedule (Line 30). Once the best core for a
phase has been found, the versionSchedule is updated (Line 35), which is
the base for scheduling the next phase.

After all phases have been scheduled, versionSchedule contains the
best schedule for a task version. The best task version is saved in the
tmpSchedule (Line 39). Once all versions of a task have been tried, the
original schedule is updated (Line 42), and the Qdone list is extended (Line
44).

After all tasks in the Qready list have been scheduled we check if the
resulting schedule has a makespan lower than the deadline D (Line 46).

Algorithm 5.3.1 Scheduling Algorithm

Input: A DAG composed of multi-version tasks (τ), a set of compute units
(CU) and a deadline (D).

Output: A schedule.
1: function ListSchedule(τx ∈ τ|τx = v,CU,DC)
2: Qready← TopologicalSortTasks(τ)

3: Qdone← []

4: schedule← new Schedule()

5: while t← Qready.popFront() do
6: tmpSched← schedule

7: tmpSched.makespan←∞
8: foreach v ∈ t.versions do
9: versionSchedule← schedule

10: foreach ph ∈ v.phases do
11: bestCoreSchedule← versionSchedule
12: bestCoreSchedule.makespan←∞
13: oldReleaseTime←∞
14: foreach u ∈ CU do
15: if ph does not run on u then
16: continue
17: end if
18: copy← versionSchedule
19: copy.phaseRT(Qdone, t, v, ph, u)
20: copy.updateWCET(Qdone, t, v, ph, u)
21: if ph.appliedCRPD() then

5.3 heterogeneous fls 85

22: copy.phaseRT(Qdone, t, v, ph, u)
23: end if
24: copy.addPhase(ph)
25: ph.setTargetCU(u)
26: copy.propInterferences(Qdone, t, v, ph, u)
27: copy.updateMakespan()
28: newReleaseTime← copy.releaseTime(ph)
29: if copy.makespan < bestCoreSchedule.makespan

∨ newReleaseTime < oldReleaseTime then
30: bestCoreSchedule← copy
31: bestCoreSchedule.updateMakespan()
32: oldReleaseTime← newReleaseTime
33: end if
34: end for
35: versionSchedule← bestCoreSchedule
36: versionSchedule.updateMakespan()
37: end for
38: if versionSchedule.makespan < tmpSched.makespan then
39: tmpSched← versionSchedule
40: end if
41: end for
42: schedule← tmpSchedule
43: schedule.updateMakespan()
44: Qdone.pushBack(t)
45: end while
46: if schedule.makespan > D then
47: return unschedulable
48: end if
49: return schedule
50: end function

Proof of termination. We only loop over a finite set of tasks τ, and
each task has a finite set of versions. Each version has a finite number of
phases. Additionally, the number of CU is finite. Lastly, all function calls are
guaranteed to terminate as they iterate over finite data structures.

86 multi-phase scheduling

Complexity. The complexity of Algorithm 5.3.1 (excluding all algorithms
called in it) is O(n× v× ph× u), where n is the number of tasks, v is the
number of versions, ph is the number of phases and u is the number of CU.

5.3.2 Phase Release Time

Algorithm 5.3.2 Phase release time
Input: Scheduled tasks (Qdone), task to schedule (curTask), phase (ph), processor

(curCU).
Output: Computes a phases’ release time.

1: function phaseRT(Qdone, curTask, ph, curCU)
2: ph.ρ← 0

3: foreach x in curTask.predecessors do
4: ph.ρ← max(x.ρ + x.C, ph.ρ)
5: end for
6: y← ph.previousPhase
7: ph.ρ← max(ph.ρ, y.ρ + y.C)
8: change← true
9: while change do

10: change← false
11: foreach t ∈ Qdone do
12: if t is mapped on curCU then
13: if t overlaps in time with ph then
14: ph.ρ← t.ρ + t.C
15: change← true
16: end if
17: end if
18: end for
19: end while
20: end function

Algorithm 5.3.2 sketches out the release time ρ computation of a phase.
The input is the list of scheduled tasks Qdone, current task curTask, phase
ph and target processor curCU. The start time / release time of a task (ph.ρ)
must be after all predecessors of the task have completed (Lines 3 – 4).
Additionally, ph must be be released after the previous phase of the same
task (Lines 6 – 7). We must ensure that there is no overlap with previously
scheduled tasks on the same compute unit curCU (Lines 9 – 19). If there is
an overlap, ρ of ph is set to the previous tasks completion time (Line 14).

5.3 heterogeneous fls 87

Proof of termination. Algorithm 5.3.2 is guaranteed to terminate because
we only postpone ph. In the worst-case scenario, ph is moved to the end of
the schedule.

Complexity. The worst case complexity of Algorithm 5.3.2 is O(n2). Let
us consider an application with n tasks, and all tasks but one have been
scheduled onto a single core system. The last task has a single version with
a single phase ρ and has no predecessors. In the worst-case scenario the
phase, ph, has to be moved past all previously scheduled tasks. If ph is
only postponed once per iteration of the while loop, we need a total of n2

iterations.

5.3.3 Updating phase WCET

Algorithm 5.3.3 Updating the WCET of a phase
Input: Scheduled tasks (Qdone), phase (ph), processor (curCU).
Output: Add the CRPD cost to a phase in case of migration or entanglement.

1: function updateWCET(Qdone, ph, curCU)
2: foreach pp in ph.previousPhase do
3: if curCU != pp.targetCU() && curCU.type() == pp.targetCU().type()

then
4: ph.applyCRPD()
5: break
6: else if curCU == pp.targetCU() then
7: foreach t ∈ Qdone do
8: if pp == t || curCU != t.targetCU() then
9: continue

10: end if
11: if t between pp and ph then
12: ph.applyCRPD()
13: break 2
14: end if
15: end for
16: end if
17: end for
18: end function

Algorithm 5.3.3 sketches out how the WCET of ph is updated in case of
interference with respect to one of the previous phases. First, we iterate over
all previous phases (Line 2 – 17) and check if ph migrates with respect to

88 multi-phase scheduling

a previous phase (Line 3). A migration occurs if ph executes on a different
compute unit of the same type as the mapping of a previous phase. If
migration occurs, we add the CRPD to the phase WCET (Line 4) and break
out of the loop (Line 5) because the CRPD should only be added once. If ph
does not migrate, we still need to verify that there is no entanglement with
respect to the previous phases (Lines 6 – 16). To do so, we check if any of
the other scheduled tasks (Line 7) is between ph and a previous phase (Line
11). If entanglement occurs, we add the CRPD (Line 12) to the WCET and
break out of both loops (Line 13).

Proof of termination. Updating the WCET of a phase is guaranteed to
terminate because the algorithm iterates over two finite data structures. The
first is the list of the previous phases pp and the second is the list of already
scheduled tasks Qdone.

Complexity. The complexity of the algorithm is O(phpp×n), where phpp

is the number of previous phases and n is the number of tasks in Qdone.

5.3.4 Find and propagate interference across the schedule

Algorithm 5.3.4 sketches out how the scheduling of the current phase propa-
gates interference through the already scheduled tasks and phases. First, we
iterate over all previously scheduled tasks (Lines 3 – 22). We only check for
interference if the current phase ph is not part of the previously scheduled
task t (Line 4). Then we iterate over the phases in t twice (Lines 5 and 9).
At this point, we only need to continue: 1. If the phases are both on curCU

(Lines 6 and 10). 2. If the p1&p2 are different and p2 is scheduled after p1

(Line 13).
Then if ph is scheduled between p1 and p2 (Line 16), there is entanglement

that impacts p2. At this point, we can break out of all three loops (Line 18)
because only one previously scheduled phase can be impacted by ph.

If a previously scheduled phase is impacted (Line 24), the interference
must be propagated through the rest of the already scheduled tasks/phases.
This is done recursively, where all successors of the impacted task are added
to the impacted list (Line 25). Additionally, all tasks/phases scheduled after
the impacted phases and on the same compute unit are also added to the
impacted list. This is done recursively until all successors or tasks on the
same core have been added to the list. After that, the CRPD of the original
impacted task/phase is used to update all impacted elements (Line 29).

Proof of termination. Algorithm 5.3.4 is guaranteed to terminate as we
only increment the release time of the impacted tasks. We never decrement

5.3 heterogeneous fls 89

Algorithm 5.3.4 Finding and propagating interference caused by the sched-
uling of the current phase.
Input: Scheduled tasks (Qdone), phase (ph), processor (curCU).
Output: Check if the scheduling of the current task causes any interference of

tasks/phases that have already been scheduled.
1: function propInterferences(Qdone, ph, curCU)
2: Find any phase with a longer WCET due to the scheduling of the current

task.
3: foreach t ∈ Qdone do
4: if ph /∈ t then
5: foreach p1 ∈ t do
6: if curCU ̸= p1.targetCU() then
7: continue
8: end if
9: foreach p2 ∈ t do

10: if p1.targetCU() ̸= p2.targetCU() then
11: continue
12: end if
13: if p1 == p2 || p2 after p1 then
14: continue
15: end if
16: if ph between p1 & p2 then
17: impactedPhase← p2

18: break 3
19: end if
20: end for
21: end for
22: end if
23: end for
24: if impactedPhase then
25: impacted← [impactedPhase]

26: impacted.findAllImpacted()

27: end if
28: foreach i ∈ impacted do
29: i.update(impactedPhase.crpd())
30: end for
31: end function

90 multi-phase scheduling

the release time. Hence, in the worst-case scenario, all release times of all
tasks released after the original impactedPhase must be incremented.

Complexity. The complexity of the algorithm described in Lines 3 – 22 is
O(t2p ×n), where tp is the number of phases of task t and n is the number
of tasks.

The complexity of the recursive function (impacted.findAllImpacted())
is O(n2). In the worst-case scenario, the last scheduled phase ph impacts
the first task in the schedule. Thus, it might happen that all tasks after the
first task are impacted. In this case, all tasks have to be checked against each
other.

5.4 evaluation

In this section, we first evaluate our hFLS heuristic against an Integer
Linear Programming (ILP) formulation and then against two synchronous
phase-unaware heuristics. Our experimental results are based on synthetic
benchmarks.

5.4.1 hFLS vs ILP

Heuristic algorithms intrinsically generate approximate results but usually
scale well. ILP formulations give exact results to the problem but do not
scale well. We compare schedules generated by the heuristics against the
ones generated by the ILP to estimate the heuristics over-approximation.

We summarise and introduce all variables and functions in Table 5.1. For
conciseness, we use logical operators (∨, ∧). The two logical operators can
be linearised as shown by Brown and Dell [25]. Our ILP formulation is as
follows.

Task mapping. Eq. 37 assigns a single version a per task t.

∀t ∈ τ,
∑

v∈version(t)

at,v = 1 (37)

Phase mapping. Eq. 38 assigns one compute unit per selected (at,v = 1)
phase p.

∀t ∈ τ,∀v ∈ version(t), ∀p ∈ phase(v),
∑
c∈γ

bp,c = at,v (38)

Detect identical mapping. Eq. 39 detects if two phases (p & q) are mapped
to the same compute unit (c) .

5.4 evaluation 91

Table 5.1: Summary of ILP variables.

Variable Description

γ Set of compute units

τ Set of tasks

version(t) Set of versions for task t

phase(X) Set of phases for X where X can be a task or a
version

succ(X) Set of successors for X where X can be a task or a
phase

deny(p) Set of forbidden compute units for phase p

Dt Absolute deadline for for task t

Cp,c WCET of a phase p on a compute unit c

at,v 1 if version v is selected for task t

bp,c 1 if phase p is mapped on compute unit c

dp,q 1 if phase p and phase q are on the same compute
unit

ep,q 1 if phase p is scheduled before phase k

fp,q 1 if phase p is scheduled before phase k and both
phases are on the same core

ρp Start time of phase p

ωp,c Augmented WCET for phase p on compute unit c

∀(u, t) ∈ τ× τ, ∀p ∈ phase(u),∀q ∈ phase(t),u ̸= t,

dp,q =
∑
c∈γ

bp,c ∧ bq,c
(39)

Mapping restriction. Eq. 40 enforces compute unit mapping restrictions
(e.g., p runs on a GPU and not on a CPU).

∀t ∈ τ, ∀p ∈ phase(t), ∀c ∈ deny(p),bp,c = 0 (40)

Order phases in task. Eq. 41 enforces the phase ordering within a version,
i.e. q only starts after p is complete if q succeeds p.

∀t ∈ τ, ∀p ∈ phase(t), ∀q ∈ succ(p),

∀c /∈ deny(p), ρp +ωp,c = ρq
(41)

92 multi-phase scheduling

Deadline. Eq. 42 guarantees the timing constraints of the graph, i.e., all
phases must complete before the deadline D.

∀t ∈ τ,q ∈ phase(t),∀c /∈ deny(q), ρq +ωq,c ⩽ Dt (42)

Task dependency. Like Eq. 41, Eq. 43 enforces task dependencies, i.e., task
q only starts after all its predecessor phases.

∀u ∈ τ, ∀t ∈ succ(u), ∀p ∈ phase(u),∀q ∈ phase(t),

∀c /∈ deny(p), ρp +ωp,c ⩽ ρq
(43)

Phase ordering. Eq. 44 sets the ordering of two successive phases. If
ep,q = 1, then phase p is scheduled before phase q. Eq. 45 detects the
ordering of two successive phases on the same core (dp,q = 1).

∀(u, t) ∈ τ× τ,∀p ∈ phase(u), ∀q ∈ phase(t),

ep,q + eq,p = 1 (44)

fp,q = ep,q ∧ dp,q (45)

Prevent overlap. Eq. 46 prevents multiple reservations of a computing
unit simultaneously. It uses the common big-M (M) notation, where M is
the sum of all WCETs.

∀(u, t) ∈ τ× τ,∀p ∈ phase(u), ∀q ∈ phase(t),

∀c /∈ deny(p),u ̸= t,

ρp +ωp,c ⩽ ρq + (1− fp,q)M

(46)

Entanglement cost. Eq. 47 adds the CRPD cost (Section 5.2.1) if two phases
are entangled by augmenting the WCET (ωr,c) of phase r. The entanglement
cost (CRPDp,r) is only added if phase q is mapped between phase p & r

and is on the same compute unit (d).

∀(u, t) ∈ τ× τ,

∀p ∈ phase(u),∀q ∈ phase(t), ∀r ∈ succ(p),

∀c /∈ deny(p)∩ deny(q)∩ deny(r),
(dp,q == dq,r == 1∧ ρp < ρq < ρr)

=⇒ ωr,c = Cr,c +CRPDp,r

(47)

Migration delay. Eq. 48 accounts for additional migration delay mentioned
in Section 5.2.1. Equations 47 and 48 are mutually exclusive as either the
two phases p, and r are mapped on the same core (Eq. 47) or on different

5.4 evaluation 93

cores (Eq. 48). The migration delay is only added if the two phases target
the same compute unit type, but different compute units, e.g., LITTLE core
1 & 2.

∀t ∈ τ, ∀p ∈ phase(t), ∀q ∈ succ(p),

∀c /∈ deny(p)∩ deny(q),
ωq,c = Cq,c +CRPDp,q(1− dp,r)

(48)

Setup. The target platform for this experiment is a homogeneous quad-
core CPU with an onboard GPU. We generate 1000 task graphs using Task
Graphs For Free (TGFF) [41]. Additionally, TGFF provides the WCET for a
simple CPU version and the deadline of the graph. The WCET provided by
TGFF can be generated using the type attrib option. We used the following
parameters: 60, -50, 0.5, 1. We generate a three-phase version which targets
the GPU. The WCET of the GPU version is based on the CPU WCET and is
either lower or equal to the CPU WCET. The task graphs contain, on average,
38 tasks. Links to the datasets and code used in this chapter can be found
on page 137. The CRPD of a phase is an arbitrarily chosen 5% of the WCET
of the impacted phase. The same CRPD is applied to both hFLS and the ILP.
The CRPD is set arbitrarily as we do not have an appropriate target platform
that could be used to estimate the CRPD. The conclusion does not change
when increasing the CRPD level to 100%. Executing the DAG on the CPU
sequentially yields the completion time. And dividing the completion time
by the deadline yields the utilisation.

To solve the ILP, we use CPLEX 1 v12.10 executed on a 16core Intel system
with 96GB memory. The heuristic was developed in C++ and was executed
on the same machine as the ILP. For the ILP solver, we set up a timeout of
12h and a memory limit of 90GB per DAG.

Results. Due to the time and memory limits, the ILP solver was not able
to reach a decision in 21.2% of the DAGs. For the DAGs that the solver
came to a decision, 54.8% were marked as unschedulable (i.e. makespan
exceeding deadline). All cases marked as unschedulable by the ILP were also
decided as unschedulable by the heuristic, i.e., showing that the heuristic
does not come to impossible conclusions. Compared to the ILP, the heuristic
marked 2.4% more DAGs as unschedulable. Thus, showing that the ILP
slightly outperforms hFLS with respect to schedulability. This is also reflected
by Figure 5.6, which compares the schedulability rate per utilisation range
of the ILP and hFLS. Figure 5.6 only compares the DAGs where the ILP
reached a decision. Thus, the DAGs for which the ILP solver could not reach

1 https://www.ibm.com/nl-en/analytics/cplex-optimizer

https://www.ibm.com/nl-en/analytics/cplex-optimizer

94 multi-phase scheduling

a decision are excluded. Each utilisation range represents the aggregated
schedulability rate for all DAGs within that range, e.g. range 1 to 2 contains
123 DAGs, out of which 108 were schedulable. We can clearly see that
for higher utilisation ranges (3 to 4 and 4 to 5), the ILP achieves a higher
schedulability rate than hFLS.

1-2 2-3 3-4 4-5 5-6 6-7

Utilisation range

0.0

0.2

0.4

0.6

0.8

Sc
he

du
la

bi
lit

y
ra

te ILP
hFLS

Figure 5.6: Performance of hFLS scheduler vs ILP scheduler. Each utilisation range
represents the aggregated schedulability rate for all DAGs within that
range, e.g. range 1 to 2 contains 123 DAGs, out of which 108 were
schedulable.

Thus, why don’t we use the ILP exclusively if it leads to a higher schedu-
lability rate? This is perfectly answered by Figure 5.7, which shows the
scheduling time (in seconds) with respect to the number of tasks in the
DAG. We can see that the ILP does not scale well with an increasing number
of tasks. The ILP solver cannot find a solution in a reasonable amount of
time for most DAGs above 60 tasks. Thus, hFLS is capable of scheduling
significantly larger taskgraphs.

0 20 40 60 80 100
Number of Tasks

0

10000

20000

30000

Sc
he

du
lin

g
tim

e
(s

) ILP
hFLS

Figure 5.7: Scheduling time (s) taken with respect to the number of tasks.

5.4 evaluation 95

5.4.2 hFLS vs eFLS vs HEFT

We compare our approach with our own multi-version energy-aware eFLS
approach [148] and with HEFT [131]. For a fair comparison, we added multi-
version capabilities to HEFT and modified the eFLS approach to focus on
makespan instead of energy consumption. Both comparison heuristics use a
synchronous scheduling approach, i.e., a GPU version with multiple phases
blocks both the CPU and GPU for the complete execution time of the task.

Setup. We schedule 10,000 task graphs for the Odroid-XU4 [59]. The
Odroid-XU4 contains an Arm big.LITTLE CPU [1] and a Mali GPU[49].
The CPU contains 4 energy-efficient, in-order LITTLE cores and 4 high-
performance, out-of-order big cores. CPU and GPU share a common memory.
This setup is more representative of modern high-performance embedded
systems than the setup from the previous section (Section 5.4.1). We could
not make use of this more realistic setup in Section 5.4.1 due to the poor
scaling of the ILP.

Like in Section 4.4.3 and Section 5.4.1 TGFF [41] provides the structure
of each DAG. Additionally, TGFF provides the WCET of each task on the
LITTLE cores and the deadline. The task graphs contain, on average, 76

tasks. Next to the LITTLE core version, there are another 3 versions: one
CPU-only version for the big cores, one 3-phase GPU version initiated on
the LITTLE cores and one 3-phase GPU version initiated on the big cores.
The WCET of the additional versions is based on the WCET of the LITTLE
version, similar to the approach in Section 5.4.1. The big version always takes
less time than the initial LITTLE version. The WCET of the GPU version
initiated on the LITTLE cores is less or equal to the LITTLE CPU version.
The WCET of the last version (i.e., initiated on the big cores) depends on
the GPU version initiated on the LITTLE cores and only the phases that are
executed on the big cores change. We assume that the GPU phase is the
same for both the LITTLE and the big version. The utilisation of each task
graph is calculated in the same manner as in the previous section. The only
difference is that we use the LITTLE core WCET to compute the sequential
schedule.

We calculate the CRPD of each phase based on the WCET of the impacted
phase. The CRPD is equal to either the WCET (i.e., 100% of the WCET)
or the platform’s upper CRPD bound, e.g., fully reloading L2 cache with
poor pre-fetching. Thus, for short phases the CRPD cost might be high,
but for long-running tasks the CRPD costs might be negligible (e.g., Object
Detection takes up to a second on a Jetson [130]).

96 multi-phase scheduling

The Odroid-XU4 has a 2MB big core L2 cache [59] and 64Byte cache lines
[33]. Assuming a worst-case scenario of 414 cycles difference between L2

and main memory [126] (i.e., having to reload L2 cache from main memory)
at a frequency of 2GHz results in an upper bound of 6.8ms (rounded to
7ms). The additional time required for datasets larger than the L2 cache
would already be accounted for in the WCET.

Results. Figure 5.8 shows the schedulability rate for each utilisation range.
The schedulability rate of the hFLS heuristic is the same as the schedulability
rate of the eFLS, and HEFT approaches until a utilisation index of 4. At
utilisation rates above 4, the hFLS approach achieves, on average, 12% higher
schedulability rates than the eFLS approach. In the utilisation ranges 9-
11, the hFLS approach results in a 24% higher schedulability rate. hFLS
outperforms the multi-version HEFT by 2.5% on average and is never worse.
The most noteworthy is the significantly better performance (up to 11%
higher schedulability rate) in the higher utilisation ranges. In a production
environment, this could make the difference between a cheaper and a more
expensive SoC, as hFLS enables better hardware utilisation. Lastly, hFLS
performs statistically significantly (McNemar’s Test [93]) better than both
approaches at a confidence interval of 99.9%. Note that all approaches can
schedule DAGs with a utilisation above 8 (i.e., above the number of cores).
Two factors cause this. First, the utilisation is calculated based on the LITTLE
core WCET. However, tasks can have a lower WCET on the big cores and
the GPU. Second, the GPU adds an additional ”core”.

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1
0

10
-11

11
-12

12
-13

13
-14

Utilisation range

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y
ra

te eFLS
hFLS
HEFT

Figure 5.8: Performance of multi-phase schedules vs single-phase schedules. Each
utilisation range represents the aggregated schedulability rate for all
DAGs within that range, e.g., range 2 to 3 contains 1099 DAGs, of which
1039 were schedulable by HEFT and hFLS.

5.5 related work 97

5.4.3 Sorting for hFLS

Many scheduling algorithms (e.g., HEFT, eFLS) require a total order of the
tasks that need to be scheduled. A DAG provides a partial order by nature.
Rouxel et al. [116] showed that no ranking strategy consistently outperforms
(i.e., results in the best schedule) all other ranking strategies. In our current
work on multi-phase scheduling, we observe that the HEFT ranking results
in the best schedule in 73.6% of the cases. One of the two BFS sorting
strategies results in the best schedule in 25.6% of the cases. In the other 0.8%
of the cases, one of the DFS strategies was better. In the few instances where
a DFS strategy resulted in a better schedule than either BFS or HEFT ranking,
the makespan improved by only 2.6%. We observe that a DFS strategy leads
to more entanglement of later phases and propagates delays throughout
the schedule, i.e., more CRPD values are added to tasks, resulting in longer
makespans. Thus, DFS ranking does not add much value in the case of hFLS.
Therefore, DFS ranking is not necessary, and we can decrease the scheduling
time of the heuristic.

5.5 related work

Most previous research in the area of static scheduling for heterogeneous
architectures focused on scheduling for heterogeneous CPUs [12, 22, 118, 131,
143]. Previous work on scheduling incorporating GPUs has either focused on
workload balancing between the CPU and GPU [53, 118], introducing real-
time capabilities to desktop GPUs [60] or running multiple tasks concurrently
on the same GPU [104].

In [87], the authors introduce a run-time system for task and data mapping
for embedded systems with a GPU. The aim is to minimise the completion
time. However, a task only requires either the CPU or GPU. In contrast to
our approach, they cannot handle multiple versions.

Multi-version scheduling is explored in [67], [148] and [7]. Houssam-
Eddine et al. [67] introduce an online scheduling approach with an offline
component for scheduling multi-version tasks. The target architecture for
a task is selected offline, and then the task is scheduled online. Their ap-
proach does not support executing a task on both CPU and GPU, i.e., a
GPU task does not have a CPU phase. Furthermore, in contrast to our
offline approach, their approach requires loading binaries for all versions,
substantially increasing the memory requirements.

98 multi-phase scheduling

Aldegheri et al. [7] also target CPU+GPU scheduling for multi-version
tasks. Their approach extends HEFT by improving the ranking of exclusive
tasks (tasks that only have one implementation). Additionally, tasks can only
use either the CPU or the GPU. Our tasks are not limited to using a single
compute engine, but can use multiple compute engines and switch between
them.

Lastly, our multi-phase approach extends well-known concepts of multi-
phase tasks (AER [90], PREM [107] or LET [63]) by allowing phases to
execute on different compute units.

5.6 conclusion

We extend existing task models along with a scheduling strategy to fully
benefit from the capacities offered by heterogeneous hardware such as the
Odroid-XU4 or the Nvidia Jetson boards. To the best of our knowledge, we
are the first to propose a task model and a heuristic that interleaves CPU
and GPU workloads of different tasks using a multi-version multi-phase
approach.

We demonstrate that our approach can utilise the hardware better than
two synchronous schedulers, improving schedulability by up to 11% and
24%, respectively, for high-utilisation DAGs. Additionally, we show that
HEFT ranking or BFS sorting algorithms perform best in our approach,
reducing the scheduling time by 40%. Lastly, the solutions given by our
hFLS heuristic are close to the optimal with at most 2.4% degradation.

6
S C H E D U L I N G B A S E D O N R E I N F O R C E M E N T L E A R N I N G

This chapter explores offline scheduling of dependent tasks (i.e., DAGs) using a
reinforcement learning approach. First, we explain the different components of our
two RL schedulers and illustrate how they schedule a task. Then, we compare our
RL schedulers to a FLS approach based on two different datasets. We demonstrate
that our Graph Convolutional Network based scheduler produces schedules that are
as good or better than the schedules produced by the FLS approach in over 85% of
the cases for a dataset with small taskgraphs. The same scheduler performs very
similar to the FLS scheduler (at most 5% degradation) in almost 76% of the cases
for a more challenging dataset.

This chapter is based on:

• J. Roeder, B. Rouxel, and C. Grelck “Q-learning for Statically Sched-
uling DAGs” [150], in 2020 IEEE International Conference on Big Data
(Big Data).

• J. Roeder, A.D. Pimentel, and C. Grelck “GCN-based reinforcement
learning approach for scheduling DAG applications” [146], in 19th
Artificial Intelligence Applications and Innovations (AIAI 2023).

In the previous chapters, we relied on Integer Linear Programming (ILP) or
heuristics to schedule applications represented by Directed Acyclic Graphs.
The former provides an optimal solution, but does not scale well with large
DAGs. The latter scales better with the problem size but often relies heavily
on the initial ranking of tasks (see Chapter 4). Finding near-optimal static
schedules for larger DAGs within a reasonable solving time is still an open
problem.

Artificial intelligence (AI) may provide a feasible solution. However, su-
pervised learning is not possible because it requires a set of problems with
solutions. As shown in Chapter 4, finding an optimal solution for a task-
graph of 100 tasks would take approximatley 35 years. Thus, we could never
make a large enough training dataset for more involved problems. Further-
more, as shown in Chapter 4, other AI approaches, such as evolutionary
algorithms, are also not well suited for the task at hand.

99

100 scheduling based on reinforcement learning

Reinforcement Learning, however, may still provide a promising approach.
Recent advances in Reinforcement Learning (RL) have enabled computers
to find good solutions for a variety of challenges, e.g., RL methods can
build near-optimal solutions (up to 100 nodes) for combinatorial problems
such as the Travelling Salesmen Problem [82]. RL approaches combined
with supervised learning can schedule DAG task graphs and outperform
heuristics such as Heterogeneous Earliest Finish Time (HEFT), Critical-Path-
on-a-Processor (CPOP) and Graphene [71, 140]. The combination of RL
and supervised methods is required to stabilise the training. However, by
pre-training neural networks in a supervised manner, they learn to imitate
heuristics, whereas it is known that learning from scratch can outperform
both heuristics and humans [124].

While RL schedulers are often used online (i.e. on the target platform
at runtime), it is also possible to use them offline and generate a schedule
before runtime. In an embedded or real-time setting this has two advantages.
First, the schedule is known, can be validated and there is no chance that
something confuses the neural networks involved and thus leads to a fatal
error. Second, using the RL scheduler online in an embedded system may
lead to significant overhead and take up valuable compute time. Especially
the GPU time is valuable, considering that neural networks execute much
faster on the GPU than on the CPU and that most embedded systems only
have one GPU. In cases such as identifying poachers directly on wildlife
cameras [74] this may lead to unacceptable overhead.

We propose a Q-learning based approach that learns to build offline sched-
ules from scratch (i.e., not learning to imitate a heuristic) and incorporates
graph information. We show that a Q-learning approach quickly learns static
DAG scheduling. The generated schedules are, on average, slightly longer
than a schedule generated by a FLS based scheduling algorithm (0.29% and
2.8% degradation for the two datasets).

6.1 background

Reinforcement learning is a framework for sequential decision making. The
two main components of an RL approach are the environment and the
agent. At each time step, the agent receives a state from the environment
and returns an action. The environment processes the action and returns a
reward to the agent. Over time the agent learns to maximise the cumulative
expected reward by observing the states, actions and rewards. In the game

6.2 system model 101

Pong1, for example, the state is a frame from the game engine, the action is to
move the paddle up or down, and the reward is 1 if the agent scores a point.
In our case, the state contains the tasks, schedule and target architecture
information. The action is where to schedule the next task, and the reward
is the impact of the action on the makespan.

In this chapter, we consider the deep Q-learning (DQN) algorithm [95], a
value-based method. The action-value function is approximated by a deep
neural network which is normally unstable or divergent. The instability
arises because we are dealing with time series and the training samples are
correlated. That means the training sample at T and the training sample at
T + 1 are correlated as they follow each other in time. The method introduced
by Mnih et al. [95] makes use of experience replay, where the neural network
is not trained during scheduling but after. In experience replay, the agent’s
experiences (state, action, reward) are stored in a memory, and during
training, the network is trained on batches of experience from memory. This
has two advantages. 1) The data efficiency is improved as experiences are
used several times for training. 2) The correlations between consecutive
experiences are broken. The standard DQN algorithm is improved with
several extensions (summarised in [65]) to speed up and stabilise the training
process.

6.2 system model

Task Model. We consider applications represented as Directed Acyclic
Graphs (DAG), hereafter called task graphs. In a graph, G = (τ,E) the set of
nodes/vertices τ represents the tasks, and the set of edges E represents data
dependencies between tasks, i.e., a source task needs to be completed before
the corresponding sink task may start executing. Our task model supports
multiple sources and sinks. Additionally, we support a multi-graph setup
(i.e., multiple applications).

A task is a sub-part of an application that needs a certain input, then
executes without additional input until it finalises and passes its output to
the following tasks in the application. Each task has a timing budget. Our
model does not limit the number of incoming or outgoing edges of a task.
We assume that multiple tasks cannot run concurrently on one processing
unit. In this chapter, in contrast to previous chapters, we do not consider
multi-phase or multi-version tasks as our aim firstly is to establish whether
or not RL based-scheduling is feasible for a straightforward base line case.

1 https://en.wikipedia.org/wiki/Pong

https://en.wikipedia.org/wiki/Pong

102 scheduling based on reinforcement learning

Architecture Model. Our approach is fully platform-independent and
can be applied to a wide range of homogeneous system architectures. The
number of CU can be altered via a parameter (the number of actions the
agent can make). This is in contrast to previous chapters, where we focused
on heterogeneous systems. We only focus on homogeneous systems to
determine the feasibility of RL based schedulers. However, the model could
easily be extended to heterogeneous systems by increasing the number of
CU and including one additional feature (the runtime on the second core
type).

6.3 rl scheduling

This section provides a high-level overview of our RL scheduling approach.
Figure 6.1 shows the interactions between the agent and the environment,
following the classic RL approach described in Section 6.1.

Agent Environment

Task 4

Task 5 S
ch

ed
ul

e

Time(s)

Task 1 Task 2

Task 3

Reward

State

Task/Action

Figure 6.1: Reinforcement Learning Framework

The environment updates the ready-queue at the beginning of each sched-
uling step, i.e., collects all tasks that can be scheduled. Only tasks whose
predecessors have already been scheduled can be scheduled. Hence, at any
given point in time, we might have multiple tasks that can be scheduled.

Then the features of all tasks (states) in the ready-queue are collected and
passed to the agent. The agent evaluates all eligible tasks and selects the
task/action pair with the highest expected reward.

The task/action pair is returned to the environment, and the environment
adds the task to the schedule in a as-soon-as-possible fashion, respecting both

6.4 rl scheduler components 103

predecessor run-times and preventing tasks from being scheduled to execute
at the same time on the same CU. The environment then returns the reward
for the task/action pair and the states for the next tasks in the ready-queue.
This is repeated until all tasks in all applications have been added to the
schedule.

6.4 rl scheduler components

In this section, we give a short introduction to the various components of
our reinforcement learning scheduler. One main part of the scheduler is the
neural network agent that makes all the decisions. We have decided to inves-
tigate two different agents. The first one is based on a straightforward fully
connected neural network. And the second one extends the first network by
incorporating graph convolutional layers to extract additional information
from the DAG. We want to investigate if the additional information improves
the scheduler.

Environment. The environment contains the task graph, the schedule
and a representation of the target architecture. It can evaluate the impact of
different scheduling decisions and update its internal states.

Fully Connected Agent. The main backbone of our agent consists of a
fully connected neural network (FCNN). The network consists of 4 layers
having 2048, 2048, 4096, 4096 neurons, respectively. We use ELU activation
functions after each layer [29]. This network architecture performed the best
across a selection of different networks while searching the hyperparameter
space. For the hyperparameter space search we use the bayesian sweep
function provided by Weights and Biases[20].

The input to a neural network depends on the type of neural network
used. For our FCNN based approach, the state is a list of features for a task
(i.e. node and some global features that are common to all tasks). The node
specific features are: 1) The runtime of a task. 2) The best start time at which
a task can start (i.e. the end time across all predecessors). 3) The actual start
time of a task if it has been scheduled. 4) The target core if a task has been
scheduled. The global features are: 1) The normalised values of the min, max
and mean of all tasks in the ready queue. 2) The normalised values of the
min, max and mean runtime of all tasks in the done queue. 3) The number
of tasks in the DAG. 4) The number of tasks available for scheduling. 5)
The number of tasks that still need to be scheduled. All normalised features
are normalised with the maximum runtime of any task in the graph. This
results in a total of 13 features for each task.

104 scheduling based on reinforcement learning

Graph Convolutional Network Agent. As our problem is in the form
of a graph it makes sense to extract additional information using a graph
convolutional network (GCN) [80], which work similarly to convolutional
neural networks (CNN). However, instead of applying different convolu-
tional kernels to neighbouring pixels in an image, we apply convolutional
kernels to neighbouring nodes in the graph. The input to a GCN consists
of the node features and the edge information (i.e. which nodes are con-
nected). For our purposes, we have identified 3 potential sources of useful
information. First, a node’s predecessors may hold important information.
Second, all previously scheduled nodes may be of importance (i.e. they may
hold information about gaps in the schedule). Third, all successors to a node
may also hold important information. For each one of these sources, we
create a four layer GCN (i.e. we have three GCNs). Each GCN consists of
4 SAGEConv [57] layers with 8, 16, 32, 64 neurons per layer respectively.
Each layer is followed by an ELU activation function. The input to each
GCN are the node information (runtime, best start time, actual start time
and target core). However, the edge information for each GCN differ slightly
depending on whether it is supposed to learn about predecessors, previ-
ously scheduled nodes or successor nodes. The output of the three GCNs
is then concatenated, together with the original node information and the
same global features as for the FCNN agent. All this information is fed into
the same feed forward agent as above (4 layers with 2048, 2048, 4096, 4096
neurons, respectively) and ELU activation functions to return what is the
most valuable action.

Besides FCNN and GCN layers, we also experiment with Long-Short-Term-
Memory (LSTM) layers, 1D convolutional layers and 2D convolutional layers.
The network consisting of LSTM layers does not perform well despite an
extensive search of the hyper-parameter space. The 1D and 2D convolutional
neural networks perform almost as good as the FCNN network.

Actions. The action is the CU on which a given task is scheduled. For
example, in the case of a quad-core system, the action space is between 0

and 3. The number of possible actions depends on the target system.
Rewards. The reward function (Equation (49)) returns the value of a given

state st. In our case, the reward is the negative release time (−rt0) of the
action (i.e. start time of a task) plus the expected reward of future actions,
where γ is the discount rate ([0, 1)) of future actions. We used a γ of 0.65.
There are no positive rewards; the best possible reward is 0. If a task (t0)
starts at the 5 second mark, the reward is −5 minus the expected reward of

6.4 rl scheduler components 105

future actions. That means if we expect the next task (t1) to start at the 8

second mark, then the reward for t0 is −13.

V(s0) = −rt0 + E∞
t=1

[
γt × (−rtt)

]
(49)

RL approach description. We use a double DQN approach [61] with
fixed Q-targets, where two networks (NN1 and NN2) are initialised with the
same weights. NN1 and NN2 are used to update each other. A simplified
representation of a single training step is shown in Figure 6.2. During
training, the environment passes a state (St) to NN1, which predicts the
expected reward of all actions at step t. The action with the highest expected
reward is selected and passed to the environment, which evaluates it and
computes a reward. At the same time, the environment passes the updated
state St+1 to NN2, which predicts the expected reward for the new state. The
reward at t is combined with the expected reward at t+1 to form the actual
reward at t. The actual reward is then used to update the weights of NN1. The
weights of NN2 are updated every α steps with the weights of NN1. NN2 is
the network used for inference.

Environment NN1 Environment NN1

NN2
NN2

State for t Action for t

State at t+ 1 Reward for t

Exp. reward for t+ 1 Update

Update

Figure 6.2: RL agent training pipeline.

We need NN2 to compute the expected reward at t+1. If we would use NN1
to predict both the expected reward at t and at step t+1, we would use the
same neural network to calculate the expected reward and the actual reward.
This would make the training process unstable. That way, the expected reward
of NN1 moves closer to the actual reward over time while preventing wide
fluctuations during the training process.

Furthermore, our approach uses prioritised experience replay [119], where
training samples of higher impact are more likely to be in the training batch.
The impact of a sample is the absolute percentage difference between the
predicted and the actual reward.

Hyperparameters. The updates between Neural Network 1 and 2 are not
done at every step but at every τ steps. Our search of the hyperparameter
space suggests that a value of 5 works well for this problem. Additionally,
we use the Adam optimiser to minimise the L1 loss.

106 scheduling based on reinforcement learning

6.5 experiments

Data. We use Task Graphs For Free (TGFF) [41] to generate random DAG
task graphs. TGFF produces both the structure of the task graphs and the
runtime of the tasks. In total, there are 10000 different tasks (i.e., different
runtimes) to improve the generalisation of the agent. We decided to run
our experiments with two datasets. One dataset with smaller, less diverse
and simple graphs, and a second dataset with large, diverse and complex
graphs. Both datasets contain one test and one training dataset. The test and
training datasets were generated individually with different seeds. Links to
the dataset and code used in this chapter can be found on page 137.

The main difference between the two datasets is the number of tasks per
graph. The small DAGs (Dataset 1) are set to 10 tasks with a multiplier
of 1. This does not mean that all graphs have 10 tasks, as the number of
tasks also depends on other characteristics. The larger taskgrahs (Dataset
2) are set to an average of 20 tasks with a multiplier of 5. This results in a
wider distribution of the number of tasks in the graphs. Additionally, the
two parameters ’series len’ and ’series wid’ differ. The ’series len’ parameter
sets the number of tasks in a chain/series. Whereas, ’series wid’ sets the
parallelism of a taskgraph. Both of these parameters are larger for the large
DAG dataset. The ’series len’ parameter is set to [5, 2] (average, multiplier)
and [8, 2] for the small and large DAG datasets respectively. The ’series wid’
parameter is set to [6, 2] and [8, 2] for the small and large DAG datasets
respectively. This means that the larger DAGs are more challenging as
they, for example, contain more potential parallelism, which is especially
important as the target system only has 4 cores. All datasets are roughly
uniformly distributed with respect to the number of tasks in a DAG.

The dataset of smaller DAGs consists of a training dataset with 10000 task
graphs and a test dataset containing 1000 task graphs. Table 6.1 contains a
summary of the graph statistics. The two datasets do not differ much with
respect to the number of tasks in the DAGs.

Table 6.1: The table shows the statistics with respect to the number of tasks in the
train and test sets that contain the small DAGs.

Mean Min. Max. Std.

Small Train 12.7 6 24 6.3

Small Test 13.0 6 24 6.4

6.5 experiments 107

The dataset of larger DAGs consists of 10000 training graphs and 1000

test graphs. Table 6.2 summarises the statistics for the dataset containing
larger graphs. The difference between the type of graphs generated for the
two datasets can be well seen when comparing Figure 6.3a and Figure 6.3b.

Table 6.2: The table shows the statistics with respect to the number of tasks in the
train and test sets that contain the large DAGs.

Mean Min. Max. Std.

Large Train 25.5 9 55 13.1

Large Test 25.5 9 54 13.4

t42_0

t42_1

t42_2

t42_6

t42_3

t42_4

t42_5

t42_9

t42_10

t42_11

t42_13

t42_7

t42_8

t42_16

t42_20

t42_12

t42_14

t42_15

t42_17

t42_18

t42_19

(a) Example: DAG 42 from the small DAG
test dataset.

t42_0

t42_1

t42_2

t42_3

t42_10

t42_8

t42_4

t42_5

t42_6

t42_7

t42_9

t42_26

t42_27

t42_11

t42_12

t42_13

t42_31

t42_20

t42_21

t42_17

t42_18

t42_19

t42_14

t42_15

t42_16

t42_32

t42_33

t42_22

t42_23

t42_24

t42_25

t42_28

t42_29

t42_30

t42_34

t42_35

t42_36

t42_37

(b) Example: DAG 42 from the large DAG
test dataset.

Comparison. We compare the RL generated schedules to Forward List
Scheduler (FLS) generated schedules [32]. FLS first orders the tasks and then
adds them one by one to the schedule without backtracking. FLS iteratively
computes the impact on the makespan of scheduling a task on a specific
CU and greedily selects the best CU with respect to the makespan. The
performance of FLS heavily depends on the initial ranking of the tasks. Thus,
it is common practice to try multiple ranking algorithms as none consistently
outperforms the others [116]. In this case, we use 3 different rankings: BFS,
DFS and BFS with Laxity.

Target System. In this chapter, we consider a system with 4 processing
units as a proof of concept and to keep the amount of experimentation
within reasonable bounds.

108 scheduling based on reinforcement learning

6.6 results

In general, the RL scheduler learns to schedule DAGs quickly. Figure 6.4a
shows the schedule produced by an untrained, randomly initialised RL agent.
We can see that all 27 tasks from the original graph are just mindlessly put
after each other on a single core. However, after some training the situation
is much improved. Figure 6.4b shows a schedule produced for the same
graph by the same RL agent after some training. The decisions are not
necessarily optimal but we can clearly observe that the scheduler learns that
distributing tasks over different cores is better (i.e. increases its rewards).

(a) Schedule of a taskgraph with 27 tasks produced by one of our untrained RL
schedulers.

(b) Schedule of a taskgraph with 27 tasks produced by one of our trained RL
schedulers.

In Sections 6.6.1 to 6.6.4, we will discuss the performance of the two
different schedulers (FCNN and GCN) with regard to the two different
datasets (Dataset 1 & Dataset2). All four combinations were allowed to train
for a similar number of epochs and the best performing neural network was
selected.

6.6.1 Dataset 1 - FCNN Agent

The FCNN agent performs quite well on the dataset consisting of smaller
DAGs. The degradation distribution between the FCNN agent and the
FLS scheduler can be seen in Figure 6.5. In 69.6% of the cases the FCNN
agent produces schedules that are the same or better. In 90.0% of the DAGs
the FCNN agent results in schedules that perform similarly (at most 5%
degradation) or better. The average degradation is 1.2% and at best the
resulting schedule is 6.9% shorter than the schedule generated by the FLS
approach. At worst the FCNN scheduler results in a 19.7% higher makespan.

6.6 results 109

Despite this good performance the FCNN scheduler had a L1Loss of 35.9
which is quite high compared to the L1Loss of the GCNN scheduler.

5 0 5 10 15 20
Makespan % Change

0

100

200

300

400

500

600

700

of

 O
cc

ur
en

ce
s

Figure 6.5: Makespan degradation of the small DAG test dataset between the FCNN
generated schedules and the FLS schedules.

6.6.2 Dataset 2 - FCNN Agent

The FCNN agent performs significantly worse for the dataset containing
larger DAGs than for the dataset of small DAGs. The degradation spread
is shown in Figure 6.6. Overall, the FCNN agent only manages to produce
schedules that are the same or better in 18.9% of the DAGs. Additionally, it
finds schedules that perform similarly (at most 5% degradation) or better
in only 42.3% of the cases. Overall, the degradation is 7.1%. And at best,
the generated schedule results in 6.5% lower makespan but at worst we
see a degradation of 35.3%. The L1Loss (45.5) is higher than the L1Loss in
Section 6.6.1. Showing that the additional complexity of the large DAGs
and possibly the larger variance of DAGs may require a more advanced
approach.

110 scheduling based on reinforcement learning

0 10 20 30
Makespan % Change

0

20

40

60

80

100

120

140

160

of

 O
cc

ur
en

ce
s

Figure 6.6: Makespan degradation of the large DAG test dataset between the FCNN
generated schedules and the FLS schedules.

6.6.3 Dataset 1 - GCN Based network

The GCN based agent performs better than the FCNN agent. However, the
difference is not as significant as the performance drop between Section 6.6.1
and Section 6.6.2. The degradation is shown in Figure 6.7. The distribution
looks similar to the one shown in Figure 6.5. Overall, the GCN approach
generates schedules that are the same or better in 85.2% of the cases. And it
finds schedules that perform similarly (at most 5% degradation) or better in
98.1% of the cases. The average degradation is 0.29%. At best the schedule is
6.9% shorter and at worst the found schedule has a 20.4% longer makespan.
One more difference between the FCNN scheduler and the GCN scheduler
is the much lower L1Loss, which dropped to 5.9. This clearly shows that the
three GCNs provide valuable information, even though, the information do
not appear to add much value in the case of the smaller DAG dataset.

6.6.4 Dataset 2 - GCN Based network

We can see a clear improvement in the schedules generated by the GCN
scheduler in comparison to the FCNN scheduler for the dataset of large
DAGs. This improvement can also be seen when comparing the degradation

6.7 related work 111

5 0 5 10 15 20
Makespan % Change

0

100

200

300

400

500

600

700

800

of
 O

cc
ur

en
ce

s

Figure 6.7: Makespan degradation of the small DAG test dataset between the GCN
based RL scheduler and the FLS scheduler.

distributions in Figure 6.8 (GCN scheduler) and Figure 6.6 (FCNN scheduler).
In total, we find that the GCN agent generates schedules that are the same or
better in 38.7% of the cases. Furthermore, the GCN scheduler finds schedules
that perform similarly (at most 5% degradation) or better in 75.6% of the
cases. The average degradation drops from 7.1% for the FCNN agent to 2.8%
for the GCNN agent. At best we see schedules that are 11.2% shorter and at
worst the schedules are 34.4% longer than the FLS generated schedules. The
final L1Loss is 11.0. In comparison, to the GCN approach on smaller DAGs
this L1Loss is slightly higher. However, the L1Loss is also significantly lower
than the L1Loss of the FCNN agent. This clearly shows that the additional
information provided by the GCN layers is valuable.

Across all four combinations we do not observe any differences in how
well or poorly a RL scheduler does with respect to the number of tasks in
the taskgraph, i.e. a larger taskgraph does not necessarily lead to a higher
degradation.

6.7 related work

Wu et al. [140] use the REINFORCE agent [139] from 1992 to schedule DAG
taskgraphs. The paper shows that this approach outperforms Heterogeneous

112 scheduling based on reinforcement learning

10 0 10 20 30
Makespan % Change

0

50

100

150

200

250

300

of

 O
cc

ur
en

ce
s

Figure 6.8: Makespan degradation of the large DAG test dataset between the GCN
based RL scheduler and the FLS scheduler.

Earliest Finish Time (HEFT) and Critical-Path-on-a-Processor (CPOP) by up
to 25%. However, REINFORCE agents tend to be unstable in the training
process. More modern approaches like our approach address this stability
issue. Furthermore, the approach by Wu et al. depends on the original
ranking of the tasks in the task graph.

Hu, Tu and Li [71] have proposed a new approach (called Spear) that uses
Monte Carlo Tree Search (MCTS) combined with RL. Spear outperforms the
Graphene heuristic by 20%. Spear determines the ranking of the tasks, i.e., it
determines in what order the tasks are scheduled, whereas we use RL to
schedule the task end-to-end. Additionally, spear initialises the network with
supervised learning, i.e., it learns to imitate the behaviour of a heuristic. This
means that the agent might learn undesirable behaviour from the heuristic.
And is exactly the opposite of what we want, as it has been shown that RL
agents are capable of learning strategies on their own and, in some cases
outperforming both humans and heuristics [124].

Mao et al. [91] use Reinforcement Learning to schedule independent
tasks, whereas we focus on dependent tasks. Hu et al. [70] introduce an
RL agent for online scheduling of dependent tasks. Our approach focuses
on offline scheduling as online scheduling can incur a high overhead on
high-performance embedded systems.

6.8 conclusion 113

6.8 conclusion

Finding near-optimal static schedules for large DAGs in a reasonable solving
time is still an open problem. To the best of our knowledge, we are the first
to use DQN Reinforcement Learning to tackle this problem in an end-to-end
fashion.

We show that RL-based schedulers can outperform FLS-based schedulers.
The resulting schedules are up to 11.2% shorter than the corresponding
FLS generated schedules. For the small DAG dataset (Dataset 1) our GCN
approach generates schedules that are at most 5% worse in 98.1% of the cases.
Furthermore, our experiments show that the additional information obtained
by the GCN layers add value to our RL-based scheduler. However, this
additional information only seems to result in significantly better schedules
(on average) if the target dataset is more diverse or contains larger taskgraphs.
Furthermore, we show that the selected reward function works (i.e. lower
loss = better performance).

For the future we plan to investigate the use of sparse rewards, i.e. the
RL scheduler is only rewarded at the end of the scheduling. Additionally,
we plan to experiment with policy learning instead of action-value learning.
And lastly we plan a detailed analysis on which of the three GCNs adds
most value.

7
C O N C L U S I O N

Single-board computers that use heterogeneous MPSoC’s have become widely
available in recent years. The hardware of such single-board computers
is similar to modern smartphones. MPSoC offer an excellent energy-to-
performance ratio. However, MPSoC are also more challenging to program
than simple embedded systems as one must engineer concurrent applica-
tions to take advantage of the multiple heterogeneous compute units. We
model applications as DAG’s and assume that they can be broken down into
different parts (i.e. different tasks) for concurrent execution. The scheduling
of the different tasks can heavily influence the final application’s execution
characteristics (e.g. energy consumption, runtime). In this thesis, we propose
several novel scheduling methods and tackle essential system criteria such
as energy consumption and energy modelling.

7.1 contributions

The main contributions of this thesis are as follows:
Sampling frequency analysis of energy-measurement setups. Our first

main contribution is the analysis of a large set of power traces collected
from the Odroid-XU4 using the Qoitech Otii. Using these power traces, we
analysed the minimum sampling frequency required to measure energy
consumption accurately. Links to the collected dataset and the analysis
scripts can be found on page 137.

Multi-version task model. Our second contribution is the introduction
of a new multi-version task model. Multi-version tasks are required to take
full advantage of heterogeneous hardware due to binary incompatibility
of different compute units. By supporting a multi-version approach our
scheduler can decide between different hardware units depending on the re-
quirements of the application. Additionally, multi-version tasks can be used
to, for example, decide between two different yet functionally-equivalent
algorithms during scheduling.

Fine-grained energy model. Our third contribution is our new energy
model which considers the impact of the specific DVFS settings available on
the target platform. Furthermore, our energy model uses different dynamic

115

116 conclusion

energy consumption per task, instead of assuming a one-size-fits-all energy
consumption.

Energy-aware scheduling and ranking approach. Our fourth contribution
is the introduction of a new energy-aware scheduling method in conjunction
with our new ranking approach. Additionally, this new scheduler also
incorporates the multi-version task model and our energy model. Links to
the datasets used and the full implementation of both the scheduler and the
connected ILP formulation can be found on page 137.

Multi-phase task model. Our fifth contribution is the extension of our
multi-version task model to a multi-phase multi-version task model. This
extension allows a much finer grained scheduling of applications that contain
tasks that can target accelerators such as GPUs. As our multi-phase approach
also supports multiple versions a task can still target either the CPU or both
a CPU and an accelerator. This more fine-grained scheduling allows us to
successfully schedule applications with high hardware utilisation levels.
Links to the datasets used and the implementation of both the scheduler
and the connected ILP formulation can be found on page 137.

Reinforcement Learning based scheduler. Our last contribution is the
introduction of a RL based scheduler which for now targets a straightforward
DAG task model and a homogenous quad-core system. Links to the datasets
used and the implementation of the RL agent can be found on page 137.

7.2 answers to the research questions

We can now answer the research questions from Chapter 1 using these
contributions and new methods.

• RQ 1: What is the impact of the sampling frequency on energy measurement
accuracy?

Reducing energy consumption of high-performance embedded systems is
a popular research topic. However, researchers often dedicate surprisingly
little space and attention to their energy measurement setup. Chapter 3

demonstrates the importance of a well-designed energy measurement setup.
We collect over 42000 power traces and, using rigorous statistical analysis,
show that the sampling frequency can significantly impact the accuracy.
Figures 3.4 and 3.5 perfectly visualise the impact of a low sampling frequency.
For the applications and the device tested, a low sampling rate (1Hz) can
lead to up to 80% error in the energy measurement. Additionally, we need

7.2 answers to the research questions 117

to measure energy consumption at least at 350Hz to achieve a measurement
equivalent (less than 1% error) to a high-frequency measurement (4kHz).

• RQ 2: How can we improve the energy consumption of DAG applications for
heterogeneous high-performance embedded systems through scheduling?

Improving the energy efficiency of high-performance embedded systems
requires a multi-facet approach. First, as explained in Chapter 2, DVFS is a
crucial component of a modern high-performance embedded system, and
different parts of an MPSoC have different possible DVFS settings. Further-
more, as shown in Figure 2.2, different applications have different DVFS

sweet spots. Thus, we need to consider DVFS to reduce energy consumption.
Second, we need a multi-task approach to target the different binary incom-
patible compute units. Our new task model is presented in Section 4.2.2.
Lastly, we need an energy model that can predict the impact of various
scheduling decisions to make good scheduling decisions. We propose a new
fine-grained energy model in Section 4.2.3.

Our new scheduling approach considers the DVFS settings of different
compute units and can model energy consumption during scheduling. In
Chapter 4, we detail the different components required for reducing en-
ergy consumption through scheduling. Furthermore, based on extensive
experimentation, we can show that our novel approach outperforms the
state-of-the-art scheduling methods ARSH-FATI and HEFT.

• RQ 3: What is the importance of the ranking algorithm used in our energy-
aware scheduling approach?

Throughout this thesis, we represent applications as Directed Acyclic
Graphs. By nature, DAG’s provide a partial order of tasks. However, many
scheduling approaches (e.g., HEFT, ARSH-FATI, FLS, eFLS) establish or require
a total order of tasks. Our ranking strategy analysis in Section 4.5 shows that
different ranking strategies can lead to more than 20% difference in energy
consumption. We demonstrate that no one ranking algorithm always leads
to the best result. Furthermore, we show that our new energy-aware ranking
strategy (HER) outperforms established ranking strategies such as BFS and
DFS with respect to energy consumption by up to 23%. Additionally, our
new ranking strategy also outperforms our energy-aware multi-version HEFT

approach by 1.7%.

• RQ 4: How can we increase the hardware utilisation of heterogeneous high-
performance embedded systems?

118 conclusion

In order to further increase hardware utilisation, we need a more fine-
grained approach to scheduling tasks that require both the CPU and GPU-
style accelerators. Hence, we introduce a new multi-phase task model in
Chapter 5. Having multiple phases means splitting tasks targeting a GPU-
style accelerator into smaller chunks. In general, tasks targeting the GPU
normally start on the CPU which calls a GPU kernel and then are finalised
on the CPU. If we split a task into phases we can alternate between the CPU
and GPU instead of just reserving both compute units for the full execution
time. Splitting a task into phases, thus, allows for better utilisation of the
underlying hardware.

This raises the question: Why can we not just split tasks into multiple
tasks instead of complicating the task model? The answer is relatively
straightforwards: In a multi-version model, splitting a task into multiple
tasks could result in a mix of multiple versions, which would be erroneous.
Our novel multi-phase approach significantly increases the schedulability
of task graphs with high hardware utilisation compared to eFLS and HEFT.
For instance, in the utilisation range, 11 to 12 our method can successfully
schedule twice as many task graphs as HEFT as can be seen in Figure 5.8.

• RQ 5: To what extent can we use reinforcement learning to replace traditional
scheduling methods?

Our novel RL-based approach in Chapter 6 quickly learns to schedule
DAG based applications offline. One significant advantage over traditional
schedulers is that the RL scheduler can evaluate all possible scheduling
options at once. This avoids the necessity to first rank all the tasks in a
DAG and can genuinely make the most greedy decision. We show that
our RL approach can produce schedules that are up to 11% shorter than
schedules generated by a greedy heuristic. Additionally, we show that across
a large number of DAGs (1000 test DAGs) the RL-generated schedules
perform similarly or better in over 75% of the cases in comparison to a
greedy heuristic. The RL-generated schedules are on average 2.8% longer.
Furthermore, we demonstrate that graph convolutional networks can extract
useful information and incorporating them into the RL-based scheduler
improves the schedules generated for large taskgraphs.

7.3 future work

Recently we have seen an increasing number of heterogeneous computer
architectures. Nowadays, we see smartphones with up to 3 different CPU

7.3 future work 119

core types. Additionally, this advancement is not only limited to small
mobile devices. For example, the latest ARM-based MacBook Pro models
use a big.LITTLE approach with multiple different accelerators (e.g., GPU,
neural engine). Intel also introduced a hybrid/heterogeneous architecture
with their 12th Gen Intel Core processors. Hence, deciding when and where
a task should be executed will only gain importance. Thus, we need to
continue working on using these systems efficiently.

7.3.1 Energy Measurements

Concerning energy measurements, we would like to establish an easy-to-
follow community-based set of guidelines for energy measurements in the
high-performance embedded systems area to avoid problems and confusion.
Establishing guidelines could be beneficial for groups and people who are
new to measuring energy consumption and would like to contribute to
the research on energy efficiency. Presenting good guidelines also includes
analysing more systems in depth and extending the test methodology to, for
example, include multi-core and deep learning workloads (e.g. computer
vision).

7.3.2 Scheduling Heuristics

On the scheduling side, we would like to combine our work presented
in Chapters 4 and 5. Thus, we would like to incorporate our multi-phase
approach into the energy-aware scheduler and test the impact on energy
consumption. Furthermore, we want to extend our approach to account for
more system properties, such as: memory, cache, bus occupancy and temper-
ature. Taking additional system properties into account could improve our
energy consumption prediction. Incorporating the bus and other properties
could decrease contention or at least lead to a more accurate prediction of
contention.

On the application side, we would like to extend our application model
to account for different states / modes, where each state could potentially
have its own DAG. That would allow applications to switch between states
depending on the current environment and thereby change the behaviour of
the application. For example, a drone on a search and rescue mission might
switch to a tracking state if it finds people in the water. This tracking state
might have a different DAG representing it. Thus, it would need a separate
schedule. This extension could be seen as an overarching approach to our

120 conclusion

scheduling methods, where the different states need their own schedule
and the application can switch between states and schedules at runtime
depending on the environment.

7.3.3 RL for Scheduling

Next to exploring and extending traditional scheduling algorithms, we also
plan to continue our work on RL for scheduling. First, we want to analyse
for which types of DAG our current method performs well. Additionally, we
plan to investigate the impact of target platform complexity (e.g., hetero-
geneity) on the quality of generated schedules. Extending our approach to a
heterogeneous system is possible by altering the state the agent receives from
the environment and the size of actions passed back to the environment.
Lastly, we want to explore the robustness of the schedule with changing
task-graph size and complexity.

7.4 vision and outlook

Overall we expect that scheduling applications for high-performance embed-
ded systems will only continue to become more complicated due to multiple
reasons. First, the Odroid-XU4 considered in this work is only the beginning
of heterogeneity. Compute platforms are becoming more and more heteroge-
neous. The NVidia Jetson AGX Orin 64GB includes three different CPU-core
clusters (12 cores in total), two powerful NVidia internal GPU’s (iGPU), a
separate NVidia deep learning accelerator, various hardware encoders and
decoders, an optical flow accelerator and more [100]. Second, we have not yet
integrated all crucial design factors into our scheduling methods (e.g. cache,
bus, temperature). The increasing complexity of heterogeneous systems and
the need to consider more design factors means that the scheduling state
space is exploding.

A state space that is even larger than the one we considered in this work
means that ILPs will not be solvable in a reasonable amount of time for any
problem size. The run-time of heuristics will also increase to the point where
it will impact the development of products using modern MPSoC. Thus, we
envision a future where schedulers are even more automated to the point
where the end-user (e.g. self-driving car developer) simply lets an automatic
scheduling system analyse a new piece of hardware. The analyses then result
in accurate models for energy consumption, temperature, bus contention
etc. without any human interaction. The end-user can then make use of

7.4 vision and outlook 121

the resulting models and learned behaviour to quickly generate schedules.
Part of such a system may be heuristics. However, we can also imagine that
such scheduling systems will employ machine learning methods such as
reinforcement learning.

Despite the fact that our RL-based approach does not yet generate better
schedules across the board in comparison to an FLS scheduler, we still
see it as a promising way forward with plenty of room for improvement.
Thus, reinforcement learning seems to be one of the best ways to realise
a fully automatic scheduling system which does not require expensive
human interaction. We imagine a RL agent that is first trained in a simplistic
simulator, and then is refined on real hardware. The agent generates a new
schedule, which is executed on hardware and then the agent learns from
the result until it contains an accurate model of the hardware. The model of
the hardware can then be used to schedule new applications. Additionally,
we could retrain the model for new hardware (e.g. a newer version of the
same platform) and obtain another accurate hardware model without fully
modelling and reverse-engineering the new hardware. Ideally retraining the
RL agent for new platforms would be a plug-and-train approach resulting
in an RL agent that generates competitive schedules with minimal human
interaction.

B I B L I O G R A P H Y

[1] ARM Ltd. “White Paper: big.LITTLE Technology : The Future of Mobile.” In: (2013).

[2] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui, and T. Wat-
teyne. “Understanding the limits of LoRaWAN.” In: IEEE Communications magazine
55.9 (2017), pp. 34–40.

[3] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis. “An empirical
survey-based study into industry practice in real-time systems.” In: RTSS. 2020.

[4] K. Al-Kodmany. “Tall buildings and elevators: A review of recent technological
advances.” In: Buildings 5.3 (2015), pp. 1070–1104.

[5] L. Al-Sharif, Z. Yang, A. Hakam, and A. Abd Al-Raheem. “Comprehensive analysis of
elevator static sectoring control systems using Monte Carlo simulation.” In: Building
Services Engineering Research and Technology 39.5 (2018), pp. 518–539.

[6] S. Albers and A. Antoniadis. “Race to idle: new algorithms for speed scaling with a
sleep state.” In: ACM Transactions on Algorithms (TALG) 10.2 (2014), pp. 1–31.

[7] S. Aldegheri, N. Bombieri, and H. Patel. “On the task mapping and scheduling
for DAG-based embedded vision applications on heterogeneous multi/many-core
architectures.” In: DATE. 2020, pp. 1003–1006.

[8] S. Altmeyer and C. M. Burguière. “Cache-related preemption delay via useful cache
blocks: Survey and redefinition.” In: J. of Systems Architecture 57.7 (2011), pp. 707–719.

[9] S. U. Amin and M. S. Hossain. “Edge intelligence and internet of things in healthcare:
a survey.” In: IEEE Access 9 (2020), pp. 45–59.

[10] IoT Analytics. State of IoT 2022: Number of connected IoT devices growing 18% to 14.4
billion globally. https://iot-analytics.com/number-connected-iot-devices/. Accessed:
2022-08-09. 2022.

[11] A. S. G. Andrae. “New perspectives on internet electricity use in 2030.” In: Engineering
and Applied Science Letters 3.2 (2020), pp. 19–31.

[12] H. Arabnejad and J. G. Barbosa. “List scheduling algorithm for heterogeneous systems
by an optimistic cost table.” In: IEEE TPDS 25.3 (2013), pp. 682–694.

[13] S. Arar. Resistive Current Sensing: Low-Side vs. High-Side Sensing. Accessed on 21.04.2022.
url: https://www.allaboutcircuits.com/technical-articles/resistive-current-sensing-

low-side-versus-high-side-sensing/.

[14] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams, et al. “The landscape of parallel
computing research: A view from berkeley.” In: (2006).

[15] E. Badidi. “Edge AI and Blockchain for Smart Sustainable Cities: Promise and
Potential.” In: Sustainability 14.13 (2022), p. 7609.

[16] A. Balsini, L. Pannocchi, and T. Cucinotta. “Modeling and simulation of power
consumption and execution times for real-time tasks on embedded heterogeneous
architectures.” In: ACM SIGBED Review 16.3 (2019), pp. 51–56.

123

https://iot-analytics.com/number-connected-iot-devices/
https://www.allaboutcircuits.com/technical-articles/resistive-current-sensing-low-side-versus-high-side-sensing/
https://www.allaboutcircuits.com/technical-articles/resistive-current-sensing-low-side-versus-high-side-sensing/

124 bibliography

[17] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo. “Energy-Aware Scheduling
for Real-Time Systems.” In: TECS 15.1 (2016). issn: 15399087.

[18] Y. Bapin, K. Alimanov, and V. Zarikas. “Camera-driven probabilistic algorithm for
multi-elevator systems.” In: Energies 13.23 (2020), p. 6161.

[19] A. Bhuiyan, Z. Guo, A. Saifullah, N. Guan, and H. Xiong. “Energy-efficient real-time
scheduling of dag tasks.” In: TECS 17.5 (2018). issn: 15583465.

[20] L. Biewald. Experiment Tracking with Weights and Biases. Software available from
wandb.com. 2020. url: https://www.wandb.com/.

[21] S. Birrell, J. Hughes, J. Y. Cai, and F. Iida. “A field-tested robotic harvesting system
for iceberg lettuce.” In: Journal of Field Robotics 37.2 (2020), pp. 225–245.

[22] L. F. Bittencourt, R. Sakellariou, and E. R. M. Madeira. “Dag scheduling using a
lookahead variant of the heterogeneous earliest finish time algorithm.” In: IEEE PDP.
2010, pp. 27–34.

[23] E. Black and L. Kolodny. This robot can pick tomatoes without bruising them and detect
ripeness better than humans. https://www.cnbc.com/2019/05/11/root-ai-unveils-its-

tomato-picking-robot-virgo.html. Accessed: 02-09-2022.

[24] N. Brouwers, M. Zuniga, and K. Langendoen. “Neat: A novel energy analysis toolkit
for free-roaming smartphones.” In: SenSys. 2014, pp. 16–30.

[25] G.G. Brown and R.F. Dell. “Formulating integer linear programs: A rogues’ gallery.”
In: ITE 7.2 (2007).

[26] M. Buschhoff, C. Günter, and O. Spinczyk. “MIMOSA, a highly sensitive and accurate
power measurement technique for low-power systems.” In: Real-World Wireless Sensor
Networks. Springer, 2014, pp. 139–151.

[27] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron. “Rodinia:
A benchmark suite for heterogeneous computing.” In: IISWC. Ieee. 2009, pp. 44–54.

[28] J. F. Clancy. “Automatic leveling device for elevators.” Pat. 2044152.

[29] D. Clevert, T. Unterthiner, and S. Hochreiter. “Fast and accurate deep network
learning by exponential linear units (elus).” In: arXiv preprint arXiv:1511.07289 (2015).

[30] M. F. Cloutier, C. Paradis, and V. M. Weaver. “A raspberry pi cluster instrumented
for fine-grained power measurement.” In: Electronics 5.4 (2016), p. 61.

[31] A. Colin, A. Kandhalu, and R. Rajkumar. “Energy-Efficient Allocation of Real-Time
Applications onto Single-ISA Heterogeneous Multi-Core Processors.” In: J. of Signal
Processing Systems 84.1 (2016). issn: 19398115.

[32] K. D. Cooper, P. J. Schielke, and D. Subramanian. “An Experimental Evaluation of
List Scheduling.” In: TR98 326 (1998).

[33] Cortex-A15 Technical Reference Manual. https://developer.arm.com/documentation/

ddi0438/d/Level- 2-Memory- System/About- the-L2-memory- system. Accessed:
2021-05-31.

[34] R. D’Agostino and E. S. Pearson. “Tests for departure from normality. Empirical
results for the distributions of b2and

√
b1.” In: Biometrika 60.3 (1973), pp. 613–622.

[35] X. Dai, I. Spasić, B. Meyer, S. Chapman, and F. Andres. “Machine learning on mobile:
An on-device inference app for skin cancer detection.” In: 2019 Fourth International
Conference on Fog and Mobile Edge Computing (FMEC). IEEE. 2019, pp. 301–305.

https://www.wandb.com/
https://www.cnbc.com/2019/05/11/root-ai-unveils-its-tomato-picking-robot-virgo.html
https://www.cnbc.com/2019/05/11/root-ai-unveils-its-tomato-picking-robot-virgo.html
https://developer.arm.com/documentation/ddi0438/d/Level-2-Memory-System/About-the-L2-memory-system
https://developer.arm.com/documentation/ddi0438/d/Level-2-Memory-System/About-the-L2-memory-system

bibliography 125

[36] M. Dangana, S. Ansari, Q. H. Abbasi, S. Hussain, and M. A. Imran. “Suitability of
NB-IoT for indoor industrial environment: A survey and insights.” In: Sensors 21.16

(2021), p. 5284.

[37] T. Darwish and M. Bayoumi. “Trends in low-power VLSI design.” In: The Electrical
Engineering Handbook (2005), pp. 263–280.

[38] R.I. Davis and A. Burns. “A survey of hard real-time scheduling algorithms for
multiprocessor systems.” In: ACM Computing Surveys (2011).

[39] Y. De Bock, S. Altmeyer, T. Huybrechts, J. Broeckhove, and P. Hellinckx. “Task-set
generator for schedulability analysis using the TACLeBench benchmark suite.” In:
ACM SIGBED Review 15.1 (2018).

[40] K. De Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho. “The energy/frequency
convexity rule: Modeling and experimental validation on mobile devices.” In: PPAM.
Springer. 2013, pp. 793–803.

[41] R.P. Dick, D.L. Rhodes, and W. Wolf. “TGFF: task graphs for free.” In: 6th CODES/-
CASHE. IEEE. 1998.

[42] DieselDucy. Historic Manually Controlled Self Leveling Otis Elevator @ Hotel Lawrence
Dallas TX. https://www.youtube.com/watch?v=qEphygZ2hAc. Accessed: 2022-31-
10.

[43] M. E. M. Diouri, M. F. Dolz, O. Glück, L. Lefèvre, P. Alonso, S. Catalán, R. Mayo, and
E. S. Quintana-Ortı́. “Solving some mysteries in power monitoring of servers: Take
care of your wattmeters!” In: EE-LSDS. Springer. 2013, pp. 3–18.

[44] A. Djupdal, B. Gottschall, F. Ghasemi, and M. Jahre. “Lynsyn and LynsynLite: The
STHEM power measurement units.” In: Towards Ubiquitous Low-power Image Processing
Platforms. Springer, 2021, pp. 93–114.

[45] Z. Dong, Y. Lu, G. Tong, Y. Shu, S. Wang, and W. Shi. “WatchDog: Real-Time Vehicle
Tracking on Geo-Distributed Edge Nodes.” In: ACM Trans. Internet Things (2022).
Just Accepted. issn: 2691-1914. doi: 10.1145/3549551. url: https://doi.org/10.1145/
3549551.

[46] EEMBS. https://www.eembc.org/ulpmark/. Accessed: 18.11.2022.

[47] EEMBS. https://www.eembc.org/adasmark/. Accessed: 18.11.2022.

[48] EEMBS. https://www.eembc.org/mlmark/. Accessed: 18.11.2022.

[49] Exynos 5 Octa 5422 Processor: Specs, Features: Samsung Exynos. 2019. url: https://www.
samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-

5-octa-5422/.

[50] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange, M. Schoeberl,
R.B. Sørensen, P. Wägemann, and S. Wegener. “TACLeBench: A Benchmark Collection
to Support Worst-Case Execution Time Research.” In: 16th WCET. Vol. 55. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2016.

[51] M. Garrett. “Powering down.” In: Communications of the ACM 51.9 (2008), pp. 42–46.

[52] M.E.T. Gerards, J.L. Hurink, and P.K.F. Hölzenspies. “A survey of offline algorithms
for energy minimization under deadline constraints.” In: J. of Scheduling 19.1 (2016).
issn: 10946136.

https://www.youtube.com/watch?v=qEphygZ2hAc
https://doi.org/10.1145/3549551
https://doi.org/10.1145/3549551
https://doi.org/10.1145/3549551
https://www.eembc.org/ulpmark/
https://www.eembc.org/adasmark/
https://www.eembc.org/mlmark/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/

126 bibliography

[53] D. Grewe and M. F. P. O’Boyle. “A static task partitioning approach for heterogeneous
systems using OpenCL.” In: CC. 2011, pp. 286–305.

[54] I. Griva, S.G. Nash, and A. Sofer. Linear and nonlinear optimization. Vol. 108. Siam,
2009.

[55] Z. Guo, A. Bhuiyan, D. Liu, A. Khan, A. Saifullah, and N Guan. “Energy-efficient real-
time scheduling of DAGs on clustered multi-core platforms.” In: RTAS 2019-April
(2019). issn: 15453421.

[56] Z¿ Guo, A. Bhuiyan, Di Liu, A. Khan, A. Saifullah, and N. Guan. “Energy-efficient
real-time scheduling of DAGs on clustered multi-core platforms.” In: RTAS. IEEE.
2019, pp. 156–168.

[57] W. Hamilton, Z. Ying, and J. Leskovec. “Inductive representation learning on large
graphs.” In: Advances in neural information processing systems 30 (2017).

[58] J. Han, M. Lin, D. Zhu, and L. T. Yang. “Contention-aware energy management
scheme for NoC-based multicore real-time systems.” In: TPDS 26.3 (2014), pp. 691–
701.

[59] Hardkernel Co., Ltd. Odroid-XU4. https://wiki.odroid.com/odroid-xu4/odroid-xu4.
Accessed: 2019-09-06.

[60] C. Hartmann and U. Margull. “Gpuart-an application-based limited preemptive gpu
real-time scheduler for embedded systems.” In: J. of Systems Architecture 97 (2019),
pp. 304–319.

[61] H. Hasselt. “Double Q-learning.” In: 24th NIPS 23 (2010), pp. 2613–2621.

[62] S. Henn. Remembering When Driverless Elevators Drew Skepticism. https : / /www .

npr.org/2015/07/31/427990392/remembering-when- driverless- elevators- drew-

skepticism?t=1661773736778. Accessed: 2022-08-10. 2015.

[63] T. A. Henzinger, C. M. Kirsch, M. A. A. Sanvido, and W. Pree. “From control models
to real-time code using Giotto.” In: IEEE Control Systems Magazine 23.1 (2003), pp. 50–
64.

[64] A. Hergenröder and J. Furthmüller. “On energy measurement methods in wireless
networks.” In: ICC. IEEE. 2012, pp. 6268–6272.

[65] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Hor-
gan, B. Piot, M. Azar, and D. Silver. “Rainbow: Combining Improvements in Deep
Reinforcement Learning.” In: arXiv:1710.02298 (2017).

[66] G. Hoover. Two Billion Passengers a Day: The Otis Story. https://americanbusinesshistory.

org/two-billion-passengers-a-day-the-otis-story/. Accessed: 2022-08-10. 2021.

[67] Z. Houssam-Eddine, N. Capodieci, R. Cavicchioli, G. Lipari, and M. Bertogna. “The
HPC-DAG task model for heterogeneous real-time systems.” In: IEEE Transactions on
Computers (2020).

[68] B. Hu, Z. Cao, and Z. Zhou. “Energy-minimized scheduling of real-time parallel
workflows on heterogeneous distributed computing systems.” In: IEEE Trans. Serv.
Comput. (2021).

[69] J. Hu, Y. Shin, N. Dhanwada, and R. Marculescu. “Architecting voltage islands in core-
based system-on-a-chip designs.” In: Proceedings of the 2004 international symposium on
Low power electronics and design. 2004, pp. 180–185.

https://wiki.odroid.com/odroid-xu4/odroid-xu4
https://www.npr.org/2015/07/31/427990392/remembering-when-driverless-elevators-drew-skepticism?t=1661773736778
https://www.npr.org/2015/07/31/427990392/remembering-when-driverless-elevators-drew-skepticism?t=1661773736778
https://www.npr.org/2015/07/31/427990392/remembering-when-driverless-elevators-drew-skepticism?t=1661773736778
https://americanbusinesshistory.org/two-billion-passengers-a-day-the-otis-story/
https://americanbusinesshistory.org/two-billion-passengers-a-day-the-otis-story/

bibliography 127

[70] Y. Hu, C. de Laat, and Z. Zhao. “Learning workflow scheduling on multi-resource
clusters.” In: 2019 IEEE International Conference on Networking, Architecture and Storage
(NAS). IEEE. 2019, pp. 1–8.

[71] Z. Hu, J. Tu, and B. Li. “Spear: Optimized Dependency-Aware Task Scheduling with
Deep Reinforcement Learning.” In: 39th ICDCS. IEEE. 2019, pp. 2037–2046.

[72] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele. “Energy efficient DVFS sched-
uling for mixed-criticality systems.” In: EMSOFT 354 (2014).

[73] T. Ilsche, D. Hackenberg, S. Graul, R. Schöne, and J. Schuchart. “Power measurements
for compute nodes: Improving sampling rates, granularity and accuracy.” In: IGSC.
IEEE. 2015, pp. 1–8.

[74] Argonaut — Archangel Imaging. https : / / www . archangel . im / product - page /

argonaut. Accessed: 2022-08-10.

[75] C. Imes, D. HK. Kim, M. Maggio, and H. Hoffmann. “POET: a portable approach to
minimizing energy under soft real-time constraints.” In: RTAS. IEEE. 2015, pp. 75–86.

[76] S. Isuwa, S. Dey, A. K. Singh, and K. McDonald-Maier. “Teem: Online thermal-and
energy-efficiency management on cpu-gpu mpsocs.” In: DATE. IEEE. 2019, pp. 438–
443.

[77] X. Jiang, P. Dutta, D. Culler, and I. Stoica. “Micro power meter for energy monitoring
of wireless sensor networks at scale.” In: IPSN. IEEE. 2007, pp. 186–195.

[78] D. Kang, J. Oh, J. Choi, Y. Yi, and S. Ha. “Scheduling of deep learning applications
onto heterogeneous processors in an embedded device.” In: IEEE Access 8 (2020),
pp. 43980–43991.

[79] O. Khan and S. Kundu. “A self-adaptive scheduler for asymmetric multi-cores.” In:
GLSVLSI (2010).

[80] T. N. Kipf and M. Welling. “Semi-supervised classification with graph convolutional
networks.” In: arXiv preprint arXiv:1609.02907 (2016).

[81] F. Kluge, S. Uhrig, J. Mische, B. Satzger, and T. Ungerer. “Optimisation of energy con-
sumption of soft real-time applications by workload prediction.” In: 2010 13th IEEE
International Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing Workshops. IEEE. 2010, pp. 63–72.

[82] W. Kool, H. van Hoof, and M. Welling. “Attention, Learn to Solve Routing Problems!”
In: 7th ICLR. 2019.

[83] D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W. Stout, S. W. Gould, and J. M.
Cohn. “Managing power and performance for system-on-chip designs using voltage
islands.” In: Proceedings of the 2002 IEEE/ACM international conference on Computer-aided
design. 2002, pp. 195–202.

[84] S. Latif, M. Driss, W. Boulila, Z. E. Huma, S. S. Jamal, Z. Idrees, and J. Ahmad. “Deep
learning for the industrial internet of things (iiot): A comprehensive survey of tech-
niques, implementation frameworks, potential applications, and future directions.”
In: Sensors 21.22 (2021), p. 7518.

[85] Lattepanda. Lattepanda 3 Delta - A pocket sized SBC with Windows and Arduino. https:
//www.lattepanda.com/lattepanda-3-delta. Accessed: 09-09-2022.

https://www.archangel.im/product-page/argonaut
https://www.archangel.im/product-page/argonaut
https://www.lattepanda.com/lattepanda-3-delta
https://www.lattepanda.com/lattepanda-3-delta

128 bibliography

[86] E. Le Sueur and G. Heiser. “Dynamic voltage and frequency scaling: The laws of
diminishing returns.” In: Proceedings of the 2010 international conference on Power aware
computing and systems. 2010, pp. 1–8.

[87] Z. Li, Y. Zhang, A. Ding, H. Zhou, and C. Liu. “Efficient algorithms for task mapping
on heterogeneous CPU/GPU platforms for fast completion time.” In: J. of Systems
Architecture 114 (2021), p. 101936.

[88] F. Liang, W. Yu, X. Liu, D. Griffith, and N. Golmie. “Toward edge-based deep learning
in industrial Internet of Things.” In: IoT-J 7.5 (2020), pp. 4329–4341.

[89] D. Liu, J. Spasic, G. Chen, and T. Stefanov. “Energy-efficient mapping of real-time
streaming applications on cluster heterogeneous mpsocs.” In: ESTIMedia. IEEE. 2015,
pp. 1–10.

[90] C. Maia, L. Nogueira, L. M. Pinho, and D. G. Pérez. “A closer look into the AER
model.” In: ETFA. 2016, pp. 1–8.

[91] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. “Resource management with
deep reinforcement learning.” In: Proceedings of the 15th ACM workshop on hot topics in
networks. 2016, pp. 50–56.

[92] N. Mathur, G. Paul, J. Irvine, M. Abuhelala, A. Buis, and I. Glesk. “A practical design
and implementation of a low cost platform for remote monitoring of lower limb
health of amputees in the developing world.” In: IEEE Access 4 (2016), pp. 7440–7451.

[93] Q. McNemar. “Note on the sampling error of the difference between correlated
proportions or percentages.” In: Psychometrika 12.2 (1947), pp. 153–157.

[94] S. Minakova, E. Tang, and T. Stefanov. “Combining task-and data-level parallel-
ism for high-throughput CNN inference on embedded CPUs-GPUs MPSoCs.” In:
International Conference on Embedded Computer Systems. Springer. 2020, pp. 18–35.

[95] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M.
Riedmiller. “Playing Atari with Deep Reinforcement Learning.” In: arXiv:1312.5602
(2013).

[96] NCSS, LLC. NCSS 2022 Statistical Software. Kaysville, Utah, USA, ncss.com/soft-
ware/ncss. 2022.

[97] Z. Nakutis. “Embedded systems power consumption measurement methods overview.”
In: MATAVIMAI 2.44 (2009), pp. 29–35.

[98] V. A. Nguyen, D. Hardy, and I. Puaut. “Cache-conscious offline real-time task
scheduling for multi-core processors.” In: ECRTS. 2017.

[99] S. R. Nichols. “The evolution of elevators: physical-human interface, digital inter-
action, and megatall buildings.” In: Frontiers of Engineering: Reports on Leading-Edge
Engineering from the 2017 Symposium. National Academies Press. 2018.

[100] Nvidia Jetson Orin. https : / / www . nvidia . com / en - us / autonomous - machines /

embedded-systems/jetson-orin/. Accessed: 2023-01-15.

[101] Nvidia Jetson. https://www.nvidia.com/en-us/autonomous-machines/embedded-

systems/. Accessed: 2023-01-21.

[102] U. Odyurt, J. Roeder, A. D. Pimentel, I. G. Alonso, and C. de Laat. “Power passports
for fault tolerance: Anomaly detection in industrial CPS using electrical EFB.” In:
2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS). IEEE.
2021, pp. 152–157.

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/

bibliography 129

[103] A. V. Oppenheim, J. R. Buck, and R. W. Schafer. Discrete-time signal processing. Vol. 2.
Upper Saddle River, NJ: Prentice Hall, 2001.

[104] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith, A. Berg, and S.
Wang. “An evaluation of the NVIDIA TX1 for supporting real-time computer-vision
workloads.” In: RTAS. 2017, pp. 353–364.

[105] J. Pallister, S.J. Hollis, and J. Bennett. “Identifying compiler options to minimize en-
ergy consumption for embedded platforms.” In: Comput. J. 58.1 (2015). issn: 14602067.

[106] S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N. Chang. “Accurate
modeling of the delay and energy overhead of dynamic voltage and frequency scaling
in modern microprocessors.” In: Trans. Comput.-Aided Des. Integr. Circuits Syst 32.5
(2013), pp. 695–708.

[107] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. “A
predictable execution model for COTS-based embedded systems.” In: RTAS. 2011,
pp. 269–279.

[108] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and S. Vishin. “Power-
performance modeling on asymmetric multi-cores.” In: CASES. IEEE. 2013, pp. 1–
10.

[109] B. Pu, K. Li, S. Li, and N. Zhu. “Automatic fetal ultrasound standard plane recogni-
tion based on deep learning and IIoT.” In: IEEE Trans. Industr. Inform. 17.11 (2021),
pp. 7771–7780.

[110] J. P. Queralta, J. Raitoharju, T. N. Gia, N. Passalis, and T. Westerlund. “Autosos:
Towards multi-uav systems supporting maritime search and rescue with lightweight
ai and edge computing.” In: arXiv preprint arXiv:2005.03409 (2020).

[111] E. Quertemont. “How to statistically show the absence of an effect.” In: Psychologica
Belgica 51.2 (2011), pp. 109–127.

[112] Raspberry Pi. https://www.raspberrypi.org/. Accessed: 2020-08-01.

[113] H. Rihani, M. Moy, C. Maiza, R.I. Davis, and S. Altmeyer. “Response time analysis of
synchronous data flow programs on a many-core processor.” In: 24th International
Conference on Real-Time Networks and Systems. ACM. 2016.

[114] S. Rostedt and D. V. Hart. “Internals of the RT Patch.” In: Proceedings of the Linux
symposium. Vol. 2. Citeseer. 2007, pp. 161–172.

[115] B. Rouxel and I. Puaut. “STR2RTS: Refactored StreamIT benchmarks into statically
analyzable parallel benchmarks for WCET estimation & real-time scheduling.” In:
17th International Workshop on Worst-Case Execution Time Analysis (WCET 2017). Vol. 57.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2017.

[116] B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut. “Hiding communication delays in
contention-free execution for SPM-based multi-core architectures.” In: 31st ECRTS19.
2019.

[117] M. Sadegh Norouzzadeh, A. Nguyen, M. Kosmala, A. Swanson, M. S. Palmer, C.
Packer, and J. Clune. “Automatically identifying, counting, and describing wild
animals in camera-trap images with deep learning.” In: PNAS 115.25 (2018), E5716–
E5725. url: https://www.pnas.org/doi/abs/10.1073/pnas.1719367115.

[118] R. Sakellariou and H. Zhao. “A hybrid heuristic for DAG scheduling on heteroge-
neous systems.” In: IPDPS. 2004, p. 111.

https://www.raspberrypi.org/
https://www.pnas.org/doi/abs/10.1073/pnas.1719367115

130 bibliography

[119] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. “Prioritized Experience Replay.” In:
arXiv:1511.05952 (2015).

[120] S. Schneider, G. W. Taylor, S. Linquist, and S. C. Kremer. “Past, present and future
approaches using computer vision for animal re-identification from camera trap
data.” In: MEE 10.4 (2019), pp. 461–470.

[121] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas, and
M. L. Scott. “Energy-efficient processor design using multiple clock domains with
dynamic voltage and frequency scaling.” In: Proceedings Eighth International Symposium
on High Performance Computer Architecture. IEEE. 2002, pp. 29–40.

[122] S. S. Shapiro and M. B. Wilk. “An analysis of variance test for normality (complete
samples).” In: Biometrika 52.3/4 (1965), pp. 591–611.

[123] A. Z. Sheikh and M. A. Pasha. “Energy-efficient multicore scheduling for hard
real-time systems: A survey.” In: TECS 17.6 (2018), pp. 1–26.

[124] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al. “Mastering the game of Go without human
knowledge.” In: Nature 550 (2017).

[125] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel. “Mapping on multi/many-core
systems: Survey of current and emerging trends.” In: 2013 50th ACM/EDAC/IEEE
DAC. IEEE. 2013, pp. 1–10.

[126] S. Stepanovic, G. Georgakarakos, S/ Holmbacka, and J. Lilius. “Quantifying the
Interaction Between Structural Properties of Software and Hardware in the ARM
Big.LITTLE Architecture.” In: IEEE PDP. 2018, pp. 138–144.

[127] T. Strang and C. Bauer. “Context-aware elevator scheduling.” In: 21st International
Conference on Advanced Information Networking and Applications Workshops (AINAW’07).
Vol. 2. IEEE. 2007, pp. 276–281.

[128] R. Sykora. Moving up from hardwired relay logic. https://www.controleng.com/articles/

moving-up-from-hardwired-relay-logic/. Accessed: 06-09-2022.

[129] M. Thammawichai and E.C. Kerrigan. “Energy-efficient real-time scheduling for two-
type heterogeneous multiprocessors.” In: Real-Time Syst. 54.1 (2018). issn: 15731383.

[130] N. Tijtgat, W. Van Ranst, T. Goedeme, B. Volckaert, and F. De Turck. “Embedded
real-time object detection for a UAV warning system.” In: ICCVW. 2017, pp. 2110–
2118.

[131] H. Topcuoglu, S. Hariri, and M. Wu. “Performance-effective and low-complexity task
scheduling for heterogeneous computing.” In: IEEE TPDS 13.3 (2002), pp. 260–274.

[132] R. S. Turgel. Sampling Techniques for Electric Power Measurement. Vol. 870. US Depart-
ment of Commerce, National Bureau of Standards, 1975.

[133] U. Ullah Tariq, H. Ali, L. Liu, J. Panneerselvam, and X. Zhai. “Energy-efficient
Static Task Scheduling on VFI based NoC-HMPSoCs for Intelligent Edge Devices in
Cyber-Physical Systems.” In: TIST 1.1 (2019). issn: 2157-6912.

[134] L. Van, Y. Lin, T. Wu, and T. Chao. “Green elevator scheduling based on IoT commu-
nications.” In: IEEE Access 8 (2020), pp. 38404–38415.

[135] E. Vasilakis, I. Sourdis, V. Papaefstathiou, A. Psathakis, and M.G.H. Katevenis. “Mod-
eling energy-performance tradeoffs in ARM big. LITTLE architectures.” In: PATMOS.
IEEE. 2017, pp. 1–8.

https://www.controleng.com/articles/moving-up-from-hardwired-relay-logic/
https://www.controleng.com/articles/moving-up-from-hardwired-relay-logic/

bibliography 131

[136] E. Vasilakis, I. Sourdis, V. Papaefstathiou, A. Psathakis, and M.G.H. Katevenis. “Mod-
eling energy-performance tradeoffs in ARM big.LITTLE architectures.” In: 27th
PATMOS (2017).

[137] F. Wilcoxon. “Individual comparisons by ranking methods.” In: Breakthroughs in
statistics. Springer, 1992, pp. 196–202.

[138] M. Willi, R. T. Pitman, A. W. Cardoso, C. Locke, A. Swanson, A. Boyer, M. Veldthuis,
and L. Fortson. “Identifying animal species in camera trap images using deep learning
and citizen science.” In: MEE 10.1 (2019), pp. 80–91.

[139] R. J. Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning.” In: Machine learning 8.3-4 (1992), pp. 229–256.

[140] Q. Wu, Z. Wu, Y. Zhuang, and Y. Cheng. “Adaptive DAG Tasks Scheduling with
Deep Reinforcement Learning.” In: 19th ICA3PP. Springer. 2018.

[141] H.E. Zahaf, A.E.H. Benyamina, R. Olejnik, and G. Lipari. “Energy-efficient scheduling
for moldable real-time tasks on heterogeneous computing platforms.” In: J. of Systems
Architecture 74 (2017). issn: 13837621.

[142] G. Zeng, T. Yokoyama, H. Tomiyama, and H. Takada. “Practical energy-aware sched-
uling for real-time multiprocessor systems.” In: RTCSA. IEEE. 2009, pp. 383–392.

[143] H. Zhao and R. Sakellariou. “An experimental investigation into the rank function
of the heterogeneous earliest finish time scheduling algorithm.” In: Euro-Par. 2003,
pp. 189–194.

[144] J. Roeder, S. Altmeyer, and C. Grelck. “Can we trust our energy measurements? A
study on the Odroid-XU4.” In: 15th Annual Workshop on Operating Systems Platforms
for Embedded Real-Time Applications (OSPERT at ECRTS 2022). 2022, p. 33.

[145] J. Roeder, S. Altmeyer, and C. Grelck. “Energy Measurements of 9 Rodinia Bench-
marks executed on the Odroid-XU4.” In: Dataset published on UvA figshare (June
2022). doi: 10.21942/uva.19665564.v1. url: https://uvaauas.figshare.com/articles/

dataset/Energy Measurements of 9 Rodinia Benchmarks executed on the Odroid-

XU4 /19665564.

[146] J. Roeder, A.D. Pimentel, and C. Grelck. “GCN-based reinforcement learning ap-
proach for scheduling DAG applications.” In: 19th Artificial Intelligence Applications
and Innovations (AIAI 2023). Springer. 2023.

[147] J. Roeder, B. Rouxel, S. Altmeyer, and C. Grelck. “Interdependent Multi-version
Scheduling in Heterogeneous Energy-aware Embedded Systems.” In: 13th Junior
Researcher Workshop on Real-Time Computing (JRWRTC at RTNS 2019). 2019, p. 1.

[148] J. Roeder, B. Rouxel, S. Altmeyer, and C. Grelck. “Energy-aware scheduling of multi-
version tasks on heterogeneous real-time systems.” In: Proceedings of the 36th Annual
ACM Symposium on Applied Computing (SAC 2021). 2021, pp. 501–510.

[149] J. Roeder, B. Rouxel, S. Altmeyer, and C. Grelck. “Scheduling multi-version tasks on
heterogeneous IoT systems using energy-aware ranking.” In: Under review. 2022.

[150] J. Roeder, B. Rouxel, and C. Grelck. “Q-learning for Statically Scheduling DAGs.”
In: 2020 IEEE International Conference on Big Data (Big Data). IEEE Computer Society.
2020, pp. 5813–5815.

https://doi.org/10.21942/uva.19665564.v1
https://uvaauas.figshare.com/articles/dataset/Energy_Measurements_of_9_Rodinia_Benchmarks_executed_on_the_Odroid-XU4_/19665564
https://uvaauas.figshare.com/articles/dataset/Energy_Measurements_of_9_Rodinia_Benchmarks_executed_on_the_Odroid-XU4_/19665564
https://uvaauas.figshare.com/articles/dataset/Energy_Measurements_of_9_Rodinia_Benchmarks_executed_on_the_Odroid-XU4_/19665564

132 bibliography

[151] J. Roeder, B. Rouxel, and C. Grelck. “Scheduling DAGs of Multi-version Multi-phase
Tasks on Heterogeneous Real-time Systems.” In: 14th IEEE International Symposium on
Embedded Multicore/Many-core Systems-on-Chip (MCSoC 2021), Singapore. IEEE. 2021.

A C R O N Y M S

MPSoC Multiprocessor System-on-Chip

DAG Directed Acyclic Graphs

eFLS energy Forward List Scheduling

HER Heterogeneous Energy-aware Ranking

GA Genetic Algorithm

FLS Forward List Scheduling

hFLS heterogeneous Forward List Scheduling

DVFS Dynamic Voltage and Frequency Scaling

DL Deep Learning

HEFT Heterogeneous Earliest Finish Time

COTS Commercially-Off-The-Shelf

FPGA Field-Programmable Gate Array

IoT Internet of things

IIoT Industrial Internet of things

CPS cyber-physical systems

RTS real-time systems

ILP Integer Linear Programming

RL Reinforcement Learning

SoC System-on-Chip

WCET Worst Case Execution Time

EA Evolutionary Algorithm

CU compute unit

UAV Unmanned Aerial Vehicles

GAG Gerichte Acyclische Graaf

133

P U B L I C AT I O N S

[1] U. Odyurt, J. Roeder, A. D. Pimentel, I. G. Alonso, and C. de Laat. “Power passports
for fault tolerance: Anomaly detection in industrial CPS using electrical EFB.” In:
2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS). IEEE.
2021, pp. 152–157.

[2] B. Rouxel, J. Roeder, A. Sebastian, and G. Clemens. “A time, energy and security coor-
dination approach.” In: 10th International Workshop on Analysis Tools and Methodologies
for Embedded and Real-Time Systems (WATERS 2019). 2019.

[3] A. Seewald, U. P. Schultz, J. Roeder, B. Rouxel, and C. Grelck. “Component-based
computation-energy modeling for embedded systems.” In: SPLASH. 2019, pp. 5–6.

[4] J. Roeder, S. Altmeyer, and C. Grelck. “Can we trust our energy measurements? A
study on the Odroid-XU4.” In: 15th Annual Workshop on Operating Systems Platforms
for Embedded Real-Time Applications (OSPERT at ECRTS 2022). 2022, p. 33.

[5] J. Roeder, S. Altmeyer, and C. Grelck. “Energy Measurements of 9 Rodinia Bench-
marks executed on the Odroid-XU4.” In: Dataset published on UvA figshare (June
2022). doi: 10.21942/uva.19665564.v1. url: https://uvaauas.figshare.com/articles/

dataset/Energy Measurements of 9 Rodinia Benchmarks executed on the Odroid-

XU4 /19665564.

[6] J. Roeder, A.D. Pimentel, and C. Grelck. “GCN-based reinforcement learning ap-
proach for scheduling DAG applications.” In: 19th Artificial Intelligence Applications
and Innovations (AIAI 2023). Springer. 2023.

[7] J. Roeder, B. Rouxel, S. Altmeyer, and C. Grelck. “Interdependent Multi-version
Scheduling in Heterogeneous Energy-aware Embedded Systems.” In: 13th Junior
Researcher Workshop on Real-Time Computing (JRWRTC at RTNS 2019). 2019, p. 1.

[8] J. Roeder, B. Rouxel, S. Altmeyer, and C. Grelck. “Towards Energy-, Time-and
Security-Aware Multi-core Coordination.” In: International Conference on Coordination
Languages and Models. Springer. 2020, pp. 57–74.

[9] J. Roeder, B. Rouxel, S. Altmeyer, and C. Grelck. “Energy-aware scheduling of multi-
version tasks on heterogeneous real-time systems.” In: Proceedings of the 36th Annual
ACM Symposium on Applied Computing (SAC 2021). 2021, pp. 501–510.

[10] J. Roeder, B. Rouxel, S. Altmeyer, and C. Grelck. “Scheduling multi-version tasks on
heterogeneous IoT systems using energy-aware ranking.” In: Under review. 2022.

[11] J. Roeder, B. Rouxel, and C. Grelck. “Q-learning for Statically Scheduling DAGs.”
In: 2020 IEEE International Conference on Big Data (Big Data). IEEE Computer Society.
2020, pp. 5813–5815.

[12] J. Roeder, B. Rouxel, and C. Grelck. “Scheduling DAGs of Multi-version Multi-phase
Tasks on Heterogeneous Real-time Systems.” In: 14th IEEE International Symposium on
Embedded Multicore/Many-core Systems-on-Chip (MCSoC 2021), Singapore. IEEE. 2021.

135

https://doi.org/10.21942/uva.19665564.v1
https://uvaauas.figshare.com/articles/dataset/Energy_Measurements_of_9_Rodinia_Benchmarks_executed_on_the_Odroid-XU4_/19665564
https://uvaauas.figshare.com/articles/dataset/Energy_Measurements_of_9_Rodinia_Benchmarks_executed_on_the_Odroid-XU4_/19665564
https://uvaauas.figshare.com/articles/dataset/Energy_Measurements_of_9_Rodinia_Benchmarks_executed_on_the_Odroid-XU4_/19665564

T E A C H I N G A N D S U P E RV I S I O N

teaching experience

• MSc. Computer Science, Programming Multi-core and Many-core Systems,
2021

• ASCI, A Programmer’s Guide for Modern High-Performance Computing,
2020

• MSc. Computer Science, Programming Multi-core and Many-core Systems,
2020

• MSc. Computer Science, Programming Multi-core and Many-core Systems,
2019

thesis supervision

• Henok Ghebrenigus, Evaluating evolutionary algorithms for static schedul-
ing with energy consumption reduction on heterogeneous embedded systems,
BSc. Computer Science 2022

• Stan Bergevoet, Performance and Power Consumption Accuracy Evaluation
of the Sniper Multi-Core Simulator, BSc. Computer Science 2019

• Dennis Wind, Run time and energy consumption trade-offs for ARM big.LI-
TTLE, BSc. Computer Science 2019

136

S O U R C E C O D E A N D D ATA S E T

• The source code for Chapter 3 can be found in the following bitbucket
repository: https://bitbucket.org/uva-sne/energymeasurementanalysis/

src.

The source code for Chapters 4 and 5 can be found in the following bit-
bucket repositoy: https://bitbucket.org/uva-sne/coordinationcompiler/

src.

• The source code for Chapter 6 can be found in the following bitbucket
repository: https://bitbucket.org/jroeder/simple rl scheduling/src/.

• The data used for Chapters 3 and 4 can be found at the following URL:
https://uvaauas.figshare.com/articles/dataset/Energy Measurements of

9 Rodinia Benchmarks executed on the Odroid-XU4 /19665564/1.

• The data used for Chapters 5 and 6 is generated using the TGFF
tool [41]. The TGFF settings and generated datasets can be found
https://bitbucket.org/jroeder/tgff multi phase/ and https://bitbucket.

org/jroeder/gnn tgff data/ respectively.

137

https://bitbucket.org/uva-sne/energymeasurementanalysis/src
https://bitbucket.org/uva-sne/energymeasurementanalysis/src
https://bitbucket.org/uva-sne/coordinationcompiler/src
https://bitbucket.org/uva-sne/coordinationcompiler/src
https://bitbucket.org/jroeder/simple_rl_scheduling/src/
https://uvaauas.figshare.com/articles/dataset/Energy_Measurements_of_9_Rodinia_Benchmarks_executed_on_the_Odroid-XU4_/19665564/1
https://uvaauas.figshare.com/articles/dataset/Energy_Measurements_of_9_Rodinia_Benchmarks_executed_on_the_Odroid-XU4_/19665564/1
https://bitbucket.org/jroeder/tgff_multi_phase/
https://bitbucket.org/jroeder/gnn_tgff_data/
https://bitbucket.org/jroeder/gnn_tgff_data/

S U M M A RY

Heterogeneous high-performance embedded systems (i.e. single board com-
puters employing an MPSoC) have become ubiquitous in recent years. Ap-
plications range from identifying potential poachers with camera traps in
national parks to literal ”on-the-fly” image analysis on unmanned aerial
vehicles. Often these applications must be executed locally because the en-
vironmental situation imposes some restrictions. For example, the image
analysis must be done on the fly as a quick reaction is required. The camera
traps identifying poachers communicate via LoRaWAN, thus, have limited
bandwidth, but poachers must be identified quickly. Additionally, both
applications are battery-powered. Therefore, energy consumption is crucial.

In this thesis, we focus on improving the hardware utilisation of the
MPSoC found on high-performance embedded systems with respect to en-
ergy consumption and time. High-performance embedded systems, such
as the Odroid-XU4, are single-board computers with multiple CPU cores,
possibly with different architectures (e.g., ARM big.LITTLE) and an onboard
accelerator such as a GPU. Throughout this work, we propose and investi-
gate different static scheduling methods (i.e. determining offline where and
when a task should be executed).

To improve energy consumption, we first must measure energy consump-
tion accurately. Thus, first, we explain the measurement setup used through-
out this dissertation. Next, we detail a set of experiments that determines
how important the sampling rate is for accurate energy measurement of
high-performance embedded systems. This includes a visual representation
of the error introduced if one measures at a low sampling rate. We further
investigate the minimum required sampling rate that can be considered
equivalent to the original power trace (equivalence testing).

Next, we propose a new energy model, system model and energy-aware
scheduler. Combining all three results in a new scheduling method for MPSoC

that supports Dynamic Voltage and Frequency Scaling, multiple-version
tasks, heterogeneous CPUs and GPU-like accelerators. Multiple versions
allow the schedulers to target different binary-incompatible compute units
for a task. We can further exploit a multi-version approach and support ver-
sions resulting from, e.g., different compiler flags or functionally-equivalent

138

summary 139

algorithms etc. We show that our approach outperforms two state-of-the-art
schedulers, Heterogeneous Earliest Finish Time (HEFT) and ARSH-FATI.

All our methods target applications that can be represented as Directed
Acyclic Graphs (DAG). DAG applications provide a partial order of tasks.
However, many schedulers (e.g., HEFT, ARSH-FATI, the Forward List Sched-
uling family of schedulers) require a total order of tasks. We show that
the ranking used can have a significant impact on the performance of the
final application. Additionally, we introduce a new ranking algorithm and
compare its performance against a set of base ranking algorithms.

Tasks that run on a GPU need to be controlled by the CPU. Hence, a
task that targets the GPU first runs on the CPU. The CPU part of the task
prepares the data for the GPU and then launches the GPU portion of the
task. Existing scheduling methods reserve both the CPU and GPU for the
entirety of the task. However, this is inefficient as valuable CPU, and GPU
compute time is lost unnecessarily. Therefore, we propose a scheduling
method that divides tasks into multiple phases. This allows for a more
fine-grained separation of workloads and targeting, e.g., the CPU and GPU.
We show that our scheduler leads to a higher schedulability rate than HEFT.

Lastly, as many schedulers heavily rely on the ranking of tasks (i.e., total
order), we explore a ranking independent Reinforcement Learning (RL)
based scheduler. We perform experiments with the RL scheduler for DAG

applications and compare it against a traditional greedy heuristic. The RL
scheduler generates schedules with a makespan similar to a greedy heuristic
and including graph convolutional neural networks improves the resulting
schedules significantly.

To conclude, the work in this thesis presents different strategies and meth-
odologies focused around scheduling dependent tasks to high-performance
embedded systems. The aim is to improve the utilisation of applications
deployed to high-performance embedded systems with respect to different
aspects such as energy consumption and run-time. In summary, the main
topics explored in this thesis include accurate energy measurements, improv-
ing energy consumption through static scheduling, increasing schedulability
by better utilising the available hardware and exploring ranking indepen-
dent scheduling strategies. Throughout this thesis, we propose techniques
to use less powerful hardware for solving a given problem, hence, saving
money and resources. Alternatively, the same techniques can be used to
solve more advanced problems with the same hardware.

S A M E N VAT T I N G

Heterogene high-performance geëmbedde systemen (bijvoorbeeld single-
board computers met een MPSoC) zijn tegenwoordig niet meer weg te denken.
Applicaties omvatten onder andere systemen die in natuurreservaten met
cameravallen stropers identificeren en systemen die letterlijk tijdens het
vliegen fotoanalyse uitvoeren vanuit onbemande luchtvaartuigen. Dit soort
applicaties zijn doorsnee aan omgevingsrestricties onderhevig waardoor ze
enkel lokaal uitgevoerd kunnen worden. Zo moet de fotoanalyse bijvoor-
beeld dusdanig snel uitgevoerd worden om nog tijdens de vlucht op een
stroper te reageren. De cameravallen die de stropers identificeren communi-
ceren met LoRaWAN, een protocol met een lage doorvoersnelheid, wat een
extra obstakel vormt in het snel kunnen identificeren van de stropers. En
daar komt nog bovenop dat beide applicaties van energie voorzien wordt
door middel van een accu, waardoor het energieverbruik in de perken
houden ook nog een essentiële eis is.

In dit proefschrift richten wij ons op het verbeteren van de hardware-
utilisatie van een MPSoC, zoals gevonden in een high-performance geëmbed
systeem met betrekking op energieverbruik en looptijd. High-performance
geëmbedde systemen, zoals de Odroid-XU4, zijn single-board computers
met meerdere processorkernen van mogelijk verschillende architecturen
(bijvoorbeeld ARM big.LITTLE), en een geı̈ntegreerde accelerator zoals een
GPU. In dit werk introduceren en evalueren wij verschillende statische
schedulingsmethodes (statisch wil zeggen het van te voren vaststellen van
waar een wanneer een taak uitgevoerd moet worden).

Om het energieverbruik te verbeteren moet het energieverbruik eerst exact
gemeten worden. Daarom lichten wij eerst de energiemeetopstelling toe die
wij in de rest van dit proefschrift gebruiken. Daarna beschrijven wij een
aantal experimenten die vaststellen wat het belang van de meetfrequentie is
voor het accuraat vaststellen van het energieverbruik van high-performance
geëmbedde systemen. Dit doen we onder andere aan de hand van een
visuele representatie van de ontstane fout voortgebracht uit het gebruik
van een te lage meetfrequentie. Wij zetten het onderzoek voort door vast te
stellen wat de laagste vereiste meetfrequentie is die als equivalent gezien kan
worden aan het originele powertrace (door middel van equivalentietesten).

Daarnaast stellen we een nieuw energiemodel, een systeemmodel en een
energiebewuste scheduler voor. Het combineren van deze drie resultaten

140

samenvatting 141

leidt tot een nieuwe schedulingsmethode voor MPSoC met ondersteuning
voor Dynamic Voltage and Frequency Scaling, taken met meerdere versies,
heterogene processors, en GPU-achtige acceleratoren. Ondersteuning voor
taken met meer dan één versie stelt de schedulers in staat om verschillende
binary-incompatibele verwerkingseenheden (zoals processors en GPU’s) te
ondersteunen. We kunnen deze techniek verder exploiteren door ondersteu-
ning te bieden voor bijvoorbeeld versies met verschillende compileropties, of
functioneel-equivalente versies gebruikmakend van verschillende algoritmes.
We laten zien dat onze aanpak beter presteert dan twee eerder gepubliceerde
schedulers, namelijk Heterogeneous Earliest Finish Time (HEFT) en ARSH-
FATI.

Onze technieken richten zich op applicaties die gestructureerd kunnen
worden als Gerichte Acyclische Graaf (GAG). GAG-applicaties kennen een
partiële orde toe aan de taken. Echter, veel schedulers (zoals HEFT, ARSH-
FATI, en Forward List Scheduling-gebaseerde schedulers) hebben een totale
orde nodig. Wij laten zien dat de gebruikte orde een significant impact heeft
op de presentaties van de uiteindelijke applicatie. Daarnaast introduceren
wij een nieuw ordeningsalgoritme en vergelijken de prestaties met die van
een aantal standaard ordeningsalgoritmes.

Taken die op de GPU draaien moeten beheerd worden door de processor.
Hierdoor draait een taak voor de GPU eerst op de processor. Het proces-
sordeel van de taak bereidt de data voor, waarna het GPU-deel uitgevoerd
wordt. Bestaande schedulingsmethodes reserveren zowel de GPU als de
processor voor de volledige duur van de taak, maar dit is inefficiënt omdat
waardevolle processortijd onnodig verloren gaat. Daarom stellen wij een
schedulingsmethode voor die de taak in meerdere fasen splitst. Deze fasen
stellen ons in staat om efficiënter de hardware te reserveren voor taken
die een GPU en processor gebruiken. Wij laten zien dat onze scheduler in
significant meer gevallen een geldige schedule kan produceren dan HEFT.

Als laatste, aangezien veel schedulers erg afhankelijk zijn van de orde van
de taken (namelijk de totale orde) verkennen wij een orde-onafhankelijke
Reinforcement Learning-gebaseerde (RL) scheduler. We experimenteren met
de RL-scheduler voor GAG-applicaties, en vergelijken deze met een door-
snee gulzige heuristiek-gebaseerde scheduler. De RL-scheduler produceert
schedules met een totale looptijd vergelijkbaar met die geproduceerd d.m.v.
gulzige heuristiek. Het toevoegen van neurale netwerken op basis van graaf-
convolutie verbetert de schedules significant.

In conclusie, het werk in dit proefschrift presenteert verschillende strate-
gieën en methodes gericht op het schedulen van taken met onderlinge afhan-

142 samenvatting

kelijkheden voor high-performance geëmbedde systemen. Het doel is om
de hardwarebezetting te verbeteren voor applicaties op high-performance
geëmbedde systemen met betrekking op verschillende aspecten zoals ener-
gieverbruik en looptijd. De hoofdonderwerpen verkend in dit proefschrift
omvatten het nauwkeurig meten van energieverbruik, het verbeteren van
het energieverbruik door middel van statische schedulingsmethodes, en het
vermeerderen van de gevallen waarin een geldige schedule bepaald kan
worden. In dit proefschrift stellen wij technieken voor die minder krachtige
hardware nodig hebben om een gegeven probleem op te lossen, ter bespa-
ring van geld en hardware. Op dezelfde manier kunnen onze methodes ook
worden gebruikt om geavanceerdere problemen op te lossen met dezelfde
hardware.

	Dedication
	Acknowledgments
	Contents
	1 Introduction
	1.1 High-performance embedded systems
	1.2 Improving efficiency and utilisation of MPSoC
	1.3 Thesis organisation
	1.4 Publications and author contributions

	2 Background
	2.1 High-performance embedded systems: Odroid-XU4
	2.1.1 DVFS and Voltage Islands

	2.2 Task Model Overview
	2.3 Scheduling

	3 Energy Measurement
	3.1 Introduction
	3.2 Background & Methodology
	3.2.1 Power Measurements
	3.2.2 Sampling Frequency
	3.2.3 Setup and Target system
	3.2.4 Downsampling
	3.2.5 Benchmarks
	3.2.6 Statistical equivalence testing

	3.3 Results & Discussion
	3.4 Related Work
	3.5 Conclusion

	4 Energy-aware Scheduling
	4.1 Introduction
	4.2 System Model
	4.2.1 Platform Model
	4.2.2 Task Model
	4.2.3 Energy Model

	4.3 Energy-aware Forward List Scheduling
	4.3.1 Scheduling Algorithm
	4.3.2 Scheduling a task.
	4.3.3 Heterogeneous Energy Ranking

	4.4 Experimental Setup
	4.4.1 Target Platform
	4.4.2 Energy Measurements
	4.4.3 Application code
	4.4.4 DVFS

	4.5 Ranking strategies for eFLS
	4.5.1 Best standalone ranking
	4.5.2 Selecting a ranking method sub-set

	4.6 Comparing eFLS with other non-optimal solutions
	4.6.1 Single-version vs Multi-version tasks
	4.6.2 Energy optimising vs Makespan
	4.6.3 eFLS vs HEFT and eHEFT
	4.6.4 eFLS vs ARSH-FATI

	4.7 Comparing eFLS with an optimal solution
	4.7.1 ILP formulation
	4.7.2 ILP vs eFLS
	4.7.3 Energy consumption: predicted vs measured

	4.8 Related Work
	4.9 Conclusion

	5 Multi-Phase Scheduling
	5.1 System Model
	5.2 Interference
	5.2.1 Cache related delays
	5.2.2 Shared resources interference
	5.2.3 Data in memory interference

	5.3 Heterogeneous FLS
	5.3.1 Scheduling Algorithm
	5.3.2 Phase Release Time
	5.3.3 Updating phase WCET
	5.3.4 Find and propagate interference across the schedule

	5.4 Evaluation
	5.4.1 hFLS vs ILP
	5.4.2 hFLS vs eFLS vs HEFT
	5.4.3 Sorting for hFLS

	5.5 Related Work
	5.6 Conclusion

	6 Scheduling based on reinforcement learning
	6.1 Background
	6.2 System Model
	6.3 RL Scheduling
	6.4 RL Scheduler Components
	6.5 Experiments
	6.6 Results
	6.6.1 Dataset 1 - FCNN Agent
	6.6.2 Dataset 2 - FCNN Agent
	6.6.3 Dataset 1 - GCN Based network
	6.6.4 Dataset 2 - GCN Based network

	6.7 Related Work
	6.8 Conclusion

	7 Conclusion
	7.1 Contributions
	7.2 Answers to the research questions
	7.3 Future Work
	7.3.1 Energy Measurements
	7.3.2 Scheduling Heuristics
	7.3.3 RL for Scheduling

	7.4 Vision and Outlook

	 Bibliography
	 Acronyms
	Publications

	 Publications
	 Teaching and Supervision
	Source Code and Dataset

	 Source Code and Dataset
	Summary

	 Summary
	Samenvatting

	 Samenvatting

