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Chapter 1

General Introduction

What do the economy, a forest, and your family have in common? At first glance,
not much. You can’t have dinner with the economy, buy a book via a forest, or
cut down your family for firewood. On a more abstract level, however, similari-
ties emerge. The economy, a forest, and your family are all examples of systems,
that is, collections of interrelated or interacting elements that are organized in a
way to achieve something (Meadows, 2008; von Bertalanffy, 1950). The economy
consists of multiple actors, including consumers and businesses, and organizes
the production and distribution of goods and services. A forest consists mainly
of trees and soil and hosts countless animal and plant species while purifying the
air and drawing down carbon. Your family consists of individuals who helped
you mature into the person you are today and (hopefully!) operates to maintain
the well-being of its members. As these examples show, systems are more than
the sum of their parts, and they can give rise to complex behavior. How can we
understand them?

Systems can be understood at different levels and from different perspectives.
They leave traces in their environment that we can use to make inferences about
their nature (the statistical perspective); we can perturb them to study how they
respond to interventions (the causal perspective); and we can build models of
them that allow us to study their behavior in silico that would otherwise be dif-
ficult to study in vitro (the dynamical perspective). Unfortunately, systems some-
times evolve in ways that endanger those who depend on them. For example,
our economic system has evolved into something that is eroding our life-support
systems (e.g., IPBES, 2022); forests can tip into emitting more carbon than they
absorb due to deforestation and fires (e.g., Gatti et al., 2021); and families, as
some readers may have experienced themselves, can become sources of sorrow
rather than strength. If we find that a system has turned dysfunctional or even
harmful, we should strive to change it for the better (the action-based perspective).
It is in this attempt to change a system that our understanding of it will find its
severest test. We will likely discover that additional knowledge is required for us
to be successful — most systems are too complicated and too complex to be fixed
easily.

This dissertation aims to advance the understanding of systems by contribut-
ing to these different perspectives. Although the work presented here is relatively
general and draws on multiple disciplines, it was carried out at a psychological
methods department. Several chapters of this dissertation are thus motivated by
concerns that arise in psychological research and related fields. To be consistent
with these roots, I propose that we explore the different perspectives on systems
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1. General Introduction

using an example from psychology — depression. Characterized by persistent
feelings of sadness coupled with a loss of interest in activities one previously
enjoyed, depression can have many causes. In what follows, I will use a story
about depression to illustrate the different perspectives through which we can
understand systems and outline how the work presented in this dissertation con-
tributes to the goal of understanding systems. If you permit me, let us suppose
that you suffer from a major depressive episode, joining over 280 million people
worldwide (Vos et al., 2020). After a while, you accept your situation and con-
sult your family doctor for help. She explains that depression is linked to low
serotonin levels and suggests that one of the various drugs that increase sero-
tonin levels might treat your depression. Although you are generally suspicious
of easy solutions, at this point, you are happy to follow any lead that might help.

Statistical perspective on systems. In addition to regularly taking your pre-
scribed medication, you decide to keep a diary to record your experiences and
to take quantitative measurements of your feelings and related variables. You
instinctively understand that a crucial first step towards understanding a phe-
nomenon or system is to map out how its components relate to each other and
to the environment. This can be done in purely observational settings: for exam-
ple, how do the symptoms of depression, such as feelings of sadness and reduced
physical and social activity, (co)vary across contexts (e.g., at home, at work) and
people? How are they associated with variables such as sleep quality and work
performance? Moving beyond associations, systems can also be studied in ex-
perimental settings. For example, for medical drugs to be widely available, their
efficacy and safety must be established in controlled trials. Is a particular an-
tidepressant drug better than a placebo? Are some types of antidepressants more
effective than others? All of the above questions are questions of learning and in-
ference, and can be answered using tools from the statistical perspective. A par-
ticularly promising approach within the statistical perspective is Bayesian statis-
tics, which tells us how we should update our beliefs in light of new data. While a
purely statistical understanding of systems — describing how their components
relate to each other and to the environment — is at the lowest level of under-
standing, by formalizing the process of learning, Bayesian statistics can also be
seen as foundational to all other perspectives.

In practice, researchers often develop hypotheses about the behavior of sys-
tems and then collect data to test their predictions. The first part of this disser-
tation employs the Bayesian framework in the context of hypothesis testing and
works through a number of ensuing challenges. Chapter 2 reports on a puzzle
related to the intricacies of formalizing one’s prior beliefs. By re-analyzing a set
of medical trials, we show that the most widely used test for the equality of two
proportions leads to counter-intuitive results, and propose a more recently de-
veloped alternative. Chapter 3 starts from first principles and derives a test for
comparing variances. In particular, we specify a set of desirable properties that
our Bayesian test should fulfill, and find a suitable class of prior distributions
that result in such a test. We further extend the procedure to allow for testing
of hypotheses involving equality, inequality, and order constraints, enabling re-
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searchers to translate their substantive hypotheses more directly into statistical
ones. Researchers are often interested not only in pitting two or three hypotheses
against each other, but in assessing all possible equalities or inequalities between
groups. This gives rise to what is known in statistics as the multiple comparisons
problem. Inspired by work on variable selection in regression, Chapter 4 tackles
this problem by adapting a class of prior distributions to this novel context and
comparing it with alternative approaches in an extensive simulation study. Over-
all, this first part of the dissertation is concerned with the adequate formalization
of scientific learning and hypothesis testing. While the developed procedures are
general and can be applied in many settings, the most common context is the
controlled experiment.

Returning to our depression example, you notice a subtle feeling of dullness
after taking the prescribed medication, but your depression persists. The doctor
is forced to admit that this reductionist treatment approach — aimed at target-
ing a supposed neurobiological link between serotonin and depression — has not
succeeded (Moncrieff et al., 2022). She refers you to an experienced psychothera-
pist, who suggests to conceptualize depression not as a neurobiological condition
with a clear neurobiological cause, but as arising out of the causal interactions
between cognitive, behavioral, social, and societal factors (e.g., Borsboom, 2017;
Borsboom et al., 2019; Kendler, 2019; Kendler et al., 2011).

Causal perspective on systems. By going through the notes in your diary, ana-
lyzing the measurements that you have collected, and talking to the psychothera-
pist, you begin to understand the nuances of your situation. Certain associations
between variables are not what they seem. For example, trying to increase the
amount of sleep you get each night does not seem to reduce your feelings of sad-
ness. While a statistical understanding of systems is crucial, you notice that it is
far from sufficient. Because we ultimately seek to change systems for the better,
we need to understand how they respond to interventions, and this requires a
causal perspective. If we at the same time acknowledge the complexity of real-
world phenomena, the jump from a statistical to a causal perspective appears to
be considerable. For example, understanding depression as an emergent prop-
erty of the causal interaction between various different factors markedly com-
plicates its study. Instead of studying a (single) cause and a (single) effect in a
controlled trial, we have to open ourselves up to the messy real world, where
confounding factors abound. Drawing conclusions about the effect of interven-
tions — causal inference — suddenly becomes much more difficult. We should not
be discouraged and hide our causal aspirations in muddy talk about associations,
however. Instead, we should tackle them head on. The second part of this dis-
sertation brings this point home and suggests avenues of research that are honest
about the causal endeavor.

In particular, Chapter 5 provides an introduction to the core tenets of causal
inference from observational data in the tradition of directed acyclic graphs and
structural causal models. As even a cursory review of the literature reveals, sta-
tistical shortcuts to causal quantities abound. For example, within the so-called
network perspective in psychology, the use of statistical centrality measures to
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infer intervention targets has been very popular. However, Chapter 6 shows that
there is unlikely to be a straightforward mapping between such statistical mea-
sures and actual causal effects, and that using the former as a proxy for the latter
may therefore be misleading. Chapter 7 further illustrates the importance of
aligning one’s research question with the (statistical) quantity one is estimating.
Most systems evolve over time and involve reciprocal relationships, that is, feed-
back loops. For example, worry and rumination may lead to sleep deprivation,
which in turn affects work performance, which leads to stress, which leads to
more worry and rumination. In psychology and beyond, researchers often col-
lect cross-sectional data, that is, data from many people at a single point in time.
How can these data be informative about causal relations within individuals and
how can we incorporate feedback loops into causal models? Chapter 8 introduces
the notion of Equilibrium Causal Models to the psychological literature in order to
connect dynamical systems thinking, feedback loops, and cross-sectional data
analysis. It illustrates how these models could be applied in practice, drawing
on the literature on psychological measurement and modern cyclic causal dis-
covery. Overall, this second part of the dissertation provides new perspectives
on causal inference from observational data and suggests practical avenues for
future research.

After a few sessions with the psychotherapist, your depression begins to re-
cede. You begin to see friends again, exercise, and enjoy the simple pleasures of
life. Your mind, which previously turned against itself and was filled with doubt
and regret, opens up again. Positive feedback loops kick in, propelling you from
a negative mood state into a positive one. But you wonder — what mechanism
allowed you to get out of your depression, and why did you slip into it in the first
place? The psychotherapist can tell you a story, but you want equations.

Dynamical perspective on systems. On your way to full recovery, you allow
yourself to daydream. If you had access to the equations that faithfully describe
depression, you might have saved yourself a lot of hardship. Instead of explor-
ing various interventions with your psychotherapist in the real world — many of
them dead ends — the depression model would have allowed you to assess their
effects over time from the comfort of your couch. Indeed, while a statistical and
causal description of systems are both important milestones on our journey to-
wards understanding systems, deep insight comes from being able to write down
mathematical equations describing their evolution over time (e.g., Simon, 1992).
In contrast to your dream world, in reality such a dynamical or model-based
description will necessarily always be partial, incomplete, simplified. But even
simple models that coarse-grain the underlying complexity can go a long way to-
wards improving scientific understanding (e.g., Mitchell, 2009); they force us to
formalize our assumptions, which increases conceptual clarity, and allow us to
assess how these assumptions translate into different dynamical patterns of the
system under study, which is frequently insightful. For example, there may be
myriad factors underlying depression, all interacting in complicated ways, but at
the macroscopic level we may find that an individual’s self-reported feelings of
happiness can suddenly shift from high to low and, once transitioned, be diffi-
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cult to reverse. Such critical transitions, which occur after crossing a tipping point,
are common to many complex systems, including ecosystems (e.g., Scheffer et al.,
2001), social systems (e.g., Centola et al., 2018; Milkoreit et al., 2018; Otto et al.,
2020b; van der Maas et al., 2003), and Earth’s climate (Armstrong McKay et al.,
2022b; Lenton et al., 2008b). Dynamical systems theory suggests the existence of
early warning signals that precede such critical transitions (Scheffer et al., 2009;
Wissel, 1984).

Motivated from simple models, these early warning signals have become pop-
ular in many areas of science, including psychology. Chapter 9 provides a com-
prehensive introduction to early warning signals, outlines the practical difficul-
ties of applying them in practice in an extensive simulation study, and sketches
promising avenues for putting the study of early warning signals in psychology
and psychiatry on a solid footing. Chapter 10 applies this theory to a more mathe-
matically mature field — epidemiology — and assesses whether such early warn-
ing signals could have helped us to anticipate the second COVID-19 wave. We
find patterns that may seem puzzling at first, but can be explained by a model,
illustrating how even simple models can facilitate understanding. While the use
of simple models or model-derived indicators can facilitate understanding, their
predictive capabilities often lag behind deep learning methods, which are excel-
lent at extracting higher-order features from data. Deep learning improves pre-
diction in a wide range of domains, including the study of tipping points (Bury
et al., 2021). Chapter 11 scrutinizes such a deep learning method and points to a
nuance when applying it to anticipate tipping points. Overall, this third part of
the dissertation details the promises and pitfalls of using generic early warning
signals as a tool for anticipating tipping points in complex systems, and suggests
further avenues for putting their study and application on solid footing.

Fully recovered from your depression, you dive deeper into trying to under-
stand it. Having experienced the flaws of the reductionist approach yourself, you
understand — on a visceral level — the need for systems thinking. You see sta-
tistical inference, causal inference, and dynamical systems modeling as tools and
interrelated perspectives that can help you better understand depression, and
indeed the systems that shape our lives.

Action-based perspective on systems. Science does not operate in isolation
from wider societal concerns, and we should seek to turn the knowledge we gain
into actions that can change systems for the better. In a world of growing in-
equality and worsening environmental degradation, this is increasingly called
for. A recent international survey found that more than half of young people
feel betrayed by governments and experience sadness and anxiety when thinking
about the climate crisis, with three quarters saying that the future is frightening
(Hickman et al., 2021). Depression may well be a natural response to our sys-
temic crises, with action being the only real cure. Any further delay in action,
as the contribution of Working Group II to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change notes, “will miss a brief and rapidly
closing window of opportunity to secure a livable and sustainable future for all”
(IPCC, 2022d). In Chapter 12, I aim to provide a concise overview of our current
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predicament and detail how we can get more involved, both as scientists and as
citizens, to secure such a future. It will require changing some systems.

6



Part I

Statistical Perspective
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Chapter 2

A Puzzle of Proportions: Two
Popular Bayesian Tests Can

Yield Dramatically Different
Conclusions

Abstract

Testing the equality of two proportions is a common procedure in science,
especially in medicine and public health. In these domains it is crucial to
be able to quantify evidence for the absence of a treatment effect. Bayesian
hypothesis testing by means of the Bayes factor provides one avenue to
do so, requiring the specification of prior distributions for parameters.
The most popular analysis approach views the comparison of proportions
from a contingency table perspective, assigning prior distributions directly
to the two proportions. Another, less popular approach views the prob-
lem from a logistic regression perspective, assigning prior distributions to
logit-transformed parameters. Reanalyzing 39 null results from the New
England Journal of Medicine with both approaches, we find that they can
lead to markedly different conclusions, especially when the observed pro-
portions are at the extremes (i.e., very low or very high). We explain these
stark differences and provide recommendations for researchers interested
in testing the equality of two proportions and users of Bayes factors more
generally. The test that assigns prior distributions to logit-transformed pa-
rameters creates prior dependence between the two proportions and yields
weaker evidence when the observations are at the extremes. When com-
paring two proportions, we argue that this test should become the new
default.

This chapter has been adapted from: Dablander, F., Huth, K., Gronau, Q. F., Etz, A., & Wagen-
makers, E. J. (2021). A puzzle of proportions: Two popular Bayesian tests can yield dramatically
different conclusions. Statistics in Medicine, 41(8), 1319-1333.
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2. A Puzzle of Proportions: Two Popular Bayesian Tests Can Yield Dramatically
Different Conclusions

2.1 Introduction

Researchers frequently wish to test whether two populations differ. In medicine
and public health, for example, the resulting statistical analysis frequently con-
cerns testing whether or not two proportions differ. Examples include testing
whether a vaccine decreases the number of infections compared to a control (Po-
lack et al., 2020), whether sexual minorities are more prone to suicide compared
to their heterosexual counterparts (Plöderl et al., 2013), or whether tightly or less-
tightly controlling hypertension leads to fewer miscarriages in pregnant women
(Magee et al., 2015).

In these applications it is crucial to be able to discriminate between evidence
of absence and absence of evidence. For example, Magee et al. (2015) conducted a
trial to investigate the effect of a tight (target diastolic blood pressure, 85 mm Hg)
or a less-tight (target diastolic blood pressure, 100 mm Hg) control of hyperten-
sion in pregnant woman on, among other outcomes, pregnancy loss (Magee et al.,
2015). They found no significant difference between the two conditions, with 15
out of 493 women in the less-tight control condition and 13 out of 488 in the tight
control condition having lost their child, yielding an estimated odds ratio of 1.14
(95% CI: [0.53, 2.45]). How confident are we that there is indeed no difference
between the two conditions rather than the data being inconclusive? Bayesian
statistics provides a principled way of quantifying evidence via the Bayes factor
(Jeffreys, 1935; Ly et al., 2016b; Morey et al., 2016), thus providing one avenue
to discriminate between evidence of absence and absence of evidence (Keysers
et al., 2020).

The Bayes factor quantifies how well one hypothesis predicts the data com-
pared to another. Using the test of equality between two proportions as an ex-
ample, let D = (y1, y2,n1,n2) denote the combined data from the two groups. We
have:

Y1 ∼ Binomial(n1,θ1)

Y2 ∼ Binomial(n2,θ2) ,

where the sample sizes (n1,n2) are assumed fixed and underH0 we have that θ ≡
θ1 = θ2 while under H1 we have that θ1 , θ2. By quantifying relative predictive
performance, the Bayes factor tells us how we should update our prior beliefs
about H0 relative to H1 after observing the data (Kass & Raftery, 1995):

p(H0 | D)
p(H1 | D)︸     ︷︷     ︸

Posterior odds

=
p(D | H0)
p(D | H1)︸     ︷︷     ︸
Bayes factor

×
p(H0)
p(H1)︸ ︷︷ ︸

Prior odds

.

A Bayes factor of, say, 15 means that the data are 15 times more likely under one
hypothesis compared to the other. While there exist verbal guidelines that may
aid in the interpretation of the Bayes factor (for example, Bayes factors in the
range from 1−3 constitute weak evidence, those in the range from 3−10 consti-
tute moderate evidence, and values larger than 10 constitute strong evidence, see
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Jeffreys, 1939; Lee & Wagenmakers, 2013; Wasserman, 2000), the Bayes factor
should be understood as a continuous measure of evidence (Morey et al., 2016).

While the Bayes factor does not depend on the prior probability of hypotheses,
it does depend crucially on the prior over parameters in the models instantiating
H0 and H1, which becomes apparent when expanding:

p(D | H0)
p(D | H1)

=

∫
θ
p(D | θ,H0)π0(θ | H0) dθ∫

θ1

∫
θ2
p(D | θ1,θ2,H1)π1(θ1,θ2 | H1) dθ1 dθ2

,

where π0 and π1 indicate the respective prior distributions.
There exist two main Bayes factor approaches for testing the equality of two

proportions. The more popular one comes from the analysis of contingency ta-
bles, and assigns independent beta distributions directly to (θ1,θ2) (Gunel &
Dickey, 1974; Jamil et al., 2017). We call this approach the “Independent Beta”
(IB) approach. The second approach is less widely used, and assigns a prior to
the average log odds β and the log odds ratio ψ (Gronau et al., 2021; Kass &
Vaidyanathan, 1992). We call this approach the “Logit Transformation” (LT) ap-
proach. In this chapter, we show that these two approaches can yield markedly
different results. This is especially the case when the observed proportions are
at the extremes (i.e., very low or very high), as is the case for a large number of
applications including the three examples mentioned above. Consider the study
by Magee et al. (2015) again. The IB approach yields a Bayes factor of 12.30 in
favor ofH0, while the LT approach yields a mere 1.17. In other words, under the
IB approach the data are about 12 times more likely under the hypothesis that
tightly or less-tightly controlling hypertension have the same effect on miscar-
riages compared to a hypothesis assuming a difference. Under the LT approach,
however, the data are about equally likely under both hypotheses, which consti-
tutes equivocal evidence. The answer to the question “is observing two equally
small proportions strong or weak evidence for the null hypothesis?” depends,
therefore, crucially — and non-trivially — on the prior setup.

This chapter is structured as follows. In Section 2.2, we outline these two ways
of testing the equality of two proportions in more detail. In Section 2.3, we high-
light the occasionally stark differences of the two approaches by reanalyzing 39
statistical tests reported in the New England Journal of Medicine and explain why
these differences occur. In Section 10.4, we end by reviewing the implications of
the prior setup and what users of Bayes factors should be mindful of when test-
ing the equality of two population parameters. We argue that the LT approach
should become the default when testing the equality of two proportions because
it (a) induces prior dependence between proportions which almost always are,
in fact, dependent, and (b) yields a sensibly milder assessment of the evidence
compared to the IB approach when the observations are at the extremes.
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Different Conclusions

2.2 Two Ways of Testing the Equality of Two Propor-
tions

In this section, we outline two ways of testing the equality of two proportions. In
Section 2.2.1, we describe the Independent Beta approach, and in Section 2.2.2,
we describe the Logit Transformation approach.

2.2.1 The Independent Beta (IB) Approach

In order to nest the null hypothesis under the alternative hypothesis, we intro-
duce the difference parameter η = θ2 − θ1 and the grand mean ζ = 1

2 (θ1 +θ2).
Using this parameterization, we have that:

θ1 = ζ −
η

2

θ2 = ζ +
η

2
.

The hypotheses are then specified as:

H0 : η = 0

H1 : η , 0 .

Under this approach, we assign independent Beta(a,a) priors to θ1 and θ2.
Figure 2.1 visualizes the joint prior distribution (top) under H1 for a = 1 (left)
and a = 2 (right). Increasing values of a implies that the joint prior mass is more
concentrated around (θ1,θ2) = (1/2,1/2). The bottom panels visualize the condi-
tional prior distribution of θ2 given that we know that θ1 = 0.10. Knowing the
value of θ1 does not change our prior about θ2, which follows from the assump-
tion of prior independence.

The IB Bayes factor is available in analytic form (Dickey & Lientz, 1970; Gunel
& Dickey, 1974; Jeffreys, 1939). In the literature on contingency tables, our setup
corresponds to an independent multinomial sampling scheme where the row (or
column) sums of the contingency table (here n1 and n2) are fixed; for an extension
to other sampling schemes and more than two groups, see Gunel and Dickey
(1974) and Jamil et al. (2017). Gunel and Dickey (1974) suggest a = 1 as a default
value. Note that values a < 1 lead to an undefined prior density for θ = 0 and
θ = 1, which implies model selection inconsistency in case θ is indeed 1 or 0.
Hence these values should be avoided on principle grounds. Because the beta
prior is conjugate for the binomial likelihood, the posterior distributions of θ1
and θ2 are again (independent) beta distributions.

2.2.2 The Logit Transformation (LT) Approach

The test proposed by Kass and Vaidyanathan (1992) and implemented by Gronau
et al. (2021) does not assign a prior directly to (θ1,θ2), but applies a logit trans-
formation and assigns priors to the transformed parameters (β, ψ). Specifically,
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θ1,θ2 ~  Beta(1, 1)
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Figure 2.1: Top: Joint prior distribution assigned to (θ1,θ2) under a = 1 (left) and a = 2 (right).
Bottom: Conditional prior distribution of θ2 given that θ1 = 0.10.

we write:

log
(
θ1

1−θ1

)
= β −

ψ

2

log
(
θ2

1−θ2

)
= β +

ψ

2
,

where β is a grand mean and ψ is the difference in log odds (i.e., the log odds
ratio):

β =
1
2

(
log

(
θ1

1−θ1

)
+ log

(
θ2

1−θ2

))
ψ = log

(
θ2

1−θ2

)
− log

(
θ1

1−θ1

)
.

While this is a more involved reparameterization than in the IB approach
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above, another way to formulate this setup is by writing:

θ1 =
eβ−

ψ
2

1 + eβ−
ψ
2

θ2 =
eβ+ψ

2

1 + eβ+ψ
2

,

which readers familiar with logistic regression may recognize. Using this setup,
we test the hypotheses:

H0 : ψ = 0

H1 : ψ , 0 .

In contrast to above, we now assign priors to β and ψ rather than to θ1 and
θ2 directly. In particular, under both hypotheses we assume β ∼ N (0,σβ) with
σβ = 1. Under H1 we assume ψ ∼ N (0,σψ).1 The top left panel in Figure 2.2 vi-
sualizes the implied joint prior distribution on (θ1,θ2) under H1 for σψ = 1. The
prior mass is concentrated along the diagonal, which indicates that θ1 and θ2 are
dependent. The bottom left panel illustrates this fact: if we know that θ1 = 0.10,
then the prior on θ2 shifts toward this value. Setting σψ = 2 removes the prior de-
pendency, as the right column in Figure 2.2 shows. For values of σψ > 2, θ1 and θ2
become anti-correlated and hence observing a small value of θ1 results in a prior
that puts more mass on large values for θ2. Such an inverse relation is undesir-
able in almost all empirical applications, and so values σψ > 2 are therefore to
be avoided. Gronau et al. (2021) developed software to compute the Bayes factor
using this prior specification, first proposed by Kass and Vaidyanathan (1992),
suggesting σψ = 1 as a default value.

2.2.3 Comparison of Priors

A direct comparison of the two prior specifications may be helpful to get further
intuition for their differences. While the IB approach does not assign a prior
distribution to (β,ψ) or (η,ζ) explicitly, assigning a prior to θ1 and θ2 induces
a prior distribution on these quantities. Conversely, the LT approach assigns a
prior to ψ and β and this induces a prior on (θ1,θ2) and (η,ζ). The induced prior
distributions under both approaches are non-standard (see Appendix A.1), but
their densities can be calculated numerically.

The top left panel in Figure 4.2 shows the prior distribution assigned to η by
the LT approach for σψ = 1 (shaded blue) and σψ = 2 (striped blue) and the IB
approach for a = 1 (shaded red) and a = 2 (striped red) under H1. Similarly, the
top right panel shows the prior distribution assigned to ψ for the two approaches
and prior parameter values. The (default) IB approach assigns comparatively
more mass to large values of η and ψ, which in practice means that it expects

1While this prior specification assigns the log odds ratio ψ a Gaussian distribution, the IB prior
specification results in a non-standard distribution on ψ. For more details, see Appendix A.1.

14



2.3. Practical Implications of the Prior Setup

ψ ~  N(0, 1)
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ψ ~  N(0, 2)
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Figure 2.2: Top: Joint prior assigned to (θ1,θ2) for σψ = 1 (left) and σψ = 2 (right). Bottom: Condi-
tional prior distribution of θ2 given that θ1 = 0.10. In both cases we assume σβ = 1.

larger differences between the sample proportions. The bottom panel shows the
marginal priors for θ1 and θ2, where we find that the LT approach assigns com-
paratively less mass to extreme values. The LT approach cannot result in a uni-
form distribution on the proportions under H0 because of the Gaussian prior on
β. If it instead would assign a (standard) logistic prior to β (which has fatter
tails), the prior on the proportions would be uniform; see a related discussion in
Appendix A.2. In the next section, we discuss a somewhat surprising difference
between these two tests.

2.3 Practical Implications of the Prior Setup

To see the implications of the two different prior specifications in practice, in
Section 2.3.1 we reanalyze 39 null results published in the New England Journal
of Medicine, previously analyzed by Hoekstra et al. (2018) using the IB approach.
We then explain why these difference occur in Section 2.3.2. The data and code
to reproduce all analyses and figures is available from https://github.com/fdabl/
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Figure 2.3: Top: Prior distributions assigned to η (left) and ψ (right) under the LT (blue, vertical
lines) and IB approach (red, horizontal lines), respectively. Bottom: Marginal prior distribution of θ1
and θ2 under the two approaches. The density that is filled and has the highest peak corresponds to
σψ = 1.

Proportion-Puzzle.

2.3.1 Reanalysis of New England Journal of Medicine Studies

Hoekstra et al. (2018) considered all 207 articles published in the New England
Journal of Medicine in 2015. The abstract of 45 of these articles contained a claim
about the absence or non-significance of an effect for a primary outcome mea-
sure, and 37 of those allowed for a comparison of proportions, reporting 43 null
results in total. We focus on those results that can be reanalyzed using a test be-
tween two proportions, which results in a total of 39 tests from 32 articles. The
top left panel in Figure 2.4 contrasts Bayes factors in favor ofH0 computed using
the IB approach (rectangles) across a ∈ [1,5] with Bayes factors computed using
the LT approach (circles) across σψ ∈ [1,2]. In virtually all cases and across spec-
ifications, the Bayes factor in favor of H0 is higher under the IB approach, and
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this difference is frequently substantial.2 As the parameter a is increased under
the IB approach, the expected difference between the two groups is smaller (see
top left panel in Figure 4.2). Therefore, the predictions under H1 become more
similar to the predictions under H0, and the Bayes factor decreases. Conversely,
as σψ is increased under the LT approach, the expected difference between the
two group increases, and the Bayes factor in favor of H0 increases.
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Figure 2.4: Top: Bayes factors using the IB (rectangles) and LT approach (circles) in favor ofH0 across
studies reported in Hoekstra et al. (2018) (left) or for simulated equal proportions with n = 100 (right)
for values a ∈ [1,5] and σψ ∈ [1,2] with σβ = 1. Bottom: Joint prior distribution of (θ1,θ2) under the IB
approach with a = 1 (left) and under the LT approach with σψ = 1 and σβ = 1 (right). Black dots and
blue rectangles indicate the maximum likelihood estimates of the proportions in the studies analyzed
by Hoekstra et al. (2018) .

The top left panel in Figure 2.4 shows that, for some studies, the IB and LT
Bayes factors cannot be brought into the vicinity of each other by changing the
prior parameters in the way specified above, while for other studies the Bayes
factors do overlap substantially. The studies without overlap are those indexed
as 1-12. They are shown as blue rectangles in the bottom panels in Figure 2.4,

2In contrast, the conclusions one would draw based on posterior distributions are very similar, see
Appendix A.3.
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which shows the joint prior density for the IB (left) and the LT approach (right)
with the symbols indicating the maximum likelihood estimates for the individual
studies. Note that the larger the proportions in the bottom panels, the more likely
are the two Bayes factors to overlap in the top left panel.

While Hoekstra et al. (2018) are reassured by the fact that their Bayesian re-
analysis (using the IB approach) yields strong evidence in favor ofH0 on average
(given that all studies reported a non-significant p-value), using the LT approach
yields a more uncertain picture. While the median Bayes factor across the studies
under the IB approach is 12.30, the median Bayes factor under the LT approach
is only 4.79. This difference is driven by the extremes, where the two approaches
suggest substantially different conclusions. We have already seen one example in
the introduction concerning hypertension and pregnancy loss (analysis identifier
3). Another example is given by Joura et al. (2015), which compared the efficacy
of the 9vHPV against the qHPV vaccine for preventing, among others, cervical,
vulvar, and varginal disease and persistent human papillomavirus related infec-
tions in women. Comparing different outcome measures in women who were
HPV-negative and HPV-positive at baseline, the IB approach yields Bayes factors
consistently around 100 while the LT approach never shows Bayes factors larger
than 10 (see analysis identifiers 1, 2, 5, and 6). The IB approach thus strongly
suggests that the two vaccines have a similar efficacy, while the LT approach sug-
gests that more data is needed to reach a firm conclusion.

The initially diverging and then converging pattern of the Bayes factors can
be seen neatly in the top right panel in Figure 2.4, which shows the Bayes factors
under the null hypothesis for increasing values of y/100 ≡ y1/100 = y2/100. Note that
the pattern is symmetric, so that for y/100 ∈ [1/2,1] the same holds, just mirrored.
At the extremes y/n ∈ {0,1}, the IB approach yields a Bayes factor in favor of H0
of 50.75, while the LT Bayes factor gives a mere 1.40. The Bayes factor decreases
as y/n→ 1/2 under the IB approach, but increases under the LT approach. Conse-
quently, the difference between the Bayes factors becomes less pronounced as we
move to more central proportions, which matches the observation in the empir-
ical analysis shown in the top left panel in Figure 2.4. For y/n = 1/2, the IB Bayes
factor yields 5.70 and the LT Bayes factor yields 3.67.

In summary, we have found that the two approaches give a very different
answer to the question “is observing two equally small proportions strong or
weak evidence in favor of the null hypothesis?”. The IB Bayes factor suggests
that the evidence is often orders of magnitude larger than what the LT Bayes
factor suggests.

2.3.2 Explaining the Difference

Why does the IB Bayes factor yield so much stronger evidence than the LT Bayes
factor for H0 when the proportions are small and of roughly equal size? And
why does the IB Bayes factor decrease as the proportions get closer to 1/2 while the
LT Bayes factor increases? To answer these questions, we need to zoom in on the
differences in the respective prior specifications. The two approaches differ in
two key ways. First, while the IB approach assigns independent priors to θ1 and
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θ2, the LT approach assigns dependent priors to them. Second, the LT approach
employs a logit transformation while the IB approach does not. Appendix A.4
shows that it is not the prior dependence that underlies the difference between
the two approaches. Instead, as we will see below, it is the logit transformation.

The fact that the IB Bayes factor is larger than the LT Bayes factor even when
the latter approach expects a larger difference in the proportions (e.g., a larger
η or ψ, compare a = 2 with σψ = 2 in Figure 4.2) means that focusing only on
the difference parameter is not sufficient to explain the difference between the
Bayes factors. Instead, we turn to a sequential predictive perspective. From such
a perspective, we may first use the prior to predict the data from group one, up-
date the prior to a posterior, and then predict the data from group two. One can
rewrite the marginal likelihoods to make this sequential perspective apparent,
see Appendix A.5. This perspective shows that there is a crucial difference in
the predictions that the CT and LT approach make under H1. Under both ap-
proaches there is a common parameter θ under H0, and the prior assigned to θ
gets updated by data from the first group, after which predictions about the sec-
ond group are made. Under the alternative hypothesis, however, the IB approach
implies that observing data from group one does not update our beliefs about
likely values of θ2, and so data from group one cannot inform the subsequent
prediction about group two. Under the LT approach, such information sharing
does take place. This difference is shown in the top panels in Figure 2.5, which
visualizes the joint prior distribution for θ1 and η ≡ θ2 − θ1 under the IB (left)
and LT (right) approaches. We see that under the IB approach, learning about
θ1 does not influence our predictions about likely differences between the two
groups. In contrast, under the LT approach we find that when we learn that θ1
is either small or large, we expect smaller differences between the proportions
compared to when we learn that θ1 is about half. This explains why the LT Bayes
factor in favor ofH0 increases as we move from extreme values of y/n towards val-
ues around 1/2, as shown in the top right panel in Figure 2.4: at the extremes, H1
expects smaller differences between θ2 and θ1, and hence it more closely resem-
bles H0, leading to a more equivocal Bayes factor. Moving towards more central
values,H1 expects larger differences and henceH0 outpredicts it by a larger mar-
gin.

While prior dependence is necessary to change one’s beliefs about likely dif-
ferences between the proportions upon learning θ1, the fact that the expected
difference decreases in the LT approach is due to the logit transformation. When
the two rates (θ1,θ2) are small, say θ1 = 0.05 and θ2 = 0.10, the log odds differ-
ence ψ is large, in this case ψ = 0.75. The prior on ψ in the LT approach renders
such large log odds differences to be unlikely, which means that a smaller rate
difference is expected. Conversely, if the rates are somewhere in the center, say
θ1 = 0.50 and θ2 = 0.55, then the log odds difference ψ is small, in this case
ψ = 0.20. The prior on ψ in the LT approach views such small log odds differ-
ences as likely; in fact, much larger ones are possible. Therefore, the LT approach
expects larger rate differences when the rates are in the center. On the log odds
scale, the expected difference does not change markedly as θ1 varies, as the bot-
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Figure 2.5: Top: Joint prior distribution for (θ1,η) under the IB approach with a = 1 (left) and under
the LT approach with σψ = 1 and σβ = 1 (right). Bottom: Joint prior distribution for (θ1,ψ) under the
two approaches.

tom right panel in Figure 2.5 shows.3

In contrast to the LT approach, the IB approach does not automatically reduce
the expectations about likely differences as we learn that θ1 takes on extreme
values. Taking slices at particular values for θ in the top left panel in Figure 2.5
would show uniform distributions ranging from −θ1 to 1−θ1. Instead of reducing
the size of an expected difference at the extremes, the IB approach actually am-
plifies it. This occurs because of the boundedness of the rate parameters. In par-
ticular, if θ1 = 0, then the only values for which, say, |η| < 0.10 are θ2 ∈ [0,0.10].
Differences in absolute magnitude between the two rates of up to 0.10 if θ1 = 0
are therefore assigned a probability of 0.10. If, however, θ1 = 0.50, the values of
θ2 for which |η| < 0.10 are θ2 ∈ [0.40,0.60]. This means that differences in abso-
lute magnitude between the two rates of up to 0.10 if θ1 = 0.50 are assigned a
probability of 0.20, or twice as much as in the case that θ1 = 0. Another way to
see this is to note that the expected difference in the case that θ1 = 0 is η = 0.50,

3The fact that there is barely any prior mass at extreme values of θ1 under the IB approach is due
to the Gaussian prior on β, as discussed in Section 2.2.3.
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while the expected difference in the case that θ1 = 0.50 is η = 0; more generally,
the expected difference increases linearly as we move to the extremes, as can be
seen in the top left panel in Figure 2.5. The bottom left panel in Figure 2.5 shows
an associated and pronounced increase in the expected log odds difference as θ1
moves towards extreme values.

2.4 Discussion

Being able to discriminate between evidence of absence and absence of evidence
is key in medicine and public health. The Bayes factor, which pits the predictive
performance of two hypotheses against each other, is a method for doing so. Re-
analyzing 39 null results published in the New England Journal of Medicine, we
have found that the strength of evidence depends crucially on the prior spec-
ification. Comparing an approach that assigns independent beta distributions
directly to the rate parameters (IB) to one that employs a logit transformation
(LT), we have found that the former approach suggests evidence that is orders of
magnitudes larger than the latter approach when observing small proportions of
roughly equal size. Consider again the effect of tightly or less-tightly controlling
hypertension in pregnant women (Magee et al., 2015). The IB approach suggests
a Bayes factor about ten times larger in favor of the null hypothesis than the LT
approach. Similarly, the Bayes factor in favor of the hypothesis that two vaccines
against the human papillomavirus are equally effective (Joura et al., 2015) is up
to 38 times larger under the IB approach, depending on the outcome measure.
While the original statistical analysis by the authors is more involved (e.g., ad-
justing for various covariates), these differences are striking. As we have seen,
they occur because of the boundedness of the parameter space, which leads to
the expectations of large differences at the extremes under the IB approach. In
contrast, the LT approach expects smaller differences at the extremes.

Although the two Bayes factors frequently differed markedly in size, they al-
ways both provided evidence in favor ofH0 in the cases we studied in this chapter.
This need not be the case, however. For example, a large-scale investigation into
the effect of aspirin found that 26 out of n1 = 11,034 who received a placebo suf-
fered a fatal heart attack, but only 10 out of n2 = 11,037 who received aspirin
did (Physicians’ Health Study Research Group, 1989). The IB Bayes factor yields
strong evidence in favor ofH0 (BF01 = 19.78) while the LT Bayes factor finds mod-
erate evidence in favor ofH1 (BF10 = 5.36). This is again owed to the fact that the
IB approach expects larger differences than the LT approach; a small effect size
is more likely underH0 than underH1 in the IB approach simply because under
H1 unrealistically large effect sizes are assumed to be plausible.

Our results have a number of implications. First, researchers should think
carefully about their prior setup. This not only implies thinking about the pa-
rameter values for the priors, but also the nature of the priors and what they im-
ply for the data. As we have seen, one may be fooled by assessing how sensitive
the Bayes factor is by varying only prior parameters conditional on the model.
For all studies we re-analyzed that had proportions at the extremes, varying the
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prior parameters of the IB approach still resulted in substantial evidence in favor
of the null hypothesis. However, changing the prior setup to the LT approach,
we found markedly reduced evidence. If there are sensible alternative parame-
terizations, it may be prudent to explore how sensitive the results are to these.
In particular, our exposition suggests that assessing the predictions that follow
from the model can help get a better intuition of its assumptions. In our case, this
made clear that the IB approach expects larger rate differences at the boundaries
of the parameter space compared to the center, while the LT approach expects
the reverse. We were struck by the initially puzzling contrast between these two
tests, given that the task — comparing two proportions — seemed so simple. This
suggests that even more caution needs to be applied when using Bayes factors for
comparing models that are invariably more complex. In the same spirit of sensi-
tivity analysis, it is prudent to compare inferences based on the Bayes factor with
inferences based on the posterior distributions of the parameters. While testing
precise hypotheses based on credible intervals is arguably inappropriate since it
makes inference conditional on H1, ignoring H0 (Berger, 2006; Wagenmakers et
al., 2020), alarm bells should go off when they show stark differences to the Bayes
factor results, as in our case (compare Figure 2.4 and A.1). Researchers who rely
only on the posterior distribution for inference or for trial design are unaffected
by our results.

The second implication of our work is that the LT approach appears better
suited for testing the equality of two proportions than the currently more popu-
lar IB approach. First, assuming prior dependence strikes us as a more sensible
approach, especially for medicine and public health. This is because it is gen-
erally unlikely that gaining information about one group does not influence our
beliefs about the other group. For example, if a particular treatment for cancer
yields a 30% success rate, surely this should inform our expectations for the suc-
cess rate of a comparison treatment. Incorporating this dependency results in
more cautious predictions, which reduces the eagerness with which the standard
IB approach suggests strong evidence in favor of H0 (see also Appendix A.4).
While we have focused on testing the sharp null hypothesis θ1 = θ2, the differ-
ence between dependent and independent priors is important also when testing
other hypotheses. Howard (1998) discusses the difference between a dependent
and independent prior in the context of comparing θ1 < θ2 against θ1 > θ2, and
similarly recommends dependent priors, as independent priors lead to a test that
is not “sufficiently cautious”.

Most importantly, however, is the fact that the LT approach avoids the issues
associated with a bounded parameter space. In particular, the IB approach is
not sensitive to the fact that the implications of a rate difference θ2 −θ1 depends
on the actual values of the rates. For example, θ2 = 0.10 and θ1 = 0.05 and
θ2 = 0.55 and θ1 = 0.50 imply the same rate difference, but while the former
represents a 100% increase, the latter represents only a 10% increase. Yet the IB
approach assigns more prior mass to large rate differences at the extremes of the
parameter space compared to its center. In contrast, the reverse holds for the LT
approach because of the logit transformation. This strikes us as more sensible.
With the recent development of accessible software that makes the LT approach
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easily available (Gronau et al., 2021; Hoffmann et al., 2021), we hope that the
use of the LT approach for testing the equality of two proportions becomes more
widespread.

To sum up, we have seen an initially puzzling divergence in evidence when
reanalyzing 39 null results from the New England Journal of New Medicine with
two different Bayes factor tests. We have explained this divergence and sided with
the approach that employs a logit transformation and assumes prior dependence
between the rates. We suggest that this approach, rather than the one motivated
from a contingency table perspective, should be routinely applied when testing
the equality of two proportions. Our journey should also act as a cautionary tale
for users of Bayes factors, stressing the importance of assessing the predictions
of one’s models, conducting thorough sensitivity analyses, and never relying on
just a single quantity. We have demonstrated the usefulness of this in the simple
case of testing the equality of two proportions. Most applications will arguably
be more complex, however, increasing the potential for puzzles and stressing the
need for a holistic evidence assessment.

Author contributions. EJW proposed the study. KH, QFG, AE, and EJW
worked on the problem initially. After an interim period, FD and EJW resumed
the work and solved the puzzle. FD and KH analyzed the data. FD wrote the
manuscript. All authors read, provided comments, and approved the submitted
version of the paper. They also declare that there were no conflicts of interest.

Materials. The data and code to reproduce all analyses and figures is available
from https://github.com/fdabl/Proportion-Puzzle.
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Chapter 3

Default Bayes factors for
Testing the (In)equality of

Several Population Variances

Abstract

Testing the (in)equality of variances is an important problem in many sta-
tistical applications. We develop default Bayes factor tests to assess the
(in)equality of two or more population variances, as well as a test for
whether a population variance equals a specific value. The resulting test
can be used to check assumptions for commonly used procedures such as
the t-test or ANOVA, or test substantive hypotheses concerning variances
directly. We show that our Bayes factor fulfills a number of desiderata. Re-
searchers may have directed hypotheses such as σ2

1 > σ
2
2 , they may want

to extend H0 to have a null-region, or wish to combine hypotheses about
equality with hypotheses about inequality, for example σ2

1 = σ2
2 > (σ2

3 ,σ
2
4 ).

We extend our Bayes factor test to allow for these deviations from our pro-
posed default and illustrate it on a number of practical examples. Our
procedure is implemented in the R package bfvartest.

This chapter has been adapted from: Dablander, F.⋆ , van den Bergh, D.⋆ , Wagenmakers, E. J., &
Ly, A. (in press). Default Bayes Factors for Testing the (In) Equality of Several Population Variances.
Bayesian Analysis.

25



3. Default Bayes factors for Testing the (In)equality of Several Population
Variances

3.1 Introduction

Testing the (in)equality of variances is important in many sciences and applied
contexts. In engineering, for example, researchers may want to assess whether
a new, cheaper measurement instrument achieves the same precision as the gold
standard (Sholts et al., 2011). In genetics and medicine, scientists are not only
interested in studying the genetic effect on the mean of a quantitative trait, but
also on its variance (Paré et al., 2010). In economics and archeology, ideas such
as that increased economic production should reduce variability in products di-
rectly lead to statistical hypotheses on variances (Kvamme et al., 1996). In a court
of law, one may be interested in reducing unwanted variability in civil damage
awards and may want to compare how different interventions reduce this vari-
ability (Saks et al., 1997). In psychology, educational researchers may be inter-
ested in studying how the variance in pupil’s mathematical ability changes across
school grades (Aunola et al., 2004).

While there exist several classical p-value tests for assessing the (in)equality of
population variances (e.g., Brown & Forsythe, 1974; Gastwirth et al., 2009; Lev-
ene, 1961), testing such hypotheses has received little attention from a Bayesian
perspective. Such a perspective, however, would offer practitioners the possi-
bility (a) to quantify evidence in favor of the null hypothesis (e.g., Morey et al.,
2016), (b) allow one to incorporate prior knowledge (e.g., O’Hagan et al., 2006),
(c) to use sequential sampling designs which in many cases is more cost-effective
(e.g., than a fixed-N design, see Stefan et al., 2019), and (d) to translate substan-
tive predictions more easily into statistical hypotheses by specifying equality and
inequality constraints (e.g., Böing-Messing & Mulder, 2018; Hoijtink et al., 2008).

In light of these benefits and recent recommendations to go beyond p-value
testing (Wasserstein & Lazar, 2016), we develop default Bayes factor tests (e.g.,
Consonni et al., 2018; Jeffreys, 1939; Ly et al., 2016a, 2016b) for the (in)equality
of several population variances. Our work is inspired by Jeffreys (1939, pp. 222-
224), who developed a test for the “agreement of two standard errors”. Equipped
with our procedure, researchers are able to state graded evidence both for the
case of testing assumptions of other tests (e.g., the equality of variances assump-
tion in the Student’s t-test), as well as testing (order-constrained) hypotheses on
variances directly.

This chapter is structured as follows. In Section 3.2, we introduce the problem
setup and propose the default Bayes factor. In Section 3.3, we elaborate on the
desiderata that the proposed Bayes factor adheres to. In Section 3.4, we discuss
the special case with K = 2 groups, including directed and interval Bayes factors,
compare our method to a fractional Bayes factor procedure proposed by Böing-
Messing and Mulder (2018), and discuss testing all possible (in)equalities at once.
We illustrate our default Bayes factor test and deviations from it on a number of
practical examples in Section 3.5. We conclude in Section 3.6. All derivations
and proofs can be found in Appendix B.
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3.2 Default Bayes Factor for K Groups

3.2.1 Notation and Problem Setup

The problem of testing the (in)equality of variances can be equivalently expressed

in terms of variances σ2
j or precisions τj = σ−2

j . For the data we assume that Yji
iid∼

N (µj , τ
−1
j ), where i ∈ [nj ] and j ∈ [K] with the rectangular brackets embracing an

integer denoting the set of positive integers up to and including that integer, e.g.,
[K] ≡ {1,2, . . . ,K − 1,K} ⊂ N.

As the K groups are assumed to be independent of each other, the data
y[K] can be sufficiently summarized by the sample means ȳ = (ȳ1, . . . , ȳK ), where
ȳj = 1

nj

∑nj
i=1 yji and the (unbiased) sample variances s2 = (s21, . . . , s

2
K ), where

s2j = 1
νj

∑n
i=1(yji − ȳj )2 and where νj = nj − 1 is the degree of freedom of group

j. As a convention, we denote K-dimensional vectors in bold, whereas an arrow

is used to denote a K − 1 dimensional vector, e.g., s2 = (s⃗2, s2K ). A subscript + is
used to denote summation over the vector’s elements, e.g., τ+ =

∑K
j=1 τj , whereas

ϑ⃗+ =
∑K−1
j=1 ϑj , since ϑ⃗ ∈ RK−1.

The null hypothesisH0 states that all precisions are the same, while the alter-
native hypothesis H1 includes at least one inequality. Formally, we compare

H0 : τj = τk for all j,k ∈ [K], (3.1)

H1 : τj , τk for at least one j , k ∈ [K], (3.2)

regardless of the nuisance parameters µ = (µ1,µ2, . . . ,µK ) ∈ RK . The null hypoth-
esis restricts the K precisions to a single but unknown precision, whereas the al-
ternative allows all precisions to vary freely. Including the means, the null model
has K +1 free parameters, whereas the alternative model has 2K free parameters.

We rephrase the model comparison by generalizing the reparametrization
proposed by Jeffreys (1939, pp. 222-224); see also Appendix B.1. More specif-
ically, in the alternative model we reparametrize the K precisions τ in terms of
an average precision τ̄ = 1

K τ+ and K − 1 proportions ϑ⃗ with ϑj =
τj
τ+

. Note that
this reparametrization is invertible as it should be. In this parametrization the
hypotheses translate into

H0 : ϑj = 1
K for all j ∈ [K − 1], (3.3)

H1 : ϑj ,
1
K for at least one j ∈ [K − 1], (3.4)

regardless of the values of the nuisance parameter µ ∈ RK and the average preci-
sion τ̄ > 0, which are common to both models.

From a Bayesian perspective, we assess the relative merits of H0 and H1 by
virtue of how well they predict the data, that is, by their respective marginal like-
lihoods. The ratio of marginal likelihoods is known as the Bayes factor (Kass &
Raftery, 1995), and its specification requires assigning priors to both the free pa-
rameters of the null and the alternative model. For the models being compared,
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this implies one prior on the 2K free parameters of the alternative model, and
another prior on the K+1 free parameters of the null model. To simplify matters,
we mimic the nesting of the null model into the alternative model and choose
π1(µ, τ̄, ϑ⃗) = π0(µ, τ̄)π1(ϑ⃗). The Bayes factor we propose is constructed from a
right Haar prior π0(µ, τ̄) ∝ τ̄−1 on the common parameters and from a (proper)
Dirichlet prior π1(ϑ⃗) on the test-relevant parameters ϑ⃗ with hyperparameters u,
where uj > 0 for all j ∈ [K].

In the remainder of this section we show that this choice of priors results in
a Bayes factor that is analytic. In Section 3.3 we show that the proposed Bayes
factor fulfills certain Bayesian model comparison desiderata.

3.2.2 The Proposed Bayes Factor

The choice for π0(µ, τ̄) ∝ τ̄−1 is based on the observation that the hypotheses to
be tested are invariant under (1) scalar multiplications of all the data points, and
(2) location shifts of the data points of each sample/group.1 The derivations
in Appendix B.2 show that with π0(µ, τ̄) ∝ τ̄−1 on the nuisance parameters, the
Bayes factor simplifies to

BF10(y[K]) =

∫
Θ

 ∫
R>0

∫
RK
f (y[K] |µ, τ̄, ϑ⃗)π0(µ, τ̄)dµdτ̄

π1(ϑ⃗)dϑ⃗∫
R>0

∫
RK
f (y[K] |µ, τ̄, ϑ⃗ = 1

K )π0(µ, τ̄)dµdτ̄
=

∫
Θ

h(s2 | ϑ⃗)π1(ϑ⃗)dϑ⃗,

(3.5)

where R>0 denotes the positive reals, Θ ≡ {θ⃗ ∈ RK−1 | θ⃗+ < 1} ⊂ RK−1
>0 , and where

we refer to h(s2 | ϑ⃗) as the reduced likelihood, which is given by

h(s2 | ϑ⃗) ≡
(
1 +

K−1∑
j=1

νj s
2
j

νK s
2
K

) ν+
2
[K−1∏
j=1

ϑ

νj
2
j

]
(1− ϑ⃗+)

νK
2
(
1−

K−1∑
j=1

[1−
νj s

2
j

νK s
2
K

]ϑj
)− ν+

2
, (3.6)

where ν+ =
∑K
j=1 νj , and ϑ⃗+ ≡

∑K−1
j=1 ϑj . Note that, for any proper prior π1(ϑ⃗),

the nesting and the choice π0(µ, τ̄) ∝ τ̄−1 leads to a measurement invariant Bayes
factor, as desired. This is because h(s2 | ϑ⃗) and therefore BF10(y[K]) = BF10(s2) only

depend on the data via the ratios of sums of squares
νj s

2
j

νK s
2
K

, and because each s2k is

invariant under location shifts within sample/group k.
The Dirichlet prior π1(ϑ⃗) on the test-relevant parameters is inspired by the

form of h(s2 | ϑ⃗) and makes the proposed Bayes factor analytic. By definition of

1The nesting π1(µ, τ̄, ϑ⃗) = π0(µ, τ̄)π1(ϑ⃗) makes the use of the improper priors π0(µ, τ̄) ∝ τ̄−1 per-
missible as a limit of proper priors with normalization constants cancelling due to their appearances
in both the numerator and denominator of the Bayes factor (see also Hendriksen et al., 2021; Ly et al.,
2016a; Robert, 2016).
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the integral form of the type D Lauricella function, the proposed Bayes factor is

BF10(s2) =
B( ν2 +u)
B(u)

(
1 +

K−1∑
j=1

νj s
2
j

νK s
2
K

) ν+
2
FD

(
ν+
2 ; ν⃗2 + u⃗ ; ν+

2 +u+ ; 1⃗−
−−−→
νs2

νK s
2
K

)
, (3.7)

where B(u) = Γ (u1)···Γ (uK )
Γ (u+) is the multivariate beta function, 1⃗ = (1, . . . ,1) ∈ RK−1,

−−−→
νs2 = (ν1s

2
1, . . . ,νK−1s

2
K−1) is the K −1 vector of sums of squares, and where FD is a

type D Lauricella function which has the integral representation FD (a ; b⃗ ; d ; x⃗) =
Γ (d)

Γ (a)Γ (d−a)

∫ 1
0 t

a−1(1 − t)d−a−1(1 − x1t)−b1 · · · (1 − xK−1t)−bK−1dt whenever d > a, which
holds trivially since u > 0 always. Observe that, with Eq. (3.7) at hand, we also
have an analytic marginal posterior for ϑ⃗, namely,

π1(ϑ⃗ |y[K]) =

[∏K−1
j=1 ϑ

νj
2
j

]
(1− ϑ⃗+)

νK
2
(
1−

∑K−1
j=1 [1−

νj s
2
j

νK s
2
K

]ϑj
)− ν+

2

B( ν2 +u)FD
(
ν+
2 ; ν⃗2 + u⃗ ; ν+

2 +u+ ; 1⃗−
−−−→
νs2

νK s
2
K

) . (3.8)

The proposed Bayes factor can be computed from the sample variances and sam-
ple sizes directly. This makes it possible to re-evaluate the published literature
without the need to have access to the raw data, as shown in Section 3.5. In the
next section, we show that the proposed Bayes factor fulfills a number of desider-
ata.

3.3 Properties of the Proposed Bayes Factor

An important result of this chapter is that our proposed Bayes factor fulfills a
number of desiderata (Bayarri et al., 2012; Consonni et al., 2018; Jeffreys, 1939;
Ly et al., 2016a, 2016b). More specifically, we show that the proposed Bayes fac-
tor has the finite-sample properties of being (i) labelling invariant, (ii) (exactly)
predictively matched, and (iii) information consistent. It also has the asymp-
totic properties of being (iv) model selection consistent and (v) limit and across-
sample consistent. Information consistency requires uj ≤ 1/2 for j ∈ [K] while
labelling invariance requires ui = uj for all i, j ∈ [K], suggesting the default choice
of uj = 1/2 for all j ∈ [K].2

3.3.1 Labelling Invariance

A Bayes factor is labelling invariant if it is independent of the arbitrary choice of
which group is labelled K .

Theorem 3.3.1 (Labelling invariance). The proposed Bayes factor with ui = uj for
all i, j ∈ [K] is labelling invariant. ⋄
Proof. See Appendix B.3.1.

2Values 0 < u < 1/2 would also fulfill all desiderata, but would put even more mass on large differ-
ences between the variances; we therefore use u = 1/2 as our default choice.
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3.3.2 Predictive Matching

A Bayes factor is (exactly) predictively matched if it equals 1 for all data sets of
insufficient size, that is, BF10(y[K]) = 1 for all y[K] with n = (n1, . . . ,nK ) smaller
than the minimal sample sizes (Bayarri et al., 2012). The insufficient sizes are: (a)
n1 = . . . = nK = 1 as then νjs

2
j = 0 for all j ∈ [K] regardless of the observations, and

(b) nk = 2 for some k ∈ [K] and nj = 1 for all j ∈ [K] \ {k}, in which case there is no
other sample variance to compare s2k to.

Theorem 3.3.2 (Predictive matching). A Bayes factor constructed from the pair of
priors π1(µ, τ̄, ϑ⃗) = π0(µ, τ̄)π1(ϑ⃗) and π0(µ, τ̄) ∝ τ̄−1 with π1(ϑ⃗) proper is predictively
matched. This holds for our proposed Bayes factor. ⋄

Proof. See Appendix B.3.2.

3.3.3 Information Consistency

Information consistency implies that for all data sets of sufficient size, that is,
fixed n = (n1, . . . ,nK ) with at least two indexes j , k ∈ [K] such that nj ,nk ≥ 2,
the Bayes factor in favor of the alternative over the null should tend to infinity
whenever it becomes abundantly clear that the null cannot hold true. This occurs
in the limit s2j /s

2
K → 0, that is, when the observed variance s2K is of a much higher

order than another sample variance s2j .

Theorem 3.3.3 (Information consistency). The proposed Bayes factor is information
consistent if uj ≤ 1/2 for j ∈ [K]. ⋄

Proof. See Appendix B.3.3.

3.3.4 Model Selection Consistency

A Bayes factor is model selection consistent if it selects the correct model as n→
∞, that is, if

BF10(Y [K],n)
P→ 0 if P ∈M0, and BF01(Y [K],n)

P→ 0 if P ∈M1, (3.9)

where P refers to the data generating distribution, and where Xn
P→ X denotes

convergence in probability, that is, limn→∞P(|Xn −X | > ϵ) = 0 for all ϵ > 0.
To state the theorem and to allow the K sample sizes go to infinity indepen-

dently of each other, we let nK ≡ n and nj ≡ cjn for cj > 0, j ∈ [K], thus, cK = 1
by definition. To also allow the (data-governing) variances to differ arbitrarily as
well, we let γj be the relative size of the variance σ2

j with respect to σ2
K , that is,

σ2
j ≡ γjσ

2
K where γj > 0 for j ∈ [K], thus, γK = 1 by definition. Note that the null

hypothesis is equivalent to γ = 1 ∈ RK , whereas under the alternative there exists
at least one j ∈ [K] such that γj , 1.
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Theorem 3.3.4 (Model selection consistency). The proposed Bayes factor is model

selection consistent. Furthermore, let Yji
iid∼ N (µj ,σ

2
j ) where σ2

j = γjσ
2
K for i ∈ [nj ],

nj = cjn, and nK = n for j ∈ [K], then as all the sample sizes tend to infinity, the Bayes
factor behaves as

BF10(s2,n) = C0(K,c,u |γ)n
1−K

2
( ⟨c,γ⟩

c+

) c+
2 n

(K−1∏
j=1

γ
−
cj
2 n

j

)
exp(V (n)), (3.10)

where ⟨c,γ⟩ ≡
∑K
j=1 cjγj , V (n) = OP (n−1/2) under the null and V (n) = OP (n1/2) under

the alternative, and where

C0(K,c,u |γ) =
(4π)

K−1
2 c

1
2
+

(∏K−1
j=1 γ

−uj
j

)
B(u)

(∏K−1
j=1 c

1
2
j

)
(c+ −

∑K−1
j=1

cjγj−1
γj

)u+

. (3.11)

This means that under the alternative, H1 : γj , 1 for some j ∈ [K − 1], we have that

log(BF10(s2,n)) = log
(
C0(K,c,u |γ)

)
+ 1−K

2 log(n)

+
(
c+ log

( ⟨c,γ⟩
c+

)
−
K−1∑
j=1

cj log(γj )
)n

2
+OP (n1/2). (3.12)

Under the null, H0 : γ⃗ = 1⃗, this simplifies drastically, and the logarithm of the Bayes
factor then behaves as

log(BF10(s2,n)) = 1−K
2

(
log(n)− log(4π)

)
+ 1

2

(
log(c+)−

K−1∑
j=1

log(cj )
)

−u+ log(K)− logB(u) +OP (n−1/2). (3.13)

Hence, BF10(s2,n) converges relatively slowly to zero under the null compared to the
exponential decay of BF01(s2,n) under the alternative. ⋄

Proof. See Appendix B.3.4.

3.3.4.1 Illustrating the Rate of Convergence

We illustrate the rate of convergence of our default Bayes factor by visualizing
Equations (3.12) and (3.13) as a function of K ∈ [2,12] and γ1 ∈ [2, . . . ,11] with
γ2 = . . . = γK = 1 and σ2

K = 1. Equation (3.12) shows that under the alternative the
asymptotic behavior of log(BF10) is mostly linear in n. The left panel in Figure 3.1
shows the slope of this linear increase — termed the log Bayes factor growth —
as a function of K and γ1. We arrive at this slope by computing Equation (3.12)
for a large number of n and regressing the result on n. When H1 is true, the
rate of convergence of the Bayes factor is exponential, and so the log Bayes factor
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grows linearly. We visualize the slope of how the log Bayes factor grows across the
number of groups, with larger values indicating more rapid exponential growth.
We find that, as the number of groups increases, the log Bayes factor grows more
quickly. This increase is also dependent on γ1; for larger values, the Bayes factor
grows more quickly with increasing number of groups.
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Figure 3.1: Left: Shows the rate of the linear growth of the log Bayes factor under H1 for increasing
γ1 and number of groups. Right: Shows how log(BF01) grows as a function of n when H0 is true for
different number of groups K . All Bayes factors were computed with the default value u = 1/2.

The right panel in Figure 3.1 illustrates log(BF01) as a function of the sample
size per group for different number of groups K under the null hypothesis, using
Equation (3.13). In contrast to the scenario when H1 is true, the rate of conver-
gence whenH0 is true is no longer exponential (see also Bahadur & Bickel, 2009;
Jeffreys, 1961; Johnson & Rossell, 2010).

3.3.5 Limit and Across-Sample Consistency

A Bayes factor is limit consistent if it remains bounded as long as not all nj →∞
for j ∈ [K] (Ly, 2018, Ch. 6). A Bayes factor is across-sample consistent if the
limit of the K-sample Bayes factor as a function of the fixed observations of the
groups i ∈ [K −1] results in a K −1 sample Bayes factor (Peña, 2018, Ch. 4). Note
that we can consider without loss of generality the situation where the first K −1
samples are fixed as nK →∞ because of labelling invariance. For the following,
we assume that S2

K is a
√
nK -consistent estimator for the data-governing variance

σ2
0 of the Kth group, which by Chebyshev’s inequality is certainly the case when
YKi ∼N (µK ,σ

2
0 ).

We call the K-sample Bayes factor BF[K]
10 (s⃗2,S2

K ) across-sample consistent if,
as nK → ∞, it converges in probability under σ−2

0 to a K − 1 Bayes factor
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BF[K−1]
10;σ2

0
(y[K−1]), comparing the hypotheses

H[K−1]
0;σ2

0
: τj = σ−2

0 for all j ∈ [K − 1] (3.14)

H[K−1]
1;σ2

0
: τj , σ

−2
0 for at least one j ∈ [K − 1]. (3.15)

Here the null hypothesis states that the K−1 precisions are all equal to the known
constant σ−2

0 , whereas the alternative states that at least one precision is unequal
to σ−2

0 .
The theorem below implies that the proposed Bayes factor converges in prob-

ability to a lower dimensional Bayes factor BF[K−1]
10;σ2

0
(s⃗2) that is based on uniform

priors on the nuisance parameters µ⃗ ∈ RK−1, and an inverse Dirichlet distribution
on the precisions τ⃗ = (τ1, . . . , τK−1) ∈ RK−1 scaled by 1/σ−2

0 , that is,

πσ2
0

(τ⃗ |M[K−1]
1 ) =

(σ2
0 )K−1 ∏K−1

j=1 (σ2
0 τj )

uj−1

B(u⃗,w)(1 + σ2
0 τ⃗+)u⃗++w

, (3.16)

where we wrotew = uK so the statement only involves vectors of length K−1. The
integral representation of the multivariable generalisation of Tricomi’s confluent
hypergeometric function of the second kind U (see e.g., Ng et al., 2011; Phillips,
1988) shows that the resulting K − 1 sample Bayes factor is given by

BF[K−1]
10;σ2

0
(s⃗2) =

∫ (∏K−1
j=1 τ

νj
2
j

)
exp(−1

2
∑K−1
j=1 νjs

2
j τj )πσ2

0
(τ⃗ |M[K−1]

1 )dτ⃗

(σ2
0 )−

ν⃗+
2 exp(− (

−−−→
νs2 )+
2σ2

0
)

,

=

(∏K−1
j=1 Γ (

νj
2 +uj )

)
U
(
ν⃗
2 + u⃗ ; ν⃗+

2 −uK + 1;
−−−→
νs2

2σ2
0

)
B(u⃗,w)exp(− (

−−−→
νs2 )+
2σ2

0
)

, (3.17)

where
−−−→
νs2 = (ν1s

2
1, . . . ,νK−1s

2
K−1) denotes the vector of sums of squares, (

−−−→
νs2 )+ =∑K−1

j=1 νjs
2
j , and ν⃗+ ≡

∑K−1
j=1 νj , as before.

Theorem 3.3.5 (Limit and Across-Sample
√
nK -consistency). If S2

K is an
√
nK -

consistent estimator for σ2
0 , then the Bayes factor BF[K]

10 (s⃗2,S2
K ) is a

√
nK -consistent

estimator of the K − 1-sample Bayes factor BF[K−1]
10;σ2

0
(s⃗2) given in Eq. (3.17). Further-

more, if YKi ∼ N (µK ,σ
2
0 ), then

√
nK (S2

K − σ
2
0 ) is asymptotically normal, and conse-

quently so is the K-sample Bayes factor, that is,

√
nK

(
BF[K]

10 (s⃗2,S2
K )−BF[K−1]

10;σ2
0

(s⃗2)
)

d→N
(
0,2σ4

0 T̆
2
1

)
(3.18)

where T̆1 is given by Eq. (B.69) in the appendix. ⋄

Proof. See Appendix B.3.5.
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3.4 Special Cases, Deviations from the Default, and
Multiple Comparisons

The comparison of K = 2 groups occurs frequently in practice and we discuss
the Bayes factor for this special case in the following section. We also consider
three modifications of the default choice in order to incorporate a subject as-
sessment of the test-relevant parameter, and to accommodate directed tests and
interval Bayes factors. Lastly, we also consider the problem of testing all possible
(in)equalities, that is, the multiple comparison problem.

3.4.1 The Bayes Factor for K = 2 Groups

For the K = 2 group case, the null model of equal precisions has three parameters
(µ1,µ2, τ̄) whereas the alternative has four (µ1,µ2, τ̄ ,ϑ). The comparison of inter-
est is then between H0 : ϑ = 1

2 and H1 : ϑ , 1
2 . In this case, the proposed Bayes

factor simplifies to

BF10(s2) =
B(
ν1
2 +u1,

ν2
2 +u2)

B(u1,u2)

(
1 + ν1s

2
1

ν2s
2
2

)ν1+ν2
2

2F1

(
ν1+ν2

2 , ν1+2u1
2 ; ν1+ν2+2(u1+u2)

2 ; ν2s
2
2−ν1s

2
1

ν2s
2
2

)
,

(3.19)

where 2F1 refers to the Gaussian or ordinary hypergeometric function, which has

the integral representation 2F1(a,b ; c ; z) = Γ (c)
Γ (b)Γ (c−b)

∫ 1
0 t

b−1(1 − t)c−b−1(1 − tz)−adt,
with Re(c) > Re(b) > 0 (Abramowitz & Stegun, 1972, Eq. 15.3.1). Observe that

across-sample consistency implies that for Y2i
iid∼ N (µ2,σ

2
0 ) and n2→∞, the two-

sample Bayes factor is a
√
n2-consistent estimator of the one-sample Bayes factor

BF[1]
10;σ2

0
(s21) =

Γ (ν1
2 +u1)U

(
ν1
2 +u1 ; ν1

2 −u2 + 1; ν1s
2
1

2σ2
0

)
B(u1,u2)exp(−ν1s

2
1

2σ2
0

)
. (3.20)

This Bayes factor compares the alternative hypothesisH[1]
1 ;σ2

0
: τ1 , σ

−2
0 to the null

hypothesis H[1])
0 ;σ2

0
: τ1 = σ−2

0 with σ2
0 known. Here U (a ; b ; z) = 1

Γ (a)

∫∞
0 e−ztta−1(1 +

t)b−a−1dt is the (one-dimensional) Tricomi’s confluent hypergeometric function
of the second kind (Abramowitz & Stegun, 1972, Eq. 13.2.5).

3.4.2 Prior elicitation for K = 2 groups

For prior elicitation, it is arguably more intuitive to express the prior on the test-
relevant parameter in terms of the ratio of the standard deviations, φ ≡ σ2

σ1
=√

ϑ
1−ϑ , thus,

∫ 1
0 dϑ =

∫∞
0 2φ(1 + φ2)−2dφ. The prior ϑ ∼ Beta(u1,u2) underlying
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Figure 3.2: Prior on ϑ (left) and induced prior on φ (right) for u ≡ u1 = u2 ∈ {4.50,2.00,0.50}; see
Section 3.4.2 for the rationale behind these values.

Eq. (3.19) induces a generalized beta prime distribution on φ with density

π(φ ; u1,u2) =
2φ2u1−1(1 +φ2)−(u1+u2)

B(u1,u2)
. (3.21)

Figure 3.2 visualizes the prior assigned to ϑ and φ for various values of u ≡ u1 =
u2. A statistician may now elicit a researcher’s prior beliefs in terms of (a ratio
of) standard deviations conditional on the alternative holding true. For example,
if the researcher believes that the probability of one standard deviation being
twice as large or twice as small as the other does not exceed 95%, then she should
choose u = 4.50. Note that the resulting Bayes factor is not information consistent
anymore. A change of variables shows that the posterior distribution in terms of
φ is given by

π(φ |y(2)) =
2φν1+2u1−1(1 +φ2)−(u1+u2)(1 + ν1s

2
1

ν2s
2
2
φ2)−

ν1+ν2
2

B(ν1
2 +u1,

ν2
2 +u2)2F1

(
ν1+ν2

2 , ν1
2 +u1 ; ν1+ν2

2 +u1 +u2 ; 1− ν1s
2
1

ν2s
2
2

) .
(3.22)

3.4.3 Interval Bayes Factors

Researchers may wish to extend the sharp null hypothesis ϑ = 1/2 to include a
null-region around the point null value. If the null-region overlaps with the prior
under the alternative, this leads to an (inconsistent) peri-null Bayes factor (e.g.,
Ly & Wagenmakers, 2021; Morey & Rouder, 2011). If the null-region does not
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overlap with the prior under the alternative, that is, if we compare the hypotheses

H0 : φ ∈ [a,b] (3.23)

H1 : φ < [a,b], (3.24)

then this yields a non-overlapping interval-null Bayes factor (e.g., Berger & De-
lampady, 1987; Rousseau, 2007). The null-region is usually informed by the
problem at hand, as we will see later on an example.

3.4.4 Directed Bayes Factors

Researchers sometimes desire to quantify evidence in favor of hypotheses such
as H+ : σ2

1 > σ
2
2 , or H− : σ2

1 < σ
2
2 . More generally, let Hr denote such an order-

constrained or directed hypothesis. Since σ2
1 = (2ϑτ̄)−1 and σ2

2 = (2(1 − ϑ)τ̄)−1,
we have that σ2

1 > σ
2
2 implies ϑ < 1/2. We therefore restrict the beta prior on ϑ

accordingly in the calculation of the the marginal likelihood for Hr (see also Ly
et al., 2016b), which can then be used to calculate directed Bayes factors.

In the more general K > 2 group case, we can similarly specify equality or in-
equality constraints by encoding them in the prior distribution on ϑ⃗. An example
of such a constrained hypotheses is given by

Hr : ϑ1 = ϑ2 > (ϑ3,ϑ4,ϑ5 = ϑ6) > ϑ7,

which incorporates two equality constraints (ϑ1 = ϑ2 and ϑ5 = ϑ6), several order
constraints (e.g., ϑ1 > ϑ3, ϑ1 > ϑ4, ϑ3 > ϑ7, ϑ4 > ϑ7), and no constraints between
ϑ3, ϑ4, and ϑ5 = ϑ6 (and therefore also the standard deviations and variances).
Note that while this hypothesis is formulated in terms of ϑ⃗, it has immediate im-
plications for the precisions and thus for the standard deviations and variances.
We could also directly formulate the hypotheses on the variances or standard
deviations, for example, with (σ1 = σ2) > σ3 implying that (ϑ1 = ϑ2) < ϑ3. This
flexibility allows researchers to translate substantive predictions directly into sta-
tistical hypotheses.

We compute Bayes factors including mixed hypotheses such as Hr as follows.
First, we introduce a new auxiliary hypothesis Ha which does not include order-
constraints. In our example, this yields

Ha : ϑ1 = ϑ2,ϑ3,ϑ4,ϑ5 = ϑ6,ϑ7.

We estimate the (auxiliary) Bayes factor BFra by dividing the proportion of sam-
ples that respect the order-constraints in Hr in the posterior by the propor-
tion of samples that respect it in the prior (Klugkist et al., 2005). Separately,
we then estimate the Bayes factor in favor of Ha over H1 (or H0) using bridge
sampling (Gronau et al., 2017; Meng & Wong, 1996). Combining these two
Bayes factors yields the desired Bayes factor in favor of Hr over H1 (or H0),
that is, BFr1 = BFra × BFa1. The R package bfvartest, which is available from
https://github.com/fdabl/bfvartest, implements this and all other procedures
described above; see Appendix B.4 for how to use the package.
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3.4.5 Comparison to a Fractional Bayes Factor

One alternative to choosing the prior based on desiderata, as done in this chapter,
is to use the data to inform the prior. O’Hagan (1995) proposed the fractional
Bayes factor, which uses a fraction b = m0/n of the entire likelihood to construct
a prior, where m0 is the size of the minimal training sample and n is the sample
size. Böing-Messing and Mulder (2018) developed a fractional Bayes factor for
testing the (in)equality of several population variances. Here, we compare our
proposed default Bayes factor to their fractional Bayes factor.

Since the likelihood is the same, the key difference between the two Bayes fac-
tors is in their respective prior specification. As we are concerned with hypothe-
ses that can feature both inequality and equality constrains, we need to introduce
additional notation. Let Hr denote a hypothesis with qEr equality and qIr inequal-
ity constraints on K population variances, such that there are Jr = K − qEr unique
variances σ⃗2

r = (σ2
1 , . . . ,σ

2
Jr

). Further, let Kj be the number of populations sharing

the unique variance σ2
j , and njk be the sample size of the kth population shar-

ing the unique variance σ2
j . Böing-Messing and Mulder (2018) use population-

specific fractions given by bjk = 2/njk , wherem0 = 2 is the minimal training sample
size for the automatic prior to be proper; it is in this sense that their Bayes factor
relies on minimal prior information. They calculate the marginal likelihood for
hypothesis Hr as

p(y[K] | Hr ) =

∫
Ωt

∫
RK f (y[K];µ, σ⃗r

2)π(µ, σ⃗r
2)dµdσ⃗r

2∫
Ωa
t

∫
RK f (y[K];µ, σ⃗r

2)bπ(µ, σ⃗r
2)dµdσ⃗r

2 , (3.25)

where b is the vector of population-specific fractions, π(µ, σ⃗2
r ) ∝

∏Jr
i=1σ

−2
i is the

Jeffreys prior, Ωt specifies the region of integration depending on the inequality
constraints in Ht , and Ωa

t is the adjusted integration region given by

Ωa
t =

{
σ⃗r

2 : RI [a1σ
2
1 . . . aJrσ

2
Jr

] > 0⃗
}
, (3.26)

where RI encodes the inequality constraints among the Jr unique variances, and

where aj = Kj/2
∑Kj
k=1

1−
s2jk
njk

. Böing-Messing and Mulder (2018) show that this setup
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leads to the following expression for the marginal likelihood of Hr

p(y[K] | Hr ) =

∫
Ωr

∏Jr
j=1 Inv-Gamma

σ2
j ;

∑Kj
k=1 njk−Kj

2 ,
∑Kj
k=1

(
njk−1

)
s2jk

2

dσ2
j

∫
Ωr

∏Jr
j=1 Inv-Gamma

 Kj∑Kj
k=1

(
2− 1

njk

)
s2jk

σ2
j ;

Kj
2 ,

Kj
2

dσ2
j

π
−
∑Jr
j=1

∑Kj
k=1(njk

−2)

2

 Jr∏
j=1

Kj∏
k=1

(njk
2

) 1
2

 Jr∏
j=1

Γ

∑Kj
k=1 njk−Kj

2

(∑Kj
k=1

(
2− 1

njk

)
s2jk

)Kj
2

Γ

(
Kj
2

)(∑Kj
k=1(njk − 1)s2jk

)∑Kj
k=1 njk

−Kj
2

, (3.27)

where Inv-Gamma(x;α,β) is the density of the inverse Gamma distribution, and
the ratio of the two integrals gives the probability that the constraints hold in the
posterior divided by the probability that they hold in the prior. This ratio equals 1
when testing hypotheses without order-constraints, i.e., Ωα

t = Ωt . From Equation
(3.27) it follows that the prior distribution assigned to σ2

j under hypothesisHr is
given by

σ2
j ∼ Inv-Gamma

Kj2 ,

∑Kj
k=1

(
2− 1

njk

)
s2jk

2

 ,
where njk and s2jk are the sample size and the sum of squares of the kth group

sharing population variance σ2
j . Note that, in contrast to our proposed default

prior, the prior for the fractional Bayes factor proposed by Böing-Messing and
Mulder (2018) depends on the data. Similarly, our prior specification results in
a joint distribution on σ2 that cannot be factorized, that is, it results in a depen-
dent prior, where the dependency is created through the weights ϑ⃗. The prior
specification by Böing-Messing and Mulder (2018) induces a Dirichlet prior on
ϑ⃗ with u = Kj/2 and a non-standard prior on τ̄ (it follows a Gamma distribution
if and only if all sample sizes and sum of squares are equal). Figure 3.3 shows
our default Bayes factor and the fractional Bayes factor for K = 2, sample sizes
n ≡ n1 = n2 ∈ [5, . . . ,200], and different values of φ = {1,1.2,1.3,1.4,1.5}. While
our proposed default Bayes factor and the fractional Bayes factor differ, they show
very similar results for u = 1/2.

There is an interesting discrepancy between the two Bayes factors when test-
ing directed hypotheses. In case there is overwhelming evidence for the hypoth-
esis that Hr : σ2

1 > . . . > σ
2
K , the Bayes factor in favor of it over H1 : σ2

1 , . . . , σ
2
K

reaches the bound K!. However, in case there are the same J equalities in both
hypotheses, the fractional Bayes factor does not reach the bound of (K − J)!, while
our proposed default Bayes factor does. This is because Böing-Messing and Mul-
der (2018) set bjk = 2/njk for all groups. While this is desirable in the sense that one
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Figure 3.3: Comparison of the Bayes factor proposed by Böing-Messing and Mulder (2018), denoted
AFBF, and our Bayes factor for K = 2 groups as a function of n ≡ n1 = n2, prior specification u ≡ u1 =
u2, and effect size φ = {1,1.1,1.2,1.3,1.4,1.5}.

thus uses the same “minimal” amount of information under each hypothesis, this
results in a different shape parameter of the inverse gamma prior distribution,
and the bound is therefore not reached, which can be considered a shortcoming
of the fractional Bayes factor.

3.4.6 Multiple Comparisons

So far, we have focused on comparing the null hypothesis H0 in which all vari-
ances are equal against the alternative hypothesisH1 in which all variances were
free to vary or against mixed hypotheses Hr which allow for equalities, inequal-
ities, and order-constraints. However, researchers are sometimes also interested
in assessing all possible (in)equalities. Statistically, all possible configurations of
equality and inequality constraints can be uniquely represented as partitions of
the groups, where groups are equal if they are in the same partition. Given K
groups, the number of partitions of size j is given by the Stirling numbers of the
second kind, denoted

{K
j

}
. The total number of partitions is given by the K th-Bell

number, which is defined as a sum over the Stirling numbers

BK =
K∑
j=0

{
K
j

}
. (3.28)
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The Bell numbers grow quickly, with K = 10 already yielding 115,975 models.
This results in a multiple comparison problem, which in a Bayesian framework
can be addressed by suitable adjusting the prior model odds (e.g., Jeffreys, 1961;
Westfall et al., 1997). Inspired by the work on variable selection in regression
(Scott & Berger, 2006, 2010), van den Bergh and Dablander (2022) recently pro-
posed a beta-binomial prior for this problem, comparing it to a Dirichlet process
prior proposed by Gopalan and Berry (1998) as well as to other methods to mul-
tiple comparison that do not require specifying a prior over all models (de Jong,
2019; Jeffreys, 1961; Westfall et al., 1997). For a small number of groups, one can
directly calculate the marginal likelihood of each model and use the posterior
model probabilities for inference

p(Hj | y[K]) =
p(y[K] | Hj )π(Hj )∑BK
i=0p(y[K] | Hi)π(Hi)

=
BFj0π(Hj )∑BK
i=0 BFi0π(Hi)

, (3.29)

where BK is the K th Bell number and the prior models probabilities π(Hj ) are
suitable adjusted, as detailed in van den Bergh and Dablander (2022). Table 3.1
shows the results of an analysis detailed in Section 3.5.6 for a K = 4 group case
under different model priors. For details, we refer the interested reader to van
den Bergh and Dablander (2022), who also developed a stochastic search method
to deal with larger K .

Beta-binomial Prior Dirichlet Process Prior

Hypothesis α = 1,β = 1 α = 1,β = 4 α = 1 α = 1.817

{Flemish, German, Estonian, Czech} 0.250 (0.446) 0.571 (0.739) 0.250 (0.368) 0.116 (0.192)
{Flemish}, {German, Czech}, {Estonian} 0.042 (0.029) 0.019 (0.007) 0.042 (0.016) 0.064 (0.034)
{Flemish, Estonian}, {German}, {Czech} 0.042 (0.005) 0.019 (0.001) 0.042 (0.003) 0.064 (0.006)
{Flemish, Czech}, {German}, {Estonian} 0.042 (0.000) 0.019 (0.000) 0.042 (0.000) 0.064 (0.000)
{Flemish}, {German, Estonian}, {Czech} 0.042 (0.083) 0.019 (0.018) 0.042 (0.053) 0.064 (0.118)
{Flemish, German}, {Estonian}, {Czech} 0.042 (0.015) 0.019 (0.004) 0.042 (0.009) 0.064 (0.023)
{Flemish}, {German}, {Estonian, Czech} 0.042 (0.018) 0.019 (0.004) 0.042 (0.015) 0.064 (0.029)
{Flemish, Estonian}, {German, Czech} 0.036 (0.030) 0.041 (0.017) 0.042 (0.014) 0.035 (0.019)
{Flemish, German}, {Estonian, Czech} 0.036 (0.060) 0.041 (0.038) 0.042 (0.056) 0.035 (0.049)
{Flemish, Czech}, {German, Estonian} 0.036 (0.004) 0.041 (0.002) 0.042 (0.003) 0.035 (0.004)
{Flemish, Estonian, Czech}, {German} 0.036 (0.005) 0.041 (0.004) 0.083 (0.009) 0.070 (0.007)
{Flemish, German, Estonian}, {Czech} 0.036 (0.061) 0.041 (0.041) 0.083 (0.105) 0.070 (0.111)
{Flemish, German, Czech}, {Estonian} 0.036 (0.003) 0.041 (0.002) 0.083 (0.005) 0.070 (0.005)
{Flemish}, {German, Estonian, Czech} 0.036 (0.211) 0.041 (0.120) 0.083 (0.339) 0.070 (0.390)
{Flemish}, {German}, {Estonian}, {Czech} 0.250 (0.029) 0.029 (0.001) 0.042 (0.003) 0.116 (0.012)

Table 3.1: Prior (and posterior) probabilities of the different hypotheses under different model priors
illustrated on the example discussed in Section 3.5.6. Groups with the same population variance are
put into the same set, e.g., σ1 = σ2 , σ3 = σ4 corresponds to {{σ1,σ2}, {σ3,σ4}}.
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Figure 3.4: Left: Peer-rated conscientiousness of Estonian men and women. Middle: Prior and poste-
rior of φ (with u = 1/2). Right: Bayes factor sensitivity analysis for u ∈ [1/2,100].

3.5 Practical Examples

In the following sections we apply our proposed Bayes factor test on a number of
examples.

3.5.1 Sex Differences in Personality

There is a rich history of research and theory about differences in variability be-
tween men and women, going back at least to Charles Darwin (Darwin, 1871).
Borkenau et al. (2013) studied whether men and women differ in the variability
of personality traits. Here, we focus on peer-rated conscientiousness in Estonian
women and men (s2f = 15.6, s2m = 19.9, nf = 969, nm = 716). The left panel in
Figure 3.4 visualizes the raw data, and the middle panel shows the prior (using
u = 1/2) and the posterior distribution for the effect size φ. The default Bayes fac-
tor yields BF10 = 12.98 in favor of a difference in variances, and the right panel
shows a sensitivity analysis to the specification of u in the default Bayes factor
(note that the x-axis scale is 1/u); as expected, a smaller value of u corresponds
to a wider prior of φ under H1 and decreases the predictive performance of H1
compared to H0. Nevertheless, across the range of u visualized in Figure 3.4,
there is strong evidence that Estonian men show larger variability in peer-rated
conscientiousness than Estonian women. For comparison, a frequentist analysis
using Bartlett’s test (Bartlett, 1937) yields χ2(1) = 12.54, p = 0.0004. The Vovk-
Sellke bound 1/(−e ·p log(p)) (Sellke et al., 2001; Vovk, 1993) gives the maximum
possible odds in favor of H1 over H0 based on the p-value, and yields 118.11.

3.5.2 Testing Against a Single Value

Polychlorinated biphenyls (PCB), which are used in the manufacture of large
electrical transformers and capacitors, are hazardous contaminants when re-
leased into the environment. Suppose that the Environmental Protection Agency
is testing a new device for measuring PCB concentration (in parts per million)
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in fish, requiring that the instrument yields a variance of less than 0.10 (a stan-
dard deviation σ0 ≤ 0.32), thus φ > 1. This suggests the use of a directed Bayes
factor. Seven PCB readings on the same sample of fish are subsequently per-
formed, yielding a sample standard deviation of s = 0.22 and a sample effect size
of φ̂ = σ0

s = 1.42 (see Mendenhall & Sincich, 2016, p. 420). We compare the
following hypotheses

H0 : φ = 1

H+ : φ > 1,

which yields BF+0 = 0.51 for the default value u = 1/2, a value slightly higher than
for an undirected test, BF10 = 0.41. To illustrate prior elicitation, assume that
the makers of the new device are highly confident in their work, assigning 50%
probability to the outcome that the new device reduces the required standard
deviation at least by half. Defining φ = σ0

σdevice
, this formally translates into π(φ ∈

[2,∞]) = 1/2, which is fulfilled by a (truncated) prior with u = 2.16. Using this
prior specification results in BF+0 = 0.83.

3.5.3 Comparing Measurement Precision

In paleoanthropology, researchers study the anatomical development of modern
humans. An important problem in this area is to adequately reconstruct exca-
vated skulls. Sholts et al. (2011) compared the precision of coordinate measure-
ments of different landmark types on human crania using a 3D laser scanner and
a 3D digitizer. They reconstructed five excavated skulls and found — for land-
marks of Type III, that is, the smooth part of the forehead above and between the
eyebrows — an average (across skulls) standard deviation of 0.98 for the Digitizer
(n1 = 990) and an average standard deviation of 0.89 for the Laser (n2 = 990). We
define φ =

σDigitizer
σLaser

and observe that the sample effect size is 1.10. We demonstrate
two tests. First, we test whether the Laser has a lower standard deviation than
the Digitizer, writing

H0 : φ = 1

H+ : φ > 1.

The default Bayes factor in favor of H1 is BF+0 = 4.93 — about double the undi-
rected Bayes factor BF+0 = 2.47 — indicating moderate evidence for the hypoth-
esis that a 3D Laser is a more precise tool for measuring Type III landmarks on
the excavated human scull compared to a 3D Digitizer. Second, in this specific
scenario, a researcher might treat the Digitizer as being equally as precise as the
Laser when its standard deviation differs by a maximum of 10%. She might then
choose to compare the following non-overlapping hypotheses

H
′
0 : φ ∈ [0.90,1.10]

H
′
+ : φ > 1.10.
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The Bayes factor with u = 1/2 in favor of H′0 is BF
′
0+ = 7.03, indicating moder-

ate support for the hypothesis that the Laser and the Digitizer have about equal
performance. In general, we recommend researchers use the default Bayes factor
unless substantive prior knowledge or particular circumstances justify a different
test.

3.5.4 The “Standardization” Hypothesis in Archeology

Economic growth encourages increased specialization in the production of goods,
which leads to the “standardization” hypothesis: increased production of an item
would lead to it becoming more uniform. Kvamme et al. (1996) sought to test
this hypothesis by studying chupa-pots, a type of earthenware produced by three
different Philippine communities: the Dangtalan, where ceramics are primarily
made for household use; the Dalupa, where ceramics are traded in a non-market
based barter economy; and the Paradijon, which houses full-time pottery special-
ists that sell their ceramics to shopkeepers for sale to the general public. Thus,
there is an increased specialization across these three communities. Kvamme et
al. (1996) use circumference, height, and aperture as measures for the chupa-
pots; here, we focus on the latter two. The authors test whether the standard
deviations across these three groups are different, comparing

H0 : σ1 = σ2 = σ3

H1 : σ1 , σ2 , σ3,

where σ1, σ2, and σ3 correspond to the standard deviations of chupa-pots in the
Dangtalan, Dalupa, and Paradijon communities, respectively. Since our Bayes
factor test only requires summary statistics, we can test these hypotheses using
the data from Table 4 in Kvamme et al. (1996). The authors observed n = 55
pots from the Dangtalan community with a standard deviation in aperture of
12.74; n = 171 pots from the Dalupa community with a standard deviation of
8.13; and n = 117 pots from the Paradijon community with a standard deviation
of 5.83. Using our default choice of u = 1/2, we find overwhelming evidence for a
difference in the standard deviations of the aperture measurements, log(BF10) =
20. Note that we can formulate a stronger statistical hypothesis based on the
substantive “standardization” hypothesis, namely that the standard deviations in
aperture increase from the Paradijon to the Dangtalan community, Hr : σ1 > σ2 >
σ3. This yields even stronger evidence, log(BFr0) = 21.80, such that the Bayes
factor in favor of Hr compared to H1 is very close to its theoretical maximum,
BFr1 = 5.98 ≈ 3!. If we were to use height instead of aperture measurements of
the pots, which yield standard deviations of 9.60, 7.23, and 7.81, respectively,
the evidence in favor of H1 and Hr compared to H0 would be much weaker,
BF10 = 2.27 and BFr0 = 2.87, respectively. For comparison, Bartlett’s test for H0
yields χ2(1) = 49.94, p < 0.00001 with a (log) Vovk-Sellke bound of 20.75 for the
aperture measurements and χ2(1) = 7.18, p = 0.0277 with a Vovk-Sellke bound
of 3.71 for the height measurements.
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Figure 3.5: Left: Shows Math Garden rating scores across school grades. Right: Shows posterior of
φ for pairwise consecutive class comparisons. Virtually all probability mass is assigned to φ > 1,
implying that the variance increases with every school grades.

3.5.5 Increased Variability in Mathematical Ability

Aunola et al. (2004) find that the variance in mathematical ability increases
across school grades. Using large-scale data from Math Garden, an online learn-
ing platform in the Netherlands (Brinkhuis et al., 2018), we assess the evidence
for this hypothesis using our Bayes factor test. Math Garden assigns each pupil
a rating, similar to an ELO score used in chess, and which increases if the
pupil solves problems correctly. We have data from n = 41,801 different pupils
across school grades 3 – 8, which is visualized in the left panel of Figure 3.5.
From grade 3 upwards, the standard deviations of the Math Garden ratings are
3.08,3.69,4.62,4.97,5.39, and 5.99, for respective sample sizes of 6,410, 9,395,
9,160, 7,549, 6,007, and 3,280. Following Aunola et al. (2004), we wish to com-
pare the hypotheses

H0 : σi = σj ∀(i, j)

H1 : σi , σj ∀(i, j)

Hr : σi > σj ∀(i > j).

Using the default choice u = 1/2, we find overwhelming support in favor of
a difference in the standard deviations, log(BF10) = 1660.53. As is suggested
by the raw data visualized in the left panel of Figure 3.5, we also find over-
whelming support for an increase in variability with increased school grade,
log(BFr0) = 1667.11. The order-constrained hypothesis again strongly outper-
forms the unrestricted hypothesis, yielding evidence close to its theoretical max-
imum, BFr1 = 719.69 ≈ 6!. The right panel in Figure 3.5 shows the posterior
distribution of φ for pairwise comparisons across school grades. For comparison,
Bartlett’s test for H0 yields χ2(1) = 3366.70, p < 0.00001 with a (log) Vovk-Sellke
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Figure 3.6: Left: Posterior distributions of variances in the model where all variances are assumed
to be different (top) and when averaging across all models using a beta-binomial(α = 1, β = 4) prior
(bottom). Right: Posterior probabilities for pairwise equality of variances between populations.

bound of 1664.07.

3.5.6 Country Differences in Conscientiousness

As our last example, we illustrate how researchers could use our default Bayes
factor combined with the work described in Chapter 4 of this dissertation to test
all possible (in)equalities between variances. We utilize the data set by Borkenau
et al. (2013) again, but now test whether the Czech (s2C = 20,n = 714), Estonian
(s2E = 17.7,n = 1685), German (s2G = 17.3,n = 303), and Flemish (s2F = 14.2,n =
291) population differ in their variances of peer-rated conscientiousness. The
posterior probability for each hypothesis under a different prior model specifi-
cation can be found in Table 3.1. We find that the null hypothesis of no differ-
ences generally yields the highest posterior probability, followed by the hypoth-
esis which states that the Flemish population variance differs from the rest. The
left panels in Figure 3.6 show the posterior distributions for each variance un-
der the full model (top) and when model-averaging across all models (bottom)
using the beta-binomial(α = 1,β = 4), which is recommended by van den Bergh
and Dablander (2022). We see that there is pronounced shrinkage towards the
average variance, which is an indication that the model in which all variances
are equal is strongly supported (see also Table 3.1). The right panel shows the
probability that any two populations show the same variance in their peer-rated
conscientiousness. We find that the German and Estonian population are most
likely and the Flemish and Czech population least likely to have the same vari-
ance. This is also reflected in the unconstrained variance estimates shown in the
left panel. For comparison, a Bartlett’s test forH0 yields χ2(1) = 11.51, p = 0.0093
with a Vovk-Sellke bound of 8.48.
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3.6 Conclusion

In this chapter, we proposed a default Bayes factor test for assessing the
(in)equality of several population variances and showed that it fulfills a number
of desiderata for Bayesian model comparison (e.g., Bayarri et al., 2012; Consonni
et al., 2018; Jeffreys, 1939; Ly, 2018; Ly et al., 2016b; Peña, 2018). In addition, we
extended the Bayes factor test to cover the K − 1-sample case, non-overlapping
interval nulls, and mixed restrictions for the K > 2 case. The proposed proce-
dure allows researchers to inform their statistical tests with prior knowledge. It
also generalizes Jeffreys’s test for the agreement of two standard errors (Jeffreys,
1939, pp. 222-224); see Appendix B.1. We have also illustrated how our method
— combined with specifying suitable model priors — can be used to test all pos-
sible (in)equalities between variances while adjusting for multiplicity (van den
Bergh & Dablander, 2022)

A limitation of the proposed methodology is that it assumes that the data
follow a Gaussian distribution, which might not always be adequate in practical
applications. A potential extension would be to use a t-distributions with a small
number of degrees of freedom ν ≥ 3, so as to better accommodate outliers, and
then test whether the scales of these t-distributions differ. Another future avenue
is to allow for data from the same unit, that is, allow for correlated observations or
dependent groups. For the present, we believe that our work provides an elegant
Bayesian complement to popular classical tests for assessing the (in)equality of
several independent population variances, ready for routine applications.
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Chapter 4

Flexible Bayesian Multiple
Comparison Adjustment Using
Beta-Binomial Model Priors

Abstract

Researchers frequently wish to assess the equality or inequality of groups,
but this comes with the challenge of adequately adjusting for multiple
comparisons. Statistically, all possible configurations of equality and
inequality constraints can be uniquely represented as partitions of the
groups, where any number of groups are equal if they are in the same
partition. In a Bayesian framework, one can adjust for multiple compar-
isons by constructing a suitable prior distribution over all possible parti-
tions. Inspired by work on variable selection in regression, we propose a
class of flexible beta-binomial priors for Bayesian multiple comparison ad-
justment. We compare this prior setup to the Dirichlet process prior sug-
gested by Gopalan and Berry (1998) and multiple comparison adjustment
methods that do not specify a prior over partitions directly. Our approach
to multiple comparison adjustment not only allows researchers to assess
all pairwise (in)equalities, but in fact all possible (in)equalities among all
groups. As a consequence, the space of possible partitions grows quickly
— for ten groups, there are already 115,975 possible partitions — and we
set up a stochastic search algorithm to efficiently explore the space. Our
method is implemented in the Julia package EqualitySampler, and we il-
lustrate it on examples related to the comparison of means, variances, and
proportions.

This chapter has been adapted from: van den Bergh, D.⋆ , & Dablander, F.⋆ (under review). Flex-
ible Bayesian Multiple Comparison Adjustment Using Dirichlet Process and Beta-Binomial Model
Priors. doi: 10.48550/arXiv.2208.07086
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4.1 Introduction

Assessing the equality or inequality of groups is a key problem in science and
applied settings. If a confirmatory hypothesis is lacking, a standard approach is
to first test whether all groups are equal and, if they are not, engage in multi-
ple post-hoc comparisons. A large swathe of multiple comparisons techniques
to guard against inflated false-positive errors exist in classical statistics, dating
back to the work of John Tukey and others (e.g., Benjamini & Braun, 2002; Rao,
2009). From a Bayesian perspective, the problem of multiple comparisons can be
addressed by changing the model prior (e.g., Berry & Hochberg, 1999; de Jong,
2019; Jeffreys, 1961; Westfall et al., 1997), an approach that has found prominent
application in variable selection for regression (e.g., Scott & Berger, 2006, 2010).
Here, we focus on a Bayesian multiplicity adjustment for testing the (in)equality
between groups. Statistically, all possible configurations of equality and inequal-
ity constraints can be uniquely represented as partitions of the groups, where
two groups are equal if they are in the same partition. In a Bayesian framework,
one can adjust for multiple comparisons by constructing a suitable prior distri-
bution over all possible partitions. This allows researchers to explore the set of
all possible equality and inequality relations among the groups while penalizing
for multiple comparisons.

The first to propose a prior over all partitions to adjust for multiple hypothe-
ses testing were, to our knowledge, Gopalan and Berry (1998), who suggested the
Dirichlet process prior. Here, we propose a class of flexible beta-binomial pri-
ors for Bayesian multiple comparison adjustment, inspired by work on variable
selection in regression (Scott & Berger, 2006, 2010) and explore its properties
vis-à-vis previous work on multiple comparisons. More specifically, the current
chapter is structured as follows. In Section 4.2, we set up the problem and de-
scribe the Pólya urn scheme from which a number of priors can be derived. We
characterize three such priors — the Dirichlet process, the beta-binomial, and
the uniform prior — and outline our methodology in Section 4.3. In Section 4.4
we contrast the three priors, illustrate our method on a simulated example, and
present a simulation study assessing the multiplicity adjustment of each prior.
We also assess the method proposed by Westfall et al. (1997) and an uncorrected
testing procedure based only on pairwise Bayes factors. As the space of possible
partitions grows quickly — for ten groups, there are already 115,975 possible
partitions — we set up a stochastic search algorithm to efficiently explore the
space. Our method is implemented in Julia and available in the EqualitySampler
package from https://github.com/vandenman/EqualitySampler. In Section 4.5,
we apply our method to examples related to the comparison of proportions and
variances. We conclude in Section 10.4.

4.2 Preliminary Remarks

In this section, we set up the hypothesis testing problem, discuss the relation
between partitions and models, and describe Pólya’s urn scheme that will unify
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the presentation of the priors in the following section.

4.2.1 Problem Setup

Our goal is to adjust for multiple comparisons in a flexible manner. Multiple
comparisons are not a problem if we wish to compare only two hypotheses, de-
noted as H0 and H1. The Bayes factor quantifies how strongly we should update
our prior beliefs aboutH0 relative toH1 after observing the data (Kass & Raftery,
1995; Ly et al., 2016b). Let group j consist of nj observations y⃗j = {yj1, . . . , yjnj } for
j ∈ {1, . . . ,K} and i ∈ {1, . . . ,nj }, and let y⃗ = {y⃗1, . . . , y⃗K }. The Bayes factor is given by

p(H0 | y⃗)
p(H1 | y⃗)︸     ︷︷     ︸

Posterior odds

=
p(y⃗ | H0)
p(y⃗ | H1)︸     ︷︷     ︸
Bayes factor

×
p(H0)
p(H1)︸ ︷︷ ︸

Prior odds

, (4.1)

which does not depend on the number of hypotheses a researcher wishes to test.
A principled approach to account for multiplicity is by adjusting the prior

probability of the hypotheses (e.g., Jeffreys, 1961; Westfall et al., 1997). Suppose a
researcher is interested in comparingK groups, parameterized by θ⃗ = (θ1, . . . ,θK ).
She is not only interested in whether all parameters are equal (H0) or whether
they are unequal (H1), but also which pairs of parameters are equal or not. In
the language of classical statistics, she is interested in post-hoc comparisons. We
focus on a Bayesian solution to this problem in the current chapter. More specif-
ically, going beyond classical testing, we consider the problem of assessing all
possible equalities and inequalities between the groups. In general terms, the
inference problem is

ρ ∼ πρ(.)

θ⃗ | ρ ∼ πθ⃗(.)

f (y⃗; θ⃗,ρ) =
K∏
j=1

g(y⃗j ;θj ,φ) ,

where ρ is a partition, φ is a nuisance parameter (in case it exists), and f and g
are the likelihood functions. Using the posterior distribution of θ⃗, we have that

p(H0 | y⃗) = p(θ1 = θ2 = . . . = θK | y⃗)

p(H1 | y⃗) = p(θ1 , θ2 , . . . , θK | y⃗) .

There are many more possible hypotheses, however, depending on the combina-
tion of equalities and inequalities. We can represent those as partitions, as we
detail in the next section.

4.2.2 Partitions

The space of possible equality constraints for some parameter vector θ⃗ =
(θ1, . . . ,θK ) of size K is equivalent to the partitions of that vector. For exam-
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Figure 4.1: All 52 possible models given K = 5, represented as partitions. Circles represent individual
parameters and shaded regions indicate which parameters are equal.

ple, for K = 3 the model that states θ1 = θ2 , θ3 is equivalent to the partition
{{θ1,θ2}, {θ3}}. The space of possible models for K = 5 is shown in Figure 4.1. The
correspondence between (in)equality constraints and partitions is useful as par-
titions have been studied extensively in combinatorics. Given K parameters, the
number of partitions of size j is given by the Stirling numbers of the second kind,
denoted

{K
j

}
. The total number of partitions is given by the K th-Bell number,

which is defined as a sum over the Stirling numbers

BK =
K∑
j=0

{
K
j

}
. (4.2)

The Bell numbers grow very quickly, with the number of partitions for a vector θ⃗
of size 10 being B10 = 115,975.

The Stirling numbers and Bell numbers can be generalized to the r-Stirling
(Broder, 1984) and r-Bell numbers (Mezo, 2011), respectively. These general-
izations help to construct conditional distributions, as we will see later. The r-
Stirling numbers

{K
j

}
r

give the number of partitions of size j given K + r groups
such that the first r parameters are all in distinct subsets. The r-Bell numbers give
the total number of partitions given K parameters where the first r parameters
are in distinct subsets. Specifically, we have:{

K
j

}
r

=
K∑
i=0

(
K
i

){
i
j

}
rK−i (4.3)

BK,r =
K∑
i=0

{
K + r
i + r

}
r

. (4.4)

Note that
{K
j

}
1

=
{K
j

}
and that BK,0 = BK . Both the r-Stirling and r-Bell num-

bers are defined through recurrence relations, although explicit expressions exist
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which are easier to compute for large values; see Broder (1984) and Mezo (2011)
for details.

4.2.3 Urn Schemes

We can represent the different partitions using an urn with K different balls la-
beled 1 through K . For each parameter θj , a ball bj is drawn from the urn with
bj ∈ {1, . . . ,K}. If two drawn balls are equal, bi = bj , then the two parameters are
assigned to the same subset of the partition, that is, the two parameters θi and
θj are equal if bi = bj . Note that different draws from an urn can represent the
same partition. For example, the draws (1,1,2) and (3,3,1) both represent the
partition {{θ1,θ2}, {θ3}}. The prior distributions introduced in the next sections
assign probabilities to the unique partitions. Note that the prior probability of a
particular draw can be obtained by dividing the probability of the corresponding
partition by the total number of draws that correspond to that partition. The to-
tal number of draws that represent the same partition is given by d!

(K
d

)
, where d

is the number of non-empty subsets of a particular draw.
Although the urn consists of K different balls, the event of interest is whether

the next ball drawn equals one of the balls already drawn — in other words,
whether an equality or inequality is introduced. This event reduces the urn to a
Pólya urn. All prior distributions discussed below are related to the Pólya urn.
Specifically, the joint prior distribution on (θ1, . . . ,θK ) is characterized by a (gen-
eralized) Pólya urn such that

θK | θ1, . . . ,θK−1 ∼

ζj with probability Pπ
θ⋆j with probability 1− Pπ ,

(4.5)

where ζj denotes a new value for θK (with θ1 = ζ1) and θ⋆j denotes a value equal
to any previously observed value. We characterize the priors we discuss in the
next section in terms of (4.5), which is known as a prediction rule (e.g., Ishwaran
& James, 2001); in terms of the induced prior over partitions; and in terms of
their penalty for multiplicity.

4.3 Methodology

Let θ⃗⋆ = (θ⋆1 , . . . ,θ
⋆
r ) denote the vector of unique population parameters out of θ⃗ =

(θ1, . . . ,θK ), θ⃗−j the vector of parameters without parameter θj , and the number
of repeats of θ⋆j as n⋆j . Let ρ denote a partition and |ρ| its size. For example,

if ρ = {{θ1,θ2}, {θ3}}, then |ρ| = 2. Similarly, for this example θ⃗⋆ = (θ⋆1 ,θ
⋆
2 ) and

n⋆ = (2,1). In the next sections, we discuss and contrast a number of priors.

4.3.1 Dirichlet Process Prior

The Dirichlet process (DP) is a distribution over distributions (Ferguson, 1973).
We say that G ∼ DP(α,K) is distributed according to a DP if its marginal distri-
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butions are Dirichlet distributed, where α is a concentration parameter and K
is the base distribution, which will depend on the application; for details, see
for example Teh (2010). The DP can be understood as the infinite-dimensional
generalization of the Dirichlet distribution, which makes it popular for mixture
modeling (e.g., Rasmussen, 1999). Our modeling approach is similar to mixture
modeling, except that we do not cluster data but parameters — a cluster corre-
sponds to a partition. The prediction rule of the DP is given by (e.g., Blackwell &
MacQueen, 1973; Ishwaran & James, 2001)

θj+1 | θ1, . . . ,θj ∼

K with probability α
α+j−1

Categorical
(
θ⋆1 , . . . ,θ

⋆
r | n⋆1 , . . . ,n⋆r

)
else ,

(4.6)
where α is the concentration parameter and the base distribution of the DP de-
pends on the application (see Section 4.5). In other words, we draw a new value
for θj fromKwith probability α/α+j−1, or else set it to a previously observed value.
The particular value θ⋆j the parameter θj is set to is proportional to the number

of times θ⋆j was observed previously, given by n⋆j , resulting in the well-known
“rich-get-richer” property (e.g., Teh, 2010).

The Dirichlet process implies a prior distribution over partitions. The prior
assigned to the partitions ρ is given by

π(ρ | α) =
α|ρ|Γ (α)
Γ (n+α)

∏
c∈ρ

Γ (|c|) , (4.7)

where c is an element of ρ, and |c| is its size. While the Dirichlet process features
the infinite-dimensional object K, the prior over partitions results from integrat-
ing it out. Hence the nonparametric model (in which the number of parameters
is not fixed) implies a parametric model (in which the number of parameters is
fixed) for the partitions (Quintana, 2006). This makes it usable for our purposes,
where we have a fixed number of parameters.

The leftmost column in Figure 4.2 shows the DP prior over partitions (top)
and number of inequalities (bottom) for different values of α. Intuitively, one
reasonable requirement for a prior in the context of penalizing multiplicity is to
be monotonically decreasing in the number of partitions, which further implies a
monotonically decreasing prior probability over the number of inequalities. This
is the case for α = 0.50 (beige diamonds) as shown in the top and bottom panels,
and indeed for any value α < 1. The value suggested by Gopalan and Berry (1998)
creates a symmetric prior over the partitions (yellow suns), implying that the
model with no inequalities is a priori as likely as the model with all inequalities
(in the K = 5 case, this yields α = 2.213). The prior with α = 1 (pink stars) results
in a nonincreasing prior over the number of partitions, but in an increasing prior
over the number of inequalities: the model with one inequality is more likely
than the model with no inequalities.

As α → 0, the prior of the model with all K − 1 equalities M0 (i.e., the null
model) converges to one, while as α → ∞, the prior of the model with K − 1
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Figure 4.2: Top: Dirichlet process (left), beta-binomial (middle), and uniform prior (right) across
distinct model types for K = 5 groups and different prior parameters. Bottom: Same but for the
number of inequalities across models.

inequalities MBK (i.e., the full model) converges to one. For prior elicitation,
Gopalan and Berry (1998) note that α is determined by specifying two of either
P (M0), P (MBK ), or their ratio, since P (M0) = α(K−1)!/

∏K
j=1(α+j−1) and P (MBK ) =

αK/
∏K
j=1(α+j−1); see also Table 4.1.

Dirichlet process prior Beta-binomial prior Uniform prior

Parameters α (α = 1,β) None

Prior over partitions α|ρ|Γ (α)
Γ (n+α)

∏
c∈ρ Γ (|c|)

(K−1
|ρ|−1

)B(|ρ|−1+α, K−|ρ|+β)
B(α, β){K|ρ|}

(BK )−1

Prior monotonically decreasing α ≤ 1 β ≥ K , β ≥
(K

2
)

No

Prior probability of null model α(K−1)!/
∏K
j=1(α+j−1) B(α, K−1+β)/B(α, β) (BK )−1

Prior probability of full model αK/
∏K
j=1(α+j−1) B(K−1+α, β)/B(α, β) (BK )−1

Prior probability of ratio (null / full) α(K−1)!/αK B(α, K−1+β)/B(K−1+α, β) 1

Table 4.1: Characterizations of the different priors studied in this chapter. Note: β ≥ K implies a
prior decreasing in terms of the number of inequalities, but not in terms of the partitions. β ≥

(K
2
)

implies both.
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4.3.2 Beta-binomial Prior

The beta-binomial model prior is a popular choice for stochastic search variable
selection in linear regression (George & McCulloch, 1993) and Bayesian model
averaging (e.g., Hinne et al., 2020; Hoeting et al., 1999). It states that the prior
probability of including j predictors out of a total of K predictors is given by

BB(j | K, α, β) =
(
K
j

)
B (j +α, K − j + β)

B (α, β)
, (4.8)

where α and β are hyperparameters. The prior probability of a particular regres-
sion model is obtained by dividing by the number of ways j out of K predictors
can be included: BB(j | K, α, β) /

(K
j

)
. The beta-binomial distribution introduces a

penalty for including additional predictors and in that way introduces a correc-
tion for multiplicity (Scott & Berger, 2006, 2010).

For the multiple comparison problem discussed in this chapter, we consider
the number of inequality constraints and use the beta-binomial prior to intro-
duce a penalty for each additional inequality among the groups considered.
For K groups, there can be a maximum of K − 1 inequalities, resulting in a
BB(i | K − 1, α, β) prior distribution over the number of included inequalities i
out of K groups. To see how this translates to a prior over the partitions ρ, note
that there is a one-to-many correspondence between the number of inequalities
i out of K groups and the resulting partitions ρ. For example, having i = 1
inequalities with K = 3 groups is consistent with the partitions {{θ1,θ2}, {θ3}},
{{θ1,θ3}, {θ1}}, and {{θ2,θ3}, {θ1}}, all of which are of size |ρ| = i + 1. The number
of partitions of size |ρ| is given, as discussed above, by the Stirling number

{K
|ρ|
}
.

For the assignment of the prior probability, it is only the size of the partition (the
number of inequalities) that counts. With these observations in hand, we arrive
at the following (adjusted) beta-binomial prior distribution over partitions ρ:

π(ρ | K,α,β) =
(
K − 1
|ρ| − 1

)
B (|ρ| − 1 +α, K − |ρ|+ β)

B (α, β)
{K
|ρ|
} . (4.9)

The prediction rule of the beta-binomial prior is given by

θj+1 | θ1, . . . ,θj ∼

K with probability Pπ
Categorical

(
θ⋆1 , . . . ,θ

⋆
r | 1, . . . ,1

)
else ,

(4.10)

where

Pπ =

∑
ρ∈P

θj<θ⃗−j⊆ρ
BB(ρ | K, α, β)∑

ρ∈P
θj<θ⃗−j⊆ρ

BB(ρ | K, α, β) +
∑

ρ∈P
θj∈θ⃗−j⊆ρ

BB(ρ | K, α, β)
, (4.11)
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and where P denotes the set of all possible partitions. In essence, Equation (4.11)
takes the probability of all possible partitions where θj is distinct from θ⃗−j , con-

ditional on θ⃗−j being a subset of the considered partition. The sum over all pos-
sible partitions can be simplified using the r-Stirling numbers

Pπ =

∑K
i=1 BB(i | K, α, β)

{K−j+r+1
i

}
r+1

r
∑K
j=i BB(i | K, α, β)

{K−j+r
i

}
r

+
∑K
i=1 BB(i | K, α, β)

{K−j+r+1
i

}
r+1

, (4.12)

where r is number of unique parameters in θ⃗, that is, the size of the partition.
The beta-binomial prior on the partitions and the induced prior on the num-

ber of inequalities are shown for different parameterizations in the middle col-
umn in Figure 4.2. For α = β = 1, the beta-binomial distribution over the parti-
tions has a characteristic U-shape (orange triangles). This prior specification in
turn implies a uniform prior on the number of inequalities. We follow Wilson
et al. (2010) who, in the context of regression, suggested to set α = 1 as a de-
fault so that the distribution over model size (here the number of inequalities) is
nonincreasing, and to scale β = λK with the number of groups to force the prior
to be monotonically decreasing, with a default of λ = 1 (Wilson et al., 2010).
This is illustrated as the red line (leftward pointing triangles) in Figure 4.2 us-
ing β = 5. In the multiple comparison case, we additionally investigate β =

(K
2
)
,

which implies that the prior on the number of inequalities of individual models
is nonincreasing, see Appendix C.1. The purple line (upside-down triangles) in
Figure 4.2 shows a decreasing prior for β =

(5
2
)

= 10. This prior assigns the least
mass to models with an increasing number of inequalities compared to all others
beta-binomial priors.

Figure 4.2 shows that the DP prior makes a distinction that the beta-binomial
is, by design, not making: while the beta-binomial prior assigns the same prior
mass to partitions with the same number of (in)equalities, the DP prior assigns
more mass to the partition with the larger cluster. For example, the beta-binomial
does not distinguish between {{θ1,θ2,θ3}, {θ4}, {θ5}} and {{θ1,θ2}, {θ3,θ4}, {θ5}},
while the DP assigns more mass to the former (see Figure 4.2). We return to
this distinction in the discussion.

Lastly, note that for the beta-binomial prior we have that P (M0) =
B(α, K−1+β)/B(α, β) and P (MBK ) = B(K−1+α, β)/B(α, β). Fixing α = 1, we have that as
β → ∞, the prior of the model with all K − 1 equalities M0 converges to one,
while as β→ 0, the prior of the model with K − 1 inequalitiesMBK converges to
one; see also Table 4.1. As with the Dirichlet process prior discussed above, one
can use these relations in prior elicitation.

4.3.3 Uniform Prior

For completeness, we give a prior that is uniform over the space of partitions.
The probability mass function is straightforward. All valid configurations of size
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K have probability 1/BK . The prediction rule of the uniform prior is given by

θj+1 | θ1, . . . ,θj ∼

K with probability PπU
Categorical

(
θ⋆1 , . . . ,θ

⋆
r | 1, . . . ,1

)
else ,

(4.13)

where

PπU =
BK−j+1, r+1

BK−j+1, r+1 + rBK−j+1, r
. (4.14)

Here, BK−j+1, r+1 counts the number of models where θj+1 <
(
θ⋆1 , . . . ,θ

⋆
r

)
condi-

tional on θ1, . . . ,θj being assigned to r distinct subsets. Complementarily, BK−j+1, r

counts the number of models where θj+1 ∈
(
θ⋆1 , . . . ,θ

⋆
r

)
conditional on θ1, . . . ,θj

being assigned to r distinct subsets, which is multiplied by r as there are r sub-
sets that θj+1 could be assigned to. Under this uniform prior, all partitions ρ
are equally likely, as can be seen in the top right panel in Figure 4.2. Note that
this uniform prior induces a non-uniform prior on the number of inequalities, as
shown in the bottom right panel.

4.3.4 Posterior Model Consistency

Model selection consistency is a key desiderata that a good Bayes factor should
fulfill (e.g., Bayarri et al., 2012; Consonni et al., 2018; Ly et al., 2016b). In the
situation of multiple models, the notion of pairwise model selection consistency
needs to be extended. This extension is referred to as posterior model selection
consistency. Posterior model consistency in a model class M is the convergence to
one, in probability, of the posterior probabilities to the true model (e.g., Casella
et al., 2009; Moreno et al., 2015). LetMj ∈M be the model that instantiates the
hypothesis Hj that specifies the (in)equalities among K groups. The posterior
probability ofMj is given by

p(Mj | D) =
p(D |Mj )π(Mj )∑BK
i=0p(D |Mi)π(Mi)

=
BFj0π(Mj )∑BK
i=0 BFi0π(Mi)

. (4.15)

It follows that if the Bayes factor is model selection consistent, posterior model
consistency holds (see also Moreno et al., 2015, Theorem 1) — unless the prior
assigns zero mass to the true model. This is not the case for any of the priors
discussed above, and hence whether posterior model consistency holds depends
solely on the priors on the parameters within models.

4.3.5 Stochastic Search Method

When the number of groups is small and the computation of Bayes factors is
swift, one can directly compute the Bayes factors for all hypotheses. Using the
priors we outlined above, one can then obtain posterior distributions over hy-
potheses that incorporate the desired multiplicity adjustment. The number of
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(in)equalities grows extremely quickly with the number of groups, however, and
for larger number of groups one must rely on stochastic search methods. More-
over, while directly computing the Bayes factors results in posterior distribu-
tions over hypotheses, it does not yield posterior distributions over parameters.
We therefore set up a stochastic search method that yields both, allowing re-
searchers to incorporate uncertainty across hypotheses through model averaging
(e.g., Hinne et al., 2020; Hoeting et al., 1999).

Our method is implemented in the programming language Julia (Bezanson et
al., 2017). First, we implemented the prior distributions in Julia. Next, we used
the library Turing.jl, which is designed for general-purpose probabilistic pro-
gramming (Ge et al., 2018). Turing enabled us to directly reuse the distributions
defined in Julia code and also provided a multitude of options for composing dif-
ferent MCMC samplers. We set up a Gibbs sampler that explored the posterior
space in two steps. The first step used Turing’s built-in Hamiltonian Monte Carlo
methods for sampling from the posterior distributions of the continuous param-
eters. In all models discussed here, all parameters are continuous except for the
partitions. The second step used a custom Gibbs algorithm for sampling from the
posterior distribution over partitions. The partitions were represented as a vector
of integers denoted γ⃗ that indicate partition membership. By partition member-
ship, we mean that two parameters θi and θj are in the same partition if and only
if γi = γj . For example, {{θ1}, {θ2,θ3}} could be represented by (1,2,2) but also
by (3,1,1). We first explain the remainder of the sampling scheme and motivate
the duplicate representations in the next paragraph. The number of possible du-
plicate representations in γ⃗ for one partition is straightforward to compute, and
the prior over γ⃗ is obtained by taking the prior over the partitions and dividing
uniformly over duplicate representations. Next, we sample each element of γ⃗
conditional on the other elements. Since the partition membership is discrete,
we enumerate all possible values and draw from the resulting categorical distri-
bution. Sampling individual elements of γ⃗ from the conditional distributions
rather than the joint distribution reduces the complexity from O(BK ) to O(K2).

Although the duplicate representations of γ⃗ for one partition introduce some
additional computational cost, they facilitate exploration of the posterior space.
For example, if we had used a one-to-one mapping from partitions to γ⃗ , then
updating the first membership in (1,2,2) to (2,2,2) would not be a valid con-
figuration, as this should be represented by (1,1,1). However, a transition from
(1,2,2) to (1,1,1) requires updating two parameters and is therefore less likely to
occur. Nevertheless, on the level of partitions, it makes sense to propose a move
from {{θ1}, {θ2,θ3}} to {{θ1,θ2,θ3}}.

4.4 Investigating Multiplicity Adjustment

In this section, we investigate the differences between the above priors in more
detail and compare them to the method proposed by Westfall et al. (1997) and
an uncorrected approach using pairwise Bayes factors. In Section 4.4.1, we use a
small simulation study to illustrate the implications of multiplicity adjustment.
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In Section 6.3, we present the results of a more extensive simulation study.

4.4.1 Illustrating Multiplicity Adjustment

Here we illustrate the different multiplicity penalties that the different priors
impose using a small simulation study. We simulate data from a one-way ANOVA
model and analyze it using the specification by Rouder et al. (2012). The ANOVA
model extended with a prior over partitions is given by

Yij ∼N
(
µ+ σθj ,1

)
µ ∝ 1

σ2 ∝ 1/σ2

g ∼ IG (1/2,1/2)

θ⃗u ∼NK−1 (0, g)

θ⃗c←Qθ⃗u

θj ←mean of elements of θc in the same partition

ρ ∼ πρ(.) . (4.16)

The data follow a Gaussian distribution with a grand mean µ and a group-specific
offset θj . The offsets sum to zero to avoid identification constraints. This is

achieved by projecting θ⃗u from a K − 1 dimensional space onto a K dimensional
space using the matrix Q, which consists of the first K −1 columns of an eigende-
composition of a degenerate covariance matrix as defined in Rouder et al. (2012).1

Next, the elements of θ⃗c within the same partition are averaged to obtain θj . The

unconstrained offsets θ⃗u are assigned a g prior where g itself is assigned an in-
verse gamma prior with shape and scale equal to 1/2 (Liang et al., 2008). Note that
the model reduces to the approach of Rouder et al. (2012) whenever the partition
indicates that all elements are distinct.

We simulated from the null model, which assumes that all the groups are
equal, and from the full model, which assumes that all groups are unequal,
drawing 100 observations per group and varying the number of groups K ∈
[2,3, . . . ,10], repeating each combination 100 times. In the full model, the means
were of increasing size with successive differences of 0.20. For the analysis we
considered six priors: the Dirichlet process prior with α ∈ {0.50,1} and α set
adaptively to have equal prior mass assigned to the model with all equalities
and the model with all inequalities (i.e., p(H0) = p(H1)), as done by Gopalan and
Berry (1998); the beta-binomial prior with α = 1 and β ∈ {1,K,

(K
2
)
}; and the uni-

form prior. We also included the prior adjustment method proposed by Westfall
et al. (1997) and an uncorrected method using pairwise Bayes factors. We used
our methodology as described in Section 4.3.5, drawing 12,000 MCMC samples
and discarding the first 2,000 as a burn-in.

1Note that this projection is not unique. It can also be achieved with, for example, a QR decompo-
sition, as recommended by the Stan Development Team (2021).
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Figure 4.3: Left: Probability of making at least one false claim about a difference between two groups
when there is none. Right: Proportion of falsely claiming no difference between two groups when
there is one.

To assess how well the respective priors adjust for multiplicity, we calculated
how frequently the posterior probability that any two groups differ is larger than
0.50, using the null model as data-generating model. Similarly, to assess how well
the respective priors are capable of detecting true differences, we calculated how
frequently the posterior probability that any two groups do not differ is larger
than 0.50, using the full model as data-generating model.

The left panel in Figure 4.3 shows that using a uniform prior (blue squares)
very quickly leads to false positives as the number of groups increases. This
is not surprising: the uniform prior assigns each model the same prior mass,
hence diminishing the plausibility assigned to H0 dramatically as K increases,
thus increasing the probability of an error. The Dirichlet process prior which
assigns equal mass to the full and the null model (yellow suns), as suggested
by Gopalan and Berry (1998), performs better than the uniform prior but still
does not provide adequate error control. It performs roughly as poorly as the
method which simply computes pairwise Bayesian t-tests (green circles). The
correction proposed by Westfall et al. (1997) performs much better (light blue
circles) but still leads to a relatively high probability of making at least one error
as the number of groups increases. The DP prior with α = 1 (pink stars) performs
better, with the DP prior with α = 0.50 (beige diamonds) and the set of beta-
binomial priors providing good error control.

The right panel in Figure 4.3 shows that the beta-binomial prior with α = β =
1 leads to the lowest proportion of falsely claiming no difference between two
groups, followed by the Dirichlet process prior for which p(H0) = p(H1) and the
uniform prior. The method proposed by Westfall et al. (1997) performs worst,
followed by the beta-binomial prior with α = 1 and β =

(K
2
)

and the DP prior with
α = 0.50. The performance of the uncorrected pairwise Bayes factor approach is
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somewhere in the middle. Note that all approaches perform better as the group
size increases, but this is due to our simulation design: each additional group ex-
hibits a mean larger than the previous one by 0.20 and adds nmore observations,
which makes falsely claiming no difference less likely with an increasing number
of groups. Instead of looking at absolute error, we therefore focus on the relative
ordering of the priors. Overall, we conclude that not adjusting for multiple com-
parisons — either by using a uniform prior or by using pairwise Bayes factors —
naturally leads to the worst performance and that the method by Westfall et al.
(1997) is overly conservative and does not provide adequate error control with
an increasing number of groups. In the next section, we report on a more exten-
sive simulation study to further disentangle the differences between the multiple
comparison methods.

4.4.2 Simulation Study

In the previous section, we illustrated the importance of adjusting the prior
model probabilities in reducing the familywise error rate when all groups are
equal. Here, we explore the multiplicity adjustment of the different methods in
a more exhaustive simulation study. We used the same ANOVA model as in the
previous section and varied the total number of groups K ∈ {5,9} and the sam-
ple size per group n ∈ {50,100,250,500}. In addition, we varied the true number
of equalities to be {0%,25%,50%,75%,100%}. For K = 5, there are 4 possible
(in)equalities which resulted in models that have either 0, 1, 2, 3, or 4 equalities.
For K = 9, there are 8 possible (in)equalities, resulting in 0, 2, 4, 6, or 8 equali-
ties in the true model. Given the number of equalities, we sampled a particular
partition uniformly from all possible partitions with that amount of equalities
and used this model to simulate data. Each unique combination was repeated
100 times and each generated data set was analyzed with the same prior speci-
fications as above. We assessed the familywise error control as well as statistical
power. The results for K = 5 and K = 9 were similar. Therefore, we focus on the
K = 5 in the main text and discuss the K = 9 case in Appendix C.2.

Note that the hierarchical approach has an additional source of α error in
contrast to pairwise comparisons when there are more than 0 inequalities because
it imposes transitivity. For example, imagine that the true model postulates that
θ1 = θ2 = θ3 , θ4. However, the sample means are (by random sampling) x̄1 =
0.10, x̄2 = 0.20, x̄3 = 0.30, x̄4 = 0.35. The hierarchical approach would find that
θ3 = θ4, but not that θ1 = θ3 since that also implies θ1 = θ4. Therefore, the model
θ1 = θ2 = θ3 , θ4 and even the equality θ1 = θ2 are not retrieved. In contrast, the
pairwise methods violate transitivity as they only look at two pairs at the time
and will happily suggest that θ1 = θ2, θ2 = θ3, and θ3 = θ4 while simultaneously
suggesting that θ1 , θ4.

4.4.2.1 Familywise Error Rate

Figure 4.4 shows the probability of at least one error for different methods across
the number of inequalities in the true model and sample sizes. The top left panel
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shows that the uniform prior (blue squares), the pairwise Bayes factors (green
circles), the Dirichlet process prior with p(H0) = p(H1) (yellow stars), and the
method proposed by Westfall et al. (1997) (light blue circles) perform worst and
that the other Dirichlet process and beta-binomial priors provide adequate error
control. This mirrors the results above, which is natural since this part of the
simulation is a special case for K = 5. Increasing the number of inequalities to 1
(top right) and 2 (bottom left), we find that the pairwise Bayes factors, the method
by Westfall et al. (1997), and the uniform improve in performance. This is likely
due to the fact that, with more inequalities, there are simply less opportunities
to incorrectly claim that two population means are different. In contrast, the
performance of the other methods decreases when there is at least one inequality;
it is difficult to disentangle a trend with increasing inequalities.

The rightmost panel in Figure 4.4 shows the results averaged over the num-
ber of inequalities in the true model. We find that the method by Westfall et
al. (1997) shows the strongest familywise error control, closely followed by the
beta-binomial priors with β = K and β =

(K
2
)

and the DP prior with α = 0.50.
The pairwise Bayes factors perform similar to the Dirichlet process prior with
α = 1, with the beta-binomial prior with β = 1, the symmetric DP prior, and the
uniform prior performing worst. The differences between the methods become
less pronounced with increasing sample size since the data starts to dominate the
prior.

Figure 4.4: Familywise error rate across priors and sample sizes under a model with 0 (top left), 1
(top right), 2 (bottom left), and 3 (bottom right) true inequalities for K = 5 groups. The rightmost
panel shows the average familywise error rate across inequalities.
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4.4.2.2 Statistical Power

Figure 4.5 shows the proportion of falsely claiming a difference between two
groups when there is none for different methods across the number of equali-
ties in the true model and sample sizes. The top left panel shows that the beta-
binomial prior with β = 1 performs best and the method proposed by West-
fall et al. (1997) performs worst, again mirroring the results of the small sim-
ulation study above. Increasing the number of equalities in the true model,
we find that the performance of virtually all methods decreases except for the
uniform prior, which shows a slight increase, especially for large sample sizes.
This overall decrease in performance is likely due to the fact that the average
pairwise difference between groups decreases with the number of equalities. To
illustrate, note that the model with no equalities for K = 4 groups has pop-
ulation means µ⃗ = {−0.30,−0.10,0.10,0.30}, which yields pairwise differences
[0.20,0.20,0.20,0.40,0.40,0.60] with an average of 0.33. In contrast, including
one equality results in µ⃗ = {−0.25,−0.05,0.15,0.15},2 yielding pairwise differences
of [0.20,0.20,0.20,0.40,0.40] with an average of 0.28.

The rightmost panel in Figure 4.5 shows the results averaged over the number
of equalities in the true model. We find that the method by Westfall et al. (1997)
is highly conservative, trading off the strong familywise error control with an
increase in the proportion of false negatives. Similarly, the priors that performed
worst with respect to familywise error control — the uniform, symmetric DP,
and beta-binomial prior with β = 1 — perform best here. The other DP and beta-
binomial priors as well as the pairwise Bayes factors are somewhere in between
those two extremes. Note that again the differences between the methods become
less pronounced with increasing sample size.

4.4.2.3 Simulation Discussion

Our results show that no single method dominates all others. While the beta-
binomial prior with β = 1 performed best in our initial simulation study de-
scribed in Section 4.4.1, including models beyond the null and full model showed
that this prior performed considerably worse in those settings. The beta-binomial
prior with β = K , β =

(K
2
)
, and the DP prior with α = 0.50 perform very similarly

overall. Importantly, both the method proposed by Westfall et al. (1997) and the
pairwise Bayes factors can yield transitivity violations, while explicitly specify-
ing a prior over partitions cannot. For example, we might find that µ1 = µ2 and
µ2 = µ3 using pairwise Bayes factors with some threshold, but at the same time
conclude that µ1 , µ3. This is one key reason why explicitly specifying the prior
over partitions is preferable. In the next section, we focus on the beta-binomial
prior with β = K and apply our method to two examples.

2This is due to the sum-to-zero constraint and the constraint that all successive unequal groups
have a difference of 0.20.
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Figure 4.5: Proportion of falsely claiming a difference between two groups when there is none across
priors and sample sizes under a model with 0 (top left), 1 (top right), 2 (bottom left), and 3 (bottom
right) true inequalities for K = 5 groups. The rightmost panel shows the average error rate across
inequalities.

4.5 Applications

In this section, we apply the beta-binomial setup to two examples: testing the
(in)equality of proportions and variances, respectively. We have developed a
generic Julia package called EqualitySampler that utilizes the probabilistic pro-
gramming framework Turing to allow the user to adjust for multiplicity as pro-
posed in this chapter.

4.5.1 Comparing Proportions

Nuijten et al. (2016) investigated a sample of 30,717 articles published between
1985 and 2013 in eight major psychology journals for statistical reporting errors.
Our question here is: Which journals make the same amount of errors, and which
make more errors? We answer the question using the following model specifica-
tion. For journal j, denote the number of statistical errors found as ej and the
number of statistical tests analyzed as nj . We assume that underlying each pro-
portion there is a latent true chance of making an error, θj . Thus, we modeled the

data as independent binomials, that is, ej ∼ Binomial
(
θj ,nj

)
. Next, we specify a

hierarchical level over the partitions to assess for which journals the chances of
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Figure 4.6: Left: Posterior means of the full model where all proportions are assumed to be different
(top) and posterior means when averaging over all models using a beta-binomial(α = 1, β = 8) prior
(bottom). Right: Posterior probabilities for pairwise equality across all journals. The abbreviations
stand for: Journal of Applied Psychology (JAP), Psychological Science (PS), Journal of Consulting and
Clinical Psychology (JCCP), Public Library of Science (PLOS), Developmental Psychology (DP), Journal of
Experimental Psychology: General (JEPG), and Journal of Personality and Social Psychology (JPSP).

making an error are equal. This leads to the following model specification:

ej ∼ Binomial
(
θj ,nj

)
θuj ∼ Beta(1,1)

θj ←mean of elements of θuj in the same partition

ρ ∼ beta-binomial(1,8) . (4.17)

The unconstrained chances θuj are assigned beta priors from which — together
with the partitions — the possibly constrained chances are created. Two chances
θi and θj are equal if and only if their indices appear in the same partition {i, j} ⊆
ρk for some k. Note that the model reduces to the full model of independent
binomials whenever the partitions state that all elements in θ⃗ are distinct. We
use a beta-binomial prior with α = 1 and β = 8. The top left panel in Figure 4.6
shows the posterior distributions for the underlying error chance for each journal
under a model that assumes that they are all different.

We can see that the posterior distributions for JCCP (green), PLOS (purple),
DP (turquoise), and FP (beige) are very close to each other, with FP showing more
pronounced uncertainty. The panel below shows the model-averaged posterior
distributions, clearly demonstrating a shrinkage effect. The error chances for
JAP and PS are pulled toward each other, with JCCP, PLOS, DP, and FP being
shrunk towards each other almost completely, similarly to JEPG and JPSP. The
right panel in Figure 4.6 gives the posterior distributions for pairwise equality
across all journals, reflecting the two main clusters in the model-averaged density
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plot on the left. Example code for this analysis is given in Appendix C.3.

4.5.2 Comparing Variances

Borkenau et al. (2013) studied whether men and women differ in the variabil-
ity of personality traits. Here we focus on five personality traits (agreeableness,
extraversion, openness, conscientiousness, neuroticism) rated by participants’
peers in an Estonian sample consisting of n1 = 969 women and n2 = 716 men.
Our goal is to assess which personality traits across the sexes can be assumed
equal in terms of their variability. This example shows how our methodology can
be used to test group differences while taking the multivariate dependency of the
outcome measure into account. We build on the parameterization proposed by
Dablander et al. (in press), who developed a default Bayes factor test for testing
the (in)equality of variances. Let y⃗1 and y⃗2 denote the five-element vectors of
observed data for men and women, respectively, and K = 10 be the total number
of variables. For each sex k ∈ {1,2}, we have

Y⃗k ∼N (µ⃗k ,Σk)

µ⃗k ∝ 1⃗

Σk = diag(σ⃗k)Ωk diag(σ⃗k)

Ωk ∼ LKJ(1) ,

where LKJ refers to the Lewandowski-Kurowicka-Joe prior (Lewandowski et
al., 2009). To test the equality of variances both between and across groups,
we define the ten-variable standard deviation vector σ⃗ = [σ⃗1, σ⃗2] with σ̄ denot-
ing the average standard deviation. Following Dablander et al. (in press), we

write σj =
(
Kϑj σ̄

)−1
, where ϑj = σj/

∑K
j=1 σj is the relative standard deviation and

ϑK = 1−
∑K−1
j=1 ϑj . To complete the model specification, we write

σj =
(
Kϑj σ̄j

)−1

σ̄j ∝ σ̄−1
j

ϑj ←mean of elements of ϑu in the same partition

ϑ⃗u ∼Dirichlet(1, . . . ,1)

ρ ∼ beta-binomial(1,10) . (4.18)

Two standard deviations σi and σj are equal if and only if their indices appear
in the same partition {i, j} ⊆ ρk for some k. When the partition states that all
standard deviations are distinct we recover the full model.

The top left panel of Figure 4.7 shows the posterior distributions under the
full model that assumes all standard deviations are different, while the bottom
panel shows the model-averaged posterior distributions, which again demon-
strate a shrinkage effect. The right panel shows the posterior probability of
pairwise equality across all personality traits for men and women. Overall,
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Figure 4.7: Left: Posterior means of the full model where all standard deviations are assumed to be
different (top) and posterior means when averaging across all models using a beta-binomial(α = 1, β
= 10) prior (bottom). Right: Posterior probabilities for pairwise equality across all personality traits.
In the abbreviations the first letter stands for men (m) or women (w). The second letter stands for
neuroticism (n), extraversion (e), openness (o), agreeableness (a), and conscientiousness (c).

it appears that there are three clusters: (1) men–openness, women–openness,
and women–agreeableness; (2) men–neuroticism, women–neuroticism, women–
conscientiousness, and men–agreeableness; (3) men–conscientiousness, men–
extraversion, and women–extraversion. However, for the personality traits
women–agreeableness, men–agreeableness, and women–extraversion, the evi-
dence for equality is not overwhelming, as is also indicated by the bimodality
in the model-averaged posterior distributions.

4.6 Discussion

Testing the (in)equality between groups while adjusting for multiple compar-
isons is a core challenge in many applied settings. In this chapter, we have pro-
posed a flexible class of beta-binomial priors to penalize multiplicity and make
inferences over all possible (in)equalities in relatively general settings. We com-
pared the beta-binomial priors to a Dirichlet process prior suggested by Gopalan
and Berry (1998), to a uniform prior, to the method proposed by Westfall et al.
(1997), and to an uncorrected method based on pairwise Bayes factors. We also
illustrated our method, which is freely available in the Julia package EqualitySam-
pler, on two examples.

We found that a beta-binomial prior with α = 1 and β ∈ {K,
(K

2
)
} as well as a

Dirichlet process prior with α < 1 adequately control the familywise error rate,
while a uniform prior and using only pairwise Bayes factors, unsurprisingly, do
not. We also found that the method proposed by Westfall et al. (1997) com-
pares favorably in terms of error control but not in terms of power. While we
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have focused on a posterior probability threshold of 0.50 (i.e., a Bayes factor of
1), other thresholds will naturally impact the trade-off between the two types
of errors. Importantly, and in contrast to conventional adjustments for multi-
ple comparisons (e.g., Jeffreys, 1961; Westfall et al., 1997), specifying a prior
over the partitions allows inferences over all possible (in)equalities. This means
that researchers can use the methods we provide to assess not only the proba-
bility of pairwise (in)equalities — as is common in standard post-hoc tests for,
say, ANOVA — but in fact can make probabilistic statements over any set of
(in)equalities they wish to assess. Similarly, the outlined approach also allows
for model-averaging, which as we have seen in the applications yields shrinkage
of the groups towards each other. Using a prior over partitions further avoids vi-
olations of transitivity, i.e., claiming for example that µ1 , µ3 while both µ1 = µ2
and µ2 = µ3.

As with any statistical method, there are a number of points to keep in mind.
First, while we suggest default values of α = 1 and β = K for the beta-binomial
prior and α ≤ 1 for the DP prior, researchers may wish to use a more informed
prior specification. Values for the prior parameters can be elicited by specifying
model priors for two out of the following: the prior on the null model, on the
full model, or their ratio. Second, the beta-binomial prior differs from the DP
prior in that it assigns models with the same number of partitions the same prior
probability, while the DP prior assigns more mass to the model with the larger
cluster. It is not obvious which of the two behaviors is more desirable, and it
may well depend on the problem under study. Researchers using the methods
we have made available should keep this difference in mind, although the extent
to which it matters in practice remains to be seen.

There are some practical limitations of our implementation that we leave for
future work. We currently do not allow for factorial designs, for example, for
which dummy or contrast coding is more natural. The key challenge there is to
specify the prior in such a way that it reflects the structure of the experimental
design. For the present, we believe that the Bayesian approach outlined in this
chapter can help applied researchers who wish to compare multiple groups.

Author contributions. FD and DvB proposed the study and refined it in numer-
ous discussions. DvB implemented the method and created the Julia package. FD
and DvB designed the simulation study. DvB conducted the simulation study and
analyzed the data with the help of FD. FD and DvB wrote the manuscript.

Materials. All materials to reproduce the results and figures are available at
https://github.com/vandenman/EqualitySampler.jl.

Funding. DvB and FD were supported by a Vici grant no. C.2523.0278.01.
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Chapter 5

An Introduction to Causal
Inference

Abstract

Statistical models describe probabilistic relationships between variables.
They can tell us that if X is high, Y will likely also be high, but they cannot
tell us what would happen to Y if we were to increase the value of X.
In order to model the outcome of interventions, we need to go beyond
statistical inference towards causal inference. This chapter introduces the
core tenets and assumptions of causal inference from observational data.
It describes how to use directed acyclic graphs (DAGs) to express causal
relations; what type of causal relations between variables imply which type
of probabilistic relations, and how to assess this using d-separation; how
to assess, in a principled manner, whether a causal effect is confounded;
how to compute causal effects using structural causal models (SCMs); and
how to (possibly) discover causal relations from data.

This chapter has been adapted from: Dablander, F. & van Bork, R. (2022). Causal Inference. In
Isvoranu, A. M., Epskamp, S., Waldorp, L.J., & Borsboom, D. (Eds.). Network Psychometrics with R: A
Guide for Behavioral and Social Scientists. (pp. 93-110). Routledge.
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5.1 Introduction

Causal inference goes beyond statistical inference by modeling the outcome of
interventions. Instead of restricting us to statements of associations, it allows us
to make statements such as “if we were to increase X, then people would show
higher levels in Y .” The royal road to such causal statements is a randomized
experiment, a tool psychologists are intimately familiar with. However, experi-
ments are often difficult to conduct, unethical, or impossible. Tools from the field
of causal inference can help us understand under what conditions it is possible
to draw causal conclusions from observational data.

Causal models provide an intermediate step between purely statistical models
and mechanistic models. They go beyond associations by allowing us to answer
questions about interventions, but they do not necessarily provide a mechanistic
account of cause-effect relationships. For example, while a statistical model may
tell us that smoking and lung cancer are associated in the population, a causal
model may tell us that, if we were to increase the number of smokers, there would
be a corresponding increase in the number of lung cancer patients in the popula-
tion; a causal model does not necessarily, however, shed light on the mechanism
by which smoking causes lung cancer.

Because causal models go beyond probabilistic associations in data, they are
not fully constrained by them. In other words, there may exist many causal mod-
els that are consistent with the particular associations in the data. As this chap-
ter will show, this added complexity complicates causal inference. In order to
infer causality in non-experimental settings, strong assumptions are required.
However, we ultimately want to uncover causal — not merely statistical — rela-
tionships between variables of interest, and making causal talk a taboo does not
advance that goal (Grosz et al., 2020; Hernán, 2018). Instead, this chapter invites
you to be explicit about the desire to uncover causal relations, and provides tools
to help you achieve it.

There are a number of core points to take away from this chapter. First, as we
explain in Section 5.2, formulating causal effects requires a language that goes
beyond probabilistic associations. This makes clear that modeling for prediction
and modeling for intervention are fundamentally different things. Second, using
this language, researchers should be able to assess, given a causal model, whether
a particular association between two variables is causal or spurious. This requires
a link between causal and statistical relations, which is discussed in Section 5.3.
Third, as discussed in Section 5.4, causal inference from observational data is
hard, and requires strong assumptions — but it is also a brimming field with
many important advances.

5.2 A Language for Expressing Causal Relations

The study of causality has a long history in philosophy. In this chapter, we focus
on the interventionist account of causality, where causal effects are formalized
as changes in the distribution of an outcome under different interventions (e.g.,
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Hernan & Robins, 2020; Pearl, 2009; Peters et al., 2017). This is a probabilistic
account, in which the cause (e.g., smoking) is not always followed by the effect
(e.g., lung cancer), but does increase its probability (e.g., Suppes, 1970).

The language of statistics can be used to express probabilistic dependence be-
tween variables. For example, the association between two random variables X
and Y can be expressed using conditional probabilities: P (Y | X = x) , P (Y ) (i.e.,
the probability of Y conditional on the realization X = x is different from the
marginal probability of Y ) implies that X and Y are associated. That is, learning
that variable X = x provides information about variable Y . While we expect an
association between variables that are causally related (learning about the cause
provides information about the effect), probabilistic dependence is not sufficient
for a causal relation. Associations or correlations are symmetric, whereas causal
relations are frequently asymmetric (X is a cause of Y but Y is not a cause of X).
For example, P (Y | X = x) , P (Y ) cannot express that X is the cause of Y , because
if P (Y | X = x) , P (Y ) then P (X | Y = y) , P (X) and thus it would be impossible to
express that X causes Y , but Y does not cause X.1

How, then, can we express causal relations? The graphical approach to causal
inference, pioneered by Wright (1921) and developed into a full fledged formal
framework by Spirtes et al. (1993) and Pearl (2000), uses directed acyclic graphs
(DAGs) to depict causal relations. A graph G is a mathematical object that consists
of nodes and edges. In the case of DAGs, these edges are directed, and cycles are
not allowed. We take our variables to be nodes in such a DAG, and we draw an
arrow between two nodes if there is a direct causal relationship between them.
That is, we write X → Y if X is a direct cause of Y . Whether X → Y or Y → X
has consequences for the outcome of interventions. In particular, if X→ Y , then
we expect that interventions on X change the distribution of Y . Conversely, we
expect that interventions on Y do not change the distribution of X.

To formalize the notion of an intervention, Pearl (2000) introduced the do-
operator. The expression P (Y | X = x) describes what values Y is likely to take if
X happened to be x, and is known as an observational distribution. In contrast, the
expression P (Y | do(X = x)) describes what values Y is likely to take if X were set
to x, and is known as an interventional distribution. We say that X has a causal
effect on Y if P (Y | do(X = x)) , P (Y ). In contrast to the observational setting
we have discussed above, if P (Y | do(X = x)) , P (Y ) then it does not necessarily
follow that P (X | do(Y = y)) , P (X).

A key insight that follows from causal inference is that modeling with the
goal of prediction is not the same as modeling with the goal of intervention. In
other words, the fact that X correlates strongly with variable Y — and hence
can be used to predict Y well — does not imply that if we intervene on X, Y
changes. Figure 5.1 illustrates this difference by contrasting the DAG X→ Y (top
panels) with the DAG Y → X (bottom panels). As shown in the left panels, both

1More generally, probabilistic (in)dependence of a set of random variables refers to the factoriza-
tion of their joint distribution. X and Y are independent if P (X,Y ) = P (X)P (Y ), which we write as
X y Y , and they are dependent if P (X,Y ) , P (X)P (Y ), which we write as X ̸y Y (Dawid, 1979). In case
of dependence, it follows that P (X,Y ) = P (X | Y )P (Y ) = P (Y | X)P (X), stressing again the symmetry of
probabilistic associations.
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Figure 5.1: Top left: Data generated from the DAG X → Y . The red point and line indicate the
mean and 95% interval of the distribution of Y given that X happens to be 2. The blue point and
line indicate the same quantities given that X is set to 2. Top right: The observational distribution
equals the interventional distribution. Bottom left: Shows the exact same data generated from the
DAG Y → X. Bottom right: The observational distribution and the interventional distribution differ.
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DAGs generate the exact same data, and so in both cases X is a good predictor
of Y : we know that if X happens to be high, Y will likely also be high — this is
what a positive correlation entails. But, as the saying goes, correlation does not
(necessarily) imply causation. If the data come from the causal DAG X → Y , the
distribution of the values Y likely takes if X happens to be 2 (i.e., the observational
distribution P (Y | X = 2)) is the same as the distribution of the values Y likely
takes if X is set to 2 (i.e., the interventional distribution P (Y | do(X = 2)); see
the top right panel of Figure 5.1. In general, however, they are not the same.
The bottom left panel in 5.1 shows the exact same data as in the top left panel
(showing the same correlation), but generated from the DAG Y → X. In this case,
setting X to some value does not change the likely values of Y . The bottom right
panel shows that, indeed, the observational distribution is not the same as the
interventional distribution.

This simple example shows that, in the case of two variables, observational
data are insufficient to identify the causal direction: both the causal models X→
Y and Y → X are able to generate the exact same data. However, if X and Y
were statistically independent, we would be able to conclude that they are also
causally independent. This hints at a deep relationship between statistical and
causal dependence, which becomes more apparent when looking at more than
two variables. We do this in the next section.

5.3 Statistical and Causal Relations

While correlation is not causation, probabilistic associations are implied by
causal relations. This is the core of Reichenbach’s common cause principle, which
underlies much of causal inference (Peters et al., 2017; Reichenbach, 1956). In
Section 5.3.1, we discuss three fundamental causal graph structures and the
probabilistic associations they imply. In Section 5.3.2, we discuss how to algo-
rithmically derive such probabilistic associations for graphs of any size. In Sec-
tion 8.2.2, we illustrate how these tools help us distinguish spurious (non-causal)
from non-spurious (causal) associations in practice.

5.3.1 Three Fundamental Structures

Real-world systems are usually comprised of more than two variables. We com-
plicate the picture slowly, adding a third variable Z. Suppose that we observe
that X and Y are correlated. What causal models can bring about such a fact?
In contrast to the scenario with only two variables X and Y , more possibilities
should exist now. Indeed, Reichenbach’s common cause principle states that, in ad-
dition to a direct causal relation between X and Y , the correlation between X and
Y can be the result of a third variable Z that causes both X and Y (Reichenbach,
1956):

If two random variables X and Y are statistically dependent (X ̸y Y ),
then either (a) X causes Y , (b) Y causes X, or (c) there exists a third
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5. An Introduction to Causal Inference

variable Z that causes both X and Y . Further, X and Y become inde-
pendent given Z, i.e., X y Y | Z.

Option (a) implies that the underlying DAG has an arrow X → Y and / or an
arrow X → Z → Y . Option (b) implies that the underlying DAG has an arrow
Y → X and / or an arrow Y → Z → X. Option (c) implies that X ← Z → Y , that
is, Z is a common cause of both X and Y . The three variable graph structures in
options (a) and (b) is known as a chain, while the graph structure in option (c) is
known as a common cause. To understand the differences and similarities between
these structures, the top left panel in Figure 5.2 shows a positive association be-
tween X and Y that could have been generated by three distinct DAGs. There are
more DAGs that could have generated these data, but we focus on these three for
now. The DAG X → Z → Y could describe the fact that smoking cigarettes does
not directly cause cancer (there is no arrow X → Y ), but that smoking means in-
halation of smoke that is full with cancer-causing substances such as tar Z that
cause cancer Y . In the DAG X ← Z → Y , Z is a confounder that explains the
association between X and Y . For example, the positive association between the
number of Nobel laureates per country (X) and the consumption of chocolate
per capita in that country (Y ) is likely due to a confounder Z such as economic
development (Dablander, 2020a; Messerli, 2012).

In all three DAGs, X and Y are marginally dependent, as shown in the top left
panel of Figure 5.2. As before, we denote this as X ̸y Y . In the context of our
examples, this means that smoking (X) and cancer (Y ) are associated, just as the
number of Nobel laureates (X) and the consumption of chocolate per capita are
(Y ). For all three graphs, if we condition on the variable Z, X and Y become
conditionally independent, as the top right panel of Figure 5.2 shows. We denote
this as X y Y | Z. For example, if we look at the association between smoking
and cancer in a population that inhales a substantial fixed amount of tar (Z = 1)
or in a population that inhales no tar at all (Z = 0), then the association between
smoking and cancer would vanish. This is because there is no variation in tar in
the respective groups — it is a large but fixed amount in one group and zero in the
other group — and so smoking (X) cannot increase tar which would increase the
chances of getting cancer (Y ). Similarly, if we would look at countries with low
(Z = 0) or high (Z = 1) economic development separately, the association between
chocolate consumption and the number of Nobel laureates would vanish. While
the causal role of Z is different in the DAGs — it plays a causal mediative role in
the DAG X → Z → Y but a confounding role in the DAG X ← Z → Y — these
DAGs imply the same (conditional) associations between variables, and we can
therefore not distinguish between them using observational data. Note that, if
there were a directed path from X to Y or from Y to X, then X and Y would be
associated even after conditioning on Z.

There is a third type of structure given by X→ Z← Y that implies a different
set of probabilistic (in)dependencies: a collider structure. Instead of Z being a
common cause or a mediator, Z is now a common effect of X and Y . The bottom
left panel in Figure 5.2 illustrates that X and Y are marginally independent —
X y Y — reflecting the fact that they are not causally related in the underlying
DAG. However, X and Y become associated when conditioning on Z; we denote

76



5.3. Statistical and Causal Relations

X

Y

0 2 4 6 8 10

0

2

4

6

8

10

X

Y

0 2 4 6 8 10

0

2

4

6

8

10 Z = 0
Z = 1

Z

X Y

Z

X Y

X

Y

0 2 4 6 8 10

0

2

4

6

8

10

X

Y

0 2 4 6 8 10

0

2

4

6

8

10 Z = 0
Z = 1

Z

X Y

Z

X Y

Z

X Y

Z

X Y

Z

X Y

Z

X Y

Figure 5.2: Top left: Three selected DAGs that can generate a positive marginal association between
X and Y (X ̸y Y ). Top right: Under all these three DAGs, X and Y become independent given Z
(X y Y | Z). Bottom left: A DAG that can generate marginal independence between X and Y (X y Y ).
Bottom right: X and Y become dependent given Z (X ̸y Y | Z).
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this as X ̸y Y | Z. This can easily happen. A famous example is due to Berkson,
who observed that patients in a particular hospital (Z = 1) who had diabetes (X)
where less likely to also have an inflammation of the gall bladder (Y ) (Berkson,
1946b; Snoep et al., 2014). This negative association vanishes, however, when we
look at the general population, that is, when ignoring the hospital variable Z, as
the bottom left panel in Figure 5.2 illustrates. The association is due to the fact
that both diabetes and an inflammed gall bladder cause one to go to the hospital
(Z = 1). Looking at the population of patients in the hospital — which amounts
to conditioning on Z — one sees that X and Y are negatively associated; after all,
finding out that a person in the hospital has diabetes indicates that that person is
likely in the hospital because of diabetes and not (also) because of an inflammed
gall bladder. Note that if X and Y were causally related, then they would be
marginally associated. Another example of a collider structure is the following:
assuming that both innovative scientific practice and sound statistical reasoning
have a positive causal effect on whether a paper gets published, if we look only at
the published literature, we will find that innovative papers tend to use unsound
statistical reasoning.

We have seen that an underlying causal DAG implies a set of statistical re-
lationships in the form of marginal and conditional (in)dependencies between
variables. Each DAG in the set D = {X → Z → Y ,X ← Z ← Y ,X ← Z → Y } im-
plies that X and Y are marginally dependent (X ̸y Y ), but conditionally indepen-
dent (X y Y | Z), as shown in Figure 5.2. DAGs that imply the same (conditional)
(in)dependence structure are called Markov equivalent (Verma & Pearl, 1990b).
The DAG X → Z ← Y , on the other hand, implies that X and Y are marginally
independent (X y Y ), but conditionally dependent (X ̸y Y | Z). Thus, with three
variables, the marginal and conditional dependencies already make it possible to
disentangle colliders from chains and common causes.2

We have seen that different causal graphs can be consistent or inconsistent
with conditional dependencies in the data. For example, both a chain and com-
mon cause structure are consistent with the finding that X and Y are marginally
dependent but are conditionally independent given Z, while a collider structure
is inconsistent with such a finding. It turns out that for larger DAGs, the implied
conditional independencies can help in a similar way to infer which DAGs are
(in)consistent with the conditional independencies in the data. While it may not
be immediately obvious what marginal and conditional (in)dependencies are im-
plied by a large causal DAG, there luckily exists a tool to derive these implied
(in)dependencies. We discuss it in the next section.

5.3.2 Algorithmic Assessment of Dependence

For large graphs, it is not obvious how to conclude that two nodes are (condi-
tionally) independent. d-separation is a tool that allows us to check this algorith-
mically (Geiger et al., 1990). To be able to use this tool, we need to define the
following concepts:

2Assuming that X and Y are not directly connected. If that were the case, there would be neither
marginal nor conditional independencies.
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Figure 5.3: Example DAG and selected marginal and conditional (in)dependencies it implies, see
main text.

• A path from X to Y is a sequence of nodes and edges such that the start and
end nodes are X and Y , respectively.

• A conditioning set L is the set of nodes we condition on (it can be empty).

• Conditioning on a non-collider along a path blocks that path.

• A collider along a path blocks that path. However, conditioning on that
collider (or any of its descendants) unblocks that path.

With these definitions out of the way, we call two nodes X and Y d-separated by
L if conditioning on all members in L blocks all paths between the two nodes. To
illustrate how d-separation works in practice, we apply it to the DAG shown in
Figure 5.3.

There are a number of marginal independencies in the DAG. For example, T
is marginally independent of X. This is because any path from T to X must go
through W , but W is a collider on any such path, thereby blocking it. There are
many more marginal dependencies, however. For example, there is an unblocked
path from X to Y through Z, implying that X and Y are marginally associated.
Similarly, there is a path from V to U going through Y and W , implying that V
and U are marginally associated.

There are also a number of conditional independencies. For example, X and Y
are conditionally independent given Z. Why? There are two paths from X to Y :
one through Z and one through W . However, since W is a collider on the path
from X to Y , the path is already blocked. The only unblocked path from X to Y
is through Z, and conditioning on it therefore blocks all remaining open paths.
Additionally conditioning on W would unblock one path, and X and Y would
again be associated.

So far, we have implicitly assumed that conditional (in)dependencies in the
graph correspond to conditional (in)dependencies between variables. We make
this assumption explicit now. In particular, note that d-separation provides us
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with an independence model yG defined on graphs. To connect this to our stan-
dard probabilistic independence model yP defined on random variables, we as-
sume the following causal Markov property:

X yG Y | Z =⇒ X yP Y | Z .

In words, we assume that if the nodes X and Y are d-separated by Z in the
graph G, the corresponding random variables X and Y are conditionally inde-
pendent given Z (Lauritzen et al., 1990). This implies that all conditional in-
dependencies in the data are represented in the graph. For example, the graph
X→ Y → Z combined with the Markov property implies that the variables X, Y ,
and Z are all marginally dependent, but that X is conditionally independent of
Y given Z.

The ability to derive probabilistic (in)dependence statements from causal
models is an important step towards testing them. DAGs enable us to draw our
causal assumptions, and d-separation allows us to derive statistical associations
that we would expect in data, given our causal assumptions. If these associations
are not found in the data we observe, we would need to go back to the drawing
board. Finding the statistical associations implied by the causal model does not,
however, imply that the causal model is correct. This is because, as we have seen
in Section 5.3.1, there exist many causal models that can lead to the same set of
statistical relationships (MacCallum et al., 1993; Raykov & Marcoulides, 2001;
Verma & Pearl, 1990b).

5.3.3 Causal Effects and Confounding

While different causal models can imply the same set of probabilistic associa-
tions, their causal implications differ. As an example, take the chain and the
common cause structures discussed in Section 5.3.1. Both d-separation and the
top left panel in Figure 5.2 show that X and Y are marginally associated given
all three DAGs, yet their causal implications differ. To see this, suppose we inter-
vene on X and set it to 2. The chain X → Z → Y has a directed path from X to
Y , and so under this DAG X has a causal effect on Y . In constrast, in the DAGs
X ← Z ← Y and X ← Z → Y there is no directed path from X to Y , and hence X
does not have a causal effect on Y . The probabilistic association between X and
Y under these DAGs is non-causal or spurious (Aldrich et al., 1995).

Spurious associations between X and Y bias the estimate of the causal effect
of X on Y , in which case the estimate is said to be confounded. This occurs when
— using the language of graphs — there exists an unblocked path between X and
Y that has an arrow into X (see also Greenland et al., 1999). In that case, the
estimate is a combination of the causal effect of X on Y and effects due to these
other unblocked paths. For example, in the DAG shown in Figure 5.3, the causal
effect of Z on W is confounded because of the common cause X. Conversely, the
causal effect of X on Y is not confounded, because there exist no unblocked paths
between X and Y that contain an arrow into X. (Note that this assumes that we
observe all relevant variables; see also Section 5.4.2). If we were to condition on
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W , however, we would unblock a non-causal path from X to Y , resulting in con-
founding. Confounding due to conditioning on a collider is known as collider bias
or as endogenous selection bias if it is done inadvertently, for example when fail-
ing to collect a representative sample as in the hospital example in Section 5.3.1.
The fact that this bias can create spurious associations and the fact that adjusting
for variables may block causal paths — known as overcontrol bias (Elwert & Win-
ship, 2014) — makes clear that simply adjusting for all variables in a statistical
analysis in the hope of removing confounding is misguided.

What variables, then, should we condition on to remove confounding? If we
know the causal structure — an assumption we relax in Section 5.4.3 — the set
of variables we should condition on is the set that fulfills the backdoor criterion
(Pearl, 1995; Pearl et al., 2016, p. 61). Given two nodes X and Y , an adjustment
set L fulfills the backdoor criterion if no member in L is a descendant of X and
members in L block all paths between X and Y that contain an arrow into X. Ad-
justing for L thus results in the unconfounded causal effect of X on Y . Formally,
we have that

P (Y = y | do(X = x)) =
∑
ℓ∈L

P (Y = y | X = x,L = ℓ)P (L = ℓ) ,

which translates the interventional distribution P (Y = y | do(X = x)) into an
observational distribution where we have conditioned on the variables in the ad-
justment set L. The backdoor criterion works because it (a) blocks all non-causal
paths between X and Y , (b) leaves all directed paths between X and Y open,
and (c) creates no new spurious paths. While there exist causal effects which the
backdoor criterion fails to identify (see for example the front-door criterion; Pearl,
1995; Pearl et al., 2016, pp. 85-86), the do-calculus provides a full account of
whether causal effects can be estimated (Pearl, 1995, 2009, pp. 85-86). For an
example of estimating a causal effect, see Tutorial Box 1.

As an aside, note that statistical network estimation techniques estimate con-
ditional (in)dependencies, drawing an undirected edge between two nodes in
case they are dependent conditional on all other nodes in the network. One
frequent motivation for conditioning on all other nodes in the network is to re-
move spurious relationships. Yet as we have seen in this chapter, “spurious re-
lations” and “confounding” are causal terms, and statistical network models by
themselves do not allow for causal inference (see also Dablander & Hinne, 2019;
Ryan et al., 2022a). Instead, they are tools to explore the multivariate statistical
(in)dependencies present in data. In case one uses a statistical network model
with the goal of identifying causal paths, however, it is important to be aware of
the assumptions that are required for causal inference.

5.4 Structural Causal Models

In the previous sections, we have seen how DAGs express a set of causal relations.
We have also seen that these causal relations imply certain statistical relation-
ships in the form of marginal and conditional (in)dependencies. DAGs do not,
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Suppose we wish to compare two treatments (T = A and T = B) for kid-
ney stones, which can either be small (S = 0) or large (S = 1). The data
showing the proportions of treatments that lead to successful recovery
(R = 1) seem puzzling: While A outperforms B for both small (0.93 vs
0.87) and large (0.73 vs 0.69) kidney stones, overall it leads to fewer
recoveries (0.78 vs 0.83). Which outcome should we use to compare
the two treatments?

Treatment A Treatment B
Small Stones

(
357
700 = 0.51

)
81
87 = 0.93 234

270 = 0.87

Large Stones
(

343
700 = 0.49

)
192
263 = 0.73 55

80 = 0.69
273
350 = 0.78 289

350 = 0.83

This puzzle is known as Simpson’s paradox, and the answer requires a
causal analysis (e.g., Hernán et al., 2011; Pearl, 2014). We know that
treatment does not cause the size of the kidney stones, but that the size
of the kidney stones affects the choice of treatment. Hence the size of
the kidney stones S is a common cause (see Section 5.3.1), resulting in
confounding. (If these were data from an experiment where treatment
was randomly assigned, confounding would not exist.) To estimate the
causal effect of treatment on recovery, we therefore have to adjust for
S. The causal effect of treatment A on recovery is given by:

P (R = 1 | do(T = A)) =
∑
S

P (R = 1 | T = A,S = s)P (S = s)

=
81
87
× 357

700
+

192
263
× 343

700

= 0.83 .

Similarly, the causal effect of treatment B on recovery is given by:

P (R = 1 | do(T = B)) =
∑
S

P (R = 1 | T = B,S = s)P (S = s)

=
234
270
× 357

700
+

55
80
× 343

700

= 0.78 .

This indicates that treatment A is superior to treatment B.

Tutorial box 1: Simpson’s Paradox and estimating causal effects, example from Pearl et al. (2016).
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however, tell us how to test for these (in)dependencies. DAGs are nonparametric
and do not specify the distributional form of and functional form between vari-
ables depicted (Pearl, 2009). For example, a DAG alone does not specify whether
the variables should follow a Gaussian distribution, or whether nonlinear rela-
tionships between variables are allowed.

The core of the graphical approach to causal inference are not DAGs, but so-
called Structural Causal Models (SCMs; Peters et al., 2017). These are very similar
to structural equation models (Bollen, 1989; Bollen & Pearl, 2013). An SCM that
gives rise to the DAG X→ Z→ Y may be written as:

X := εx
Z := f (X,εz)

Y := g(Z,εy) .

In contrast to purely statistical models such as regression, here we use := to de-
note causal relations. A complete model specification requires assigning a distri-
bution to the error terms (εx, εz, εy) and specifying the functional forms of f and
g. Frequently, researchers assume independent Gaussian error terms and restrict
the relationships to be linear, which markedly simplifies analysis (see e.g. Pearl,
2013). In our example, this would lead to:

X := εx
Z := β1 ·X + εz
Y := β2 ·Z + εy ,

where β1 and β2 are the causal effects of X on Z and Z on Y , respectively, and
where (εx, εz, εy) follow independent zero-mean Gaussian distributions.

Using a DAG to visualize causal relations is a useful first step, but it is a com-
paratively small step given that DAGs are completely nonparametric. While one
can use very general conditional independence tests to assess whether the prob-
abilistic implications of any DAG are apparent in data (e.g., Gretton et al., 2007;
Shah & Peters, 2020), more powerful tests result with stronger assumptions. For
example, in case of linearity and Gaussian noise, a partial correlation of zero im-
plies conditional independence. The flipside, of course, is that more stringent
assumptions about the functional form of the relationships between variables
or their distributional form may turn out to be incorrect. The equivalence of
causal models in terms of their probabilistic implications again rears its ugly
head (e.g., MacCallum et al., 1993; Raykov & Marcoulides, 2001), and choosing
between causal models requires theoretical in addition to merely statistical con-
siderations.
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Figure 5.4: Contrasts the observational distributions of the variables in the SCM (red) with the inter-
ventional distributions under do(X = x) (blue), using n = 1000 data points simulated from the SCM
described in Section 5.4.1.

5.4.1 Quantifying Causal Effects

Given a SCM, we can compute causal effects straightforwardly. To illustrate this,
suppose the SCM underlying the DAG in Figure 5.3 is given by:

X := εX
T := εT
Z := 1.25 ·X + εZ
Y := −0.75 ·Z + εY
V := 0.50 ·Y + εU
W := 0.25 ·X + 0.50 ·Y + 0.75 · T + εW
U := 1 ·W + εV ,

where (εX , εT , εZ , εY , εU , εW , εV ) ∼ N (0,1). Using this SCM, we can compute
causal effects by simply changing variables in the SCM. For example, Figure 5.4
shows how the variables in the SCM change under do(X = 2).

We see that while X has a strong causal effect on Z, Y , and U , it has a com-
paratively weaker effect on W and V and no effect on T . The distributions can be
summarized in various ways; for example, we could study how the means change,
which gives the average causal effect (e.g., Pearl et al., 2016, p. 56). However, we
could also study how the variance of the variables in the system would change,
or assess the probability with which an outcome variable lies within a particular
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range of values (e.g., Gische & Voelkle, 2022). We can also go beyond so-called
“hard” interventions, where we set X to a particular value and which might be
difficult to achieve in practice, to so-called “soft” interventions, where we change
the distribution of X, for example by changing its mean (Eberhardt & Scheines,
2007).

5.4.2 Assumptions of Causal Inference

Causal inference requires a number of strong assumptions. First, in order to
interpret a DAG causally, we have to assume that there is no unobserved con-
founding, an assumption called causal sufficiency (Dawid, 2010a; Peters et al.,
2017), and that there is no selection bias. The former is extremely difficult to
rule out in practice, and unobserved confounding is the main obstacle to causal
inference in observational data analysis (see also Rohrer, 2018). Second, in order
to make sense of the interventionist definition of causal effects, we assume that
we can intervene on single variables precisely like a surgeon. The extent to which
this makes sense depends on the variable, but it is safe to say that in psychology
interventions are usually so-called “fat-hand” interventions in which we inad-
vertently target other variables as well (Eronen, 2020). Moreover, while there are
conceptual issues with manipulating non-manipulable causes such as ethnicity
(but see Pearl, 2019, for an upbeat discussion), there are additional issues when
intervening on psychological variables (for a discussion, see Eronen, 2020). We
agree with Hernán (2016) that the harder it is to come up with a “well-defined”
intervention, the more difficult it is to interpret the putative causal effect.

The network perspective holds that psychological phenomena such as intel-
ligence or depression arise out of the direct causal interaction between variables
(e.g., Borsboom, 2017; van der Maas et al., 2006). These interactions can con-
stitute feedback loops, such as sleeping problems→ concentration problems→
feelings of guilt → sleeping problems. So far, we have assumed acyclic graphs
which do not allow feedback loops. However, one can model feedback loops as
DAGs that unfold over time, such that X → Y at time point t and Y → X at time
point t+1. Under some conditions, SCMs can allow cyclic assignments without an
explicit notion of time, which leads to directed cyclic graphs (e.g., Spirtes, 1995).
In the structural equation modeling literature, such models are known as nonre-
cursive structural equation models (e.g., Bollen, 1989, p. 83). As we have seen,
reasoning about causal relations without cyclic assignment is already very diffi-
cult, and incorporating feedback loops would complicate the issue (see Bongers
et al., 2021, for a thorough treatment).

5.4.3 Causal Discovery

So far, we have assumed knowledge of a causal model. This allowed us to derive
testable predictions about statistical relationships, and provided us with a way to
identify causal effects and mitigate confounding — assuming that certain (strong)
assumptions are met. We may call this approach confirmatory. The more difficult
task is to learn the causal model from data, an enterprise referred to as causal
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discovery, which we may term exploratory. We provide a few pointers below, but
refer the interested reader to the excellent overviews by Eberhardt (2017), Spirtes
and Zhang (2016), and Heinze-Deml, Maathuis, et al. (2018).

The PC algorithm (after its inventors Peter Spirtes and Clark Glymour) is a
classic algorithm that, assuming faithfulness,3 uses observational data to learn
the set of DAGs that imply the same probabilistic dependencies (Kalisch &
Bühlmann, 2007; Spirtes et al., 1993). The PC algorithm, together with many
other algorithms, is implemented in the R packages pcalg (Kalisch et al., 2012)
and bnlearn (Scutari, 2010). The bnlearn package also includes a host of similar
algorithms for discovering DAGs from observational data, as well as methods for
assessing the stability of results through bootstrapping.

Learning the full causal structure from purely observational data is extremely
ambitious. If one has data from different settings, more promising routes become
possible. The method of invariant causal prediction uses data from different en-
vironments together with the assumption that direct causal effects are invariant
across environments to discover causal effects (Bühlmann, 2020; Peters et al.,
2016; Weichwald & Peters, 2021). This has been applied to, among others, gene
perturbation experiments (Meinshausen et al., 2016) and obsessive compulsive
disorder (Kossakowski, Oudheusden, et al., 2019), and has been generalized to
nonlinear settings (Heinze-Deml, Peters, et al., 2018) and to time series data (Pfis-
ter et al., 2019). Mooij et al. (2020) propose a “Joint Causal Inference” framework
that unifies causal discovery from multiple contexts. Invariant causal prediction
methods are implemented in the R packages InvariantCausalPrediction, nonlin-
earICP, and seqICP.

Causal discovery methods based on (conditional) independence tests cannot
uncover the causal direction for the case of two variables. This is because, as
we have seen in Section 5.2, both X → Y and Y → Y imply X ̸y Y . By re-
stricting the underlying SCM, however, one can in fact learn the causal direc-
tion. Shimizu et al. (2006) show that restricting the SCM to linear relationships
with non-Gaussian noise makes this possible, and also allows learning the causal
structure in the case of p > 2 variables. Hoyer et al. (2009) show that restrict-
ing the SCM to nonlinear relationships with Gaussian noise allows discovering
the direction, too. Mooij et al. (2016) provide a data set of cause and effect pairs
where the direction is known and validate these and other methods. These meth-
ods are implemented in the R package CompareCausalNetworks (Heinze-Deml,
Maathuis, et al., 2018).

While the methods mentioned above come primarily from computer science
and machine learning, inferring causal effects from observational data has a long
history in a range of fields, including economics, psychology, and public health.
Researchers from these domains frequently exploit so-called natural experiments
or quasi-experimental designs to draw causal conclusions. Examples include re-
gression discontinuity designs (e.g., Cook, 2008; Marinescu et al., 2018), instru-
mental variables (e.g., Angrist & Krueger, 2001), interrupted time series (e.g.,

3Faithfulness is the assumption that all probabilistic independencies one finds in the data cor-
respond to independencies in the graph, that is, X yP Y | Z =⇒ X yG Y | Z. Faithfulness is the
converse of the Markov condition discussed in Section 5.3.2.
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Bernal et al., 2017; Leeftink & Hinne, 2020), and synthetic control methods (e.g.,
Abadie et al., 2010). For the latter method, we refer the interested reader to the
R package CausalImpact developed by Brodersen et al. (2015). Lastly, Sugihara
et al. (2012) propose a method for identifying causal direction using results from
dynamical systems theory (see Bradley & Kantz, 2015, for an excellent overview)
that is implemented in the R package rEDM (Chang et al., 2017).

5.5 Conclusion

In this chapter, we have discussed a number of core tenets of causal inference.
We have seen that DAGs provide a language to reason about causal effects and the
outcome of interventions; how probabilistic relations follow from causal assump-
tions, and that the same probabilistic relations can arise from different causal
models, complicating inference; how DAGs provide us with a way to reason about
confounding, and how SCMs parameterize DAGs and formalize causal relations.
We have also touched on a number of (strong) assumptions required to draw
causal conclusions from observational data, and briefly reviewed the nascent and
vibrant field of causal discovery. We hope that this short overview can provide
researchers with tools that can help them move from a statistical towards a causal
understanding of systems.

Author contributions. FD wrote the first draft of the manuscript. RvB pro-
vided detailed feedback and suggestions. FD and RvB wrote the paper.
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Chapter 6

Node Centrality Measures
are a Poor Substitute for

Causal Inference

Abstract

Network models have become a valuable tool in making sense of a diverse
range of social, biological, and information systems. These models marry
graph and probability theory to visualize, understand, and interpret vari-
ables and their relations as nodes and edges in a graph. Many applica-
tions of network models rely on undirected graphs in which the absence
of an edge between two nodes encodes conditional independence between
the corresponding variables. To gauge the importance of nodes in such a
network, various node centrality measures have become widely used, es-
pecially in psychology and neuroscience. It is intuitive to interpret nodes
with high centrality measures as being important in a causal sense. Here,
using the causal framework based on directed acyclic graphs (DAGs), we
show that the relation between causal influence and node centrality mea-
sures is not straightforward. In particular, the correlation between causal
influence and several node centrality measures is weak, except for eigen-
vector centrality. Our results provide a cautionary tale: if the underly-
ing real-world system can be modeled as a DAG, but researchers interpret
nodes with high centrality as causally important, then this may result in
sub-optimal interventions.

This chapter has been adapted from: Dablander, F., & Hinne, M. (2019). Node centrality measures
are a poor substitute for causal inference. Scientific Reports, 9(1), 6846.
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6.1 Introduction

In the last two decades, network analysis has become increasingly popular across
many disciplines dealing with a diverse range of social, biological, and infor-
mation systems. From a network perspective, variables and their interactions are
considered nodes and edges in a graph. Throughout this chapter, we illustrate the
network paradigm with two areas where it has been applied extensively: psychol-
ogy and neuroscience. In psychology, particularly in psychometrics (Marsman et
al., 2018) and psychopathology (Borsboom & Cramer, 2013; McNally, 2016), net-
works constitute a shift in perspective in how we view psychological constructs.
Taking depression as an example, the dominant latent variable perspective as-
sumes a latent variable “depression” causing symptoms such as fatigue and sleep
problems (Borsboom et al., 2003). Within the network perspective, there is no
such latent variable ‘depression’; instead, what we call depression arises out of
the causal interactions between its symptoms (Borsboom, 2017). Similarly, the
network paradigm is widely used in neuroscience. Here, networks describe the
interactions between spatially segregated regions of the brain (Behrens & Sporns,
2012; Van Essen & Ugurbil, 2012). It has been shown that alterations in brain
network structure can be predictive of disorders and cognitive ability (Deco &
Kringelbach, 2014; Fornito & Bullmore, 2012; Petersen & Sporns, 2015) which
has prompted researchers to identify which aspects of network structure can ex-
plain these behavioral variables (Buckner et al., 2009; Doucet et al., 2015; Fornito
& Bullmore, 2015; He et al., 2008; Parker et al., 2018; Smith, 2015).

A principal application of network theory is to gauge the importance of indi-
vidual nodes in a network. Here, we define the importance of a node as the extent
to which manipulating it alters the functioning of the network. The goal in prac-
tical applications is to change the behavior associated with the network in some
desired way (Albert et al., 2000; Buckner et al., 2009; Chiolero, 2018; Doucet
et al., 2015; Fried et al., 2016; He et al., 2008; Parker et al., 2018; Rodebaugh
et al., 2018; van den Heuvel & Sporns, 2013). A number of measures, commonly
referred to as centrality measures, have been proposed to quantify this relative
importance of nodes in a network (Freeman, 1978; Opsahl et al., 2010; Sporns
et al., 2007). Colloquially, importance is easily confused with having causal in-
fluence. However, this does not follow from the network paradigm (that is, not
without additional effort through e.g. randomized trials), as it provides only a
statistical representation of the underlying system, not a causal one; although
one might study how the system evolves over time and take the predictive per-
formance of a node as its Granger-causal effect (Eichler, 2013; Granger, 1969). If
we want to move beyond this purely statistical description towards a causal, and
eventually mechanistic one (which we need to fully understand these systems),
we require additional assumptions. With these, it is possible to define a calculus
for causal inference (Pearl, 2009; Peters et al., 2017). Although it is not always
clear whether the additional assumptions of this framework are warranted in ac-
tual systems (Cartwright, 2007; Dawid, 2010a), without it we lack a precise way
to reason about causal influence. In this chapter, we explore to what extent, if at
all, node centrality measures can serve as a proxy for causal influence.
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This chapter is organized as follows. In Section 6.2, we discuss the necessary
concepts of network theory and causal inference. Next, in Section 6.2.6, we dis-
cuss how these two different perspectives are related. In Section 6.3, we describe
our simulations, and discuss the results in Section 10.2.2. We end in Section 10.4
with a short summary and a note on the generalizability of our findings.

6.2 Preliminaries

6.2.1 Undirected Networks

The central objects in network theory are graphs. A graph G = (V ,E) consists of
nodes V and edges E connecting those nodes; nodes may be for instance neu-
ronal populations or symptoms, while edges indicate whether (in unweighted
networks) or how strongly (in weighted networks) those nodes are connected.
There are several ways of defining the edges in a graph. A common approach
is to assume that the data come from a Gaussian distribution and to compute
for each pair of nodes their partial correlation, which serves as the strength of
the corresponding edge. The absence of an edge between a pair of nodes (i.e., a
partial correlation of zero) indicates that these nodes are conditionally indepen-
dent, given the rest of the network. Such networks, referred to as Markov random
fields (MRFs; Koller & Friedman, 2009; Lauritzen, 1996), capture only symmetric
relationships.

6.2.2 Node Centrality Measures

Markov random fields can be studied in several ways. Originating from the anal-
ysis of social networks (Freeman, 1978), various centrality measures have been
developed to gauge the importance of nodes in a network (Newman, 2018). A
popular measure is the degree of a node which counts the number of connections
the node has (Freeman, 1978). A generalization of this measure takes into ac-
count the (absolute) strength of those connections (Opsahl et al., 2010). Other
measures, such as closeness and betweenness of a node, are not directly based on a
single node’s connection, but on shortest paths between nodes (Freeman, 1977),
or, such as eigenvector centrality, weigh the contributions from connections to
nodes that are themselves central more heavily (Bonacich, 1972) (see Appendix
D.1 for mathematical details).

6.2.3 Causal Inference Background

Causal inference is a burgeoning field that goes beyond mere statistical associ-
ations and informs building models of the world that encode important struc-
tural relations and thus generalize to new situations (Bareinboim & Pearl, 2016;
Hernán et al., 2018; Marcus, 2018; Pearl & Mackenzie, 2018). One widespread
formalization of causal inference is the graphical models framework developed by
Pearl and others (Pearl, 1995, 2009; Spirtes et al., 2000), which draws from the
rich literature on structural equation modeling and path analysis (Wright, 1921).
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Figure 6.1: A. Seeing: Three Markov equivalent DAGs encoding the conditional independence struc-
ture between number of storks (X), number of delivered babies (Y ), and economic development (Z) (see
main text). B. Doing: How the DAG structure changes when intervening on Z, i.e., do(Z = z′).

In contrast to Markov random fields, the causal inference framework used here
relies on directed acyclic graphs (DAGs), which do encode directionality. Assump-
tions are required to represent the independence relations in data with graphs,
and further assumptions are needed to endow a DAG with causal interpretation
(Dawid, 2010a, 2010b). We briefly discuss these assumptions below, and refer
the reader for more in-depth treatment to excellent recent textbooks on this topic
(Pearl, 2009; Pearl et al., 2016; Peters et al., 2017; Rosenbaum, 2017).

6.2.4 Causal Inference with Graphs

Consider the following example. We know from biology that storks do not deliver
human babies, and yet there is a strong empirical correlation between the number
of storks (X) and the number of babies delivered (Y ) (Matthews, 2000). In an
attempt to resolve this, textbook authors usually introduce a third variable Z,
say economic development, and observe that X is conditionally independent of Y
given Z, written as X |= Y | Z (Dawid, 1979). This means that if we fix Z to some
value, there is no association between X and Y . Using this example, we introduce
the first two rungs of the “causal ladder” (Pearl, 2018; Pearl & Mackenzie, 2018),
corresponding metaphorically to the process of seeing and doing (Dawid, 2010b).

6.2.4.1 Seeing

DAGs provide a means to visualize conditional independencies. This can be es-
pecially helpful when analyzing many variables. Figure 6.1A displays the three
possible DAGs corresponding to the stork example — all three encode the fact
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that X |= Y | Z. To see this, we require a graphical independence model known as
d-separation (Lauritzen et al., 1990; Pearl, 1986; Verma & Pearl, 1990a), which
helps us read off conditional independencies from a DAG. To understand d-
separation, we need the concepts of a walk, a conditioning set, and a collider.

• A walk ω from X to Y is a sequence of nodes and edges such that the start
and end nodes are given by X and Y , respectively. In the middle DAG in
Figure 6.1A, the only possible walk from X to Y is (X→ Z→ Y ).

• A conditioning set L is a set of nodes corresponding to variables on which
we condition; note that it can be empty.

• A nodeW is a collider on a walk ω in G if two arrowheads on the walk meet
in W ; for example, W is a collider on the walk (X→W ← Y ). Conditioning
on a collider (or any of its descendants) unblocks a path from X to Y which
would have been blocked without conditioning on the collider.

Using these definitions, two nodes X and Y in a DAG G are d-separated by nodes
in the conditioning set L if and only if members of L block all walks between
X and Y . Because Z is not a collider in any of the DAGs displayed in Fig. 6.1A,
Z d-separates X and Y in all three graphs. Graphs that encode exactly the same
conditional independencies are called Markov equivalent (Lauritzen, 1996). We
now have a graphical independence model, given by d-separation, and a prob-
abilistic independence model, given by probability theory. In order to connect
the two, we require the causal Markov condition and faithfulness, which we will
discuss in the next section. If one is merely concerned with association — or see-
ing — then the three DAGs in Figure 6.1 are equivalent; the arrows of the edges
do not have a substantive interpretation or, as Dawid (2010a, p. 66) puts it, “are
incidental construction features supporting the d-separation semantics.” Below,
we go beyond seeing.

6.2.4.2 Doing

It is perfectly reasonable to view DAGs as only encoding conditional indepen-
dence. However, merely seeing the conditional independence structure in our
stork example does not resolve the puzzle of what causes what. In an alternative
interpretation of DAGs, the arrows encode the flow of information and causal
influence — Hernán and Robins (2006) call such DAGs causal. For example, the
rightmost DAG in Figure 6.1A models a world in which the number of delivered
babies influences economic development which in turn influences the number of
storks. In contrast, and possibly more reasonable, the leftmost DAG describes a
common cause scenario in which the number of storks and the number of babies
delivered do not influence each other, but are related by economic development;
e.g., under a flourishing economy both numbers go up, inducing a spurious corre-
lation between them. In order to connect this notion of causality with conditional
independence, we need the following two assumptions.

Assumption I: Causal Markov Condition. We say that a graph G is causally
Markov to a distribution P over n random variables (X1,X2, . . . ,Xn) if we have
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the following factorization:

P (X1, . . . ,Xn) =
n∏
i=1

P (Xi | pai
G) , (6.1)

where pai
G are the parents of node Xi in G (Hausman & Woodward, 1999; Pearl,

2009; Peters et al., 2017). This states that a variable Xi is conditionally inde-
pendent of its non-effects (descendants), given its direct causes (parents). When
Eq. (6.1) holds we can derive conditional independence statements from causal
assumptions — a key step in testing models.

Assumption II: Faithfulness. We say that a distribution P is faithful to a graph
G if for all disjoint subsets X,Y ,Z of all nodes V it holds that

X |= PY | Z⇒ X |= GY | Z , (6.2)

where |= P is the independence model implied by the distribution, and |= G is
the independence model implied by the graph (Peters et al., 2017; Spirtes et al.,
2000). In other words, while the causal Markov condition allows us to derive
probabilistic conditional independence statements from the graph, faithfulness
implies that there are no further such conditional independence statements be-
yond what the graph implies.

This causal DAG interpretation gives causal inference an interventionist flavor.
Specifically, in the leftmost DAG, if we were to change the number of babies de-
livered, then this would influence the number of storks. In contrast, when doing
the same intervention on the right DAG, the number of storks would remain un-
affected. Pearl developed an algebraic framework called do-calculus to formalize
this idea of an intervention (Pearl et al., 2016). In addition to conditional proba-
bility statements such as P (Y | X = x), which describe how the distribution of Y
changes when X is observed to equal x, the do-calculus admits statements such
as P (Y | do(X = x)), which describe how the distribution of Y changes under the
hypothetical of setting X to x. The latter semantics are usually associated with
experiments in which we assign participants randomly to X = x. Pearl showed
that, given the assumptions of causal DAGs, such statements can also be valid
for observational data. If possible, such causal claims can further be tested using
experiments.

6.2.5 Measuring Causal Influence

The do-calculus and the intervention distribution allow us to define a measure of
causal influence called the average causal effect (ACE; Pearl, 2009) as

ACE(Z→ Y ) = E[Y |do(Zj = zj )]−E[Y |do(Zj = zj + 1)] , (6.3)

where the expectation is with respect to the intervention distribution. The ACE
has a straightforward interpretation which follows directly from its definition,
namely that it captures the differences in the expectation of Y given Z when Z
is forced to a particular value. For each node in the DAG, we compute the total
ACE, that is, the sum of its absolute average causal effect on its children, i.e.,
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Figure 6.2: A. Shows how an underlying directed acyclic graph (left) relates to an undirected graph
(right) by dropping the arrows and inducing dependency between parents. While the mapping be-
tween a DAG and its moral graph is one-to-one, the resulting undirected network has six Markov
equivalent DAGs. B. The stork example. Conditioned on economic development (Z), the number of
storks (X) and the number of babies born (Y ) are independent.

ACEtotal(Xj ) =
∑

i∈Ch(Xj )

∣∣∣ACE(Xj → Xi)
∣∣∣ , (6.4)

where Ch(Xj ) denotes the direct children of Xj .
Janzing et al. (2013) pointed out that the ACE measure has a number of

deficits; for example, it only accounts for linear dependencies between cause
and effect. To address these and other deficits, they propose an alternative mea-
sure which defines the causal strength of one arrow connecting two nodes as
the Kullback-Leibler (KL) divergence between the observational distribution P
— which corresponds to the DAG before the intervention — and the intervention
distribution which results when “destroying” that particular arrow, PS (Janzing
et al., 2013). In the case of multivariate Gaussian distributions, this becomes

CEKL(Z→ Y ) = KL(P ||PS ) =
1
2

(
tr

[
Σ−1
S Σ

]
− log

detΣ
detΣS

−n
)
, (6.5)

where Σ and ΣS are the covariance matrices of the respective multivariate Gaus-
sian distributions, and n is the number of nodes. By “destroying” an arrow
Z→ Y , we mean to remove the causal dependency of Y on Z, and instead feeding
Y with the marginal distribution of Z (Janzing et al., 2013). For linear Gaussian
systems and nodes with independent parents, ACE and CEKL are mathematically
very similar (Janzing et al., 2013). To calculate the total KL-based causal effect of
a node, we remove all its outgoing edges. In the remainder, we let CEKL refer to
this total effect. Note that CEKL is measured in bits which is less intuitive than
ACE, which resembles linear regression.

6.2.6 Relating Directed to Undirected Networks

As we saw earlier, both the Markov random field and the directed acyclic graph
represent conditional independencies. In fact, it is straightforward to first look
for collider structures — also called v-structures — in the DAG, where pairs of
nodes both point toward the same child node. In this case, we construct an MRF
from a DAG by connecting these for every pair of parents of each child, and
then dropping the arrowheads. This procedure follows from d-separation (see
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Section 6.2): recall that in the MRF, an edge represents conditional dependence,
given all the other nodes. So if two parent nodes are marginally independent
in the DAG, they become dependent once we condition on their child node. An
example of this process is shown in Fig. 6.2A. The resulting undirected graph is
also called the moral graph of the particular DAG (Lauritzen, 1996). If in our stork
example we assume that indeed economic development drives both the number
of babies as well as the number of storks, we do not have a v-structure. In this
case, transforming the DAG into an MRF does not involve any marrying of par-
ent nodes, and the DAG is obtained by simply dropping the arrowheads (see
Fig. 6.2B).

Information is lost when transforming the conditional independencies cap-
tured in a DAG to a MRF — without contextual constraints we cannot uniquely
determine the true DAG from a MRF. This is due to three reasons. First and most
obviously, by discarding the arrowheads we do not know whether, for example,
X → Z or Z → X, but only that X − Z, which creates a symmetry where none
was before. Consider again Fig. 6.2A. Here, node Z does not have any causal
effect, but in the moral graph it is indistinguishable from the other nodes. Con-
sequently, where there was a difference between these variables in the DAG, this
difference is now lost. Second, additional edges are introduced when there are
collider nodes (i.e., the child nodes in v-structures). In our example, this implies
the edge X −Y , which was not present in the DAG. Third, an undirected network
may map to several Markov equivalent DAGs. That is, there may be multiple
DAGs (each with their own specific distributions of causal effects) that, through
the process described above, result in the same MRF (Gillispie & Perlman, 2002).
Despite these fundamental differences between DAGs and MRFs, some informa-
tion regarding the causal structure of the DAG might remain after the transfor-
mation into a MRF. For example, a node with many effects in the DAG may still
be a highly connected node in the resulting MRF, which could be identified with
a centrality measure. In the following simulation, we investigate to which extent
the ranking of causal influence can be recovered from the Markov random field.

6.3 Simulation Study

6.3.1 Generating Data from a Directed Network

A DAG is a graphical (nonparametric) representation of how variables relate to
each other causally. Structural causal models add the necessary precision and
parametric assumptions to how these variables relate to each other (Peters et al.,
2017). Here, we assume that the variables follow a linear structural causal model
with Gaussian additive noise. In a DAG, due to the causal Markov condition,
each variable Xi ’s value is a (linear) function of its parents, which themselves are
(linear) functions of their parents, and so on. This regress stops at root nodes,
which have no parents. The values of the children of the root nodes, and the chil-
dren of their children and so on, follow from the specific functional relation to
their parents — they “listen to” them — and, in our case, additive noise. For ex-
ample, assuming only one root node XR, we have XR = NR and Xi = f (pai

G) +Ni
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Figure 6.3: A. Shows the true directed causal structure and the estimated undirected network for
v = 10 nodes, a network density of d = 0.30, and n = 1000 observations. Node size is a function of the
(z-standardized) causal effect (left) or betweenness centrality (right). B. Shows the distributions of
the causal effect scores CEKL and betweenness centrality CB for the ten nodes in the example. Nodes
are ordered by causal effect. In this example, the rank-correlation between the causal effects and
betweenness centrality is 0.32. As our simulations show, this is a prototypical case. An interactive
version of this plot is available as a R Shiny app at https://fdabl.shinyapps.io/causality-centrality-
app/.

for all nodes i, where NR and Ni are independent noise variables following a
standard normal distribution. For our simulation, we assume that f (·) is sim-
ply a linear combination of the values of the parent nodes, where the weights
are drawn from a normal distribution with mean 0.30 and standard deviation
0.50; in the Appendix we illustrate how a different choice affects our results. For
each DAG / structural causal model, we then estimate its undirected network
using the graphical lasso (Epskamp & Fried, 2018; Friedman et al., 2008), and
proceed to compute five different node centrality measures: degree, strength,
closeness, betweenness, and eigenvector centrality (see also Section 6.2.1). We
calculate the node-wise CEKL and ACEtotal scores based on the true structural
causal model. We repeat each configuration (see below) 500 times, and compute
rank-based correlations between CEKL and all other measures. Note that our re-
sults do not change if we correlate the centrality measures with ACEtotal instead
of CEKL. Figure 6.3 displays what a particular simulation repetition might look
like. Note how, for example, node 9 is highly influential in the causal structure,
but node 5 is more central in the MRF. Readers who want to explore the rela-
tion between centrality and causal measures interactively are encouraged to visit
https://fdabl.shinyapps.io/causality-centrality-app/.

6.3.2 Types of Networks

The topology of a network affects its distribution of centrality scores. Because of
this, we run our simulation procedure for four common network models: the
Erdős-Rényi (ER) model, the Watts-Strogatz (WS) model, power-law (PL) net-
works, and geometric (Geo) networks. In the ER model, networks are generated
by adding connections independently at random for each pair of nodes (Erdős &
Rényi, 1959). ER networks are characterized by relatively short path-lengths and
low clustering. In contrast, the WS networks have the so-called “small-world”
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Figure 6.4: Examples of the generated directed acyclic graphs that are used as ground truth in the
simulations.

property, which indicates that these networks have both short-path lengths as
well as high clustering (Watts & Strogatz, 1998). The PL networks are networks
where the degree distribution follows a power-law distribution (Barabási & Al-
bert, 1999). This implies that a few nodes have many connections, while most
nodes are only sparsely connected to the rest of the network. These networks can
be generated for instance through preferential attachment. Here, at each succes-
sive step a new node is added to the network, which is connected to the already
existing nodes with a probability proportional to their degree. The final network
type we consider, Geo, assumes that the nodes of the network are embedded in
some metric space, and that the probability of a connection between the nodes is
inversely proportional to the distance between them (Bullock et al., 2010). These
networks may serve as a simple model for networks that are constrained by a
physical medium, such as brain networks. They also allow isolated communities
of nodes to emerge because the probability of connection between nodes far away
from each other goes to zero; see Figure 6.4. For each of the four network types,
we randomly generate a DAG with number of nodes v = {10,20,30,40,50}, net-
work density d = {0.10,0.20, . . . ,0.90}, and then generate n = 5000 observations
from the structural causal model underlying that DAG. The density of a DAG is
given by d =m/(v(v − 1)), where m is the number of directed connections.

6.4 Results

Figures 6.5 and 6.6 display the result of the simulation study. Figure 6.5 shows a
homogeneous picture of correlation across the types of graphs: all centrality mea-
sures show a mean rank-correlation between 0.30 and 0.50, with 10%−90% quan-
tiles between −0.10 and 0.70. This correlation decreases and becomes stronger
negative for graphs of increasing size (30 nodes or more), as a function of net-
work density. It is impossible to generate a power-law distributed graph that is
both very small and sparse. These cases are therefore omitted in the results in
Fig. 6.5 and 6.6. Note that the large variability in smaller graphs is partly be-
cause the number of data points to compute the correlation, i.e. the number of
nodes, is small, and this variability decreases with the size of the graph.

If we think in terms of interventions, then we may seek to find the node which
has the highest causal influence in the system. Figure 6.6 illustrates how often
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Figure 6.5: Shows the rank-based correlation rs of the information theoretic causal effect measure
CEKL with other measures across varying types of networks, number of nodes, and connectivity
levels. Error bars denote 10% and 90% quantiles across the 500 simulations. Black lines indicate the
zero correlation level.

we correctly identify this node when basing our decision on centrality measures,
compared to picking a node at random. The 95% confidence intervals cross the
chance baseline in the majority of cases, indicating that choosing which node to
intervene on based on centrality measures is not better than selecting a node at
random for finding the most important node according to the DAG.

Interestingly, the exception to these results is eigenvector centrality. As graph
size increases, this centrality measure shows the reverse trend compared to the
other measures: as the network density increases, the correlation with the causal
effect actually increases. Naturally, this also improves the classification perfor-
mance when identifying the top node.

Qualitatively, we observe few differences between the different graph topolo-
gies. On some level, this is not surprising, as the steps to go from DAGs to undi-
rected networks remain the same (see Section 6.2.6). In general, we observe that
the correlation between the measures dampens more slowly for the Geometric

99



6. Node Centrality Measures are a Poor Substitute for Causal Inference

Be
tw

ee
nn

es
s

C
lo

se
ne

ss
D

eg
re

e
Ei

ge
nv

ec
to

r
St

re
ng

th

Er
dő

s-
R

én
yi

G
eo

m
et

ric
Po

w
er

-la
w

W
at

ts
-S

tro
ga

tz

N
et

w
or

k 
ty

pe
s

10
Network sizes

20 30 40 50

Probability of correct classification

Network density
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

0.00

0.10

0.20

0.30

0.00

0.10

0.20

0.30

0.00

0.10

0.20

0.30

0.00

0.10

0.20

0.30

0.35

0.25

0.15

0.05

0.35

0.25

0.15

0.05

0.35

0.25

0.15

0.05

0.35

0.25

0.15

0.05

Figure 6.6: Shows the probability of choosing the node with the highest causal effect when using
the node with the highest respective centrality measure. Black horizontal lines indicate chance level.
Error bars denote 95% confidence intervals across the 500 simulations.

network as the number of nodes increase. We explain this together with the neg-
ative correlation and the unique pattern of eigenvector centrality below.

6.4.1 Interpretation of Key Results

A possible explanation for the different trends of the centrality measures as the
network density increases is as follows. As a preliminary, note that by dropping
the directionality, the undirected network cannot distinguish between root and
leaf nodes. Because underlying a DAG is an ordered system of equations (this
is also how one generates data from a DAG / structural causal model, see Sec-
tion 6.3), the more nodes there are, the more pronounced the influence of a few
top nodes as they have more children. This is the case to a smaller extent in
Geometric networks, as here different hubs of nodes can emerge (see Fig. 6.4),
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which explains the slower trend for these networks. Furthermore, when ordering
the nodes along causal effect, the distribution naturally becomes right-skewed
(see Fig. 6.3). In contrast, the distribution over the centrality measures becomes
left-skewed. This is because leaf nodes can have multiple parents which, when
married, bump up the nodes’ centrality score; a similar thing cannot happen for
root nodes, as they do not have parents. This process is a function of the network
density. In sparse networks (e.g., d = 0.10), leaf nodes are much less likely to have
many parents, and so this effect dissipates. With increased network density, leaf
nodes have more parents, and marrying them increases their centrality scores
more strongly relative to the scores of the root nodes. This left-skew is especially
present for local measures such as node degree and strength, as they only take
into account the direct neighbors of a node. In contrast, the left-skew and thus
negative correlation is less pronounced for closeness and especially betweenness,
as they take into account global information.

The fact that eigenvector centrality does predict the node with the highest
causal influence and tracks the causal ranking reasonably well, is presumably
due to the following. By transforming the DAG into a MRF, we increase the de-
gree of those nodes that become married. But as eigenvector centrality considers
the transitive importance of nodes (i.e., nodes that have many important neigh-
bors become themselves important), this increased weight further down the orig-
inal DAG structure is propagated back to those nodes higher up, which are the
causally important variables. For other measures, such as betweenness or close-
ness, the additional paths created by transforming into a MRF can make a node
more central, but this effect does not propagate back to other nodes. Implicitly,
eigenvector centrality thus helps preserve the ordering of nodes from top to bot-
tom in the DAG, which explains the positive correlation. In the next section, we
summarize and discuss the generalizability of our results.

6.5 Discussion

It is difficult to formulate a complete theory for a complex multivariate system,
such as the interacting variables giving rise to a psychological disorder, or infor-
mation integration between remote regions of the brain. Network models have
proven a valuable tool in visualization, interpretation, and the formulation of hy-
potheses in systems such as these. One popular way of analyzing these networks
is to compute centrality measures that quantify the relative importance of the
nodes of the networks, which may in turn be used to inform interventions (Bar-
bey et al., 2015; Del Ferraro et al., 2018; McNally et al., 2015; Medaglia et al.,
2013; Robinaugh et al., 2016). For example, in a network of interacting variables
related to depression, the intuition is that intervening on highly central variables
affects the disorder in a predictable way (Beard et al., 2016; Fried et al., 2016;
Mullarkey et al., 2019). Implicitly, this suggests that these nodes have interesting
causal effects.

In this chapter, we have examined the extent to which different centrality
measures (degree, strength, closeness, betweenness, and eigenvector) can ac-
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6. Node Centrality Measures are a Poor Substitute for Causal Inference

tually recover the underlying causal interactions as represented by a directed
acyclic graph. (One may, of course, engage in learning the causal structure di-
rectly, see Kalisch and Bühlmann (e.g., 2007) and Kuipers et al. (2018).) Using
simulations, we found that the rank correlation between nodes ranked by cen-
trality measure and nodes ranked by causal effect is only moderate, and becomes
negative with increased network size and density. If the goal is to select the node
with the highest influence, then selecting the node with the highest centrality
score is not better than choosing a node at random. This holds for the majority
of graphs and network densities studied here. A notable exception is eigenvec-
tor centrality, which, by considering the transitive importance of nodes, shows
a strong positive correlation across all settings (see Section 6.4.1). Note that the
results change slightly when generating data from a graph where all edges have
zero mean (see Appendix D.2). However, this setting is unrealistic in empirical
contexts.

6.5.1 Limitations — is the World a DAG?

The causal inference framework based on DAGs discussed here provides an ele-
gant and powerful theory of causality (Pearl, 2009; Peters et al., 2017) (although
it should be noted that alternative operationalizations exist, see e.g. Bielczyk et
al. (2019) and Cartwright (2007)). It is closely related to the notion of interven-
tion (as described in Section 6.2.4.2), the idea that we can alter the behavior of
a system by setting certain variables to a particular value. Intuitively, we often
think about Markov random fields (MRFs), i.e. networks of (in)dependencies be-
tween variables, in the same way. However, DAGs and MRFs describe different
views on a dynamical system. Here, by generating data from a known DAG and
then applying network centrality analyses to MRF estimated from these data, we
find that centrality measures correlate only poorly with measures of causal in-
fluence. The extent to which this finding generalizes to real world applications
depends on whether the fundamental assumptions of causal inference, the causal
Markov condition and faithfulness, hold in practice (see Section 6.2.4.2). The for-
mer encodes that, given the parents of a node, the node is independent of all its
non-descendants (i.e., all nodes further up in the DAG). This idea allows for tar-
geted interventions (Peters et al., 2017). Faithfulness on the other hand implies
that there are no additional independencies in the distribution of the data other
than those encoded by the DAG. As it turns out, these assumptions may not hold
in practice.

For example, in fMRI data which is used in many network neuroscience stud-
ies, the neuronal signal is actually convolved by a response function that depends
on local haemodynamics (Ramsey et al., 2010). This may cause the causal Markov
assumption to be violated. Furthermore, these studies typically measure only re-
gions in the cortex, so that the DAG may in fact miss common causes from other
relevant structures that reside in the brain stem. In EEG/MEG, the temporal
resolution is much better, but it is difficult to reconstruct where exactly the mea-
sured signal came from (Friston et al., 2013). The fundamental question of what
we take to be nodes in our graphs is therefore not trivial.
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Similar problems arise in network psychometrics. For instance, when using
DAGs to analyze item level data, we may be unable to distinguish between X
causing Y or X simply having high conceptual overlap with Y (Ramsey et al.,
2010). A potential solution is to re-introduce latent variables into the network
approach, and model causal effects on the latent level (Cui et al., 2018). Fur-
thermore, in response to Danks et al. (2010), Cramer et al. (2010) argue that
causal discovery methods are inappropriate for psychological data for two rea-
sons. First, these methods assume that individuals have the same causal struc-
ture. This is a fundamental issue (also in neuroscience) (Molenaar, 2004), but is
outside the scope of this chapter. Second, DAGs do not allow cycles (i.e., they
do not model feedback), which is why others propose to focus on modeling time
series data instead (Borsboom et al., 2012). To pursue this further, it would be
interesting to compare measures of causal influence with predictive power from
time series analysis models — essentia§lly, Granger causality (Granger, 1969).
However, it is easy to construct examples detailing where predictive power does
not imply causal influence (Peters et al., 2017).

While DAGs do not allow feedback loops, one may argue that at a sufficiently
high temporal-resolution no system needs to have cycles. Instead, the system is
essentially described by a DAG at each discrete unit of time. Only once we ag-
gregate multiple time instances into a coarser temporal resolution, those DAGs
become superimposed, suggesting cyclic interactions. This idea may be modeled
with a mixture of DAGs so that the causal structure can change over time (Strobl,
2019), which would be applicable to longitudinal studies. Another approach to
deal with cycles is to assume that the system measured is in its equilibrium state,
and use directed cyclic graphical models to model interactions between variables
(Forré & Mooij, 2018; Mooij et al., 2011; Richardson, 1996a). As abstractions
of the underlying dynamical system, causal graphical models are therefore still
useful; they provide readily interpretable ways of analyzing the effect of an inter-
vention (Bongers & Mooij, 2018; Mooij et al., 2013).

In general, if we want to do justice to the temporal character of these data,
both brain networks as well as networks of psychological disorders may best be
described by (nonlinear) dynamical systems theory (Breakspear, 2017; Cramer
et al., 2016; Strogatz, 2014). While the mapping between causal influence in a
DAG and node centrality measures in a MRF may be poor, node centrality mea-
sures might predict the underlying dynamical system in a more meaningful way.
We believe that this is an interesting direction that can be tackled by simulating
data from a dynamical system and estimating both a DAG and a MRF from these
data. However, this requires a notion of variable importance on the level of the
dynamical system, which is not trivial to construct.

6.6 Conclusion

In network models, the relative importance of variables can be estimated us-
ing centrality measures. Once important nodes are identified, it seems intuitive
that if we were to manipulate these nodes, the functioning of the network would
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change. The consequence of this is that one easily attributes causal qualities to
these variables, while in fact we still have only a statistical description.

In this chapter, we analyzed to what extent the causal influence from the orig-
inal causal structure can be recovered using these centrality measures, in spite of
the known differences between the two approaches. We find that indeed central-
ity measures are a poor substitute for causal influence, although this depends on
the number of nodes and edges in the network, as well as the type of centrality
measure. This should serve as a note of caution when researchers interpret net-
work models. Until a definitive theory of causation in complex systems becomes
available, one must simply make a pragmatic decision of which toolset to use.
However, we should be careful not to confuse concepts from one framework with
concepts from the other.
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Chapter 7

Comparing Networks Based on
Symptom Sum-Scores

Abstract

Researchers are often interested in comparing statistical network models
estimated from groups that are defined by the sum-score of the modeled
variables. A prominent example is an analysis that compares networks of
individuals with and without a diagnosis of a certain disorder. Recently,
several authors suggested that this practice may lead to invalid inferences
by introducing Berkson’s bias. In this chapter, we show that whether bias is
present or not depends on which research question one aims to answer. We
review five possible research questions one may have in mind when sepa-
rately estimating network models in groups that are based on sum-scores.
For each research question, we provide an illustration with a simulated bi-
variate example and discuss the nature of the bias, if present. We show
that if one is indeed interested in the network models of the groups de-
fined by the sum-score, no bias is introduced. However, if one is interested
in differences across groups defined by a variable other than the sum-score,
detecting population heterogeneity, the network model in the general pop-
ulation, or inferring causal relations, then bias will be introduced in most
situations. Finally, we discuss for each research question how bias can be
avoided.

This chapter has been adapted from: Haslbeck, J.⋆ , Ryan, O.⋆ , & Dablander, F.⋆ (2021). The sum
of all fears: Comparing networks based on symptom sum-scores. Psychological Methods.
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7.1 Introduction

The network approach to psychopathology conceptualizes mental disorders as
systems of causally interacting symptoms (Borsboom, 2017; Borsboom & Cramer,
2013; Schmittmann et al., 2013). From this perspective, psychopathology arises
not from the presence of some latent disease variable (e.g., “depression”) causing
symptoms, but from the direct interactions between the symptoms themselves.
A popular strategy to gain insight into these interactions is to analyze symptom
data with pairwise statistical network models such as the Gaussian Graphical
Model (GGM) or the Ising model (e.g., Epskamp et al., 2016).

A key prediction of the network approach is that healthy and unhealthy in-
dividuals differ in the patterns of causal relations between their symptoms, for
example with respect to the role particular symptoms play in the network, or
how densely connected the symptoms are overall (Borsboom, 2017; Cramer et
al., 2010). To evaluate this prediction, many studies have investigated differ-
ences between healthy and unhealthy individuals by comparing estimated net-
work models across groups (e.g., Heeren & McNally, 2018; Levinson et al., 2018;
Meier et al., 2020; Santos Jr et al., 2017; Southward & Cheavens, 2018; van Rooi-
jen et al., 2018). To define healthy and unhealthy groups, a popular choice is to
use the DSM-5 definition of the disorder at hand, which typically relies on a cut-
off value based on the symptom sum-score (e.g., at least 5 out of 9 symptoms for
major depression).

However, this type of analysis has been put into question by several authors
who have suggested that defining groups based on the sum-score leads to biased
inferences (e.g., Birkeland et al., 2020; Dablander et al., 2019; De Ron et al., 2021;
Epskamp & Fried, 2018; Fritz et al., 2018; Funkhouser et al., 2019; Lazarov et al.,
2020; Meier et al., 2020; Mkhitaryan et al., 2019; Mullarkey et al., 2021; Robin-
augh et al., 2020a). How could such a bias arise in principle? Bias is defined
as the discrepancy between the expectation of an estimator (i.e., the average esti-
mate obtained from many random samples) and a particular target of inference.
Researchers may obtain biased estimates for a number of reasons. One way is
by intentionally choosing to use a biased estimator in order to obtain estimates
with some other desirable qualities (e.g., using regularization techniques to re-
duce variance; Hastie et al., 2015). A second way to obtain biased estimates is by
unintentionally using an estimator which does not correspond to one’s particu-
lar target of inference. It is this latter case that is related to conditioning on the
sum-score and is the focus of this chapter.

While there are numerous historical treatments of biases related to condition-
ing on so-called endogenous variables in the statistical literature (e.g., Berkson,
1946b; Muthén, 1989; Pearl, 2009), De Ron et al. (2021) first investigated this
problem in the context of network model comparisons based on symptom sum-
scores. They studied the specific case in which one’s research question concerns
the difference in network structure between two latent groups, but instead one
investigates the differences between groups defined by the sum-score. Since the
target of inference (the networks in the latent groups) does not correspond to the
estimator used (the networks in the sum-score groups), this procedure necessar-
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ily leads to bias, except in the special case in which the latent groups happen to
be the same as the sum-score groups.

But group comparisons can also be motivated by other types of research ques-
tions. These could focus on the groups that are defined by the sum-score (such as
diagnosed vs. not diagnosed groups), the detection of population heterogeneity,
the network model in the general population, or the estimation of causal effects.
Crucially, in each of these cases the target of inference is different. Consequently,
the answer to the question whether any bias is present, and if so, how to mitigate
it, depends on the type of research question one aims to answer by comparing
network models across groups that are defined by the sum-score.

In this chapter, we consider five types of research questions one may have in
mind when comparing groups based on the sum-score, including the one orig-
inally studied by De Ron et al. (2021). For each type of research question, we
use a simulated bivariate example as an illustration and discuss whether bias is
present. We show that if one is indeed interested in the groups based on the
sum-score, no bias is present. However, if one’s research question concerns the
networks based on another (latent) grouping variable, detecting population het-
erogeneity, the network model in the general population, or causal relations, bi-
ases exist. In each of these cases we pinpoint the exact nature of the bias and dis-
cuss strategies to avoid it. We thereby hope to add clarity for researchers about
when comparing groups that are defined on the sum-score is problematic and
how to avoid possible biases.

7.2 Different Research Questions, Different Biases

In this section, we consider five research questions that one may have in mind
when separately estimating network models in groups defined by a symptom
sum-score. To discuss possible biases that arise for each research question, we
use the simplest non-trivial example: Two continuous variables X1 and X2, with
two groups defined by their sum. These two continuous variables could be inter-
preted as severity scores of two symptoms of a given disorder. In this example,
the statistical network structure simply takes the form of a correlation parame-
ter. However, all our conclusions extend to more than two variables, conditional
dependence measures such as partial correlations, more than two groups, and
the binary and mixed variable case.

7.2.1 Network Models of Diagnosed and Not Diagnosed Groups

The first type of research question we consider concerns the investigation of sta-
tistical relationships between symptom variables in both diagnosed and not diag-
nosed groups of individuals. Since symptom sum-scores are the primary criteria
used to diagnose psychopathology in the DSM (American Psychiatric Association,
2013), researchers may define groups of diagnosed and not diagnosed individuals
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based on a sum-score cut-off of the symptom variables themselves.1 This allows
researchers to investigate how patterns of symptom relationships differ across
diagnosed and not diagnosed groups. In statistical terms, this type of research
question concerns the statistical relationships between symptoms conditional on
diagnostic status.

To answer this type of research question, we split the data using the sum-
score of our symptoms and compute the correlation in each group. Figure 7.1
illustrates this process for our bivariate example.2
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Figure 7.1: Left: Relationship between severity of symptoms X1 and X2. The solid line indicates
the best fitting regression line (r = 0.74). Right: Relationship between severity of symptoms X1 and
X2 in diagnosed and not diagnosed individuals. The dashed black line indicates the split of the
symptom sum-score at the value 8.50; individuals with sum-score larger than 8.50 are above this line
(diagnosis), and individuals with sum-score lower than 8.50 are below this line (no diagnosis). The
solid lines indicate the best fitting regression lines in the separate groups, with correlations rD=0 =
0.12 and rD=1 = 0.40, respectively.

The left panel shows the relationship between the two symptomsX1 andX2 in
the overall population, and the solid line displays the best fitting regression line,
which indicates a strong positive relationship (r = 0.74). This reflects the com-
mon empirical finding that symptoms are positively correlated. We now split the
sample based on the sum-score S = X1 + X2, defining individuals with a sum-
score of S < 8.50 as belonging to the no diagnosis group (D = 0), and individuals
having a sum-score of S ≥ 8.50 as belonging to the diagnosed group (D = 1). The
dashed diagonal line in the right panel of Figure 7.1 depicts this cut-off value,
with the diagnosis group and no-diagnosis group indicated by the red and blue
points, respectively. We can now estimate the parameters of the network mod-

1In the present chapter, we take symptom sum-scores to be sufficient in defining diagnosed and
not diagnosed groups for the sake of simplicity. In practice, additional criteria are often used, such as
in the DSM-5 definition of depression, which requires “5 or more of 9 symptoms (including at least
1 of depressed mood and loss of interest or pleasure) [...]” (American Psychiatric Association, 2013).
The discussion of biases in the current chapter also applies to the use of criteria additional to the
sum-score to create diagnosed and not diagnosed groups.

2Code to reproduce the figures is available from https://github.com/fdabl/Sum-Score-Paper.
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els separately in each group, obtaining the correlation between both symptoms
conditional on diagnosis. We find that in the group without diagnosis the corre-
lation is rD=0 = 0.12, while the correlation in the group with diagnosis is higher
rD=1 = 0.40.3

Given the present research question and analysis, are these correlation coeffi-
cients biased? Recall that bias is defined as a discrepancy between the expectation
of the estimator and the target of inference. In the present case, the estimates are
the sample correlation coefficients in the groups with (D = 1) and without (D = 0)
diagnosis, and the targets of inference are the population correlation coefficients
in the groups with (D = 1) and without (D = 0) diagnosis. Consequently, there is
no bias.

Critically, the absence of bias in the context of this research question does not
imply the absence of bias in the context of other research questions. Indeed, for
the four research questions discussed in the remainder of this chapter, different
biases arise when trying to answer them by splitting the data based on the sum-
score. We discuss the bias in each context in detail and describe possible remedies
that may help researchers to avoid biased inferences.

7.2.2 Network Models of Groups Defined by Another Variable

The second type of research question we consider also concerns the investiga-
tion of how statistical relationships between symptoms depend on group mem-
bership, but where the grouping variable of interest (G) is different from the
diagnostic grouping variable (D). The bias in this scenario has previously been
described in the network literature by De Ron et al. (2021), who take G to repre-
sent a latent variable “healthy” vs. “unhealthy” as distinct from “diagnosed” vs.
“not diagnosed”. In this situation, the network model conditional on D will be a
biased estimate of the network model conditional on G. Figure 7.2 illustrates this
for our bivariate example.

3The result that the correlation is stronger in the group with diagnosis in this example reflects the
finding that the symptom networks in groups with diagnosis are more dense than the symptom net-
works of groups without diagnosis (although the opposite result has also been found in the literature;
for a review, see Robinaugh et al., 2020a).
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Figure 7.2: Left: Relationship between severity of symptoms X1 and X2. The solid line indicates the
best fitting regression line (r = 0.74). Right: Relationship between severity of symptoms X1 and X2 in
different groups G. The dashed black line indicates the split of the symptom sum-score at the value
8.50. The purple and green colors indicate “healthy” (G = 0) and “unhealthy” (G = 1) latent groups,
whose correlation between the symptoms is rG=0 = 0.55 and rG=1 = 0.71, respectively.

Comparing the regression lines in the two groups based on diagnosis, D = 1
and D = 0 (right panel of Figure 7.1), with the regression lines in the two groups
defined by G (right panel of Figure 7.2) shows that they are different. Here, the
sample correlation coefficients rG=0 and rG=1 are unbiased estimators of the pop-
ulation correlations in groups G = 0 and G = 1, but, as we can see, membership
of D and G do not correspond. Consequently, if we use the sample correlation in
group D = 0 (rD=0 = 0.12) as an estimate of the population correlation in group
G = 0 (which is much higher, as indicated by the sample correlation rG=0 = 0.55),
then this estimate will be biased.

In which situations is one dealing with such an alternative grouping variable
G? There are two types of situations. In the first one we can obtain the group-
ing variable from the data. For example, the grouping variable might simply be
available (e.g., sex at birth) or is a function of the data that is different from the
sum-score. In this situation, avoiding bias is easy: One splits the data using G in
the groups of interest, and estimates the statistical network models in each of the
groups.

The second situation occurs if G is not directly observable and cannot be ob-
tained from the data. This is the situation researchers are in if they wish to study,
for example, the variable “depression”, but they assume that membership of the
depressed or not depressed group is not equivalent to meeting the diagnostic
criteria for depressed or not depressed, as indicated by the symptom variables.
Since the grouping variable G is unobserved, it cannot be used to split the data
into groups, and so we need to approximate it somehow. One option to approx-
imate G would be to use the diagnostic group D, as we did above. The better D
approximates G, the smaller the bias. But unless D and G are equivalent, some
bias will be present. The obvious strategy to reduce bias in this scenario is to
better specify what this alternative grouping variable G really is, or how it could

110



7.2. Different Research Questions, Different Biases

in principle be measured. For example, one might be able to better approximate
G using other variables such as biological or environmental risk factors. How-
ever, this is only possible if G is well defined. This shows that the fundamental
reason for the bias in this situation is not a statistical problem related to splitting
the data into two groups, but the conceptual problem of not specifying what the
latent variable G is and how it can be measured.

Let’s take a step back and consider again the specific example of G being the
latent variable “depression”. Assuming that such a variable exists implies that we
take the position that depression can be conceptualized along a single dimension.
However, this position is at odds with the premise of the network approach as a
theoretical framework, which posits that mental disorders arise from direct inter-
actions between symptoms (Borsboom, 2017). It therefore seems unclear whether
it is conceptually consistent to analyze symptom networks separately for groups
that represent different levels of depression on a unidimensional scale. An al-
ternative way to investigate how the network structure depends on symptom ac-
tivation that is conceptually consistent with the network approach would be to
specify a model in which each pairwise interaction is moderated by each variable
in the model (De Ron et al., 2021; Haslbeck, 2022; Haslbeck et al., 2019). This
way, the interactions between symptoms can be dependent on the values of the
modeled variables without assuming an underlying latent variable.

7.2.3 Population Heterogeneity

The third research question concerns the detection of population heterogeneity,
that is, detecting the presence of sub-groups defined by distinct statistical char-
acteristics (such as means, variances, correlations, and/or partial correlations).
This research question differs from those examined in Section 7.2.2, where the
presence of distinct sub-groups was assumed a priori as a latent grouping vari-
able G, and in Section 7.2.1, where distinct sub-groups were imposed based on
sum-scores and diagnostic criteria D. We will treat the identification of popu-
lation heterogeneity in statistical terms as a question about mixtures of distribu-
tions: Are the magnitude of the symptoms and the relations between them best
described with a single multivariate distribution, or does a mixture of two or
more such distributions better describe the data? In the latter case, we refer to
the population as being heterogeneous, while in the former case we refer to the
population as being homogeneous. This research question is conceptually similar
to the question whether a latent class structure underlies the data (cf., Borsboom
et al., 2016). Here, we discuss to what extent population heterogeneity can be
detected by splitting the data on the sum-score.

A perhaps intuitive line of argument would be that, if the network parame-
ters in the two groups defined on the sum-score differ, the population is hetero-
geneous. This reasoning is flawed, however, and Figure 7.3 illustrates why. In
both panels we show the same data generated from a single bivariate Gaussian
distribution, which means that there is no population heterogeneity. In the two
panels we split the data at different cut-off values of the sum-score (depicted by
the dashed diagonal lines). We see that the correlations in the “high” and “low”
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sum-score groups are different, even though the data were generated from a sin-
gle distribution. Furthermore, by comparing the left and right panels, we see
that those group differences are a function of the chosen cut-off value. In fact,
the correlations in the two groups will be different for almost all cut-off values.
Critically, this shows that network models will be different across groups defined
on the sum-score even if the studied population is homogeneous. Consequently,
comparing groups based on the sum-score cannot be a valid method to detect
population heterogeneity.
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Figure 7.3: Relationships between severity of symptoms X1 and X2 in the low and high groups, for
different cut-off values on the sum-score. Both panels illustrate that the network models in the two
groups can be very different while the population is homogeneous.

To directly assess whether population heterogeneity exists, researchers may
wish to use mixture models (e.g., McLachlan & Peel, 2000), as has been sug-
gested previously in the network literature (e.g., Brusco et al., 2019; De Ron et
al., 2021). In particular, one can fit mixture models with a varying number of
mixture components or groups (e.g., 1, 2, or 3) to the data and perform model
selection, for instance using information criteria such as the BIC to find the best
fitting mixture model (Leroux, 1992; Steele & Raftery, 2010). This can be done
in a confirmatory manner by, for example, using the sum-score as a way to de-
fine the group membership of each observation, or in an exploratory manner by
learning the group membership of each observation. If model selection returns
a single component, we would speak of a homogeneous population; if it returns
two or more components, we would speak of a heterogeneous population.

7.2.4 Network Model in the General Population

The fourth type of research question we consider is about the network struc-
ture in the general population, which consists of both diagnosed and not diag-
nosed (or, if we choose to consider such a grouping variable, “healthy” and “un-
healthy”) individuals. The network model in the general population is also called
the marginal network model because it is obtained by marginalizing (i.e., aver-
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aging) over all variables (e.g., group memberships) that may have an effect on
the network. If one has a representative sample from the general population,
the approach one should take to answer this type of research question is simple:
Estimate the network model on the full sample, without splitting the data into
groups. This provides an unbiased estimate of the population network model to
the extent that the sample is indeed representative of the general population.

The problematic case, however, is when one takes a sample from a specific
subpopulation and uses it to make inferences about the general population. This
reflects the situation initially studied by Berkson (1946b): Suppose one wishes to
study the correlation between lung cancer (X1) and diabetes (X2), and that the
correlation in the general population is zero. When one looks at the correlation
between these two diseases amongst patients in a hospital, however, then X1 and
X2 are negatively associated. This is because both lung cancer and diabetes in-
crease one’s chances of visiting the hospital: If one is in the hospital but does
not have lung cancer, then it is more likely that one does have diabetes than it is
for hospitalized individuals who do have lung cancer. The correlation between
X1 and X2 in the hospital is a conditional correlation, since it is the correlation
conditional on being in the hospital. The bias induced by using a conditional
correlation as an estimate for the marginal correlation has traditionally been re-
ferred to as Berkson’s bias (e.g., Snoep et al., 2014).

The situation that marginal and conditional relationships need not be the
same is also illustrated in the example in Figure 7.1. Here, the correlation in
the whole sample (left panel) is different than the correlation in either of the two
separate groups (right panel). Clearly, in such a situation taking the correlation
of one of the groups as an estimate of the correlation in the general population
would lead to bias. Notably, the converse is also true: Estimating the correla-
tion using the whole sample would yield a biased estimate of the correlation in
each group (a situation previously discussed in the network literature by Hoff-
man et al., 2019). However, it should be noted that researchers who purposefully
split their sample according to the sum-score are unlikely to have marginal re-
lationships in mind as their target of inference, since the marginal relationships
can simply be estimated directly without splitting the sample in the first place.
Splitting the sample by the sum-score group would suggest that we are interested
in some kind of conditional relationship instead, and so Berkson’s bias does not
occur in that case.

7.2.5 Causal Relations

The final scenario concerns the use of the conditional relationship between two
variables X1 and X2 given diagnosis D when the research question concerns the
causal relationship between X1 and X2. From a causal perspective, D would be
called a common effect or a collider of X1 and X2, and collider bias refers to the
fact that the conditional correlation of X1 and X2 given D is a biased estimate of
the direct causal effect between X1 and X2. Unlike the scenarios described in all
previous sections, the target of inference here concerns causal relationships, not
merely statistical ones (Pearl, 2009).
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We illustrate the problem of collider bias using the following example. The
left panel of Figure 7.4 depicts causal relationships between three variables, X1,
X2, and D, as a directed acyclic graph (DAG), which is a widespread and well-
developed formalism for describing directed causal structures. In this scenario,
we see that both X1 and X2 have a positive direct causal effect on D (that is,

X1
+→ D and X2

+→ D) but that X1 and X2 have no direct causal effect on one
another. We can think about these causal effects as describing what would hap-
pen if we were to intervene on a variable: Setting X1 to a larger value would
increase the value of D, but have no effect on the value of X2. These causal rela-
tionships in turn imply a certain set of statistical relationships: D is dependent
on X1 and X2 both marginally and when conditioning on X2 or X1, respectively.
However, while X1 and X2 are marginally independent of each other, condition-
ing on D induces a negative statistical dependency between them. As such, the
conditional dependency between X1 and X2 given D is a biased estimate of the
causal dependency between them. Note that if X1 and X2 were positively related,
conditioning onD would result in a downward biased — but not necessarily neg-
ative — estimate, too.

X1 X2

D

X1 X2

D

+ +

-

+ +

Figure 7.4: Left: Causal graph with variables X1 and X2 having a positive causal effect on variable
D. Note that when D is defined by the sum-score of X1 and X2, it is fully determined by X1 and X2.
Right: X1 and X2 become negatively associated when conditioning on the collider D.

Collider bias as we have outlined here is an issue when using statistical net-
work models (based on sum-score splits) with the goal of inferring underlying
directed causal structures. However, researchers should also be aware that sta-
tistical network models are likely to induce collider bias even in the absence of
sum-score splitting, and that the use of statistical network models to infer di-
rected causal structures is problematic (e.g., Dablander & Hinne, 2019; Ryan et
al., 2022b). Researchers who wish to infer a directed causal structure in the gen-
eral population from observational data — with all caveats attached — have a
plethora of tools at their disposal (for an overview, see Spirtes & Zhang, 2016).
Causal search methods generally do not allow for heterogeneity in the causal
structure across groups, however. To search for heterogeneous causal structures,
researchers could instead use a “mixture of DAGs” approach, which combines
mixture modeling techniques as described above with causal search procedures
(e.g., Saeed, Panigrahi, et al., 2020). The royal road to estimating causal effects,
however, remains performing an experiment.
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7.3 Conclusions

In this chapter, we reviewed five types of research questions one may have in
mind when separately estimating statistical network models across groups that
are defined based on the sum-score. For each type of research question, we dis-
cussed the presence of bias using a bivariate example. Our findings are summa-
rized in Table 7.1.

Research Goal Target of Inference Bias Suggested Approach

Estimating network
models of diagnosed and
undiagnosed groups

rD=1, rD=0 No Use symptom sum-score to split
groups.

Estimating network
models of healthy and
unhealthy groups (where
health , diagnosis)

rG=1, rG=0 Yes If possible, split on grouping
variable G. If G unobserv-
able, solution depends on un-
derstanding G. Possible that D
may be the best available ap-
proximation.

Detecting population
heterogeneity

Number of compo-
nents

Yes (Gaussian) mixture models to
test for K = 1,2 . . . components.

Estimating network
model in the general
population

r Yes Do not use symptom sum-score
to split groups. Obtain repre-
sentative sample of whole pop-
ulation. Marginalize over all
grouping variables.

Estimating causal rela-
tionships between symp-
toms

E[X2 | do(X1),D = 1],
E[X2 | do(X1),D = 0]

Yes Use causal search procedures;
causal search with mixtures of
DAGs; if possible, conduct ex-
periments.

Table 7.1: Summary of which biases are present for different types of research goals when analyzing
network models separately in groups defined by the sum-score. The target of inference r refers to the
correlation in the bivariate case used throughout the chapter.

Our analysis adds clarity for applied researchers and methodologists con-
cerned by potential problems associated with estimating network models from
groups defined by the sum-score. We showed that even though statistical net-
work models are a relatively new addition to the statistical toolbox of psycholo-
gists, the issues related to conditioning have been identified previously in more
general settings. In the cases in which the problems were of a statistical nature,
there were clear solutions: If one is indeed interested in the network models con-
ditional on the sum-score, there is no problem; if one is interested in the network
model in the general population, one should not condition on any variable; and
if one aims to detect population heterogeneity, one should use appropriate sta-
tistical methods to do so. However, in case one would like to estimate network
models in groups defined by a latent variable, the problem is primarily concep-
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tual: One needs to clearly characterize this latent variable and specify how to
measure it. Finally, if the goal is to move beyond statistical relationships and to
discover causal relations, one needs to use appropriate methods for causal infer-
ence. In sum, we showed that the key to avoiding biases related to conditioning
on sum-scores is to clearly specify what the target of inference is. Only then can
one choose an appropriate method that avoids bias.

Author contributions. JH, OR, and FD jointly wrote the paper.

Materials. All materials to reproduce the results and figures are available at
https://github.com/fdabl/Sum-Score-Paper.
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Chapter 8

Equilibrium Causal Models:
Connecting Dynamical
Systems Modeling and
Cross-Sectional Data

Analysis

Abstract

Many psychological phenomena can be understood as arising from systems
of causally connected components that evolve over time within an indi-
vidual. In current empirical practice, researchers frequently study these
systems by fitting statistical models to data collected at a single moment
in time, that is, cross-sectional data. This poses a central question: Can
cross-sectional data analysis ever yield causal insights into systems that
evolve over time, and if so, under what conditions? In this chapter, we ad-
dress this question by introducing Equilibrium Causal Models (ECMs) to
the psychological literature. ECMs are causal abstractions of an underly-
ing dynamical system that allow for inferences about the long-term effects
of interventions, permit cyclic causal relationships, and can in principle
be estimated from cross-sectional data, as long as information about the
resting state of the system is captured by those measurements. We ex-
plain the conditions under which ECM estimation is possible, show that
they allow researchers to learn about within-person processes from cross-
sectional data, and discuss how tools from both the psychological measure-
ment modeling and the causal discovery literature can inform the ways in
which researchers collect and analyze their data.

This chapter has been adapted from: Ryan. O.⋆ , & Dablander, F.⋆ (under review). Equilibrium
Causal Models: Connecting Dynamical Systems Modeling and Cross-Sectional Data Analysis. doi:
10.31234/osf.io/q4d9g
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8. Equilibrium Causal Models: Connecting Dynamical Systems Modeling and
Cross-Sectional Data Analysis

8.1 Introduction

Over the last two decades, many areas of psychological science have moved
towards understanding psychological phenomena as arising from systems that
evolve over time within an individual (Borsboom, 2017; Hamaker, 2012; Mole-
naar, 2004; van der Maas et al., 2006; Wichers, 2014). To gain insight into these
systems, empirical researchers have relied on fitting statistical models to a variety
of different data types such as cross-sectional data, gathered from many individ-
uals at a single point in time (Borsboom & Cramer, 2013; Epskamp et al., 2018;
Robinaugh et al., 2020b), and time series data, gathered from one or more indi-
viduals at many points in time (Bringmann et al., 2013; Hamaker et al., 2005;
Hamaker & Wichers, 2017; Wichers, 2014).

There are two central challenges that these areas of psychological research
face. The first challenge pertains to the question of how cross-sectional data
can be used to learn about within person-processes. Recent treatments of the
ergodicity problem have suggested that inferences from cross-sectional to within-
person statistical dependencies may rarely be warranted (Hamaker & Wichers,
2017; Molenaar, 2004), leading a number of researchers to question the utility of
gathering cross-sectional data to learn about within-person processes at all (Bos
et al., 2017; Fisher et al., 2018; Hofmann et al., 2020). The second challenge per-
tains to the question of how observational data can yield insights into the effects
of interventions (Cronbach, 1957; Diener et al., 2022; Foster, 2010; Grosz et al.,
2020; Pearl, 2009; Rohrer, 2018; Ryan et al., 2022a; Ryan & Hamaker, 2022). For
example, does reducing avoidance behavior reduce social anxiety? If so, is this
change short-lived, with anxiety eventually returning to its usual level, or long-
lived, with typical anxiety levels permanently reduced? Statistical models alone
cannot provide an answer to these questions. Instead, we need a causal model
of the system (e.g., Dablander & van Bork, 2021; Pearl et al., 2016; Peters et al.,
2017; Schölkopf & von Kügelgen, 2022).

In this chapter, we introduce Equilibrium Causal Models (ECMs) to the psy-
chological literature and investigate how this model class may help address both
of the challenges outlined above. An ECM is a causal model of a dynamical sys-
tem which allows for inferences about the long-term effects of interventions (e.g.,
Bongers et al., 2022; Dash, 2005; Iwasaki & Simon, 1994; Mooij et al., 2013;
Spirtes, 1995; Strotz & Wold, 1960; Weinberger, 2020) and, crucially, can in-
principle be learned from cross-sectional data. In this way, ECMs provide a cru-
cial missing link between dynamical systems modeling and cross-sectional data
analysis, based on the insight that there are typically many different valid causal
models for any given dynamical system and that these models differ with respect
to (a) the type of data they can be learned from, and (b) the types of interventions
they are informative about. Furthermore, in contrast to traditional causal models
based on Directed Acyclic Graphs (DAGs; Pearl, 2009), ECMs both allow for —
and give an intuitive interpretation to — cyclic causal relationships. Assuming
a simple linear dynamical system, we develop the intuition behind ECMs and —
drawing on both the psychological measurement and causal discovery literature
— discuss how equilibrium causal modeling can be made feasible for empirical
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research.
This chapter is structured as follows. In Section 8.2, we introduce a linear dy-

namical system model which we will use as a running example, and describe the
ways in which different interventions affect the system on different timescales.
In Section 8.3, we use this example model to introduce the general concept of an
ECM, showing how they allow us to make inferences about long-term interven-
tion effects, and how they can be in principle estimated from cross-sectional data
under idealized conditions. In Section 8.4, we examine how these measurement
conditions can be relaxed, showing how ECMs fit into the ergodicity debate, and
how the psychological measurement literature can aid in estimating ECMs. In
Section 8.5, we discuss key challenges of applying ECMs in practice and show
how modern causal discovery methods can be used to overcome problems of un-
observed confounding and model identifiability. In Section 10.4, we discuss the
implications of the ECM perspective for empirical practice moving forward.

8.2 Dynamical Systems and Causal Effects

Dynamical systems theory provides a unifying framework for studying how sys-
tems as disparate as the climate and the behavior of humans change over time. A
dynamical system model is a set of equations which describe how the (multivari-
ate) process of interest evolves over time. These equations typically take the form
of either autoregressive (i.e., difference) or differential equations (e.g., Hamilton,
1994; Strogatz, 2014). Often, dynamical systems models are formulated as gen-
erative or computational models, formalizing substantive assumptions about the
exact nature of the moment-to-moment relationships which drive the system un-
der investigation (e.g., Haslbeck et al., 2021; Robinaugh et al., 2021; Schölkopf et
al., 2021; van Rooij, 2022). Viewed through this lens, a dynamical systems model
is informative not only about the statistical dependencies we should expect to see
in empirical data, but can also be used to understand how the system reacts to
different interventions or perturbations.

We introduce a simple multivariate dynamical systems model in Section 8.2.1,
and describe various interventions that are possible in this system in Section
8.2.2. We will use this model throughout the remainder of the chapter to build
intuition for ECMs and what they can tell us about dynamical systems. We also
focus our analysis of how to recover ECMs from data around this specific type of
dynamical system (for discussions about ECMs in general, see Blom et al., 2020;
Bongers et al., 2022; Dash, 2005; Iwasaki & Simon, 1994; Mooij et al., 2013;
Weinberger, 2020).

8.2.1 A Simple Dynamical Systems Model

A dynamical systems model consisting of linear relationships between the vari-
ables of the system can be represented using the auto-regressive equation

Xt = c +ΦXt−1 + ϵt , (8.1)
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where c is a vector of intercepts, Φ is a matrix of parameters encoding lagged
effects of Xt−1 on Xt , and ϵt is a vector of error terms, representing perturbations
to the system drawn from a Gaussian distribution ϵt ∼N (0,Σϵ). In psychological
modeling terms, this can be considered a model for how a system evolves over
time within a particular person.

Readers may recognize Equation (8.1) as the first-order vector auto-regressive
or VAR(1) model, which is a popular choice for the statistical analysis of time
series data across a number of domains, and in particular is widely used to ana-
lyze psychological time series data (e.g., Bringmann et al., 2013; Hamaker, 2012;
Hamilton, 1994; Vanhasbroeck et al., 2021). In those psychological settings we
typically have many repeated self-report measures of some psychological phe-
nomena, such as stress or anxiety, and the VAR(1) model is used to model the
wave-to-wave auto- and cross-correlations between these different variables. In
the present chapter, we treat Equation (8.1) not as a statistical model but as a
computational (i.e., generative) model, describing how future values of the pro-
cess Xt are produced by a combination of time-constant forces c acting on the
system; past values of the process Xt−1 through the matrix Φ; and random ex-
ogenous perturbations to the system ϵt . As an example, suppose Xt represents
the multivariate process stress. Then we could interpret c as representing the sta-
ble effect of one’s environment (e.g., having a stressful job), ϵt as representing
time-varying effects of one’s environment (e.g., entering or leaving a stressful in-
teraction), and Φ as representing the way in which current stress levels produce
or regulate future stress levels, as well as the levels of the other psychological
processes in our system. The diagonal elements of Φ are termed auto-regressive
effects and the off-diagonals cross-lagged effects, with φjk representing the extent
to which Xk,t−1 determines Xj,t . The values of the lagged parameters Φ can be
represented in the form of a network. This is shown in Figure 8.1(a), where we
see for example a cyclic relationship X2 ⇄ X3 due to the presence of non-zero
values of the cross-lagged effects φ23 and φ32. This implies that X2 at time point
t − 1 has an effect of size φ32 on X3 at time point t, which in turn has an effect on
X2 of size φ23 at time point t + 1.1 Note that while we do not generally advocate
for the use of this model type as a computational model in psychology, we use
it in the current chapter because of its simplicity and familiarity to psycholog-
ical audiences (for a discussion of the interpretation of models as statistical vs
computational in nature, see Haslbeck et al., 2021; Haslbeck & Ryan, 2022).

A key concept in dynamical systems modeling is that of an equilibrium. We
can think of an equilibrium as a resting or steady state of the system — if the
system is at equilibrium, then it will stay there unless it experiences some shock
or perturbation that pushes it away from equilibrium. In general, a dynamical
system can have more than one equilibrium, and these equilibria can be stable
(pulling nearby trajectories towards it) or unstable (pushing nearby trajectories
away; Dablander, 2020b; Strogatz, 2014). The linear dynamical system model

1While we use an auto-regressive equation rather than a linear differential equation (i.e., a
continuous-time model; Driver et al., 2017; Ryan & Hamaker, 2022; Ryan et al., 2018) for simplicity,
the results presented here generalize to the continuous-time case if we interpret the auto-regressive
equation as defined over an infinitesimal time-step.
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we introduced above can be considered simple in the sense that it only has a
single equilibrium position, given by µ = E[Xt], where E denotes the expectation
operator yielding the long-run average of the process. We can therefore write

E[Xt] = E[c +ΦXt−1 + ϵt]

µ = c +Φµ , (8.2)

since the noise term ϵt is independent of Xt and has expectation zero and c is a
constant.2 Equation (8.2) is another way of stating that if we are at equilibrium
(right-hand side), then we will we stay at equilibrium (left-hand side) in the ab-
sence of any external perturbation. Qualitatively, the behavior produced by this
particular model is very simple: If the eigenvalues of Φ are all smaller than 1 in
absolute value (denoted |λ| < 1), then the system fluctuates around a single sta-
ble equilibrium position µ over time, as depicted in Figure 8.1(b).3 Perturbations
ϵt push the system away from equilibrium, while the lagged parameters Φ en-
sure that the system returns to equilibrium over time. In the present chapter we
will consider only stable systems, that is, systems that return to their equilibrium
after a perturbation. The expression for how the equilibrium position in a sta-
ble system is determined by the model parameters can be found by re-arranging
Equation (8.2) as

µ = (I−Φ)−1c , (8.3)

which shows that the location of the equilibrium position µ is determined both
by the value of the lagged parameters Φ and by the time-constant intercept terms
c.

8.2.2 Causal Effects and Interventions

Now that we have a dynamical systems model in place, we can consider how
the behavior of this system reacts to different interventions. In other words, we
can consider how the system can be understood in terms of different causal re-
lationships and its reactions over time to different interventions. These causal
relationships will allow us to understand causal models of a dynamical system in
the following sections.

To define a causal relationship we need to specify three components. First, we
need to define the specific type of intervention or action which we will apply to
the system. Following the modern causal inference literature, we limit ourselves
to considering interventions that are local and modular (Pearl, 2009; Peters et al.,
2017). That is, we assume it is possible to intervene on one component of our
system at a specific time without altering other parts of the system. In other
words, we assume that we can intervene to force Xj,t to obtain a particular value
(say, Xj,t = 1), without also changing the value of Xk,t (locality), and that the

2Equation (8.1) is sometimes also written in its mean-centered form, using (Xt −µ). However, that
form can sometimes imply that the mean of the process is determined independently from the rest of
the parameters of the model, an assumption we explicitly do not make in the current setting.

3If |λ| > 1, then the system does not have a stable equilibrium, that is, if the process is pushed away
from its (unstable) equilibrium position it will not return to it (Strogatz, 2014).
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Figure 8.1: Left: Example of a linear dynamical system depicted as a network. Each arrow Xk → Xj
represents the value of a lagged parameter φjk . Right: Data generated by the dynamical system with

Φ as depicted in Panel (a), c = [0.50,1.25,−2.00,−1.25], and Σϵ = Iσ2 with σ = 0.30. The dashed lines
represent the equilibrium positions µ.

manner in which the effect variable Xk,t+1 reacts to Xj,t = 1 is not itself changed
by the intervention (modularity). The second component we need to define is the
target of the intervention, that is, the part of the system on which we intervene,
such as the value of Xj at time point t. Third, we need to define the property
of the system on which we want to evaluate the effect of the intervention (see
also Gische & Voelkle, 2022). An intervention is said to have a causal effect on
the system if the intervention leads to changes in the short- and/or long-term
properties of the system, such as the value of the system at a future time point, or
the equilibrium positions. For our purposes we will focus on three possible types
of intervention that we could apply to our dynamical system model, and outline
the effects each intervention has on different properties of the system.

Pulse interventions. A pulse intervention can be understood as an intervention
that changes the value of a single variable at a single point in time (Bender et
al., 1984; Hamilton, 1994; Pearl, 2009). Consider the dynamical system visual-
ized in Figure 8.1(a). Applying a pulse intervention by forcing X1,t = 1 results
in X2,t+1 increasing in value by φ21 = 0.30 compared to the situation in which
X1,t is forced to obtain a value of zero. In the causal modeling literature such an
intervention would be denoted do(X1,t = 1), and the causal effect on X2,t+1 would
be defined as the contrast between the expected values of X2,t+1 under two differ-
ent intervention conditions, e.g. E[X2,t+1 | do(X1,t = 1)] −E[X2,t+1 | do(X1,t = 0)],
which, keeping all other variables fixed, yields a value of 0.30 (Ryan & Hamaker,
2022). To avoid confusion with other interventions, we will in this chapter de-
note such an intervention pulse(X1,t = 1). As we can see, cross-lagged relation-
ships φij have a natural interpretation in terms of causal effects, as they directly
determine the direct effect of a pulse interventions on the value of the system
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at the next time point.4 In stable, linear dynamical systems, pulse interven-
tions only have a short-lived effect on the system. They never result in any
long-term changes in the equilibrium position or other properties of the sys-
tem. Mathematically, this can be understood by noting that the long-term ef-
fect of a pulse intervention can be found by taking the appropriate power of
the lagged effects matrix, Φ s, where s represents the time since the intervention
took place. Since in stable systems the eigenvalues of Φ are smaller than one,
Φ s converges to a matrix of zeros as s gets larger and larger — the effect of the
pulse intervention is zero at a long enough timescale. An example of this can
be seen in Figure 8.2(a), where the pulse intervention described above is applied
at t = 10, and the behavior of the system as it reacts to this intervention is visu-
alized. For stable linear systems, the pulse intervention has no long-term effect
— the equilibrium position of each variable remains the same.5 For a math-
ematical treatment of pulse interventions, see Appendix E.1.1 and for code to
calculate and simulate the effects of all interventions described in this chapter,
see https://github.com/fdabl/Equilibrium-Causal-Models.

(a) Pulse (b) Press  (c) Shift

Time (t)
pulse(X1,t) press(X1) shift(X1) µ X1,t X2,t X3,t X4,t

X t

Figure 8.2: Effect of a pulse (left), press (middle), and shift (right) intervention on our example sys-
tem.

Press interventions. A press intervention is an intervention that sets a single
variable to a constant value over an interval of time, rather than at just a sin-
gle moment in time (Bender et al., 1984; Hyttinen et al., 2012; Pearl, 2009).
While a pulse intervention can be thought of as a temporary shock to the system,
the press intervention could be thought of as “clamping down” on the system
over a longer period of time. Formally, it can be expressed as do(Xj,t = 1) for
t ∈ {T ,T + 1, . . . ,T + k} (Pearl, 2009; Ryan et al., 2022a). For clarity, we will here
denote such an intervention using press(X). The press intervention has both a
short and long-term effect on the system, as we can see in Figure 8.2(b). Here we
intervene in the system to force X1 = 1 starting at t = 10 for an indefinite period

4This intervention also has an indirect effect onX3,t+2, which we can see by reading off the directed
path X1 → X2 → X3 from the network in Figure 8.1(a). The effect of this intervention on X3,t+2 can
be calculated by taking the product of cross-lagged effects involved. However, this intervention has
no effect on X4,t+1 since φ42 = 0 and there are no indirect paths from X1,t to X4,t+s in the network.

5In systems with multiple equilibria, pulse interventions may push the system into a different
equilibrium (see e.g., Dablander, 2020b).
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of time. In the short-term, that is, from t to t + 1, this press intervention has a
similar effect to the pulse intervention, changing the value of X2,t+1 by the same
amount. However, the press intervention changes the equilibrium positions of
the system: During the period where the press intervention is active, the equilib-
rium positions of both X2 and X3 change, in both cases decreasing in value. This
happens because forcing X1 to obtain a constant value over time effectively alters
the lagged relationships in the system, setting all of the lagged effects pointing
towards X1 in Φ to zero. This in turn yields a new vector of equilibrium positions
when plugged into Equation (8.3). Note that in this case the press intervention
results in a system which is still stable, but for some linear systems, applying a
press intervention can result in an even more dramatic change in the long-term
behavior of the system, changing it from stable to unstable. For simplicity, we
will consider only systems that are stable and stable under press interventions, a
point we will return to in the discussion. For a mathematical treatment of press
interventions, see Appendix E.1.2.

Shift interventions. Finally, we may consider interventions that target parts of
the system other than the value of Xj at one or more points in time. A shift inter-
vention represents an intervention to change the intercept of a variable ci in our
system, that is, a change to the time-invariant force (i.e., the mean of the stochas-
tic term) acting on a particular variable in the model, and which we will denote
shif t(X) (Eberhardt & Scheines, 2007; Peters et al., 2016; Rothenhäusler et al.,
2015).6 Figure 8.2(c) depicts a shift intervention to set c1 (the intercept term of
X1) to a value of 1 from time point t = 10 onwards. Unlike in the case of a press
intervention, we can see that the variable X1 is free to vary when the shift inter-
vention is applied. However, the equilibrium position of X1 changes due to the
change in the intercept, and this in turn results in a change to the equilibrium
positions of X2 and X3. The change in the intercept yields a new vector of equi-
librium positions µ, which can be obtained by plugging the new intercept vector
into Equation (8.3). As such, shift interventions have a long-term effect on the
dynamical system, and this long-term effect is distinct from that of press inter-
ventions. Unlike press interventions, shift interventions in linear systems never
change the overall stability of the system, since shift interventions do not change
the lagged relationships Φ , which determine stability. For a mathematical treat-
ment of shift interventions, see Appendix E.1.3.

Summary. As we can see, different interventions have different effects on dif-
ferent properties of a system. This is summarized in Table 8.1, where we show
the three different intervention types described above, whether these interven-
tions can in principle have a short or long-term effect on the system, and if so,
how to calculate this effect. Of course, not all interventions will have an effect on
the target variable, since this depends on the weights matrix Φ of the system at

6This interpretation allows us to consider cj as a latent time-invariant variable to which we apply
an intervention. Alternatively, we could also interpret a shift intervention as a soft intervention or
mechanism change, which alters part of the system (e.g., the mean of a variable) without forcing the
variables to obtain a constant value (Eberhardt & Scheines, 2007).
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hand: In our example system in Figure 8.1, no intervention on X1 will have an
effect on X4, while all types of interventions on X1 will have some effect on X2.
Notably, however, in any stable linear system, pulse interventions can have no
long-term effects on the equilibrium, while press and shift interventions can af-
fect the equilibrium. To continue our stress example, we could imagine that pulse
interventions might produce short-term changes to stress levels for example by
reminding one of an upcoming public speech. Press interventions may map onto
much stronger interventions, for example the administering of a hypothetical
drug which completely suppresses the stress response, while shift interventions
change stable parts of one’s environment which produce stress, for example by
switching to a less stressful profession. Because we are interested in long-term
changes to the system in the current chapter, we will focus on press and shift
rather than on pulse interventions in the remainder. Specifically, in the follow-
ing we will describe how, under certain conditions, we can use observations of
a dynamical system taken at a single point in time to learn about the effects of
these interventions, and show how it is possible to do so without knowing the
moment-to-moment generating parameters of the dynamical system.

Intervention Action Short-term effect Long-term effect

Pulse Force Xk,t = a at time t E[Xj,t+1] = φjk × a No effect

Press Force Xk,t = a for t ∈ {T ,T + 1, . . .} E[Xj,t+1] = φjk × a µ = (I− PkΦ)−1(Pkc+a)

Shift Force ck = ck + a for t ∈ {T ,T + 1, . . .} E[Xj,t+1] = φjk × (ck + a+ΦXt) µ = (I−Φ)−1 (c+a)

Table 8.1: Characterizations of the effects of different interventions. The short-term effect describes
the effect of Xk,t on Xj,t+1. The long-term effect is defined with respect to the new equilibrium

positions produced by the intervention. Pi represents the p × p identity matrix with the kth diagonal
set to zero, and a represents a p × 1 vector with the kth element set to a and zeros elsewhere. The
derivation of the long-term effects is detailed in Appendix E.1.

8.3 Equilibrium Causal Models

In the previous section, we introduced a very simple dynamical system governed
by linear moment-to-moment dynamic relationships and showed how we can de-
fine and compute the effects of different interventions in that system. A natural
implication of this is that, if we wish to learn about the effects of interventions
in our system, we could try to do this by collecting suitable repeated measures
time series data of each process, and in recent years, a number of psychological
researchers have called both for an increasing focus on theories for how psy-
chological processes evolve over time within an individual and a complimen-
tary increase in empirical approaches which collect and analyze psychological
time series to gain insight into these processes (Hamaker, 2012; Molenaar, 2004;
Robinaugh et al., 2019).

It turns out, however, that this is not the only way in which researchers might
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hope to learn about the effects of interventions in a dynamical system. In this sec-
tion, we describe the Equilibrium Causal Model (ECM), which is a type of model
which allows for inferences about the effects of certain interventions in a dy-
namical system, but which in principle can be learned from single-time-point
observations, that is, cross-sectional data. ECMs allow inferences about these
interventions without capturing the moment-to-moment dynamics of the under-
lying dynamical system.

8.3.1 A Causal Model of a Dynamical System

To define the ECM, it is first necessary to clarify what we mean by a causal model
in the first place. A causal model of a dynamical system is any model that yields
predictions about the effect of one or more types of interventions in that system.
In the context of the example model introduced above, a causal model would
correctly inform us about at least one cell of Table 8.1: the short and/or long-term
effect of pulse, press and/or shift interventions. The equations which govern how
the dynamical system evolves over time, as specified in Equation (8.1), would of
course represent the best causal model of the system we can hope for: If we know
all of the parameters of these equations, then we know the exact moment-to-
moment dynamics governing the system, and so can derive the short and long-
term effects of all intervention types. However, a causal model need not be quite
as complete a description of the system to still be useful.

An Equilibrium Causal Model is a causal model of the system which allows
inferences about the long-term effects of interventions, that is, the effects of in-
terventions that act on and affect the equilibrium positions of the system. While
in principle we could think about defining an ECM for many different types of
dynamical systems, in the current chapter we will only consider ECMs of linear
dynamical systems such as the one presented in the previous section. An ECM of
our example system would allow us to assess the effect of applying press and/or
shift interventions (the bottom-right and middle-right cells of Table 8.1) on the
equilibrium positions of other variables. To see how this works, recall that the
equilibrium is the resting state of the system. If the system is at equilibrium, it
is expected to take on the same value at the next point in time, as stated in Equa-
tion (8.2). An ECM of this system can thus be understood as any set of equations,
that is, any new set of parameters, replacing Φ and c, which (a) yields the same
equilibrium positions as the original system, that is, satisfies Equation (8.2) and
(b) yields the same effects of press and shift interventions as described in Table
8.1.

Hyttinen et al. (2012) showed that, for a linear dynamical system such as the
one we consider here, the parameters of such an ECM can be found by re-scaling
the original parameter matrices as follows. First, we obtain the equilibrium direct
effects Φ̃ by deleting the auto-regressive parameters or self-loops φii such that
φ̃ii = 0, and re-scaling the cross-lagged effects

φ̃jk =
φjk

(1−φjj )
, (8.4)
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as shown in Appendix E.2. This transformation has the effect that the cross-
lagged effects are re-scaled according to how stable the outcome variable Xj is.
The more stable the outcome variable (the closer φjj is to one), the bigger the
equilibrium direct effect φ̃jk . As such, the matrix Φ̃ can be interpreted as long-
run or equilibrium direct effects, rather than the moment-to-moment direct ef-
fects of the original system (although derived in a different context, the same in-
terpretation is given to re-scaling effects by (1−φjj ) by Shamsollahi et al., 2022).
Second, we obtain the intercepts of the equilibrium model in a similar way, by
re-scaling through the transformation

c̃j =
cj

(1−φjj )
, (8.5)

which again means that, the more stable the variable, the larger the re-scaled
intercept term becomes. We can again interpret these new intercept terms as
representing the cumulative or long-run effect of the time-constant forces c in
the original system. The intuition for this interpretation is given in Appendix
E.2, where we show how these parameters arise from path-tracing through (or
equivalently, marginalizing over) the auto-regressive parameters.

Taken together, these new parameter matrices define an ECM of the system,
which can be written as

µ = c̃ + Φ̃µ . (8.6)

Using the results of Hyttinen et al. (2012), it can be shown that these transformed
parameters imply the same equilibrium positions µ as the original dynamical
system in Equation (8.2) (see Appendix E.2.2 for details).

While this may seem somewhat abstract at the moment, this definition of the
ECM is useful for two reasons. First, it implies that the ECM can be informative
about certain intervention effects, and second, it implies that the ECM could in
principle be estimated from single-time-point observations, without the need to
estimate either the auto-regressive effects or the cross-lagged effects. Before we
examine how to estimate the ECM, however, we will first focus on understanding
what kinds of inferences the ECM allows, that is, why we might want to estimate
it in the first place.

To understand what else the ECM can and cannot tell us about a dynamical
system, we first visualize the parameters of the ECM for our example system in
Figure 8.3(b) alongside the original parameters in panel (a). We can see that the
ECM contains a direct effect φ̃jk , 0 only when there is a corresponding moment-
to-moment direct effect φjk , 0, which means that the ECM parameters in this
situation are informative about the presence or absence of direct relationships.7

As a result, while the ECM in Equation (8.6) can be read as static model, relat-
ing stable equilibrium positions to each other, the model itself contains cyclic
relationships, since the dynamical system from which it is derived also contains
cyclic relationships. Besides this, however, the ECM is not very informative about

7According to Equation (8.6), if φjj , 1, as we would expect in a stable system, then φ̃jk , 0 if and
only if φjk , 0.
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the moment-to-moment dynamics of the system. Since the intercepts and cross-
lagged parameters have been re-scaled, the values of the ECM parameters can
be quite different to the moment-to-moment direct effects: (in)equality relations
(such as φ23 = φ32 and |φ21| < |φ34|) are not necessarily preserved in the ECM
(φ̃23 > φ̃32 and |φ̃21| = |φ̃34|). Since the parameters are all re-scaled, and since Φ̃

contains no auto-regressive parameters, if we were to plug these model matrices
into Equation (8.1), we would simulate time series which look very different from
those produced by the original system.
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Figure 8.3: Example of a linear dynamical system (a) and its Equilibrium Causal Model (b). In panel
(c) we see the evolution of the dynamical system following a press intervention at time t = 10, where
dashed lines represent the equilibrium positions of each variable, and solid lines represent simulated
trajectories of each variable. In panel (d) we illustrate how the ECM predicts the same long-term effect
of the press intervention, that is, the change in equilibrium positions (dashed lines). However, the
equilibrium model cannot be used to make inferences about the actual trajectories of each variable
over time.

Despite these limitations, the ECM is a useful and informative representation
of the dynamical system because the ECM makes the same predictions about
the long-term effects of interventions as the original system. The proof of this
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statement is adapted from the work of Hyttinen et al. (2012) and is outlined in
detail in Appendix E.2.3 and E.2.4. For a press intervention, these predictions
can be made by simply plugging in the ECM parameters into the expression for
the press intervention in Table 8.1. This is shown for our example in panels (c)
and (d) of Figure 8.3. First, we see that for t < 10, both models imply the same
equilibrium positions in the no-intervention setting. In panel (c) we show the
trajectory of the system following a press intervention to force X2 = a, the effect
of which on the long timescale is to alter the equilibrium positions of X1, X2,
and X3. We see in panel (d) that the ECM, while not allowing us to predict the
trajectories of each variable following the intervention, does allow us to predict
the new equilibrium positions following the intervention. The post-intervention
equilibrium positions predicted by the ECM are identical to those of the original
system.

The importance of these insights are so central to the rest of the developments
presented here that they deserve repeating. The ECM is informative about the
long-term effects of interventions in our system, while simultaneously being al-
most entirely uninformative about the short-term effects of those interventions.
In other words, although we are studying a system that evolves over time, we
can potentially make correct predictions about how to intervene in that system
without knowing the moment-to-moment dynamics that govern the system.

8.3.2 Equilibrium Causal Models from Cross-Sectional Data

Now that we have defined what an Equilibrium Causal Model is and shown that
it yields important insights into the effects of interventions, we can turn to the
question of how ECMs might be useful in empirical research. Specifically, we
can examine whether and how ECMs could be estimated from observations of
a dynamical system taken at a single point in time. The crucial insight is that,
because the ECM implies the same equilibrium positions as the original system,
if we observe those equilibrium positions, we can potentially estimate the ECM
from single-time-point data. As such, ECMs provide a potential bridge to connect
dynamical systems modeling with cross-sectional data analysis.

8.3.2.1 Extension to Multiple Individuals

To show how and when ECMs can be estimated cross-sectional data, we first
extend our dynamical systems model to multiple individuals. The dynamical
systems model in Equation (8.1) describes a within-person model, that is, how
process values X evolve over time t for a single individual. To extend this model
to include multiple different individuals we need to impose some structure on the
ways in which these individuals differ from one another, that is, we need to add
between-person component(s) to our model. We consider the following model:

Xi,t = ci +ΦXi,t−1 + ϵi,t , (8.7)

where the parameters have the same meaning as in Equation (8.1) and the sub-
script i denotes individuals so that parameters or variables with that subscript
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vary across individuals. The process values Xi,t and perturbations ϵi,t ∼N (0,Σϵ)
both vary across time and differ between individuals. In terms of the parame-
ters of the model, individuals are similar in the sense that they share the same
lagged parameter matrix Φ. However, individuals are allowed to differ in their
intercepts, that is, time-constant forces ci ∼ N (µc,Σc). Note that this model is
conceptually similar to a VAR(1) model with random intercepts across individu-
als. The equilibrium positions for each individual satisfy the expression

µi = (I −Φ)−1ci , (8.8)

which implies that variation between people in their equilibrium positions arises
because of the variation in time-constant terms ci . As in the within-person case,
we consider only those systems that are stable, which, as outlined above, in the
linear case means assuming that Φ has eigenvalues |λ| < 1.

We can define different interventions in the system — and hence different
causal effects — in much the same way as we did for the single-individual model
in the previous section. Since the time-constant forces differ across individuals,
so too does the effect of press and shift interventions on the equilibrium positions
of those individuals, and these can be computed using the expressions shown in
Table 8.1. As in the single-individual case, we can write down the ECM of this
system as

µi = c̃i + Φ̃µi , (8.9)

where Φ̃ is the matrix of equilibrium direct effects, re-scaled and fixed across
individuals. The term c̃i represents a vector of person-specific intercepts, which
are each re-scaled as described in the previous section. This implies that these
new intercept terms are also normally distributed, c̃i ∼N (µ̃c, Σ̃c), with the mean
and covariance matrix of the intercepts across individuals (µ̃c and Σ̃c) also re-
scaled in a similar way (see Appendix E.2 for details).

As in the single-individual case, the ECM predicts the same equilibrium posi-
tions as the original model and makes equivalent predictions about the long-term
effects of press and certain (standardized) shift interventions. This is discussed
in detail in Appendix E.2.3 and E.2.4. The implication of this is that, if we can
learn or estimate this model from data, then we can infer the long-term effects of
these interventions.

8.3.2.2 Estimating ECMs from Equilibrium Data

In order to be able to estimate the ECM from cross-sectional data, the main addi-
tional condition we need to satisfy concerns the nature of the information which
cross-sectional measurements capture. A sufficient (but as we will see later on,
not necessary) condition is that these measurements consist of direct observa-
tions of the equilibrium positions of the system for each individual, µi . That is,
we need single time-point observations across individuals to represent the resting
state or long-run average value of each variable for each person. The importance
of this condition becomes clear when we rewrite the model in Equation (8.9) as

µi = µ̃c + Φ̃µi +ζi , (8.10)
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where ζi ∼N (0, Σ̃c) represents the person-specific deviation from the population
average intercept µ̃c. On the left-hand side we have a vector of equilibrium po-
sitions per person, which are regressed on their direct causes on the right-hand
side. The parameters of this model are a vector of constants µ̃c, a square matrix of
regression parameters, and a mean-zero residual with variance covariance matrix
defined above.

By re-writing the model in this form, it becomes clear that the ECM can be
seen as a structural equation model (SEM; Bollen, 1989) defined with respect
to equilibrium data. From the usual SEM variance-covariance decomposition it
follows that the (co)variance of the equilibrium positions is given by

Σµ = (I− Φ̃)−1Σc(I− Φ̃)T . (8.11)

This means that, if we observe the equilibrium positions for all of the variables in
our system, then the problem of estimating the ECM reduces down to the prob-
lem of estimating the corresponding SEM. The estimated ECM then allows us to
make predictions about the long-term effects of different interventions, without
knowing the moment-to-moment dynamics of the system, as we have outlined
above.
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Figure 8.4: Mean (solid lines) and standard deviation (shaded areas) of parameter estimates (left) and
causal effect estimates (right) as a function of sample size n. True values are shown as dashed grey
lines. Causal effects refer to two different press interventions, press(X1 = 1) and press(X4 = 1), with
the size of the causal effect in each case evaluated with respect to the change in the resulting equi-
librium values of X2 and X3. The figure illustrates that both parameter estimates of the equilibrium
model and estimates of the effects of press interventions are unbiased when using the appropriate
SEM model fit to equilibrium data.

To illustrate that this indeed works, we simulate equilibrium data from the
dynamical system in Figure 8.1 for sample sizes n between 50 and 1000. For each
individual we have a single observation, representing the equilibrium value for
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that variable for that individual.8 We use lavaan (Rosseel, 2012) to fit a cyclic
linear SEM model in which X2 is regressed on (X1,X3) and X3 is regressed on
(X2,X4). In causal modeling terms, this reflects the situation in which the struc-
ture of the causal model is known, and we want to estimate the values of the ef-
fects themselves. Because this model is statistically identified, its parameters can
be estimated from the equilibrium data just as in any standard SEM application.
We repeat this 250 times for each sample size. The left panel in Figure 8.4 shows
that, as expected, the parameters of the model are estimated without bias, with
a sampling variance that decreases with sample size. The right panel shows that
the effects of the press interventions on X1 and X4 on the equilibrium positions
of X2 and X3 are estimated without bias, too. Naturally, they exhibit a higher
variance given that they are computed from parameters that are themselves es-
timated. The code to reproduce these (and all further) simulation results and
figures is available from https://github.com/fdabl/Equilibrium-Causal-Models.

This short exercise illustrates that single time-point measurements can, in
principle, yield a model that allows valid and useful inferences about long-term
causal effects of an underlying dynamical system. Of course, in showing how this
works in principle we have made a number of simplifying assumptions, notably
regarding the nature of psychological measurements, the statistical identifiabil-
ity of the model, and the degree of knowledge available on the causal system of
interest. In the following sections, we will turn our attention to the potential of
using ECMs in psychological research in practice. We will first examine previ-
ous research on the nature of psychological measurements and whether the mea-
surement assumption outlined here can be relaxed. We will then discuss issues
around statistical identifiability, and the discovery and interpretation of causal
models from observational data in general in Section 8.5.

8.4 Psychological Measurement and the Ergodicity
Problem

In showing how equilibrium models can be estimated from data in the previous
section we have relied on the assumption that measurements perfectly capture
the equilibrium position of the underlying process. In this section, we assess to
what degree this is a reasonable assumption considering what is known about the
nature of psychological measurement. In particular, in Section 8.4.1 we discuss
the ergodicity problem, which is commonly interpreted to imply that no useful
inferences can be made about dynamical systems from single-time-point cross-
sectional observations (for more detailed treatments of the ergodicity problem,
we refer readers to Hamaker, 2012; Molenaar, 2004). Drawing on research from
the latent-state-trait modeling literature in Section 8.4.2, we will show in Sec-
tion 8.4.3 that cross-sectional data can in fact be informative about dynamical
systems if sufficient knowledge about the variance components underlying our
measurements is available.

8Intercepts are drawn from a multivariate Gaussian with mean zero and the identity matrix as the
covariance matrix.
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8.4.1 Ergodicity as a Measurement Problem

In the previous section we showed that ECMs can be estimated from cross-
sectional measurements of a dynamical system, as long as those measurements
capture the equilibrium position of each process. In SEM terminology, we can
think about this as proposing a particular type of measurement model, which we
depict in panels (a) and (b) of Figure 8.5. We imagine that there is some latent
process Xt which evolves over time within an individual, and that when we take
measurements of this process at a certain point in time Yt , we capture the long-
run tendency or mean of this process. Formally, we have that

Yit = µi , (8.12)

where i indexes the person. We can think about this as a reflective measurement
model where the measurements are akin to a weighted sum (i.e., average) of some
previous values of the latent process stretching back in time.
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Figure 8.5: Left: Shows the equilibrium measurement as capturing the expected value or resting state
of the process X at a single point in time t. Right: Shows the snapshot measurement as capturing the
value or position of a process X at a single point in time t.

This is a somewhat different way of conceptualizing single-time-point mea-
surements of a dynamical system than is typically found in the psychological
methods literature. In work that discusses the ergodicity problem (e.g., Hamaker,
2012; Molenaar, 2004), researchers typically assume that cross-sectional mea-
surements of a dynamical system consist of snapshots, that is, direct measure-
ments of the position or value of the process at the time of the measurement
(Xt), as depicted in Figure 8.5(b). If measurements represent snapshots, then —
even for the simple dynamical system considered in the current chapter — cross-
sectional statistical dependencies will not be equivalent to either the equilibrium
dependencies or the moment-to-moment dependencies between processes in the
dynamical systems model. In other words, the SEM model estimated on snap-
shot data will generally not be equivalent to the ECM. The basic intuition for this
is that, when the data represent equilibrium positions, then variation in the ob-
served variables represents the variation across individuals in their equilibrium
positions, represented by Σµ. This variation can, in turn, be attributed to the fixed
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parameter values in Equation (8.10) and the variance between individuals in the
time-constant forces acting on the system, Σc. However, when observations are
snapshots, then additional variation in these data come from the variance around
the equilibrium positions at a certain point in time. Formally, we have that

Yit︸︷︷︸
Observation

= µi︸︷︷︸
Trait / Equilibrium

+ sit︸︷︷︸
State

, (8.13)

which states that snapshot measurements at a particular point in time (Yit) can
be considered as a sum of the person-specific equilibrium (µi) and a person’s de-
viation from their equilibrium (sit). Hamaker and Wichers (2017) refer to the
µi term as a trait, representing the stable mean values of the processes X for a
given individual and so equivalent to the equilibrium in a linear dynamical sys-
tem, while referring to sit as the state value. This expression makes it explicit
that the variance in our data in the snapshot scenario comes both from the vari-
ance between individuals Σµ and the variance of the state Σs. Critically, failing to
separate these two sources of variance means that we cannot use snapshot data
to estimate the equilibrium parameters: Estimating a SEM model from the co-
variance matrix of the snapshot data ΣY instead of the covariance matrix of the
equilibria Σµ will not recover the ECM.

While this shows that using snapshot data to estimate equilibrium parameters
is problematic in theory, the extent to which the estimates are biased in practice
depends on the variance-covariance matrix of the states. To assess this, we con-
duct a small simulation study. Specifically, we simulate n = 2000 observations
from our example ECM while varying the state variances (assumed equal for all
states, σ2

s = diag(Σs)). In particular, setting the covariance matrix of the equi-
librium positions to be diagonal with variances 1, we vary the proportion of the
total variance that is attributable to the state variance — denoted σ2

s /(1 + σ2
s ) —

from 0 to 0.50 in increments of 0.10. A value of 0 indicates that we observe the
equilibrium positions directly, while a value of 0.50 indicates that half of the total
variance is due to the state variance.

Figure 8.6 shows the results of the simulation study for the press interven-
tion effect of forcing X1 = 1 on X2 (top left) and X3 (top right), and of X4 = 1
on X2 (bottom left) and X3 (bottom right). Focusing on the case in which the
states are uncorrelated, that is, Σs is a diagonal matrix (indicated by ρ12 = 0 in
the figure), we find that the causal effect estimates are attenuated, that is, pulled
towards zero with increasingly large state variance. The situation becomes more
complicated when we allow for unobserved common causes between the devia-
tions of the equilibrium positions, which results in correlations between them.
We simulate two such scenarios: One in which the correlation between X1 and
X2 is ρ12 = 0.25 (purple) and one in which it is ρ12 = −0.25 (green). Naturally,
this has the strongest effect on the estimate of the causal effect of X1 on X2. A
positive correlation increases the causal effect, which works against the attenua-
tion effect from the increasing state variance. A negative correlation on the other
hand decreases the causal effect. The effect is similar, but much less pronounced,
for the other causal effects.
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Figure 8.6: Estimates of the effect of the intervention press(X1 = 1) on X2 (top left) and X3 (top right),
and press(X4 = 1) on X2 (bottom left) and X3 (bottom right) across different state variances (given as a
proportion of the total variance) and residual correlations between X1 and X2. As the state variances
increase, the causal effects generally become attenuated. For negative residual correlation between
X1 and X2 (green), the attenuation is stronger, while it is weaker for a positive one (purple). Dashed
gray lines indicate the true causal effect.

8.4.2 States and Traits in Psychological Measurement

The simulation study above showed that we obtain biased estimates of the ECM
parameters if we use snapshot measurements, capturing the current value of the
process at a single point in time, rather than equilibrium measurements, captur-
ing the long-run average of the process. As such, if ECMs are to be of potential use
for psychological research, the crucial question is: To what degree should psycho-
logical measurements be considered to capture snapshots, equilibrium positions,
or something in-between? To gain insight into this question, we can make use
of the extensive literature on psychological measurement, in particular the liter-
ature on latent state-trait (LST) modeling (Hertzog & Nesselroade, 1987; Steyer
et al., 1989; Steyer et al., 2015; Steyer et al., 1999).

In the psychological measurement literature, a distinction is often made be-
tween measurement instruments which aim to capture trait aspects of a psycho-
logical process versus those which aim to capture state aspect of that process.
Typically, a psychological trait is in this context defined as a stable-over-time or
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a long-run characteristic of the process, while a state is considered to vary over
time. For example state anxiety could be conceptualized as the degree of anxiety
that an individual is feeling at a given moment in time in reaction to a stressful
event, while trait anxiety would be the tendency to experience anxiety in reac-
tion to stressful events (Speilberger et al., 1983). In LST research, traits are often
specifically defined as long-run mean values of psychological processes, with the
trait component of a measurement tool identified by taking the mean of repeat-
edly administered measurements over time (Steyer et al., 1989). As such, in the
context of the dynamical systems model we study in the current chapter, the trait
aspect of our process X can be considered to be equivalent to the equilibrium of
that process, µ.

When we consider the types of questions typically used in cross-sectional psy-
chological research, we can see that researchers often aim to capture long-run
summaries rather than snapshots of the target process. For example, experience
sampling studies which aim to study anxiety (e.g. Bringmann et al., 2016; Row-
land & Wenzel, 2020) typically ask participants the degree to which they cur-
rently feel anxious multiple times a day, that is, at the moment they receive the
measurement prompt. In that situation, it is clear that the researchers aim to
capture snapshot measurements of some time-varying psychological process. In
contrast, a cross-sectional measurement instrument such as the trait part of the
State-Trait Anxiety Inventory (Speilberger et al., 1983) asks participants about
how anxious they generally feel, as distinct from how they feel at that moment in
time. Similar comparisons can be made with depressed mood, where experience
sampling studies typically query depressed mood levels at the moment of mea-
surement (e.g. Bringmann et al., 2016; Rowland & Wenzel, 2020); cross-sectional
studies based on the Beck Depression Index or DSM-criteria ask participants to
assess their depressed mood over the past week, two weeks, or the past 30 days
(e.g., Alegria et al., 2007; Beck et al., 1987; Fried et al., 2016; Kendler et al.,
2018); while still other cross-sectional studies assess stable levels of depressed
mood using measures designed to assess trait positive and negative affect (e.g.,
Clark & Watson, 1991; Watson, Clark, et al., 1994). This already gives some in-
dication that the (perhaps implicit) measurement model being used by empirical
researchers in cross-sectional settings may be closer to that of equilibrium mea-
surements than that of snapshot measurements.

Of course, prior research has also shown that people’s responses to such mea-
surements can be influenced by contextual effects, such as one’s current state (Au-
gustine & Larsen, 2012; Barrett, 1997; Bower, 1981; Brose et al., 2013; Leertouwer
et al., 2021), which means that, even if we attempt to measure the equilibrium or
trait, we are likely not able to do so perfectly. For example, measurements of gen-
eral life satisfaction appear to be influenced by the mood of the participant, and
potentially even the weather on the day of measurement (Schwarz & Clore, 1983).
However, as we saw in the simulation study above, the degree to which this is a
problem in practice depends on the degree to which measurements deviate from
the equilibrium values.

From the LST literature, we know that designing an item to ask about long-
term general tendencies does appear to have positive effect on our ability to
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capture stable features of the process of interest. Braun et al. (2021) showed
that, when items were phrased to explicitly probe general trait-like levels of
self-esteem and depressive symptoms, around 70 percent of the variance in
these items could be attributed to trait variability (67.5 − 68.5% for depression,
71 − 72.6% for self-esteem), in contrast to state-like measurements, for which
50−60% of the variance was due to traits. In a similar vein, Eid and Diener (2004)
showed that items which queried participants general affect intensity showed a
higher proportion of trait variance (60 − 83%) than items which queried affect
frequency over a shorter time frame (46−83%) or current mood levels (33−47%).

These studies show that careful design of items could realistically yield mea-
surements in which upwards of 70 to 80 percent of the variability is due to true
variation in stable between-person differences. Based on this, we can say that
trait-like measurement instruments could be conceptualized as something in-
between an equilibrium measurement and a snapshot measurement, with many
instruments tools skewing closer to the former than the latter. Furthermore, a
number of studies have aimed to characterize the amount of trait variance in
different psychological measurement tools. For example, Eid and Diener (2004)
showed that, in their sample of undergraduate students, the satisfaction with life
scale (SWLS; Diener et al., 1985) exhibited 74−80% trait variance; the Rosenberg
Self-Esteem Scale (RSE; Rosenberg, 1965) 93 − 96%; the Life Orientation Scale
(LOT; Scheier & Carver, 1985) 75 − 85%; and the Eysenck Personality Inventory
(EPI; Eysenck, 1968) neurotisicm and extraversion scales 90− 92% and 88− 93%
trait variances, respectively.

8.4.3 Equilibrium Models from Non-Equilibrium Cross-
Sectional Data

Having prior knowledge about the degree of trait variance in a measurement in-
strument already allows us to get a clearer idea of the amount of bias that we
might expect when fitting a statistical model which assumes a perfect equilib-
rium measurement model. For instance, for our example system, if 70 to 80
percent of the variance in our measurements is attributable to variance in the
equilibrium positions, and so, correspondingly, 20 to 30 percent attributable to
variance in the state, then, consulting Figure 8.6, we would expect only a small
amount of bias to be present. In principle, however, if prior research has estab-
lished how much trait variability we can expect in an instrument, then we can use
this information to relax the measurement assumption stated in Section 8.3.2.2.
That is, we can use this information to, in principle, estimate the ECM from non-
equilibrium measurements.

We can see how such a correction would work by returning to our running
example. Suppose that we measure variables X1 through X4 with a questionnaire
designed to capture the long-run value of the process, and that we only take mea-
surements at a single moment in time. Further suppose that previous research is
available which shows that 70% of the variance in these items is due to the trait,
that is, equilibrium variability across people, and we wish to estimate the equi-
librium dependencies between these variables. In order to do this, we first need
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to expand our SEM model, defined in Equation (8.10), with a measurement compo-
nent which relates the observed variables Y to their equilibria µ, now considered
latent variables. We write

Yi = µi +ωi , (8.14)

where ωi is (a vector of) deviations from the equilibrium value for each individ-
ual. In SEM terms, we have a typical measurement model consisting of a latent
variable µ, an observed variable Y , and what would usually be referred to as
a measurement error term ω. Note that we make no distinction between vari-
ance due to errors in the measurement (for instance, mistakes in filling out the
survey) and variance due to the state values, referred to sit in Equation (8.13)
(though note that LST studies often decompose measurement instruments into
trait, state, and measurement error variances, see Steyer et al., 1989).

We assume without loss of generality that the variances of the observed vari-
ables Y are equal to one. To be able to estimate this model from data, we use
our prior knowledge about the measurement instrument and fix the measure-
ment error variances σ2

ω to 0.30, and assume that the measurement errors are
uncorrelated with each other. We further constrain the latent variable variances
to 0.70 (see Appendix E.3.1 for how this can be done in standard SEM software).
With these constraints in place, the model is statistically identified, and the ECM
parameters can be estimated in much the same way as above.

To illustrate this, we conduct a small simulation study. Specifically, we simu-
late n = 2000 observations whose variance are 70% due to the trait and 30% due
to the state, which in the model is now considered as error variance. We estimate
the ECM by specifying the modeled trait variance to be between 50% and 90%.
The left panel in Figure 8.7 shows the values of the estimated parameters while
the right panel shows the estimates of selected causal effects. If we fix the trait
variance in the model to be equal to the true trait variance in the measurements
(0.70), we obtain unbiased estimates, as indicated by the vertical lines in Figure
8.7. As we would expect, we not only obtain unbiased estimates of the ECM pa-
rameters (left panel), but also of the causal effects (right panel). In other words, if
we have sufficient knowledge about the measurement instrument employed, we
can incorporate this information into our SEM model, thereby correcting for the
unwanted variance component and recovering the equilibrium model parameters
and causal effects.

In practice, of course, researchers may be uncertain about the degree of trait
variation in their measurements. As Figure 8.7 shows, when we under-specify the
true trait variance (e.g., by setting the modeled trait proportion to 0.50), then the
estimated parameters and causal effects are inflated (larger in absolute value).
This is because, if we assume that the measurement error is smaller than it re-
ally is, then the parameter estimates have to account for the larger remaining
(co)variance. Correspondingly, over-specifying the true trait variance means that
the estimates are shrunk towards zero because more of the (co)variance is at-
tributed to measurement error and the parameter estimates thus do not have to
be as large. In Appendix E.3.2 we show that additional bias may result when the
measurement errors are correlated but we fail to specify this in the measurement
model.
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In this example, we can see that the degree of bias introduced through mis-
specifying the modeled trait variance is not too large. Of course, the larger the
literature we can rely on, the more confident we can be in specifying the trait
variance. In practice, if researchers wish to apply this approach, they should
identify a range of plausible values for the trait variance percentage, and vary
the fixed model variance as a sensitivity analysis to check the robustness of their
conclusions to this type of model misspecification. In principle, this approach
could be extended to include modeling of measurement error variance in addition
to state and trait variance if researchers have access to multiple indicators of their
latent variables of interest (Bollen, 1989; Hertzog & Nesselroade, 1987; Steyer et
al., 2015).

8.5 Equilibrium Causal Models in Practice

So far, we have focused on introducing the basic ideas behind Equilibrium Causal
Models and showed that statistical modeling tools already familiar to psycho-
logical researchers can — in certain idealized situations — be applied to cross-
sectional data to yield a model that is informative about the long-term effects of
interventions in linear dynamical systems.

One implication of our analysis above is that, when studying the type of linear
system considered here, an ECM will contain cycles whenever there are feedback
relationships in the underlying dynamical system. In our example, there exists
a feedback relationship between the variables X2 and X3, and in the dynamical
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systems representation, this cyclic relationship can be unrolled in time, resulting
in a representation that is acyclic: X2 has a causal effect on X3 at time point t,
while X3 has a causal effect on X2 at time point t + 1. In the corresponding ECM
there is no notion of time ordering any more, since the model describes causal re-
lationships between equilibrium positions. However, the feedback relationship
between X2 and X3 carries over, resulting in a cycle. Thus, despite the fact that
ECM is a model for cross-sectional data, we have an intuitive interpretation of
cycles in this model: Cycles exist whenever the underlying dynamical system
has feedback relationships. In the context of psychological research, we may ex-
pect the dynamics underlying psychological processes to consist of many such
feedback loops, and so it is an advantage of ECMs that they provide a clear con-
nection between cross-sectional statistical dependencies and feedback relations
in dynamical systems.

While in the previous section we outlined the considerations that researchers
must make in regards to the nature of psychological measurements, there remain
a number of other challenges that are likely to arise if researchers wish to use
ECMs in empirical practice. These challenges relate to practical difficulties of
estimating cyclic SEM models, the problem of unobserved confounding, and the
issue of learning unknown causal structures from empirical data. After outlining
these challenges in Section 8.5.1, we discuss how the modern causal discovery
literature may help address them in Section 8.5.2.

8.5.1 Challenges in Estimating ECMs

While ECMs are a promising tool to bridge dynamical systems thinking and
cross-sectional data analysis, there are at least four key challenges with apply-
ing them in practice. First, since we expect that psychological processes are typ-
ically characterized by a number of feedback relationships, we expect ECMs of
psychological processes to include cyclic relationships. Unfortunately however,
cyclic relationships are typically more challenging to estimate from data. The
vast majority of both SEM and causal modeling applications are typically limited
to considering only acyclic causal relationships (DAGs; Pearl, 2009; Ryan et al.,
2022a). In the language of SEMs, most models are recursive (i.e., acyclic) rather
than nonrecursive (i.e., cyclic). The reason for considering only acyclic causal
models is partly because of practical concerns, since they generally have more
convenient properties than cyclic causal models (for details, see Bongers et al.,
2021; Lauritzen et al., 1990; Spirtes et al., 1995). In the SEM literature, it is well
known that a necessary condition for estimating Φ is that the matrix I −Φ is
invertible, with (I −Φ)−1 appearing in the expression for the model-implied co-
variance matrix of a SEM. If Φ is triangular, as is the case for acyclic models,
then this condition is always met, regardless of the parameter values. This is not
the case for cyclic models, where this condition holds only if all eigenvalues of Φ
are smaller than one in absolute value, |λ| < 1. Recall that this is in fact the same
condition we needed for our linear dynamical system to be stable. Usually, this
means that we require that the feedback relations in the dynamical system are
not too strong such that, when iterating the system (Xt+1 = ΦXt + ϵ), it reaches
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equilibrium (Rothenhäusler et al., 2015).
Second, even if the true parameters Φ meet this condition, the model itself

may not be statistically identified. A model is not identified when there are (at
least) two distinct sets of parameter values that, given the same data, give rise to
the same likelihood. It is known that, if we estimate only directed relationships
in the structural model, that is, regressing observed variables directly on one
another without any measurement model, then every acyclic model is identified.
However, not all cyclic models are identified, with the rank condition providing
a necessary and sufficient condition for a model to be identified (for details, see
Bollen, 1989, pp. 98-103). So far, we have considered an example system which is
relatively sparse: There is a feedback relationship between X2 and X3, but X1 and
X4 only act as unique causes of X2 and X3, respectively. This model is statistically
identified, but if we were to add more relationships, such as additional feedback
loops X1 ⇆ X3, X2 ⇆ X4, and X1 ⇆ X4, this would no longer be the case. The
practical implication of this is that, even if we know the structure of the ECM
and have observed all relevant variables, we may in some cases not be able to
estimate it from data using standard approaches.

Third, unobserved confounding can obscure the estimation of causal effects.
For example, we may find a statistical dependency between X1 and X2, yet this
dependency may be explained by the common cause X3, which we failed to in-
clude in our model (Dablander & van Bork, 2021; Pearl, 2009; Peters et al., 2017;
Rohrer, 2018). Unobserved confounding is the bane of causal inference from ob-
servational data and likely the de facto situation in psychology and the social
sciences more broadly. Thus, researchers who wish to interpret the SEM models
they fit to empirical data as ECMs, that is, interpret estimated statistical relation-
ships as causal effects, should be very cautious.

Fourth, while we have so far assumed that we know the structure of the ECM,
that is, we know (or have strong theoretical expectations about) the causal rela-
tionships between variables, this is generally not the case in practice. For exam-
ple, we used knowledge of the ECM structure in Sections 8.3.2.2, 8.4.1, and 8.4.2
by specifying the specific directed relationships which should be estimated. In
the causal modeling literature, this is sometimes referred to as causal inference:
Using knowledge about the causal system at hand in order to estimate the causal
effects of interest (e.g., Peters et al., 2017). The theoretical understanding of psy-
chological phenomena may in many situations be too weak to confidently assert
which variables cause (or do not cause) which other variables. In the majority
of cases, the key difficulty is in correctly specifying the structure of the causal
model, rather than just estimating the causal effects given a particular structure.
This is known as causal discovery in the literature (e.g., Peters et al., 2017).

In sum, estimating ECM from data faces considerable challenges. However,
as we will outline in the next section, these difficulties can in many cases be di-
rectly addressed by using practical tools and approaches developed in the mod-
ern causal discovery literature. As we will see, by leveraging information from
different sources, these tools can in principle allow us to overcome these chal-
lenges, enabling us to learn cyclic ECMs from data.
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8.5.2 Cyclic Causal Discovery

As outlined above, in practice we generally do not know the structure of the
ECM, that is, which variables have direct causal effects on which other variables.
When the structure of the ECM is unknown, the inference problem changes from
estimating known (or at least hypothesized) causal relationships to discovering the
causal model itself (Peters et al., 2017; Spirtes et al., 2000). The field of causal
discovery is an active area of research that has made great progress in developing
tools to help researchers learn the structure of causal relationships between vari-
ables from data (for recent overviews, see e.g., Eberhardt, 2017; Heinze-Deml,
Maathuis, et al., 2018; Zhang et al., 2017).

There are many challenges associated with learning causal relations from data
(for a list, see e.g., Spirtes & Zhang, 2018). One fundamental problem of causal
discovery lies in the fact that many causal models are compatible with the same
set of data (MacCallum et al., 1993; Raykov & Marcoulides, 2001; Verma & Pearl,
1990b). In SEM terms, we would say that there are many models which are sta-
tistically equivalent (Bollen, 1989; Ryan et al., 2022a). For example, suppose you
observe a correlation between variables X and Y . Even if we are willing to make
the simplifying assumption that there are no unobserved (latent) confounding
variables, the causal models compatible with this observation are X→ Y , X← Y ,
and X ⇄ Y . Using our running p = 4 variable example, the top row in Figure
8.8 further illustrates this equivalence problem. The rightmost panel shows that
there are two causal graphs that are consistent with the empirical data gathered
from observing the true causal system on the left. In other words, observing only
these data cannot allow us to rule out any of the estimated graphs — all of them
exhibit the same set of conditional independencies found in the data.9

A major recent insight in the causal discovery literature is that using data
from different contexts can improve our ability to recover causal models (e.g.,
Mooij et al., 2020; Peters et al., 2016). Although a context can be broadly defined,
the most straightforward example is when we have a mix of data from observa-
tional settings and settings where some intervention is applied to the system.10

This is illustrated in the bottom row in Figure 8.8, where we now not only ob-
serve the causal system in the context S = 1, where no intervention takes place,
but also in the contexts S = 2 and S = 3, where interventions on X1 and {X3,X4}
occur, respectively. Using observations from these different contexts allows us to
completely recover the true causal graph, as shown in the rightmost panel. The
intuition behind this is that the set of graphs that are interventionally equivalent
(i.e., imply the same statistical dependencies when we intervene on the system)
is generally much smaller than the set of graphs that are observationally equiva-
lent. Returning to our two variable example involving only X and Y , if we have
data where X has been intervened on and Y changes as a result, we know that

9Currently existing cyclic causal discovery methods do not return a set of equivalent graphs. In-
stead, they return a Partial Ancestral Graph which encodes ancestral relations but from which one
generally cannot derive the equivalence set (e.g., Mooij & Claassen, 2020; Richardson, 1996b). We
show the equivalence set here merely for illustration purposes.

10Different contexts can also refer to observing the system at different points in time (see e.g.,
Rothenhäusler et al., 2015, for an empirical example).
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Figure 8.8: Top: True causal model (left) observed in one setting (S = 1) giving rise to empirical ob-
servations (middle). Applying a causal discovery method on only these data results in an equivalence
class of estimated causal models (right). Bottom: Same except that the causal model is observed in
three settings (S ∈ {1,2,3}). Utilizing this additional information allows one to rule out statistically
equivalent models and arrive at the correct causal model (right).

there must be a path X → Y , excluding all models where such a path does not
exist.

Using modern causal discovery methods that draw on data from different
contexts can potentially address all challenges outlined in Section 8.5.1. Many
of these methods allow for the discovery of cyclic causal relationships even in
the presence of unobserved confounding (for an overview, see e.g., Mooij et al.,
2020). Some of them also identify the causal structure exactly, rather than an
equivalence class, as well as returning causal effects estimates. The Backshift
(Rothenhäusler et al., 2015) method seems particularly promising as it fulfills
all these requirements. Backshift assumes that shift interventions are applied
in the different contexts, but the intervention targets themselves need not be
known, which is important for psychological research where interventions are
often “fat-hand” in nature, that is, can target multiple variables at once. Back-
shift further assumes linear relationships similar to the example system which
we have used throughout the current chapter. The main downside of Backshift
is that it requires at least three different settings, where one setting can be en-
tirely observational. We provide a small simulation study in Appendix E.4 that
assesses the performance of Backshift for our example system. Our results show
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that the number of settings or contexts available to researchers is more important
than the sample size per setting. This implies that researchers who are interested
in estimating ECMs should try to maximize the settings in which the system is
observed rather than the sample size per se. This would constitute a shift in how
data is currently collected in psychology, away from a focus on simply collecting
more data in an absolute sense, and towards a focus of observing the system in
different contexts.

8.6 Discussion

In this chapter, we introduced the concept of Equilibrium Causal Models to the
psychological literature. While Equilibrium Causal Models have been studied be-
fore (e.g., Bongers et al., 2022; Dash, 2005; Iwasaki & Simon, 1994; Spirtes, 1995;
Strotz & Wold, 1960; Weinberger, 2020, 2021) — forming the target of inference
in many cyclic causal discovery methods (e.g., Bongers et al., 2021; Lacerda et
al., 2012; Mooij et al., 2013; Richardson, 1996b; Rothenhäusler et al., 2015) —
they are virtually unknown in psychology. Using the example of a linear dynam-
ical system, we showed that ECMs provide a missing link that connects cross-
sectional data analysis with dynamical systems modeling. We demonstrated that
ECMs (a) can yield insights into the long-term effects of different interventions
and (b) can, under certain conditions, be estimated from cross-sectional data. Fo-
cusing on linear systems, we showed how ECMs can be estimated using standard
SEM software when the structure of causal relationships is known. In case this
structure is not known, as is generally the case in practice, we also showed how
ECMs can be estimated using modern causal discovery techniques.

Our analysis of ECMs made three key simplifying assumptions. First, we lim-
ited our analysis to the case of linear dynamical systems that are stable in both
the observational and intervention setting. Linearity implies that the system has
a single global equilibrium. This rules out the possibility of multiple equilibria,
including the fact that a small intervention can have a large effect on the dynam-
ics of the system (e.g., Dablander, Pichler, et al., 2022; van der Maas et al., 2020).
ECMs and causal discovery methods for more general (nonlinear) systems — in-
cluding systems whose equilibrium depends on the initial condition — are an
active area of research (see e.g., Bongers et al., 2022; Mooij et al., 2013). Second,
we assumed that individuals exhibit only limited heterogeneity, expressed in our
model as differing with respect to the intercepts but not the lagged relationships.
In psychological settings, this assumption may be overly strict, and further re-
search is needed to investigate to what extent this assumption can be relaxed.
Third, we assumed that psychological measurements either yield equilibrium po-
sitions directly, or that sufficient knowledge about the properties of measurement
instruments was available. We showed that this knowledge could potentially be
gleaned from the psychological measurement literature on latent-state-trait vari-
ance decompositions, and demonstrated how this can be used to correct for devi-
ations from the equilibrium using standard SEM software. In practice, however,
this information may not be available for all measurement instruments and may
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also differ for different populations. Furthermore, if measurement instruments
yield correlated errors, then knowledge of these correlations may be required to
fully correct for imperfect equilibrium measurements. This highlights the need
to build on the existing literature with detailed and thorough studies on psycho-
logical measurement.

The ECM perspective put forward in this chapter has a number of implica-
tions for empirical researchers. First, ECMs connect cross-sectional data analysis
to dynamical systems modeling, providing a new perspective on the ergodicity
debate in psychological research. Specifically, if the assumptions outlined above
hold, then between-person data can be informative about causal relationships
present in within-person processes. Importantly, ECMs can include cyclic causal
relationships and — at least for the linear case discussed here — give them a
straightforward interpretation: A cyclic relationship exists in the ECM if there
is a feedback relationship in the underlying dynamical system. Of course, for
more complicated dynamical systems, the mapping between equilibrium and dy-
namic causal dependencies may be less straightforward (Blom et al., 2020; Dash,
2005; Dash & Druzdzel, 2001; Weinberger, 2021). However, pursuing equilib-
rium causal dependencies may be a fruitful avenue for research, both for its own
end and as a way of constraining the space of possible dynamical models which
may underlie those equilibrium relationships.

Second, researchers interested in estimating ECMs can connect to a large ar-
ray of tools developed in the field of causal discovery. While there are important
statistical and conceptual challenges to causal discovery (see e.g., Eronen, 2020;
Spirtes & Zhang, 2018), we have seen that utilizing observations from multiple
contexts can substantially improve performance (Mooij et al., 2020). This draws
from the fact that causal relations are relations that should be invariant across
settings (e.g., Bühlmann, 2020), suggesting a potential shift in the way psycho-
logical data is collected. Specifically, rather than solely focusing on increasing
sample size, researchers may wish to increase the number of settings in which
the psychological system is observed. Several causal discovery methods, includ-
ing the one we have focused on in this chapter, do not require precise knowledge
of which variables were intervened on, nor do they assume that all causally rele-
vant variables have been observed. These constitute important advances that psy-
chological researchers can benefit from in practice. For causal discovery methods
to become more widely applied in psychology, however, more extensive research
must be directed into several issues. Initially, we may need to develop or adapt
existing methods to deal with the presence of measurement error (e.g., Blom et
al., 2018; Saeed, Belyaeva, et al., 2020; Zhang et al., 2017). Following the devel-
opment of fit-for-purpose methods, we need studies investigating how well these
methods work for settings common to psychology, varying effect sizes, the den-
sity of the causal graph, the number of nodes, the sample size, the extent and type
of measurement error, and the type and target of interventions in a more system-
atic manner. Once certain methods have shown promise in simulation, they can
be applied to empirical data. The results of these analyses can then be probed for
sensibility — do certain causal relations make sense given the existing literature?
Would experts on particular systems agree with the estimated relationships? If
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the face validity of the results has been sufficiently established, these methods
can be used to make predictions about the outcome of particular interventions,
resulting in the strongest test of their usefulness. Some initial promising work
has been done on cyclic causal models in psychology (e.g., Kossakowski, Oud-
heusden, et al., 2019; Kossakowski et al., 2021), but we believe that there are
many more research avenues and opportunities for the psychological research
community to pursue.

Throughout this chapter we have assumed that psychological systems can be
fruitfully described using the language of dynamical systems theory. However,
some concepts in dynamical systems theory may not map onto psychological sys-
tems in an obvious way. Although the equilibrium of a system of differential
equations can be clearly defined, the notion of a resting state for a psychologi-
cal process is less clear. For example, one’s stress might remain constant within
a week, but may be changing when viewed on a monthly timescale, and so the
notion of an equilibrium and long-term versus short-term effects are inherently
tied up with the timescale under consideration. Consequently, we should remem-
ber to view dynamical systems models, and the ECMs we describe in the current
chapter, as simplifications and abstractions of real world systems. Ultimately,
their practical utility must be assessed by testing whether the causal predictions
they yield are accurate.
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Chapter 9

Anticipating Critical
Transitions in Psychological
Systems using Early Warning

Signals

Abstract

Many real-world systems can exhibit tipping points and multiple stable
states, creating the potential for sudden and difficult to reverse transitions
into a less desirable regime. The theory of dynamical systems points to
the existence of generic early warning signals that may precede these so-
called critical transitions. Recently, psychologists have begun to conceptu-
alize mental disorders such as depression as an alternative stable state, and
suggested that early warning signals based on the phenomenon of critical
slowing down might be useful for predicting transitions into depression
or other psychiatric disorders. Harnessing the potential of early warning
signals requires us to understand their limitations as well as the factors
influencing their performance in practice. In this chapter, we (a) review
limitations of early warning signals based on critical slowing down to bet-
ter understand when they can and cannot occur, and (b) study the condi-
tions under which early warning signals may anticipate critical transitions
in online-monitoring settings by simulating from a bistable dynamical sys-
tem, varying crucial features such as sampling frequency, noise intensity,
and speed of approaching the tipping point. We find that, in sharp con-
trast to their reputation of being generic or model-agnostic, whether early
warning signals occur or not strongly depends on the specifics of the sys-
tem. We also find that they are very sensitive to noise, potentially limit-
ing their utility in practical applications. We discuss the implications of
our findings and provide suggestions and recommendations for future re-
search.

This chapter has been adapted from: Dablander, F., Pichler, A., Cika, A., & Bacilieri, A. (2022).
Anticipating Critical Transitions in Psychological Systems using Early Warning Signals: Theoretical
and Practical Considerations. Psychological Methods.
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9.1 Introduction

Inspired by a dynamical systems perspective, researchers in psychology and psy-
chiatry have begun to conceptualize mental disorders such as depression as an al-
ternative stable state (e.g., Borsboom, 2017; Cramer et al., 2016; Hofmann et al.,
2016; Kalisch et al., 2019), noting that transitions from a “healthy” into an “un-
healthy” stable state may not always be smooth, but can be sudden (e.g., Hayes &
Andrews, 2020; Hayes et al., 2007; Helmich et al., 2020; Hosenfeld et al., 2015;
Nelson et al., 2017). Such sudden transitions are not only notoriously hard to pre-
dict, but can also be hard to reverse. This makes tools that can help us anticipate,
and avert, these so-called critical transitions highly desirable.

There exist indicators — known as early warning signals — that, at least for
some systems, can occur prior to such critical transitions. The most widely used
early warning signals are based on critical slowing down, the phenomenon that
some systems return more slowly to their stable state after an external perturba-
tion (Scheffer et al., 2009; Wissel, 1984). Early warning signals based on critical
slowing down have been observed prior to transitions in a wide range of systems,
for example preceding algal bloom in lakes (Wilkinson et al., 2018), preceding
population extinction (Dai et al., 2013; Dai et al., 2012), preceding transitions
in the climate (Dakos et al., 2008; Lenton, 2011), and preceding the resurgence
of infectious diseases (Harris et al., 2020). This has inspired work in psychology
and psychiatry, where early warning signals have been investigated in the con-
text of major depressive disorder (Kuranova et al., 2020; Schreuder et al., 2020;
van de Leemput et al., 2014; Wichers et al., 2016; Wichers et al., 2020), bipolar
disorder (Bayani et al., 2017; Curtiss et al., 2019), and sudden gains and losses
in psychotherapy (Olthof et al., 2019). Such work is promising and exciting,
and several researchers have suggested that early warning signals could be very
useful for personalized early intervention in the context of psychiatric disorders
(e.g., Hayes et al., 2019; Hofmann et al., 2016; Nelson et al., 2017; Olthof et al.,
2019; van de Leemput et al., 2014; Wichers et al., 2019; Wichers et al., 2020).

While early warning signals based on critical slowing down have been sug-
gested as a tool to anticipate critical transitions in a wide range of systems, over
the last decade or so, their limitations have become clearer. These limitations
help us understand when we can expect early warning signals to occur or not to
occur, and are therefore important for practical applications. After explaining
the theory behind critical slowing down in Section 9.2, we provide an overview
of the limitations of early warning signal based on critical slowing down in Sec-
tion 9.3. Similarly, while early warning signals have been suggested as a tool to
monitor in real-time whether patients are about to transition into an unhealthy
state, the conditions under which such an approach is feasible in practice remain
to be evaluated. In Section 9.4, we use a simulation study to investigate how fac-
tors such as sampling frequency, noise intensity, and the time it takes the system
to approach the tipping point may influence the performance of early warning
signals in such real-time monitoring situations. Our theoretical and practical in-
vestigations have a number of implications for the study and application of early
warning signals in psychology and psychiatry. We discuss these implications and
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provide recommendations for future research in Section 9.5.

9.2 Theory of Critical Slowing Down

In the following two sections, we will explain the theory behind critical slowing
down using a unidimensional and a multidimensional system as an example. For
an extended introduction, we refer the reader to Dablander (2020b).

9.2.1 Unidimensional Systems

We illustrate the theory of critical slowing down using a simple example: mod-
eling the growth of a population of prey under different predation rates (e.g.,
May, 1977). A key feature of this and many other models is that they can ex-
hibit multiple equilibria, corresponding in our case to multiple population sizes
to which the prey can converge over time, given a particular initial population
size and a particular value for the predation rate. Such equilibria can either be
stable or unstable, and we refer to these equilibria also as stable or unstable states,
respectively. If an equilibrium is stable, the system returns to it after small per-
turbations. For example, after adding a few more animals to the population of
prey, others die due to the limited amount of resources, resulting in a population
size that remains constant. If an equilibrium is unstable, on the other hand, the
system does not return to the equilibrium after a small perturbation. For exam-
ple, a prey population of size zero (x = 0) is unstable because adding animals of
the opposite sex leads to offspring and thus a growing population. The central
panel in Figure 9.1 shows stable (solid lines) and unstable (dashed lines) equi-
libria, which we denote as x⋆ , for different predation rates. The grey arrows in
the panel illustrate that stable equilibria are attracting, while unstable equilib-
ria are repelling. In the context of our simple example, low predation rates may
correspond to a small population of predators, while high predation rates may
correspond to a large population of predators. The central panel in Figure 9.1
reflects the intuition that the stable population of prey should be larger when the
predation rate is low compared to when the predation rate is high. For a par-
ticular range of predation rates between these two extremes — indicated by the
grey shaded region — the system exhibits two stable population sizes; depend-
ing on the initial prey population size, the system either converges to one or the
other stable state. A necessary condition for multiple stable states and critical
transitions are strong reinforcing feedback loops (Kéfi et al., 2016). In our exam-
ple, individual prey can help each other fend off predators more effectively after
reaching a certain population size. This leads to stronger population growth,
which in turn boosts their cooperative defense strategy, which leads to stronger
population growth etc. Below this population threshold, which is given by the
size of the unstable equilibrium, the defense strategy seizes to be effective, and
the prey population collapses. Such a positive relationship between population
size and fitness is known as an Allee effect (e.g., Kramer et al., 2009; Stephens &
Sutherland, 1999).
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Figure 9.1: The central panel illustrates the change in stable and hence attracting (solid lines) and
unstable and hence repelling (dashed lines) equilibria as the predation rate changes. The top left
and right panels show the stability landscape of the system for different predation rates, while the
bottom left and right panels show how quickly the system recovers after an intervention that halves
the population size, as well as the autocorrelation of the state variable.

Some systems can abruptly change their stable equilibrium as an underlying
parameter changes. We show this here for our system, which changes its stable
population size as the predation rate changes. The central panel in Figure 9.1
illustrates this: as we move on the x-axis from a small predation rate to a larger
predation rate, we find that around a value of 2.60 — indicated by a black dot
— the stable equilibrium x⋆ = 4.90 vanishes (the solid black line above ends)
and the system changes to its other stable equilibrium x⋆ = 0.44 (indicated by
the black line below). The population of prey is thus driven close to extinction
by this miniscule change in the predation rate. A situation in which a small
change in an underlying parameter can result in a qualitative change in the sta-
bility landscape is known as a bifurcation; our specific case of a stable equilibrium
vanishing is known as a saddle-node bifurcation (Strogatz, 2014). Once the stable
equilibrium vanishes, the system moves towards its new stable equilibrium, as
the grey arrows in Figure 9.3 indicate. This is frequently referred to as a critical
transition (e.g., Scheffer, 2009), and the bifurcation point as a tipping point (e.g.,
Milkoreit et al., 2018; van Nes et al., 2016). How long it takes the system to reach
its other stable equilibrium — and thus how sudden the change appears to us —
depends on the system. For example, after crossing a tipping point a population
of yeast can collapse within days (Dai et al., 2012), while the total melting of the
Greenland ice sheet would take millennia (Robinson et al., 2012). As the panel
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illustrates, however, a defining feature of a critical transition is that it is hard to
reverse: it is not enough to reduce the predation rate slightly; instead, it has to be
reduced to 1.70, at which point another saddle-node bifurcation occurs, leading
to a sudden increase in population size.

Crossing such tipping points can have catastrophic effects in real-world sys-
tems, and indicators that could help us understand whether the system is close
to a tipping point would be of great practical importance. The resilience of a sys-
tem is defined as the magnitude of the perturbation the system can withstand
without tipping into another equilibrium (Holling, 1973; Scheffer et al., 2015).
The top panels in Figure 9.1 contrast a system that is in a stable state with higher
resilience (left) with one that is in a stable state with lower resilience (right) by
means of so-called “ball-in-a-cup” diagrams. Such diagrams visualize the poten-
tial of a system — colloquially its stability landscape — and a ball (e.g., Strogatz,
2014, pp. 30). The ball represents the state of the system, which moves towards
a stable equilibrium with a speed proportional to the local steepness of the land-
scape. The panel on the top left shows that a perturbation would need to be quite
strong to push the high resilient system from its stable state x⋆ = 7.52 to the other
stable state at x⋆ = 0.78. In contrast, the “ball-in-a-cup” diagram on the top right
illustrates that a smaller push is required for the low resilient system to go from
x⋆ = 6.26 to x⋆ = 0.49. In practice, the less resilient system is closer to a tipping
point and may need to be nurtured into a more resilient state. Unless we have a
realistic mathematical model through which we can assess the effect of perturba-
tions of varying strength, using resilience as an indicator of how likely a critical
transition is to occur is difficult. This is because, using our example as illustra-
tion, assessing how many animals we could kill until the population collapses by
actually killing them would defeat the purpose of preventing such a collapse in
the first place.

The stability of a system provides a more practical way to assess whether the
system is close to a tipping point. Stability is defined as the time the system
takes to return to its equilibrium after a small external perturbation (e.g., van
Nes & Scheffer, 2007). From the stability landscapes in Figure 9.1 we see that
the more resilient system would return more quickly to its equilibrium after a
small external perturbation than the less resilient system — this is because of the
steeper slope of the landscape around the stable equilibrium. The bottom panels
in Figure 9.1 illustrate this. They show a simulated time series subject to noise for
a system with higher resilience (left) and lower resilience (right). We intervene
in the system at time point t = 30 and halve the prey population. As can be seen,
the more resilient system recovers swiftly (at about t = 35 the full population
size is established again), while the system with lower resilience takes longer to
recover. The phenomenon that as a system becomes less resilient — that is, as it
comes closer to the tipping point — its return to equilibrium is slower is known
as critical slowing down (Wissel, 1984).

To quantify the resilience of a system using the concept of stability requires
that the system goes out of equilibrium. One way to achieve this is by way of
intervention, yet interventions are not always possible or practical in real-world
systems. Fortunately, real systems are always subject to countless small external
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perturbations. We can use these external perturbations as a way to quantify the
resilience of a system and find signatures of critical slowing down in empirical
time series. The bottom right panels in Figure 9.1 illustrate this as an increase
in autocorrelation for the system with lower resilience: critical slowing down
leads to system states becoming more similar to each other, which is reflected
as increased autocorrelation. Similarly, because the system with lower resilience
returns more slowly to its equilibrium, external perturbations can accumulate
and push the system further away from equilibrium, resulting in an increase in
variance that can be seen in the bottom panels in Figure 9.1 before the interven-
tion takes place. Appendix F.1 gives a rigorous mathematical treatment of critical
slowing down in unidimensional systems.

9.2.2 Multidimensional Systems

In contrast to the example above, most real-world systems consist of multiple
variables. Mental disorders such as depression, for example, are comprised of
various variables related to, among other things, sleep, emotion, and cognition
(e.g., Chevance et al., 2020). The dynamics of emotions are viewed as playing
a central role in the development of psychopathology (e.g., Trull et al., 2015;
Wichers et al., 2015), and we focus on them here. In particular, emotions can
have a positive valence, such as cheerful and content, or a negative valence, such
as anxious and sad, and we might believe that there exists a tipping point in
the mood system such that, when crossed, a person abruptly moves from a sta-
ble positive mood state into a stable negative mood state. To formalize such a
simplified mood system, we use a four-dimensional version of the Generalized
Lotka-Volterra model (e.g., van Nes & Scheffer, 2004) as our toy model:

dxi
dt

= 1 + ri(t)xi +
4∑
j=1

Cijxixj + εi , (9.1)

where we interpret the variables x1 and x2 as cheerful and content, and the vari-
ables x3 and x4 as anxious and sad (see also Haslbeck & Ryan, 2022; van de Leem-
put et al., 2014). Equation (9.1) describes what the rate of change of each variable
xi depends on. εi ∼ N (0,σε) is uncorrelated Gaussian noise, and the constant
term 1 ensures that the variables are positive with high probability.1 The matrix
C specifies the coupling between the variables. We set

C =


−0.2 0.04 −0.2 −0.2
0.04 −0.2 −0.2 −0.2
−0.2 −0.2 −0.2 0.04
−0.2 −0.2 0.04 −0.2

 , (9.2)

which specifies that the positive mood variables x1 and x2 reinforce each other
(C12 = C21 = 0.04) while they suppress the negative mood variables x3 and x4

1The constant term also influences the extent to which the system can exhibit bistability (as high-
lighted as the grey shaded region in Figure 9.2); larger values correspond to smaller sets of r values
for which the system exhibits two stable equilibria.
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(C13 = C14 = C23 = C24 = −0.2), and vice versa. The diagonal of C encodes how
strongly x2

i influences the rate of change of xi . All diagonal values are negative
(C11 = C22 = C33 = C44 = −0.2), implying a self-dampening effect for each mood
variable. The value of ri(t) encodes how strongly xi influences its rate of change.
We set r1 = r2 = 1 so that the self-reinforcing effect of the positive emotions is
the same and constant across time, while we set r(t) ≡ r3(t) = r4(t) to allow the
self-reinforcing effect to change over time for the negative emotions x3 and x4.
A lower value for r(t) implies that external perturbations that increase negative
emotions are absorbed quickly, while a higher value for r(t) implies that such ex-
ternal perturbations have a more durable effect due to the larger self-reinforcing
effect.

Figure 9.2 shows that r is the key parameter influencing which mood states
are stable equilibria. In particular, the left panel shows that, for small values of
r, the system is in a state where positive emotions are high (solid red line) and
negative emotions are low (solid blue line). This makes sense, because for a small
r the self-reinforcing effect of negative emotions is low. As this self-reinforcing
effect becomes stronger, however, the system reaches a tipping point at r = 1.20 —
it abruptly changes into a state in which positive emotions are low and negative
emotions are high. The right panel shows this critical transition: an example
(scaled) time series is simulated from the model where r(t) changes (solid black
line) starting at day 50. On day 70, the system reaches r = 1.20 and abruptly
changes from a dominant positive mood state into a dominant negative mood
state. Similar to the example in Section 9.2.1, this change is again hard to reverse:
it is not enough to reduce r slightly; instead, it has to be reduced to r = 0.90, at
which point another saddle-node bifurcation occurs, leading to a sudden change
from a dominant negative mood state to a dominant positive mood state.

Bifurcation Diagram
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Figure 9.2: Left: The bifurcation diagram shows how the stable states of the system change as a
function of the self-reinforcing effect r of the negative emotions. Right: Time-evolution of r and
scaled time series of the Generalized Lotka-Volterra model given in Equation (9.1) with σε = 4.

As in the unidimensional model described in the previous section, critical
slowing down also occurs in this multidimensional model, as illustrated in Fig-
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ure 9.3. The top panels show time series data from a system with higher re-
silience (left) and the autocorrelation of two of its variables (middle), while the
bottom panels show the same plots for a system with lower resilience, resulting
in higher variance (left) and higher autocorrelation (middle). In addition to these
univariate indicators, a number of multivariate indicators that are sensitive to
critical slowing down have been proposed (e.g., Dakos et al., 2010; Kéfi et al.,
2014). One such multivariate indicator are the cross-correlations between state
variables, which are more pronounced in a system that is close to a tipping point
compared to a system that is far away from the tipping point, as illustrated in the
right panels in Figure 9.3. Appendix F.2 gives a rigorous mathematical treatment
of critical slowing down in multidimensional systems.
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Figure 9.3: Top: Shows simulated time series data from our simplified mood model in a state of higher
resilience (r = 0.50, left), the autocorrelation of two of its state variables (middle), and the cross-
correlation of all its state variables (right). Bottom: Shows this for a system with lower resilience
(r = 1.18). Lower resilience is associated with an increase in variance, autocorrelation, and cross-
correlations.

To sum up, critical slowing down is an extremely powerful idea. It suggests
that, regardless of the underlying dynamics, as long as the system exhibits multi-
ple stable equilibria and critical transitions between them, we may observe signa-
tures of critical slowing down in time series data that occcur prior to such critical
transitions (e.g., Clements & Ozgul, 2018; Scheffer et al., 2012), or allow us to
rank the resilience of systems (e.g., Gijzel et al., 2019; Scheffer et al., 2018). Such
signatures are known as early warning signals, which for the reasons above are
sometimes called “generic” in the sense that all we need is time series data on
which to compute simple statistics such as autocorrelation, variance, or cross-
correlations. Over the last decade or so, however, the generality of early warning
signals based on critical slowing down has been reassessed, and their limitations
have become clearer. These limitations have important implications for whether,
and when, early warning signals can be useful in practice, and we turn to them
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in the next section.

9.3 Limitations of Early Warning Signals based on
Critical Slowing Down

In this section, we discuss limitations of early warning signals based on critical
slowing down. The key observation is that early warning signals can occur in
systems that do not exhibit critical transitions, and that it can fail to occur in
systems that do; Table 9.1 provides an overview. We discuss these two issues in
the next two sections.

EWS without Critical Transitions Critical Transitions without EWS

EWS can occur prior to smooth transitions between sta-
ble states (Drake & Griffen, 2010; Kéfi et al., 2013).

Strong external perturbations can lead to transitions
without EWS (Ditlevsen & Johnsen, 2010; van Nes et
al., 2016).

EWS can occur when there is no transition (e.g., Wagner
& Eisenman, 2015).

EWS may not occur under rate-induced tipping and
when drivers interact (Ashwin et al., 2012; Dai et al.,
2015).

EWS may not occur prior to critical transitions in sys-
tems with non-smooth potentials (Hastings & Wysham,
2010).

Not all variables in a system generally express EWS
equally strongly or at all (Boerlijst et al., 2013; Patter-
son et al., 2021).

EWS may not occur under correlated or extrinsic noise
(Dakos, van Nes, et al., 2012; O’Regan & Burton, 2018;
Qin & Tang, 2018).

Table 9.1: Summarizes results showing that early warning signals (EWS) can occur prior to non-
critical transitions (left) or can fail to occur prior to critical transitions (right).

9.3.1 Early Warning Signals without Critical Transitions

The systems we have studied in Section 9.2 exhibit a saddle-node bifurcation as a
key underlying parameter — often called driver — changes. This type of bifurca-
tion is the most extensively studied case in which critical slowing down precedes
a critical transition (Boettiger et al., 2013; Scheffer et al., 2009). As shown in Fig-
ure 9.3, as the system approaches the saddle-node bifurcation it takes longer to
recover from small perturbations, resulting in critical slowing down which gives
rise to early warning signals in the form of increased autocorrelation, variance,
and cross-correlations. This is in contrast to the state variables, which barely
change as the system approaches the tipping point, as illustrated in Figure 9.2.
Without early warning indicators, it would be difficult to see the critical transi-
tion coming. This makes such indicators potentially very useful in practice, and
they have been suggested as a tool to anticipate, for example, the sudden onset of
depression (e.g., van de Leemput et al., 2014; Wichers et al., 2020).

Critical slowing down is not specific to the saddle-node bifurcation with its
implied critical transition, however. Instead, critical slowing down occurs prior
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to all so-called zero-eigenvalue bifurcations (Kéfi et al., 2013; Strogatz, 2014). The
transcritical bifurcation is one such type of bifurcation: in contrast to the saddle-
node bifurcation, it results in a smooth transition between stable equilibria, yet
shows critical slowing down (Chisholm & Filotas, 2009; Drake & Griffen, 2010;
Kéfi et al., 2013). While exciting recent work tries to identify the type of bifur-
cation (Bury et al., 2020; Bury et al., 2021), increases in commonly used early
warning indicators do not necessarily imply an impending critical transition. In
fact, Kéfi et al. (2013) showed that the system need not even experience a bifur-
cation at all, but that a smooth, nonlinear change in the stable equilibrium due to
a change in an underlying parameter can suffice to elicit critical slowing down.

An increase in early warning indicators such as autocorrelation and variance
can also occur due to a number of other factors. For example, the variance of the
system might simply increase due to stronger noise or an increase in the variance
in key underlying drivers (see for example Boulton et al., 2013). When this hap-
pens, we might be misled into thinking that a critical transition is impending,
when in fact it is not. For this reason, it is advised to assess if multiple indicators,
such as variance and autocorrelation, increase instead of relying on a single indi-
cator (e.g., Ditlevsen & Johnsen, 2010). However, increases in multiple indicators
without critical transitions are still possible, and can thus lead to false alarms
(e.g., Boettiger & Hastings, 2012a; Wagner & Eisenman, 2015).

9.3.2 Critical Transitions without Early Warning Signals

While signaling non-critical transitions or falsely signaling critical transitions
can be problematic, failing to signal critical transitions might be catastrophic. An
obvious case in which a system experiences a critical transition without critical
slowing down is the following: as long as the system exhibits two stable equilib-
ria, there is always the possibility that a strong external perturbation pushes the
system from one stable equilibrium into another, independently of any change
in the system dynamics (Boettiger & Hastings, 2012a; Ditlevsen & Johnsen, 2010;
van Nes et al., 2016). In the context of our mood model, the sudden death of
a close relative may push a person from a positive state into a negative state al-
most immediately and without warning. As shown in Figure 9.2, the closer we
are to the bifurcation point, the smaller such a perturbation — for example cor-
responding to a less severe negative life event in our context — has to be to push
the system into the other stable equilibrium. Since real-world systems are always
subject to external perturbations that may tip the system into an alternative sta-
ble equilibrium at any time, one cannot exactly predict the occurrence of critical
transitions. While this should not come as a surprise, it deserves repetition; it is
the reason why careful authors speak of anticipating instead of predicting critical
transitions (e.g., Scheffer et al., 2012).

There are more subtle cases in which critical transitions can occur without
critical slowing down, however. As explained in Section 9.2, critical slowing
down assumes that the system is in equilibrium, with small noise constantly
perturbing it after which it may recover. Crucially, it assumes that factors in-
fluencing the system change slowly compared to the rate with which the system
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returns to its equilibrium. This means that the system can respond to small ex-
ternal perturbations in time, that is, return (close) to the stable state before the
environment changes — the system “tracks” the continuously changing stable
state (Perryman, 2015). This need not be the case, however. If instead the envi-
ronment changes so rapidly that the system cannot adjust back to the stable state
in time, it can undergo rate-induced tipping (Ashwin et al., 2012; Scheffer et al.,
2008; Siteur et al., 2016; van der Bolt & van Nes, 2021). For example, a criti-
cal factor for the stability of certain systems in future climate may not only be
the magnitude, but also the rate of global warming (e.g., Lohmann & Ditlevsen,
2021a; Luke & Cox, 2011). In the context of our mood example, we may find
that a person stays in a positive mood state as stress increases — while staying
below a critical level — slowly over days. This increase in stress is slow enough
so that the positive emotions can balance out a rise in negative emotions. How-
ever, should stress increase within hours, it may be that positive emotions are
too slow to balance out a rise in negative emotions, and the person transitions
into a negative mood state, even though the stress level always stayed below the
critical level. In this case, it is not the absolute level of stress that is critical, but
rather its rate of change. In contrast to bifurcation-induced critical transitions,
the stability landscape does not change before rate-induced transitions; the con-
cept of resilience as outlined in Section 9.2 may thus be inadequate for systems
where rate-induced transitions are possible (Siteur et al., 2016). As a corollary,
rate-induced transitions therefore need not be anticipated by conventional early
warning signals (Boulton et al. (2013); Ashwin et al. (2012); but see Ritchie and
Sieber (2016); Siteur et al. (2016)).

Another subtlety that has important ramifications for early warning signals
based on critical slowing down concerns the relationship between resilience and
stability. As we have seen in Section 9.2.1, critical slowing down is a result of a
decrease in a system’s stability as it approaches a tipping point. In our example,
the resilience and stability of the system are positively correlated: as stability
decreased with increasing predation rate, so did resilience. While our simple
predator-prey system is subject to only one slowly changing driver — predation
rate — real-world systems are subject to multiple drivers. Driving a yeast pop-
ulation to collapse, Dai et al. (2015) showed that the relation between stability
and resilience can change depending on the driver (see their insightful Figure
4), and demonstrated experimentally that the performance of early warning sig-
nals based on critical slowing down markedly decreases when stability decreases
more slowly relative to resilience. Crucially, they also found that when the sys-
tem is subject to two drivers that change in opposite directions, stability and re-
silience can become negatively correlated: resilience can decrease while stability
actually increases as the tipping point is approached (see Dai et al., 2015, Figure
5). This results in decreasing early warning indicators, and may thus incorrectly
signal that no tipping point lies ahead. In the context of our psychological exam-
ple, stress may increase, moving the system towards the tipping point, but social
support may increase as well, moving the system away from the tipping point,
potentially resulting in a negative correlation between stability and resilience.
This important nuance in the relationship between stability and resilience points
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to the need of understanding the underlying drivers of a system and their inter-
actions.

Early warning signals based on critical slowing down may fail to anticipate
critical transitions also for another reason. Critical slowing down requires that
the potential — frequently called the stability landscape — of a dynamical system
not only changes, but changes smoothly as an underlying driver changes (Hast-
ings & Wysham, 2010). Figure 9.1 shows such stability landscapes for a system
with higher and a system with lower resilience; the assumption of smoothness
means that, as we vary the predation rate, there should not be any “breaks” in the
stability landscape. Yet non-smooth potentials are possible; they occur, for exam-
ple, in chaotic systems, that is, in systems whose time-evolution depends sensi-
tively on initial conditions. Hastings and Wysham (2010) argued that chaotic sys-
tems are only a small subset of systems that have non-smooth potentials. They
illustrated the lack of critical slowing down on three models that likely do not
have smooth potentials, but that undergo critical transitions. They argued that
a large class of real-world systems might have non-smooth potentials, and that
one therefore cannot assume a priori that critical slowing down precedes criti-
cal transitions in real-world systems. Hastings and Wysham (2010) stressed the
importance of building mathematical models of the phenomenon one is inter-
ested in, as this can suggest whether the system can be adequately described by
a model exhibiting a smooth or a non-smooth potential. Titus and Watson (2020)
echoed the call by Hastings and Wysham (2010) for the need of modeling after
showing that the autocorrelation and variance can decrease prior to transitions, a
phenomenon they term critical speeding up.

Even if we assume that potentials are smooth and critical slowing down exists,
not every variable in a multidimensional system might express early warning sig-
nals such as an increase in autocorrelation or variance equally strongly — or at
all. Boerlijst et al. (2013) studied a three-species model with juvenile prey, adult
prey, and a predator that only attacks adult prey. They varied the internal pa-
rameter controlling the predator’s death rate such that the predator population
undergoes a saddle-node bifurcation and becomes extinct. Strikingly, they did
not observe critical slowing down in either the predator or the adult prey popu-
lation. Instead, critical slowing down could only be observed in the juvenile pop-
ulation, which is arguably the most irrelevant variable, since the predator preys
solely on adults.2 Motivated by this finding, Patterson et al. (2021) provided a
rigorous mathematical analysis of the conditions under which early warning sig-
nals are expected to occur. Importantly, they found that the expected strength of
early warning signals decreases with the square of the total number of variables
comprising the system (not all of which are usually observed). These theoretical
insights have important practical implications. Returning to our mood example,
in the real world we might observe early warning signals most strongly in the
variable “cheerful”, but barely or not at all in the other three variables, all four
of which are just a small part of the larger mood system. Without a good under-
standing of the system that can inform which variables one should monitor, early

2We have replicated their results and extended them to multivariate indicators in Appendix F.3.
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warning signals will generally be harder to observe in complex, high-dimensional
systems.

Another important limitation of critical slowing down is that its occurrence
depends on the type of noise. For example, while Boerlijst et al. (2013) observed
critical slowing down in the juvenile prey for uncorrelated Gaussian noise added
to all three populations, critical slowing down is not observed under noise that is
fully correlated. Correlated noise is common in real-world systems, as external
perturbations generally do not affect system components independently. For ex-
ample, suppose it is shown that a model for panic attacks based on a reinforcing
feedback loop between autonomic arousal and perceived threat (Robinaugh et al.,
2019) exhibits critical transitions and critical slowing down. In practice, however,
the system the model is describing is always subject to noise, and because the sys-
tem is much more complicated than the model — for example, the model does
not include all relevant variables — this noise will be correlated. Since correlated
noise can markedly suppress early warning signals, this may have considerable
practical implications.

Early warning signals are usually derived under the assumption of additive
white noise, neglecting the underlying noise mechanism. Taking the noise mech-
anism into account, one can distinguish between extrinsic and intrinsic noise (e.g.
Boettiger, 2018). Extrinsic noise encodes changes in the environment; it is thus
shared by all system components, inducing correlations between them (Qin &
Tang, 2018). In our simple model illustrated in Figure 9.1, extrinsic noise would
correspond to perturbations of the predation rate. Intrinsic noise, on the other
hand, is due to randomness in the system itself, for example due to stochastic
births and deaths in the population (O’Regan & Burton, 2018). Qin and Tang
(2018) found that early warning indicators can fail to anticipate critical transi-
tions under extrinsic noise and can also lead to false alarms; notably, the situa-
tion becomes worse as the size of the system increases (see also Patterson et al.,
2021). O’Regan and Burton (2018) further showed that, while autocorrelation is
robust to different noise forms, the variance is not — it can increase, decrease,
or stay constant before a saddle-node bifurcation, depending on how the system
dynamics interact with the dynamics of the noise (see also Dakos, van Nes, et al.,
2012).

The limitations above strongly put into question the notion that early warn-
ing signals can be used as a generic tool to anticipate critical transitions in a large
class of systems. Instead, we need to build up a sufficient understanding of the
system under study in order to assess whether and under what conditions early
warning signals are likely to anticipate critical transitions — assuming that crit-
ical transitions can in fact occur in the system under study. Yet even if we had
a sufficient theoretical understanding that makes the occurrence of early warn-
ing signals before critical transitions likely, it is currently unclear how well early
warning signals would perform in online monitoring settings in anticipating such
transitions. To assess this, we turn to a simulation study in the next section.
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9.4 Investigating the Performance of Early Warning
Signals

The utility of early warning signals does not only depend on the theoretical con-
siderations outlined in the previous section. After all, detecting a rise in in-
dicators such as autocorrelation or variance is also a statistical challenge. It is
therefore important to understand what factors may influence the performance
of early warning signals in practice. We address this issue by simulating from the
Generalized Lotka-Volterra which we introduced in Section 9.2.2 as a simplified
model for mood. While bistable systems of this type have become popular in
theoretical psychology (e.g., Borsboom, 2017; Cramer et al., 2016; Nelson et al.,
2017), real psychological systems are more complicated and give rise to much
messier data. However, this simplified setup allows us to study the purely statis-
tical challenges of applying early warning signals in practice in a straightforward
manner. Previous simulation studies assumed that the system has transitioned
and that the time point of the transition is known (e.g., Boettiger & Hastings,
2012b; Clements et al., 2015; Peretti & Munch, 2012). This situation is less in-
teresting in practical applications, however, where we wish to assess whether
early warning indicators signal a critical transition before it actually occurs. In
our simulation study, we mimic an online monitoring setting where data comes
in sequentially and early warning indicators are computed with every new data
point. Our goal is to understand the conditions under which such an approach is
feasible in practice.

9.4.1 Simulation Setup

We set up our simulation study to shed light on the following questions. First,
what is the respective influence of increasing noise and decreasing sampling fre-
quency on the performance of early warning signals? Since detecting a rise in
indicators is a statistical problem, increasing noise and decreasing sampling fre-
quency likely have a detrimental effect, but the extent of their respective negative
influence is unclear. Second, how does the extent of baseline data and the length
of the transition period influence the performance of early warning signals? Since
we mimic an online monitoring setting in which we sequentially collect data and
do not assume knowledge about the occurrence of the tipping point, we need to
test a potential rise in indicator against the indicator at baseline. This requires
a good estimate of the indicator both at baseline as well as during the transition
period. We therefore expect that more baseline data as well as a longer transi-
tioning period result in an increased performance of early warning indicators.
Finally, what early warning indicators best anticipate a transition for our system?
While there are a large number of early warning indicators — with more and
more being developed — we assessed the performance of the following widely
used early warning indicators: autocorrelation, variance, skewness, and kurtosis
as univariate indicators (Carpenter & Brock, 2006; Guttal & Jayaprakash, 2008;
Scheffer, 2009); the average absolute value of all cross-correlations (Dakos et al.,
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2010), the largest eigenvalue of the covariance matrix (Chen et al., 2019), spatial
variance, spatial skewness, and spatial kurtosis as multivariate indicators (Guttal
& Jayaprakash, 2009; Kéfi et al., 2014); see Appendix F.4 for mathematical def-
initions. Note that we estimated all univariate indicators on x1, and that using
any other variable does not markedly change the results (a fact that is specific to
our system).

We sampled the system using Euler’s method with a time step of ∆t = 0.01.
Table 9.2 gives an overview of the early warning indicators we used and the pa-
rameters we varied in the simulation. We have categorized the parameters into
uncontrollable parameters that, in real applications, are usually outside of the
researcher’s control and controllable parameters that are more likely to be un-
der the researcher’s control. For example, while the extent of unwanted variation
(i.e., noise) and the time it takes the system to approach the critical transition can
(usually) not be influenced by the researcher, design choices regarding the extent
of the baseline or the sampling frequency as well as statistical choices such as the
rolling window size are more likely to be under the researcher’s control.

Early Warning Indicator Source

Autocorrelation and Variance Scheffer et al. (2009)
Skewness and Kurtosis Guttal and Jayaprakash (2008)
Cross-correlation Dakos et al. (2010)
Dominant eigenvalue of covariance matrix Chen et al. (2019)
Spatial-Variance, Spatial-Kurtosis, Kéfi et al. (2014)
and Spatial-Skewness

Parameter Values

Uncontrollable
Noise intensity σε 4, 6, 8, 10
Transition Period 10, 25, 50 days

Controllable
Sampling Frequency 1x, 5x, 10x per day
Baseline 25, 50, 100 days
Rolling Window Size 10, 25, 50 days

Table 9.2: Shows the early warning indicators we used and the parameters we varied in the simulation
study.

We studied different noise intensities σε ∈ [4,6,8,10], which in practice may
partly arise due to different degrees of measurement error. The extent of the
observed noise depends on σε and ∆t, and so cannot be taken in absolute terms to
reflect some real-world process, but must be interpreted in a relative manner.3 In

3To give more intuition for the noise intensities, note that the empirical standard deviation σx1
of x1 at r = 0.60 corresponding to the levels of σϵ are [0.34,0.51,0.69,0.87]. Transforming these into
signal-to-noise ratios µx1/σx1 — with µx1 being the empirical mean — yields [17.70,11.60,8.70,6.80].
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experience sampling studies common to psychopathology research, the window
within which we can query a person ranges from 8am to 10pm, that is, there are
15 hours within which we can sample the system. We studied the behavior of
early warning indicators under sampling frequencies of every 90, 180, and 900
minutes. These sampling frequencies, which are standard in experience sampling
studies, yielded 10, 5, and 1 observations per day, respectively.

We say that the system is at baseline when r = 0.60, and we varied the length
of the baseline to be 25, 50, or 100 days. We implemented different transition
periods by linearly changing the stress parameter r from r = 0.60 at baseline to
r = 1.20 with varying steepness. We varied this transition period in the simula-
tion to be 10, 25, and 50 days. For a transition period of 10 days and sampling
frequencies of 1, 5, or 10 times per day this resulted in 10, 50, or 100 observa-
tions, respectively; for a transition period of 25 days we would collect 25, 125, or
250 observations; and for a transition period of 50 days this would yield 50, 250,
and 500 observations, respectively. Figure 9.4 illustrates three examples with dif-
ferent sampling frequency and noise intensity. From left to right, the simulated
time series are generated with decreasing noise intensity and decreasing sam-
pling frequency. In the simulation, we studied all possible combinations of all
parameters. Note that with increasing noise, the chances of transitioning before
or after the theoretical bifurcation point at r = 1.20 increase.
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Figure 9.4: Three example settings in our simulation study. The bifurcation parameter r increases
linearly after a baseline period. From left to right, the (scaled) simulated time series are shown under
decreasing noise intensity and decreasing sampling frequency.

While we interpret parameters such as the baseline or the sampling frequency
in terms of days for illustration purposes, there actually is no “correct” timescale
in our model. This is because it does not adequately model a real psychological
system, and so we cannot use the variables to define an appropriate timescale of
the dynamics. For example, if our model were in fact an adequate representa-
tion of the mood system and the variable “anxious” were to change on the level
of hours, then we could use this knowledge to define what extent of simulated
data would correspond to one day. Since this is not the case, however, it is not
possible to interpret our results as pertaining to a particular baseline or sampling
frequency; instead, the results have to be interpreted relative to each other.
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9.4.2 Statistical Analysis

We used the simplest and most commonly employed method to test for early
warning signals, which is based on rolling windows. In particular, for a given
rolling window size and for each new data point, we calculated the early warning
indicator and signaled a transition when its size exceeds the size of the indica-
tor at baseline for a particular decision threshold. We studied different thresh-
olds, saying that an early warning indicator signaled a critical transition when
its current value is σ ∈ [0.25,0.50, . . . ,5.75,6] standard deviations above the early
warning indicator value at baseline. This allowed us to draw receiver operating
characteristic (ROC) curves, illustrating how the true positive and false positive
rate of early warning indicators changed as we changed the σ -threshold. We var-
ied the rolling window sizes to be 10, 25, or 50 days, but never more than half
the baseline. The rolling window size is an important parameter in the statistical
analysis; small window sizes lead to noisier estimates, while large window sizes
lead to a reduced sensitivity to detect changes in the indicator.

We analyzed the statistical properties of early warning signals by studying
500 critical transitions from a positive to a negative mood state and 500 cases for
which no transition occurs for each parameter combination. As can be seen in
Figure 9.4, the system does not always transition exactly at the bifurcation point
(r = 1.20) due to noise. Therefore, we used a change-point method on the whole
time series to assess the exact time at which the system transitioned (Killick &
Eckley, 2014); it is this actual transition that we wish to anticipate, not the noise-
free theoretical one. We provide two analyses. First, we used ROC curves to
illustrate how the true positive and false positive rate of early warning indicators
changed for different conditions as we varied the decision threshold. We refer to
the situation where an early warning signal indicated a transition when in fact the
system did not transition at any point in time as a false positive. Conversely, we
refer to the situation where an early warning signal was followed by a transition
as a true positive. Second, in an online monitoring setting it is also important to
know how much in advance early warning indicators would signal an impending
critical transition. To assess this, we computed for all settings how far in advance
an actual transition was signaled.

9.4.3 Simulation Results

We first give an overall picture of how the performance of early warning indica-
tors varied as a function of the sampling frequency, transition period, and noise
intensity. To do so, we combined two univariate and two multivariate indicators
into a single indicator. We followed the methodology proposed by Drake and
Griffen (2010) for combining indicators and created a new early warning indica-
tor by summing the z-values of the autocorrelation, variance, cross-correlation,
and the dominant eigenvalue of the covariance matrix. Figure 9.5 shows the ROC
curves associated with the combined indicator as a function of the theoretical
transitioning period — that is, the time between r = 0.60 and r = 1.20 — the
noise intensity σε, and the sampling frequency. An ROC curve summarizes the
performance of an indicator for various decision thresholds. The points in the
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ROC curves shown in Figure 9.5 denote different σ -thresholds; for each such
curve, the leftmost point means that we took an increase of a standard deviation
of σ = 6 in the combined indicator compared to baseline as a signal of a transi-
tion; the rightmost point denotes a σ = 0.25 threshold. The larger the threshold,
the more hesitant one is to signal a transition. This results in a trade-off between
the false positives rate (shown on the x-axis) and the true positive rate (shown on
the y-axis), such that larger σ -thresholds result in fewer false positives but also
fewer true positives. The black points indicate the frequently used 2σ -threshold
(e.g., Clements et al., 2019; Drake & Griffen, 2010). All results in Figure 9.5 are
with respect to a 100 day baseline and a 50 day rolling window.
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Figure 9.5: Shows the ROC curves for the combined indicator as a function of the theoretical duration
of the transitioning period and σε ∈ [4,6,8]. Black dots indicate the 2σ -threshold. All results are with
respect to a 50 day rolling window and a 100 day baseline.

As Figure 9.5 shows, an increase in noise intensity σε resulted in a substan-
tially reduced performance of the combined indicator, regardless of the length
of the transitioning period. A decrease in the transitioning period also had a
detrimental effect on performance, but this depended on the extent of the noise:
for σε = 4, there was barely a difference in performance between a transition-
ing period of 50 and 25 days. However, a shorter transitioning period implied
a decreased performance as the noise increased. This is because a shorter tran-
sitioning period, implying a steeper slope from baseline to the tipping point, is
associated with fewer observations compared to a longer transition period; thus,
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increased noise can have a more detrimental effect. Interestingly, halving the
sampling frequency from 10 times per day to 5 times per day barely reduced per-
formance, while sampling only once per day did so considerably. This suggests
that, in practical applications where system-specific features such as the extent
of noise and the transition period are fixed, reducing the sampling frequency up
to a point may decrease performance only marginally, but that after this point is
reached performance may drop substantially.
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Figure 9.6: Shows Area under the Curve (AUC) of selected early warning indicators across sampling
frequencies (top panels), transitioning periods (middle panels), and baselines (bottom panels). Re-
sults are averaged across simulation runs and parameters not depicted in the particular panels, with
error bars denoting one standard deviation across these runs. Grey dotted lines indicate chance per-
formance. CovEigen uses the dominant eigenvalue of the covariance matrix as early warning signal.

A widely used performance metric is the Area Under the Curve (AUC): an AUC
of 0.50 implies chance performance (indicated by the grey diagonal lines in Fig-
ure 9.5), while an AUC of 1 implies perfect detection capabilities. To understand
how various early warning signals performed under a range of settings, Figure
9.6 shows the average AUC for selected early warning indicators for different
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sampling frequencies (top panels), transitioning periods (middle panels), and
baselines (bottom panels) averaged across combinations of all other parameter
settings; error bars denote one standard deviation across these configurations,
and the grey dotted lines indicate chance performance.4 The dominant eigen-
value of the covariance matrix (CovEigen) performed best, closely followed by
the combined indicator, the variance, and the cross-correlation, with the autocor-
relation trailing. This ordering in indicator performance holds across all settings;
see Appendix F.5 for results concerning all other early warning indicators.

The top panels in Figure 9.6 show that as the sampling frequency decreased,
the performance of all early warning indicators decreased. This is also what we
observed in Figure 9.5, and it makes sense: fixing the values of other parame-
ters such as the noise intensity and the transition period, a reduced sampling
frequency implies fewer observations and hence a more detrimental impact of
noise, thereby reducing performance. Our simulation study mimics real-world
settings where certain parameters (e.g., noise intensity, transition period) are not
under the control of the researcher, and in such settings it is not a reduced sam-
pling frequency per se that leads to worse performance, but the effects a reduced
sampling frequency has on the quality of the gathered data. The autocorrelation
is the indicator that was least robust to a decrease in sampling frequency, hover-
ing close to chance performance for all levels of noise when sampling only once
per day. The middle panels show that, as the system approached the bifurcation
point more quickly, the performance of all early warning indicators decreased as
the noise became more pronounced, mirroring the results shown in Figure 9.5.
The bottom panels show that a decrease in baseline resulted in a decreased per-
formance of all early warning indicators.

The most salient result of this analysis is that all early warning indicators
suffered considerably from increased noise. This effect seems to be nonlinear,
with a substantial drop in performance when increasing the noise level from σε =
4 to σε = 6, and less pronounced decreases in performance with further increases
in noise. From Figures 9.2 and 9.4 we see that the extent of the noise did not
have a drastic influence on the variability of the state variables; at least not to
the extent that one can easily intuit that early warning indicators would perform
excellently at σε = 4, but would basically be useless at σε = 10. Glancing at the
variability of the system under σε = 10, one may argue that this still represents
an ideal case when compared to real-world settings, potentially undermining the
usefulness of early warning indicators to anticipate critical transitions in noisy
online monitoring settings.

In the analysis above, we have counted as a success whenever an early warn-
ing indicator correctly signaled a transition. This neglected how far in advance a
transition is anticipated; it clearly matters in practice whether a transition occurs,
say, 20 days after an early warning signal or only 2 days after. We now focus on
the simulation runs in which an early warning signal occurred prior to the critical
transition, that is, we focus on true positives. Figure 9.7 illustrates how far in ad-
vance early warning indicators signaled a critical transition using a 2σ -threshold,

4Note that because our ROC curves did not touch the (0,0) and (1,1) coordinates, we linearly
interpolated by adding them before we calculated the AUC.
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Figure 9.7: Shows when early warning indicators first signaled a transition using a 2σ -threshold, a 50
day rolling window, a 100 day baseline, a theoretical transition period of 50 days, and noise intensity
σε = 6 for different sampling frequencies. CovEigen uses the dominant eigenvalue of the covariance
matrix as early warning signal.

a 50 day rolling window, a 100 days baseline, a theoretical transitioning period
of 50 days, and a noise intensity of σε = 6. We see that the early warning indi-
cators signaled a transition far in advance of the actual tipping point, and that
this pattern was fairly consistent across indicators and sampling frequencies. As
the true positive rate decreases with a decrease in the sampling frequency, the
number of data points in Figure 9.7 decreases from the left to the right panel.
This is especially the case for the autocorrelation, which showed the largest de-
crease in the number of true positives and was most likely to signal the transition
only shortly before it actually occurred for the lowest sampling frequency. This
pattern is consistent with Figure 9.6, where the performance of the autocorrela-
tion decreased most strongly as sampling frequency was reduced. Note that the
early warning indicators sometimes signaled a transition further ahead (e.g., 60
days) than the theoretical transition period (here, 50 days). As discussed in Sec-
tion 10.3.2, noise can make the system transition after (or before) the theoretical
tipping point, which — combined with an indicator signaling a transition early
— explains the occasionally large advance in anticipation.

While Figure 9.7 illustrates one particular setting, Table 9.3 shows how much
earlier the combined indicator signaled a transition across all noise intensities,
theoretical transitioning periods, and sampling frequencies for a 2σ -threshold.
For example, for a theoretical transition period of 50 days, sampling ten times
per day, and noise intensity σε = 4, the combined indicator signaled a transition
about 31.47 days in advance, on average, using a 2σ -threshold. Of course, how
far in advance the indicator suggests a transition depends on the decision thresh-
old one uses. For a sufficiently large threshold, more data is needed and early
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warning signals will indicate a transition closer to when it actually occurs — if at
all, since a larger threshold also results in more actual transitions being missed.
Here, we focus on the frequently suggested and generally well-performing 2σ -
threshold. The key observation is that as the noise increased, the indicator sig-
naling a transition occurred later and later. This pattern holds for all sampling
frequencies and transitioning periods, and it makes sense: reduced noise leads
to increased statistical power to detect a change in the early warning indicator
compared to baseline.

Sampling 10x Day Sampling 5x Day Sampling 1x Day

Transition Period 10 25 50 10 25 50 10 25 50

σε = 4 8.77 17.09 31.47 8.91 17.3 31.81 9.93 18.8 31.7
(3.81) (8.48) (16.12) (3.7) (8.7) (16.39) (4.01) (9.27) (18.23)

σε = 6 8.36 16.29 27.89 8.48 16.17 28.84 8.69 14.71 26.63
(4.32) (8.76) (16.26) (4.26) (8.91) (16.04) (4.61) (9.81) (17.57)

σε = 8 6.97 14.19 24.61 7.06 14.57 24.55 6.44 13.08 21.19
(4.96) (8.84) (15.59) (4.91) (8.78) (15.7) (4.65) (9.21) (16.27)

σε = 10 6.09 11.51 21.11 6.03 11.67 20.96 5.24 10.46 18.92
(4.43) (8.19) (14.53) (4.54) (8.11) (14.69) (4.2) (7.61) (15.04)

Table 9.3: Shows the average difference in days between the actual transition and when the com-
bined indicator first signaled a transition using a 2σ -threshold across different noise levels, sampling
frequencies, and theoretical transition periods. The average is taken across simulation runs, base-
lines, and rolling window sizes; the standard deviation across these configurations is shown below in
parenthesis.

9.4.4 Simulation Discussion

To our knowledge, ours is the first simulation study that explicitly studied how
well early warning indicators perform when used in an online monitoring set-
ting, rather than in settings where the occurrence of the tipping point is known.
Using an ecological model and assuming knowledge of the tipping point, Peretti
and Munch (2012) also found that the performance of early warning indicators
to anticipate critical transitions was substantially reduced under increased noise.
Furthermore, they found that a reduction in sampling frequency had a detrimen-
tal effect on the performance, and that the performance of the autocorrelation
was most strongly affected by a reduction in sampling frequency, which is sub-
stantiated by our findings. In a similar spirit, Clements et al. (2015) simulated
from the logistic equation with grazing in an ecology context and studied how a
reduction in sampling frequency as well as spatial subsampling of the population
impacted the performance of early warning indicators, assuming knowledge of
the tipping point. They found that a decrease in sampling frequency had a more
detrimental effect than spatial subsampling. An encouraging result is reported
by Brett et al. (2018), who showed that several early warning indicators were
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robust to reporting errors and aggregation in anticipating epidemic transitions;
future work may wish to assess the robustness of early warning signals to errors
that are more specific to psychology.

In our simulations, the number of measurements taken until the system
reached the bifurcation point r = 1.20 and the rate with which r changed — the
forcing rate — were not independent. For example, a transition period of 10 days
with a sampling frequency of 10 samples per day resulted in 100 observations
from the initial change in r to r = 1.20, while a transition period of 25 days with
the same sampling frequency resulted in 250 samples. This implies that the rate
of change in r was smaller in the latter case than in the former. In real-world
settings where we wish to anticipate future transitions, these two factors — the
forcing rate and the time it takes the system to reach the tipping point — cannot
be disentangled, and so we have not done so here. In theory, one could disen-
tangle them by subsampling the longer time series to have the same length as
the shorter time series. Clements and Ozgul (2016) studied how the forcing rate
affects detectability of early warning signals in simple one-dimensional models.
They found that, fixing the length of the time series, a higher forcing rate led
to stronger signals in most of the indicators they considered. When keeping the
time series of the smaller forcing rate at their original, longer length, indicators
performed better due to the increased sample size compared to higher forcing
rates, which is what we have observed as well. We assumed a linear increase
in the bifurcation parameter, and while we expect that our results are robust to
different change processes, future work may wish to assess this in more detail.

A principal limitation of our results is that the underlying Generalized Lotka-
Volterra model is not an adequate description of the mood system. Therefore, it
is not possible to translate our findings as speaking directly to the performance
of early warning signals in anticipating critical transitions in the mood system.
Instead, our investigation may be interpreted in two ways.

First, our simulation study illustrates how one can investigate the perfor-
mance of early warning signals to anticipate critical transitions when a model
is available. If the model one simulates from is a sensible representation of a psy-
chological system, using ROC curves to quantify the performance of various early
warning indicators under different noise intensities, sampling frequencies, base-
line periods, and transition periods could then directly inform empirical appli-
cations. A ROC curve allows one to see how different decision thresholds balance
the true positive and false positive rates. In our investigation, we have focused on
the widely used 2σ -threshold, which generally provides a good balance between
true positives and false positives. When studying a real psychological system —
and if one has a particular intervention in mind — one may instead choose a de-
cision threshold that allows more false positives in order to increase the number
of true positive. Lastly, while some of our conclusions must be interpreted with
caution as being potentially specific to the Lotka-Volterra model — for example,
the finding that skewness and spatial variance performed poorly (see Appendix
F.5) — others, such as the fact that performance decreased with increasing noise
or with decreasing sampling frequency, likely hold for a large class of real psy-
chological systems.
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The notion of critical transitions between “healthy” and “unhealthy” stable
states has played an important role in theoretical psychology (e.g., Borsboom,
2017; Cramer et al., 2016), and a second interpretation of our results understands
the Lotka-Volterra model in this way: as an ideal dynamical system that shows
critical transitions between two stable states (see also Haslbeck & Ryan, 2022;
van de Leemput et al., 2014). In contrast to this ideal system, real psychological
systems likely show complications that suppress the occurrence of early warning
signals, as discussed in Section 9.3. For example, the exact components of real
psychological systems and how to measure them are generally unknown; it is
unclear which components would actually show critical slowing down, if at all;
and real psychological systems may be subject to correlated noise, which can
suppress early warning indicators. In this interpretation, our finding that early
warning indicators are very sensitive to noise in such an ideal system puts into
question their potential usefulness in practice. While such a strong inference
does not strictly follow — the class of real psychological systems is likely large,
and we might find cases where early warning signals perform better than in the
model we studied here — we do believe that our results invite a critical discussion
on how to move the study of early warning signals forward. We turn to such a
discussion in the next section.

9.5 A Way Forward for Early Warning Signals

Applying early warning signals successfully requires addressing a number of the-
oretical and practical considerations. In this section, guided by Figure 9.8, we
review these considerations and provide recommendations and suggestions for
future research. Several of the points we touch on require dedicated research
programs themselves, and our goal here is not to address them in full; instead,
we aim to point out the challenges and choices researchers face when applying
early warning signals to anticipate critical transitions in practice.

Design Data Pre-processing Statistical Modeling
Measurement

Sampling Frequency
Adequate Baseline

Interventions
Filtering

Detrending
Transformations

Choice of Indicator
Statistical Inference
Sensitivity Analyses

Receiver Operating Characteristic Curves

Target of Interventions
Timing of Interventions
Cost-Benefit Analysis

Theory
Multiple Stable States

Critical Transitions
System Components

Figure 9.8: Illustrates the challenges and choices that require careful thought when applying early
warning signals in practice.

Theory. In sharp contrast to their reputation of being generic or model-
agnostic, we have seen that the occurrence of early warning signals depends
on the specifics of the system under study; there are systems that show criti-
cal slowing down even though they do not exhibit critical transitions (Kéfi et
al., 2013; Wagner & Eisenman, 2015), and there are (a potentially large class of)
systems which show critical transitions but no critical slowing down (Hastings
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& Wysham, 2010). Even if the target system falls into the class of systems that
show critical slowing down before critical transitions, early warning signals may
only be observable in a small number of variables of the system (Boerlijst et al.,
2013; Patterson et al., 2021). While recent work tries to find the system compo-
nents that most strongly express critical slowing down (Dakos, 2018; Weinans
et al., 2019), purely statistical work will not put early warning signals on a solid
footing.

Instead, we need to build a basic understanding of the system under study.
Does the system actually exhibit abrupt transitions between stable states, or are
they smooth? In case of the latter, early warning signals, even if they occur,
may not add much predictive utility above other indicators such as the mean.
Understanding the types of transitions requires more descriptive research (e.g.,
Helmich et al., 2020; Hosenfeld et al., 2015; Olthof et al., 2020), an important
first step in theory construction (Borsboom et al., 2021a). Yet such descriptive
research should not only look at a system’s state variables, but relate changes in
these to underlying drivers (e.g., Bestelmeyer et al., 2011). In the context of our
mood example, this would require measuring the underlying variable “stress”
that drives critical transitions in the mood variables, rather than measuring only
the latter. Is the relationship between drivers and state variables linear or nonlin-
ear? Early warning signals of critical transitions are intricately linked to a nonlin-
ear relationship — otherwise small changes in a driver would not be able to lead
to large changes in the state variables — and studies that establish a nonlinear re-
lationship are indeed much more likely to find evidence of early warning signals
(Litzow & Hunsicker, 2016). A necessary condition for a nonlinear relationship
that gives rise to multiple stable states and critical transitions is the occurrence
of (strong) reinforcing feedback loops (Kéfi et al., 2016; Meadows, 2008). Theo-
retically mapping the reinforcing feedback loops that may occur in a particular
psychological system is therefore an important endeavor. While empirically es-
tablishing a nonlinear relationship may turn out to be difficult (e.g., Capon et al.,
2015; Dudney & Suding, 2020; Hillebrand et al., 2020; Petraitis, 2013), it would
constitute a crucial step forward. Another key question concerns what compo-
nents constitute the system. Following Borsboom (2017), mental disorders such
as major depression are widely viewed not as a latent common cause, but in-
stead arise out of a network of mutually enforcing components; what are these
components exactly? Formal models aid in answering these questions by forcing
researchers to be explicit in their assumptions about the system (e.g., Robinaugh
et al., 2021).

An instructive example of the power of formal modeling for early warn-
ing signals comes from epidemiology. O’Regan and Drake (2013) showed that
early warning indicators were highly predictive of disease elimination by in-
creased vaccination uptake in the basic Susceptible-Infectious-Susceptible (SIS)
and Susceptible-Infectious-Removed (SIR) compartmental models, but not when
the disease reemerged as vaccination uptake decreased.5 Moreover, while the au-

5SIS and SIR models segment the population into susceptible (S), infectious (I), and — in the SIR
model, which assumes lifelong immunity — due to recovery or death removed (R) groups through
which an infectious disease can spread (see e.g., Keeling & Rohani, 2011).
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tocorrelation increased as the disease approached elimination for both models,
the variance decreased for the SIR model, which models diseases with life-long
immunity. Along similar lines, O’Regan et al. (2016) studied the elimination of
vector-borne diseases such as malaria through gradually deployed control mea-
sures. They showed that in theory, critical slowing down is expected to occur.
In particular, they found that the autocorrelation and variance increased when
eliminating malaria through a reduction in the biting rate of the mosquitoes or
their population size. However, the autocorrelation did not anticipate elimina-
tion through a reduction of the human infectious period or a reduction of the
per-capita mosquito mortality rate, while a decrease in variance anticipated elim-
ination in both cases. In a similarly impressive modeling feat, O’Dea et al. (2018)
showed that, in a SIR model, the autocorrelation of the number of infected pro-
vided a better estimate of the distance to the epidemic threshold than the auto-
correlation of the number of susceptibles. In recent work combining empirical
analysis and theoretical modeling, Dablander, Heesterbeek, et al. (2022) found
that early warning indicators tended to decrease rather than increase prior to the
second COVID-19 wave. This is because the underlying driver did not change
slowly compared to the characteristic timescale of the system (a key assumption
of critical slowing down), obscuring early warning indicators. All these theoret-
ical insights guide what one may expect in practical applications; they can help
us understand why we see, or not see, certain patterns in data. Another example
comes from epilepsy research, where models suggested that the change in brain
state from normal to seizure can be described as a bifurcation; empirical evidence
of critical slowing down broadly supports the use of early warning signals as a
means to anticipate seizures (Maturana et al., 2020).

There is little doubt that psychology in general and psychopathology in par-
ticular are far removed from the deep understanding epidemiologists have about
the mechanics of infectious disease transmission. But this is no reason to despair,
with recent modeling efforts in psychopathology paving the way for a future rich
in formal modeling (e.g., Bayani et al., 2017; Burger et al., 2020; Cramer et al.,
2016; Duncan et al., 2019; Kossakowski, Gordijn, et al., 2019; Robinaugh et al.,
2019; Schiepek et al., 2017). An approach that lies between purely statistical
and sophisticated theoretical modeling work is to tailor relatively simple dynam-
ical system models to the specific phenomenon under study. If one wants to
assess whether the target system exhibits bistability, critical transitions, and crit-
ical slowing down, then a simple model which allows for these properties is the
cusp-catastrophe model (e.g., Zahler & Sussmann, 1977; Zeeman, 1976), which
has been fruitfully applied, for example, to the study of attitudes (e.g., van der
Maas et al., 2020; van der Maas et al., 2003). In addition to the relative ease with
which it can be tested on data (Grasman et al., 2009), the cusp-catastrophe model
requires the specification of two underlying drivers, thus moving away from sim-
ple statistical models towards incorporating and subsequently testing theoretical
assumptions.

Design. Once a basic theoretical understanding of the system has been estab-
lished, a key question is how to design studies to investigate potential transi-
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tions of the system empirically. The most promising empirical application of
early warning signals is in online monitoring settings, which come with unique
challenges. To shed light on these challenges, we simulated data from a four-
dimensional Generalized Lotka-Volterra model, mimicking what using early
warning indicators as tools for personalized interventions requires: a way to as-
sess, in an online fashion, whether a person is likely to rapidly transition into an
undesired stable state. By sequentially simulating from the model, and at each
time point assessing whether the system is likely to transition, we have mirrored
this situation in silico. We have found that univariate early warning indicators
such as autocorrelation, variance as well as multivariate indicators such as the
cross-correlation and the dominant eigenvalue of the covariance matrix perform
exceptionally well under low-noise settings. Yet by increasing the noise — to set-
tings that may still be smaller than what we observe in real psychological systems
— their predictive performance diminished rapidly. For practical applications,
this implies that researchers should do their best to reduce noise. Since mea-
surement error can add to noise, psychometric techniques such as latent variable
modeling that reduce measurement error may be a fruitful avenue (Bollen, 1989),
as are models for transitions that explicitly take measurement error into account
(see e.g., Hefley et al., 2013).

Our simulation results also illustrate other important factors for the design of
empirical studies of early warning signals. While we found that as the sampling
frequency decreased, the performance of all early warning indicators decreased,
this decrease was nonlinear: performance barely dropped when going from sam-
pling ten times a day to five times a day, but then dropped substantially when
sampling only once a day.6 Collecting data too frequently is an unnecessary bur-
den on the participant and is likely to reduce compliance, and so an understand-
ing of the timescale of the system is important for the design of empirical studies.
For example, if changes happen on the level of weeks, it may be unnecessary to
collect data on a daily level. Yet if changes happen on the level of days, collect-
ing data only weekly will be inadequate. The required sampling frequency is
crucially dependent on the time it takes the system to reach the tipping point.
As we have seen in our simulation results, as the transition period decreased —
that is, as resilience was eroded more quickly — detecting early warning signals
became more difficult. Understanding the way and speed with which resilience
is eroded in, for example, different psychiatric disorders therefore has implica-
tions for their empirical study. Similarly, online monitoring requires one to test
whether the current early warning indicator has increased compared to a baseline
where no or little change in the relevant underlying parameters occurs. As illus-
trated in our simulation results, the extent of the baseline influences the perfor-
mance of early warning signals; understanding when the resilience of the system
is likely being eroded and when it is not is therefore important in practice.

6We want to stress again that it is not a reduction in sampling frequency by itself that reduces
performance; instead, fixing parameters that are generally not under the control of the researcher
(such as noise intensity and the transition period), a reduction in sampling frequency results in fewer
observations, a more detrimental impact of noise, a less fine-grained picture of the change process,
thereby reducing performance.
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One core concern that we did not illustrate with our simulation study is mea-
surement: how can we best measure the variables that constitute the system
components in practice? In our simulation study, we have assumed a one-to-
one mapping between psychological processes (e.g., the mood state “cheerful”)
and the observed variables. This is likely not the case in practice; for example,
one might observe sudden transitions between positive and negative states when
they are assessed momentarily, but smooth transitions when they are assessed
retrospectively due to some kind of averaging process that is happening in ret-
rospective assessment. This may have implications for the occurrence of early
warning signals, and further stresses the interplay between theorizing and the
design of empirical studies (see also Haslbeck et al., 2021).

Data pre-processing. In our simulation setup, the only system-external factor
influencing the generation of the data was uncorrelated Gaussian noise, which
resulted in data that is in some sense “ideal”. Real-world data, on the other hand,
is much messier. There may be nonstationarities in the mean or seasonal trends
that impose a strong correlational structure on the data, and these can lead to
false alarms or missed transitions. Data pre-processing steps, such as detrend-
ing to remove nonstationarities in the mean, and filtering to remove potential
seasonalities, are important aspects in the study of early warning signals (Dakos,
Carpenter, et al., 2012; Jäger & Füllsack, 2019; Lenton et al., 2012). These come
in many variants, however, and therefore either afford a theoretically motivated
choice or — more likely — a thorough sensitivity analysis. The majority of studies
investigating early warning signals in fields outside of psychology provide such
a sensitivity analysis by varying, for example, the bandwidth of a Gaussian filter
and reporting for which settings a transition is indicated. This is currently not
being considered in the psychology literature, and we suggest that researchers
routinely employ such sensitivity analyses to avoid drawing potentially spurious
conclusions. In online monitoring settings, such sensitivity analyses would re-
sult in a distribution over early warning indicators, requiring the definition of
thresholds beyond which one would signal a transition in practice.

Statistical modeling. Once data has been collected and pre-processed, the
question turns to statistical modeling. First, what early warning indicators
should we employ? The list of suggested indicators is large, ranging from simple
univariate indicators such as autocorrelation, variance, kurtosis, and skewness
(Carpenter & Brock, 2006; Guttal & Jayaprakash, 2008; Scheffer et al., 2009) to
multivariate indicators such as spatial variance and cross-correlation (e.g., Dakos
et al., 2010; Kéfi et al., 2014; Weinans et al., 2021). These can be implemented in
a nonparametric way using rolling windows, or in the form of parametric time-
varying models (Dakos, Carpenter, et al., 2012). In our simulation study, we have
focused on the nonparametric approach due to its ubiquity and ease of use —
virtually any summary statistic can be computed by means of rolling windows,
while implementing and estimating them in parametric models can be challeng-
ing. The size of the rolling window is an important parameter: small window
sizes lead to noisier estimates, while large window sizes lead to a reduced sen-
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sitivity to detect changes in the indicator. Understanding the extent to which a
difference in rolling window sizes influences early warning signals is therefore
prudent. While such sensitivity analyses are widespread in the study of early
warning signals in fields outside of psychology, they are absent in psychology
itself. Thus, to avoid drawing potentially spurious conclusions, we not only rec-
ommend doing sensitivity analyses in the pre-processing of data, but also in the
statistical analysis when relying on rolling windows. Similarly, because single
indicators are more prone to false alarms (e.g., Ditlevsen & Johnsen, 2010; Wag-
ner & Eisenman, 2015), we recommend combining several indicators using the
methodology we outlined in our simulation study.

Other statistical modeling approaches incorporate assumptions into models
and then select between the models. For example, Boettiger and Hastings (2012b)
suggested comparing two models, one of which assumes that the system un-
dergoes a saddle-node bifurcation and another one that does not, while Bury
et al. (2021) used deep learning to train a classifier to distinguish between three
types of bifurcations and a system that undergoes no transition, finding that their
method strongly outperformed traditional univariate indicators. Lade and Gross
(2012) outlined an approach which builds assumptions about the dynamics of the
system into the model, finding that incorporating such information can lead to
improved performance. This approach moves away from the generic aspect of in-
dicators towards incorporating features that are specific to the particular system
under study. The call to resist the lure of elusive “generic” early warning signals
is not new in ecology (Boettiger & Hastings, 2013), but has become stronger as
their limitations have become more apparent (Clements & Ozgul, 2018). We be-
lieve that resisting this lure is important also in a psychological context, and that
there are exciting avenues for future research that incorporates system-specific
information in order to better anticipate transitions in psychological systems.

Lastly, if a model of a target system — even if simplified — is available, re-
searchers should assess the performance of their statistical method in simulation
by using, as we have illustrated, ROC curves to understand the true positive and
false positive rate of the method for various decision thresholds (see also for ex-
ample Clements et al., 2019).

Interventions. Ultimately, the potential of early warning signals lies not only
in anticipating critical transitions, but also in allowing us to intervene in time
to avoid such transitions. Several researchers have suggested that early warning
signals could be very useful for personalized early intervention in the context of,
for example, psychotherapy and psychiatric disorders (e.g., Hayes et al., 2015;
Hofmann et al., 2016; Nelson et al., 2017; Olthof et al., 2019; Schiepek et al.,
2011; Wichers et al., 2019; Wichers et al., 2020). A key issue is how exactly
we would go about intervening in the system, and what the respective costs and
benefits are — these are needed for a decision-theoretic analysis that goes beyond
mere statistical inference.

Another key issue is whether we can actually intervene in time to avert a crit-
ical transition. While we did not study interventions in our simulation study
directly, our results still offer some insight. In particular, whether we can inter-
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vene in time to avert a transition depends on how far in advance early warning
indicators signal a transition. We have seen that early warning indicators can
signal a transition far in advance of the actual transition if noise is small. Under
more realistic, larger noise settings early warning signals occur closer to the ac-
tual transition. Suppose one wishes to use early warning signals to anticipate the
onset of depression, and suppose one observes a significant increase in indica-
tors; how far is the transition away? How much time do we have to intervene and
avoid a transition? Since this depends strongly on the quality of the data and on
the speed with which the system approaches the tipping point, relative changes
in indicators cannot provide an answer. Instead, absolute levels of early warn-
ing indicators may be used to estimate the distance to the tipping point (O’Dea
et al., 2018; Wissel, 1984). However, these absolute levels will depend on the
system under study as well as on specifics of the data. The extent of the auto-
correlation, for example, reflects the ratio of the timescale of the system to the
sampling frequency. To illustrate, suppose the system changes slowly, say on the
level of weeks. If one samples it many times a day, then the measurements will
exhibit a high autocorrelation. While the autocorrelation technically approaches
one at the tipping point (more specifically, at the zero-eigenvalue bifurcation),
this is the case only for unidimensional systems. For coupled multidimensional
systems — and thus, all systems of real-world interest — the level of the autocor-
relation of different system components at the tipping point is system-dependent,
and so using absolute levels to assess the distance to the tipping point requires
sophisticated understanding (e.g., O’Dea et al., 2018). Biggs et al. (2009) found
that relative changes in autocorrelation and variance can occur too late to avert
a transition in a fisheries model, but that absolute levels in system-specific indi-
cators would enable one to act in time. Thus, similar to what we have seen in
the context of anticipating transitions, using early warning signals as a way to in-
tervene in time to avert a transition requires a good understanding of the target
system.

If the goal is to anticipate a transition into an unhealthy state, then early warn-
ing signals alone may not be the best way to advance such a goal. Take the onset
of major depression as a prediction problem, for example. Are moods momen-
tarily assessed (e.g., Wichers et al., 2020) really the most predictive features?
One might go beyond early warning indicators by using information from sen-
sor data, including physiological variables and even geo-location data (e.g., Saeb
et al., 2016). This approach might draw from the growing literature on machine
learning in psychiatry and psychopathology (e.g., Bzdok & Meyer-Lindenberg,
2018; Dwyer et al., 2018; Mohr et al., 2017). For example, Webb et al. (2020)
tried to predict post-treatment depression scores in a clinical sample that under-
went treatment in a psychiatric hospital using a range of pre-treatment variables.
While they did not anticipate the onset of depressive episodes in real-time, one
may well translate their approach to further such a goal. Along these lines, Jacob-
son and Chung (2020) used sensor data — including data on location, weather,
and heart rate — collected using smartphones in the past 24 hours to predict the
next hour of depression symptom severity in a small sample reporting clinical
levels of depression. These are important first studies indicating that a predic-
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tive approach that goes beyond generic early warning signals may be feasible; if
the goal is simply to predict the onset of mental disorders such as depression,
this strikes us as a viable approach well worth exploring. Such an approach does
not aim to develop formal models of mental disorders, however, and this means
a lack of mechanistic understanding. It is also less likely to inform promising
targets of interventions. Formal models, on the other hand, have the potential to
inform interventions and may also result in more powerful, system-specific early
warning indicators of transitions. Harnessing the full potential of early warning
signals, then, is deeply intertwined with the goal of advancing our understanding
of mental disorders by building formal models.

9.6 Conclusion

Dynamical systems theory provides a unifying framework for studying how sys-
tems as disparate as the climate and the behavior of humans change over time.
Some systems can exhibit multiple stable states and critical transitions between
them due to internally changing dynamics. Early warning signals based on criti-
cal slowing down that may anticipate such transitions have been widely discussed
in ecology, epidemiology, and climate science in the last two decades, finding
shelter also in psychology and psychiatry. With this chapter, we hope to con-
tribute to a better understanding of their limitations; to an appreciation of the
challenges associated with their use in practice; and to possible avenues that may
put the study of early warning signals in psychology and psychiatry on a solid
footing.
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Chapter 10

Overlapping Timescales
Obscure Early Warning
Signals of the Second

COVID-19 Wave

Abstract

Early warning indicators based on critical slowing down have been
suggested as a model-independent and low-cost tool to anticipate the
(re)emergence of infectious diseases. We studied whether such indicators
could reliably have anticipated the second COVID-19 wave in European
countries. Contrary to theoretical predictions, we found that characteris-
tic early warning indicators generally decreased rather than increased prior
to the second wave. A model explains this unexpected finding as a result of
transient dynamics and the multiple timescales of relaxation during a non-
stationary epidemic. Particularly, if an epidemic that seems initially con-
tained after a first wave does not fully settle to its new quasi-equilibrium
prior to changing circumstances or conditions that force a second wave,
then indicators will show a decreasing rather than an increasing trend as
a result of the persistent transient trajectory of the first wave. Our simula-
tions show that this lack of timescale separation was to be expected during
the second European epidemic wave of COVID-19. Overall, our results
emphasize that the theory of critical slowing down applies only when the
external forcing of the system across a critical point is slow relative to the
internal system dynamics.

This chapter has been adapted from: Dablander, F., Heesterbeek, H., Borsboom, D., & Drake,
J. M. (2022). Overlapping timescales obscure early warning signals of the second COVID-19 wave.
Proceedings of the Royal Society B, 289(1968), 20211809.
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10.1 Introduction

Forecasting the (re)emergence of infectious diseases is of great importance to
public health (George et al., 2019; Heesterbeek et al., 2015; Morens & Fauci, 2013;
Morens et al., 2004; Reich et al., 2019; Viboud et al., 2018). In recent years, early
warning indicators based on the phenomenon of critical slowing down have been
suggested as a way to anticipate transitions in a wide range of dynamical systems
(for overviews, see e.g., Dablander, Pichler, et al., 2022; Drake et al., 2019; Drake
et al., 2020; Lenton, 2011; Scheffer et al., 2009; Scheffer et al., 2015). Critical
slowing down describes the phenomenon that many systems, as they approach
their critical point, return more slowly to their equilibrium after small external
perturbations, resulting in an increase in statistics such as the local autocorrela-
tion coefficient and variance (Drake & Griffen, 2010; Wissel, 1984). In standard
models of infectious disease transmission, major outbreaks are possible when the
effective reproductive number, Rt , is greater than one. The threshold Rt = 1 cor-
responds to a (dynamic) transcritical bifurcation, which is a type of bifurcation
that is preceded by critical slowing down (Kéfi et al., 2014; Kuehn, 2011). Early
warning indicators based on critical slowing down have been studied extensively
and led to a promising research line that aims to utilize them as a tool to fore-
cast the (re)emergence as well as the elimination of infectious diseases (e.g., Brett
et al., 2020; Brett et al., 2017; Brett et al., 2018; Brett & Rohani, 2020; Dessavre
et al., 2019; Dibble et al., 2016; Drake et al., 2019; Harris et al., 2020; Miller et al.,
2017; O’Dea et al., 2018; O’Regan & Drake, 2013; O’Regan et al., 2020; Southall
et al., 2020).

In light of this prior research, it seems natural to ask whether early warning
indicators based on critical slowing down could have allowed us to anticipate
the second COVID-19 wave (e.g., O’Brien & Clements, 2021; Proverbio et al.,
2022) and if not, how this can be understood. Here, we question the applica-
bility of early warning indicators in the COVID-19 context, because the COVID-
19 situation violates a key assumption of the theory of critical slowing down: a
separation of timescales such that the dynamics of the epidemic settle down to a
quasi-equilibrium from which there is a slow drift towards the critical point. The
quasi-equilibrium corresponds to the dynamics of the epidemic being subcritical
(Rt < 1) but not dying out due to the importation of cases, instead reaching a
quasi-stationary state. To our knowledge, there is presently no theory that would
indicate whether early warning signals, under such commensurate timescales,
can be expected to be reliable. In this chapter, we report on a combination of
empirical analysis and simulation studies to investigate this issue. Focusing on
Europe, we find that a suite of early warning indicators did not reliably rise prior
to the second wave in any country as the classical theory of critical slowing down
would predict. Using a simulation study that mimics the COVID-19 situation —
a first outbreak closely followed by a second one — we show that this contra-
dictory result can be fully explained by the fact that, in the case of COVID-19,
in almost all countries Rt already began to creep up again before the number
of case reports stabilized at a low value after the first wave. These results in-
dicate that caution is warranted in applying early warning indicators to highly
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non-stationary settings, such as multi-wave epidemics.

10.2 Early Warning Signals for COVID-19 in Europe

In this section, we quantify the extent to which early warning indicators in-
creased prior to the second wave in a number of European countries.1 We outline
our methodology aided by Figure 10.1 in Section 10.2.1, and report our results in
Section 10.2.2.

10.2.1 Methods

Estimation of Rt . To identify the time at which the COVID-19 epidemic be-
came supercritical for the second time in each country, we followed Gostic et al.
(2020) to estimate the instantaneous Rt using the method of Abbott et al. (2020),
which improves upon Cori et al. (2013). The method simultaneously estimates
the incidence of infections and Rt using Bayesian latent variable modeling. The
method proceeds in two steps. First, the incidence at each time step is estimated
by convolving the previous number of infections with a probability distribution
for the generation interval. This incidence is then convolved over an uncertain
incubation period and reporting delay distribution to yield the reported cases
(for details, see Abbott et al., 2020). We applied this method to a broad range
of European countries using daily case report data from the WHO, spanning the
period from March to October 2020. We used the R package covidregionaldata to
load the raw data (Palmer et al., 2021); no further preprocessing was necessary.

Selecting the time period between waves. Next, we selected a time period in
which to search for evidence of critical slowing down. Early warning indicators
are sensitive to changes in the effective reproductive number, and should rise
prior to the critical point Rt = 1 (Drake et al., 2019; O’Regan & Drake, 2013).
Using our country-specific estimate for Rt , we defined the start and end date of
the time series on which we computed the early warning indicators as follows. We
chose as start date the date at which Rt is at its lowest point before reaching Rt = 1
prior to the second wave. Similarly, we chose as end date the date at which Rt is at
its maximum (before going down again) after it crosses Rt > 1. Panel (a) in Figure
10.1 illustrates this selection procedure on a simulated example, with the black
line showing Rt and the vertical blue lines indicating its respective minimum and
maximum after the first wave receded. We chose this criterion for two reasons.
First, after Rt drops below 1, it continues to decrease in all European countries,
and we would thus expect early warning indicators to fall, rather than rise. Panel
(a) in Figure 10.1 shows a characteristic bifurcation delay (see also Section 10.3.1)
that describes that cases lag behind the equilibrium value consistent with Rt < 1.
Choosing for the starting date the time of the minimum value of Rt before Rt rises
again allows the system to come closer to its new equilibrium value. Similarly, we

1We analyzed countries in the EU, excluding Spain because of a strong weekend reporting effect
that presented difficulties for model convergence, as well as the United Kingdom.
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chose to end the interval with the maximum of Rt after it crosses the threshold
as a principled approach that could be systematically applied to all data yielding
the longest time series.
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Figure 10.1: Illustration of our methodology on simulated data. Panel (a) shows reported cases
(gray) and Rt (black). Vertical blue lines indicate the minimum and maximum Rt after the first wave
receded. Panel (b) shows reported cases (gray) during the selected time period and an estimate of the
mean (black) using a rolling window of size δ1 = 4. Panel (c) shows detrended cases (gray) and an
estimate of the (scaled) variance (black) using a rolling window of size δ2 = 15.

Figure 10.2 shows the reported (gray) and estimated true number of cases
(black) across European countries, with vertical blue lines indicating the seg-
ment of the time series for which we calculated early warning indicators. Figures
G.1-G.5 in Appendix G.1 provide a more detailed picture, showing European
countries together with their estimated effective reproduction numbers.

Detrending and estimation of early warning indicators. As illustrated in
Panel (b) and (c) in Figure 10.1, we detrended the time segment of interest and
then estimated early warning indicators using backwards rolling windows with
a uniform kernel (i.e., equally weighted past observations) and window sizes δ1
and δ2, respectively. A backward rolling window only uses data from the past to
estimate the current value of a particular statistic. For example, to estimate the
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of inferred infected cases (black) for European countries. Vertical blue lines indicate the portion of
the time series for which early warning indicators are computed.

mean at time point t, we calculate

ȳt =
1
δ1

t∑
j=t−δ1

yj ,
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where yj is the number of reported cases at a particular time point j (see black
line in Panel (b) in Figure 10.1, for an example). Other early warning indicators
we studied were variance, coefficient of variation, index of dispersion, autoco-
variance, autocorrelation, decay time, skewness, kurtosis, and first differenced
variance (for mathematical definitions, see Brett et al., 2018, Table 3).2 All of
these indicators require an estimate of the mean, and so we first estimated the
mean and then estimated the particular early warning indicator using a rolling
window size of δ2 (except for the mean, for which we use a window of size δ1).
For example, the variance at time point t, which is shown in Panel (c) in Figure
10.1, is calculated as

st =
1
δ2

t∑
j=t−δ2

(yj − ȳj )2 .

We conducted sensitivity analyses with rolling windows of size δ1 ∈
[2,4, . . . ,18,20] for detrending (estimating the mean) and rolling windows of size
δ2 ∈ [5,6, . . . ,30] for indicator estimation (with the mean being the exception) us-
ing the R package spaero (O’Dea, 2016). A window size of 10, for example, means
that the previous ten data points are being used to compute the statistic at the
current time point. To create a sampling distribution under the null hypothesis
of no increase in the early warning indicators that respects the temporal ordering
of the data, we fitted a series of ARMA(p,q) models with (p,q) ∈ [1,2, . . .5] to the
country-specific data. We selected the best-fitting model using AIC and subse-
quently generated 500 surrogate time series from it, computed the early warning
indicators as outlined above, and estimated the rank correlation of the indicator
values st with time t, known as Kendall’s τ . This resulted in the sampling dis-
tribution under the null assumption of stationarity, which allowed us to test the
actually observed Kendall’s τ against a significance level α. This approach is the
most widely used approach when estimating and testing early warning indicators
using rolling windows (Dakos, Carpenter, et al., 2012).

10.2.2 Results

Figure 10.3 reports results for European countries for δ1 = 4 and δ2 = 15. It
shows the value of Kendall’s τ across all early warning indicators, coloring in
red the countries for which τ was either significantly smaller or significantly
larger than values generated from the best-fitting country-specific ARMA(p,q)
at α = 0.05. Notably, many countries displayed a significant decrease in a number
of early warning indicators such as the mean, variance, coefficient of variation
(σ/µ), index of dispersion (σ2/µ), and autocorrelation. Some countries exhib-
ited a significant increase in the skewness and the first differences in the vari-
ance. Overall, however, early warning indicators that were found to display no-
table signal across a number of countries are the mean, variance, or combinations

2We used a broad range of indicators to assess the robustness of our conclusions, noting that from a
theoretical perspective the variance and autocorrelation are preferred, as they are necessary features
of critical slowing down. The variance is especially useful because the divergence should make it
highly detectable, whereas incremental changes in the autocorrelation coefficient, which is bounded,
will be harder to pick up.
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thereof. Figures G.6-G.15 in Appendix G.2 show sensitivity analyses for the ten
early warning indicators across different rolling window sizes for detrending and
estimation, indicating that the pattern shown in Figure 10.3 is robust to different
choices of these hyperparameters.
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Figure 10.3: Summary of results across countries and indicators. The figure displays Kendall’s τ
across European countries for ten early warning indicators using δ1 = 4 for detrending and δ2 = 15
for indicator estimation. Red points indicate countries for which τ was either significantly smaller or
larger than expected under a stationary time series at α = 0.05.

Table 10.1 shows the number of significantly rising or falling early warning
indicators, the length of the selected time series, the start of the second wave,
and the respective posterior mean forRt . From theory we expect all early warning
indicators to rise except the coefficient of variation (Brett et al., 2018), yet we find
that most of the indicators show a tendency to fall instead. In the next section,
we turn to a simulation study to investigate the possible reasons for this poor
performance.
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Country No. sig. ↑ No. sig. ↓ Length E[Rmin | D] E[Rmax | D]

Latvia 3 2 34 0.77 1.23
United Kingdom 3 1 43 0.86 1.10

Slovenia 2 2 48 0.63 1.48
Estonia 2 0 43 0.61 1.45

Germany 1 6 52 0.77 1.22
Belgium 1 5 59 0.83 1.38
Slovakia 1 5 50 0.66 1.33

Luxembourg 1 4 75 0.67 1.48
Netherlands 1 4 28 0.77 1.32

Hungary 1 3 35 0.79 1.18
Ireland 1 3 61 0.72 1.28
Cyprus 1 2 98 0.72 1.42

Italy 1 2 87 0.80 1.31
Portugal 1 2 40 0.82 1.07
Bulgaria 1 1 25 0.84 1.31
Romania 1 0 29 0.87 1.14
Austria 0 3 77 0.63 1.25
Czechia 0 3 59 0.79 1.38
Sweden 0 3 29 0.68 1.17
France 0 2 110 0.77 1.27
Greece 0 2 54 0.81 1.19

Lithuania 0 2 26 0.83 1.19
Malta 0 2 28 0.52 2.38
Poland 0 2 35 0.91 1.16
Croatia 0 0 27 0.38 2.85

Denmark 0 0 14 0.66 1.39
Finland 0 0 54 0.80 1.22

Table 10.1: The number of significantly rising or falling early warning indicators, out of a total possi-
ble of ten, for European countries together with the length of the selected time series and the respec-
tive posterior mean of Rt . D denotes the (country-specific) data, see Figure 10.2.

10.3 Early Warning Signals for COVID-19 in Simula-
tion

We conducted simulations to investigate possible reasons that could underlie the
poor performance of early warning indicators to anticipate the second COVID-
19 wave. In what follows, we first describe the model-setup we use and illustrate
how early warning indicators perform under ideal conditions in Section 10.3.1.
In Section 10.3.2, we describe our general simulation setup, relaxing the separa-
tion of timescales to quantify the erosion in performance. We report the simula-
tion results in Section 10.3.3.
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10.3.1 Model

We illustrate early warning indicators in the context of a first outbreak that is
closely followed by a second one by simulating from a stochastic SEIR model
calibrated to COVID-19 using the pomp R package (King et al., 2016). In par-
ticular, let S(t),E(t), I(t),R(t) denote the number of individuals in the susceptible,
exposed, infectious, and recovered compartment at time point t, respectively, and
let ∆NS→E , ∆NE→I , and ∆NI→R denote the number of individuals that have tran-
sitioned from one compartment to another during the time interval [t, t+∆t]. The
model is updated according to

∆NS→E ∼ Binomial
(
S(t),1− e−λS(t)∆t

)
(10.1)

∆NE→I ∼ Binomial
(
E(t),1− e−σE(t)∆t

)
(10.2)

∆NI→R ∼ Binomial
(
I(t),1− e−γI(t)∆t

)
, (10.3)

where we assume an average incubation and infectious period of 1/σ = 5.2 days
(Li et al., 2020) and 1/γ = 10 days (CDC, 2021). The force of infection is given by

λ = β(t)
I(t)
N

+ η(t) , (10.4)

where η(t) is the sparking rate, which we assume to be 0 until day 50, from which
point onward cases are imported with a rate of η = 1/50,000. Our goal here is not
to produce a simulation model that accurately tracks the COVID-19 outbreak,
but instead to investigate critical slowing down in a standardized system that we
understand well. To do so, we wish to force Rt to create a multi-wave epidemic.
We achieve this by changing β(t) accordingly, compensating for the depletion
of the susceptible population by multiplying with S0/S(t) at time point t. This
mathematical trick avoids a decrease in Rt over time as the pool of susceptibles
gets depleted, and hence allows us to directly manipulate Rt . Lastly, we assume
that each infected person is reported without delay.

To illustrate the phenomenon of critical slowing down under ideal conditions,
we start with 10,000 infected persons out of N = 1,000,000 and R0 = 3. This re-
sults in a first outbreak, which is rapidly brought down through control measures
that we model as bringing Rt down to 0.50 within 25 days. We then force Rt to
remain at this low value for 200 days, and then allow it to rise linearly to Rt = 1,
forcing a second wave. This simulation mimics the situation at the start of the
pandemic where the first outbreak caught countries by surprise and lockdown
was the key mitigation measure that substantially reduced the effective repro-
ductive number. In the illustration, mitigation measures are maintained for a
long period of time. However, in reality mitigation measures were slowly relaxed
towards the summer, and with no vaccination in place together with imported
infections and increased mixing, the system could not reach a disease-free equi-
librium and the reproductive number increased again. This led to a second out-
break in the fall of 2020 in virtually all European countries. Our simple model
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adequately describes this general pattern as shown in Figure 10.4(a). In partic-
ular, the left column in Figure 10.4(a) shows the two waves of transmission and
their associated early warning indicators, while the right panels in Figure 10.4(a)
show a similar situation except that no second outbreak occurs (Rt is maintained
at low levels). In contrast to the situation with a second wave, the variance and
autocorrelation do not rise in this case. This illustration demonstrates that under
these conditions a second epidemic wave can be anticipated using nonparametric
early warning indicators.
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Figure 10.4: Signatures of critical slowing down in a simulated second-wave epidemic. Panels (a):
Reported cases of a first outbreak followed by a second (top left) or no outbreak (top right) together
with the forcing of Rt (below). Vertical blue lines indicate the period on which we compute the early
warning indicators autocorrelation and variance, shown in the two bottom panels. The increase in
variance and autocorrelation in the left panels is the manifestation of critical slowing down. Shown
are 50 simulation runs (gray) together with their mean (black). Panels (b): Same, but for the case that
the epidemic has not settled down after a first outbreak before a second one is forced.

It is known that epidemiological systems can experience a bifurcation delay,
which describes the transient trajectory of an epidemic as its attracting equilib-
rium changes. One consequence of bifurcation delays is that the time for a large
outbreak to settle to its equilibrium even after crossing Rt > 1 can be consider-
able. Dibble et al. (2016) studied bifurcation delays for disease emergence, and
Figure 10.4 indeed shows that it takes a while for the system to show a significant
rise in cases even after Rt > 1 (see Hungary in Figure 10.2, for a possible example
with regards to COVID-19). As can be seen in Figure 10.4, a bifurcation delay
also occurs for disease elimination. In particular, for Rt < 1 the disease is not en-
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demic and the stable equilibrium consists of a number of new cases that depends
on the rate of at which cases are imported. There is, however, a substantial delay
between the point at which Rt < 1 for the first time and a low number of newly
reported cases. This means that early warning indicators computed immediately
from the period after Rt first declines to less than 1 would track a transient far
from equilibrium and thus would not provide information about the return rate
to equilibrium from small perturbations, i.e. the phenomenon of critical slowing
down.

To understand the extent to which this bifurcation delay may influence the
performance of early warning indicators, we decreased the time interval for
which Rt = 0.50 from 200 days (Figure 10.4(a)) to 50 days (Figure 10.4(b)). We
find that both the variance and autocorrelation first decrease in the case of both a
second outbreak (left panels) and in the case of no second outbreak (right pan-
els). The variance then rises slightly prior to the second wave, a pattern that
does not occur for the autocorrelation, nor for the indicators in case of no sec-
ond wave. This pattern hints at the fact that the bifurcation delay at elimination
will interfere with the detection of critical slowing down if the system is not al-
lowed to settle to its new equilibrium because the magnitude of the transient is
commensurate with (or larger than) the magnitude of the fluctuations.

10.3.2 Simulation Setup

We conducted additional simulations to systematically assess the extent to which
these patterns impact the performance of early warning indicators. The forcing
of Rt in the previous illustrations depends on five parameters: the value of R0;
the value of the lowest point Rt reaches; the time it takes Rt to reach it; the time
for which Rt stays at the lowest point; and the time it takes Rt to reach critical-
ity again. We again assume that R0 = 3 and that it takes the system 25 days to
reach its lowest point of Rt = 0.50, but we vary the number of days for which
Rt is held constant to be t1 ∈ [25,50,100,200] and the time it takes the system
to reach Rt = 1 to be t2 ∈ [25,30,. . . ,95,200]. For comparison, we also simulate
from a system that stays at Rt = 0.50 and does not exhibit a second outbreak.
We match the length of the time series on which we compute early warning in-
dicators (t2) in case of no outbreak to when an outbreak does occur. As before,
backwards rolling windows with a uniform kernel were used for detrending and
nonparametric estimation of the mean, variance, coefficient of variation, index
of dispersion, skewness, kurtosis, autocovariance, autocorrelation, decay time,
and first differences in variance. We used rolling windows a tenth the size of the
duration for which Rt stays constant; that is, for t1 ∈ [25,50,100,200] we used
rolling windows of sizes δ1 = [3,5,10,20], respectively. For indicator estimation,
we used rolling window sizes of δ2 = 25 (except for the mean), using the R pack-
age spaero (O’Dea, 2016). We simulated 500 trajectories for each setting and cal-
culated the area under the curve (AUC), a measure of classification performance,
for all indicators. For each indicator, we calculated its rank correlation with time
(Kendall’s τ), which indicates whether the early warning indicators rise or fall
prior to reaching the critical point. The AUC can then be estimated as the prob-
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ability that τtest is larger than τnull (Brett et al., 2018; Flach, 2016). A value of
|AUC− 1/2| = 0 indicates chance performance, with AUC < 1/2 and AUC > 1/2 indi-
cating a fall or rise in indicators prior to criticality, respectively. Theory predicts a
pre-critical increase of all early warning indicators except the coefficient of vari-
ation (Brett et al., 2017; Brett et al., 2018). In addition to AUC, which requires
comparing the indicator trend in the case of a second outbreak to the case of no
second outbreak, we also use the method proposed by Dakos, Carpenter, et al.
(2012) based on ARMA null models and outlined in Section 10.2.1 to ascertain
whether an indicator rises significantly. This more closely mimics the real-word
situation where we do not have access to the counterfactual situation in which no
outbreak occurred. We report the true positive rate (TPR), that is, the proportion
of times we find p < α for each indicator and condition, using α = 0.05.

10.3.3 Simulation Results

Figure 10.5(a) shows that the performance of early warning indicators improves
with the time it takes the epidemic to reach a second critical wave. For the case
for which the system stays for 200 days at Rt = 0.50 (top panel of Figure 10.5(a)),
we find that all indicators except the kurtosis and the coefficient of variation per-
formed well, with the mean and the variance performing best. The coefficient
of variation, given by the ratio of the standard deviation to the mean, decreases
prior to criticality, indicating that the mean rises more quickly than the stan-
dard deviation. Most early warning indicators perform worse when Rt = 0.50 for
100 days, yet the mean and variance still perform well overall. Interestingly, the
slight decrease in performance in the variance implies a stronger decrease of the
coefficient of variation. The index of dispersion begins to show a decrease as well
when the system is forced more quickly (i.e., t2 < 50).

For a period during which Rt = 0.50 of 50 days, the performance of the vari-
ance decreases, leading to an increasingly strong decrease in the coefficient of
variation. When forcing is rapid (i.e., t2 < 75), the index of dispersion, autoco-
variance, autocorrelation, and decay time also begin to show a stronger down-
ward trend (AUC < 1/2) prior to reaching the critical point. These trends are exac-
erbated when the system stays at Rt = 0.50 for only 25 days. One may think that
the simulation shows the reverse pattern than the empirical analysis, summarized
in Figure 10.3, because the mean and variance show a positive AUC (hence they
increase compared to the null simulation) while the mean and variance show a
decrease in the empirical analysis. There is no contradiction, however, because
the mean and variance do in fact decrease in case of a second wave, it is just that
they decrease less compared to when there is no second wave, as can be seen in
Figure 10.4(b).

In the data, the median time for countries to go from their minimum Rt value
after the first crossing to their maximum Rt value after the crossing was 42 days.
Figures G.1-G.5 further show that Rt basically never stays at a low constant value
for a sustained period of time, but is forced immediately towards the critical
point. Under the most realistic scenario in our simulation study (t1 = 25 and
t2 < 50), many indicators perform poorly, yet we still find excellent performance
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Figure 10.5: Indicator performance across simulation settings. Area under the curve (a) and true
positive rate (b) for ten early warning indicators as the number of days for which Rt = 0.50 (t1) and
the number of days it takes the system to reach Rt = 1 again (t2) vary. True positive rate is calculated
by using the best-fitting ARMA(p,q) model to create a stationary null distribution and a decision
criterion of finding a significant increase at p < 0.05.

of a rising mean and excellent performance of a falling coefficient of variation
and index of dispersion. This does not imply, however, that they will lead to re-
liable warnings in practice. While we can quantify discriminatory power using
AUC in simulations, in practice early warning indicators have to be calibrated.
Figure 10.5(b) shows that testing for an indicator increase at α = 0.05 based on a
stationary null distribution created by using the best-fitting ARMA(p,q) model to
the time series under consideration is poorly calibrated, leading to an extremely
poor true positive rate which mirrors the empirical results in Section 10.2.2. This
is because the distribution of Kendall’s τ under the stationary model is centered
around zero, while the actually observed Kendall’s τ is negative. As a result,
hypothesis tests for an increase in indicator values are expected to suffer from
extremely low statistical power in realistic situations. This problem may be exac-
erbated by a potentially poor fit of the model used to create the null distribution.
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10.4 Discussion

Early warning signals based on the phenomenon of critical slowing have been
suggested as a way to anticipate transitions in a wide range of dynamical sys-
tems, including the (re)emergence of infectious diseases. We analyzed whether
a suite of indicators could have given early warning of the second COVID-19
wave in European countries. We found that the majority of indicators did not
rise reliably, instead showing a pronounced decrease, a finding inconsistent with
previous applications of the theory of critical slowing down. To understand this
pattern, we conducted a simulation study in which we varied the time that is
available for the system to settle at its new equilibrium after a first outbreak,
as well as the speed with which a second wave is forced. We analyzed the per-
formance of early warning indicators using the area under the curve to quantify
classification performance and — using the same methodology with which we
analyzed the empirical data — the true positive rate. We found that classifica-
tion performance suffered when the system had too little time to settle to its new
(quasi-)equilibrium and the second wave is forced quickly (due to changing con-
ditions in the population, such as reduced adherence to control measures), as we
saw in the empirical data. Yet we also found that some indicators, such as the
mean, continued to perform well (in terms of AUC) in contrast to what we ob-
served in the empirical analysis. Using the same methodology as in the empirical
analysis, however, we found a true positive rate of close to zero when testing for
an increase in indicators, which is in line with our empirical results.

Our analyses suggest the following conclusions. First, violating a key assump-
tion of early warning indicators based on critical slowing down — namely that
the driver (Rt) changes slowly compared to the time it takes the system to return
to its equilibrium after small external perturbations — dramatically reduces their
performance. While this may be expected from theory, our analyses underscore
this point and show that early warning indicators cannot be used to anticipate
future outbreaks that are quickly forced after an initial wave. Second, as a conse-
quence of the fact that the system is not allowed enough time to settle at its new
stable equilibrium after an initial outbreak, the first part of the data used for
early warning indicator estimation constitutes a transient. Hence there is a bifur-
cation delay not only after Rt crosses one from below, as previously observed and
studied (e.g., Dibble et al., 2016), but also after Rt crosses one from above. If this
transient is incorporated into the indicator estimation, then indicators will show
a pronounced decrease rather than an increase. This does not imply, however, that
we can use a decrease in indicators as a signal for a future outbreak that quickly
follows an initial one, because such a decrease also occurs in case of no outbreak.
The poor performance of early warning indicators in our empirical analysis is
likely due to a combination of this transient phenomenon and the quick forcing
of Rt . Third, our simulation study demonstrated that while early warning indi-
cators can yield high discrimination (i.e., a high AUC), in practice they need to
be calibrated. We found that the widely used methodology proposed by Dakos,
Carpenter, et al. (2012) with decision criterion p < 0.05 is poorly calibrated. This
leads to poor performance consistent with our empirical results. The key issue
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is that the sampling distribution created under this methodology is not centered
around a negative Kendall’s τ (implying a decreasing trend) but a Kendall’s τ of
around zero (implying no trend). Thus the statistical power to reject the null hy-
pothesis of no increase when actually observing a strong decrease in indicators is
too low for these tests to be of practical value in realistic situations. Previous re-
search also suggested that indicators can fail in the COVID-19 context (Proverbio
et al., 2022).

Some limitations of this study should be kept in mind. Our empirical anal-
ysis takes the reported number of cases across European countries at face value.
While we accounted for reporting delays, we disregarded any issues related to
changes in reporting or testing that may affect the estimation of Rt . While the
flexible method proposed by Abbott et al. (2020) renders any bias induced by
a change of testing transient, any bias may have indeed changed the true value
at which Rt crosses one. A more extensive analysis would look at all countries
that experienced a second wave. However, we chose to limit ourselves to Euro-
pean countries because of the comparatively good reporting standards and the
fact that there is sufficiently large heterogeneity in epidemic trajectories across
European countries for the purposes of this study. On a similar note, because the
time period between the end of the first and the beginning of the second wave
was shorter than the time period it takes the system to settle at its new stable
equilibrium after the first wave recedes in virtually all countries, we expect our
findings to generalize well to non-European countries. We used an admittedly
conservative criterion for date stamping the end of the first wave and the start
of the second one to reduce the extent of the transient period we incorporate for
indicator estimation. In particular, we chose the day at which Rt reaches its low-
est value as starting point for the computation of early warning indicators. If
anything, based on our finding that incorporating the transient decreases perfor-
mance, our choice may be too charitable. We chose the end date for the indicator
computation as the day at which Rt reaches its maximum after crossing one so
as to increase the number of time points. If anything, this may again have been
too generous. At the same time, while the epidemic unfolded quite distinctly in
different European countries, Rt never stabilized at a low value and rose quickly
after the first outbreak. These are far from the conditions under which to expect
a reliable signal in early warning indicators, and our results should not be in-
terpreted as a rejection of their potential in other applications, including other
epidemics.

We used backwards rolling windows to avoid the use of data from the “fu-
ture”, and our results can thus translate to a situation in which indicators are
computed in real-time. A critical issue when using nonparametric estimation
concerns the choice of the size of the rolling windows (Dakos, Carpenter, et al.,
2012; Dessavre et al., 2019; Lenton et al., 2012). There is a trade-off between
a window size that is too small, where estimation accuracy suffers, and a win-
dow size that is too large, where stationarity is (more severely) violated (Brett
et al., 2017). If a model is available, Dessavre et al. (2019) find that detrending
based on model simulation works well, but this route is unavailable as an epi-
demic unfolds for which accurate models do not yet exist. Similarly, while Miller
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et al. (2017) found that indicator performance was robust to seasonal forcing, the
timescale of such seasonal forcing is much longer compared to the movements of
Rt that were observed in some European countries, and which hence may have
further reduced performance. We have addressed the issue of window size se-
lection by reporting extensive sensitivity analyses. Our finding that indicators
poorly anticipate the second COVID-19 wave is robust to different choices.

Critical slowing down is a phenomenon that has primarily been studied in
low-dimensional systems. It is prominent in the study of ferromagnetism and
the Lenz-Ising model (Brush, 1967), and has been known to proponents of catas-
trophe theory since at least the 1970s (Zeeman, 1976). Wissel (1984) suggested
critical slowing down as a way to forecast the extinction of a population of rotifers
(see also Dai et al., 2012; Drake & Griffen, 2010). Scheffer et al. (2009) brought
significant attention to the idea of using critical slowing down as an early warning
signal which led to a surge of interest across many fields. Yet there is the obvious
question of whether we should expect a phenomenon that pertains primarily to
low dimensional systems to occur in the high dimensional real-world. Infectious
diseases do not spread in homogeneously mixed populations with people being
distinct only in terms of whether they are susceptible, exposed, infected, or re-
covered, as our simulation model assumes. Instead, infectious diseases spread
between unique individuals on a network that is itself continuously changing.
Studying the effect of test sensitivity and frequency on COVID-19 transmission,
Larremore et al. (2021) find essentially no difference between a homogeneous
compartment model and an agent-based model that is calibrated to New York
City micro-census data. More relevant to our investigation, Brett et al. (2020)
found that early warning indicators based on critical slowing down do indeed
rise prior to an outbreak in high-dimensional network and agent-based models.

A related issue with early warning indicators based on critical slowing down
concerns the decision criterion. When do we decide that a rise in indicators is
“significant” and constitutes an early warning? In our empirical analysis, we
chose a rise in trend to be significant at the α = 0.05 level, but this may well
require adaption to the specific case at hand. There is a difference between mak-
ing a statistical inference (e.g., estimating Kendall’s τ) and making a decision
(e.g., restricting mitigation measures; Boettiger & Hastings, 2012b). The latter
requires calibration, which is understudied in the context of early warning indi-
cators based on critical slowing down but essential to use in applications. One
can also question the adequacy of the best-fitting ARMA(p,q) model as a null
model more broadly. Boettiger and Hastings (2012b) have shown that statisti-
cally comparing two models, one that includes the bifurcation and one that does
not, can outperform nonparametric testing using null models (see also Bury et al.,
2021). We have used the ARMA null models because they are the most widely
used methodology for assessing early warning signals (Dakos, Carpenter, et al.,
2012) and allow straightforward significance testing for a wide range of indi-
cators. Importantly, some indicators, such as the mean and variance, continue
to rise even after Rt crosses one, as predicted by theory (O’Dea & Drake, 2019;
Southall et al., 2020). Others are expected to peak at the point at which Rt = 1,
although the exact maximum may not be clear (O’Dea et al., 2018). This means
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that it is hard to assess whether, say, a rise in the autocorrelation from 0.50 to
0.70 is already problematic, or whether one should wait until it reaches, say, 0.90
(if it ever will). The extent to which indicators such as autocorrelation rise also
depends on a number of reporting details such as the frequency of reporting. It is
therefore impossible to provide general guidelines for use in applications. Sim-
ulation studies that incorporate reporting issues and focus on specific diseases
may provide further insight (Brett et al., 2018; Tredennick et al., 2022).

Early warning indicators based on critical slowing down promise to be a quite
general and low-cost tool to monitor the emergence and elimination of infectious
diseases (e.g., Drake & Hay, 2017; Harris et al., 2020; Tredennick et al., 2022). It
is understudied how well these indicators perform compared to other tools that
may be used as early warning signals. In the context of COVID-19, it seems plau-
sible that by making stronger assumptions about the dynamics of the system or
using system-external information such as mobility would lead to much better
early warning systems. Simply estimating Rt and forecasting whether and when
Rt > 1 may be a similarly low-cost but potentially more reliable approach. Con-
ceptually, however, it is not so clear that one would like to have an early warning
indicator signalling that Rt is about to cross one. This is due to two related rea-
sons. First, because of the bifurcation delay, it may take weeks or months for
the actual outbreak to occur. A method that is able to incorporate this bifur-
cation delay and produce an early warning of an actual exponential increase in
cases may therefore be preferable. Ideally, such a method produces a probabilis-
tic assessment of an outbreak, which can then feed into further decision making.
Second, the simple fact that Rt crosses one does not imply that a second wave is
incumbent. Instead, it may stay there for a while or fall again, as it did in sev-
eral European countries during the current pandemic. One cannot impose strong
mitigation measures to curb virus spread whenever Rt > 1. All this points to a
more continuous approach in which multiple, system-external factors are taken
into account to assess the risk of future outbreaks. Early warning indicators may
be a part of this risk assessment toolbox for (re)emerging diseases when an out-
break is slowly forced — but not, as we have shown, when one outbreak follows
closely after another.
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Chapter 11

Deep Learning for Tipping
Points: Preprocessing

Matters

Bury et al. (2021) presented a powerful approach to anticipating tipping points
based on deep learning that not only substantially outperforms traditional early
warning indicators, but also classifies the type of bifurcation that may lie ahead.
Deep learning methods are notorious for sometimes exhibiting unintended be-
havior, and we show that this is also the case here. We simulated n = 500 obser-
vations from an AR(1) process with lag-1 autocorrelation ρ = 0.50 and standard
Gaussian noise term and applied the deep learning method. The left panel in Fig-
ure 11.1 shows the probability of a fold (red), Hopf (orange), transcritical (blue),
and no (green) bifurcation. The method incorrectly suggests that the process is
approaching a fold / transcritical bifurcation. The middle panel shows that de-
trending with a Gaussian filter with bandwidth 0.20 improves performance, but
substantial uncertainty remains. The right panel shows that, after detrending
using a Lowess filter with span 0.20,1 as performed by Bury et al. (2021), the
method is able to correctly classify the system as not approaching a bifurcation.

We conducted the same analysis for a range of lag-1 autocorrela-
tions ρ ∈ [0,0.05, . . . ,0.95] and Lowess spans / Gaussian bandwidths b ∈
[0.05,0.075, . . . ,0.50]. The left panel in Figure 11.2 shows the probability of cor-
rectly classifying the time series as approaching no bifurcation after observing
all n = 500 data points. Classification becomes more challenging as the lag-1
autocorrelation approaches 1. In general, the deep learning method performs
better the smaller the Lowess span. Performance drops substantially when using
Gaussian filtering, as the right panel in Figure 11.2 shows.

Bury et al. (2021) trained the deep learning method only on time series that
have been detrended using a Lowess filter with span 0.20. While the authors
showed that the method exhibits excellent performance in several empirical and
model systems, we found that it did not extract features generic enough to clas-
sify stationary AR(1) processes that have not been detrended (or have been de-
trended using a Gaussian filter) as approaching no bifurcation. This sensitivity

This chapter has been adapted from: Dablander, F., & Bury, M. T. (2022). Deep Learning for
Tipping Points: Preprocessing Matters. Proceedings of the National Academy of Sciences, 119(37),
e2207720119.

1The span / bandwidth is given as a proportion of the time series length; detrending was con-
ducted using the ewstools Python package.
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Figure 11.1: Deep learning classification for a stationary AR(1) process without detrending (left) and
with detrending using a Gaussian (middle) and Lowess filter with bandwidth / span of 0.20 (right).
Solid lines show averages and shaded regions standard deviations over 100 iterations.
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Figure 11.2: Probability of correctly inferring that no bifurcation lies ahead after observing n = 500
data points from a stationary AR(1) process with a particular lag-1 autocorrelation that has been
detrended with a particular Lowess span (left) or Gaussian bandwidth (right), averaged over 100
iterations.

to different types of detrending suggests that the method may have learned fea-
tures specific to a Lowess filter rather than (only) generic features of a system ap-
proaching a bifurcation. Interestingly, detrending takes on a different purpose in
this context: for traditional early warning indicators, adequate detrending helps
avoid biased estimates (e.g., Dakos, Carpenter, et al., 2012), while for the deep
learning method developed by Bury et al. (2021) a particular type of detrend-
ing is necessary because all training examples were detrended using it. Bury et
al. (2021) and Lapeyrolerie and Boettiger (2021) note that the training set would
have to be expanded substantially to include richer dynamical behavior than fold,
transcritical, and Hopf bifurcations. With this note, we suggest that other aspects
of the training, including preprocessing, also need careful consideration.
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Chapter 12

Understanding and
Preventing Climate

Breakdown

Abstract

Despite decades of scientific warnings, action to prevent climate break-
down is severely lacking. This is true on a governmental and corporate
level, where we see an expansion of fossil fuel infrastructure, and on an
individual level, with only a tiny fraction of the general public and the
wider academic community engaging in advocacy or activism on this is-
sue. This may in part be due to a lack of knowledge about (a) the scale and
urgency of the challenge, (b) the extent to which current as well as aspi-
rational climate policy is inadequate, and (c) the ways in which academics
can help push for change. The goal of this chapter is to provide a concise
assessment of where we stand and suggest avenues for academics to get
(more) involved to secure a livable and sustainable future for all.

This chapter has been adapted from: Dablander, F. (in preparation). Understanding and prevent-
ing climate breakdown: A guide for social and behavioral scientists.
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12.1 Introduction

The stable climate of the past 10,000 years has enabled agriculture and civiliza-
tion (Lewis & Maslin, 2018). And without further intervention, at least another
10,000 years of stability would have ensued (Berger & Loutre, 2002). Yet starting
in the 1950s, in what has been dubbed The Great Acceleration, humans dramati-
cally grew their population and their economies, becoming a planetary-scale geo-
logical force that continues to exert enormous pressure on the Earth system (Stef-
fen, Broadgate, et al., 2015). Conceptualizing our assault on the natural world,
researchers have proposed the planetary boundaries framework, which quanti-
fies global thresholds of key Earth system processes whose transgression puts us
outside the safe operating space for humanity (Rockström et al., 2009a; Rock-
ström et al., 2009b; Steffen, Richardson, et al., 2015). We are currently breaking
five out of these nine boundaries. These are: (a) climate change, where we have
passed the boundary of 350 parts per million CO2 in the atmosphere, primarily
because of the burning of fossil fuels (IPCC, 2022b); (b) the biogeochemical flows
of nitrogen and phosphorus, which we are vastly overshooting due to our ineffi-
cient use of fertilizers in agriculture; (c) land system change, with a third of all
forests lost (Ritchie & Roser, 2021), again mostly due to agriculture (Pendrill et
al., 2022); (d) biosphere integrity, with current vertebrate species extinction rates
at least 100 times higher than the background extinction rate (Barnosky et al.,
2011; Ceballos et al., 2015); and (e) the introduction of novel entities, driven by
increasing environmental pollutants such as plastics (Persson et al., 2022). Re-
searchers recently proposed a green water planetary boundary, which we are also
transgressing (Wang-Erlandsson et al., 2022). This is a general pattern: The more
we learn about our perturbation of the Earth system, the more reason for concern
there is (IPCC, 2022d; Zommers et al., 2020).

Avoiding the destruction of our life support systems is necessary, but not
sufficient for a good life. Integrating the planetary boundaries with social in-
dicators, Kate Raworth has suggested Doughnut Economics as a framework for
truly sustainable development (Raworth, 2017a, 2017b). These social indicators
— derived from the United Nations Sustainable Development Goals — pertain
to food, health, education, income and work, water and sanitation, energy, net-
works, housing, gender equality, social equity, political voice, and peace and jus-
tice. Globally, we are undershooting these indicators by a large margin. For ex-
ample, 828 million people today are experiencing chronic hunger, while almost
3.1 billion cannot afford a healthy diet (FAO et al., 2022); over 700 million people
live on less than 2.15$ per day (the World Bank’s revised extreme poverty line),
while over 3.50 billion live on less then 6.85$ per day (Hasell et al., 2022); about
940 million people have no access to electricity, while over 3 billion do not have
access to clean cooking facilities (Ritchie et al., 2022); lastly, the richest 10% of
the global population own 76% of all wealth and earn 52% of all income while
the poorest 50% own a mere 2% of all wealth and earn only 8.5% of all income
(Chancel et al., 2022).

These facts and figures illustrate the brutality and injustice of the present.
With climate and ecological breakdown on the horizon, this brutality and injus-
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tice could be magnified to proportions hitherto unseen in the history of humanity.
While this is widely understood in the expert community working on these top-
ics, the magnitude of the challenge, the urgency with which we need to address
it, and the extent to which current (and aspirational) policy falls short seems to
not have penetrated the wider academic community. Yet it is precisely the aca-
demic community that has especially high leverage to push for change. This is
because they are one of the most trusted groups in society (Clemence & Boyon,
2022), have a wide reach through their teaching and broader network, and can
use their status and role in society to support the broader climate movement and
shift the public debate.

In this chapter, I focus on the climate emergency and aim to provide a concise
overview of these issues by reviewing the relevant literature and giving pointers
on how academics can become more involved to help push for change. I note
the injustice at the heart of the climate crisis; describe why current as well as
aspirational climate policy is insufficient to arrest climate breakdown; analyze
how shifting into emergency mode would not only allow us to save what can
still be saved but also create a happier, healthier, and fairer world; discuss how
we might facilitate shifting into emergency mode; and sketch research agendas
through which the social and behavioral sciences can help push society into a
more sustainable state.

12.2 Understanding Climate Breakdown

12.2.1 Climate Injustice

We are not all contributing to climate and ecological breakdown to the same de-
gree. This can be seen on a country-level and an individual level. In 2021, the
largest fossil fuel emitters were China (11.5 GtCO2), the United States (5 GtCO2),
the EU27 countries (2.8 GtCO2), India (2.7 GtCO2), and Russia (1.8 GtCO2;
Friedlingstein et al., 2022). Importantly, because the extent of global heating is a
function of the cumulative CO2 emissions (more on that below), the quantities of
interest are countries’ historical rather than current emissions. Here, we find that
a mere 23 rich countries, led by the United States (24.3%), Germany (5.4%), the
United Kingdom (4.3%), Japan (3.9%), and France (2.2%) in combination with
other Western European countries and Australia — comprising about 12% of the
world’s population — are responsible for almost half of all historical emissions
(for a similar analysis using 2020 data, see Popovich & Plumer, 2021).

Another angle at this issue is to assess which countries are responsible for
overshooting the planetary boundary of 350ppm. Under the principle of equal
per capita access to the atmosphere, a global commons, Hickel (2020b) finds that
the United States are responsible for 40% of the overshoot, the EU (including
Great Britain) for 29%, and the remainder of Europe and the Global North for
10%. The Global South, which includes China and India, are responsible for a
mere 8% of the overshoot. This does not mean, of course, that China or India are
not relevant for addressing global heating. As we have seen, China is currently
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the largest emitter. But from a climate justice perspective in which every per-
son should have the same right to emit, it is primarily rich countries who have
contributed to climate breakdown.

Considering other biophysical boundaries, O’Neill et al. (2018) find that no
country meets the basic needs of its citizens at a sustainable resource use. While
Western countries tend to meet the needs of their population (at global aver-
age levels), they vastly overshoot biophysical boundaries. Studying the time-
evolution of development from 1990 to 2015, Fanning et al. (2022) find that all
countries first seem to break biophysical boundaries and only then achieving a
good social foundation. There currently exists no country that is sustainably de-
veloped.

On an individual basis, large inequalities abound, too. To limit global heating
to 1.5°C (more on that below), the average carbon emissions per capita need to
be at around 2.1 tCO2 by 2030 (IPCC, 2018). The most recent research on carbon
inequality finds that the top 1% of individuals emitted around 101 tCO2eq per
capita and were responsible for about 17% of all greenhouse gas emissions in
2019 (Chancel, 2022). The top 10% of emitters, with a greenhouse gas (GHG)
footprint of about 29 tCO2eq per capita, were responsible for 48% of all emissions
in 2019. The bottom 50% had a GHG footprint of a mere 1.4 tCO2eq per capita
and were responsible for 11.5% of all emissions in 2019. In other words, 77.1
million individuals (the top 1%) were responsible for more emissions than 3.855
billion individuals (the bottom 50%; Chancel, 2022).

The key variable that explains these differences is affluence (Wiedmann et al.,
2020). In an extensive study, Oswald et al. (2020) observe that energy-intensive
goods tend to be luxury goods and show that more affluent people emit more
greenhouse gases. This is most easily observed in the transport sector. Ivanova et
al. (2020) focus on Europe and find that land and air travel dominate the carbon
footprint of the top 1% and the top 10%, while those sectors are negligible for
the bottom 50%. This is most pronounced for billionaires, whose yachts and
private jets cause emissions that are thousands of times larger than the emissions
of the average citizen (Barros & Wilk, 2021). Similarly, they invest in highly
polluting industries, thus indirectly emitting about one million times more than
the average person (Maitland et al., 2022). Capstick et al. (2020) note that the
top 10% income earners — with an annual salary of more than €32,400 — were
responsible for 50% of the carbon emissions in 2015. The top 1% — with an
annual salary of over €94,000 — were responsible for an astonishing 15% of
emissions in the same year. Over 3 billion people — the bottom 50% of income
earners — only accounted for a mere 7% of emissions. At the same time, climate
impacts are most strongly felt by those who have contributed the least emissions
(IPCC, 2022a). This is an astonishing injustice.

12.2.2 Carbon Budgets and Net Zero

All three major greenhouse gases — carbon dioxide, methane, and nitrious ox-
ide — are at record highs (Blunden & Boyer, 2022). The concentration of carbon
dioxide in the atmosphere is currently around 418ppm, something last seen 3
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million years ago in the mid-Pliocene warm period, where sea levels were 17 me-
ters higher (Dumitru et al., 2019). While all three gases are key, carbon dioxide,
which can stay in the atmosphere for thousands of years, is the principal knob
of Earth’s climate (Lacis et al., 2010). One key result in climate science is the
near-linear relationship between cumulative emissions of CO2 and the increase of
global average surface temperatures (IPCC, 2021; MacDougall & Friedlingstein,
2015). This relationship allows one to define a (remaining) carbon budget, that
is, the amount of CO2 one can still emit until a temperature threshold is likely
crossed (Allen et al., 2009; Broecker, 2007; IPCC, 2021; Matthews & Caldeira,
2008). There exist large uncertainties about the size of the remaining carbon
budget (for a recent review, see Dickau et al., 2022), not least due to the com-
plicated relationship of aerosols from air pollution to warming (Bellouin et al.,
2020) and the mitigation of non-CO2 greenhouse gases (IPCC, 2021).

Irrespective of these nuances, the scientific insight that global heating only
stops once we reach net zero CO2 emissions — that is, we emit only so much CO2
as we also remove from the atmosphere — spurred policy. The Paris agreement,
signed in 2015 by nearly all countries, aims to limit warming to “well below 2°C
while pursuing efforts to limit warming to 1.5°C” (“Paris Agreement”, 2015). The
IPCC’s Special Report on 1.5°C noted that to limit warming to 1.5°C requires net
zero emissions by about 2050, with an intermediate global reduction of emissions
by about 45% by 2030 from 2010 levels (IPCC, 2018). This spurred net zero
commitments from governments and corporations. Will these commitments be
sufficient?

12.2.3 Why Current Climate Policy is Vastly Insufficient

Progress has undoubtedly been made. For example, outright climate denial,
funded chiefly by the fossil fuel industry (e.g., Bonneuil et al., 2021; Franta, 2021,
2022; Oreskes & Conway, 2011; Supran, 2021; Supran & Oreskes, 2017), has
abated. Instead, we have entered the era of climate delay, where greenwashing
and lobbying is slowing down action (e.g., Mann, 2021). Because of the physics
outlined above, delay is almost as bad as denial. Unfortunately, delay is — im-
plicitly or explicitly — at the core of current climate policy. While the Paris
agreement and net zero by 2050 targets are key achievements, there are strong
reasons to believe that current and aspirational climate policy is not only unjust,
but also insufficient to arrest climate breakdown. Below I list six reasons for why
this is the case.

Equity considerations imply faster decarbonization. First, net zero by 2050 is
a global goal, and historical responsibility implies that rich countries must reach
net zero earlier to leave enough breathing room for poorer countries to transition.
The fact that rich countries plan to emit until reaching net zero by 2050 means
that they ignore their historical role in driving climate breakdown, perpetuating
a grave injustice. In fact, even just following the Paris agreement, which en-
shrines “common but differentiated responsibilities” (“Paris Agreement”, 2015),
and avoiding reliance on large-scale negative emissions technologies (more on
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that below), rich nations must decarbonize more quickly than they are currently
planning to. Anderson et al. (2020) find that respecting the equity considerations
as outlined in the Paris agreement halves the carbon budget of rich nations. This
implies a doubling of the mitigation rate, requiring a reduction upwards of 10%
in emissions per year, and sets the date for a full decarbonization of the energy
sector forward to 2035-2040. Focusing on the production of fossil fuels, Calver-
ley and Anderson (2022) find that taking equity into account would require a
complete phaseout of coal production by 2030 and of oil and gas production by
2034 for developed nations, which includes the US, the Netherlands, Germany,
France, and Austria among a total of 19 countries that are responsible for 35% of
total production. However you slice it, equity considerations dramatically accel-
erate the speed with which rich nations must decarbonize.

Taking unreasonable chances. Second, the remaining carbon budget policy-
makers are referring to, and which undergirds the net zero by 2050 target, gives
us a mere 50% chance of limiting heating to 1.5°C. Using an approach that jointly
integrates multiple sources of uncertainties, Matthews et al. (2021) calculate that
the remaining carbon budget from 2020 to limit warming to 1.5°C with 50%
(67%) chance is 440 (230) GtCO2.1 At (constant) annual global emissions of about
40 GtCO2, this yields about nine and a half years from 2023 onwards.2 The au-
thors further note that, with a 17% probability, the remaining carbon budget is in
fact zero. There is thus a non-negligible chance that we have already used up all
the carbon budget to limit heating to 1.5°C. The fact that this is a real possibility,
yet policymakers are planning to emit until reaching net zero by 2050 suggests
that they are willing to take enormous risks.

Gambling on large-scale negative emissions technology. Third, net zero by
2050 relies on future large-scale rollout negative emissions technologies (NETs),
which are unproven at scale. They currently exist primarily in models. Two of
the most prominent NETs are Bioenergy Carbon Capture and Storage (BECCS) and
Direct Air Carbon Capture and Storage (DACCS). BECCS implies growing crops on
large-scale plantations and burning them for energy at customly design plants
while storing the released carbon dioxide underground. Because the crops ab-
sorb carbon during their growth, and because no carbon is released when they
are burned, this technology creates negative emissions. Unfortunately, not only
is biomass a low-quality fuel, large-scale BECCS also competes with food pro-
duction, among other things (Creutzig et al., 2021) — rolling it out at scale could
potentially require plantations five times the size of India, equivalent to all the
world’s farmland (Dabi & Sen, 2021). Large-scale BECCS would also push us
further beyond the planetary boundaries associated with freshwater use, biodi-
versity loss, and biogeochemical flows (Heck et al., 2018). Not only would it
destroy crucial ecosystems, but it would further perpetuate injustice since such

1Importantly, transitioning to a low-carbon energy system itself requires energy, which alone could
blow half of the remaining 1.5°C carbon budget (Slameršak et al., 2022).

2The most recent research notes that the remaining carbon budget could be even smaller, with six
and a half years left given (constant) current emission levels (Forster et al., 2022).
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large-scale plantations would almost surely be built in the Global South. DACCS,
which directly removes carbon dioxide from the air, is a more promising ap-
proach (Creutzig et al., 2019). Yet it is currently too expensive (>600$ per tCO2)
to be rolled out at scale and requires large amounts of water (∼7 tonnes per tCO2)
and energy (∼8 GJ per tCO2; Ozkan et al., 2022). This large energy require-
ment yields a conundrum: DACCS should be powered by low-carbon energy to
make any sense, but the low-carbon energy required for carbon capture capac-
ity is likely more productively spent for decarbonization elsewhere. Many other
NETs are discussed (see Minx et al., 2018, for a review), but none of them are
anywhere close to being rolled out at scale.

A Manhattan-like project for NETs is direly needed, also because rich coun-
tries are in overshoot, and thus have a responsibility to remove carbon dioxide
from the atmosphere (Mohan et al., 2021; Wallace-Wells, 2021). But assuming
that large-scale rollout of NETs is possible in the future is — in the words of An-
derson and Peters (2016) — an “unjust and high-stakes gamble”. Unfortunately,
this large-scale rollout of NETs is a key assumption in mitigation scenarios (Ri-
ahi et al., 2022): 91 out of 95 IPCC scenarios limiting warming to 1.5°C with
limited or no overshoot assume BECCS, with a median removal potential of 334
GtCO2 removed from the atmosphere between 2020 and 2100.3 Across 122 out
of 123 of the scenarios limiting warming to 1.5°C with high overshoot the me-
dian removal is 464 GtCO2, resulting in an average removal of 5.7 GtCO2 per
year. Across all 294 scenarios limiting warming to 2°C the median removal is
291 GtCO2, resulting in an average removal of 3.6 GtCO2 per year. Relying on
future large-scale deployment of NETs downplay the radical transformations that
have to happen today, permitting us to continue polluting today while promising
to clean up tomorrow; it therefore puts undue burden on future generations. The
fact that NETs have become so crucial in mitigation scenarios illustrates the fact
that science does not operate in isolation from sociopolitical forces, but in fact
can be influenced by those who wish to keep business as usual alive (Stoddard
et al., 2021); this bias can be seen most egregiously in the mainstream economic
analysis of climate change (for a critique, see Keen, 2021). Importantly, even if
we assume a mere 10% chance of failure in large-scale NETs rollout, this doubles
mitigation rates, necessitating much faster decarbonization (Grant et al., 2021).

Chimera of green growth. Fourth, virtually all mitigation scenarios assume
continued economic growth throughout the 21st century (e.g., Keyßer & Lenzen,
2021). The crux is that economic growth is associated with increased energy
use and, given our fossil-based energy system, with increasing CO2 emissions.
Achieving net zero emissions while pursuing continued economic growth is ex-
tremely difficult, because economic growth remains the strongest driver of green-
house gas emissions (Dhakal et al., 2022). While there is evidence of relative
decoupling — a slower growth in CO2 emissions while GDP increases — and
evidence that a handful of developed countries have also achieved absolute de-
coupling — a reduction in emissions while GDP increases (Dhakal et al., 2022;

3This results in an average annual carbon removal of 4.1 GtCO2, which is more than a quarter of
the gross carbon removal of all global forests (15.6 GtCO2; Harris et al., 2021).
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Lamb et al., 2022) — there is no evidence that this can be achieved on a global
scale at the pace required to prevent climate breakdown (Haberl et al., 2020;
Hickel & Kallis, 2020; Parrique et al., 2019; Vadén et al., 2020). There is fur-
ther no decoupling from resource use more generally, thus not addressing our
wider ecological crisis (Hickel & Kallis, 2020; Wiedmann et al., 2015). This is
deeply uncomfortable for the dominant growth-based ideology, but the conun-
drum remains: achieving decarbonization at the speed required to avoid climate
breakdown is much more challenging to achieve when pursuing (aggregate) eco-
nomic growth. Like the reliance on a large-scale rollout of negative emissions
technologies, banking on absolute decoupling is a high-stakes gamble.

Climate impacts tend to be worse than anticipated. Fifth, climate impacts
are accelerating and tend to be worse than anticipated. While climate models
have done a good job at predicting average global heating (e.g., Hausfather et
al., 2020), they have generally underestimated the extent of the impacts (IPCC,
2022a). Average temperatures in the decade from 2011 to 2020 were about
1.1C° warmer than the pre-industrial average of 1850-1900 (IPCC, 2021). Av-
erage temperatures in the years 2020 and 2021 were 1.27C° and 1.21C° above
pre-industrial, respectively (Rohde, 2021, 2022). Already at this level of warm-
ing, a litany of climate impacts are being felt across the world today, from heat
waves that exceed worst-case climate models (Coleman, 2022) to extreme flood-
ing that is displacing tens of millions of people (Mallapaty, 2022). Yet we are
currently on track for around 2.7°C of heating by the end of the century (Climate
Action Tracker, 2022a), with median projections of reaching 1.5°C by the early
2030s and 2°C around 2050 (IPCC, 2022e). Scientific research continues to be
published noting that we have underestimated the extent of the impacts (IPCC,
2022d; Tollefson, 2022) — whether it concerns air pollution (e.g., Vohra et al.,
2021), agricultural output (e.g., Jägermeyr et al., 2021), sea level rise (e.g., De-
Conto et al., 2021; Kulp & Strauss, 2019), or extreme heat (e.g., Raymond et al.,
2020; Zhang et al., 2021). On some level, this is not surprising. While extremely
powerful, scientific models are still only simplifications of the marvelous com-
plexity of the real world — nasty surprises cannot be ruled out.

One area of research that makes it abundantly clear that we have underesti-
mated the risks is the research on tipping elements. Tipping elements are large-
scale components of the Earth system that, once a critical threshold is passed, can
transition into an undesirable state, a transition that is generally irreversible on
human timescales (Armstrong McKay et al., 2022a; Lenton et al., 2008a; Lenton
et al., 2019). These are high impact events which can wreak havoc on regional
or even global scales, potentially further amplifying global heating (Steffen et
al., 2018). While the IPCC in the early 2000s suggested that dangerous tip-
ping points are only possible above 3°C (Lenton et al., 2019), the most recent
research notes that we may in fact have already crossed five tipping elements at
current levels of heating, with the risk of tipping markedly increasing as we ex-
ceed 1.5°C (Armstrong McKay et al., 2022a). These include the melting of the
Greenland and West Antarctic ice sheets, which combined would eventually lead
to a roughly 10 meters rise in sea levels; the large-scale die-off of low-latitude
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coral reef, on which over half a billion people depend on for food, income, and
coastal protection (NOAA, 2019); abrupt thaw in the Boreal permafrost, which
would amplify global heating; and the collapse of the North Atlantic subpolar
gyre, which among other things would cause increased extreme weather in Eu-
rope (Armstrong McKay et al., 2022a). The crossing of one tipping point can
increase the chances of crossing another one, potentially resulting in tipping cas-
cades that could challenge the capacity of humans to adapt (Klose et al., 2021;
Wunderling et al., 2021). As a recent report by the OECD noted, current cli-
mate policy is not taking these increased risks from tipping points into account
(OECD, 2022). While primarily discussed in terms of critical thresholds, some
systems may also tip when a critical rate of change is exceeded (e.g., Lohmann &
Ditlevsen, 2021b). While critical rates were discussed in the 1990s in the poli-
cymaking context (Schellnhuber et al., 2016), they have been dropped entirely.
With the rate of carbon emissions that we are emitting into the atmosphere be-
ing unprecedented in the past 66 million years (Zeebe et al., 2016), resulting in a
rate of warming that is unprecedented since at least 24,000 years (Osman et al.,
2021), this may be at our own peril.4

As the above indicates, uncertainty tends not to be our friend, with unmod-
eled factors substantially increasing the risk of our current emissions trajectory.
Earth’s climate is extremely complex, with a delicate balance in place across its
multiple interconnected components. Include the social system, and uncertainty
goes through the roof. A severe drought in the Middle East helped create the
conditions for the Arab Spring, the ensuing Syrian civil war, and a refugee crisis
that led to a rise in right-wing populism that further derails action on climate.
This can be analyzed in hindsight, but actually foreseeing these network effects
is next to impossible — life is too complicated, irregularities abound. Cascad-
ing climate impacts, which are impossible to model adequately let alone predict,
could plunge the world into chaos (Kemp et al., 2022). Because of our lack of un-
derstanding of key Earth system elements and their interactions with the social
domain, the extent and timing of the hellish consequences our current pathway
pushes us towards may be profound underestimates of what could lie ahead.

Saying one thing, doing another. Above I have sketched five reasons why the
manner in which climate policy is pursued today is both flawed and insufficient.
However, one does not need to delve deep into the scientific literature to notice
that something is afoul. Any person can readily observe the striking disconnect
between what political and corporate leaders say compared to what they do on
climate. Net zero targets are a case in point. While national net zero targets now
engulf 83% of global GHG emissions, 91% of global GDP, and 80% of the pop-
ulation, the plans lack important details and are far from sufficient for timely
transition to net zero (Hans et al., 2022). For example, most are only in policy
documents, not in law, and do not specify whether they rely on speculative car-
bon offsets to reach their goals. Only 69 and 32 out of the 100 largest public and

4For a reflection on this unfortunate historical development by eminent climate scientists Tim
Lenton and John Schellnhuber, see https://www.youtube.com/watch?v=AAGQHPbsvTY&t=2190s.
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private companies have net zero targets, respectively, and those that do gener-
ally do not include Scope 3 emissions, that is, emissions from their whole value
chain (Hans et al., 2022). Many fossil fuel companies, for example, have net zero
targets, but do not include Scope 3 emissions.

A recent report on the state of climate action notes that out of 40 indicators —
ranging from the carbon intensity of electricity to public climate finance — none
are on track to limit warming to 1.5°C (Boehm et al., 2022). Worse yet, govern-
ments across the world are actually continuing to expand fossil infrastructure,
aiming for 240% more coal, 57% more oil, and 71% more natural gas production
than is consistent with keeping heating to 1.5°C (SEI et al., 2021). While future
emissions from already existing fossil infrastructure exceed the carbon budget
for 1.5°C (Dhakal et al., 2022), the fossil fuel industry in fact plans to expand
and develop numerous “carbon bombs”, which would put us far beyond 1.5°C
(Carrington & Taylor, 2022; Kühne et al., 2022). Needles to say, none of these
plans by governments or corporations are consistent with a livable Earth (IPCC,
2022e; Tong et al., 2019; Welsby et al., 2021).

12.3 Preventing Climate Breakdown

12.3.1 Radical Transformation Required

While current policy hopes to address climate breakdown within the realms
of business as usual, the IPCC acknowledges the need for system change, not-
ing that “[t]argeting a climate resilient, sustainable world involves fundamental
changes to how society functions, including changes to underlying values, world-
views, ideologies, social structures, political and economic systems, and power
relationships” (IPCC, 2022c). At this stage, escalating catastrophe is a choice. It
is entirely possible to prevent climate breakdown. But because we have left it so
late, and because the situation is so dire, we must take unprecedented emergency
measures. To achieve the decarbonization rates to have a good chance of securing
a livable future requires a war-like mobilization and complete reorganization of
our economy. The science shows that there are no non-radical options left. From
a birds-eye perspective, there are three things we must do.

End fossil fuels. Most importantly, we must end fossil fuels. This is a tall order,
because our entire energy system is built on fossil fuels.5 We derive over 80% of
our energy — used for heating, transport, and electricity — from them (Ritchie
et al., 2022). This fossil-based system causes about 60% of all CO2 emissions
(IPCC, 2022e). While there has been massive growth in renewable energy, they
have so far only added to the energy mix, rather than replaced fossil fuels (York
& Bell, 2019). To level the playing field, fossil fuel subsidies must be slashed
immediately. Explicit subsidies are at about 700 billion dollars per year, while

5The second major challenge is transforming our agricultural system, which is driving our wider
ecological crisis. Even if we end fossil fuels, emissions from our current food system would blow our
1.5 and 2°C carbon budgets (Clark et al., 2020).
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implicit subsidies, which include the effects of global heating and air pollution,
amount to a staggering 5.9 trillion dollars per annum (Vernon et al., 2021). The
savings from this should immediately be poured into efficiency measures — such
as home insulation and reducing food waste — and the massive rollout of renew-
able energy. Merely slashing subsidies is not enough, of course. The use of fossil
fuels must be decreased on a yearly binding schedule. A Fossil Fuel Nonprolifer-
ation Treaty (https://fossilfueltreaty.org/) with yearly reductions can insure that
we reach climate targets. We have left it too late to leave it only to market forces,
which in fact facilitated our conundrum in the first place and whose track record
to fix it is questionable (e.g., Green, 2021). Even ignoring the costs of devastat-
ing climate impacts, recent modeling suggests that a fast transition to renewables
would save trillions of dollars and is therefore an economic no-brainer (Way et
al., 2022).

Reduce energy demand and inequality. Pathways that can limit heating to
1.5°C with limited or no overshoot — thereby minimizing the risk of crossing tip-
ping points — and without gambling on the large-scale rollout of negative emis-
sions technologies require drastic reductions in energy demand (e.g., Grubler et
al., 2018; Keyßer & Lenzen, 2021). This is because reducing energy use natu-
rally makes rapid decarbonization more feasible. Reducing fossil energy in rich
countries by upwards of 10% per year necessarily reduces the available energy.
Efficiency measures alone cannot cope with this, also because rebound effects
can eat up a big chunk of the savings (Brockway et al., 2021), and we cannot roll
out renewable energy fast enough to make up for the reduction in fossil energy.
We therefore need sufficiency measures (Best et al., 2022) and demand-side so-
lutions more generally (Creutzig, Roy, et al., 2022), which can operate on much
faster timescales than a change in supply.

It is of paramount importance that the declining energy we have available is
used more equitably. As outlined above, the rich use vastly more energy than the
less well-off (Oswald et al., 2020), with the top 1% of emitters being responsi-
ble for more than 23% of the emissions growth since 1990 (Chancel, 2022). This
presents clear levers to slash energy use and facilitate a rapid decarbonization. At
a high level, certain sectors of the economy that are geared towards unnecessary
luxury consumption and thus associated with a high energy use or are otherwise
destructive must be downscaled. This is a core tenet of the degrowth agenda,
which focuses on rich countries and, as Hickel (2021) notes, proposes “a planned
reduction of energy and resource use designed to bring the economy back into
balance with the living world in a way that reduces inequality and improves hu-
man well-being” (see also Hickel, 2020a; Hickel & Hallegatte, 2022; Kallis et al.,
2018; Paulson et al., 2020; Schmelzer et al., 2022).

Overall, even though many new employment opportunities will arise in this
transformation, the necessary decrease in energy will imply a decrease in indus-
trial output and likely an overall reduction of employment. Social justice consid-
erations must therefore be at the core of this transition, with policies in place to
absorb the shock for working people, including for example a reduction in work-
ing hours, a job guarantee, and universal public services (see e.g., Adler et al.,

215

https://fossilfueltreaty.org/


12. Understanding and Preventing Climate Breakdown

2019; Paulson et al., 2020). The funds for these policies could be raised by higher
wealth and income taxes. In fact, redistribution should be a core part of this his-
toric project. Not only is a more equal world much easier to decarbonize (Gore,
2021; Jaccard et al., 2021; Millward-Hopkins, 2022; Oswald et al., 2020), build-
ing a democratic majority to support these drastic climate measures requires an
increase in the material standard of living for the many (Huber, 2022). As the US
mobilization for the second world war showed, such drastic policy measures are
entirely possible (Monbiot, 2021a).

Reducing the amount of energy does not necessary imply a reduction in qual-
ity of life. In fact, demand-side solutions are associated with higher well-being
(Capstick, 2022; Creutzig, Roy, et al., 2022) and it is not unlikely that many peo-
ple will derive new meaning from their work when engaged in the generational
project of restoring the Earth, rather than being trapped in what David Graeber
called bullshit jobs (Graeber, 2013). In this great transformation, the goal and
primary driver of the economy may well shift from capital accumulation — a rel-
atively recent development, historically speaking (Scheidler, 2020; Wood, 2002)
— towards serving the needs of people and planet. There might be a reduction in
comfort, at least initially, and especially by the wealthy — in a world that takes
the climate emergency serious, it will not be possible to jet around every other
weekend to go shopping in Milan or scuba-diving in Egypt, nor to fly over the
Pacific for a three-day conference. But this is a small price to pay for a livable
Earth and a renewed sense of purpose.

Increase democracy. Here I have merely hinted at the direction in which soci-
eties might go to begin addressing the planetary emergency. This will require
state interventions at a scale unparalleled in recent memory. It thus holds great
danger of an undemocratic turn. The solution is not to suspend democracy, but
to double down on it. In fact, there are deep problems with our current demo-
cratic systems: the rich have vastly more influence than the less well-off, in the US
(Gilens & Page, 2014) but also in the Netherlands (Schakel, 2021). The suggestion
is to exchange the currently damaged form of representative governance with
more deliberative forms of democracy (e.g., Willis et al., 2022) such as Citizen’s
assemblies, where a representative group of people comes together, gets briefed
by experts from relevant domains, discusses together, and comes up with policy
suggestions that ought to be binding. As citizens’ assemblies in Ireland (Devaney
et al., 2020), France, and the UK (Climate Assembly UK, 2019) showed, the pro-
posed policies are much more progressive and “radical” than what current po-
litical parties suggest. Indeed, a 2021 European-wide survey showed the 93% of
respondents believe that climate change is a serious problem, with 78% consider-
ing it very serious. 25% consider climate change and the deterioration of nature
to be the single most important threat facing the world today (Eurobarometer,
2021).

Similar to the situation during the COVID pandemic, (national) dashboards
should be developed that track progress on the climate and ecological crisis and
make it visible and accessible to all citizens. Overall, political leaders must level
with the public, making clear that we are in the greatest emergency our species
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has ever faced, and that we all — and in particular the more affluent — have a
part to play at this historic time. In the next section, I discuss how we might be
able to facilitate a shift into emergency mode.

12.3.2 Sparking a Climate Revolution

As the previous two sections have outlined, we are facing a dilemma — there
are no non-radical options left. On the one hand, continuing on our current
trajectory, we have the destruction of our life support systems and the end of
organized human society as we know it. On the other hand, we have emergency
measures so drastic that they seem completely outside what is deemed politically
possible. Yet governments across the world are either moving too slowly or in the
wrong direction (Climate Action Tracker, 2022b). For example, while the Dutch
government subsidizes fossil fuels with at least 8.3 billion euros per year (van
der Burg & de Pater, 2020), they plan on spending only 3.5 billion euros per
year on climate and the energy transition until 2030. After 27 Conference of the
Parties (COPs), we still do not have a political agreement that clearly states that
we must end fossil fuels (and which barely even mentions animal agriculture;
Monbiot, 2022) It is in this context of enormous political failure that we have
to ask ourselves: What is our role as citizens and as scientists? As fathers and
as mothers? As those who have benefited disproportionately from the current
world-system while others already suffer greatly? In the struggle for a livable
Earth, what are we prepared to give?

12.3.2.1 Being the Change

There are many things we can do, especially as people with high socio-economic
status (for an overview, see Nielsen, Nicholas, et al., 2021). As consumers, we can
make lifestyle choices and shift our consumption patterns to be more sustain-
able. The big impacts come from a reduction in flying, eating less or no meat, in-
creasing the energy efficiency of our homes and switching to a renewable energy
provider, and living car free (Ivanova et al., 2020). As investors, we can decide to
not invest in destructive businesses and donate to highly effective organizations
such as the Clean Air Task Force and the Climate Emergency Fund. As partici-
pants in organizations, we can help push them make systemic changes, such as
transforming conferences to require no air travel (Sarabipour et al., 2021), reduc-
ing meat in catering (Garnett & Balmford, 2022), or creating a mandatory class
about the planetary emergency in the curricula of all students (Aron, 2022; Bur-
gen, 2022). In general, we can become more vocal about the planetary emergency
in the talks we give, the conversations we have, and the courses we teach. This
is absolutely critical. While many view climate change as an important threat,
most are still ill-informed about (a) how bad the situation truly is, (b) how inade-
quate current policy is, (c) what the key drivers and barriers to action are, and (d)
how they can get involved to help secure a livable future. Academics can push
universities to educate all students on these important issues as well as engage in
much more advocacy and outreach to inform the public; in short, moving from a
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focus on publications to a focus on public actions (Gardner et al., 2021). Doing so
can inspire others, which may motivate them to take action as well. This can re-
sult in social tipping dynamics which can accelerate change (Farmer et al., 2019;
Lenton, 2020; Lenton et al., 2022; Otto et al., 2020a; Winkelmann et al., 2022).
Our task is to shift the status quo into a more sustainable equilibrium, and this
requires a large number of people who are sympathetic to the cause and engage
in advocacy. There can be no system change without individual change — we
need both.

12.3.2.2 Fighting for Change

We have left it so late that relying only on institutional avenues for change is not
sufficient. In parallel to increasing the number of people who can support the
transition to a sustainable world with more traditional means, we need to mas-
sively grow the number of people who are willing to use strategies and tactics that
include civil resistance. Civil resistance is a method to change the status quo using
nonviolent, noninstitutional means such as boycotts, occupations, and protests
(Chenoweth, 2021). While civil resistance campaigns have existed for millennia,
the term itself is due to Gandhi, who combined the terms passive resistance and
civil disobedience (Chenoweth, 2021). Passive resistance follows from his insight
that oppression always requires the consent of the oppressor, and that campaigns
of non-cooperation can bring down empires (see also Sharp, 1994). Civil disobe-
dience can be defined as “constrained, communicative protest, contrary to law,
that people engage in to support a change in governmental or nongovernmental
practices” (Smith & Brownlee, 2017).

Civil disobedience actions are powerful because they can create tensions and
economic damage that cannot be ignored. Many groups in the climate and wider
environmental movement draw on the history of civil disobedient social move-
ments, and today civil disobedience is practiced around the world (see e.g., Tem-
per et al., 2020; Temper et al., 2015). In the Global North, many notable move-
ments exist, including Fridays for Future, which inspired millions of young people
around the world to skip school and take to the streets, and Extinction Rebel-
lion, which mobilized thousands to disrupt normal life while risking arrest. Both
movements massively elevated concerns about climate (Ozden & Glover, 2022;
Smith, 2019), with many governments declaring a climate emergency following
their actions. After a pandemic-induced stifling of activity, climate groups picked
up steam again. For example, Just Stop Oil is engaging in repeated disruptions in
the UK, demanding that the government stops licencing new oil and gas permits,
while Letzte Generation is engaging in similar disruptive actions in Germany, de-
manding — as of this writing — a speed limit of 100 km/h on motorways and the
reintroduction of the popular €9 ticket for public transport.

Facilitating a society-wide shift into emergency mode is a very different en-
deavor than fighting colonial oppression, toppling authoritarian regimes, or re-
pelling racist laws. While one can have long debates about strategy and tactics,
the fundamental strength of civil disobedience — and the empowerment one can
derive from these types of actions — is uncontested. Bertrand Russell put it well
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in an essay on civil disobedience over sixty years ago (Russell, 1961):

“There is another, and perhaps even more important reason, for the
practice of civil disobedience in this time of utmost peril. There is a
very widespread feeling that the individual is impotent against gov-
ernments, and that, however bad their policies may be, there is noth-
ing effective that private people can do about it. This is a complete
mistake. If all those who disapprove of government policy were to
join in massive demonstrations of civil disobedience, they could ren-
der governmental folly impossible and compel the so-called states-
men to acquiesce in measures that would make human survival pos-
sible.”

In the end, it is a numbers game, which results in a dilemma. Marches and
legal demonstrations can draw large numbers, but they can easily be ignored.
Civil disobedience actions cannot be so easily ignored, but the barriers to entry
are much higher. Disruption and norm violations are generally frowned upon,
with groups such as Just Stop Oil and Letzte Generation being unpopular with
the wider public (e.g., Knowles, 2022). There is a lot of space for provocative
and creative forms of civil disobedience that are more popular with the wider
public than the currently dominant type of actions. While several collaborations
and campaigns exist that link climate concerns with the material concerns of
the many, more of this is needed to mobilize the masses (Huber, 2022; Klein,
2020). Importantly, however, the demands of groups like Just Stop Oil and Letzte
Generation are very popular, and the influx of new people willing to engage in
civil disobedience is growing and growing. Yet at the same time, climate impacts
are getting worse and worse. In this race against time, there is one strata of society
that may be particularly suited to speeding up the change.

12.3.2.3 The Role of Scientists on a Planet in Crisis

The Summary for Policymakers of the Working Group II contribution to the Sixth
Assessment Report of the IPCC (IPCC, 2022d) closed with a sentence for the
history books:

“Any further delay in concerted anticipatory global action on adapta-
tion and mitigation will miss a brief and rapidly closing window of
opportunity to secure a livable and sustainable future for all.”

And yet as we have seen above, rather than taking the necessary action, gov-
ernments continue to expand the fossil fuel industry. Although no counterfac-
tual exists, the track record of scientific reports bending the emissions curve is
disheartening: Carbon emissions today are 60% higher than they were in 1990,
when the first IPCC report came out (Stoddard et al., 2021). While there have
been World Scientists’ Warning to Humanity in 1992 (of Concerned Scientists,
1992) and 2019 (Ripple et al., 2019), with over 15,000 signatories (see also Ripple
et al., 2022; Ripple et al., 2021), we are still on “a highway to climate hell”, as UN
General Secretary António Guterres puts it (Guterres, 2022).
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This has serious implications for the role of science and scientists. In a well-
functioning system, scientists would draw attention to certain issues and policy-
makers would get to work addressing them. In this way, scientists would never
have to enter the political arena directly, never have to go beyond the written
word and the occasional press conference or briefing. Science communication
presupposes a functioning political system that is able to bring about change.
But it is clearly not. This is deeply problematic for scientists who have issued
these warnings, and to no avail. It questions the role of scientists on a planet in
crisis. Oreskes (2020) argues that scientists have a responsibility to act so to en-
sure that their findings are known, understood, and put to use to protect fellow
citizens; in short, they can act as sentinels to alert societies to threats. But what if
those warnings are not being heard?

Then it might be prudent to change tactics (Racimo et al., 2022). While many
scientists have expressed public support for the civil disobedience actions by
groups such as Fridays for Futures (Hagedorn et al., 2019) and Extinction Rebellion
(Green, 2019), Gardner and Wordley (2019) go further and argue that scientists
must act on their own warnings to humanity and engage in civil disobedience
themselves. Unlike reports with thousands of pages, climate scientists getting ar-
rested over the climate crisis — translating their knowledge and despair into ac-
tion — sends a strong signal to wider society that we are, in fact, in an emergency.
The most famous example is James Hansen, who first alerted US congress to the
dangers of global heating in 1988, and changed tactics, engaging in civil disobe-
dience to protest against mountaintop removal coal mining and the construction
of the Keystone XL pipeline. He justified his actions by saying (McGowan, 2011):

“Einstein said to think and not act is a crime. If we understand the
situation, we must try to make it clear. I decided six or seven years
ago that I did not want my grandchildren to look back in the future
and say ‘Opa understood what was happening, but he didn’t make it
clear’.”

While Hansen was an outlier, this is beginning to change. In April 2022,
when the Working group III contribution to the sixth assessment report of the
IPCC was released, Scientist Rebellion organized a week of actions during which
over a thousand scientists and academics in more than 27 countries took to the
streets (Harvey, 2022). Many of them were arrested. When NASA climate scien-
tist Peter Kalmus chains himself to a JP Morgan Chase branch (Kalmus, 2022),6

the largest funder of fossil infrastructure (Kirsch et al., 2022), it can break our
collective trance more powerfully than yet more academic reports. Even as sci-
entists outside areas directly related to climate and ecological breakdown, we are
still uniquely positioned to read, understand, and reflect on the planetary emer-
gency. With this privilege and position comes a special responsibility. As a re-
cent editorial of The Lancet Planetary Health argued, scientists — one of the most
trusted groups in society (Clemence & Boyon, 2022) — are needed in provocative
protests (The Lancet Planetary Health, 2022), with civil disobedience by scien-
tists not only being justified and effective, but also lending support to the wider

6https://www.youtube.com/watch?v=qZMwc-ZDkCk
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climate movement (Capstick et al., 2022). This responsibility is not only to wider
society, but more immediate also to our students. How can we continue with
teaching us usual when — unless we act, swiftly and with resolve — enormous
disruption and suffering lies ahead? Universities, which are places that should
prepare students to navigate the world ahead, are failing to do so.

In a world of increasing polarization and mistrust of science, there are valid
concerns of whether engaging in peaceful civil disobedience may not undermine
the credibility of scientists. When I asked one of the world’s foremost oceanogra-
phers at a conference whether he would chain himself to Deutsche Bank in order
to protest their financing of fossil fuels, he noted that he cannot rule it out. But
he also pointed to Hansen as an example of somebody who might have lost some
credibility because of his civil disobedience actions. As Oreskes (2020) notes,
while Hansen might have taken a hit in terms of how his colleagues view him
— because scientists are especially sensitive to violations of community norms
— he is seen as a hero by the public. Indeed, there is some research suggesting
that the public in fact supports more, rather than less engagement (Cologna et
al., 2021), and that perceived credibility and trustworthiness are not diminished
when engaging in advocacy (Cologna et al., 2021; Kotcher et al., 2017). Much
more research on this front is required, however.

One core goal of Scientist Rebellion is to push the scientific community writ
large to engage with the climate and ecological crisis in a much more direct man-
ner.7 As of this writing, there are Scientist Rebellion groups in over 30 countries,
including in the Netherlands.8 Among other things, we organized the first march
and civil disobedience action by scientists over climate in the Netherlands;9 we
joined over 60 scientists and academics from across Europe to engage in civil
disobedience actions in Berlin, disrupting the opening of the World Health Sum-
mit,10 occupying the German Finance Ministry,11 and pasting scientific papers
on the German Transport Ministry;12 we wrote letters and engaged in civil dis-
obedience actions over the Dutch government’s plans to allow drilling for fossil
gas in the North and Wadden sea; and we mobilized for and helped block private
jets at Schiphol and joined an internationally coordinated action where over 100
scientists blocked private jets in eleven countries.13

Some of these actions made national and international news — including re-
porting in The New York Times, The Guardian, The Washington Post, and Scien-
tific American — drawing more people into the climate movement and bolstering
other groups taking nonviolent direct action. Engaging in these types of actions,
seeing how we can perturb the system, is one of the most empowering things I
have ever done. Change is indeed possible. But it requires stepping out of our
comfort zones and shifting our focus from publications to public actions. Scien-

7https://scientistrebellion.com/
8https://www.scientistrebellion.nl/
9https://www.youtube.com/watch?v=EYFhadxD0eg

10https://www.youtube.com/watch?v=JNVJvx2iVBU
11https://www.youtube.com/watch?v=VTT2wHESKSY
12https://www.youtube.com/watch?v=kuXbzUWZD98
13https://www.youtube.com/watch?v=2A0-y3WRQF8
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tist Rebellion is building a community of academics from all disciplines that are
doing exactly that. This is messy — change always is. But in order to secure a
livable and sustainable future for all, this is the task at hand.

12.3.2.4 The Social and Behavioral Sciences as Crisis Science

The pandemic showed that, in an emergency, society can rapidly reorganize to
face a threat. We not only saw large-scale behavior change within days, but gov-
ernments also spend trillions to safeguard citizens. Large parts of science rapidly
reorganized in service of society and became what one may call crisis science (Col-
well & Machlis, 2019). The COVID-19 pandemic pales in comparison to the cli-
mate and wider ecological crisis, and just as society must shift into emergency
mode, science must too.

The social and behavioral sciences play a key role here. Glavovic et al. (2021)
lament the “tragedy of climate science”, namely that after thirty years of IPCC
reports, policymakers are still failing to act to prevent climate breakdown. The
authors suggest to stop doing climate science until policymakers listen. While
the physical science is settled enough to motivate action — and there are calls
to discontinue the IPCC’s Working Group I, which summarizes the physical sci-
ence basis (Oreskes, 2021) — the social sciences have historically been overlooked
(Cologna & Oreskes, 2022; Creutzig, Nielsen, et al., 2022). Between 1990 and
2018, only 0.12% of all research funding on mitigation went to the social sci-
ences (Overland & Sovacool, 2020). Yet as sketched above, the barriers to action
are not a lack of knowledge about the physical science, but resistance by actors
who disproportionately profit from the status quo (Stoddard et al., 2021). These
include not only fossil fuel companies that rake in record profits and unduly in-
fluence the policymaking process (Mann, 2021; Oreskes & Conway, 2011; Young
et al., 2020) but also affluent, high-emitting individuals that — consciously or
not — seek to protect their carbon-intense lifestyle (Barros & Wilk, 2021; Chan-
cel, 2022; Maitland et al., 2022; Nielsen, Nicholas, et al., 2021; Wiedmann et al.,
2020). The social and behavioral sciences are critical in finding ways to overcome
this entrenched power. In fact, there are many areas of inquiry that the social
and behavioral sciences must urgently address. Below I sketch four that follow
naturally from what I have discussed so far.

Mobilizing the masses. As outlined above, a 2021 European-wide survey
showed the 93% of respondents believe that climate change is a serious prob-
lem, with 78% considering it very serious (Eurobarometer, 2021). Yet the num-
ber of people engaging in advocacy and activism to prevent climate breakdown
is miniscule. There certainly are structural reasons for this inaction, with neolib-
eral politics over the last few decades eroding our sense of collective agency and
instead focusing our minds on individual, non-consequential solutions such as
ditching plastic straws or recycling (Harvey, 2007; Klein, 2015; Monbiot, 2021b);
there are cognitive reasons for it, with evolution having ill-equipped us to deal
with global issues that are perceived to be in the future (Marshall, 2015; Skin-
ner, 1987); and there are social reasons for it, with people being highly sensitive
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and averse towards norm violations. A key question of our time is how we can
overcome these and other barriers to create a true mass movement that can push
entrenched power to act commensurate with the threat ahead. This is under-
studied: in psychology, there exist not even a handful of studies that investigate
how and what makes people engage in collective action and which measure ac-
tual rather than self-reported behavior (cf., Castiglione et al., 2022).14 Given what
is at stake, this area of research deserves vastly more attention.

Rather than focusing only on the usual suspects — white young students —
psychology and related fields should study how barriers differ in different groups
of society. For example, working class people who struggle to feed their family
will face quite different barriers than young students from affluent families or
full professors. Special focus should be given to groups that, at least in principle,
wield structural power over parts of the economy that may be utilized to force
emergency action (Huber, 2022) or have an otherwise special position in society.
What social, cognitive, and economic barriers to action do they face? What is the
best way of communicating a positive vision of the future that motivates more
people to engage in collective action? What leads people to continue to work in
highly destructive sectors, such as fossil fuel production or animal agriculture?
Why do so few people working in these sectors defect? When colleagues and I in-
filtrated the 30th anniversary event of the Superyacht Forum in Amsterdam and
engaged in conversations with people working in this highly polluting industry,
I found good intentions, self-deception, and a lack of perceived agency. More
detailed and systematic field work that can help inform rapid transformations is
urgently needed. We also need to better understand what makes people block
climate solutions, such as the rollout of wind turbines and solar panels, and why
the most privileged among us — such as tenured faculty — are not shifting what-
ever they are doing to focus on preventing climate breakdown. I know of only a
single example to the contrary (Aron, 2021).

Studying and helping social movements. Social movements are crucial in the
struggle for a livable Earth, but the ways in which they effect change are under-
studied (cf., Ozden & Glover, 2022; Thiri et al., 2022), and some may be oper-
ating under a theory of change that is built on flawed research (e.g., Matthews,
2020). A more intense dialogue and collaboration between academics and social
change actors can help ground strategies in the best available science (Isgren et
al., 2019). This would spur additional research, as social scientific research is
heavily context-dependent and often simply non-existent. For example, Just Stop
Oil activists threw soup at a glass-protected Van Gogh painting, to enormous
public outrage (Gayle, 2022). Do such actions help or harm the cause? Some
experimental research on the “radical flank” effect suggests that actions that are
perceived to be radical can increase support for moderate factions of the move-
ment (Ozden, 2022a; Shuman et al., 2021; Simpson et al., 2022), while other work

14Psychological research more generally has historically focused on behavior that is easy to measure
yet not impactful (e.g., recycling) rather than behavior that is more difficult to measure yet actually
matters (e.g., what type of home people buy; Nielsen, Clayton, et al., 2021), and needs to urgently
refocus on impact (Nielsen, Cologna, et al., 2021).
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suggests that extreme actions may actually hurt the cause (Feinberg et al., 2020;
Ozden, 2022b). Research that studies the effects of these (and other) forms of
protest outside the experimental context and over longer periods of time would
be highly valuable. Scientists could also help map the landscape and distribution
of power in local contexts — such as cities, municipalities, or whole nations —
to inform movement strategy. As John Dewey once noted, “politics is the shadow
big business casts on society” (Young et al., 2020). Academics can help untangle
the ways in which corporations yield undue influence in the policymaking pro-
cess, and inform social movements and help them develop effective campaigns
targeted at eroding these undemocratic links. Fantastic work has been done un-
covering the damaging influence of the fossil fuel industry (e.g., Bonneuil et al.,
2021; Franta, 2021, 2022; Oreskes & Conway, 2011; Supran, 2021; Supran &
Oreskes, 2017), with — to my knowledge — comparatively less work scrutiniz-
ing, for example, big agricultural corporations. Academics and communication
experts can study what type of framing and which type of demands are most
likely to resonate with (what factions of) the wider public. Which demands are
more likely to be met — because of historical reasons in the local context, the
legal situation, or popular support — and are some demands more likely than
others to propel further system-wide changes? For example, banning private jets
may have a rather localized effect, while introducing a €9 ticket for public trans-
port hints at a vision of a cleaner, car-free world.

Developing coupled social-climate models. Humans have become a geologi-
cal force, with the trajectory of the Earth system and human societies now being
fundamentally coupled (Steffen, Broadgate, et al., 2015). Scientists use Integrated
Assessment Models, which combine narratives of how society will develop in the
future with coupled components that include climate, energy, and the economy
to assess the effect of mitigation policies and technological developments (Evans
& Hausfather, 2018; Hausfather, 2018). However, these models are limited in
the extent to which they allow feedback interactions between the social and the
climate system (Donges et al., 2020; Donges et al., 2017). Modeling such feed-
backs is critical, however, as social factors such as polarization and perceived
threats of global heating are key determinants of policy. Recent work tries to
ameliorate this by creating models from which future temperature trajectories
and climate policy evolve endogenously from the coupled interaction between
the social, technological, political, and climate system (Moore et al., 2022). This
is a highly promising and strongly interdisciplinary research endeavor that social
and behavioral scientists are well equipped to contribute to.

Preparing for emergency mode. As I have sketched above, current climate pol-
icy is vastly insufficient to arrest climate breakdown. To avert the worst, we
must shift into emergency mode, which is associated with a marked reduction
in available energy. This constitutes a wide-ranging intervention whose effects
deserve detailed study. Some global scenarios exist that secure a decent living at
markedly reduced energy use (e.g., Millward-Hopkins, 2022; Millward-Hopkins
et al., 2020), but more detailed investigations on a country-level are needed. For
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example, if the Netherlands would conform to mitigation rates upwards of 10%
per year, how do we equitably distribute the remaining energy across citizens
and sectors? What sectors should be scaled down, and what are the resulting
social effects of such a scaling down? How would citizens react to such drastic
government interventions? How can we avoid polarization and backlash and in-
stead secure high public support for such measures? These questions span many
disciplines, but as we have seen during the COVID-19 pandemic, public sup-
port — and hence the social and behavioral sciences — are key. Milton Friedman
notoriously noted that:

“Only a crisis — actual or perceived — produces real change. When
that crisis occurs, the actions that are taken depend on the ideas that
are lying around. That, I believe, is our basic function: to develop
alternatives to existing policies, to keep them alive and available until
the politically impossible becomes politically inevitable.”

Any sober analysis of our current predicament suggests that things are going
to get worse — much worse — before we can stabilize the Earth system and create
a happier, healthier, and more sustainable society. The question is not whether we
shift into emergency mode, but when. Will we do so voluntarily, or will devastat-
ing impacts force us to? In either case, we better come prepared.

12.4 Conclusion

Decades of scientific warnings have not bent the global emissions curve, with
current policies putting us firmly on track towards an unlivable Earth. As one
of the most privileged and trusted groups in society, scientists and academics are
well positioned to help secure a livable and sustainable future through increased
advocacy and activism.
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Chapter 13

Summary and Future
Directions

This dissertation focused on understanding systems from different perspectives.
Its structure mirrors how my own thinking has developed. I was first drawn to
the statistical perspective when, in my younger and more vulnerable years, I was
exposed to Bayesian statistics. The elegance of this inferential framework and its
many benefits motivated the first part of this dissertation. Early in my PhD I real-
ized the importance of moving from a purely statistical understanding to a causal
understanding of systems. Together with the notion that psychological phenom-
ena arise from the causal interaction of multiple factors rather than from a single
latent cause, this causal perspective motivated the second part of this disserta-
tion. Most systems are not static, but can change in unexpected and sometimes
even dramatic ways. After attending the Santa Fe Institute’s Complex Systems
Summer School in 2019, I became interested in indicators that might warn us of
such dramatic changes. Through this work, I also realized the importance of a
model-based understanding of systems. This dynamical and model-based per-
spective motivated the third part of this dissertation.

Then COVID-19 hit. I realized that stability is not a given — things can
change dramatically, rapidly, and for the worse. Together with colleagues, I set
up Science versus Corona to help researchers in the analysis of COVID-19-related
data and find exit strategies from repeated and uncoordinated lockdowns. The
first few months of the pandemic were wild, the ones thereafter unreal. I was
lucky and by cosmic coincidence able to spend much of the pandemic isolated
on a Mediterranean island. There, largely removed from viral concerns, I im-
mersed myself in the climate science literature. I realized that things are worse
— much worse — than I thought. Upon returning to civilization I began to get
involved in climate action groups, helping to set up and grow Scientist Rebellion
Netherlands from a handful of core organizers into a thriving academic commu-
nity eager to help secure a livable and sustainable future for all. My focus shifted
from academic work to more practical endeavors, which included giving non-
violent direct action trainings, blocking private jets, and learning how to make
fake blood. I would not have expected this at the start of my PhD — life can be
funny sometimes. Yet this journey made me realize that simply aiming to under-
stand a system is not enough; if we see what is wrong with it, we should strive to
change it for the better. In this concluding chapter, I summarize the chapters of
this dissertation and outline future directions for researchers interested in better
understanding, and indeed changing, systems.
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13.1 Statistical Perspective

Systems leave traces in their environment, and we can use these traces to make
inference about their behavior. We can develop hypotheses about these behav-
iors and collect data to test our predictions. The first part of this dissertation
dealt with hypothesis testing within the framework of Bayesian inference. One
core aspect of this framework concerns the formalization of prior beliefs. This
is not always straightforward, and counter-intuitive results can occur. Chapter
2 illustrated this with a simple example — testing the equality of two propor-
tions. The most popular analysis approach views the comparison of proportions
from a contingency table perspective, assigning prior distributions directly to the
two proportions. Another, less popular approach views the problem from a lo-
gistic regression perspective, assigning prior distributions to logit-transformed
parameters. We found that these two tests can lead to markedly different conclu-
sions, especially when the proportions are small. This is because the contingency
table perspective does not create a prior dependence between the proportions,
while the logistic regression perspective does. The dependence makes sense: if
we wish to test the equality of two groups, we implicitly assume that they are, to
some extent, similar — otherwise there would be no need for a test. This chapter
stressed the importance of prior dependence for Bayesian testing, and is a cau-
tionary tale that even in simple applications, differences in prior specification —
especially when nonlinear transformations are involved — can have unintended
consequences.

Chapter 3 started from first principles and derived a test for the comparison
of variances. In particular, we specified a set of desirable properties that our
Bayesian test should fulfill and found a suitable class of prior distributions that
result in such a test. This is a principled way to choose prior distributions that
can avoid unintended consequences compared to choosing prior distributions
in a more haphazard manner. The proposed test allows researchers not only to
test the assumptions of other tests, such as the t-test, but also to test substantive
hypotheses, including hypotheses that involve equality, inequality, and ordering
constraints, such as σ2

1 = σ2
2 > (σ2

3 ,σ
2
4 ). This allows researchers to translate their

substantive hypotheses more directly into statistical ones. We have illustrated
this with examples from engineering, archaeology, and educational psychology.

While Chapter 3 focused on testing whether all groups are equal or not, re-
searchers are frequently interested in comparing multiple groups at once. Chap-
ter 4 investigated this so-called multiple comparisons problem from a Bayesian
perspective. The Bayesian approach to this problem is to assign a prior to all
possible (in)equalities between all groups. In contrast to Chapters 2 and 3, this
means specifying a prior not only for the parameters within one model or hypoth-
esis, but also across all models or hypotheses. Using ideas from combinatorics,
we can reason about the set of hypotheses in terms of partitions, whose number
grows rapidly; for example, K = 10 groups already yield 115,975 partitions. In-
ference thus becomes challenging, and we proposed a stochastic search method
to efficiently explore the high-dimensional space of partitions. We compared our
method to several other approaches to the multiple comparisons problem and
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illustrated it on a number of empirical examples. Our proposed method goes
beyond current approaches to multiple comparisons in the (psychological) liter-
ature, and we hope that our method will find routine use in practice.

Bayesian hypothesis testing has a number of benefits (e.g., Wagenmakers et
al., 2016), allowing one to (a) quantify evidence in favor of the null hypothesis,
(b) incorporate prior knowledge, (c) use sequential sampling designs which in
many cases are more cost-effective, (d) translate substantive predictions more eas-
ily into statistical hypotheses by allowing (in)equality and order-constraints, and
(e) elegantly account for uncertainty across both parameters and models. Chap-
ters 2-4 have demonstrated some of these benefits, but have also highlighted the
challenges associated with specifying prior distributions, pointing to a number
of future research directions. Chapter 2 suggests that Bayesian testing should
be investigated in other contexts where independent prior specifications coupled
with a nonlinear transformation are prevalent. The assumptions that are implicit
when adopting such a testing approach may not correspond to what researchers
actually have in mind. In contrast to the independent prior specification, there
currently does not exist, as far as I am aware, a test for the equality of proportions
for K > 2 groups that uses the logistic regression setup. This is an opportunity for
future research, which should also assess what choice of priors results in a test
that would fulfill the desiderata outlined in Chapter 3. While we have proposed
a test of variances for independent groups, additional work is needed to extend it
to dependent outcomes. Similarly, while Chapter 3 extended standard hypothe-
sis testing to allow for hypotheses that include (in)equality and order-constraints,
researchers may also have more specific theoretical predictions, for example that
σ1 = 3 ·σ2 or σ1 = σ2/σ3. Because such hypotheses make more precise predictions,
the resulting statistical test is more powerful, requiring less data to reach con-
fident conclusions. Future research is needed to translate such hypotheses into
readily available statistical tests. Chapter 4 adapted the beta-binomial prior to
the context of multiple comparisons, and compared various prior distributions
using simulations. It seems intuitively plausible that a (default) prior should as-
sign monotonically decreasing probabilities to (increasing) inequalities, but there
is room for future research to devise other properties that a good test should ful-
fill. In sum, there are a number of exciting avenues for future research to expand
on the work presented in the first part of this dissertation.

13.2 Causal Perspective

While a statistical understanding of a system is a good start, it is falling far short
of giving us the whole picture. In fact, we can learn a good deal about a system
by merely observing it, but we may be surprised when it changes its behavior
after a purposeful intervention. The second part of this dissertation dealt with
the crucial difference between a mere statistical and a causal perspective. Sta-
tistical models describe probabilistic relationships between variables — they can
tell us that if X is high, Y will likely also be high — but they cannot tell us what
would happen to Y if we were to increase the value of X. In order to model the
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outcome of such interventions, we need to go beyond statistical inference towards
causal inference. Chapter 5 provided an introduction to the core tenets of causal
inference from observational data in the tradition of graphical models.

Using ideas from the causal inference literature, Chapter 6 illustrated the
crucial distinction between causal and statistical network models. In the early
days, many researchers interpreted node centrality measures as indicators of how
causally important a node is in a network. Such inference is not warranted, and
Chapter 6 illustrated this point by simulating data from linear acyclic causal
models, computing various node centrality measures from the estimated sta-
tistical network model, and showing a mismatch between these measures and
true causal effect measures. Of course, this approach leaves open the possibility
that the data are generated from a more complex underlying dynamical system
whose components have causal effects that map neatly onto statistical node cen-
trality measures, but this seems unlikely. The purpose of this chapter was to show
that concepts from the statistical network literature, which are often interpreted
causally, may not neatly map onto concepts from causal inference.

Thinking about the target of inference can clear up other confusions that oc-
cur in the psychological network literature. Chapter 7 zoomed in on Berkson’s
bias (Berkson, 1946a), which in the context of statistical network models is un-
derstood as implying that conditioning on sum scores leads to biased estimates.
We show that such a general statement is too vague to be helpful, discussing
five different research questions or targets of inference that may or may not be
affected by Berkson’s bias.

In current empirical practice, researchers frequently study psychological sys-
tems — which can be understood as systems of causally related components that
evolve over time within an individual — by fitting statistical models to cross-
sectional data. This raises a central question: can cross-sectional data analysis
ever yield causal insights into systems that evolve over time, and if so, under
what conditions? Chapter 8 introduced Equilibrium Causal Models (ECMs) to the
psychological literature to help address both challenges. ECMs allow for infer-
ences about the long-term effects of interventions and can in principle be learned
from (certain types of) cross-sectional data. They also provide an intuitive in-
terpretation of feedback relationships, which are a core part of complex systems.
We drew on the literature on psychological measurement and causal discovery to
outline how ECMs can inform the ways in which psychological researchers col-
lect and analyze their data. We hope that ECMs can become, if not a practical,
then at least a conceptual tool that can inform psychological research.

Democritus once said that he would rather discover a single cause than gain
the kingdom of Persia. Although I would probably hesitate to follow his exam-
ple if given the choice, I do share his sentiment — we long for a causal under-
standing of systems. As Chapters 5-8 have illustrated in various ways, however,
causal inference is generally much harder than statistical inference. We thus of-
ten rely on shortcuts, using statistical measures as proxies for causal ones, as-
suring the reader that we of course know that correlation does not imply cau-
sation (e.g., Grosz et al., 2020). More progress may be made when explicitly
acknowledging the causal goal and directly working towards it. What would this
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imply for current research practices? In the context of the network approach
to psychology, rather than using statistical models to estimate partial correla-
tion networks and computing increasingly sophisticated summary statistics, re-
searchers could explore quasi-experimental designs to draw causal conclusions,
including regression discontinuity designs, interrupted time series, and synthetic
control methods. Empirical studies could be designed to include interventions at
various points in time, and methods be developed that could use this informa-
tion for causal inference. Recent advances in the literature on causal discovery
suggest that collecting data from systems in multiple contexts — combining ob-
servational settings with settings in which an intervention has taken place —
can overcome many of the challenges associated with traditional methods (e.g.,
Mooij et al., 2020). Similarly, causal thinking can sometimes clarify old debates
or lead to a reappraisal of old tools, as Chapter 8 showed with the introduction
of Equilibrium Causal Models. Yet the conditions under which causal tools can
be fruitfully applied may be frustratingly difficult to achieve in practice, or may
require conceptual clarity that is still lacking in psychology. To what extent do
ECMs make sense when causal effects are heterogeneous? How can we extend
ECMs to more realistic situations? What is the timescale of change, and what
do we even mean by an equilibrium of a given psychological system? And while
we can certainly arrive at numerical quantities, can we give them interpretative
weight by specifying concrete interventions that would affect the chosen vari-
ables in the desired way (e.g., Hernán, 2016)? These questions highlight the fact
that the causal perspective as discussed here offers an intermediate perspective
that goes beyond statistical inference, but still falls short of providing detailed
insights into the systems we wish to study. There is no doubt, however, that there
are many promising avenues for research that rigorously pursues the causal en-
deavor outlined in the second part of this dissertation.

13.3 Dynamical Perspective

A dynamical or model-based perspective goes beyond the abstractions inherent
in the statistical and causal perspectives by elaborating how components of a sys-
tem relate to each other. These components can reinforce each other and create
feedback dynamics that can lead to unexpected and sometimes even dramatic
changes. The third part of this dissertation dealt with changes in systems that we
generally wish to avoid. Motivated from dynamical systems theory, critical slow-
ing down refers to the fact that some systems return to their equilibrium more
slowly after a perturbation the closer they are to a tipping point. This suggests a
number of early warning indicators, such as increased variance, autocorrelation,
and cross-correlation. Chapter 9 provided a comprehensive introduction to early
warning signals based on critical slowing down to the psychological literature.
We drew on the more mature literature in ecology, epidemiology, and physics
to assess the theoretical nuances of such early warning signals. The ultimate
promise of early warning signals is to provide real-time warning of, for example,
sudden transitions into depression. In a simulation study that mimicked such a
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real-time situation we found that the performance of various early warning indi-
cators dropped markedly with noise levels that might be typical for psychological
applications. We concluded that there are substantial difficulties associated with
applying these indicators in practice, a conclusion that is echoed by researchers
who have done extensive empirical work on the topic (e.g., Helmich, 2022). We
also suggested several avenues for future study — including a greater focus on
formal modeling — so as to put early warning signals on a solid footing in psy-
chology and psychiatry.

Epidemic outbreaks are a prime example of systems changing in dramatic
ways that we wish to avoid. Could early warning signals based on critical slow-
ing down have helped us anticipate the second COVID-19 wave? The effective
reproductive number (Rt) gives the average number of new cases caused by an
infectious individual. Mathematically speaking, Rt = 1 constitutes a (dynamic)
transcritical bifurcation, which is associated with early warning signals based on
critical slowing down. Using data from 27 European countries, Chapter 10 found
that early warning indicators showed a decrease rather than the characteristic in-
crease prior to the bifurcation. Illustrating the inferential power even a simple
model can have, we showed in simulations that this is likely due to the persistent
transient dynamics from the first wave — the system cannot reach its equilibrium
prior to the second wave, a necessary condition for indicators to increase. This
chapter has emphasized the importance of a dynamical or model-based perspec-
tive in making sense of initially puzzling empirical findings.

Traditional early warning indicators such as autocorrelation, variance, and
cross-correlation are derived by linearizing a nonlinear dynamical system. This
linearization neglects higher-order terms that may in fact be useful for anticipat-
ing tipping points. Explicitly including the higher-order terms is mathematically
challenging. Bury et al. (2021) elegantly circumvent this taxing work by using
deep learning, which automatically extracts any higher-order features from the
data that are relevant for anticipating the tipping point. Chapter 11 scrutinized
the method proposed by Bury et al. (2021) and showed that it learned not only
features relevant to anticipating the tipping point, but also features specific to the
preprocessing — using a detrending method that the model was not trained on
led the deep learning method to make incorrect conclusions. The key takeaway
here is again to be aware of the limitations of the tool one uses; this is naturally
more challenging the more complex the method becomes.

A dynamical perspective can unify disciplines by showing how the dynamics
of systems in one field of study are similar to the dynamics of systems in another
field of study (e.g., von Bertalanffy, 1950). Phenomena discovered in systems in
one field of study may then be assumed to arise also in systems in a completely
different field of study. Early warning signals based on critical slowing down
are a case in point. As Chapters 9-11 have shown, however, there are a num-
ber of nuances associated with their use in practice. In psychology, researchers
have motivated early warning signals with vague references to complex systems
rather than a deep understanding of the target system. This contrasts with the
approach taken in more mature fields, such as epidemiology and climate science,
and is likely to be one reason for the disappointing empirical results. Future psy-
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chological research may be better served by first trying to understand the target
system. What are the relevant variables to be measured? What are the positive
feedback loops that can amplify small perturbations to create large changes in the
system? What is the timescale of change? What types of transitions do we observe
empirically? Such a research program would focus on developing a model-based
understanding of the target system, echoing recent calls to focus on developing
formal theories in psychology (e.g., Borsboom et al., 2021b; Haslbeck et al., 2021).
From a model-based perspective we can then reason about whether a certain tar-
get system might exhibit tipping points and early warning signals. As Chapter
10 showed, such a model-based perspective can be used to make sense of puz-
zling empirical findings, and generally promotes a manner of doing research that
can lead to incremental progress rather than fragmented investigations that may
eventually simply be abandoned. If, on the other hand, we are only interested in
predicting sudden shifts, then approaches based on deep learning as discussed in
Chapter 11 or machine learning approaches that use a much richer set of data are
likely more promising approaches. For example, when I was a fellow at the Data
Science for Social Good program at Carnegie Mellon University in the summer of
2022, we built a machine learning pipeline that ranked individuals according to
their risk of dying by suicide or overdose within the next six months, using data
from hospitals, prisons, mental health facilities, and ambulances, among other
sources. There is great untapped potential in using openly available data sources
as well as working with institutions that collect rich data themselves. However,
such a purely predictive approach would take us back to the statistical and pos-
sibly causal perspective on systems. Achieving a deep understanding of systems
requires the development of formal models, reinforcing the need for the dynam-
ical perspective as discussed in the third part of this dissertation.

13.4 Action-based Perspective

Our quest to understand systems should not be divorced from wider societal
concerns. Indeed, most researchers are probably driven by a mix of intrinsic
curiosity and a desire to improve the human condition through the generation of
knowledge. The ultimate test of that knowledge — and often the most exciting
and humbling part – is not in getting papers through peer-review, but in actually
trying to change systems. This constitutes what I have called the action-based
perspective on systems, which builds on the statistical, causal, and dynamical
perspectives with the aim of changing systems for the better.

While it is undoubtedly blissful to reside in the ivory tower, unmoved by the
(mis)developments in wider society, sometimes reality comes knocking on one’s
door. COVID-19 was one such example. The climate and wider ecological crisis is
another one. Once we stop ignoring its severity and urgency, once we emotionally
connect with what is at stake, once we accept our inadvertent complicity, things
begin to change. Chapter 12 is my attempt to provide a concise overview of our
current predicament, the extent to which climate policy is failing, and how we
can get more involved, both as scientists and as citizens. We are at a historic
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crossroads, which requires us to reflect deeply on our role not only as citizens,
but also as scientists and academics. As those in society best poised to understand
our current situation, what is our role at this defining moment in time? Are we
going to stand by and watch as this enormous catastrophe unfold, or are we going
to do everything we can to try to avert it? Neither you nor I chose to be alive at
this critical juncture in the human story, yet here we are. Like Frodo from The
Lord of the Rings, we may wish that none of this had happened. As Gandalf notes
in the film, so do all who live to see such times, but that is not for them to decide.
All we have to decide is what to do with the time that is given to us.

13.5 Conclusion

Systems can be understood at different levels and through different lenses. I have
discussed a statistical, a causal, and a dynamical or model-based perspective in
different sections of this dissertation, but these perspectives are not independent.
They build on each other to provide us with an understanding, however incom-
plete, of the marvelously complex world in which we live. The point is not to
just understand this world, however, but to change it. The action-based perspec-
tive, discussed in the last part of this dissertation in the context of the climate
emergency, is therefore essential. In fact, it has never been more urgent than it is
today — despite decades of scientific warnings, we remain on track for an unliv-
able world. Preventing climate and ecological breakdown and creating a happier,
healthier, fairer, and more sustainable society will require collective action on an
unprecedented scale. Scientists and academics can help catalyze this action. So
let’s get on with it. Time is short.
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Appendix A

A Puzzle of Proportions: Two
Popular Bayesian Tests Can

Yield Dramatically Different
Conclusions

A.1 Induced Priors

Under the LT approach, the marginal priors for θ1 and θ2 as well as η are given
in integral representation by Gronau et al. (2021). Under the IB approach, the
density of η is given by:

f (η;a) =


1

B(a,a)η
2a−1(1− η)2a−1F1

(
a,4a− 2,1− a;2a;1− η,1− η2

)
0 < η ≤ 1

1
B(a,a) (−η)2a−1(1 + η)2a−1F1

(
a,1− a,4a− 2;2a;1− η2,1 + η

)
−1 ≤ η < 0

,

see Pham-Gia et al. (1993). In our case, we always have that 2a > 1 and so f (0) =
B(2a−1,2a−1)

B(a,a)2 (Pham-Gia et al., 1993). We can derive the density for ψ under prior
independence for the special case of a = 1. Note that, because θ ∼ Beta(1,1), it
follows that:

log
( θ

1−θ

)
∼ Logistic(0,1) .

Recall that:

ψ = log
(
θ2

1−θ2

)
− log

(
θ1

1−θ1

)
.

Ojo (2003) gives the distribution function of the sum of n i.i.d. logistic random
variables. Since the logistic distribution is symmetric, we have that ifX ∼ Logistic
then −X ∼ Logistic. Hence we can use the results by Ojo (2003) and write the
density function of ψ as:

f (ψ;a = 1) =
eψ(eψ(ψ − 2) +ψ + 2)

(eψ − 1)3
.
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A.2 Combining Approaches through Model-
averaging

If one is uncertain as to which test one should employ, an approach would be to
combine both through model-averaging (Hinne et al., 2020; Hoeting et al., 1999).
Let MIB

0 and MLT
0 denote the null models under the IB and the LT approach,

respectively, and letMIB
1 andMLT

1 denote the respective alternative models. The
model-averaged Bayes factor is given by:

BFAVG
01 =

p(D |MIB
0 )π(MIB

0 ) + p(D |MLT
0 )π(MLT

0 )

p(D |MIB
1 )π(MIB

1 ) + p(D |MLT
1 )π(MLT

1 )
,

where π(, ) gives the prior probability of the particular model. One has to be
careful when model-averaging. While the nuisance parameters generally do not
matter when testing nested models (Kass & Vaidyanathan, 1992; Ly et al., 2016b),
they do here. In particular, the IB approach assigns β a logistic distribution, while
the LT approach assigns β a Gaussian distribution. The logistic distribution has
fatter tails, and thus puts more mass on extreme values of θ than the Gaussian
distribution. In our case, this can result in somewhat surprising results. Let D1 =
(y1,n1) and D2 = (y2,n2) denote data in the two groups, respectively. For data
D1 = (0,50) and D2 = (0,50), for example, the IB model that assumes a difference
in the population (MIB

1 ) outpredicts the LT null model (MLT
0 ) by a factor of seven!

Since we want to focus on differences underH1 between the IB and LT approach,
we would need to make the models identical underH0, for example by assigning
β a logistic prior not only under the IB approach, but also under the LT approach.

A.3 Inference based on Posterior Distributions

The contrasting results discussed in Section 2.3 do not occur when inferences are
based on the posterior distribution of the log odds difference ψ or the rate dif-
ference η. Figure A.1 shows the posterior mean and 95% credible interval of ψ
(top) and η (bottom) for the IB (rectangles) and the LT approach (circles) with the
respective default parameterizations a = 1 and σψ = 1 for each study. The con-
clusions one would draw from these posterior distributions are very similar (and
changing the prior parameters does not affect them). This is as expected, since
the effect of the prior generally washes out as more and more data are observed,
which is not the case for Bayes factors.

A.4 A Dependent IB Approach

If prior dependence were responsible for the stark differences between the Bayes
factors at the extremes, we would find that a IB approach which assumes prior
dependence shows a pattern similar to the LT approach. Here, we show that this
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Posterior summary of  ψ  across studies

1 5 10 15 20 25 30 35 39

−2

−1

0

1

2

ψ

IB Approach

LT Approach

Posterior summary of  η  across studies

Study ID

1 5 10 15 20 25 30 35 39

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

η

Figure A.1: Shows the posterior mean and 95% credible interval of the log odds difference ψ (top)
and the rate difference η (bottom) under the IB approach (rectangles, a = 1) and the LT approach
(circles, σψ = 1) for each study.

is not the case. Recall that η = θ2 −θ1 and ζ = 1
2 (θ1 +θ2). We define:

θ1 = min
(
max

(
ζ −

η

2
,0

)
,1

)
θ2 = min

(
max

(
ζ +

η

2
,0

)
,1

)
,

and assign truncated Gaussian priors to (η,ζ), i.e., η ∼ N (0,ση)I(−1,1) and ζ ∼
N (0,σζ)I(0,1). Using ση = 1/5 and σζ = 1/2, the left panel in Figure A.2 shows the
joint prior distribution for (θ1,θ2) from which a strong prior dependence be-
tween θ1 and θ2 is apparent. The right panel, however, shows the characteristic
pattern of the IB approach as discussed in the main text, rather than the charac-
teristic pattern of the LT approach. Since the rates a dependent a priori, it is not
the prior dependence that is responsible for the pattern. However, employing
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a prior that has a stronger dependency between the two rates naturally reduces
the size of their expected difference. Increasing ση results in a lower correlation
(going from about 0.77 at ση = 1/5 to zero at ση = 1) and a reduced Bayes factor in
favor of H0, as the right panel in Figure A.2 shows.
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Figure A.2: Left: Joint distribution on (θ1,θ2) using ση = 1/5 and σζ = 1/2. Right: Bayes factors in
favor of H0 for simulated proportions with n = 100 for values ση = [1/5,1] and σζ = 1/2.

A.5 Sequential Predictive Perspective

Under H0 we have for both the IB and the LT setup that (suppressing condition-
ing on H0):

p(D2,D1 | H0) =
∫
θ
p(D2,D1 | θ)π0(θ) dθ (A.1)

=
∫
θ
p(D2 | D1,θ)p(D1 | θ)π0(θ) dθ (A.2)

= Z
∫
θ
p(D2 | θ)p(θ | D1) dθ , (A.3)

where Z =
∫
θ
p(D1 | θ)π0(θ) dθ is the marginal likelihood for D1, p(θ | D1) is the

posterior of θ after observing D1, and we can remove the conditioning on D1
in (A.2) because all relevant information is in θ. Similarly, under H1 for the LT
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setup we have that:

p(D2,D1 | H1) =
∫
θ2

∫
θ1

p(D2,D1 | θ1,θ2)π1(θ1,θ2)dθ1 dθ2 (A.4)

=
∫
θ2

∫
θ1

p(D2 | D1,θ1,θ2)p(D1 | θ1,θ2)π1(θ1,θ2)dθ1 dθ2 (A.5)

= Z
∫
θ2

∫
θ1

p(D2 | θ1,θ2)p(θ1,θ2 | D1)dθ1 dθ2 , (A.6)

where Z is the marginal likelihood for D1, p(θ1,θ2 | D1) is the posterior after
observing D1, and we can remove the conditioning on D1 in (A.5) because all
relevant information is in (θ1,θ2). This is in contrast to the IB setup, where:

p(D2,D1 | H1) =
∫
θ2

∫
θ1

p(D2,D1 | θ1,θ2)π1(θ1,θ2)dθ1 dθ2 (A.7)

=
∫
θ2

p(D2 | θ2)π1(θ2)dθ2

∫
θ1

p(D2 | θ1)π1(θ1)dθ1 , (A.8)

and thus no sharing of information across the two groups takes place.
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Appendix B

Default Bayes factors for
Testing the (In)equality of

Several Population Variances

B.1 Jeffreys’s Bayes Factor for the Agreement of Two
Standard Errors

Our work was inspired by Jeffreys (1939, pp. 222-224), who developed a test for
the “agreement of two standard errors”. Specifically, let σ1 and σ2 be the standard
errors for the two groups, respectively. Jeffreys estimates the standard errors
by the expectation of the respective sum of squares, (n1 − 1)σ2

1 and (n2 − 1)σ2
2 ,

where n1 and n2 are the respective sample sizes. Under the null hypothesis, the
expectations are pooled such that λ = (n1 + n2 − 2)σ2

1 , where σ2
1 = σ2

2 . Under the
alternative hypothesis, we have λ = (n1 − 1)σ2

1 + (n2 − 1)σ2
2 , which can be written

as a mixture such that (n1 − 1)σ2
1 = ϑλ and (n2 − 1)σ2

2 = (1 − ϑ)λ. Because λ is
common to both models, we can assign it an improper prior and integrate it out.
The test-relevant parameter is ϑ ∈ [0,1], which Jeffreys assigns a uniform prior.
After Laplace-approximating the integral under the alternative, Jeffreys arrives
at the (approximate) Bayes factor:

BFJ01 =
(N − 2)3/2

2
√
π(n1 − 1)(n2 − 1)

exp
(
2
n2 −n1

N − 2
z − (n1 − 1)(n2 − 1)

N − 2
z2

)
, (B.1)

where N = n1 +n2, z = log
(
s1
s2

)
, and s1 and s2 are the sample standard deviations.

As a side note, we first attempted a parameterization that, unbeknownst to us,
Jeffreys substituted for his 1939 averaging idea in the third edition of the Theory
of Probability (Jeffreys, 1961): σ2

1 = σ2
2 e
ξ . We abandoned this idea because we

could not generalize it to K > 2 groups and instead adopted Jeffreys’s original
averaging idea.

Figure B.1 shows that our Bayes factor with u = 1 matches Jeffreys’s 1939
Bayes factor very closely, as is expected from the uniform prior on ϑ. The error
is due to his approximate solution. For completeness, we also show Jeffreys’s
1961 Bayes factor, which is not limit consistent. It strikes us as a curiosity that
Jeffreys would develop a test for the standard error instead of the population
variance. Since the standard error decreases with the (square root of) the sample
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Figure B.1: Comparison of the Bayes factor proposed by Jeffreys (1939) and our Bayes factor with
u = 1 for K = 2 groups as a function of the sample size and the effect size φ = {1,1.1,1.2,1.3,1.4,1.5}.

size, applying Jeffreys’s test to data of unequal group sizes confounds the result (if
we were to take his test as a test concerning the equality of variances). Formally,
both Bayes factors Jeffreys derived are not limit consistent because if we gather
infinite data for only one group, the Bayes factor in favor ofH1 will go to infinity
instead of converging to a bound (Ly, 2018, ch. 6). For our Bayes factor, we
adopt Jeffreys’s averaging idea to parameterize the problem, but we focus on the
population precisions instead of the standard errors.

B.2 Derivation of the Proposed Bayes Factor

B.2.1 Integrating out the Nuisance Parameters

Let Yji
iid∼ N (µj , τ

−1
j ), where i = 1,2, . . . ,nj and j ∈ [K]. For both the null and the

alternative models we integrate the nuisance parameters µjs out with respect to
the right Haar priors µj ∝ 1. This implies that for the observations y{j} from the
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jth group consisting of nj observations the likelihood function is

f (y{j} |τj ) :=
∫
f (y{j} |µj , τj )π(µj )dµj , (B.2)

= (2π)−
nj
2 τ

nj
2
j exp(−1

2νjs
2
j τj )

∫
exp(−n2τj (ȳj −µj )

2)dµj , (B.3)

= (2π)−
νj
2 n
−1

2
j τ

νj
2
j exp(−1

2νjs
2
j τj ). (B.4)

For data from the K samples combined, i.e., y[K], and the parametrisation τj =
ϑj τ̄K this yields

f (y[K] | ϑ⃗, τ̄) = (2−1K)−
ν+
2 C(n)

[ K∏
j=1

ϑ

νj
2
j

]
τ̄
ν+
2 exp

(
− 2−1K τ̄

K∑
j=1

ϑjνjs
2
j

)
, (B.5)

where C(n) = (2π)−ν+/2(n1 . . .nK )1/2 and ν+ =
∑K
j=1 νj . A natural prior on the nui-

sance parameter τ̄ is π(τ̄) ∝ τ̄−1 and a standard gamma integral leads to the
marginalized likelihood

h̃(y[K] | ϑ⃗) =
∫
f (y[K] | ϑ⃗, τ̄)π(τ̄)dτ̄ = C(n)Γ

(ν+

2

)[ K∏
j=1

ϑ

νj
2
j

]( K∑
j=1

ϑjνjs
2
j

)− ν+
2
. (B.6)

Since ϑj > 0 and
∑K
j=1ϑj = 1, the vector ϑ := (ϑ1, . . . ,ϑK ) can be fully described

by K − 1 free parameters. Any ϑj can be singled out in the following, but for
concreteness, we do so for the Kth one. To rewrite the marginalized likelihood
h̃(y[K] | ϑ⃗) in terms of the K − 1 proportions ϑ, note that

K∑
j=1

ϑjνjs
2
j = ϑ1ν1s

2
1 +ϑ2ν2s

2
2 + . . .+ϑK−1νK−1s

2
K−1 +

(
1−

K−1∑
j=1

ϑj
)
νKs

2
K (B.7)

= νKs
2
K −

K−1∑
j=1

[νKs
2
K − νjs

2
j ]ϑj , (B.8)

which implies that( K∑
j=1

ϑjνjs
2
j

)− ν+
2

= (νKs
2
K )−

ν+
2
(
1−

K−1∑
j=1

[1−
νj s

2
j

νK s
2
K

]ϑj
)− ν+

2
. (B.9)

This leads to

h̃(y[K] | ϑ⃗) = C(n)Γ
(ν+

2

)
(νKs

2
K )−

ν+
2
[ K∏
j=1

ϑ

νj
2
j

](
1−

K−1∑
j=1

[1−
νj s

2
j

νK s
2
K

)]ϑj
)− ν+

2
, (B.10)

which will be used to derive desiderata on the prior on the test relevant parame-
ters. To highlight the fact that ϑ⃗ is effectively K − 1 dimensional, we can replace[∏K

j=1ϑ

νj
2
j

]
=

[∏K−1
j=1 ϑ

νj
2
j

]
(1− ϑ⃗+)

νK
2 , where ϑ⃗+ :=

∑K−1
j=1 ϑj .
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B.2.2 Deriving the Proposed Bayes Factors

The marginalized likelihood fully specifies the marginal likelihood of the null, as
the plugin ϑj = 1/K yields

p(y[K] |M0) = C(n)Γ
(ν+

2

)
(νKs

2
K )−

ν+
2
(
1 +

K−1∑
j=1

νj s
2
j

νK s
2
K

)− ν+
2
. (B.11)

We let h(y[K] | ϑ⃗) = h̃(y[K] | ϑ⃗)

h̃(y[K] | ϑ⃗= 1
K )

be the reduced likelihood, see Eq. (3.6), and the

Bayes factor is then

BF10(y[K]) =
(
1 +

K−1∑
j=1

νj s
2
j

νK s
2
K

) ν+
2

(B.12)

×
∫ [K−1∏

j=1

ϑ

νj
2
j

]
(1− ϑ⃗+)

νK
2
(
1−

K−1∑
j=1

[1−
νj s

2
j

νK s
2
K

]ϑj
)− ν+

2
π1(ϑ⃗)dϑ⃗, (B.13)

where ϑ⃗ ∈ RK−1, and the integral is over the K − 1 simplex. A natural prior for
ϑ⃗ would be a Dirichlet prior with hyperparameters u, where u = (u1, . . . ,uK−1,uK )
with non-negative components. For νj ≥ 1 for all j ∈ [K] and by definition of
the multivariate integral representation of the type D Lauricella function of K −1
variables (Lauricella, 1893), this Bayes factor is analytic and given by

BF10(y[K]) =
B( ν⃗2 +u⃗)
B(u⃗)

(
1 +

K−1∑
j=1

νj s
2
j

νK s
2
K

) ν+
2
FD

(
ν+
2 ; ν⃗2 + u⃗ ; ν+

2 +u+ ; 1⃗−
−−−→
νs2

νK s
2
K

)
, (B.14)

where B(u⃗) = Γ (u1)···Γ (uK )
Γ (u+) is the multivariate beta function, 1⃗ = (1, . . . ,1) ∈ RK−1 and

where
−−−→
νs2 = (ν1s

2
1, . . . ,νK−1s

2
K−1) is the K − 1 vector of sums of squares.

B.3 Properties of the Proposed Bayes Factor

B.3.1 Labelling Invariant

Proof of labelling invariance, Theorem 3.3.1. The goal is to show that the integral
of the reduced likelihood times prior remains the same after applying the per-
mutation ϱ that swaps the labels K for an arbitrary i ∈ [K − 1]. For this integral
to remain the same, it suffices to show that the reduced likelihood h(s2 | ϑ⃗) and its
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permuted version

h(ϱ(s2) | ϑ⃗) =
(
1 +

νK s
2
K

νis
2
i

+
∑

j∈[K−1]\{i}

νj s
2
j

νis
2
i

) ν+
2
[ ∏
j∈[K−1]\{i}

ϑ

νj
2
j

]
(B.15)

×ϑ
νK
2
i (1− ϑ⃗+)

νi
2
(
1− θ⃗+ +

νK s
2
K

νis
2
i
ϑi +

∑
j∈[K−1]\{i}

νj s
2
j

νis
2
i
ϑj

)− ν+
2
, (B.16)

are conditionally symmetric. This means that as a function of ϑi with all other co-
ordinates fixed, i.e., ϑj for j ∈ [K−1]\{i}, the reduced likelihood and its permuted

version are symmetric around ϑ̆−i := 1
2

(
1−

∑
j∈[K−1]\{i}ϑj

)
.

This can be shown by studying the functions g(x) and gϱ(−x), where g(x) is

the composition of x 7→ ϑi = ϑ̆−i + x and ϑi 7→ h(s2 | ϑ⃗), whereas gϱ(−x) is the com-

position of x 7→ ϑi = ϑ̆−i − x and ϑi 7→ h(ϱ(s2) | ϑ⃗). A straightforward, but tedious
computation then shows that g(x) = gϱ(−x) for all x ∈ (0, ϑ̆−i). For the Bayes factor
to be labelling invariant, we thus require the prior to be symmetric in the similar
fashion. For the Dirichlet prior this implies ui = uK , and for this to hold for all
pairs of permutations, we require uj = u for all j ∈ [K].

B.3.2 Predictive Matching

Proof of predictive matching, Theorem 3.3.2. Case (a) with n1 = . . . = nK = 1 implies
that ν1s

2
1 = . . . = νKs

2
K = 0 regardless of the data, which implies that the likelihood

of the data Eq. (B.5) is identical to the constant function 1, thus, independent of τ̄
and ϑ⃗. Viewing the prior τ̄ ∝ τ̄−1 on the nuisance parameter that appears in both
the numerator and the denominator of the Bayes factor as a limit of τ̄ ∼ Γ (u,u)
with u ↓ 0 shows that without loss of generality we can set the Bayes factor to 1,
whenever π1(ϑ⃗) is proper.

For case (b) and without loss of generality we consider the case with νK = 1
and νj = 0 for all j ∈ [K − 1]. The reduced likelihood h(s2 | ϑ⃗) is then actually
independent of s2K , as we then get

BF10(s2) =

∫
(s2K )−

1
2 (1− ϑ⃗+)

1
2 (1− ϑ⃗+)−

1
2π1(ϑ⃗)dϑ

(s2K )−
1
2 ( 1

K )
1
2 (1− K−1

K )−
1
2

=
∫
π1(ϑ⃗)dϑ⃗. (B.17)

Thus, for all data sets s2 of insufficient size BF10(s2) = 1 whenever π1(ϑ⃗) is proper.

B.3.3 Information Consistency

Proof of information consistency, Theorem 3.3.3. Assuming labelling invariance we
can let the s2K with fixed nK grow without loss of generality. For fixed n the order
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of integral and limit can be interchanged and reveals that

lim
s2K→∞

BF10(s2) = B(u)−1
∫ (K−1∏

j=1

ϑ

νj
2 +uj−1
j

)
(1− ϑ⃗+)

νK−ν+
2 +uK−1dϑ⃗. (B.18)

The integrand becomes unbounded whenever uK ≤
ν+−νK

2 . Recall that the min-
imal sample size has only two groups with two observations, say, ν1 = 1 and
νK = 1. The requirement that lims2K→∞

BF10(s2) should already diverge at the
minimal sample sizes implies that uK ≤ 1/2. By symmetry we require this for all
uj for j ∈ [K].

B.3.4 Model Selection Consistency

For model selection consistency we note that the Bayes factor depends on the data
via the statistic W⃗ = (W1, . . . ,WK−1) with

Wj :=
νjs

2
j

νKs
2
K

=
σ2
j νj

σ2
KνK

(∑nj
i=1

(Yji−Ȳj )2

σ2
j

)
/νj(∑nK

i=1
(YKi−ȲK )2

σ2
K

)
/νK

=:
σ2
j νj

σ2
KνK

Xj , for j ∈ [K − 1], (B.19)

where Xj ∼ F(νj ,νK ) is an F-distributed random variable with degrees of freedom
νj and νK by virtue of the data being normally distributed.

Letting nj := cjn for cj > 0, j ∈ [K], thus, cK = 1, and σ2
j := γjσ

2
K where γj > 0

for j ∈ [K], thus, γK = 1, note that Wj ≈ cjγjXj for n large. Observe that since Xj
is F-distributed we know that

E(Xj ) =
n

n− 2
= 1 +O(1/n) and Var(Xj ) =

2n2((1 + cj )n− 2)

cjn(n− 2)2(n− 4)
= O(1/n). (B.20)

Hence, Chebyshev’s inequality can be applied to show thatXj−1 = OP (n−1/2). The

intuition to use the continuous mapping theorem and the replacement X⃗ = 1⃗ ∈
RK−1 in BF10 forms the basis of the proof of Theorem 3.3.4. What needs taking
care of is the dependence of the Bayes factor on n.

Proof of model selection consistency, Theorem 3.3.4. The proof relies on a Taylor
approximation that holds with high probability and the subsequent asymptotic
analysis of the Taylor terms. Key to this analysis is the large sample behavior
of gamma functions. What is remarkable is that under the null the exponential
growing terms cancelled out perfectly in all Taylor terms.

Notation for partial derivatives. For the Taylor terms, we express the Bayes

factor as follows BF10(s2,n) =
B(n2 c+u)
B(u) b(X⃗)GD (X⃗), where with Z⃗ ∈ RK−1, Zj = 1 −
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cjγjXj , the X⃗-dependent functions are

b(X⃗) := (1 +
K−1∑
j=1

cjγjXj )
c+
2 n, (B.21)

GD (X⃗) := FD ( c+
2 n ; n2 c⃗+ u⃗ ; c+

2 n+u+ ; Z⃗). (B.22)

For the Taylor series we employ multi-index notation to describe Leibniz’s prod-
uct rule for partial derivatives. The idea is to identify a partial derivative to
a K − 1-dimensional vector of non-negative integers m⃗ ∈ NK−1

0 . Each mj repre-
sents the multiplicity of partial derivative with respect to the variable xj , thus,

∂m⃗b(X⃗) := ∂m⃗+∏K−1
j=1 ∂x

mj
j

b(X⃗) and more specifically

∂m⃗b(X⃗) = ( c+
2 n)−m⃗+

(K−1∏
j=1

(cjγj )
mj

)
(1 +

K−1∑
j=1

cjγjXj )
c+
2 n−m⃗+ , (B.23)

where (a)−l := Γ (a + 1)/Γ (a − l + 1) denotes the falling factorial, e.g., (a)−3 = a(a −
1)(a − 2) for a ∈ N. It can be shown that (a)−l = (−1)l(−a)l and that (a)−l /l! =

(a
l

)
.

Note that b(X⃗) also appears on the right-hand side. To simplify notation we write

∂m⃗b := ∂m⃗b(X⃗)
∣∣∣∣
X⃗=1⃗

=
(
⟨c,γ⟩

) c+
2 n (

c+
2 n)−m⃗+

(∏K−1
j=1 (cjγj )

mj

)
(
⟨c,γ⟩

)m⃗+
. (B.24)

Note that the first order partial derivatives are described by the vectors m⃗ = e⃗k for
k ∈ [K − 1].

Similarly, let l⃗ ∈ NK−1
0 with m⃗ ⪯ l⃗, that is, 0 ≤ mj ≤ lj for j ∈ [K − 1], then

r⃗ = l⃗ − m⃗ ∈ N K−1
0 can be thought of as the remaining multiplicities of l⃗ once the

partial derivatives are taken with multiplicities m⃗. This vector notation combined
with differentiation under the integral sign shows that

∂r⃗GD (X⃗) := ∂r⃗+∏K−1
j=1 ∂x

rj
j

GD (X⃗), (B.25)

= (− c+
2 n)−r⃗+

∏K−1
j=1 (

cj
2 n+uj )rj

(
c+
2 n+u+)r⃗+

(K−1∏
j=1

(cjγj )
rj
)
GD,⃗r (X⃗), (B.26)

where, formally by Eq. (B.33) below,

∏K−1
j=1 (

cj
2 n+uj )rj

(
c+
2 n+u+)r⃗+

=
∏K−1
j=1 c

rj
j

cr⃗++

(
1 +O(n−1)

)
, (B.27)

and where

GD,⃗r (X⃗) = FD ( c+
2 + r⃗+ ; n2 c⃗+ u⃗ + r⃗ ; c

2n+u+ + r⃗+ ; Z⃗). (B.28)
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Observe that GD (X⃗) = GD,⃗0(X⃗).
With this notation the partial derivative of the Bayes factor accounting for

multiplicities l⃗ is

∂l⃗BF10(s2,n) =
B(n2c+u)
B(u)

∑
m⃗⪯l⃗

(
l⃗
m⃗

)
∂m⃗b(X⃗)∂l⃗−m⃗G(X⃗)

 , (B.29)

where
( l⃗
m⃗

)
=

( l1
m1

)
· · ·

( lK−1
mK−1

)
=

∏K−1
j=1

lj !
(lj−mj )!mj !

and where the sum is over all sub-

vectors m⃗ of l⃗. For instance, with l⃗ = e⃗k this means m⃗ = 0⃗ and m⃗ = e⃗k . Note
that ∂l⃗BF10(s2,n) only describes one entry of the l⃗+-dimensional array of the total
derivative of BF10(s2,n) of order l⃗+.

Taylor approximation. Because the samples variances of the Xjs are of order
1/n, Chebyshev’s inequality in conjunction with a union bound can be used to
show that for any ϵ there exists an N such that if n > N the following Taylor
approximation holds with chance at least 1− ϵ

BF10(s2,n) ≈
B(n2c+u)
B(u)

( ∑
l⃗∈NK−1

0

∂l⃗
[
bG(X⃗)

]
X⃗=1⃗

Ql⃗

l⃗!

)
, (B.30)

where ∂l⃗
[
bG(X⃗)

]
X⃗

equals the sum on the right-hand side of Eq. (B.29) evaluated

at X⃗ = 1⃗, Q⃗ = (X⃗− 1⃗), Q⃗
l⃗

l⃗!
=

∏K−1
j=1

Q
lj
j

lj !
. Below we will show that for large n the Bayes

factor behaves as

BF10(s2,n) ≈ T̆ (0)
∑
l⃗∈NK−1

0

hl⃗(u,c,γ)
Q⃗l⃗

l⃗!
, (B.31)

where under the null hl⃗(u,c,γ ,n) = O(1) and under the alternative hl⃗(u,c,γ ,n) =

O(nl⃗+ ), and where T̆ (0) is the zeroth order term of the Taylor approximation stud-
ied in the next paragraph.

The T (0) term. The large sample behavior of the Bayes factor basically follows
from gamma function asymptotics. The first object of interest is the deterministic
term associated with l⃗ = 0⃗, i.e., the Bayes factor evaluated at X⃗ = 1⃗, but still
dependent on the n term is

T (0) := BF10(s2,n)
∣∣∣∣
X⃗=1⃗

=
B(n2c+u)
B(u)

(⟨c,γ⟩)
c+
2 nGD . (B.32)

The large sample behavior of the beta function follows that of gamma functions.
Laplace’s method implies that for v,b > 0

Γ (vn+ b) =
√

2π(vn)vn+b−1
2 e−vn

[
1 + 6b2−6b+1

12 (vn)−1 +O(n−2)] (B.33)
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as n→∞. Hence,

B(n2c+u) = (4π)
K−1

2 n
1−K

2 c
1
2
+

(K−1∏
j=1

(cj )
−1

2
)
g(c,u,n)

[
1 +O(n−1)

]
, (B.34)

where the exponential behavior is captured by

g(c,u,n) = (c+)−
c+n

2 −u+

K−1∏
j=1

(cj )
cjn
2 +uj . (B.35)

Note that the product only goes up to K − 1, since cK = 1 by definition.
The hard part is to show consistency under the null. For this the exponential

behavior of g(c,u,n) needs to be cancelled by that of GD , and we will show that it
does so perfectly. To study the large n behavior of GD , and more generally GD,⃗r ,
we apply a Pfaff transform (Lauricella, 1893, p. 148) yielding

GD,⃗r =
(K−1∏
j=1

cjγ
−
cj
2 n−uj−rj

j

)
FD

(
u+ ; n2 c⃗+ u⃗ + r⃗ ; c+

2 n+u+ + r⃗+ ;
−−−−→
cγ−1
cγ

)
(B.36)

where
−−−−→
cγ−1
cγ ∈ RK−1 with (

−−−−→
cγ−1
cγ )j =

cjγj−1
cjγj

. This rewrite of GD,⃗r shows a cancella-

tion of the (cjγj )
rj terms in front of the GD,⃗r in Eq. (B.26). Note that in the Lauri-

cella function in Eq. (B.36) the lower term and the upper terms of the second kind
depend on n in a linear fashion. The n dependence in these terms balance out as
n→∞making the Lauricella function in Eq. (B.36) of order 1 as n grows. This is
made rigorous by Lemma 1, which shows that the Lauricella function Eq. (B.36)
converges to a (generalized) negative binomial series as n→∞. Thus,

GD,⃗r ≈ ĞD,⃗r =
(K−1∏
j=1

(cjγj )
−
cj
2 n−uj−rj

)(
1− 1

c+

K−1∑
j=1

cjγj−1
γj

)−u+
, (B.37)

for n large. For T (0) set r⃗ = 0⃗, which shows that for large n

T (0) ≈ T̆ (0) := C0(K,γ ,c,u)n
1−K

2
( ⟨c,γ⟩

c+

) c+
2 n

(K−1∏
j=1

γ
−
cj
2 n

j

)
, (B.38)

where the n independent term C0(K,γ ,c,u) is as asserted in Eq. (3.11). A plu-
gin of the null hypothesis γ = 1, thus, ⟨c,γ⟩ = c+, in Eq. (B.38) shows that the

exponentially growing terms are all equal to one, and therefore T (0) = O(n
1−K

2 ).

The T (1)
e⃗k

terms. The analysis of the gradient is similar to that of T (0). It suffices
to study the gradient coordinate wise. In particular,

T
(1)
e⃗k

:=
B(n2c+u)
B(u)

(⟨c,γ⟩)
c+
2 nckγk

c+
2 n

[
GD
⟨c,γ⟩ −

ckn+2uk
c+n+2u+

GD,e⃗k

]
. (B.39)
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The same operations as before, a Pfaff transform and Eq. (B.37), shows that

T̆
(1)
e⃗k

= T̆ (0)
(
c+
2

(
ckγk
⟨c,γ⟩ −

ck
c+

)
n+ cku+−c+uk

c+
+O(n−1)

)
, (B.40)

as n → ∞. Hence, under the alternative he⃗k (u,c,γ ,n) := T̆
(1)
e⃗k
/T̆ (0) = O(n)

and accounting for the stochastic term Qk = (Xk − 1) = OP (n−1/2) leads to∑K−1
k=1 he⃗k (u,c,γ ,n)Qk = OP (n1/2). On the other hand, under the null he⃗k (u,c,1,n) =

T̆
(1)
e⃗k
/T̆ (0) = O(1), as then again ⟨c,γ⟩ = c+ and

(
ckγk
⟨c,γ⟩ −

ck
c+

)
= 0, thus, a perfect can-

cellation of the O(n) term. Consequently,
∑K−1
k=1 he⃗k (u,c,γ ,n)Qk = OP (n−1/2).

Higher order terms. The higher order terms exhibit the same behavior. Let
l⃗ ∈ NK−1, then for n large the partial derivative associated to l⃗ of the Bayes factor
behaves as

T̆
(⃗l+)

l⃗
=

∑
m⃗⪯l⃗

(
l⃗
m⃗

)
T̆ (0)( c+

2 n)−m⃗+
(− c+

2 n)−(⃗l+−m⃗+)

∏K−1
j=1 (cjγj )

mj

⟨c,γ⟩m⃗+

∏K
j=1 c

lj−mj
j

c
(⃗l+−m⃗+)
+

(
1 +O(n−1)

)
.

Note that ( c+
2 n)−m⃗+

(− c+
2 n)−(⃗l+−m⃗+) is a polynomial in n of order l⃗+. Hence,

hl⃗(u,c,γ ,n) := T̆
(⃗l+)

l⃗
/T̆0 = O(nl⃗+ ). We now show that under the null, the polyno-

mial ( c+
2 n)−m⃗+

(− c+
2 n)−(⃗l+−m⃗+) is zero and hl⃗(u,c,1,n) = T̆

(⃗l+)

l⃗
/T̆0 = O(1), where the

constant term comes from the approximation of the ratio of Pochhammer sym-
bols, i.e., Eq. (B.27), e.g., Eq. (B.40). To see that there is no n contribution under
the null, we plugin γ = 1 and rewrite the sum over m⃗ ⪯ l⃗ as a sum over m⃗+ = p

for p = 0,1, . . . , l⃗+ and a subsequent sum over all subvector m⃗ that sum to p, which
yields

hl⃗(u,c,1,n) =
∏K−1
j=1 c

lj
j

cl⃗++

l⃗+∑
p=0

( c+
2 n)−p(− c+

2 n)−p
∑
m⃗⪯l⃗
m⃗+=p

(
l⃗
m⃗

)
. (B.41)

Next we apply the Chu-Vandermonde identity twice, once over the sum on the
right-hand side of the previous display and once after using the identity (a)−l /l! =(a
l

)
, which leads to

hl⃗(u,c,1,n) =
∏K−1
j=1 c

lj
j

cl⃗++

l⃗+∑
p=0

(⃗
l+
p

)
( c+

2 n)−p(− c+
2 n)−(⃗l+−p) (B.42)

=
∏K−1
j=1 c

lj
j

cl⃗++
l⃗+!

l⃗+∑
p=0

( c+
2 n
p

)(− c+
2 n

l⃗+ − p

)
= 0. (B.43)
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This shows that under the null, none of the Taylor terms lead to a growth in n.
The stochastic terms in the assertion both under the null and the alternative

follow from the definition of the exponential series by rewriting the sum of the
Taylor approximation of interest, i.e., Eq. (B.31), in terms of p̃ ∈ N0 and a subse-
quent sum over all subvectors l⃗ such that l⃗+ = p̃.

Model selection consistency under the alternative. To show that the Bayes fac-
tor increases under the alternative, irrespectively of γj being larger or smaller
than 1, we study the exponential term of Eq. (3.10)

v(n) =
(
⟨c,γ⟩

) c+
2 n

K−1∏
j=1

γ
−
cj
2 n

j (B.44)

The claim is that v monotonically increases in n. Suppose that this is not true,
then the ratio of subsequent terms

v(n+ 1)/v(n) =
(
⟨c,γ⟩

) c+
2
K−1∏
j=1

γ
−
cj
2

j (B.45)

would be less or equal to one. The gradient of v(n+ 1)/v(n) with respect to γ is of
the form

ck
2

(
c+
⟨c,γ⟩ −

1
γk

)
v(n+ 1)/v(n) (B.46)

and this reveals a (global) minimum at γ = 1 at which v(n + 1)/v(n) = 1. Hence,
any γ , 1 leads to an exponentially increasing Bayes factor BF10(s2,n).

The proof of the previous theorem relies on a particular Lauricella function
GD to be of order 1 as n increases as shown in the following lemma.

Lemma 1 (Limit of a particular Lauricella function). For all vj ,bj > 0, j ∈ [m] and
|xj | < 1, we have that

lim
n→∞

FD (a ; nv⃗ + b⃗ ; v+n+ b+ ; x⃗) =
(
1−

m∑
i=1

vi
v+
xi

)−a
, (B.47)

as n→∞. ⋄

Proof. The proof follows from the asymptotic behavior of the gamma function
combined with repeated use of the (negative) binomial series.

Firstly, note that the n dependence occurs in the lower and the upper terms
of the second type, which cancels out as n grows large. To show this consider the
definition of the Pochhammer raising factorial that combined with the Laplace
approximation Eq. (B.33) for constants v,b > 0 leads to

(vn+ b)k =
Γ (vn+ b+ k)
Γ (vn+ b)

= (vn)k
[
1 + k(k + 2b − 1)(vn)−1 +O((vn)−2)

]
(B.48)
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as n→∞.
Secondly, to describe the large n behavior of the particular type D Lauricella

hypergeometric series FD := FD (a ; nv⃗ + b⃗ ; v+n + b+ ; x⃗) we use the notation i[k :
m] = (ij , . . . , im) ∈ Nm−(k−1) to denote the vector of indexes from k to m. Based on
this notation and by Eq. (B.48), we have for n large that

FD =
∑
i[1:m]

(a)i[1:m]+
(v1n+ b1)i1 · · · (vmn+ bm)im
(v+n+ b+)i[1:m]+

xi11
i1!
· · · x

im
m

im!
(B.49)

≈
∑
i[1:m]

(a)i[1:m]+
vi11 · · ·v

im
m

v
i[1:m]+
+

xi11
i1!
· · · x

im
m

im!
=
∞∑
i=0⃗

(a)i[1:m]+

( v1
v+
x1)i1

i1!
· · ·

( vmv+
xm)im

im!
.

The last equality defines the limit of FD with respect to n. It also captures the
essence of the repeated use of the binomial series, namely, the redistribution of
the scaling factor v−i[1:m]+

+ over the variables x.
Thirdly, with the notation i[2 : m] it is simple to isolate the summation with

respect to i1 only, which combined with the binomial series yields

limFD =
( ∞∑
i1=0

(a)i[1:m]+

( v1
v+
x1)i1

i1!

) ∑
i[2:m]

( v2
v+
x2)i2

i2!
· · ·

( vmv+
xm)im

im!
(B.50)

=
(
v+−v1x1
v+

)−a ∑
i[2:m]

(a)i[2:m]+

(
v+−v1x1
v+

)−i[2:m]+ ( v2
v+
x2)i2

i2!
· · ·

( vmv+
xm)im

im!
.

Note that, as before, the scaling factor
(
v+−v1x1
v+

)−i[2:m]+
can be redistributed over

the variables resulting in ( vk
v+−v1x1

xk)ik /ik! for k = 2, . . . ,m. The summation with
respect to i2 is again a binomial series and yields

limFD =
(
v+−v1x1
v+

)−a(
v+−v1x1−v2x2
v+−v1x1

)−a
(B.51)

×
∑
i[3:m]

(a)i[3:m]+

(
v+−v1x1−v2x2
v+−v1x1

)−i[3:m]+ ( v3
v+−v1x1

x3)i3

i3!
· · ·

( vm
v+−v1x1

xm)im

im!
.

Observe that the numerator and denominator of the first and second −a expo-
nentiated terms in the previous display are equal and thus cancel. Repeating this
procedure to m and telescoping through the −a exponentiated terms yields the
results.

B.3.5 Limit and Across-Sample Consistency

Proof of across-sample consistency, Theorem 3.3.5. To simplify notation we write

n := nK and s⃗s =
−−−→
νs2 , where ssj = νjs

2
j is the sum of squares of the jth sample.
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Since S2
K is
√
n-consistent we can find an N such that for all n > N the following

statement holds with chance at least 1− ϵ

BF[K]
10 (s⃗2,S2

K ,n) = BF[K]
10 (s⃗2,σ2

0 ,n) + hn√
n
T̃1(n) + oP (n−

1
2 )T̃2(n), (B.52)

where hn is a bounded sequence of random variables due to S2
K − σ

2
0 = OP (n−

1
2 )

and where

T̃1(n) =
(
∂
∂xBF[K]

10 (s⃗2,x,n)
)∣∣∣∣
x=σ2

0

, (B.53)

T̃2(n) =
(
∂2

∂x2 BF[K]
10 (s⃗2,x,n)

)∣∣∣∣
x=σ2

0

. (B.54)

To prove the theorem we have to show that limn→∞BF[K]
10 (s⃗2,σ2

0 ,n) exists, is equal
to Eq. (B.61), and that both T̃1(n) and T̃2(n) are bounded in n. To this end, we
want to first take the limit and then integrate. To see that this is permissible we

first show that the integrand of BF[K]
10 (s⃗2,σ2

0 ,n) as a sequence in n is uniformly
bounded in ϑ⃗.

Uniformly boundedness of the integrand. To further simplify notation we in-
troduce the vectors a⃗, c⃗ ∈ RK−1 with aj =

νj
2 for j ∈ [K −1] and b = n

2 . By definition

of BF[K]
10 (s⃗2,σ2

0 ,n), the innocuous replacement n = νK we have that

BF[K]
10 (s⃗2,σ2

0 ,n) = (1 + s⃗s+
nσ2

0
)a++b

∫
h̃(s⃗2,σ2

0 ,n | ϑ⃗)π1(ϑ⃗)dϑ⃗, (B.55)

where π1(ϑ⃗) is the Dirichlet prior with parameters u and where

h̃(s⃗2,σ2
0 ,n | ϑ⃗) =

(K−1∏
j=1

ϑ
aj
j

)
(1− ϑ⃗+)b(1−

K−1∑
j=1

[1− ssj

nσ2
0

]ϑj )
−(a++b), (B.56)

is the marginalized likelihood with σ2
0 in place of s2K , thus, h̃(s⃗2,σ2

0 ,n | ϑ⃗0) = (1 +
s⃗s+
nσ2

0
)−(a++b). By definition of the exponential function as a series, the first term in

Eq. (B.55) remains bounded, that is,

lim
n→∞

(1 + s⃗s+
nσ2

0
)
ν⃗++n

2 = e
s⃗s+
2σ2

0

(
1− s⃗s+

4nσ2
0

( s⃗s+
σ2

0
− 2ν⃗+) +O(n−2)

)
. (B.57)

The prior does not play a role in the asymptotics for n→∞, as we will show that∫
h̃(s⃗2,σ2

0 ,n | ϑ⃗)π1(ϑ⃗)dϑ⃗ ≤ C(u)
∫
h̃(s⃗2,σ2

0 ,n | ϑ⃗)dϑ⃗. (B.58)

for a certain constant C(u) independent of n.
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Case (i). The case with u all at least 1, we can take C(u) to be the maximum of
the prior Dir(ϑ⃗ ; u) on ϑ⃗ in the K − 1 simplex. The maximum of the marginalized

likelihood h̃(s⃗2,σ2
0 ,n | ϑ⃗) at each n can be found by setting the partial derivatives to

zero. At each fixed n Lemma 2 can be used to find the maximum ϑ̂ as a function
of a⃗,b, c⃗. By definition of a⃗,b, c⃗ and by denoting the observed precisions t⃗ ∈ RK−1

by tj := (s2j )−1, it then follows that ϑ̂k = tk
σ−2

0 +t⃗+
, which is free of n. A plugin and a

direct calculation show that the maximum value of the marginalized likelihood
at each n is

fmax,n :=
(K−1∏
k=1

t
νk
2
k

)
(σ2

0 )
ν⃗+
2 e−

ν⃗+
2 [1− ν⃗2

+
4n +O(n−2)]. (B.59)

Hence, as a sequence in n the integrand is uniformly bounded by a constant.

Case (ii). For any uj < 1, j ∈ [K − 1] the prior diverges at ϑj = 0 and C(u) can-
not be taken to be the maximum value of the prior on the K − 1 simplex. In-
stead, C(u) can be the maximum of π1(ϑ⃗) for ϑ⃗ in a subset R containing ϑ̂. Since
the true variances are assumed to be non-zero, finite and the data continuous,
we can take R with high probability to be a compact subset that intersects with⊕K−1

j=1 [ϵj ,1−ϵj ] ⊂ [0,1]K−1 for ϵj depending on uj . On R the proof of Case (i) can
be repeated to show that that the integrand is bounded. For any uj < 1, j ∈ [K −1]

the integrand over ϑj ∈ [0,ϵj ) behaves as ϑ
νj
2 +uj−1
j +O(|ϑj |). On this domain the

integrand remains integrable whenever uj > −
νj
2 , which is true by assumption.

The same arguments extend to the case with uK < 1.

Identifying the K − 1-sample Bayes factor. Uniform boundedness allows us to
interchange the limit and integral and conclude that the limiting integral exist,

and implies that BF[K]
10 (s⃗2,σ2

0 ,n) converges to

∫ (∏
ϑ

νj
2 +uj−1
j

)
(1− ϑ⃗+)uK−

ν⃗+
2 −1 exp

(
−
∑ ssj

2σ2
0

(
ϑj

1−ϑ⃗+
)
)
dϑ⃗

B(u)exp(− s⃗s+
2σ2

0
)

. (B.60)

From the change of variables ϑj =
ξj

1+ξ+
, thus, dϑ⃗ = (1+ξ+)−Kdξ⃗, and by definition

of the integral representation of the multivariable Tricomi function U , see for
instance (Ng et al., 2011; Phillips, 1988), we have that the resulting K − 1 sample
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Bayes factor is given by

BF[K−1]
10;σ2

0
(s⃗2) =

∫ (∏K−1
j=1 τ

νj
2
j

)
exp(−1

2
∑K−1
j=1 νjs

2
j τj )πσ2

0
(τ⃗ |M[K−1]

1 )dτ⃗

(σ2
0 )−

ν⃗+
2 exp(− (

−−−→
νs2 )+
2σ2

0
)

,

=

(∏K−1
j=1 Γ (

νj
2 +uj )

)
U
(
ν⃗
2 + u⃗ ; ν⃗+

2 −uK + 1;
−−−→
νs2

2σ2
0

)
B(u⃗,w)exp(− (

−−−→
νs2 )+
2σ2

0
)

, (B.61)

where
−−−→
νs2 = (ν1s

2
1, . . . ,νK−1s

2
K−1) denotes the vector of sums of squares, (

−−−→
νs2 )+ =∑K−1

j=1 νjs
2
j , and ν⃗+ :=

∑K−1
j=1 νj , as before. This Bayes factor is based on uniform

priors on the nuisance parameters µ⃗ ∈ RK−1, and an inverse Dirichlet distribution
on the precisions τ⃗ = (τ1, . . . , τK−1) ∈ RK−1 scaled by 1/σ−2

0 , that is,

πσ2
0

(τ⃗ |M[K−1]
1 ) =

(σ2
0 )K−1 ∏K−1

j=1 (σ2
0 τj )

uj−1

B(u⃗,w)(1 + σ2
0 τ⃗+)u⃗++w

, (B.62)

where we wrote w = uK so the statement only involves vectors of length K − 1.
Recall that ssj = νjs

2
j summarizes the observations of the jth sample. Observe

also that the numerator of this limiting Bayes factor resembles the marginalized
likelihood, i.e., Eq. (B.4), of the K −1 samples with their respective precisions τ⃗ =

(τ1, . . . , τK−1) all fixed at 1/σ2
0 . Hence, up to the factor (σ2

0 )−
ν⃗+
2 the denominator

defines the marginal likelihood of the lower-dimensional null hypothesis HK−1
0 :

τj = σ−2
0 for j ∈ [K − 1] with µj ∝ 1. The missing factor is retrieved from the

numerator by the change of variable τj =
ϑj

σ2
0 (1−ϑ⃗+)

and yields the assertion above

Eq. (B.62).
The lower dimensional Bayes factor BF[K−1]

10;σ2
0

(s⃗2) is in general hard to com-

pute, because the Tricomi function U (⃗b ; c ; x⃗) defines a K−1-dimensional integral.
Phillips (1988) showed that if c < 1, the following simplification holds

U (⃗b ; c ; x⃗) =
∫ ∞

0
e−ttb⃗+−c

K−1∏
j=1

(t + xj )
−bjdt. (B.63)

For BF[K−1]
10;σ2

0
(s⃗2) this simplification holds whenever ν⃗+ < 2uK , which will be of

little practical use when, for instance, uK = 1/2. Theorem 3.3.5 now shows that
for the case with ν⃗+ ≥ 2uK the lower dimensional Bayes factor BF[K−1]

10;σ2
0

(s⃗2) can be

well approximated by a one-dimensional integral, because the type D Lauricella
function in BF10(s2) has a simplified one-dimensional integral representation due
to u+ > 0.
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Residual terms. To show that the convergence is at rate 1/
√
n, we show that

both T̃1(n) and T̃2(n) in Eq. (B.52) are of order 1. The analysis is analogous to

showing the existence of BF[K−1]
10 .

For T̃1(n) we study the derivative of the Bayes factor BF[K]
10 (s⃗2,x,n) with respect

to x. For this we swap the order of integration and differentiation and consider

g := ∂
∂x

h(s⃗2,x,n | ϑ⃗)

h(s⃗2,x,n | ϑ⃗0)

∣∣∣∣
x=σ2

0

= g1 + g2 (B.64)

where

g1 := − s⃗s+
nσ4

0
(a+ + b)(1 + s⃗s+

nσ2
0

)a++b−1 (B.65)

×
(K−1∏
j=1

ϑ
aj
j

)
(1− ϑ⃗+)b(1−

K−1∑
j=1

[1− ssj

nσ2
0

]ϑj )
−(a++b), (B.66)

g2 := 1
nσ4

0
(a+ + b)(1 + s⃗s+

nσ2
0

)a++b (B.67)

K−1∑
k=1

sskϑk

(K−1∏
j=1

ϑ
aj
j

)
(1− ϑ⃗+)b(1−

K−1∑
j=1

[1− ssj

nσ2
0

]ϑj )
−a+−1−b

. (B.68)

Note that by definition of a⃗,b, s⃗s the terms Eq. (B.65) and Eq. (B.67) converge

to − s⃗s+
2σ4

0
e

s⃗s+
2σ2

0 and 1
2σ4

0
e

s⃗s+
2σ2

0 , respectively. The proof that Eq. (B.66) is uniformly

bounded in n is exactly as before. The same proof holds for each member in the
sum of Eq. (B.68) by relabelling the power corresponding to ϑk to ak + 1. Hence,
limit and integral can be interchanged and we conclude that the limiting integral
exists. A computation as before shows that

T̆1 := lim
n→∞

(
∂
∂xBF10(s⃗2,x,n)

)∣∣∣∣
x=σ2

0

=

∏K−1
j=1 Γ (

νj
2 +uj )

2B(u)σ4
0 exp(− s⃗s+

2σ2
0

)
G2, (B.69)

where

G2 :=
K−1∑
k=1

(νk2 +uk)U ( ν⃗2 + u⃗ + e⃗k ; ν⃗++1
2 −w+ 1; s⃗s

2σ2
0

) (B.70)

− s⃗s+U ( ν⃗2 + u⃗ ; ν⃗+
2 −w+ 1; s⃗s

2σ2
0

), (B.71)

where e⃗k ∈ RK−1 denotes the kth basis vector that is one at the kth entry and
zero elsewhere. The analysis of the third order term is a repeat of that of T̆1 and

implies that the last term in Eq. (B.52) is indeed oP (n−
1
2 ) and the result follows.

If YKi has four moments, then S2
K is asymptotically normal. In particular,

for normal data this explicitly means
√
n(S2

K − τ
−1)

d→N (0,2τ−2) and implies the
following result.
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Proof of asymptotic normality across-samples. A rewrite of Eq. (B.55) shows that nK

√
nK

(
BF[K]

10 (y[K])−BF[K−1]
10;σ2

K
(y[K−1])

)
=
√
nK

(
S2
K − τ

−1
)
T̃2(nK ) (B.72)

+ oP (1)T̃3(nK ). (B.73)

A series expansion of T̃2(nK ) in nK shows that T̃2(nK ) = T2 + 1
n T̆2 +O( 1

n2
K

) and the

result follows. The term T̆2 can be derived explicitly as was done in the proof
of the previous theorem, but does not matter for the assertion, but its presence
reveals a finite sample O(n−1/2

K ) bias that vanishes as nK →∞.

The proof of across sample consistency relies on the following lemma.

Lemma 2 (Maximum of the marginalized likelihood). If a⃗, c⃗, ϑ⃗ ∈ RK−1 and b ∈ R
all positive and ϑ⃗+ < 1, then

f (a⃗,b, c⃗ | ϑ⃗) =
(K−1∏
j=1

ϑ
aj
j

)
(1− ϑ⃗+)b(1−

K−1∑
j=1

[1− cj ]ϑj )−(a++b), (B.74)

attains its maximum at

ϑ̂k =
ak

∏K−1
j,k cj

b
∏K−1
j=1 cj +

∑K−1
i=1 ai

∏K−1
j,i cj

, (B.75)

where
∏K−1
j,k cj denotes the product of the elements of c⃗ with the kth element taken out.

⋄

Proof. Recall that the maximum is invariant under smooth transformations,
which allows us to study the problem in the parametrisation ξ⃗ = (ξ1, . . . ,ξK−1),

where ϑj =
ξj

1+ξ⃗+
. The target function becomes

f (a⃗,b, c⃗ | ξ⃗) =
(K−1∏
j=1

ξ
aj
j

)
(1 +

K−1∑
j=1

cjξj )
−(a++b), (B.76)

and a direct computation shows that its gradient consists of elements

∂
∂ξk
f (a⃗,b, c⃗ | ξ⃗) = f (a⃗,b, c⃗ | ξ⃗)

[
ak
ξk
− (a++b)ck

1+
∑K
j=1 cjξj

]
. (B.77)

It is now easy to verify that for ξ̂ = (ξ̂1, . . . , ξ̂K−1) with ξ̂k = ak
bck

the vector of partial
derivatives is zero. Straightforward calculations show that for k , l ∈ [K − 1] that

∂2

∂ξk∂ξl
f (a⃗,b, c⃗ | ξ⃗) = f (a⃗,b, c⃗ | ξ⃗)

[
ak
ξk
− (a++b)ck

1+
∑K
j=1 cjξj

]
ξ⃗=ξ̂

= b2ckcl
a++b (B.78)
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and for k ∈ [K − 1]

∂2

∂ξ2
k
f (a⃗,b, c⃗ | ξ⃗) = f (a⃗,b, c⃗ | ξ⃗)

[
ak
ξk
− (a++b)ck

1+
∑K
j=1 cjξj

]
ξ⃗=ξ̂

= − (bck )2(a[−k]++b)
ak(a++b) , (B.79)

from which we conclude that ξ̂ is a maximum. The transformation ϑ̂ = ξ̂k
1+ξ̂+

yields the results.

B.4 Analysis Code

Here, we provide the code for all examples given in the main text.

devtools::install_github('fdabl/bfvartest', build_vignettes = TRUE)

library('bfvartest')

# 3.5.1 Sex Differences in Personality

twosd_test(

n1 = 969, n2 = 716,

sd1 = sqrt(15.6), sd2 = sqrt(19.9), u = 0.50

)

# 3.5.2 Testing Against a Single Value

x <- c(6.2, 5.8, 5.7, 6.3, 5.9, 5.8, 6.0)

n <- length(x)

sd_x <- sd(x) # we round it to 0.22 in the paper

## (i) BF_{10}

onesd_test(

n = n, s = sd_x, popsd = sqrt(0.10),

u = 0.50, alternative_interval = c(0, Inf), log = FALSE

)

## (i) BF_{+0} default

onesd_test(

n = n, s = sd_x, popsd = sqrt(0.10),

u = 0.50, alternative_interval = c(1, Inf), log = FALSE

)

## (iii) BF_{+0} informed

onesd_test(

n = n, s = sd_x, popsd = sqrt(0.10),

u = 2.16, alternative_interval = c(1, Inf), log = FALSE

)

# 3.5.3 Comparing Measurement Precision
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n <- 990

sdigit <- 0.98

slaser <- 0.89

## (i) BF_{+0}

twosd_test(

n1 = n, n2 = n, sd1 = slaser, sd2 = sdigit,

u = 0.50, alternative_interval = c(1, Inf), log = FALSE

)

## (ii) BF'_{0+} non-overlapping interval

1 / twosd_test(

n1 = n, n2 = n, sd1 = slaser, sd2 = sdigit,

u = 0.50, log = FALSE, null_interval = c(0.90, 1.10),

alternative_interval = c(1.10, Inf)

)

# 3.5.4 The "Standardization" Hypothesis in Archeology

ns <- c(117, 171, 55)

sds <- c(12.74, 8.13, 5.83)

hyp <- c('1=2=3', '1,2,3', '1>2>3')

res <- ksd_test(

hyp = hyp, ns = ns, sds = sds,

u = 0.50, iter = 6000

)

res$BF

## (i) log BF_{10} ˜ 20

res$BF[2, 1]

## (ii) log BF_{r0} ˜ 21.80

res$BF[3, 1]

## (iii) log BF_{r1} ˜ 1.79

res$BF[3, 2]

# 3.5.5 Increased Variability in Mathematical Ability

ns <- c(3280, 6007, 7549, 9160, 9395, 6410)

sds <- c(5.99, 5.39, 4.97, 4.62, 3.69, 3.08)

hyp <- c('1=2=3=4=5=6', '1,2,3,4,5,6', '1>2>3>4>5>6')

res <- ksd_test(

hyp = hyp, ns = ns, sds = sds,

u = 0.50, iter = 6000

)

## (i) log BF_{10} ˜ 1660.53

311



B. Default Bayes factors for Testing the (In)equality of Several Population
Variances

res$BF[2, 1]

## (ii) log BF_{r0} ˜ 1667.11

res$BF[3, 1]

## (iii) log BF_{r1} ˜ 6.58

res$BF[3, 2]
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Appendix C

Flexible Bayesian Multiple
Comparison Adjustment Using
Beta-Binomial Model Priors

C.1 Beta-binomial Prior with Decreasing Prior
Model Odds

Proposition 3. The prior density of the beta-binomial distribution over partitions is
decreasing for α = 1 and β ≥

(K
2
)
, and strictly decreasing for α = 1 and β >

(K
2
)
.

Proof. The prior density of the Beta-binomial over partitions is given by

π (ρ | K,α,β) =
(
K − 1
|ρ| − 1

)
B (|ρ| − 1 +α, K − |ρ|+ β)

B (α, β)
{K
|ρ|
} .

To examine the ratio of two consecutive model sizes we evaluate the ratio of the
prior for partitions ρ and q with |q| = |ρ|+ 1:

π (ρ | K, α, β)
π (q | K, α, β)

=

(K−1
|ρ|−1

)(K−1
|ρ|

) B (|ρ| − 1 +α, K − |ρ|+ β)
B (|ρ|+α, K − |ρ| − 1 + β)

{ K
|ρ|+1

}{K
|ρ|
} , (C.1)

=
|ρ|

K − |ρ|
β +K − |ρ| − 1
α + |ρ| − 1

{ K
|ρ|+1

}{K
|ρ|
} . (C.2)

Using the recurrence relation of the Stirling numbers
{n+1
k

}
= k

{n
k

}
+
{ n
k−1

}
, the ratio

{ K|ρ|+1}/{K|ρ|} is equivalent to {K+1
|ρ|+1}/{ K|ρ|+1} − (|ρ| + 1). This ratio of Stirling numbers was

studied by Berg (1975) and their property 2 provides the following inequality:{K+1
|ρ|+1

}{ K
|ρ|+1

} − |ρ| − 1 ≥
{K+1
|ρ|

}{K
|ρ|
} − |ρ| .

It follows that the ratio in Equation (C.1) is maximal at |ρ| = K − 1 and has value(K
2
)
. Next, we fix α = 1 and solve π(K |K−1,1,β)/π(K |K,1,β) = 1 for β which yields

β =
(K

2
)
. Thus β ≥

(K
2
)

implies that π (j + 1 | K, 1, β) ≥ π (j | K, 1, β) and β >
(K

2
)

implies that π (j + 1 | K, 1, β) > π (j | K, 1, β).
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C.2 Simulation Results for K = 9

Here we present the extended simulation results for the K = 9 group case. Fig-
ure C.1 mirrors the results for the K = 5 case, namely that the pairwise Bayes
factors, the method proposed by Westfall et al. (1997), and the uniform prior
generally increase in performance as the number of inequalities increase, while
the other priors generally decrease in performance. Averaging over the settings,
we again find that the beta-binomial prior with β = 1, the uniform prior, and the
symmetric DP prior exhibit the worst error control, with the method proposed
by Westfall et al. (1997) performing best, closely followed by the beta-binomial
prior with β =

(K
2
)

and the DP prior with α = 0.50. Figure C.2 similarly mirrors
the results for the K = 5 case, except that the proportion of false negatives is gen-
erally lower given that we compare more groups and hence have a larger (total)
sample size.

Figure C.1: Familywise error rate across priors and sample sizes under a model with 0 (top left), 3
(top right), 5 (bottom left), and 7 (bottom right) true inequalities for K = 9 groups. The rightmost
panel shows the average familywise error rate across inequalities.

C.3 Example Code

The code below illustrates the proportion example in Section 4.5.1.

using EqualitySampler, EqualitySampler.Simulations

import DataFrames as DF,
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Figure C.2: Proportion of falsely claiming a difference between two groups when there is none across
priors and sample sizes under a model with 0 (top left), 3 (top right), 5 (bottom left), and 7 (bottom
right) true inequalities for K = 9 groups. The rightmost panel shows the average error rate across
inequalities.

LinearAlgebra as LA,

NamedArrays as NA,

CSV,

AbstractMCMC

# Working directory is assumed to be the root of

# https://github.com/vandenman/EqualitySampler

journal_data = DF.DataFrame(

CSV.File(joinpath("simulations", "demos","data", "journal_data.csv"))

)

# K

n_journals = size(journal_data, 1)

# Number of observed errors

errors = round.(Int, journal_data.n .* journal_data.errors)

# Number of possible errors

observations = journal_data.n

# Run 4 chains in parallel with 15_000 iterations per chain of which
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# the first 5_000 are discarded

mcmc_settings = MCMCSettings(;iterations = 15_000, burnin = 5_000,

chains = 4, parallel = AbstractMCMC.MCMCThreads)

# Nothing indicates no equality sampling is done and samples are drawn

# from the full model

chn_full = proportion_test(

errors, observations, nothing;

mcmc_settings = mcmc_settings

)

# Use a BetaBinomial(1, K) prior over the partitions

partition_prior = BetaBinomialPartitionDistribution(n_journals, 1, n_journals)

chn_eqs = proportion_test(

errors, observations, partition_prior;

mcmc_settings = mcmc_settings

)

# chn_full and chn_eqs contain posterior samples

# Compute posterior probability that two journals are equal

eqs_mat = compute_post_prob_eq(chn_eqs)

NA.NamedArray(

LA.UnitLowerTriangular(round.(eqs_mat; digits = 3)),

(journal_data.journal, journal_data.journal)

)

# 8×8 Named LinearAlgebra.UnitLowerTriangular{Float64, Matrix{Float64}}

# A \ B | "JAP" "PS" "JCCP" "PLOS" "FP" "DP" "JEPG" "JPSP"

# -------+---------------------------------------------------------------

# "JAP" | 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

# "PS" | 0.134 1.0 0.0 0.0 0.0 0.0 0.0 0.0

# "JCCP" | 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

# "PLOS" | 0.0 0.0 0.909 1.0 0.0 0.0 0.0 0.0

# "FP" | 0.0 0.0 0.861 0.87 1.0 0.0 0.0 0.0

# "DP" | 0.0 0.0 0.864 0.886 0.881 1.0 0.0 0.0

# "JEPG" | 0.0 0.0 0.059 0.063 0.09 0.08 1.0 0.0

# "JPSP" | 0.0 0.0 0.0 0.0 0.005 0.0 0.852 1.0

# The table above is approximately equal to the right panel of Figure 6.
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Appendix D

Node Centrality Measures
are a Poor Substitute for

Causal Inference

D.1 Centrality Measures

The following three centrality measures are based on Opsahl et al. (2010) who
generalize the centrality measures proposed by Freeman (1978) for binary net-
works.

Degree of a node gives the number of connections the node has. Let wij be the
(i, j)th entry of the (weighted) adjacency matrix W describing the network. We
define the degree of node xi as

CD (xi) =
n∑
j=1

1(wij , 0), (D.1)

where 1 is the indicator function and n is the number of nodes.
Node strength is a generalization of degree for weighted networks, defined for

node xi as

CS (xi) =
n∑
j=1

|wij |, (D.2)

where |.| is the absolute value function.
The closeness and betweenness a node xi are based on shortest paths. Let the

cost of travelling from node xi to xj be the inverse of the weight of the edge
connecting the two nodes. Then, define the shortest path between two nodes xi
and xj , d(i, j), as the path which minimizes the cost of travelling from xi to xj .
With this, we can define the closeness of a node xi as

CC(xi) =

 n∑
j=1

d(i, j)


−1

, (D.3)

and betweenness as

CB(xi) =
n∑
j=1

N∑
k=1

gjk(xi)

gjk
, (D.4)
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where gjk is the number of shortest paths between xj and xk , and gjk(xi) is the
number of those paths that go through xi . The shortest paths are usually found
using Dijkstra’s algorithm (Dijkstra, 1959).

Eigenvector centrality formalizes the notion that a connection to an important
node counts more than a connection to a less important node, and is given by

CE(xi) =
1
λ

n∑
j∈N (xi )

vj , (D.5)

where λ is the largest eigenvalue of the (possibly weighted) adjacency matrix W ,
vj is the jth element of the corresponding eigenvector, and N (xi) is the set of
nodes that are adjacent to xi .

D.2 Varying the True Edge Weight

In the main text, we presented simulations based on DAGs where the true edge
weight is drawn from a Normal(0.30, 0.50) distribution. We noticed that the
larger the true edge weight, the earlier the phenomena reported take place. For
example, if we draw the true edge weights from a Normal(0, 0.50) distribution,
the negative trend of the correlation as a function of network density only be-
comes pronounced with a node size of 80; see Figure D.1 and D.2. Moreover,
eigenvector centrality does not show a steep positive correlation. We suspect that
this will require even larger graphs. We do not have a strong conviction as to
what edge weight value is most likely in the real world — this will depend on
the research area — but suggest that Normal(0.30, 0.50) is more likely than Nor-
mal(0.0, 0.5). Note that we cannot simulate graphs larger than 50 nodes with an
edge weight of 0.30 as the resulting covariance matrix becomes singular.

A notable observation is further that the KL based causal effect measure con-
stitutes a “winner-take-all” mechanism in that only very few nodes, sometimes
only a single one, score high on measures of causal effect; the rest flattens out
quickly. In contrast, the (total) average causal effect shows a natural linear trend.
This has little influence on our results. However, if one were to classify not the
top but, say, the first five nodes, the KL based causal effect measure would be an
inappropriate target as it singles out only the winning node.
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Figure D.1: Shows the rank-based correlation of the information theoretic causal effect measureCEKL
with other measures across varying types of networks, number of nodes, and connectivity levels.
Error bars denote 10% and 90% quantiles across the 500 simulations. True edge weight is drawn
from a Normal(0, 0.50) distribution. Black lines indicate the zero correlation level.
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Figure D.2: Shows the probability of choosing the node with the highest causal effect when using
the node with the highest respective centrality measure. Black horizontal lines indicate chance level.
Error bars denote 95% confidence intervals across the 500 simulations. True edge weight is drawn
from a Normal(0, 0.50) distribution.
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Appendix E

Equilibrium Causal Models:
Connecting Dynamical
Systems Modeling and
Cross-Sectional Data

Analysis

E.1 Interventions in Linear Dynamical Systems

In this section, we formally define the interventions considered in the main text
and the effects those interventions have on different properties of the system.
Recall that the equilibrium positions are given by

µ = (I−Φ)−1c , (E.1)

where Φ is the matrix of lagged effects in the underlying dynamical system and c
are the time-invariant intercepts. Press and shift interventions modify Equation
(E.1), reflecting their long-term effects, while pulse interventions do not cause
long-lasting changes in the equilibrium positions. We turn to them first.

E.1.1 Pulse Interventions

Pulse interventions represent surgical interventions whereby the target variable
X at a certain point in time t = τ is forced to obtain a particular value. In the
causal modeling literature this operation would be referred to as a do-intervention
at a single point in time (Pearl, 2009). Consider a pulse intervention which acts
by setting the variable Xj,τ := z at a particular point in time τ . Let Zτ represent
a p × 1 vector with values Zi,τ = Xi,τ and Zj,τ = z, again at a particular point in
time τ . The effect of the pulse intervention on the values of other variables in the
system at the next time point can be expressed as

E[Xτ+1] = c +ΦZτ . (E.2)

To compute the effect of the same pulse intervention at a longer timescale t+s we
can simply take the appropriate power of Φ, yielding

E[Xτ+s] = c + (Φ)sZτ . (E.3)
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As outlined in the main text, if the system is stationary, then Φ has eigenvalues
|λ| < 1. This implies that as s→∞, we have that (Φ)s→ 0, meaning that the effect
of the pulse intervention eventually disappears from the system at a long enough
timescale. We can also see that the pulse intervention does not alter the lagged
relationships Φ, and that the expression for the equilibrium position does not
depend on Xτ . As such, we can say that the pulse intervention has no long-term
effect on the system.

E.1.2 Press Intervention

Press interventions represent surgical interventions in our system whereby the
target variable is made independent of its causes and is forced to obtain a con-
stant value over a window of time. As such, press interventions have a natural
interpretation in terms of the do-operator, essentially being a do-operation ap-
plied at every moment in time. Formally, a press intervention replaces the causal
effects on X with a constant a. Consider a press intervention which acts on the
variable Xk such that Xk := a. Let Pk be a p × p matrix with zeros on the off-
diagonals and the kth diagonal, and ones as the other diagonal elements. The
equilibrium positions which are produced as a result of the press intervention
can be expressed as

µ = (I− PkΦ)−1(Pkc+a) , (E.4)

where a is a p×1 column vector with kth element a, the value that the intervened-
on variable is set to by intervention, and the other elements of a are zero. The
term Pkc represents setting the time-invariant incoming forces acting on Xk , rep-
resented by the intercept, to zero and adding a enforces that the causal effect on
Xk is the constant a. Focusing on the left term, note that pre-multiplying the pa-
rameter matrix Φ by Pk cuts all incoming ties to Xk by setting the kth row of Φ to
zero.

Press interventions can change the stability of the system, potentially making
a previously stable system unstable, since the eigenvalues of Φ will typically not
be equal to the eigenvalues of the intervened system PkΦ . Hyttinen et al. (2012)
use the term ‘asymptotic stability’ to refer to systems which are both stable in the
observational setting and under any press intervention.

E.1.3 Shift Intervention

In contrast to press interventions, shift interventions represent ‘soft’ interven-
tions in the system. Unlike with press interventions, we do not cut off all in-
coming ties to the target variable, and so we do not force the variable to obtain
a specific value. Instead, a shift intervention can be considered as an interven-
tion on the time-invariant causal forces acting on the system — an intervention
on the intercept terms directly. In terms of the model equations, the shift in-
tervention involves adding a constant s to the intercept term c. Let s represent
the p-dimensional column vector of shift values: If we apply a shift intervention
to Xk , then s has the kth element equal to s and all other elements zero. The
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equilibrium positions produced by a shift intervention can be expressed as

µ = (I−Φ)−1 (c+ s) (E.5)

From this expression it is clear that the shift intervention has no effect on the
stability of the system, but does change the equilibrium positions.

E.2 Canonical Model Form and Model Equivalence

In this section, we study the relationships between the underlying dynamical
system and the corresponding Equilibrium Causal Model, drawing heavily on
the results by Hyttinen et al. (2012), which we generalize to shift interventions.
Hyttinen et al. (2012) consider the discovery of cyclic causal models from equi-
librium data, assuming an underlying dynamic process of the form

Xi,t = ci +ΦXi,t−1 , (E.6)

where c ∼N (0,Σc) represents a time-invariant perturbation to the system, equiv-
alent to the intercept terms in the model given in the main text. This represents a
special case of the linear dynamical systems model discussed in the current chap-
ter, where the innovation or time-varying perturbations ϵt are omitted, and where
the average intercept value µc is assumed equal to be zero, largely for the sake
of notational simplicity. The former restriction ensures that at some time point
τ sufficiently long after the initial time point t = 0 the process is at equilibrium,
Xi,τ = Xi,τ+1 = · · · = µi , essentially meaning that at some time point the equilib-
rium positions can be directly observed by sampling the position of the system at
time τ or later. In the main text, we allow for time-varying perturbations ϵt but
also assume that it is possible to observe the equilibrium positions µi directly or
inferring it by taking the mean over a suitable sequence of observations of Xi,t .

The models considered by Hyttinen et al. (2012) and in the current chapter
yield the same expression for the equilibrium positions of the process

µi = ci +Φµi , (E.7)

which can be re-arranged as

µi = (I −Φ)−1ci . (E.8)

This equivalence means that we can directly apply several derivations made by
Hyttinen et al. (2012) in the current context, applying the additional assump-
tion that we can directly observe the equilibrium positions of our system. The
remainder of this appendix is structured as follows. In Section E.2.1, we discuss
how the fact that we cannot assess the auto-regressive effect of a variable Xk from
equilibrium data changes the parameters we can estimate. In Section E.2.2, we
show that the equilibrium causal model and the underlying dynamic system pro-
duce the same observational data; in Section E.2.3, we show that they produce
the same observations under press interventions; and in Section E.2.4, we show
that they produce the same observations under shift interventions.
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E.2.1 Marginalization of Self-Cycles and the Canonical Form

One of the key issues with studying equilibrium models of dynamical systems
is that, when the system contains self-loops or auto-regressive effects (φii , 0),
these self-loops cannot be recovered from equilibrium data. Hyttinen et al. (2012)
show that any such system which is stable can be re-written into an equivalent
equilibrium model in which the self-loops are standardized or marginalized out.
Hyttinen et al. (2012) refers to this as the canonical form of the model. Let U be a
p × p matrix with zero off-diagonal elements and diagonal elements

Uii =
φii

1−φii
. (E.9)

The marginalized or canonical form direct effects (Φ̃), intercept covariance-
matrix (Σ̃c), and mean intercept vector (µ̃c) can be expressed in terms of the
original matrices as

Φ̃ = Φ −U (I−Φ) (E.10)

Σ̃c = (I +U )Σc(I +U )T (E.11)

µ̃c = (I +U )µc , (E.12)

where Φ̃ is a matrix with zero elements on the diagonal (no self-cycles), but
which otherwise retains the same structure (non-zero off-diagonal elements) as
Φ. The off-diagonal elements of Φ̃ will differ in numeric value from the off-
diagonal elements in Φ, with every element φij re-scaled by auto-regressive ef-
fects of the effect variable φii such that

φ̃ij = φij +φij
φii

(1−φii)

=
φij (1−φii) +φijφii

(1−φii)

=
φij

(1−φii)
.

The parameters of Φ̃ can be interpreted as cumulative direct effects over a long
timescale, in contrast to the lag-1 direct effects of the original matrix Φ . This
interpretation becomes clear if we consider how we would express such an effect
in a VAR setting. There, we could consider a cumulative effect of Xi on Xj as the
sum of the lag-1 direct effect of φij and longer lag indirects through the self-loop
φii . We could express this as

φij +φijφii +φijφ
2
ii + . . .

=φij

 ∞∑
T=0

φTii


=

φij
(1−φii)

.
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where the last line simplification comes from the assumption of asymptotic sta-
bility, and can be understood to be valid whenever |φii | < 1, as we would expect
in a stable system. Notably, while Φ̃ retains the same structure as Φ , many in-
formative properties of the system are lost. For example, the rank order of the
parameters in Φ̃ may differ from the rank order of cross-lagged effects in Φ (a
property of interest in a number of applications of lagged regression models;
Hamaker et al., 2015; Kuiper & Ryan, 2018). The absence of auto-regressive pa-
rameters also means that in principle we are unable to recover properties such
as the stability of individual variables, or the speed of return to equilibrium of
specific trajectories.

Equations (E.10) and (E.11) are derived directly by Hyttinen et al. (2012),
while Equation (E.12) follows as an implication of the derivations shown in their
Appendix E. We demonstrate the validity of these expressions below. The matri-
ces Φ̃ , Σ̃c, and µ̃c define a model for the equilibrium positions of the dynamical
system

µi = c̃i + Φ̃µi , (E.13)

with c̃i ∼ N (µ̃c, Σ̃c). It turns out that, even though the model matrix Φ̃ does
not contain any information regarding the auto-regressive effects, the canonical
model as a whole is actually equivalent to the original dynamical systems model
in two ways. First, it yields equivalent means and covariances of equilibrium
data in the observational setting (as we will show in Section E.2.2), and second, it
yields equivalent predictions about the effects of press and shift interventions on
the equilibrium positions (as we will show in Sections E.2.3 and E.2.4). Crucially,
since the model does not require the estimation of the auto-regressive effects,
the canonical model can be estimated using only equilibrium position data and
standard SEM techniques. The implication of this is that, in principle, it is pos-
sible to learn a model which allows inferences about equilibrium positions and
the causal effects of interventions on equilibrium positions using only data about
those equilibrium positions.

E.2.2 Observational Equivalence

Here we show that the underlying dynamical system and the equilibrium causal
model in canonical form produce the same equilibrium data in an observational
setting. Let Mµ and Σµ denote the mean vector and covariance matrix of equilib-
rium data in the observational setting. Standard expressions for Mµ and Σµ are
known from the study of structural equation models (Bollen, 1989).

Proposition 1. The observational means Mµ are equivalent under the original
and the canonical model, that is, we have that(

I− Φ̃
)−1

(µ̃c)
!= (I−Φ)−1 (µc) . (E.14)

Proof. Recall that Φ̃ = Φ −U(I −Φ) and µ̃c = (I + U)µc. We show that substi-
tuting the latter into (E.14) and pre-multiplying by

(
I− Φ̃

)
results in the former,
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thereby proving the proposition. We write

µ̃c =
(
I− Φ̃

)
(I−Φ)−1 (µc) (E.15)

= (I−Φ + U(I−Φ)) (I−Φ)−1 (µc) (E.16)

=
(
(I−Φ) (I−Φ)−1 + U(I−Φ) (I−Φ)−1

)
(µc) (E.17)

= (I + U)µc , (E.18)

which concludes the proof.

Proposition 2. The observational covariances are equivalent under the original
and the canonical model, that is, we have that

(I−Φ)−1S (I−Φ)−T !=
(
I− Φ̃

)−1
Σ̃c

(
I− Φ̃

)−T
. (E.19)

Proof. From the derivation above and Equation (E.15) we have that(
I− Φ̃

)
(I−Φ)−1 = (I + U) (E.20)

(I−Φ)−1 =
(
I− Φ̃

)−1
(I + U) (E.21)

(I−Φ)−T = (I + U)T
(
I− Φ̃

)−T
. (E.22)

Recall that Σ̃c = (I + U)S(I + U)T . Using this and the above we write

(I−Φ)−1S (I−Φ)−T =
(
I− Φ̃

)−1
(I + U) (S) (I + U)T

(
I− Φ̃

)−T
(E.23)

=
(
I− Φ̃

)−1
Σ̃c

(
I− Φ̃

)−T
, (E.24)

which concludes the proof.
The implication of observational equivalence is that, given data on the means

and covariance matrix of equilibrium positions, and knowledge of the structure
of the model, we can in principle estimate the canonical model from observa-
tional equilibrium data using standard SEM software. If the structure of the
model is not known, one can use causal discovery methods, as discussed in the
main text. Irrespective of the estimation method, and even though the parameter
values differ between the two models, the structure is the same, and we know ex-
actly how the original lagged parameters map onto the parameters we estimate
from equilibrium data. This is interesting, but it does not stop there. As we will
see in the next two sections, these models are not only observationally equivalent
but also yield the same predictions about the effect of press and shift interven-
tions.

E.2.3 Equivalence under Press Interventions

Recall the effect of a press intervention on the equilibrium positions as formalized
in Equation (E.4)

µ = (I− PkΦ)−1(Pkc+ s) , (E.25)
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where Pk is a p × p matrix with zeros on the off-diagonals and the kth diagonal,
and ones as the other diagonal elements (such that pre-multiplying by Pk yields
a matrix with the kth row equal to zero and other elements unchanged), and a is
a p column vector with kth element equal to a, the value that the intervened-on
variable is set to by intervention.

Proposition 3. The canonical and the original dynamical system yield the same
inferences about the effects of press interventions, that is, we have that

(I− PkΦ)−1(Pkc+ s) != (I− PkΦ̃)−1(Pk c̃+ s) . (E.26)

Proof. We begin by showing that

(I− PkΦ̃)(I− PkΦ)−1 != I + UPk . (E.27)

To see this, recall that Φ̃ = Φ −U(I−Φ) and substitute

(I− PkΦ̃)(I− PkΦ)−1 = (I− Pk (Φ −U(I−Φ)) (I− PkΦ)−1 (E.28)

= (I− PkΦ + PkU(I−Φ)) (I− PkΦ)−1 (E.29)

= (I− PkΦ) (I− PkΦ)−1 + (PkU(I−Φ)) (I− PkΦ)−1 (E.30)

= I + (UPk(I−Φ)) (I− PkΦ)−1 , (E.31)

where the last steps follows because U is diagonal and hence multiplication com-
mutes. Notice that because Pk sets the kth row to zero, it follows that Pk = P 2

k . We
can thus write Pk(I−Φ) = Pk(I− PkΦ), which plugged into (E.31) yields

(I− PkΦ̃)(I− PkΦ)−1 = I + UPk(I− PkΦ) (I− PkΦ)−1 (E.32)

= I + UPk . (E.33)

With this in hand, we left-multiply Equation (E.26) by (I − PkΦ̃) and substitute,
yielding

(I + UPk)(Pkc+ s) != (Pk c̃+ s) . (E.34)

Recall that c̃ = (I + U)c. We expand and substitute, writing

(I + UPk)Pkc+ (I + UPk)s = Pk(I + U)c+ s (E.35)

Pk(I + UPk)c+ (I + UPk)s = Pk(I + U)c+ s (E.36)

(I + UPk)s = s (E.37)

s = s . (E.38)

The last step follows because (I + UPk) yields a diagonal matrix with the kth diag-
onal equal to 1 and all other diagonals i equal to 1 +Uii , and s is a p × 1 column
vector with the kth element equal to s and all other elements zero. Multiplying
thus yields s, which concludes the proof. Another way to prove equivalence un-
der press interventions is to show that the equilibrium means and covariances
are the same in the interventional setting. For a proof of this, see Appendix E in
Hyttinen et al. (2012).
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E.2.4 Equivalence under Shift Intervention

Recall the effect of a shift intervention on the equilibrium positions as formalized
in Equation (E.5)

µ = (I−Φ)−1 (c+ s) , (E.39)

where s is a p × 1 column vector.

Proposition 4. If we consider only shift values s which are defined with respect
to a linear function of the population standard deviations of the intercept, then
the canonical and the original dynamical system yield the same inferences about
the effects of shift interventions. This condition becomes clearer shortly. For-
mally, we have that

(I−Φ)−1 (c+ s) !=
(
I− Φ̃

)−1
(c̃+ s̃) , (E.40)

where s and s̃ are p×1 column vectors. Note that if we apply a shift intervention
to Xk — respecting the linearity condition mentioned above — then s and s̃ have
elements sk = q×σk +z and s̃k = q× σ̃k +z, respectively, where q and z are arbitrary
constants and σk and σ̃k represent the population standard deviations of the kth

intercept term in the observational and canonical setting, respectively.

Proof. It is easy to show that
(
I− Φ̃

)
(I−Φ)−1 = I + U. Further, recall that c̃ =

(I + U)c. From this and Equation (E.40) it follows that(
I− Φ̃

)
(I−Φ)−1 (c+ s) = c̃+ s̃ (E.41)

(I + U) (c+ s) = (I + U)c+ s̃ (E.42)

(I + U)s = s̃ . (E.43)

Equation (E.43) gives a condition on s and s̃ under which the original and canon-
ical model are equivalent under shift interventions. Without lack of generality,
note that if we intervene on Xk , then all elements of s and s̃ are zero except for
the kth element, for which we have

(1 +uk)sk = s̃k , (E.44)

where uk denotes the kth diagonal element of U. Recall that U and hence uk
are a function of the auto-regressive effects in the original model, as defined in
Equation (E.9). In the canonical model, we do not have direct access to the auto-
regressive effects and thus U, and choosing s̃k such that it is equal to (1 + uk)sk is
impossible to do directly.

We can, however, achieve this implicitly by defining s̃k with respect to σ̃k . To
see this, note that a very similar relation as in Equation (E.44) holds with regards
to the population standard deviations σk and σ̃k of the original and canonical
model, respectively. To see this, recall that Σ̃c = (I + U)Σc(I + U). Let σk and σ̃k
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denote the kth diagonal element of Σc and Σ̃c, respectively. It follows that

(1 +uk)
2σ2
k = σ̃2

k (E.45)

(1 +uk)σk = σ̃k . (E.46)

If we define s̃k to be a linear function of σ̃k , denoted as f , we can — using Equation
(E.44) — write

(1 +uk)sk = f (σ̃k) (E.47)

(1 +uk)sk = f ((1 +uk)σk) (E.48)

(1 +uk)sk = (1 +uk)f (σk) (E.49)

sk = q × σk + z . (E.50)

This shows that, if we define the shift interventions s and s̃ on any variable Xk in
terms of the same linear function of σk and σ̃k , respectively, then the canonical
and the original dynamical system are equivalent under shift interventions.

E.3 Latent State Trait and Residual Correlation

In this section, we provide additional information regarding the specification of
fixed measurement models and the effects that misspecification of this measure-
ment model has in practice.

E.3.1 Estimating ECMs with Fixed Trait Variance

In the main text we stated that prior knowledge can be used to fix the measure-
ment error variances and latent variable variances to constants. Using SEM ter-
minology, we have the following structural equation and measurement equation

µ = µ̃c + Φ̃µ+ζ (E.51)

Y = µ+ ϵ , (E.52)

which yields a model-implied covariance matrix given by the standard SEM ex-
pression

ΣY = (I− Φ̃)−1Ψ (I− Φ̃)T +Θ , (E.53)

where Θ is the variance-covariance of the measurement errors ϵ and Ψ repre-
sents the variance-covariance matrix of the latent variables or equivalently the
structural error terms ζ: the diagonal elements of Ψ represent the variances of
exogenous latent variables and the residual variances of endogenous variables.

Suppose that based on prior research the proportion of variance in a measure-
ment instrument which can be attribute to the trait, that is, equilibrium variance
across individuals, is known, and the rest of the variance is attributable to an
independent variance term. Using the measurement equation above we could
write

var(Y ) = var(µ) + var(ϵ) , (E.54)
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and statements about the proportion of variance attributable to a trait can then
be interpreted as a statement about knowing the magnitude of var(µ) relative
to var(ϵ). Suppose without loss of generality that the observed variables Y are
standardized, such that var(Y ) = 1 for all variables, and that we know that 70
percent of the variance of each observed variable is attributable to variance in
the equilibrium and 30 percent to other sources. In order to use this information
in parameter estimation, we need to impose parameter constraints on Θ and Ψ

such that var(ϵ) = 0.30 and var(µ) = 0.70. In the former case, this is straightfor-
ward, since the variance of the measurement error is parameterized directly by Θ,
meaning that we can set θii = 0.30 ∀i. However, var(µ) is parameterized by ψii
alone only in the case of an exogenous variable. For endogenous variables, var(µj )
is a function of its predictors, their variances and covariances, and the residual
variance term ψjj , and so imposing the appropriate parameter constraint on ψjj
is less straightforward.

To see this, consider our example ECM discussed in the main text, which has
weights matrix

Φ̃ =


0 0 0 0
a 0 b 0
0 c 0 d
0 0 0 0


An expression for the variance of µ2 can be found by using the structural equation

µ2 = aµ1 + bµ3 + ϵ2

var(µ2) = var(aµ1 + bµ3 + ϵ2)

var(µ2) = var(aµ1) + var(bµ3) + cov(aµ1,bµ3) + var(ϵ2)

var(µ2) = a2var(µ1) + b2var(µ3) + ab × cov(µ1,µ3) +ψ22 ,

which we can see is dependent on the variances of µ1 and µ3, and the covariance
between µ1 and µ3. The variance of µ3 yields a similar expression, dependent
both on var(µ2) and the covariance between µ2 and µ4, while variance of µ1 and
µ4 simply reduce to ψ11 and ψ44, respectively. This means that we can fix ψ11
and ψ44 to take on values of 0.70, but imposing the same constraint on ψ22 and
ψ33 would not yield the desired total variance. As such, our goal is to impose
parameter constraints on ψ22 and ψ33 such that the expression on the right hand
side of the above equation adds up to the known total trait variance value of 0.70.
To do this we must solve for an expression for ψ22 which does not involve ψ33,
and vice versa. In the current example, this yields

ψ22 =
a2ψ11 + a2bcψ11 − 0.70 + b20.70 + bc0.70− b3c0.70

1 + bc
(E.55)

ψ33 =
d2ψ44 + bcd2ψ44− 0.70 + bc0.70 + c20.70− bc30.70

1 + bc
. (E.56)

These parameter constraints can be implemented directly in standard SEM soft-
ware. R code showing how this can be done is available from https://github.
com/fdabl/Equilibrium-Causal-Models.
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E.3.2 Fixed Trait Variance and Residual Correlation

In Section 8.4.1, we studied the effect that a residual correlation between the vari-
ables Y1 and Y2 has on the causal effects estimates between all variables. Specif-
ically, we considered unmodeled correlations between the state components of
the measurement s. In the standard SEM notation used in the previous section,
this concerns a correlation between the measurement error variances θ12 , 0. In
Section 8.4.3, we studied the effects that misspecifying the measurement model
has on the parameter and causal effects estimates. Here, we combine these two
issues. In particular, we mirror the simulation study described in Section 8.4.1,
except that we now always correctly specify the modeled trait variance correctly.
For example, if σ2

s /(1+σ2
s ) = 0.50, then we assume that we have correctly specified

the modeled trait variance as being as high as the state variance in the estimation
routine described above. We again study a residual correlation between Y1 and Y4
ρ12 ∈ [−0.25,0,0.25], but we assume that we do not correctly specify this residual
correlation in the measurement model.

Figure E.1 shows the estimated causal effects across the relative proportion
of trait and state variance, residual correlation, and causal effects. In contrast to
Figure 8.6, were we did not correctly specify the measurement model, we now
see that the causal effects are estimated without bias in case of zero residual cor-
relation (orange). In contrast, a negative residual correlation between Y1 and Y4
that is not correctly specified in the measurement model leads to an attenuation
of the effect estimates (green), most strongly for the causal effect X1→ X2. Corre-
spondingly, a positive residual correlation yields to an overestimate of the causal
effects (purple).

E.4 Causal Discovery Simulation

In this section, we briefly describe the Backshift method and assess its perfor-
mance in a simulation study using our running p = 4 variable example.

E.4.1 Backshift

Backshift assumes that the observations are equilibrium positions and that for a
particular environment j they can be modeled as

xj = Bxj + cj + ej , (E.57)

where the random shift intervention cj has covariance Σc,j and the matrix B
and the error distribution of ej are assumed to be identical across environments.
While the covariance matrix of the errors Σe,j does not have to be diagonal, Σc,j
is assumed to be diagonal. This implies that interventions at different variables
are assumed to be uncorrelated. Backshift further assumes that the interven-
tion shift cj and the noise ej are uncorrelated. Interventions can differ in their
strength, and this is encoded in the variance of cj : a higher variance implies a
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Figure E.1: Estimates of the effect of press(X1 = 1) on X2 (top left) and X3 (top right), and press(X4 =
1) on X2 (bottom left) and X3 (bottom right) across different state variances (given as a proportion of
the total variance) and residual correlations between X1 and X2. Dashed gray lines indicate the true
causal effect.

stronger intervention strength. Of note is that the location (or target) of the inter-
vention (i.e., the indices of cj who have non-zero values) and their strength can
be estimated from data (for details, see Rothenhäusler et al., 2015).

E.4.2 Simulation Study

To assess the performance of Backshift we simulate from our p = 4 variable
example model we have used throughout. Specifically, we generate equilib-
rium data varying the sample size n = [250,500,1000,2500,5000]; the number
of variables the shift intervention targets t = [1,2,3]; the number of settings
s = [3,4, . . . ,9,10]; the strength of the shift intervention m = [0.50,1,2] (formal-
ized as in Rothenhäusler et al., 2015); and the extent of unobserved confounding,
parameterized as residual correlation r = [0,0.50] — we randomly set each off-
diagonal element to either 0.50 or −0.50. We assess the estimation error defined
as the (element-wise) average absolute difference between the estimated Φ̂ and
the true parameters Φ .
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E.4.3 Simulation Results

Figure E.2 shows the estimation error across different intervention strengths,
number of targets, and residual confounding. We find that residual confounding
leads to a slightly worse performance and that the number of settings are more
important than the sample size per setting. Figure E.2 further shows that in-
creasing the intervention strength and especially the number of targets yields to
significant reductions in the estimation error. Focusing on the middle left panel,
we observe that the estimation error decreases with increasing sample size per
setting as well as with increasing the number of settings. The number of settings
has a stronger beneficial effect than the sample size: for example, increasing the
sample size from n = 250 to n = 500 with s = 3 settings decreases the estimation
error from 0.28 (0.29) to only 0.26 (0.27) for r = 0 and r = 0.50 residual correla-
tion, respectively. Fixing the sample size per setting at n = 250 and increasing
the number of settings from s = 3 to s = 4, on the other hand, decreasing the es-
timation error from 0.28 (0.29) to 0.21 (0.21) for r = 0 and r = 0.50, respectively,
a 25% (28%) reduction rather than just a 7% (7%) reduction when increasing the
sample size but keeping the number of settings fixed. Increasing the intervention
strength (going from the top to the bottom panels) decreases the estimation error

Figure E.2 shows results in which the intervention in each setting is target-
ing t = 3 variables. The top panels in Figure E.3 show the estimation error as
a function of the number of targets and no (left) and r = 0.50 (right) residual
correlation across intervention strengths of m = 0.50 (top), m = 1 (middle), and
m = 2 (bottom), fixing the sample size at n = 500. We find that the estimation
error decreases quite strongly with the number of targets in each setting. For
example, with s = 4 environments and an intervention strength of m = 1, the es-
timation error in the case of two targets t = 2 is about almost three times as high
(0.20) compared to four targets t = 4 (0.07) in case of no residual correlation. For
r = 0.50, a similar pattern holds (0.30 vs. 0.09). Note that these results are robust
to changing the intervention target.
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Figure E.2: Average absolute difference between estimated and true parameters across sample sizes
n and number of settings s for p = 4, t = 3 number of targets, an effect size of m = 0.50 (top), m = 1
(middle), andm = 2 (bottom) for no (left) or r = 0.50 (right) residual confounding. Results are ordered
with increasing number of settings from s = 3 (dark blue) to s = 10 (white).
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Appendix F

Anticipating Critical
Transitions in Psychological
Systems using Early Warning

Signals

F.1 Critical Slowing Down for Unidimensional Sys-
tems

Here, we illustrate the theory of critical slowing down for unidimensional sys-
tems more rigorously. To do so, we need to make three key assumptions. First,
we assume that the time series is generated by a dynamical system in equilibrium.
Second, we assume that linear stability analysis is informative for the behavior
of the system close to the stable equilibrium. Finally, we assume that the system
approaches a zero-eigenvalue bifurcation.

We first linearize the system at its equilibrium. In linear stability analysis the
idea is to simplify the possibly nonlinear dynamical system around its equilib-
rium and map out the dynamics of the simplified system when the state variable
is driven out of the equilibrium by some small external perturbation. To model
these perturbations explicitly, we rewrite the deterministic one-dimensional sys-
tem ẋ(t) = f (x(t)) into its stochastic version

dX(t) = f (X(t))dt + σdW (t) , (F.1)

where dX(t) denotes an Itô integral, σ is the diffusion term, and dW (t) is a Wiener
process. Equation (F.1) assumes that every period [0,T ] is subject to independent,
normally distributed noise of mean zero and variance T . This is the simplest form
of introducing noise and other specifications can be considered (see e.g., O’Regan
& Burton, 2018).

Let x⋆ be a fixed point, i.e. f (x⋆) = 0, and η(t) be a small external perturbation
of the system around its stable equilibrium, yielding X(t) = x⋆+η(t). We linearize
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dX(t) = dη(t) at the stable equilibrium to obtain

dη(t) = f (x⋆ + η(t))dt + σdW (t) (F.2)

= f (x⋆) + f ′(x⋆)η(t)dt + σdW (t) +O(η(t)2) (F.3)

≈ f ′(x⋆)η(t)dt + σdW (t) , (F.4)

since f (x⋆) = 0 and higher order terms are assumed to be negligible. Equation
(F.2) is an Ornstein-Uhlenbeck process whose solution is (e.g., Gardiner, 2004, p.
106)

ηT = ef
′(x⋆ )T η0 + σ

∫ T

0
ef
′(x⋆ )(T−t)dW (t) . (F.5)

Recall that a stable equilibrium implies that f ′(x⋆) < 0. In that case, and since the
expectation with respect to a Brownian motion is zero, the noise approaches zero
in expectation

lim
T→∞

E[ηT ] = lim
T→∞

ef
′(x⋆ )T η0 = 0 . (F.6)

The stationary variance of an Ornstein-Uhlenbeck process for f ′(x⋆) < 0 is given
by

lim
T→∞

Var(ηT ) = − σ2

2f ′(x⋆)

(
1− lim

T→∞
e2f ′(x⋆ )T

)
= − σ2

2f ′(x⋆)
. (F.7)

This result demonstrates why a system approaching the bifurcation point is ex-
pected to exhibit an increase in variance. At the bifurcation point, f ′(x⋆) changes
sign. If the system approaches a bifurcation point from a stable regime, we have
f ′(x⋆)→ 0−, blowing up the variance to infinity.

A similar result can be shown for the autocorrelation of the time series. The
stationary covariance (for finite τ = |T − S |) of the Ornstein-Uhlenbeck process is
given by

lim
S,T→∞

cov(ηT ,ηS ) = − σ2

2f ′(x⋆)
ef
′(x⋆ )τ , (F.8)

resulting in an autocorrelation of

lim
S,T→∞

cor(ηT ,ηS ) = lim
S,T→∞

cov(ηT ,ηS )√
Var(ηT )Var(ηS )

= ef
′(x⋆ )τ . (F.9)

Therefore, if lim
x⋆→0−

f ′(x⋆), the autocorrelation approaches one from below.

F.1.1 Discrete-time Analysis

Since real-life systems have to be measured at discrete time points, it is instruc-
tive to write the result in discrete-time notation. The discrete-time equivalent
of the Ornstein-Uhlenbeck process is an autoregressive (AR) model of order one.
For the discrete time step τ = 1, the AR(1) can be written as

ηt = ηt−1e
f ′(x⋆ ) + εt , (F.10)
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with εt ∼ N (0,σ2
ϵ ) and σ2

ε = −σ2 1−e2f ′ (x⋆ )

2f ′(x⋆ ) . The variance of the AR(1) process is
then given by

Var[ηt] =
σ2
ε

1− e2f ′(x⋆ )
= − σ2

2f ′(x⋆)
, (F.11)

which is the same as obtain from the continuous-time analysis. Clearly, if f ′(x⋆)
approaches zero from below, the AR(1) approaches the random walk limit with
exploding variance.

F.2 Critical Slowing Down for Multidimensional
Systems

Here, we illustrate the theory of critical slowing down for multidimensional sys-
tems more rigorously. The linearization result of Equation (F.1) generalizes to the
multivariate system

dη(t) = J(x⋆)η(t)dt + SdW (t) , (F.12)

where η(t), dW (t), and x⋆ are vectors of the same length. J(x⋆) is the full rank
Jacobian matrix evaluated at the fixed point and S a matrix capturing interde-
pendencies of the noise. We again assume the simplest form of independent and
normally distributed noise, S = σI. To simplify the exposition, we only consider
symmetric Jacobian matrices, as the example considered in the main text.1 The
result of the multidimensional Ornstein-Uhlenbeck process is derived similarly
as in the unidimensional case as

ηT = eJ(x
⋆ )T η0 + σ

∫ T

0
eJ(x

⋆ )(T−t)dW (t) . (F.13)

If the system is in a stable equilibrium, all real parts of the Jacobian’s eigenvalues
are negative. In that case, the noise wipes out over time and we have

lim
T→∞

E[ηT ] = lim
T→∞

eJ(x
⋆ )T η0 = 0 . (F.14)

The stationary covariance for finite T − S ≥ 0 is given by

lim
S,T→∞

cov(ηT ,η
⊤
S ) = −σ2eJ(x

⋆ )(T−S)H(x⋆)−1 , (F.15)

where H(x⋆) = J(x⋆) + J(x⋆)⊤. This makes clear that the variance of the system
perturbed at the stable equilibrium is given by

lim
T→∞

var(ηT ) = −σ2H(x⋆)−1 . (F.16)

If an eigenvalue of J(x⋆) approaches zero from below, the same is true for H(x⋆),
resulting in the divergence of the variance.

1Note that if J is not symmetric, the integral below cannot be solved explicitly.
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F.2.1 Discrete-time Analysis

The discrete-time equivalent of the multidimensional Ornstein-Uhlenbeck pro-
cess is a Vector autoregressive (VAR) process of order one. For discrete time steps
of size one, Equation (F.2) can be written as a VAR(1) model

ηt = Φηt−1 + εt , (F.17)

where Φ = eJ(x
⋆ ) and εt ∼ N (0,−σ2H(x⋆)−1). The VAR(1) model is stationary if

the real parts of the matrix Φ lie within the unit circle, corresponding to the re-
quirement of strictly negative eigenvalues of J(x⋆). In that case, the lag-0 variance
matrix Σ0 = Var(ηT ) becomes

Var(ηT ) = E
[
ηtη
⊤
t

]
= ΦE

[
ηt−1η

⊤
t−1

]
Φ⊤ +E

[
ϵtϵ
⊤
t

]
Σ0 = ΦΣ0Φ

⊤ − σ2H(x⋆)−1 . (F.18)

Equation (F.18) can be solved explicitly by stacking the columns using the vec
operator (Hamilton, 1994, p. 265), resulting in

vec(Σ0) = −σ2(I−Φ ⊗Φ)−1vec(H(x⋆)−1) , (F.19)

where ⊗ denotes the Kronecker product.
Since the eigenvalues of the Kronecker product are just the pairwise products

of the eigenvalues of Φ , there exists a finite solution of the covariance matrix.
If an eigenvalue of Φ approaches zero from below, Equation (F.19) diverges, in-
creasing the variance.

From the lag-0 covariance matrix Σ0 and the VAR(1) coefficient matrix Φ fol-
lows the lag-k covariance matrix (Hamilton, 1994, p. 266)

cov(ηT ,ηT−k) = Σk = E
[
ηt ,η

⊤
t−k

]
= ΦkΣ0 , (F.20)

which can be used to make model-based predictions about the strength of the
autocorrelation in the individual system components.

F.3 Critical Slowing Down Differs Among Compo-
nents

We reproduce and extent part of the results by Boerlijst et al. (2013) here to fur-
ther illustrate the nuances behind critical slowing down. We simulate from the
same three-species model with juvenile prey (J), adult prey (A), and a predator
(P ) which only attacks adult prey given by

dJ
dt

= A− J2

1 + J2 −µJ J (F.21)

dA
dt

=
J2

1 + J2 −AP −µAA (F.22)

dP
dt

= AP −µP P , (F.23)
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where (µJ ,µA,µP ) are the death rates of the species. Following Boerlijst et al.
(2013), we set µJ = 0.05 and µA = 0.10 and simulate from this model, adding
independent noise with σϵ = 0.005 to the death rate of all species.

We slowly varied the death rate of the predators from µP = 0.45 to µP = 0.553,
which is the bifurcation point at which the predators become extinct. We simu-
lated 60,000 time points using a step size of ∆ = 0.10 and subsampled the data by
taking only every 20th time point; subsampling reduced the magnitude of early
warning indicators that are based on correlations, which otherwise would be at
ceiling.
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Figure F.1: Left: Only juvenile prey showed a continuous increase in autocorrelation as the system
approaches the bifurcation point µP ≈ 0.553. Middle: Only juvenile prey showed an increase in stan-
dard deviation. Right: Multivariate indicators (z-standardized) such as the spatial variance and the
average absolute value of all cross-correlations first decreased, then increased comparatively slowly
(spatial variance) or suddenly (cross-correlation). Only the dominant eigenvalue of the covariance
matrix (CovEigen) increased monotonically.

The left panel in Figure F.1 shows that only the juvenile prey showed an in-
crease in autocorrelation as the system approached the bifurcation point µP ≈
0.553. In fact, the autocorrelation of the adult prey and the predator actually
decreased, except that there was a rapid increase in autocorrelation for predators
right before the bifurcation point.2 Similarly, the middle panel shows that only
the juvenile prey exhibited an increase in standard deviation. The right panel
in Figure F.1 shows that the largest eigenvalue of the covariance matrix — an
early warning indicator recently proposed by Chen et al. (2019) — monotoni-
cally increased as the system approached the bifurcation point. In contrast, the
early warning indicator spatial variance (Guttal & Jayaprakash, 2009; Kéfi et al.,
2014), which is defined as the variance of the three-dimensional vector given by
the species, and the cross-correlation first decreased when approaching the bi-
furcation point. The spatial variance increased markedly before the bifurcation
point, while the cross-correlation increased only immediately before the preda-
tors become extinct. The results are qualitatively the same when one adds inde-
pendent noise not to the death rates (that is, multiplicative noise), but indepen-

2Boerlijst et al. (2013) only showed results for µP ≤ 0.55, which is why they did not observe this
sudden increase. Technically, therefore, the predators showed critical slowing down, but it is too little
and too late to act in practice.
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dent noise to the populations (that is, additive noise). Our analysis extends the
results presented in Boerlijst et al. (2013), showing that multivariate indicators,
too, might be suppressed or show a counter-intuitive decrease when approaching
a tipping point. This again underscores the need to have at least partial under-
standing of the system under study. In particular, while the system might show
critical slowing down, it may not be expressed in all system variables, or even
the variables that seem most intuitive for critical slowing down to occur. For a
rigorous mathematical analysis explaining the conditions under which one can
expect early warning signals and in which variables, see Patterson et al. (2021).

F.4 Definition of Early Warning Indicators

Here we provide the mathematical definition of the early warning indicators used
in the simulation. Let T denote the number of data points in a particular rolling
window. Let xki denote the ith observation of the kth variable comprising our
Generalized Lotka-Volterra model. Let x̄k denote the sample mean of variable
xk across a rolling window that is apparent from context. The univariate early
warning indicators are computed on the variable x1 and are given by

Autocorrelation =

∑T
i=1 (x1i − x̄1)

(
x1(i−1) − x̄1

)
√∑T

i=1 (x1i − x̄1)2
√∑T

i=1

(
x1(i−1) − x̄1

)2
(F.24)

Variance = (T − 1)−1
T∑
i=1

(x1i − x̄1)2 (F.25)

Skewness =
∑T
i=1 (x1i − x̄1)3(∑T
i=1 (x1i − x̄1)2

) 3
2

(F.26)

Kurtosis =
∑T
i=1 (x1i − x̄1)4(∑T
i=1 (x1i − x̄1)2

)2 . (F.27)

Let x ∈ RT×4 denote the matrix of observations of the four variables for a
rolling window of size T . Denote xi· as the vector of observations of the four
variables at time point i, and let x̄ denote the multivariate sample mean over the
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window of size T . The multivariate indicators are given by

|Cross-Correlation| =

∣∣∣∣∣∣∣∣∣T −2
T∑
k=1

T∑
l=1

∑T
i=1 (xki − x̄k) (xli − x̄l)√∑T

i=1 (xki − x̄k)2
√∑T

i=1 (xli − x̄l)2

∣∣∣∣∣∣∣∣∣ (F.28)

Spatial-Variance = T −1
T∑
i=1

(xi· − x̄)2 (F.29)

Spatial-Skewness =
∑T
i=1(xi· − x̄)2(∑T
i=1 (xi· − x̄)2

) 3
2

(F.30)

Spatial-Kurtosis =
∑T
i=1(xi· − x̄)4(∑T
i=1 (xi· − x̄)2

)2 , (F.31)

where the exponents indicate element-wise operations. The dominant eigenvalue
of the covariance matrix is the largest absolute eigenvalue of the covariance ma-
trix, see Chen et al. (2019) for details.

F.5 Further Simulation Results

Figure F.2 shows the average Area under the Curve (AUC) across settings for the
remaining early warning indicators.

343



F. Anticipating Critical Transitions in Psychological Systems using Early
Warning Signals

Sampling 10x Day Sampling 5x Day Sampling 1x Day

4 6 8 10 4 6 8 10 4 6 8 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σε

Transition Taking 50 Days Transition Taking 25 Days Transition Taking 10 Days

4 6 8 10 4 6 8 10 4 6 8 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σε

M
ea

n 
AU

C

Baseline 100 Days Baseline 50 Days Baseline 25 Days

4 6 8 10 4 6 8 10 4 6 8 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Mean
Kurtosis

Skewness
Spatial−Kurtosis

Spatial−Skewness
Spatial−Variance

σε σε

σε σε

σεσε σε

Figure F.2: Shows Area under the Curve (AUC) of selected early warning indicators averaged over the
transitioning period across sampling frequencies (top panels) and averaged over sampling frequen-
cies across transitioning period (bottom panels). All results are further averaged over baseline (25,
50, 100 days), and rolling window (10, 25, 50 days); error bars denote one standard deviation across
these configurations.
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Appendix G

Overlapping Timescales
Obscure Early Warning
Signals of the Second

COVID-19 Wave

G.1 Estimation of Rt across European Countries

Figures G.1-G.5 show countries and their estimated effective reproductive num-
ber, with vertical lines indicating the time period on which we computed early
warning indicators.

G.2 Sensitivity Analyses

Figures G.6-G.15 show sensitivity analyses for the ten early warning indicators
across different rolling window sizes for detrending and estimation.

345



G. Overlapping Timescales Obscure Early Warning Signals of the Second
COVID-19 Wave

0

300

600

900

0

1

2

3

0

100

200

300

400

0

1

2

3

0

20

40

60

80

0

1

2

3

0

1000

2000

0

1

2

3

0

100

200

300

0

1

2

3

0

1000

2000

3000

0

1

2

3

Mar Apr May Jun Jul Aug Sep Oct

Mar Apr May Jun Jul Aug Sep Oct

Mar Apr May Jun Jul Aug Sep Oct

Mar Apr May Jun Jul Aug Sep Oct

Mar Apr May Jun Jul Aug Sep Oct

Mar Apr May Jun Jul Aug Sep Oct

Mar Apr May Jun Jul Aug Sep Oct

Mar Apr May Jun Jul Aug Sep Oct

Mar Apr May Jun Jul Aug Sep Oct

Mar Apr May Jun Jul Aug Sep Oct

Mar Apr May Jun Jul Aug Sep Oct

Mar Apr May Jun Jul Aug Sep Oct
Date Date

C
on

fir
m

ed
 c

as
es

R
t

C
on

fir
m

ed
 c

as
es

R
t

C
on

fir
m

ed
 c

as
es

R
t

Austria

Bulgaria

Cyprus

Belgium

Croatia

Czechia

Figure G.1: Shows reported cases (gray) and posterior mean of inferred infected cases (black) as
well as the posterior mean and 95% credible interval of Rt for various countries. Vertical blue lines
indicate the time series on which early warning indicators were computed, see main text.
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Figure G.2: Shows reported cases (gray) and posterior mean of inferred infected cases (black) as
well as the posterior mean and 95% credible interval of Rt for various countries. Vertical blue lines
indicate the time series on which early warning indicators were computed.
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Figure G.3: Shows reported cases (gray) and posterior mean of inferred infected cases (black) as
well as the posterior mean and 95% credible interval of Rt for various countries. Vertical blue lines
indicate the time series on which early warning indicators were computed.
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Figure G.4: Shows reported cases (gray) and posterior mean of inferred infected cases (black) as
well as the posterior mean and 95% credible interval of Rt for various countries. Vertical blue lines
indicate the time series on which early warning indicators were computed.
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Figure G.5: Shows reported cases (gray) and posterior mean of inferred infected cases (black) as
well as the posterior mean and 95% credible interval of Rt for various countries. Vertical blue lines
indicate the time series on which early warning indicators were computed.
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Figure G.6: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the mean is
significantly larger than expected under the null across detrending rolling window sizes. Note that
p = 0.25 in the legend means p ≥ 0.25.
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Figure G.7: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the variance
is significantly larger than expected under the null across rolling window sizes. Note that p = 0.25 in
the legend means p ≥ 0.25.
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Figure G.8: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the coef-
ficient of variation is significantly larger than expected under the null across rolling window sizes.
Note that p = 0.25 in the legend means p ≥ 0.25.
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Figure G.9: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the index of
dispersion is significantly value than expected under the null across rolling window sizes. Note that
p = 0.25 in the legend means p ≥ 0.25.
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Sensitivity analysis for the autocovariance

Figure G.10: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the auto-
covariance is significantly larger than expected under the null across rolling window sizes. Note that
p = 0.25 in the legend means p ≥ 0.25.
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Sensitivity analysis for the autocorrelation

Figure G.11: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the auto-
correlation is significantly larger than expected under the null across rolling window sizes. Note that
p = 0.25 in the legend means p ≥ 0.25.
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Sensitivity analysis for the decay time

Figure G.12: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the decay
time is significantly larger than expected under the null across rolling window sizes. Note that p =
0.25 in the legend means p ≥ 0.25.
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Figure G.13: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the skew-
ness is significantly larger than expected under the null across rolling window sizes. Note that
p = 0.25 in the legend means p ≥ 0.25.
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Sensitivity analysis for the kurtosis

Figure G.14: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the kurto-
sis is significantly larger than expected under the null across rolling window sizes. Note that p = 0.25
in the legend means p ≥ 0.25.
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Sensitivity analysis for the first difference in variance

Figure G.15: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the first
differences in the variance is significantly larger than expected under the null across rolling window
sizes. Note that p = 0.25 in the legend means p ≥ 0.25.
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Appendix I

List of Blog Posts

Most academic writing, including parts of this dissertation, is dry and boring.
Blogging provides much more freedom, and starting a blog has been one of the
most rewarding things I have done during my PhD. Below is a list of blog posts I
have written during the last four years, some of which you might enjoy. They are
available at https://fabiandablander.com.

• The Barely Inhabitable Earth: Climate Impacts under Business as Usual
(January, 2022)

• Understanding and preventing climate breakdown (January, 2022)

• Simulation-based Science: Breaking boundaries (July, 2021)

• Causal effect of Elon Musk tweets on Dogecoin price (February, 2021)

• A gentle introduction to dynamical systems theory (December, 2020)

• Estimating the risks of partying during a pandemic (July, 2020)

• Visualising the COVID-19 Pandemic (June, 2020)

• Interactive exploration of COVID-19 exit strategies (June, 2020)

• Infectious diseases and nonlinear differential equations (March, 2020)

• Reviewing one year of blogging (December, 2019)

• An introduction to Causal inference (November, 2019)

• A brief primer on Variational inference (October, 2019)

• Harry Potter and the Power of Bayesian Inference (September, 2019)

• Love affairs and linear differential equations (August, 2019)

• The Fibonacci sequence and linear algebra (July, 2019)

• Spurious correlations and random walks (June, 2019)

• Bayesian modeling using Stan: A case study (May, 2019)

• Two perspectives on regularization (April, 2019)

• Variable selection using Gibbs sampling (March, 2019)

• Two properties of the Gaussian distribution (February, 2019)

• Curve fitting and the Gaussian distribution (January, 2019)

• Ten great ideas about chance (January, 2019)
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Appendix J

Nederlandse Samenvatting

In dit proefschrift getiteld “Changing Systems: Statistical, Causal, and Dynam-
ical Perspectives” heb ik onderzocht hoe we systemen beter kunnen begrijpen
en beı̈nvloeden. Systemen zijn verzamelingen van onderling verbonden of op
elkaar inwerkende elementen die op een bepaalde manier zijn georganiseerd om
iets te bereiken. In het eerste deel van dit proefschrift onderzoek ik systemen
vanuit een statistisch perspectief, waarbij nieuwe Bayesiaanse toetsen worden gep-
resenteerd die de inferentie uit empirische gegevens verbeteren. In het tweede
deel onderzoek ik systemen vanuit een causaal perspectief, waarbij de belangrijk-
ste concepten en instrumenten voor het modelleren van de uitkomst van inter-
venties worden geschetst. In het derde deel onderzoek ik systemen vanuit een
dynamisch perspectief, waarbij het belang van modellen om de temporele evolutie
van systemen te onderzoeken en generieke vroegtijdige waarschuwingssignalen
voor omslagpunten te beoordelen wordt belicht. Het vierde en laatste deel van
dit proefschrift pleit voor een actiegericht perspectief dat niet alleen gericht is op
het begrijpen van systemen, maar ook op het actief, en ten goede veranderen van
dezen. Op basis van deze verschillende perspectieven vat ik de inhoud van dit
proefschrift hieronder kort samen.

J.1 Statistisch perspectief

Systemen laten sporen na in hun omgeving, en wij kunnen deze sporen gebruiken
om conclusies te trekken over hun gedrag. Wij kunnen hypothesen ontwikke-
len over dit gedrag en gegevens verzamelen om onze hypothesen te testen. Het
eerste deel van dit proefschrift ging over hypothesetests binnen het kader van
Bayesiaanse inferentie. Een kernaspect van dit kader betreft de formalisering van
“prior beliefs”, dit zijn a priori assumpties over de werkelijkheid. Dit is niet al-
tijd eenvoudig, en er kunnen contra-intuı̈tieve resultaten optreden. In hoofdstuk
2 illustreerden wij dit met een eenvoudig voorbeeld — het testen van de geli-
jkheid van twee verhoudingen. De populairste analyse bekijkt de vergelijking
van verhoudingen vanuit het perspectief van een contingentietabel, waarbij aan
de twee verhoudingen rechtstreekse a priori verdelingen worden toegekend. Een
andere, minder populaire benadering bekijkt het probleem vanuit het perspec-
tief van een logistische regressie, waarbij a priori verdelingen worden toegekend
aan logit-getransformeerde parameters. Wij hebben vastgesteld dat deze twee
tests tot sterk uiteenlopende conclusies kunnen leiden, vooral wanneer de ver-
houdingen klein zijn. Dat komt doordat in de analyse met de contingentietabel
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geen a priori afhankelijkheid tussen de verhoudingen wordt gecreëerd, terwijl in
het perspectief van de logistische regressie dat wel gedaan wordt. Die afhankeli-
jkheid is logisch: als we de gelijkheid van twee groepen willen testen, nemen we
impliciet aan dat ze tot op zekere hoogte vergelijkbaar zijn — anders zou er geen
test nodig zijn. In dit hoofdstuk benadrukten we het belang van de afhankeli-
jkheid van a priori assumpties voor Bayesiaanse tests. Dit is een waarschuwing
dat zelfs in eenvoudige toepassingen, verschillen in a priori assumpties — vooral
wanneer er niet-lineaire transformaties bij betrokken zijn — onbedoelde gevol-
gen kunnen hebben.

In hoofdstuk 3 hebben we uit eerste beginselen een toets afgeleid voor het
vergelijken van varianties. In het bijzonder hebben we een reeks wenselijke
eigenschappen gespecificeerd waaraan onze Bayesiaanse test moest voldoen en
een geschikte klasse van a priori verdelingen gevonden die de gewenste test
opleverden. Dit is een principiële manier om a priori verdelingen te kiezen
met welke onbedoelde gevolgen worden vermeden, in vergelijking met meer
willekeurig gekozen a priori verdelingen. Met de voorgestelde toets kunnen on-
derzoekers niet alleen de aannames van andere toetsen, zoals de t-toets, toet-
sen, maar ook inhoudelijke hypothesen, waaronder hypothesen die betrekking
hebben op gelijkheid, ongelijkheid en ordeningsbeperkingen, zoals sigma2

1 =
σ2

2 > (σ2
3 ,σ

2
4 ). Hierdoor kunnen onderzoekers hun inhoudelijke hypothesen di-

recter vertalen in statistische hypothesen. Wij hebben dit geı̈llustreerd met voor-
beelden uit de techniek, de archeologie en de onderwijspsychologie.

In hoofdstuk 3 werd getoetst of alle groepen gelijk zijn of niet, maar onder-
zoekers zijn vaak ook geı̈nteresseerd in het vergelijken van meerdere groepen
tegelijk. In hoofdstuk 4 hebben wij dit zogenaamde probleem van meervoudige
vergelijkingen onderzocht vanuit een Bayesiaans perspectief. De Bayesiaanse be-
nadering van dit probleem bestaat erin een a priori waarde toe te kennen aan
alle mogelijke (on)gelijkheden tussen alle groepen. In tegenstelling tot de hoofd-
stukken 2 en 3 betekent dit dat niet alleen een a priori waarde wordt gespeci-
ficeerd voor de parameters binnen één model of hypothese, maar voor alle mo-
gelijke modellen of hypothesen. Met behulp van ideeën uit de combinatoriek
kunnen wij over de reeks hypothesen redeneren in termen van partities, waar-
van het aantal snel groeit; zo levert K = 10 groepen al 115.975 partities op. In-
ferentie wordt dus een uitdaging, en wij hebben een stochastische zoekmethode
voorgesteld om de hoogdimensionale ruimte van partities efficiënt te verkennen.
Wij hebben onze methode vergeleken met verschillende andere benaderingen
van het probleem van meervoudige vergelijkingen en haar geı̈llustreerd aan de
hand van een aantal empirische voorbeelden. Onze voorgestelde methode gaat
verder dan de huidige benaderingen van meervoudige vergelijkingen in de (psy-
chologische) literatuur, en wij hopen dat onze methode in de praktijk routine-
matig zal worden toegepast.
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J.2 Causaal perspectief

Hoewel een statistisch begrip van een systeem een goed begin is, geeft het bij
lange na niet het hele plaatje weer. We kunnen veel leren over een systeem door
het alleen maar te observeren, maar kunnen dan toch verrast zijn als het gedrag
verandert na een doelgerichte ingreep. Het tweede deel van dit proefschrift ging
over het cruciale verschil tussen een louter statistisch en een causaal perspectief.
Statistische modellen beschrijven probabilistische relaties tussen variabelen —
ze kunnen ons vertellen dat als X hoog is, Y waarschijnlijk ook hoog zal zijn —
maar ze kunnen ons niet vertellen wat er met Y zou gebeuren als we de waarde
van X zouden verhogen. Om het resultaat van dergelijke ingrepen te modelleren,
moeten we verder gaan dan statistische inferentie en moeten we overgaan op
causale inferentie. Hoofdstuk 5 gaf een inleiding tot de kernprincipes van causale
inferentie uit observationele gegevens, vanuit het gebruik van grafische mod-
ellen.

Gebruikmakend van ideeën uit de literatuur over causale inferentie, il-
lustreerde hoofdstuk 6 het cruciale onderscheid tussen causale en statistische
netwerkmodellen. In het begin interpreteerden veel onderzoekers de mate van
centraliteit van knooppunten als indicator van hoe belangrijk een knooppunt
is in een netwerk. Een dergelijke inferentie is niet terecht, en hoofdstuk 6 il-
lustreerde dit punt door gegevens van lineaire acyclische causale modellen te
simuleren, verschillende maten voor de centraliteit van knooppunten te bereke-
nen op basis van het geschatte statistische netwerkmodel, en een mismatch aan
te tonen tussen deze maten en echte causale effectmaten. Natuurlijk laat deze
aanpak de mogelijkheid open dat de gegevens voortkomen uit een complexer on-
derliggend dynamisch systeem waarvan de componenten causale effecten hebben
die goed worden gerepresenteerd door statistische metingen van de mate van
centraliteit van knooppunten, maar dat lijkt onwaarschijnlijk. Het doel van dit
hoofdstuk was te laten zien dat concepten uit de statistische netwerk literatuur,
die vaak causaal worden geı̈nterpreteerd, misschien niet goed aansluiten bij con-
cepten uit de causale inferentie.

Door het doel van inferentie te beschouwen kunnen we ook andere on-
duidelijkheden ophelderen in de psychologische netwerk literatuur. In hoofd-
stuk 7 werd ingezoomd op Berkson’s bias (Berkson, 1946a), wat in de context van
statistische netwerkmodellen betekent dat conditionering op somscores leidt tot
vertekende schattingen. Wij laten zien dat een dergelijke algemene uitspraak te
vaag is om nuttig te zijn, en bespreken vijf verschillende onderzoeksvragen of
inferentiedoelen die al dan niet beı̈nvloed kunnen worden door Berkson’s bias.

In de huidige empirische praktijk bestuderen onderzoekers vaak psycholo-
gische systemen — die kunnen worden opgevat als systemen van causaal gere-
lateerde componenten die zich in de loop van de tijd binnen een individu on-
twikkelen — door statistische modellen toe te passen op transversale gegevens.
Dit roept een centrale vraag op: kan cross-sectionele data-analyse ooit causale
inzichten opleveren in systemen die in de tijd evolueren, en zo ja, onder welke
voorwaarden? Hoofdstuk 8 introduceerde Equilibrium Causal Models (ECMs) in
de psychologische literatuur om beide uitdagingen aan te gaan. ECM’s maken
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conclusies mogelijk over de langetermijneffecten van interventies en kunnen
in principe geleerd worden uit (bepaalde typen) cross-sectionele gegevens. Ze
bieden ook een intuı̈tieve interpretatie van feedbackrelaties, die een kernon-
derdeel vormen van complexe systemen. Wij hebben ons gebaseerd op de lit-
eratuur over psychologische metingen en causale ontdekking om te schetsen hoe
ECM’s de manieren waarop psychologische onderzoekers hun gegevens verza-
melen en analyseren kunnen informeren. Wij hopen dat ECM’s zo niet een prak-
tisch, dan toch een conceptueel hulpmiddel kunnen worden voor onderzoekers
in de psychologie.

J.3 Dynamisch perspectief

Een dynamisch of modelmatig perspectief gaat verder dan de abstracties die
inherent zijn aan de statistische en causale perspectieven door uit te werken
hoe componenten van een systeem zich tot elkaar verhouden. Deze compo-
nenten kunnen elkaar versterken in een positieve terugkoppeling die kan lei-
den tot onverwachte en soms zelfs dramatische veranderingen. Het derde
deel van dit proefschrift ging over veranderingen in systemen die we over
het algemeen willen vermijden. Gemotiveerd uit de theorie van dynamis-
che systemen, verwijst kritieke vertraging naar het feit dat sommige syste-
men na een verstoring langzamer naar hun evenwicht terugkeren naarmate ze
dichter bij een omslagpunt komen. Dit wijst op een aantal indicatoren voor
vroegtijdige waarschuwing, zoals verhoogde variantie, autocorrelatie en kruis-
correlatie. In hoofdstuk 9 gaven we een uitgebreide inleiding tot vroegtijdige
waarschuwingssignalen op basis van kritische vertragingen in de psychologis-
che literatuur. Wij baseerden ons op de meer uitgekristalliseerde literatuur in de
ecologie, epidemiologie en natuurkunde om de theoretische nuances van dergeli-
jke vroegtijdige waarschuwingssignalen te beoordelen. De ultieme belofte van
vroegtijdige waarschuwingssignalen is om in real time te waarschuwen voor
bijvoorbeeld een plotselinge overgang naar een depressie. In een simulaties-
tudie waarin een dergelijke real-time situatie werd nagebootst, vonden wij dat
de prestaties van verschillende vroegtijdige waarschuwingsindicatoren duidelijk
afnamen bij de hoeveelheden ruis die typisch zouden kunnen zijn voor psychol-
ogische toepassingen. Wij concludeerden dat de toepassing van deze indicatoren
in de praktijk aanzienlijke moeilijkheden oplevert, een conclusie die wordt on-
derschreven door onderzoekers die uitgebreid empirisch werk over dit onder-
werp hebben verricht. We doen ook verschillende voorstellen voor toekomstig
onderzoek — inclusief een grotere focus op formele modellering — om vroege
waarschuwingssignalen een solide basis te geven in de psychologie en psychia-
trie.

Epidemische uitbraken zijn een uitstekend voorbeeld van systemen die op
dramatische wijze veranderen en die we willen vermijden. Zouden vroege
waarschuwingssignalen op basis van kritieke vertraging ons hebben geholpen
de tweede COVID-19 golf te voorzien? Het effectieve voortplantingsgetal (Rt)
geeft het gemiddelde aantal nieuwe gevallen weer dat door een besmettelijk
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individu wordt veroorzaakt. Wiskundig gezien vormt Rt = 1 een (dynamis-
che) transkritische bifurcatie, die in verband wordt gebracht met vroegtijdige
waarschuwingssignalen op basis van een kritieke vertraging. Aan de hand van
gegevens uit 27 Europese landen werd in hoofdstuk 10 vastgesteld dat vroegti-
jdige waarschuwingssignalen eerder een dalende dan de kenmerkende stijgende
tendens vertoonden vóór de bifurcatie. Ter illustratie van het potentieel dat zelfs
een eenvoudig model kan hebben, toonden wij in simulaties aan dat dit waarschi-
jnlijk te wijten is aan de aanhoudende transiënte dynamiek van de eerste golf -
het systeem was nog niet in evenwicht vóór de tweede golf, een noodzakelijke
voorwaarde voor de stijging van de indicatoren. Dit hoofdstuk heeft het belang
benadrukt van een dynamisch of modelmatig perspectief om aanvankelijk on-
verklaarbare empirische bevindingen te begrijpen.

Traditionele indicatoren voor vroegtijdige waarschuwing, zoals autocorre-
latie, variantie en kruiscorrelatie, worden afgeleid door een niet-lineair dy-
namisch systeem te lineariseren. Deze linearisatie verwaarloost hogere-orde-
termen die in feite nuttig kunnen zijn voor het anticiperen op omslagpunten. Het
expliciet opnemen van de hogere-orde-termen is een wiskundige uitdaging. Bury
et al. (2021) omzeilt dit belastende werk op elegante wijze door deep learning te
gebruiken, dat automatisch alle hogere-orde-eigenschappen uit de gegevens haalt
die relevant zijn voor het anticiperen op het omslagpunt. In hoofdstuk 11 werd
de door Bury et al. (2021) voorgestelde methode onder de loep genomen en werd
aangetoond dat deze niet alleen kenmerken leerde die relevant waren voor het
anticiperen op het omslagpunt, maar ook kenmerken die specifiek waren voor
de voorbewerking — het gebruik van een detrending-methode waarop het model
niet was getraind. Hierdoor leidde de deep learning-methode tot onjuiste con-
clusies. Ook in dit hoofdstuk is de belangrijkste conclusie dat men zich bewust
moet zijn van de beperkingen van het instrument dat men gebruikt; dit is natu-
urlijk een grotere uitdaging naarmate de methode complexer wordt.

J.4 Actiegericht perspectief

Ons streven om systemen te begrijpen mag niet los staan van bredere maatschap-
pelijke overwegingen. De meeste onderzoekers worden waarschijnlijk gedreven
door een mix van intrinsieke nieuwsgierigheid en de wens om de menselijke con-
ditie te verbeteren door het genereren van kennis. De ultieme test van die kennis
— en vaak het meest spannende en vernederende deel — is niet het verkrijgen
van papers door peer-review, maar het daadwerkelijk proberen te veranderen van
systemen. Dit is wat ik het op actiegericht perspectief op systemen heb genoemd,
dat voortbouwt op de statistische, causale en dynamische perspectieven met als
doel daadwerkelijke systemen ten goede te veranderen.

Hoewel het ongetwijfeld prettiger is om als wetenschapper in de ivoren toren
te blijven, onbewogen door de (mis)ontwikkelingen in de bredere samenleving,
klopt de realiteit soms op de deur. COVID-19 was zo’n voorbeeld. De klimaat-
en ecologische crisis is een ander voorbeeld. Zodra we de ernst en de urgen-
tie ervan niet langer negeren, zodra we ons emotioneel verbinden met wat er
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op het spel staat, zodra we onze onbedoelde medeplichtigheid accepteren, be-
ginnen de dingen te veranderen. Hoofdstuk 12 is mijn poging om een beknopt
overzicht te geven van onze huidige situatie, de mate waarin het klimaatbeleid
faalt, en hoe we meer betrokken kunnen raken, als wetenschappers en als burg-
ers. We staan op een historisch kruispunt, waardoor we diep moeten nadenken
over onze rol, niet alleen als burgers, maar ook als wetenschappers en academici.
Wat is onze rol op dit beslissende moment in de tijd? Gaan we toekijken hoe deze
enorme catastrofe zich ontvouwt, of gaan we alles doen wat we kunnen om die te
voorkomen? Noch jij, noch ik hebben ervoor gekozen om te leven op dit kritieke
moment in het menselijke verhaal, maar toch zijn we er. Net als Frodo uit The
Lord of the Rings zouden we willen dat dit niet gebeurd was. Zoals Gandalf in de
film opmerkt, doen allen die zulke tijden meemaken dat ook, maar dat is niet aan
hen om te beslissen. Wij moeten alleen beslissen wat we doen met de tijd die ons
gegeven is.

J.5 Conclusie

Systemen kunnen op verschillende niveaus en door verschillende lenzen worden
beschouwd. Ik heb in verschillende delen van dit proefschrift een statistisch, een
causaal en een dynamisch of modelmatig perspectief besproken, maar deze per-
spectieven staan niet los van elkaar. Zij bouwen op elkaar voort om ons een be-
grip te verschaffen, hoe onvolledig ook, van de wonderbaarlijk complexe wereld
waarin wij leven. Het gaat er echter niet alleen om deze wereld te begrijpen,
maar om haar te veranderen. Het actiegerichte perspectief, dat in het laatste deel
van dit proefschrift is besproken in de context van de klimaatcrisis, is daarom
essentieel. In feite is het nog nooit zo urgent geweest als nu — ondanks tien-
tallen jaren van wetenschappelijke waarschuwingen blijven we op weg naar een
onleefbare wereld. Om klimaat- en ecologische ineenstorting te voorkomen en
een gelukkiger, gezonder, eerlijker en duurzamer samenleving te creëren, is col-
lectieve actie op ongekende schaal nodig. Wetenschappers en academici kunnen
deze actie helpen katalyseren. Dus laten we aan de slag gaan. De tijd dringt.
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