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ABSTRACT
This paper addresses investment and spending policies of endowment
funds aiming to generate a stable income stream in perpetuity. The stan-
dard academic approach to the design of such policies is based on opti-
mization of utility aggregated over time. However, the explicit purpose of
many funds to serve current and future generations ‘in equalmeasure’ sug-
gests incorporation of a suitable notion of neutrality. The utilitarian and
neutralitarian approaches are compared in two settings: one in which the
preferences of individual generations are described by a standard CRRA
utility function, and one in which these utility functions are modified by
the introduction of a saturation level. Results are expressed in terms of
the implied assumed interest rate (AIR), which reflects the apportionment
of initially available capital to the time-0 values of individual future bene-
fits. Under CRRA preferences, the neutralitarian point of view can be seen
as a way of determining the discount factor that is used in the utilitarian
method. When a saturation level is added, the neutralitarian and utilitar-
ianpolicies areessentially different. The introductionof saturationgenerally
induces a shift of value from earlier to later generations.
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1. Introduction

Variable annuities are financial products that provide the holder with an income stream that is linked
to an equity index, until termination occurs due to a preset final date or to death of the holder. These
instruments are used in particular for retirement income provision and are often equipped with rid-
ers such as the Guaranteed Minimum Withdrawal Benefit. An extensive introduction to variable
annuities is provided by Dellinger (2006); recent research, focused on pricing, hedging, and wel-
fare comparisons, includes Bacinello et al. (2011), Balter & Werker (2019), Delong (2014), Horneff
et al. (2015), Koijen et al. (2011), Mahayni & Schneider (2012) and Trottier et al. (2018). It should
be noted that variable annuities do not only arise as commercial products sold to individual con-
sumers by insurance companies. Collective pension funds that provide benefits to retirees depending
on financial market indices, for instance, via ‘conditional indexation’ (Kleinow & Schumacher 2017),
effectively deliver a variable life-contingent annuity to participants.

In this paper, attention is focused on perpetual non-life-contingent variable annuities. Such prod-
ucts can be referred to as ‘variable perpetuities’. A consumermarket for variable perpetuities does not
seem to exist; one of the reasons may be that few insurance companies can credibly claim to remain
in existence forever. This does not mean, however, that the design of variable perpetuities is not an
important issue. Billions of dollars worldwide are managed by endowment funds such as the Bill and
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Melinda Gates Foundation, the Getty Foundation, the Bertelsmann Stiftung, and the Nobel Founda-
tion, to name just a few examples. Many of these institutions invest at least partly in risky assets and
aim to generate a non-ending income stream while allowing for some fluctuations in annual payouts
in response to variations in the return on the investment portfolio and possibly other factors relating
to the specific purposes of the fund. In this way, endowment funds act, in effect, as providers of vari-
able perpetuities, in the same way as collective pension funds that pay conditionally indexed benefits
are effectively providers of variable annuities.

The policy design problemof endowment funds can be viewed as a problemof intertemporal social
choice. A standard approach to this problem in the academic literature is to form a social welfare
function, in which utilities of individual benefits1 are aggregated by means of chosen weights. This
‘utilitarian’ point of view leads, in the case of endowment funds, to a problem formulation that is
similar to usual formulations of investment problems with intermediate consumption for a single
individual. An alternative approach that avoids the problem of selecting the weights is to apply a
notion of ‘equity’ or ‘fairness’. This can be called the ‘neutralitarian’ approach.2 In a deterministic
and atemporal setting, the principle of neutrality simply states that all agents should receive the same
amount. In an intertemporal and stochastic context, onemay still formulate a similar principle, in the
sense that a certain functional of the randomvariable representing the uncertain future benefit should
be the same for all agents. Which functional should be chosen for this purpose is open for debate.
The objective of the present paper is to compare notions of aggregate utility and neutrality in the
context of endowment fund policy. Attention is paid in particular to the balance between generations
as expressed by the time-0 values of the stochastic future benefits that are implied by the chosen policy
and the economicmodel. These time-0 values are represented in terms of the implied assumed interest
rate (AIR), which is in general horizon-dependent.

The focus in this paper lies on endowment funds that aim for a benefit stream that stays more or
less constant at a sufficiently high level in the course of the years, rather than funds that may spend
muchmore in one year than in another, such as disaster relief funds. The notion of fairness used here
is different from the concept of financial fairness as used in the study of a multiperiod risk-sharing
problem by Bao et al. (2017). In the present paper, it is assumed that the capital provider(s) and the
beneficiaries are different individuals, so that the notion of financial fairness does not apply.

In most of the literature on endowment funds (see, for instance, Cejnek et al. 2014 for a sur-
vey), there is no formalization of the notion of intergenerational fairness. An exception is Gilbert
& Hrdlicka (2011), where fairness is defined via an aggregation of period utilities that deviates from
the usual exponentially weighted sum. A similar approach is followed in Balter & Schweizer (2021)
(in an atemporal context) using certainty equivalents rather than expected utilities. These approaches
are still based on optimization, whereas, in the present paper, concepts of neutrality are proposed and
compared to the frequently applied method of weighted-sum optimization.

The historical paper by Ramsey (1928) presents an early mathematical analysis of the intertempo-
ral wealth allocation problem within a deterministic framework. The approach taken by Ramsey is
based on optimization, but he does use considerations of fairness to argue that the discount rate in the
intertemporal optimization problem should be taken equal to zero. Later authors, starting with Mer-
ton (1969), have mainly addressed the problem in the context of life cycle planning for individuals;
this work is often based on aggregation of period utilities, typically using exponential weights with a
nonzero discount rate. In the context of endowment funds, Tobin (1974, p. 427) expressed the princi-
ple that ‘the trustees are supposed to have a zero subjective rate of time preference’. This appears to be
close to Ramsey’s point of view. The operational form that Tobin chooses for the principle, within a

1 The term ‘benefit’ will generally be used in this paper to refer to the monies that are made available by an endowment fund for
consumption in whatever form. Equivalent terms that may be found in the literature, and that will occasionally also be used in
this paper, include ‘spendings’, ‘disbursements’, ‘payouts’, and ‘withdrawals’. When benefits are viewed as contingent claims, they
may be referred to as ‘payoffs’, in line with common terminology in mathematical finance.

2 In the theory of distributive justice (see, for instance, Roemer 1998), the point of viewof fairness is often referred to as the ‘Rawlsian’
perspective (Rawls 1971).



720 J. M. SCHUMACHER

deterministic environment, is that spendings should be constant in inflation-corrected terms. Below,
analogous principles are applied in a stochastic context.

Several authors have carried out policy evaluation studies for endowment funds, assuming an
investment and benefit policy of a given type (for instance: a fixed-mix investment portfolio com-
bined with benefits defined as a moving-window average of realized returns). These authors look at
the effect of adjusting policy parameters on quantities of interest, such as the average level of benefits,
the variability of benefits, and the probability of ruin. Examples of such studies include Pye (2017),
Lindset &Matsen (2018), and Brown& Scholz (2019). Similar evaluation studies can also be found in
the related literature on themanagement of collective pension funds, using either analytical or simula-
tionmethods; see, for instance, Dufresne (1990),Milevsky&Robinson (2000), and Blake et al. (2003).
Closer to the present paper is the work of Balter & Werker (2019), who determine the AIR under
exponentially weighted aggregate CRRA utility as well as under the neutralitarian policy of equal
expectations, under the assumption that the investment policy is of the fixed-mix type. They also
find the AIR under equal expectations for a smoothing investment policy. In the present paper, the
investment policy is not preset but is rather determined as a consequence of a chosen design prin-
ciple. A more technical difference is that, because perpetuities are considered rather than fixed-term
annuities as in Balter & Werker (2019), it becomes possible to discuss asymptotic properties of the
AIR.

Investment problems that include the design of a sharing rule between heterogeneous agents
have been studied by several authors; see, for instance, Kryger & Steffensen (2010), Jensen &
Nielsen (2016), Pazdera et al. (2016) and Chen et al. (2021). In these papers, it is allowed that agents
are different in terms of preferences, but it is assumed that payoff takes place for all agents at the same
time. The present paper studies a collective investment problem in which the heterogeneity of the
collective is due to agents being placed differently in time, rather than being equipped with different
preferences.

The paper is organized as follows. Section 2 introduces assumptions on the economic environment
and presents the different design principles that will be considered in this paper. Section 3 contains a
general result on the relation between, on the one hand, the asymptotic AIR, and on the other hand,
the asymptotic probability that benefits will equal or exceed a given level. Section 4 covers the differ-
ences between utilitarian schemes on the one hand and neutralitarian schemes on the other hand for
the case of utilities of standard isoelastic/CRRA type. Subsequently, the consequences of introduc-
ing a saturation level are investigated in Section 5. Section 6 presents conclusions and perspectives
for further research. There is an appendix which contains proofs and details of calculations that are
needed in the main text.

2. Preliminaries

2.1. The AIR

The benefit flow from a variable annuity is often described in terms of the assumed interest rate (AIR).
It is sometimes said that theAIR represents the growth rate of the annuity, but that is an oversimplified
and misleading explanation. A typical example of the use of the AIR occurs when the benefit bj paid
at time Tj is determined in terms of the benefit paid at time Tj−1 by

bj = 1 + zj
1 + ρ

bj−1, (1)

where zj is the return earned on a reference portfolio in the period fromTj−1 to periodTj, and ρ is the
AIR. The formula implies that the benefits will be constant if the returns on the reference portfolio are
equal to the AIR. The benefit b0 at time T0 = 0, which also serves as the initial value for recursion (1),
is determined from the budget constraint that is obtained as follows. Note that the payment at time



SCANDINAVIAN ACTUARIAL JOURNAL 721

Tj can be written as

bj = b0(1 + ρ)−j
j∏

i=1
(1 + zi). (2)

Payment of
∏j

i=1(1 + zi) units in period j can be realized, in all return scenarios, by investing one
unit in the reference portfolio at time 0. Therefore, the benefit stream as a whole can be financed if
b0 is chosen that

V0 = b0
T∑
j=0

(1 + ρ)−j,

where V0 is the initially available capital and T is the terminal time of the annuity. In the case of a
perpetuity, we have T = ∞, and consequently, the initial benefit b0 is given by3

b0 = ρ

1 + ρ
V0. (3)

For a given initial capital, increasing the AIR leads to higher initial benefits, but also to a higher
probability that later benefits will suffer from disappointing returns on the reference portfolio.

Actual annuity products are usually more complicated than the simple scheme (1). However, the
concept of AIR can be made applicable to any annuity product if the AIR is allowed to be horizon-
dependent, rather than constant across all maturities, and if it can be assumed that a time-0 value can
be assigned to all of the future benefits as specified by the product definition. Since the benefits in a
variable annuity scheme are typically uncertain, this presumes the availability of a valuation model;
in this paper, the standard Black–Scholes (BS) model will be used as such. In terms of time-0 values,
the continuously compounded AIR for time Tj is defined by Balter &Werker (2019, Def. 2.2)4

ρj = − 1
Tj

log
vj
v0
, (4)

where vj is the time-0 value of the (stochastic) benefit paid at time Tj.5 To see that this agrees with
usage in (2), note that the time-0 value of the payment defined by (2) is vj = (1 + ρ)−jb0. The
asymptotic AIR is defined by

ρ∞ = lim
j→∞ ρj (5)

under the assumption that the limit exists.6 By the budget constraint
∑∞

j=0 vj ≤ V0, we must have
vj ≤ v0 for all but finitely many values of j, so that the asymptotic AIR is nonnegative for all schemes.
Generally speaking, the asymptotic AIR of a benefit scheme is an indication of the extent to which
the interests of generations far into the future are taken into account. Higher values of the asymptotic
AIR correspond to lower levels of generosity towards recipients in the distant future.

A simple policy that might be adopted by an endowment fund is to let the benefit paid each year
be determined as a fixed fraction rs of available capital (the ‘spending rate’). In this case, the time-0
value of the benefit paid to generation j is equal to rs(1 − rs)jV0. The corresponding AIR according to

3 It is assumed that the first benefit is paid at the start of the first period. If it is paid at the end of the first period, then b0 still appears
as a parameter in (2), and its value is given by b0 = ρV0 instead of (3).

4 The definition as stated applies for j ≥ 1. If time-0 values are derived from an expression vj = v(Tj)where v(T) is a differentiable
function defined for all T ≥ 0, then a natural definition of the AIR for j = 0 is ρ0 = −v′(0)/v(0)).

5 In this paper, only schemes are considered with P(bj < 0) = 0 and P(bj > 0) > 0 for all j. As a consequence, vj > 0 for all j.
6 Many of the results in this paper can be generalized by using the limes superior/inferior (lim sup/inf ) instead of the limit. The
generalization appears to have little practical relevance, however; for simplicity, the existence of the limit will always be assumed.
In particular, the limit does exist (and is computed explicitly) in all schemes that are analyzed in this paper.
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definition (4) is ρ = − log(1 − rs) so that the AIR for this scheme is constant and, for small values of
rs, approximately equal to rs. The AIR as defined in (4) can, therefore, also be viewed as a generalized
(possibly horizon-dependent) version of the spending rate.

2.2. Economicmodel

The Black–Scholes model will be used in this paper to model the investment opportunities. It will
be convenient to assume that all prices are expressed in inflation-corrected units, so that the rate of
inflation in the model is zero by definition. As a consequence, all statements related to growth are to
be understood in real terms; ‘expected return’ is to be interpreted as ‘expected real return’, ‘interest
rate’ is ‘real interest rate’, and so on. The adjective ‘real’ will be added for emphasis in a few cases,
but will usually be suppressed in the interest of brevity. It is not assumed in this paper that the real
interest rate is positive.

In the BS model, there are two assets available for trading, namely a risky asset with value St and
a riskless asset with value Bt at time t. The evolution of the values of these assets is described by the
differential equations

dSt = μSt dt + σSt dWt , (6)

dBt = rBt dt, (7)

where the drift parameter μ, the volatility σ > 0 and the real interest rate r are constants, and where
Wt is a standard Brownian motion. The parameter λ defined by

λ = μ − r
σ

(8)

is called the Sharpe ratio or themarket price of risk.
By forming a fixed-mix portfolio that keeps a fraction a of total portfolio value in the risky asset

and a fraction 1−a in the riskless asset, one obtains a new asset whose valueVt satisfies the differential
equation

dVt = ((1 − a)r + aμ)Vt dt + aσVt dWt = (r + λσV)Vt dt + σVVt dWt , (9)

where σV := aσ . Since the portfolio volatility σV can be chosen arbitrarily by varying the parameter
a, the formula above shows that the relevant parameters in the BS model, as an idealized model for
describing investment opportunities, can be taken to be only r and λ. The market price of risk λ is
the number of percentage points of expected return that is obtained for every additional percentage
point of volatility that is accepted. It will be assumed throughout the paper that λ is positive.

The pricing kernel process ξt in the BS model is given by the stochastic differential equation

dξt = −rξt dt − λξt dWt , ξ0 = 1. (10)

The time-0 price of a time-T stochastic payoff XT in the BS model is given by E[ξTXT]. In the BS
model, both the pricing kernel ξT at time T and the value of the risky asset ST at time T are monoton-
ically related to the value taken by the driving Brownian motionWT at time T. Therefore, any payout
expressed in terms of the pricing kernel ξT (see for instance (12)) can be re-expressed in terms of
the risky asset value ST . The payout then appears as a contingent benefit, with ST as the value of the
reference portfolio that determines the payment that will be made.

2.3. Optimality and fairness

As argued in the introduction, endowment funds can be viewed as the typical providers of variable
perpetuities. Such funds are not all similar; for instance, the spendings of funds aimed at providing
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relief in case of calamities may vary greatly from year to year, while other funds are geared towards
generating a stable stream of disbursements. The point of view taken in this paper will be that of an
endowment fund of the latter type. It will be assumed that an initial capital is made available at the
time of origination of the fund and that the fund receives no donations later on. As an example of the
type of endowment fund addressed in this paper, one might think of the Nobel Foundation.

Benefits are paid at discrete and equispaced time instantsTj (j = 0, 1, 2, . . .)withT0 = 0; the length
of the interval between payment times is denoted by�T, so that Tj = j�T. In examples,�T is taken
to be one year. Benefits at different times are treated as being paid to different individuals. These
individuals are referred to as ‘recipients’ or ‘beneficiaries’; the terms ‘agents’ and ‘generations’ are
also used. The benefit paid at time Tj is denoted by bj.

If the benefit policy is fully specified in terms of the variables appearing within the BS model,
then the payout bj is a well-defined stochastic variable within the model with time-0 value given by
vj = E[ξTjbj]. The overall budget constraint is that the sum of the values vj must be equal to the capital
available at time 0:

∞∑
j=0

vj =
∞∑
j=0

E[ξTjbj] = V0, (11)

whereV0 is the initial capital. The constraint is stated as an equality, rather than an inequality, so that
a requirement of efficiency is expressed as well (the initial capital should be fully used).

The focus of the present paper is on the intertemporal allocation problem of apportioning the
initial capital V0 to the individual budgets vj.7 For the application of the various design principles
that will be studied below, it is necessary to specify the benefits bj as random variables depending on
the assigned budgets vj. Such a specification can be given, for instance, by defining bj as the amount
at time Tj that results from following a prescribed investment policy that starts with capital vj at
time 0. Alternatively, one can specify a ‘period utility function’ uj(x) for time Tj and define bj as
the stochastic benefit that optimizes the criterion E[uj(bj)] subject to the constraint E[ξTjbj] = vj.
Under the complete market assumption, the replication theorem of mathematical finance (see, for
instance, Björk 1998, Thm. 7.3) ensures that the payoff bj can indeed be realized and also provides
the corresponding investment strategy. In line with tradition in academic work, the approach based
on period utility functions will be followed in this paper. Given such a function uj(bj) of standard
type (strictly increasing, strictly concave, twice continuously differentiable), optimization of E[uj(bj)]
subject to a budget constraint leads (see, for instance, Föllmer & Schied 2008, § 3.3) to the solution

b∗
j = (u′

j)
−1(yjξTj), yj ∈ R+, (12)

where ξT is the stochastic pricing kernel at time T, and where yj is a parameter whose value is deter-
mined by the budget constraint for timeTj.When the period utility is of CRRA type (constant relative
risk aversion), then, under the BS assumptions, the corresponding investment strategy is to keep a
fixed percentage of capital in risky assets (‘fixed-mix’ strategy) (Merton 1969). Therefore, at least
within the BSmodel, to say that the stochastic benefit bj is defined by optimizing a CRRA period util-
ity function is the same as to say that the benefit bj is obtained from the initial capital vj by applying
a fixed-mix investment policy.

In the utilitarian approach, a common choice is to aggregate period utilities by means of weighted
summation with exponential weights. This leads to an objective function of the form

J =
∞∑
j=0

e−δTjE[uj(bj)], (13)

7 In the context of variable annuities, the time-0 budgets vj are called ‘pension buckets’ by Balter & Werker (2019).
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where δ is a discount rate.8 When beneficiaries at different times are different individuals, using an
expression such as the one above entails an assumption that it is indeed possible to aggregate utilities
of different individuals. The alternative viewpoint of ‘neutrality’ or ‘fairness’ is in line with often stated
objectives of endowment funds to serve current and future generations ‘in equal measure’. In a deter-
ministic setting, a natural interpretation of fairness is that everyone should receive the same. Under
the assumption that the continuously compounded real interest rate r is constant, this is realized by
defining

bj = (1 − e−r�T)V0 (j = 0, 1, 2, . . .) (14)

in combination with investing all of the capital in riskless assets.9 In this scheme, the time-0 value of
the time-Tj payout bj is given by vj = e−rTjbj, so that the continuously compounded AIR for time Tj
according to definition (4) is simply given byρj = r for all j. However,many endowment funds choose
to invest at least partly in risky assets and accept that, as a consequence, benefits become stochastic.10
In this context, the meaning of ‘fairness’ is less obvious; even if one agrees that it means that some
functional of the stochastic variable that represents the benefit should be the same for all beneficiaries,
it still does not seem evident which functional should be chosen for this purpose. Perhaps the first
candidate should be the time-0 expectation E[bj], as used, for instance, in Trautmann (2009) and in
Balter & Werker (2019). When the form of the benefit is selected on the basis of an explicit period
utility function uj(x), then another functional that comes to mind as a yardstick for fairness is the
certainty equivalent u−1

j (E[uj(bj)]), i.e. the hypothetical deterministic benefit that leads to the same
utility level as the actual stochastic benefit, as seen from time 0.

In summary, each of the following three principles might be followed, given a period utility
function:

(i) optimization of aggregated utility, with exponential weights;
(ii) equalization of expected benefits;
(iii) equalization of certainty equivalents of benefits.

Below, these three approaches will be compared to each other in terms of their associated AIRs.
The three approaches will be referred to as ‘utilitarian’, ‘expectation neutral’, and ‘CE neutral’, respec-
tively. As a notational device, the subscriptsU, E, andCwill be used for quantities related to utilitarian,
expectation neutral, and CE neutral schemes, respectively. Since period utility functions are deter-
mined by risk aversion only up to positive affine transformations, the approach (i) presupposes that
some kind of normalization has been applied so that a weighted combination of period utilities
becomes meaningful. The problem is avoided in the two other approaches since neither the criterion
in (ii) nor the one in (iii) is sensitive to positive affine transformations of the period utility functions.

To prepare for the application of the utilitarian scheme, it is noted here how the parameters yj
appearing in (12) are related to the discount rate δ. The optimal time-j utility E[u(b∗

j )] can be thought
of as a function Uj(θj) of the fraction of initial capital reserved for generation j. The problem of
optimizing criterion (13) subject to budget constraint (11) can then be written as the optimization

8 Like the real interest rate r, the discount rate δ is allowed to be zero or negative in this paper. See Herdegen et al. (2021) for
arguments that support considering the possibility of negative discount rates.

9 It appears that this is the scheme that Alfred Nobel had in mind when writing his will:

All of my remaining realisable assets are to be disbursed as follows: the capital, converted to safe securities by
my executors, is to constitute a fund, the interest on which is to be distributed annually as prizes to those who,
during the preceding year, have conferred the greatest benefit to humankind. (English translation taken from
www.nobelprize.org; emphasis added)

Nobel may have underestimated the effect of inflation.
10 In 1953, in view of the substantially reduced value of the Nobel Prize in real terms, the directors of the Nobel Foundation sought

and obtained permission from the Swedish government to invest part of the capital in equities and real estate. Constraints on
investing have been relaxed further in later years (Rose & Nilsson 1999).

http://www.nobelprize.org
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problem
∞∑
j=0

Uj(θj) → max s.t. θj ≥ 0,
∞∑
j=0

θj = 1. (15)

We have

U ′
j (θj) = E

[
u′
j(b

∗
j )

∂b∗
j

∂θj
(θj)

]
= yj

∂

∂θj
E[ξTjb

∗
j (θj)] = yjV0 (16)

since u′
j(b

∗
j ) = yjξTj by (12). Given the interpretation of yj as a Lagrange multiplier, the statement

above just represents the well-known fact that, in an optimization problem subject to a single equal-
ity constraint, the derivative of the optimal value with respect to the constraint level is given by the
multiplier. A necessary condition for optimality11 is that e−δTjU ′

j (θj) = U ′
0(θ0) for all j ≥ 1, since

otherwise an improvement is possible by increasing θ0 at the expense of θj or vice versa. In view
of (16), it follows that there exists a constant y such that

yj = eδTjy for all j ≥ 0. (17)

The value of y is determined by the overall budget constraint. The corresponding benefits are given
by

b∗
j = (u′)−1(y eδTjξTj). (18)

This solution could also have been obtained directly by optimizing the objective
∑∞

j=0 e
−δTjE[u(bj)]

subject to the single equality constraint
∑∞

j=0 E[ξTjb
∗
j ] = V0; in fact, that is the more standard route,

in particular when benefits are paid continuously rather than discretely. For the purposes of the
present paper, however, it is useful to split the problem into a part that relates to the allocation of initial
capital across generations, and another part that relates to optimization of the payoff to an individual
generation, given its assigned budget. Similar approaches, with continuously paid benefits, are found,
for instance, in Wachter (2002) and Steffensen (2011).

3. Guarantee properties

This brief section is devoted to certain asymptotic properties of the AIR that relate to guarantee
properties of the associated benefit stream. The following terminology will be used.

Definition 3.1: Given an initial capital V0 and a sequence of payment dates Tj, an admissible ben-
efit scheme is any sequence (bj)j=0,1,2,... of Tj-measurable nonnegative random variables such that∑∞

j=0 E[ξTjbj] ≤ V0.

Definition 3.2: A benefit scheme with stochastic payouts (b0, b1, b2, . . .) is said to satisfy

(i) the strict guarantee property if there exists B > 0 such that

P(bj ≥ B) = 1 for all j ≥ 0; (19)

(ii) the strong asymptotic guarantee property if there exists B > 0 such that

lim
j→∞ P(bj ≥ B) = 1; (20)

11 It is assumed here that the utility functions uj are such that, in the optimal solution, the fractions θj are all positive; in other words,
each generation has a positive probability of receiving a positive benefit.Well-posedness of the optimization problem is assumed
as well.
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(iii) the weak asymptotic guarantee property if there exists B > 0 such that

lim
j→∞ P(bj ≥ B) > 0. (21)

The weak asymptotic guarantee property is a weak property indeed; if it is not satisfied, then the
sequence (bj)j=0,1,2,... converges to 0 in probability. Admissible schemes that satisfy the strong (weak)
asymptotic guarantee property will for brevity be referred to as ASAG (AWAG) schemes; admissible
schemes with the strict guarantee property are named ASG schemes.

The following proposition gives an upper bound on the asymptotic AIR for schemes that sat-
isfy either of the three properties above. The statement under (i) in the proposition below is well
known and is included for completeness and comparison. The proof of the proposition is provided
in Appendix 1.

Proposition 3.3: Let ξT denote the pricing kernel at time T in the BS model with interest rate r and
price of risk λ. Let 0 = T0 < T1 < · · · be a sequence of equispaced points on [0,∞), and let V0 > 0 be
given.

(i) Admissible schemes that satisfy the strict guarantee property exist if and only if r> 0. The
asymptotic AIR of any such scheme satisfies

ρ∞ ≤ r. (22)

This bound is sharp; i.e. if r > 0, ASG schemes can be constructed whose asymptotic AIR is
equal to r.

(ii) Admissible schemes that satisfy the strong asymptotic guarantee property exist if and only if
r + 1

2λ
2 > 0. The asymptotic AIR of any such scheme satisfies

ρ∞ ≤ r + 1
2λ

2. (23)

Moreover, this bound is sharp.
(iii) Admissible schemes that satisfy the weak asymptotic guarantee property exist if and only if

r + 1
2λ

2 ≥ 0. The asymptotic AIR of any such scheme satisfies (23). Moreover, this bound is
sharp.

It is remarkable that, in cases where r + 1
2λ

2 > 0, the largest value attainable for the asymptotic
AIR is the same for AWAG schemes and for ASAG schemes.

4. CRRA utility

This section provides a review of the AIR for schemes that are constructed on the basis of the standard
CRRA utility function given by

u(x) = x1−γ

1 − γ
(γ > 1). (24)

Calculations for the log utility case and the case 0 < γ < 1 in this and the following section are analo-
gous to those for the case γ > 1, but partly different to the extent that they would have to be presented
separately. In the interest of brevity, the treatment in this paper will be restricted to the case γ > 1,
which empirically is the most relevant case; when conclusions deviate for 0 < γ < 1 and/or in the
logarithmic case, this will be mentioned in footnotes, without proof. The expressions for the AIR that
are obtained in this section are well known or easily derived from standard results; they serve mainly
as a benchmark for comparison with the AIR for schemes with saturated power utility, which will
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be discussed in the next section. The results below relating to situations with a possibly negative real
interest rate appear to be new, however.

First, consider the scheme based on optimization of aggregate utility. This is the classical ‘Merton
problem’ (Merton 1969). Maximization of period utility in the BS model under power utility is a
standard problem; the optimal policy is to invest the budget in a fixed-mix portfolio with volatility
λ/γ , leading to the payout

b∗
j = θjV0 exp[(r + λ2/γ − 1

2λ
2/γ 2)Tj + (λ/γ )WTj] (25)

with expected utility

E[u(b∗
j )] = 1

1 − γ
θ
1−γ
j V1−γ

0 exp
[
(1 − γ )

(
r + 1

2
λ2/γ

)
Tj

]
.

Using this, one can determine the optimal split of initial capital, when utility is aggregated by means
of exponential weights. As seen from the above, this is a problem of the form

∞∑
j=0

e−αTjθ
1−γ
j → min subject to θj > 0 (j = 0, 1, 2, . . .),

∑∞
j=0 θj = 1, (26)

where the parameter α is given by

α = δ + (γ − 1)(r + 1
2λ

2/γ ). (27)

If α > 0, the optimal solution is given by

θj ∝ exp(−(α/γ )Tj) (28)

where the proportionality constant is determined by the constraint
∑∞

j=0 θj = 1. It follows that the
AIR for the scheme based on optimization of aggregate CRRA utility, with discount rate δ, is given by

ρU = α/γ = 1
γ

δ +
(
1 − 1

γ

) (
r + 1

2
λ2/γ

)
. (29)

This is the same result as in the finite-horizon case (Balter &Werker 2019, eqn. (2.27)).
The assumption α > 0 is not always satisfied. Exceptions occur in particular when the real interest

rate is negative, and when moreover a small value is chosen for the discount rate δ and a high value
for the risk aversion parameter γ .12 The proposition below shows that these are exactly the situations
in which the problem of optimizing aggregate utility is not well-posed, in the sense that there are no
admissible schemes that lead to a criterion value larger than −∞.

Proposition 4.1: Let δ, r, and γ > 1 be given real numbers. Let 0 = T0 < T1 < T2 < · · · be a
sequence of equispaced points on the real line, and let ξTj denote the value of the pricing kernel in the
Black–Scholes model at time Tj. There exists a sequence (bj)j=0,1,2,... of Tj-measurable positive random
variables such that

∞∑
j=0

E[ξTjbj] < ∞ and
∞∑
j=0

e−δTjE

[
b1−γ
j

1 − γ

]
> −∞ (30)

if and only if
1
γ

δ +
(
1 − 1

γ

)(
r + 1

2
λ2/γ

)
> 0. (31)

12 In the case 0 < γ < 1, the expression for the optimal policy is of the same form, and the situation α ≤ 0 may arise even when
the discount rate δ and the real interest rate r are both positive.
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Proof: First, assume that a sequence of positive random variables bj as described in the proposition
exists.13 From the equality

e−(δ/γ )Tjξ
(γ−1)/γ
Tj = (e−δTjb1−γ

j )
1
γ (ξTjbj)

1− 1
γ ,

it follows, by Hölder’s inequality (see, for instance, Rudin 1974, Thm. 3.5), that

E[e−(δ/γ )Tjξ
(γ−1)/γ
Tj ] ≤ (E[e−δTjb1−γ

j ])
1
γ (E[ξTjbj])

1− 1
γ . (32)

By the assumption γ > 1, it follows from the second inequality in (30) that

∞∑
j=0

E[e−δTjb1−γ
j ] < ∞

which implies that limj→∞ E[e−δTjb1−γ
j ] = 0. By the first inequality in (30), we also have

limj→∞ E[ξTjbj] = 0. It follows that the quantity at the left-hand side of (32) tends to 0 as j tends
to infinity. Calculation shows that

E[e−(δ/γ )Tjξ
(γ−1)/γ
Tj ] = exp

[
−
(
1
γ

δ +
(
1 − 1

γ

)(
r + 1

2
λ2/γ

))
Tj

]

so that (31) follows. The converse is shown by noting that the optimal benefits (25) satisfy the
conditions in (30). �

Next, consider the neutralitarian scheme based on equalization of expected benefits. The benefits
are still given by (25), but the fractions θj are determined in a different way, namely by requiring that
E[b∗

j ] is the same for all j. From (25), it follows that

E[b∗
j ] = θjV0 exp[(r + λ2/γ )T].

If the exponent r + λ2/γ is positive, then expectations are equalized by taking θj = θEj with

θEj ∝ exp[−(r + λ2/γ )T] (33)

where the proportionality constant is determined by the constraint
∑∞

j=0 θEj = 1. Consequently, the
AIR that equalizes expectations is given by

ρE = r + λ2/γ . (34)

Again, this is the same as in the finite-horizon case (Balter &Werker 2019, eqns. (2.6) and (2.14)). If
the exponent r + λ2/γ is zero or negative, then the approach via equalization of expectations fails.
Indeed, in this case, ‘fairness’ in the sense of equal expectations can only be achieved by letting all
benefits be equal to 0; this is hardly a satisfactory solution, though.

13 Here and occasionally also below, the notational device is used of referring to a sequence by means of its typical element.
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The third principle that was proposed is to equalize certainty equivalents.14 The certainty equiva-
lent that corresponds to the benefit b∗

j is given by

CE(b∗
j ) = u−1(E[u(b∗

j )]) = θjV0 exp[(r + 1
2λ

2/γ )T].

Therefore, the AIR that corresponds to the principle of equalizing certainty equivalents is

ρC = r + 1
2λ

2/γ . (35)

This is notably less than the AIR obtained by equalizing expectations, although the difference does
tend to zero when the risk aversion parameter γ tends to infinity. As in the case of equalizing expec-
tations, the approach via equalization of certainty equivalents is feasible if and only if the associated
AIR is positive.

Under CRRA utility within the BS environment, it is found that all three design principles outlined
in Section 2.3 lead to a horizon-independent AIR. It follows that both neutralitarian schemes can be
obtained as special cases of the utilitarian scheme if the discount rate within the utilitarian scheme is
chosen such that the utilitarian AIR becomes equal to the AIR of either of the neutralitarian schemes.
Comparing expressions (29), (34), and (35), one finds that the utilitarian scheme coincides with the
expectation neutral scheme when δ = δE and with the CE neutral scheme when δ = δC, where

δE = r + 1
2λ

2/γ + 1
2λ

2, δC = r + 1
2λ

2/γ . (36)

At typical values of the Sharpe ratio for a broadly diversified portfolio (for instance, λ = 0.3), the
difference between these two discount rates is substantial. Both δE and δC can be thought of as an
answer to the question that is implicitly posed by Ramsey (1928), namely:What is a fair discount rate?
The answers in (36) differ from the reply δ = 0 that is suggested in Ramsey’s paper, even though they
are still based on principles of fairness. The deviation from the choice δ = 0 is motivated by expected
growth. The principle of expectation neutrality leads to a higher value for the discount rate because
it does not take risk into account, in contrast to the principle of CE neutrality.

It follows from (25) and (28) that the utilitarian benefit scheme with discount rate δ satisfies the
weak asymptotic guarantee property if and only if

α

γ
≤ r + λ2/γ − 1

2λ
2/γ 2 (37)

or equivalently

δ ≤ r + 1
2λ

2. (38)

In other words, for values of the discount rate that exceed r + 1
2λ

2, the optimal benefits tend to zero
in probability as the time of payment tends to infinity. The conditions for the strong asymptotic guar-
antee property to hold are obtained by replacing the non-strict inequalities in the above by strict
inequalities. Expression (29) for the utilitarian AIR ρU may be rewritten as

ρU = r + 1
2
λ2 − 1

2
λ2
(
1 − 1

γ

)2
− r + 1

2λ
2 − δ

γ
.

This shows that, under condition (38), we have ρU ≤ r + 1
2λ

2, as should be the case according to
Proposition 3.3. For high values of γ , the AIR can, at most, only slightly exceed the upper bound r
that holds for schemes satisfying the strict guarantee property.

14 In a case such as considered here, where the same utility function is used for all periods, equalization of certainty equivalents
comes down to the same as equalization of expected utilities. Generally speaking, however, the use of certainty equivalents is
essential to remove the effects of different scaling of utility functions at different time periods.
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Conditions for the weak asymptotic guarantee property to hold in the case of expectation neutral
and CE neutral schemes are analogous to (37), with substitution of the left-hand side by the corre-
spondingAIRs. From this, it is readily verified that, for all values γ > 1 of the risk aversion parameter,
CE neutral schemes are ASAG schemes.15

On the other hand, as can be seen by comparing (38) with (36), not even the weak asymptotic
guarantee property is satisfied by any expectation neutral scheme under CRRA period utility. This
fact may seem surprising, since one may feel that ‘fairness’ is not compatible with benefits for later
generations tending to zero in probability. The reason why such a phenomenon may occur under
equalization of expectations is that the expected value of the benefit at long horizons is influenced
heavily by extremely high payouts that occur in very few scenarios. This is a consequence of using
CRRA period utility (i.e. fixed-mix investment strategies) in combination with the lognormal BS
model.Many endowment fundsmay prefer to have stable payouts at a reasonable level in asmany sce-
narios as possible, rather than having a small probability of being able to pay very large sums at some
point in the future. The notion of a ‘reasonable level’ of payouts is incorporated in the model that is
proposed in the next section. It will be seen that, under saturated utility, equalization of expectations
leads to schemes that do satisfy the weak asymptotic guarantee property.

5. The impact of saturation

The period utility functions that have been used so far are of the strictly increasing type that is most
commonly found in the literature. However, such utility functionsmay not accurately reflect the pref-
erences of trustees of endowment funds. The purposes of many funds can be well achieved by an
annual amount that is approximately fixed in real terms; say, paying for a professor’s salary, covering
the costs of an annual music festival, or providing prize money for an annual award.16 To reflect the
notion that spending beyond a given amount is not really necessary, it is natural to introduce a satu-
ration level.17 This will be done in this paper by a straightforward amendment of the classical CRRA
utility function. Specifically, the following modification of the utility function u(x) = x1−γ /(1 − γ )

is proposed:

ū(x) = min(u(x), u(C)) = (min(x,C))1−γ

1 − γ
. (39)

Here, the constant C> 0 represents the saturation level; in many cases, it can be seen as a target level
of spending. The utility function above might be described as ‘capped power utility’.18

Under the conditions r> 0 and
C/V0 ≤ 1 − e−r�T (40)

where �T is the length of the interval between payment times, one can make sure that the target is
always achieved by keeping all of the capital in riskless assets. For brevity, the ratioC/V0 of saturation
level to initial capital will be referred to as the target ratio below. Its reciprocal V0/C is the number of
years of benefits at the saturation level that could be paid from the initial capital if there would be no
investment returns.

Many endowment funds set their targets in such a way that the inequality (40) is not met, counting
on returns from risky investments tomake it possible to pay the full target amount inmany scenarios.

15 The assumption γ > 1 is crucial here. In the case of logarithmic period utility, CE neutral schemes are AWAG but not ASAG.When
0 < γ < 1, CE neutral schemes do not have the weak asymptotic guarantee property.

16 A similar argument may be made for funds that promise a certain benefit to recipients, such as for instance collective pension
funds. The fund will have fully achieved its goal when the promise can be kept.

17 One may argue that additional money is always welcome. However, one can also argue (as illustrated above) that the utility of
payoffs beyond a certain level is overstated under CRRA preferences. The model with saturation can be viewed as the simplest
way of introducing a ‘satisfaction level’.

18 An alternative form thatmight be used is ũ(x) = min(u(x) − u(C), 0). The difference between the two formulations has no effect
on single-period optimization, but does affect the finiteness of the aggregate objective (13) in cases in which the discount rate is
negative or zero.
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Clearly, for higher values of the target ratio C/V0, there will be fewer scenarios in which the goal is
achieved. The relation between the target ratio and the probability of achieving the target depends
on the choice of the coefficient or risk aversion γ . High values of γ lead to a fairly slow reduction
of disbursements in situations in which the full target is not paid, while low values lead to a sharper
dropoff. This does mean that the probability of achieving the target goes down when γ is raised while
the target ratioC/V0 remains the same. Since the allocation problem under capped power utility has a
trivial solution when (40) holds, it will be a standing assumption in this paper that the condition (40)
is not satisfied.

Under the specification (39) of the utility function,marginal utility equals x−γ for c<C, and jumps
from C−γ to 0 at the saturation point C. Expression (12) for efficient benefits can in such cases be
interpreted in a generalized sense (Basak 1995, Berkelaar et al. 2004, Carassus & Pham 2009, Bernard
et al. 2015, Bian & Zheng 2015). The inverse marginal utility (ū′)−1(z) is viewed as the multivalued
function that is defined as follows:

(ū′)−1(z) =
⎧⎨
⎩
[C,∞) for z = 0
C for 0 < z ≤ C−γ

z−1/γ for z ≥ C−γ .
(41)

This will be used freely below.

5.1. Efficient payoffs

It follows from (12) and (41) that, under saturated CRRA utility, the one-parameter family of efficient
payoffs at time Tj is of the form

b̄∗
j = min((yjξTj)

−1/γ , 1)C (42)

where the parameter yj is adjusted tomeet the budget constraint for time Tj. In particular, the full tar-
get benefit will be paid when the pricing kernel ξTj at time Tj satisfies ξTj < y−1

j . It will be convenient
below to use, for j ≥ 1, the following reparametrization in terms of parameters dj rather than yj:

b̄∗
j = exp

(
min

(
λ

γ

√
Tj(Zj + dj), 0

))
C, Zj := 1√

Tj
WTj . (43)

The relation between dj and yj is given by

dj = r + 1
2λ

2

λ

√
Tj −

log yj
λ
√
Tj
. (44)

The random variable Zj follows a standard normal distribution. As a consequence, the probability
that the target level C will be achieved at time Tj is given by

P(b̄∗
j = C) = P(Zj + dj ≥ 0) = �(dj).

The parameter dj, therefore, has a direct interpretation as the standard normal quantile that corre-
sponds to the probability of paying the target benefit at time Tj for j ≥ 1.

The probability that b̄∗
j as given by (43) achieves at least the value ηC, with 0 < η ≤ 1, is given by

P(b̄∗
j ≥ ηC) = �

(
dj − γ log η

λ
√
Tj

)
.

This shows that a scheme with benefits given by (43) has the strong asymptotic guarantee property if
the sequence dj tends to infinity as j tends to infinity, and that the weak asymptotic guarantee property
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is satisfied if the sequence dj is bounded below. Therefore, in both cases, if there is a (weak) asymptotic
guarantee level, then the saturation level serves as such.

To determine the policies implied by the three different design principles that have been discussed
above, expressions are needed for the expected value of b̄∗

j defined in (43), the utility level associated
to b̄∗

j , and the time-0 value of b̄∗
j . Due to the relatively simple specification of b̄∗

j , all of these can be
given in analytic form. By direct computation, it can be shown that

E[exp(a(Z + x)1Z+x≤0)] = F(x, a) (Z ∼ N(0, 1)), (45)

where the function F(x, a) is defined by

F(x, a) = eax+
1
2 a

2
�(−(x + a)) + �(x). (46)

Using this, one finds for j ≥ 1:

E[b̄∗
j ] = F

(
dj,

λ

γ

√
Tj

)
C, (47)

E[ū(b̄∗
j )] = F

(
dj,

1 − γ

γ
λ

√
Tj

)
C1−γ

1 − γ
, (48)

E[ξTj b̄
∗
j ] = e−rTjF

(
dj − λ

√
Tj,

λ

γ

√
Tj

)
C. (49)

Expressions (47) and (48) follow directly from relation (45). Claim (49) can be proved by using the
relation

E[e−
1
2α2−αZg(Z)] = E[g(Z − α)]

which holds for Z ∼ N(0, 1), α ∈ R, and any function g such that the expectation is defined. A plot
of the function F is shown in Figure A1 in the appendix.

5.2. Utilitarian scheme

The allocation under the utilitarian principle is obtained from (17) and (42); one finds

b̄Uj = min((y eδTjξTj)
−1/γ , 1)C, (50)

where the parameter y is adapted to meet the budget constraint associated with the initial capital V0.
For purposes of comparison with other schemes, it is useful to have the representation in terms of the
parameters dj in (43) as well. It follows from (44) that the parameters dj are of the form dj = dU(Tj)
with

dU(T) = r + 1
2λ

2 − δ

λ

√
T + κU√

T
, (51)

where κU ∈ R is a constant. The expression above determines the benefits at times Tj for j ≥ 1
through (43). It follows from (42), (44), and (51) that the time-0 benefit can be expressed in terms of
κU by

b̄U0 = min(exp((λ/γ )κU), 1)C. (52)

The constant κU is chosen tomeet the budget constraint; in this way, it is monotonically related to the
target ratio C/V0. Higher values of κU correspond to lower values of the target ratio. Irrespective of
the choice of the target ratio, however, it is seen from (51) that the asymptotic probability of reaching
the target is 1, 1

2 , or 0 according to whether the discount rate δ is less than, equal to, or higher than
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Figure 1. The asymptotic AIR under the utilitarian principle, as a function of the discount rate. The period utility function is CRRA
with or without saturation (drawn/dashed curve). Parameter values: interest rate r = 1.5%, market price of risk λ = 0.3, coefficient
of risk aversion γ = 2.

r + 1
2λ

2. The utilitarian scheme under saturated utility is, therefore, an ASAG scheme if and only
if δ < r + 1

2λ
2, and an AWAG scheme if and only if δ ≤ r + 1

2λ
2. These are the same conditions

as the ones that were found in the classical (unsaturated) case. While the probability of reaching the
saturation level in the utilitarian scheme does not depend on the target ratio in the limit as the horizon
length tends to infinity, the ratio does impact that probability at finite horizons.

The time-0 values of the payoffs under optimization of aggregate saturated utility are given by (49)
with dj = dU(Tj). Let the asymptotic AIR be denoted by ρ̄U∞. It can be shown (see Appendix 3) that
we have

ρ̄U
∞ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r if δ ≤ r − 1
2λ

2

r + 1
2

(
r − δ − 1

2
λ2
)2

/λ2 if r − 1
2λ

2 ≤ δ ≤ r − 1
2λ

2 + λ2/γ

1
γ

δ +
(
1 − 1

γ

)(
r + 1

2
λ2/γ

)
if δ ≥ r − 1

2λ
2 + λ2/γ

(53)

provided the quantity defined in this way is positive.19 The asymptotic AIR ρ̄U∞ is defined by the
above as a continuously differentiable nondecreasing function of the discount rate δ; a numerical
example is shown in Figure 1. Due to the saturation, the asymptotic AIR is always at least equal to
the riskless interest rate, even if future generations are strongly favored by the choice of a negative
discount rate. On the other hand, if the discount rate is sufficiently high, then saturation has no effect
on the asymptotic AIR. The upper bound for the asymptotic AIR that follows from (53) is the same
as in the unsaturated case, since the critical value r + 1

2λ
2 for δ always lies in the region where the

expression for ρ̄U∞ as given in (53) is the same as the expression for ρU as given in (29).

19 If positivity does not hold, then the utilitarian policy defined by (51) is not implementable under the condition of the finiteness
of the initial capital; compare the discussion of the utilitarian scheme in Section 4. It can be shown that, if positivity does hold,
then the policy defined by (43) and (51) defines a finite objective value either under (39) or under the alternative formulation
mentioned in note 18.
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Figure 2. The left panel shows the time-0 values of benefits at different horizons for the utilitarian scheme with discount rate δ =
0.02 under saturated utility, relative to the same values when there is no saturation. Results are shown under different assumptions
on the ratioV0/C of initial capital to target spending. The right panel shows the corresponding impliedAIRs. The followingparameter
values are assumed: market price of risk λ = 0.3, real interest rate r = 1%, coefficient of relative risk aversion γ = 10/3. The value
of γ corresponds to a 60/40 asset mix when the risky asset in the BS model has 15% volatility. Under these parameter values, the
asymptotic AIR in the scheme under saturation is equal to the AIR of the scheme without saturation.

Agraph of the time-0 values of the utilitarian scheme under saturation, relative to the time-0 values
in the scheme without saturation, is shown for specific parameter values in the left panel of Figure 2.
The right panel shows the corresponding horizon-dependent AIRs. It is seen from the figure that,
under the assumed parameter values, the effect of introducing a saturation level (i.e. placing a cap on
spending) for a utilitarian social planner is strong in particular in cases in which the initial capital
is high relative to the cap. In these cases, in which the fund is initially ‘rich’ relative to the cap, the
planner would spend more in early years if the cap would not be present. Therefore, the introduction
of the cap is disadvantageous for early generations (up to about 30 years in the case V0/C = 50) and
advantageous for later generations. In cases in which the fund is initially ‘poor’, the presence of the
cap has little effect, since in most scenarios the benefits will be below saturation level anyway. There
are intermediate cases in which the introduction of the saturation level is slightly advantageous for
early generations and disadvantageous for later generations. In these cases, the initial capital is not
high enough to pay benefits at the saturation level, but the fund has a good chance of reaching that
position at a later stage. In favorable scenarios, the level of benefits will be lower when the cap is
present than when the cap is not present. Consequently, the time-0 values corresponding to benefits
for later generations are reduced. As is seen from the graph, the effect does not reach beyond the
magnitude of one or two percentage points in the example calculation.

5.3. Expectation neutral scheme

From expression (47) for E[b∗
j ], it follows that in the expectation neutral scheme the fractions of

capital allocated to successive generations are chosen in such a way that dj = dE(Tj), where dE(T)

satisfies the equation

F(dE(T), (λ/γ )
√
T) = κE (54)

in which κE ∈ (0, 1) is a constant. The time-0 benefit under expectation neutrality is given by b̄E0 =
κEC. Analogously to the case of the utilitarian scheme, the parameter κE is monotonically related to
the target ratio.

In contrast to the utilitarian scheme, the full target benefit is paid at time 0 under the expectation
neutral schemeonly if the target ratio satisfies condition (40), underwhich it becomes possible (within
the BS model) to pay the target benefit to all generations with full certainty. Indeed, it is not ‘fair’ (in
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the sense of expectations, and in other senses as well) to pay the target benefit in full to the current
generation, when later generations do run a risk of experiencing a shortfall.

In the case of a classical CRRA period utility function, without saturation, it was found that
expectation neutrality always gives rise to schemes that do not satisfy the weak asymptotic guaran-
tee property. The situation is different when saturation is added. It is shown in Appendix 4 that the
function dE(T)which is defined in (54) satisfies limT→∞ dE(T) = �−1(κE). In other words, κE is the
asymptotic probability of achieving the target as the horizon Tj tends to infinity. Therefore, under
the saturated period utility function, expectation neutral schemes are AWAG schemes. On the other
hand, they do not satisfy the strong asymptotic guarantee property.

In view of Proposition 3.3, the fact that expectation neutral schemes under saturated utility satisfy
the weak asymptotic guarantee property implies that the asymptotic AIR for these schemes must be
reduced with respect to the unsaturated case. Indeed, it is proved in Appendix 4 that the fractions θ̄Ej
of initial capital allocated to different generations under the expectation neutral scheme are such that

θ̄Ej ∝ χE(Tj) exp(−ρ̄E
∞Tj), ρ̄E

∞ = r + λ2/γ − 1
2λ

2/γ 2, (55)

where χE(T) is a function that satisfies

χE(0) = κE, lim
T→∞

χE(T) = ∞, lim
T→∞

e−εTχE(T) = 0 for all ε > 0. (56)

Therefore, while the functionχE(T) tends to∞ asT tends to∞, it does so at a subexponential rate; the
asymptotic AIR is hence given by ρ̄E∞ as defined in (55). It is seen that the introduction of a saturation
level results in a reduction of the asymptotic AIR from ρE = r + λ2/γ to ρ̄E∞ = r + λ2/γ − 1

2λ
2/γ 2.

This indicates a shift of value from earlier to later generations. In fact, it can be shown (see also
Appendix 4) that the ratio θ̄Ej /θEj of fractions of capital assigned to generation j with or without sat-
uration is increasing in j. Although the later generations are, therefore, better off under expectation
neutrality when saturation is introduced, it can be noted that the asymptotic AIR of the expectation
neutral schemewith saturation is still larger than theAIRof theCEneutral schemewithout saturation,
as is seen from comparing (55) to (35).20

The left panel of Figure 3 shows a plot of time-0 values in the scheme with saturation, relative to
time-0 values in the schemewithout saturation. The correspondingAIRs are shown in the right panel.
The figure can be compared to Figure 2 which shows the same quantities in the case of a utilitarian
planner. The curves shown in the left panel are all increasing, contrary to the case of the utilitarian
planner. Similarly to that case, the introduction of a saturation level has a stronger effectwhen the ratio
of initial capital to the spending cap is higher (‘rich’ funds). For low values of this ratio (‘poor’ funds),
later generations are still exponentially better off under the schemewith saturation than in the scheme
without saturation, but the effect becomes only strong at horizons in the order of several human
lifetimes. The crossover point between generations that profit from the introduction of a saturation
level and those who are worse off does not depend much on the ratio of initial capital to saturation
level, and lies at approximately the 30-year horizon. For rich funds, the asymptotic value of the implied
AIR in the scheme with saturation is somewhat misleading, since the AIR still lies considerably below
the asymptotic value even at quite long horizons.

5.4. CE neutral scheme

It is seen from (48) that, to equalize certainty equivalents, the parameters dj (j = 1, 2, . . .) must be
chosen as dj = dC(Tj), where the function dC(T) is defined by

F
(
dC(T),

1 − γ

γ
λ
√
T
)

= κC (57)

20 In case 0 < γ ≤ 1, it follows in the same way as above that expectation neutral schemes under saturation have the weak
asymptotic guarantee property. Moreover, it can be shown that their asymptotic AIR, in this case, equals r + 1

2λ
2.
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Figure 3. The left panel shows the time-0 values of benefits at different horizons for the expectation neutral scheme under sat-
urated utility, relative to the same values when there is no saturation. Results are shown under different assumptions on the ratio
V0/C of initial capital to target spending. The right panel shows the corresponding implied AIRs. Parameter values are as in Figure 2.

and κC > 1 is a fixed constant. The payoff at time 0 that leads to the same level of utility is given by

b̄E0 = κ
1/(1−γ )
C C. (58)

The constant κC is chosen such that the budget constraint is met. As in the case of the expectation
neutral scheme, and contrary to the case of the utilitarian scheme, the initial payment always falls
short of the target benefit C unless condition (40) holds.

The fractions of initial capital that are allocated to generations under the CE neutral scheme are
determined by (see Appendix 5)

θ̄Cj ∝ χC(T) exp(−ρ̄C
∞Tj), ρ̄C

∞ = r + 1
2λ

2/γ , (59)

where χC(T) is an increasing function with limit values given by

lim
T↓0

χC(T) = κ
1/(1−γ )
C , lim

T→∞
χC(T) = (κC − 1)1/(1−γ ). (60)

The asymptotic AIR for the CE neutral scheme is, therefore, equal to ρ̄C∞ = r + 1
2λ

2/γ , which is the
same as in the unsaturated case.21

It follows from results in the Appendix (Section 2) that the function dC(T) defined in (57) satisfies
limT→∞ dC(T) = ∞. Consequently, the CE neutral schemes under saturated utility are always ASAG
schemes, just as in the unsaturated case (with γ > 1).22

The plots in Figure 4 provide a comparison between the schemes with and without saturation
that would be chosen by a CE neutral social planner, analogously to Figures 2 and 3 for the cases of
a utilitarian planner and an expectation neutral planner, respectively. In the CE neutral case, there
is no difference in the asymptotic AIR between schemes with and without saturation. Consequently,
differences between these schemes are not as dramatic as in the case of an expectation neutral planner.
Nevertheless, the fact that the function χC(T) appearing in (59) is increasing means that there is still
a shift in time-0 value from earlier generations to later generations. This shift may be explained as
follows. The quantity ξ

−1/γ
T that appears in (42) has a larger variance for longer horizons. The upward

21 In case 0 < γ ≤ 1, it can be shown that the asymptotic AIR of CE neutral schemes under saturation is equal to r + 1
2λ

2. For
0 < γ < 1, this is different from the AIR in the case without saturation.

22 This conclusion remains valid in the logarithmic case. In case 0 < γ < 1, CE neutral schemes under saturation are AWAG but not
ASAG.
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Figure 4. The left panel shows the time-0 values of benefits at different horizons for the CE neutral scheme under saturated CRRA
utility, relative to the same values under standard CRRA utility. Results are shown under different assumptions on the ratio V0/C of
initial capital to target spending. The right panel shows the corresponding implied AIRs. Parameter values are as in Figure 2. The
asymptotic rate is the same as the AIR in the CE neutral scheme without saturation.

Table 1. The probability of achieving the target for two different neutralitarian schemes at different horizons.

Expectation neutral CE neutral

50 30 15 50 30 15

20 years 88.3% 43.9% 3.7% 82.1% 32.4% 1.6%
50 years 91.5% 55.6% 11.4% 90.3% 59.0% 18.1%
100 years 93.2% 62.7% 18.7% 94.8% 77.1% 45.6%
∞ 98.0% 84.9% 52.1% 100% 100% 100%

Notes: The numbers 50/30/15 indicate values of the ratio V0/C of initial capital to target annual spending. Parameter values are as
in Figure 2.

potential created by this variance is eliminated by the truncation of payoffs at the saturation level
C, but the downward risk still remains. In particular, later generations can be hit hard in scenarios
in which there is a long string of low returns to capital. To compensate for this, these generations
receive a larger portion of initial capital, which allows a more favorable probability distribution of
their benefits.

A comparison between the expectation neutral and the CE neutral schemes under saturation can
also bemade in terms of the probabilities of reaching the target level of spending at different horizons.
Results for a particular case are shown in Table 1; the assumed parameter values are the same as the
ones in Figures 2–4. To place the numbers shown in the table in perspective, it may be noted that, at
the assumed interest rate of 1%, to achieve the target level with certainty at all horizons would require
the ratio of capital to target annual spending to be equal to 100.5. It is seen that, at half of the capi-
tal required for certainty, one still obtains fairly high probabilities of achieving the target. Naturally,
these probabilities decline if the amount of initial capital is still lower. As the horizon lengthens, the
probability of reaching the target tends to a limit less than 1 in the expectation neutral schemes, but
tends to 1 in the CE neutral schemes, even for funds that are initially poor. As shown in the table, this
means that the probability of achieving the target is lower under CE neutrality than under expectation
neutrality for early generations, but is higher for later generations. The point of overtaking comes
earlier when the fund is initially poorer.

6. Conclusions and outlook

The endowment fundmodel that has been discussed in this paper combines elements of social choice
theory with notions from mathematical finance. It belongs to an area that might be called ‘social
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finance’, in analogy with ‘personal finance’, and that is concerned with the design of financial pol-
icy on behalf of multiple (typically heterogeneous) agents. Collective investment is an example. The
endowment fundmodel used in this paper is intended as a relatively simplemodel in which the aspect
of intertemporal choice can be addressed.

In the classical BS/CRRA context, there is no structural difference between policies derived from
either of the three principles that were discussed in this paper. The two neutralitarian principles can
in fact both be viewed as providing a way of deriving the discount rate in the utilitarian principle from
the economic parameters r and λ and the parameter γ which describes the attitude towards risk. The
rate r + λ2/γ , which is recommended under expectation neutrality, is the optimal expected return23
of a CRRA investor with coefficient γ of relative risk aversion. In that sense, it can be said that the
principle of expectation neutrality leads to the recommendation to ‘discount by the expected return’.
Along the same lines, the principle of CE neutrality can be said to recommend discounting by the
average of the expected return and the riskless rate.

When the CRRA utility function is modified by introducing a saturation level, the policies derived
from the three principles discussed in this paper become essentially different. It seems likely that this
will also happen when the CRRA utility is modified in a different way, for instance, by introducing a
guarantee level. The introduction of a saturation level is usually beneficial for later generations, with
an exception in the utilitarian scheme in the case of funds with a fairly low ratio of initial capital to the
saturation level of spending. The quantitative differences between expectation neutral schemes and
CEneutral schemes are substantial under the standardCRRAperiod utility function.Under saturated
CRRA, these differences are mitigated, without becoming negligible.

The utilitarian schemes discussed in this paper are all time-consistent: re-evaluation at any time in
the future does not lead to a change in policy. On the other hand, the neutralitarian strategies must in
general be viewed as precommitment strategies. The reason is that fairness is a time-indexed notion;
what is fair todaymay no longer be fair tomorrow, when new information has come in. This fact need
not be a source of concern if one takes a ‘contract’ point of view. One can imagine that, at time 0, a
contract is proposed to all generations, which specifies for each of them a promise for a benefit to be
paid at the due date Tj. The promise is expressed as a formula that takes relevant economic variables
that will be known at time Tj as inputs and that produces the actual amount to be paid as an output.
Under the assumptions of the complete market model, the generations are certain that the promise
will be kept under all circumstances. When the proposed contract is considered fair at time 0 by all
generations, it is agreed between them, and benefit payments will take place as stated in the contract,
for better or for worse. The idea that re-evaluation will never be necessary rests strongly on model
assumptions, however, and seems hard to maintain in practice. The question then arises whether it
is possible to develop policies that are both time-consistent and fair.24 The design of time-consistent
policies with respect to various non-classical optimization criteria has been extensively researched
in recent years; see, for instance, Ekeland & Pirvu (2008), Vieille & Weibull (2009), Björk & Mur-
goci (2014), Basak & Chabakauri (2010), Ekeland & Lazrak (2010), Asheim & Ekeland (2016), Björk
et al. (2017), Vigna (2020), Kryger et al. (2020), Balter et al. (2021), andDesmettre& Steffensen (2021).
This literature may become applicable to fairness criteria as discussed in this paper by viewing these
criteria in amaxmin framework, i.e. as criteria for optimalitywith respect to theminimumof expected
benefits or certainty equivalents across recipients.

The capped utility functions that have been used in this paper were chosen as an example of
non-CRRA utilities because they still allow an almost completely analytical treatment; moreover, the
saturation effect may be fairly realistic for some funds. It would be of interest to investigate other non-
CRRA utility functions as well. For instance, one might include a minimal subsistence level that must

23 The term ‘expected return’ is used here to refer to (1/T) log(E[VT ]/V0), where Vt indicates portfolio value at time t, rather than
to (1/T)E[log(VT/V0)].

24 A suitable form of efficiency is to be added as a third requirement. For instance, the policy of paying nothing to all generations is
both time-consistent and fair (indeed, all generations are treated the same), but inefficient in the sense that not all of the available
budget is used.
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be achieved with certainty or with very high probability, as for instance in Benartzi & Thaler (1995),
Berkelaar et al. (2004) and Chen et al. (2021). It would be of interest to see how this impacts the distri-
bution of time-0 values across generations. Another question concerns the corresponding investment
policies. Under capped utility, investment in risky assets is reduced in favorable scenarios, when the
available capital approaches the amount that is sufficient to keep the benefit stream at the target level
forever. When a subsistence level is added, it can be expected that derisking will also take place in
strongly adverse scenarios.

It is often seen in practice that trustees of endowment funds aim to suppress the year-to-year vari-
ation of benefits, by applying some form of smoothing. For instance, a typical benefit policy is to
disburse a fixed percentage of the average value of assets during the last three years, rather than a
fixed percentage of the current value of assets. For a similar effect, Balter & Werker (2019) propose
to reduce the exposure to risky assets of the portfolio earmarked for the benefit at time Tj according
to a fixed schedule in the period leading up to the payment time. Alternatively, one may attempt to
capture preference for smoothness in an objective function that can subsequently be optimized. For
instance, to express aversion against reduction of benefits with respect to the previous period, one
could let the period utility function for time Tj (j ≥ 1) be a mixture of the saturated CRRA utility
function (39) with a similar utility function that has payment bj−1 as a saturation level, instead of the
constant C:

ūj(x) = β
(min(x,C))1−γ

1 − γ
+ (1 − β)

(min(x, bj−1))
1−γ

1 − γ
, (61)

whereβ ∈ (0, 1) is a chosenweight. The efficient payoff at timeTj is still given by (12), where now bj−1
appears as a parameter in the utility function. The payoffhas twoflat regions, one corresponding to the
saturation level C, and another (for a range of lower values of the reference portfolio) corresponding
to the time-Tj−1 payoff bj−1. The location of the latter region becomes only determined at time Tj−1.
By decreasing the weight β , one can diminish the probability of scenarios in which a reduction of
benefits takes place, at the cost of lower expected growth. The form of the utility function in (61) is
quite simple; other ways of expressing preference for smoothness might be investigated as well.

The endowment fund model as used in this paper assumes that the fund aims to pay inflation-
indexed benefits at regular intervals, such as would be the case for instance for funds supporting an
endowed professorship, or for an institution such as the Nobel Foundation. However, there are also
endowment funds that pay benefits at irregular intervals, in response to unpredictable opportunities
or emergencies that may arise. For instance, a fund supporting an art museum may want to spend
a substantial amount at times when an interesting piece appears on the market. In such cases, one
still needs to find a balance between spending now and saving for later; the models supporting such
decisions would need to be different from the one used here.

The Black–Scholesmarket used in this paper is of course a simplemodel that incorporates only the
most basic features of financial markets. In particular, interest rates are assumed constant. As a result,
the analysis of the present paper cannot shed light on the question of how endowment funds should
respond to changes in interest rates. To extend the scope of the analysis, one might, for instance,
combine the BS model for equity with an affine term structure model. It is to be expected that it
would then still be possible to carry out a large part of the analysis on the basis of explicit formulas.
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Appendices

Appendix 1. Proof of Proposition 3.3
Consider first the claim in (i). Since E[ξT] = e−rT , the relation bj ≥ B implies that the time-0 value vj of the benefit
paid at time Tj satisfies vj ≥ e−rTjB. Therefore, we can only have

∑∞
j=0 vj < ∞ if r> 0. Moreover, it follows from

log
vj
v0

≥ −rTj + log
B
v0

that ρ∞ ≤ r. Finally, an example of an ASG scheme that achieves the upper bound is the one defined in (14).
Since every ASAG scheme is also an AWAG scheme, the statements under (ii) and (iii) can be rearranged into the

following claims:

(a) if r + 1
2λ

2 ≤ 0, then no ASAG scheme exists;
(b) for any AWAG scheme, we have ρ∞ ≤ r + 1

2λ
2;

http://ssrn.com/abstract=1577265
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(c) if r + 1
2λ

2 > 0, then there exists an ASAG scheme with asymptotic AIR equal to r + 1
2λ

2;
(d) if r + 1

2λ
2 = 0, then there exists an AWAG scheme with asymptotic AIR equal to 0.

To prove these claims, first, an inequality is shown that generalizes the inequality vj ≥ e−rTjB on which the proof
for the strict guarantee case is based. Let a scheme (bj)j=0,1,2,... and a level B > 0 be given. For j = 0, 1, 2, . . ., define
pj = P(bj ≥ B), and let dj = �−1(pj) denote the standard normal quantile that corresponds to the probability pj. Since
the pricing kernel ξT in the BSmodel is a deterministic andmonotonically decreasing function of the driving Brownian
motion WT , the smallest time-0 value of a benefit at time T that is at least equal to B with probability p is given by
E[ξT1WT≥η]B, where the constant η is chosen such that P(WT ≥ η) = p. A standard computation shows that

E[ξT1WT≥η] = e−rT�(d − λ
√
T), (A1)

where d = �−1(p). It follows that the time-0 values vj of the benefits bj satisfy

vj ≥ B e−rTj�(dj − λ

√
Tj) (j = 0, 1, 2, . . .). (A2)

If the sequence dj − λ
√
Tj contains a subsequence that is bounded below, then it follows that r> 0 just as in the case

of the strict guarantee, and the conclusion under part (a) is seen to hold. To prove part (a), it is therefore sufficient to
consider ASAG schemes that satisfy

lim
j→∞ dj − λ

√
Tj = −∞. (A3)

Due to the fact that
lim
x→∞ x�(−x)/ϕ(x) = 1 (A4)

(see, for instance, Feller 1968, Lemma VII.1.2), one can write, for 0< a< 1 and for d and T such that λ
√
T − d is

sufficiently large,

�(d − λ
√
T) ≥ a√

2π
exp(− 1

2d
2 + dλ

√
T − 1

2λ
2T)

λ
√
T − d

. (A5)

From the asymptotic guarantee property, it follows that the sequence dj tends to ∞. Inequalities (A2) and (A3) imply
the existence of a positive constant a1 such that

vj ≥ a1 exp
(

−
(
r + 1

2
λ2
)
Tj

) exp(− 1
2d

2
j + djλ

√
Tj)

λ
√
Tj − dj

for all sufficiently large values of j. We can write

− 1
2
d2j + djλ

√
Tj = 1

2
dj(λ

√
Tj − dj) + 1

2
djλ
√
Tj. (A6)

Since the sequences dj and λ
√
Tj − dj both tend to ∞, it follows that there exists a positive constant a2 such that

vj ≥ a2 exp
(

−
(
r + 1

2
λ2
)
Tj

) exp
( 1
2djλ

√
Tj
)

λ
√
Tj − dj

for all sufficiently large j. Let a3 be an arbitrary positive constant. Since dj ≥ a3 for all sufficiently large j, we can write

vj ≥ a2 exp
(

−
(
r + 1

2
λ2
)
Tj

) exp
( 1
2a3λ

√
Tj
)

λ
√
Tj

(A7)

for all sufficiently large j. In case r + 1
2λ

2 ≤ 0, the right-hand side of (A7) tends to infinity, and we have a contradiction.
This proves part (a).

For part (b), suppose that (bj)j=0,1,2,... is an AWAG scheme with weak asymptotic guarantee level B. From
inequality (A2), it follows that the asymptotic AIR ρ∞ of the scheme satisfies

ρ∞ ≤ r − lim inf
j→∞

1
Tj

log�(dj − λ

√
Tj). (A8)

From the weak asymptotic guarantee property, it follows that the sequence dj is bounded below. Therefore, the claim
in (b) will be verified if it can be shown that

lim inf
j→∞

1
Tj

log�(dj − λ

√
Tj) ≥ −1

2
λ2 (A9)
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for any such sequence dj. For a proof by contradiction, assume that there is a sequence dj which is bounded below and
which is such that

lim
j→∞

1
Tj

log�(dj − λ

√
Tj) < −1

2
λ2.

Without loss of generality, it can be assumed that dj − λ
√
Tj tends to −∞. For any subsequence of dj that remains

bounded, we have limj→∞(− 1
2d

2
j + djλ

√
Tj)/Tj = 0. From (A6), it is seen that, for subsequences of dj that tend to

infinity, the expression − 1
2d

2
j + djλ

√
Tj is positive for all sufficiently large values of j. It follows that

lim inf
j→∞

1
Tj

(
−1
2
d2j + djλ

√
Tj

)
≥ 0.

We now have a contradiction as a result of (A5). This completes the proof of part (b).
In part (c), it is given that r + 1

2λ
2 > 0. A benefit scheme with the required properties can be constructed in the

‘digital’ form
bj = 1WTj≥ηj .

The sequence ηj is chosen as follows. First, take a sequence dj such that dj → ∞ and dj/
√
Tj → 0 as j tends to infinity;

for instance, one can take dj = Tα
j with 0 < α < 1

2 . Now, define ηj by ηj = −dj
√
Tj. We have P(WTj ≥ ηj) = �(dj) →

1 as j tends to infinity. The time-0 values of the payoffs bj are given by (A1). From the property dj/
√
Tj → 0, it follows

that limj→∞ λ
√
Tj − dj = ∞. Making use of (A4), one finds that the time-0 values of the digital payoffs satisfy

vj ≤ a√
2π

exp
(

−
(
r + 1

2
λ2
)
Tj

) exp
(
− 1

2d
2
j + djλ

√
Tj

)
λ
√
Tj − dj

(A10)

for all sufficiently large j, where a is a constant larger than 1. From the property limj→∞ dj
√
Tj = 0, it also follows that

limj→∞(− 1
2d

2
j + djλ

√
Tj)/Tj = 0. Consequently, we have

−1
2
d2j + djλ

√
Tj ≤ 1

2

(
r + 1

2
λ2
)
Tj

for all sufficiently large j. Using this, it is seen from (A10) that the sum of the time-0 values of the digital payoffs bj is
finite. To conclude, again using (A4), one can write the asymptotic AIR of the scheme as

ρ∞ = r + 1
2
λ2 − lim

j→∞
1
Tj

(
−1
2
d2j + djλ

√
Tj

)
= r + 1

2
λ2. (A11)

Finally, in part (d), it is assumed that r + 1
2λ

2 = 0. Consider again a digital benefit scheme, constructed, as in part (c),
from a sequence dj. This time choose the sequence dj such that it converges to a finite negative limit; for instance, take
dj = −1 for all j. The weak asymptotic guarantee property is then satisfied since the sequence dj is bounded below.
The property limj→∞ λ

√
Tj − dj = ∞ obviously holds, so that inequality (A10) applies. Finiteness of the sum of time-

0 values then follows from the fact that the series
∑∞

j=0 e
−α

√
n/

√
n is convergent for positive values of α, since the

corresponding integral is convergent. Relation (A11) can be used and shows in this case that ρ∞ = 0. This completes
the proof.

The scheme that is used in the proof of part (c) allows benefits to take the value 0 with nonzero probability. An
alternative scheme with benefits that are positive with probability 1 is given by

bj = min(GTj/Kj, 1), (A12)

where Gt := ξ−1
t is the time-t value of the so-called growth optimal portfolio,25 and the constants Kj are chosen such

that P(GTj ≥ Kj) = �(dj) where dj is defined implicitly by

ϕ(dj) − dj�(−dj) = κ

λ
√
Tj

, κ > 0. (A13)

By somewhat laborious computations that are not shown here, it can be demonstrated that (i) the sum of the time-
0 values of this scheme is finite and can be adjusted to match any given positive value of initial capital by choice of
the parameter κ , (ii) the probability of the event bj = 1 tends to 1 as j tends to infinity, and (iii) the asymptotic AIR

25 The growth optimal portfolio (Long 1990, Bajeux-Besnainou & Portait 1997, Platen & Heath 2006) can be constructed as a fixed-
mix portfolio where the weights are chosen such that the portfolio volatility is equal to the Sharpe ratio. This may require a short
position in bonds.
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Figure A1. F(x, a) as a function of x, for several values of a as indicated in the plot.

of the scheme equals r + 1
2λ

2. The scheme defined by (A12) and (A13) is not as contrived as it may seem; it is in fact
the scheme that would be chosen on the basis of equalization of certainty equivalents when the utility function is log
utility with saturation at level 1.

Appendix 2. Auxiliaries
The function F(x, a) was introduced in (46); it plays a major role in describing key quantities related to the efficient
benefits under capped CRRA utility, as seen in (47)–(49). A plot F as a function of x, for several fixed values of the
parameter a, is shown in Figure A1. It is sometimes convenient to express the function F(x, a) in terms of the Mills
ratio of the standard normal distribution, i.e. the functionm(x) given by

m(x) := �(−x)/ϕ(x).

We have

F(x, a) = ϕ(x)m(x + a) + �(x) = ϕ(x)(m(x + a) + m(−x)). (A14)
For future use, it is noted that (see, for instance, Feller 1968, Lemma VII.1.2)

1
x

− 1
x3

< m(x) <
1
x

(A15)

for all x> 0. Consequently,

0 < 1 − xm(x) <
1
x2

(x > 0). (A16)

The inequality 1 − xm(x) > 0 in fact holds for all x ∈ R. The derivative of m(x) is given by m′(x) = xm(x) − 1. It
follows that the Mills ratiom(x) is a monotonically decreasing function.

The partial derivatives of F(x, a) with respect to x and a are given, respectively, by

∂F
∂x

(x, a) = aϕ(x)m(x + a), (A17)

∂F
∂a

(x, a) = ϕ(x)((x + a)m(x + a) − 1). (A18)

It is seen from these formulas (as can also be concluded from stochastic representation (45)) that F(x, a) as a function
of x is increasing if a> 0 and decreasing if a< 0, and that F(x, a) is decreasing in a for every fixed value of x. Moreover,
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we have the limit relationships

lim
x→−∞ F(x, a) =

{
0 (a > 0),
∞ (a < 0), lim

x→∞ F(x, a) = 1 (a ∈ R). (A19)

From these properties, it can be concluded that the equation

F(x(a), a) = κ (A20)

defines, for 0 < κ < 1, a function x(a) of a for a> 0, and in case κ > 1, defines a function x(a) of a for a< 0.Moreover,
the functions that are defined in this way for a> 0 are increasing, while the functions defined for a< 0 are decreasing.
The asymptotic behavior of both types of functions is of interest in the analysis in the main body of the paper. The
inverse function of x(a) will be written as a(x) and is defined by F(x, a(x)) = κ .

Properties of the function x(a) defined by (A20) for a> 0 and κ ∈ (0, 1) can be obtained as follows. Introduce a
new variable y by y = x+ a, and write the equation F(x, a) = κ in the form

�(−y)
ϕ(y)

= κ − �(x)
ϕ(x)

. (A21)

From this, it is seen that the inequality �(x) < κ must hold. Also, it can be concluded from (A15) that
limx↑�−1(κ) y(x) = ∞. This implies that limx↑�−1(κ) a(x) = ∞ as well, so that we have

lim
a→∞ x(a) = �−1(κ). (A22)

Concerning the behavior of x(a) for small values of the argument, from the fact that x(a) is increasing in a and the
fact that F(x, 0) = 1 for all x it follows that x(a) tends to −∞ when a tends to zero. For a more precise description,
rewrite (A20) in the form

1
2
a2 + ax(a) = log

κ − �(x(a))
�(−(x + a))

. (A23)

Taking the limits of both sides as a tends to zero, one finds

lim
a↓0

ax(a) = log κ . (A24)

This is sufficient information for the applications below.
Next, consider the function x(a) defined by (A20) for a< 0, with κ > 1. Since F(x, a) tends to infinity when a

tends to −∞ while x remains bounded, the function x(a) must satisfy lima→−∞ x(a) = ∞. Consider again (A21).
Since the right-hand side of the equation tends to ∞ as x tends to ∞, it follows that a(x) + x → −∞ as x → ∞. This
implies that a + x(a) → −∞ as a → −∞. Since the right-hand side in (A23) (where now κ > 1 is assumed) remains
bounded as a → −∞ (in fact tends to log(κ − 1)), it follows that x(a) behaves asymptotically for a → −∞ as − 1

2a,
and consequently, x(a) + a behaves asymptotically as 1

2a. This in turn implies that the right-hand side of (A23) tends
to log(κ − 1) at a faster than polynomial rate in a as a tends to −∞. Therefore, we can write

x(a) = −1
2
a + log(κ − 1)

a
+ o(a−N) (a → −∞) (A25)

for any natural numberN. Considering now the behavior of x(a) as a tends to 0 frombelow, the fact that lima↑0 F(x, a) =
1 for all fixed x implies that we must have x(a) → −∞ as a ↑ 0. This of course also implies that x(a) + a → −∞ as
a ↑ 0. Equation (A23) then shows that lima↑0 ax(a) = log κ , which implies that the right-hand side of (A23) converges
to log κ at a faster than polynomial rate in 1/a as a tends to 0 from below. Consequently, we can write

x(a) = log κ

a
− 1

2
a + o(aN) (a ↑ 0) (A26)

for any natural number N.

Appendix 3. Claims in Section 5.2
The expressions in (53) are obtained as follows. Define a function f (T) by

f (T) = F
(

ζ
√
T + κ√

T
, σ

√
T
)
,

where ζ and σ are defined by

ζ = r − δ − 1
2λ

2

λ
, σ = λ

γ

and where κ is the constant appearing in (51). We have limT↓0 f (T) = 1. If ζ > 0, then limT→∞ f (T) = 1, so that the
asymptotic AIR as given by (49) is equal to the riskless interest rate r. The same rate holds for ζ = 0, since in that case
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limT→∞ f (T) = 1
2 . Assume now that ζ < 0. By l’Hôpital’s rule, the asymptotic rate of decrease of the function f (T)

can be found from

lim
T→∞

− 1
T
log f (T) = − lim

T→∞
f ′(T)

f (T)

if the limit on the right-hand side exists. Computation on the basis of (A17) and (A18) shows that

f ′(T)

f (T)
= (ζσ + 1

2σ
2)m((ζ + σ)

√
T + κ/

√
T) − 1

2σ/
√
T

m((ζ + σ)
√
T + κ/

√
T) + m(−ζ

√
T − κ/

√
T)

. (A27)

First consider the case in which ζ + σ > 0. Making use of the property limx→∞ xm(x) = 1 of theMills ratio, one finds
that, in this case,

lim
T→∞

√
T m((ζ + σ)

√
T + κ/

√
T) = 1

ζ + σ
, lim

T→∞
√
Tm(−ζ

√
T − κ/

√
T) = − 1

ζ
.

Multiplying both the numerator and the denominator of the right-hand side of (A27) by
√
T, one finds that

lim
T→∞

f ′(T)

f (T)
= (ζσ + 1

2σ
2)/(ζ + σ) − 1

2σ

1/(ζ + σ) − 1/ζ
= −1

2
ζ 2.

Lastly, assume that ζ + σ ≤ 0. In this case, the term m((ζ + σ)
√
T + κ/

√
T) dominates, and it follows that

limT→∞ f ′(T)/f (T) = ζσ + 1
2σ

2.

Appendix 4. Claims in Section 5.3
It follows from (47) and (49) that the fractions θ̄Ej (j ≥ 1) of initial capital reserved for successive generations under the
expectation neutral scheme are such that θ̄Ej ∝ θ̄E(Tj), where

θ̄E(T) = e−rTF
(
dE(T) − λ

√
T,

λ

γ

√
T
)

with F
(
dE(T),

λ

γ

√
T
)

= κE.

As shown in Appendix 2, the relation F(dE(T), (λ/γ )
√
T ) = κE indeed defines dE(T) uniquely as a function of T > 0

for any given value of κE ∈ (0, 1). Define the function χE(T) by

χE(T) = exp(ρ̄E
∞T)θ̄E(T) = exp

((
λ2/γ − 1

2
λ2/γ 2

)
T
)
F
(
dE(T) − λ

√
T,

λ

γ

√
T
)
.

Introduce a new time parameter τ by τ = (λ/γ )
√
T. We can then write dE(T) = x(τ ), where x(τ ) satisfies the relation

F(x(τ ), τ) = κE. Moreover, we have χE(T) = χ(τ), where

χ(τ) = exp
((

γ − 1
2

)
τ 2
)

α(τ) (A28)

and the function α(τ) is defined by

α(τ) = F(x(τ ) − γ τ , τ) with F(x(τ ), τ) = κE. (A29)

To verify the claims in (55)–(56), it is sufficient to prove the following:

lim
τ→∞ x(τ ) = �−1(κE), lim

τ↓0
χ(τ) = κE, lim

τ→∞ χ(τ) = ∞, lim
τ→∞ e−ετ 2χ(τ) = 0 forallε > 0. (A30)

The first property follows from (A22). Note that

χ(τ) = e(γ− 1
2 )τ 2F(x(τ ) − γ τ , τ) = eτx(τ )�((γ − 1)τ − x(τ )) + e(γ− 1

2 )τ 2
�(x(τ ) − γ τ). (A31)

Since limτ↓0 x(τ ) = −∞ and limτ↓0 τx(τ ) = log κE by (A24), the second claim in (A30) follows. Consider now the
limit as τ tends to infinity. Since x(τ ) remains bounded for τ → ∞, the first term on the right in (A31) tends to ∞ at
a rate that is exponential in τ . The second term can be rewritten as follows:

exp
((

γ − 1
2

)
τ 2
)

�(x(τ ) − γ τ) = exp
(

−1
2
(γ − 1)2τ 2 − 1

2
x2(τ ) + γ τx(τ )

)
m(γ τ − x(τ ))√

2π
.

This shows that the second term tends to 0 as τ tends to ∞. Hence, the final two claims in (A30) are verified.
It remains to verify the claim that the ratio θ̄Ej /θEj is increasing in j. Using the same transformation of time as above,

this claim will be proved if it can be shown that the function χ̂ (τ ) := exp( 12 τ
2)χ(τ) = exp(γ τ 2)α(τ) is increasing in
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τ . This can be done by showing that positivity of its derivative, which will follow if it can be proved that 2γ τα(τ) +
α′(τ ) > 0 for τ > 0. We can write

2γ τα(τ) + α′(τ )

ϕ(x(τ ) − γ τ)
= 2γ τ(m(x(τ ) + (1 − γ )τ) + m(−x(τ ) + γ τ))

+ τm(x(τ ) + (1 − γ )τ)

(
−x(τ )m(x(τ ) + τ)

τm(x(τ ) + τ)
− 1 − γ

)

+ (x(τ ) + (1 − γ )τ)m(x(τ ) + (1 − γ )τ) − 1

= 2γ τm(−x(τ ) + γ τ) + m(x(τ ) + (1 − γ )τ)

m(x(τ ) + τ)
− 1.

Since the function m(x) is decreasing, the second term in the final expression above is larger than 1, and the desired
conclusion follows.

Appendix 5. Claims in Section 5.4
It follows from (48) and (49) that the fractions θ̄Cj (j ≥ 1) of initial capital reserved for successive generations under the
scheme that equalizes certainty equivalents are such that θ̄Cj ∝ θ̄C(Tj), where

θ̄C(T) = e−rTF
(
dC(T) − λ

√
T,

λ

γ

√
T
)

with F
(
dC(T),

1 − γ

γ
λ
√
T
)

= κC.

As shown in Appendix 2, the relation F(dC(T), (1 − γ )(λ/γ )
√
T) = κC indeed defines dC(T) uniquely as a function

of T > 0 for any given value of κC > 1. Define the function χC(T) by

χC(T) = exp(ρ̄C
∞T)θ̄C(T) = exp

((
1
2
λ2/γ

)
T
)
F
(
dC(T) − λ

√
T,

λ

γ

√
T
)
.

Introduce, as in the previous section, a new time parameter τ by τ = (λ/γ )
√
T. We can then write dC(T) = x(τ ),

where x(τ ) satisfies the relation F(x(τ ), (1 − γ )τ) = κC. Moreover, we have χC(T) = χ(τ), where

χ(τ) = exp
(
1
2
γ τ 2

)
α(τ) (A32)

and the function α(τ) is defined by

α(τ) = F(x(τ ) − γ τ , τ) with F(x(τ ), (1 − γ )τ) = κC. (A33)

To verify the claims in Section 5.3, it is sufficient to prove the following:

χ(τ)isincreasing, lim
τ↓0

χ(τ) = κ
1/(1−γ )
C , lim

τ→∞ χ(τ) = (κC − 1)1/(1−γ ). (A34)

Note that
χ(τ) = e

1
2 γ τ 2α(τ) = e

1
2 (1−γ )τ 2+x(τ )τ �((γ − 1)τ − x(τ )) + e

1
2 γ τ 2�(x(τ ) − γ τ). (A35)

From (A33) and (A25), we have

x(τ ) = 1
2
(γ − 1)τ − log(κC − 1)

(γ − 1)τ
+ o(τ−N)(τ → ∞), (A36)

where N can be any natural number. This implies

lim
τ→∞ x(τ ) = ∞, lim

τ→∞(γ − 1)τ − x(τ ) = ∞, lim
τ→∞ x(τ ) − γ τ = −∞,

and moreover,
1
2
(1 − γ )τ 2 + x(τ )τ = − log(κC − 1)

γ − 1
+ o(τ−1).

Concerning the second term on the right-hand side of (A35), we can write

e
1
2 γ τ 2�(x(τ ) − γ τ) = 1√

2π
exp

(
−1
2
x2(τ ) + γ τx(τ ) − 1

2
γ 2τ 2 + 1

2
γ τ 2

)
m(γ τ − x(τ )),

where, by (A36), γ τx(τ ) − 1
2γ

2τ 2 + 1
2γ τ 2 = O(1) as τ → ∞. It follows that

lim
τ→∞ χ(τ) = (κC − 1)1/(1−γ ). (A37)
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In a similar way, one finds from (A33) and (A26):

lim
τ↓0

χ(τ) = κ
1/(1−γ )
C . (A38)

It remains to prove that the function χ(τ) is increasing. As in the previous section, this can be done by showing that
the derivative is positive. Define functions

F1x(τ ) = (∂F/∂x)(x(τ ) − γ τ , τ), F2x(τ ) = (∂F/∂x)(x(τ ), (1 − γ )τ),

F1a(τ ) = (∂F/∂a)(x(τ ) − γ τ , τ), F2a(τ ) = (∂F/∂a)(x(τ ), (1 − γ )τ)

and note from (A17) and (A18) that

F1x(τ )

F2x(τ )
= 1

1 − γ

ϕ(x(τ ) − γ τ)

ϕ(x(τ ))
,

F1a(τ )

F2a(τ )
= ϕ(x(τ ) − γ τ)

ϕ(x(τ ))
.

From the definition of x(τ ) in (A33), it follows that F2x(τ )x′(τ ) + (1 − γ )F2a(τ ) = 0. We then can write

α′(τ ) = F1x(τ )

(
− (1 − γ )F2a(τ )

F2x(τ )
− γ

)
+ F1a(τ ) = −γ F1x(τ ) = −γ τ [α(τ) − �(x(τ ) − γ τ)]. (A39)

It is now straightforward to compute the derivative of χ(τ):

χ ′(τ ) = e
1
2 γ τ 2 (γ τα(τ) + α′(τ )) = γ τ e

1
2 γ τ 2�(x(τ ) − γ τ). (A40)

This is indeed seen to be positive.
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