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Abstract
A tradition that goes back to Sir Karl R. Popper assesses the value of a statistical test primarily by its severity: was there
an honest and stringent attempt to prove the tested hypothesis wrong? For “error statisticians” such as Mayo (1996, 2018),
and frequentists more generally, severity is a key virtue in hypothesis tests. Conversely, failure to incorporate severity into
statistical inference, as allegedly happens in Bayesian inference, counts as a major methodological shortcoming. Our paper
pursues a double goal: First, we argue that the error-statistical explication of severity has substantive drawbacks; specifically,
the neglect of research context and the specificity of the predictions of the hypothesis. Second, we argue that severity matters
for Bayesian inference via the value of specific, risky predictions: severity boosts the expected evidential value of a Bayesian
hypothesis test. We illustrate severity-based reasoning in Bayesian statistics by means of a practical example and discuss its
advantages and potential drawbacks.

Keywords Statistical test · Bayes factors · Null hypothesis significance testing · Severity · Error statistics · Karl Popper ·
Deborah Mayo

What, then, is the end of an explanatory hypothesis?
Its end is, through subjection to the test of experiment,
to lead to the avoidance of all surprise and to the
establishment of a habit of positive expectation that
shall not be disappointed. C.S. Peirce (1931)[CP
5.197]

The Bayesian framework for statistical inference—
expressing one’s uncertainty about hypotheses and parame-
ters by means of subjective probabilities and updating them
through Bayes’ theorem—is increasingly popular in psy-
chology (e.g., Rouder et al., 2009; Lee & Wagenmakers,
2013; Vandekerckhove et al., 2018). This popularity is easy
to explain: Bayesian inference is based on a general the-
ory of uncertain reasoning, its basic principles are simple
and easily remembered, and statistical evidence is quanti-
fied by means of relative predictive performance (i.e., Bayes
factors); moreover, Bayesian inference avoids the problems
with the interpretation of p-values, and statistical inferences
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are connected to our beliefs and the practical consequences
of our decisions (e.g, Jeffreys, 1961; Jeffrey, 1971; Savage,
1972; Bernardo & Smith, 1994; Lindley, 2000; Howson &
Urbach, 2006; Evans, 2015; Morey et al., 2016; Sprenger &
Hartmann, 2019).

A major objection to Bayesian inference consists in
its apparent neglect of the role of severe hypothesis tests
in scientific inference. For champions of severe testing
like Sir Karl R. Popper (1963, 1959/2002), hypotheses
are not confirmed by their predictive performance or
their agreement with available data. Rather, they count
as confirmed only if they have survived repeated and
stringent attempts to prove them wrong. What matters for
the status of a hypothesis is its probative value, or, in
other words, whether it has “proved its mettle” (Popper,
1959/2002, p. 264). Via the work of methodologists and
statisticians such as Ronald A. Fisher (1935, 1956) and Paul
Meeh (1978, 1986, 1990a, 1990b), Popper’s idea has also
exerted a profound influence on statistical practice in social
science.

Recently, Deborah Mayo (1996, 2018) has developed a
philosophy of statistical inference called error statistics,
based on the concept of severe testing. Mayo states
explicitly that data should only count as evidence for a claim
C if they resulted from a real and severe test; otherwise we
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have “BENT: Bad Evidence—No Test” (p. 5 ; Mayo, 2018).
Mayo’s account deals primarily with controlling (Type I and
II) error rates in inference and is therefore frequentist in
nature (cf. Neyman & Pearson, 1933; 1967; Neyman, 1977;
Mayo, 1996). One of the key objectives of this paper is to
provide a critical analysis of Mayo’s account and to assess
the prospects of error statistics for application in social
science.

The other objective consists in outlining how Bayesians
can implement the ideas of severe testing and error control
into their inference framework. Prima facie, neither the
posterior probability of a hypothesis nor the Bayes factor
seems to depend on the severity of a test, or the extent to
which one has tried to prove the theory wrong. Specifically,
our paper addresses the following questions:

Q1 Should Bayesians care about severity?
Q2 How can Bayesians account for the value of severity

in inference?
Q3 Is severity more naturally accounted for in frequentist

than in Bayesian inference?

We will defend an affirmative answer to the first
question, sketch a constructive answer to the second
question and give a negative answer to the third question.
However, note that none of these positions is self-evident.

With respect to Q1, many Bayesians deny that severity
should matter at all in inference. They refer to the
Likelihood Principle: all the evidence that an experiment
provides about an unknown quantity is expressed by
the likelihood function of the various hypotheses on the
observed data (Birnbaum, 1962; Edwards et al., 1963;
Berger & Wolpert, 1984). “Consequently the whole of the
information contained in the observations that is relevant
to the posterior probabilities of different hypotheses is
summed up in the values that they give to the likelihood”
(Jeffreys, 1961, p. 57). Therefore, the severity of a test,
as expressed by whether the hypothesis of interest stood a
risk of being refuted (e.g., whether unobserved data could
have proven it wrong), cannot enter the statistical evaluation
of an experiment. According to this line of response,
Popper, Mayo and other defenders of severe testing are
just mistaken when they believe that severity should enter
the (post-experimental) assessment of a theory. Much of
the “statistics wars” Mayo (2018, p. xi) between Bayesians
and frequentists have revolved around this controversy (see
also Mayo & Kruse, 2001; Mayo, 2010). Our paper, by
contrast, acknowledges Popper’s and Mayo’s argument that
severity needs to be accounted for by an adequate logic of
scientific, and statistical, inference.

With respect to Q2, Bayesians have only recently started
to care about severity and to explain its role in Bayesian
inference (Vanpaemel, 2010; Lee & Vanpaemel, 2018;
Vanpaemel, 2019; 2020; Dienes, 2021). In particular,

Vanpaemel (2020) argues that severity does not (only)
consist in making precise predictions: a severe test has
to rule out plausible outcomes, that is, outcomes with
a high prior predictive probability (we engage with
Vanpaemel’s positions in a later section). Our own account
highlights how the specificity of a hypothesis and its
predictions boost severity by raising the expected evidential
value of the experiment, and how error control can be
embedded naturally into Bayesian inference. Specifically,
we construe severity within the Bayesian framework as
the specificity of the prediction of a hypothesis in relation
to the potential data that could be observed. The value
of severity is reflected in the expected evidential value
of a test, quantified by the expected absolute log-Bayes
factor (Lindley, 1956; Good, 1979; Cavagnaro et al., 2010;
Schönbrodt & Wagenmakers, 2018; Stefan et al., 2019).
In addition, we show, in line with Vanpaemel, how prior
probability distributions connect scientific theory with a
statistical model, and how priors contribute to the severity
of a test (Vanpaemel, 2010; 2019).

Finally, with regard to Q3, we argue that the error-
statistical explication of severity faces considerable con-
ceptual challenges. Since error statistics enjoys increasing
popularity in the psychological science community (see,
e.g., Haig 2020 or the Shiny App by Richard Morey), we
believe that this negative argument is an important contribu-
tion to the debate. In other words, we show that a statistical
practitioner who cares about severe testing need not be
a frequentist. Severity is a concept that can be integrated
equally well, or even better, into the framework of Bayesian
inference.

Theoretical background: scientific theories
and severe tests

Scientific theories are imperfect descriptions and explana-
tions of reality. They allow us, with a certain degree of
accuracy, to predict future observations or to uncover struc-
ture in available data. According to Popper (1959/2002), the
value or empirical content (p. 96) of a scientific theory lies
in the combination of its universality and its precision (i.e.,
generality to what it pertains and specificity of what it pre-
dicts/explains; pp. 105–106). A theory has high empirical
content when it has a vast scope in which many observa-
tions are possible in principle (e.g., all planetary motions in
the universe); yet only a few of these possible observations
are consistent with the theory (e.g., ellipses around a cen-
ter of gravity). This is consistent with the common intuition
that a successful risky prediction is more impressive than a
successful vague prediction.

Meehl (1978) expressed this intuition with an example
of two meteorological theories that both make predictions
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on next month’s weather. Theory A predicts: in Turin it will
rain on three days in the next month. Theory B predicts: in
Turin it will rain on the third, fourth, and the seventh day of
next month. We expect that most people agree with Meehl
that a success of Theory B’s prediction is more impressive
than the success of Theory A’s prediction. This difference
can be made explicit in terms of its falsifiablity (Popper,
1959/2002, p. 96): Theory B’s prediction is only correct
in

(30
1

) = 1 out of 230 possibilities, while Theory A’s

prediction is correct in
(30

3

) = 4060 out of 230 possibilities.
What is important for the standing of a scientific theory
is not its ability to fit the data, but how specific it is with
respect to all possible data (see also Roberts & Pashler,
2000). Popper (1959/2002) gave the examples of Freudian
psychoanalysis and Marxist sociology as theories that could
fit any pattern of data, thus being low in empirical content
and even unscientific. For these ‘theories’, both the presence
and absence of a personality trait or both presence and
absence of worker unrest could be considered as consistent
with the theory.1

Competing theories are falsifiable to the extent that
they make sharply contrasting predictions. The outcome of
a test should either favor one theory and contradict the
other, or vice-versa (i.e., strong inference: Platt 1964 or
experimentum crucis as defined by Hooke: Lohne 1968):

The scientific method is always comparative and there are
no absolutes in the world of science. It follows from this
comparative attitude that a good theory is one that enables
you to think of an experiment that will lead to data that
are highly probable on [the theory], highly improbable
on [the complement of the theory], or vice versa, so that
the likelihood ratio is extreme and your odds substantially
changed. (p. 209 ; Lindley, 2006)

In modern mathematical language, this means that one
needs to maximize the expected information gain regarding
the assessment of the competing theories (Oaksford &
Chater, 1994; Myung & Pitt, 2009; Myung et al., 2013).
A prime example is Eddington’s 1919 test of Einstein’s
General Theory of Relativity (GTR) versus Newton’s
classical theory of gravity (Dyson et al., 1920). Both
theories make sharp mutually exclusive predictions about
the degree to which passing massive bodies, like our
sun, bend light from distant sources, like other stars. The
predictions of GTR were famously verified by Eddington
during the 1919 solar eclipse.

The benefits to science from increasing the falsifiability
of theories and riskiness of predictions have been presented
in numerous critiques of social science methodology (e.g.,
Meehl, 1978; 1986; 1990a; 1990b; Roberts & Pashler,

1For an argument that unverifiable hypotheses are essential for
scientific progress see e.g., Poincaré (1913).

2000). In the case of GTR vs. Newtonian mechanics,
the specificity of the predictions of a theory is tightly
linked to the capacity for testing it severely (and thus,
to its falsifiability). The higher the proportion of possible
outcomes that are consistent with a theory, the less
informative the theory becomes. For example, it is hard
to falsify the rather uninformative theory that it will rain
in Amsterdam on some days in the next year. On the
opposite side, we have highly informative theories, with
a limited set of parameters whose values are fixed and
interrelated. An excellent example of such a theory is GTR.
This theory makes specific predictions about time dilatation
in GPS satellites relative to the earth’s surface, improving
navigational accuracy. The more informative a theory is, the
more falsifiable it is, because fewer possible observations
are consistent with it. Only such informative theories can be
severely tested:

We may say that to make predictions with great
accuracy increases the probability that they will be
found wrong, but in compensation they tell us much
more if they are found right. [...] The best procedure,
accordingly, is to state our laws as precisely as we can,
while keeping a watch for any circumstances that may
make it possible to test them more strictly than has
been done hitherto. (pp. 39–40; Jeffreys, 1973)

We now investigate how severity manifests itself in
various statistical frameworks, starting with Mayo’s error
statistics.

Severity in error statistics

At first glance there is a striking resemblance between
Popper’s emphasis on the severe testing of scientific
hypotheses and null hypothesis significance tests (NHST).
Typically, at the center of NHST there is a point null
hypothesis postulating that a parameter takes a precise
value (e.g., the mean of a population, H0 : μ =
μ0)—corresponding to absence of a causal effect in
an experimental intervention, equality of two medical
treatments, and so on. When the measured divergence from
the null hypothesis exceeds a given threshold (e.g., the
observed test statistic falls in the most extreme 5% of the
probability density function), the null hypothesis is rejected
and the statistical analysis reports statistically significant
results against the null. Otherwise, no conclusion is drawn.

At first glance, the NHST methodology squares well with
Popper’s falsificationism. First, the point null hypothesis is
maximally falsifiable, because it commits to a single point
value for the effect. Second, the idea of submitting the
point null to a severe test and rejecting it when it fails to
explain the data, has a distinct Popperian note. However, the
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scientific theory that we would like to submit to a severe
test is usually not the null hypothesis (see also Rouder et al.,
2009; Gallistel, 2009; Sprenger & Hartmann, 2019, ch. 9).
Rather, we would like to severely test the hypothesis that
there is a meaningful effect: that a medical drug is better
than a placebo, that playing a musical instrument makes
people happier, that video games improve reasoning skills,
and so on. This “alternative” hypothesis usually takes the
generic form H1 : μ > μ0 (or even H1 : μ �= μ0). It
does not commit the scientist to precise predictions; rather it
states that the unknown parameter lies in a range of values.
NHST does not explain how such hypotheses can be tested
severely; nor does it give a general definition of severity in
statistical inference.

Mayo’s (1996, 2018) error-statistical approach
addresses this problem and explicates how parametric
hypotheses can be severely tested in general. Error statistics
follows Popper’s perspective on theory testing as the ability
to detect and control error between data and hypothesis.
The standing of a theory is primarily determined by the
severity of the tests it has survived. The extent to which the
theory has proved its mettle constitutes statistical evidence.
Mayo (2018, p. 14) states this explicitly in her Strong
Severity Principle:

Severity Principle (strong): We have evidence for
a claim C just to the extent it survives a stringent
scrutiny. If C passes a test that was highly capable of
findings flaws or discrepancies from C, and yet none
or few are found, the passing result, x, is evidence for
C.

Prima facie, two important elements of severe testing are
missing in the Severity Principle (in this formulation). First,
Mayo’s perspective does not make explicit essential ele-
ments of severe testing that Popper stressed: the universality
of the tested hypothesis H and the specificity of the pre-
dictions it makes (Popper, 1959/2002, p. 266). Nowhere in
Mayo’s severity principle or in the specifications discussed
below is the riskiness or specificity of a hypothesis, and the
predictions it makes, incorporated as a requirement for a
severe test (Meehl, 1978; 1986; 1990b; 1990a; Roberts &
Pashler, 2000).2

Second, without explicit reference to alternatives to the
claim, it is not clear how a claim can survive “stringent
scrutiny” or when a test is “highly capable” of finding
differences. For example, a stringent scrutiny of the claim
C: “90% of all swans are white” requires only a single swan
if the alternative claim is “all swans are black”. When the

2We recognize that in principle it is easier to scrutinize a precise
prediction than it is to scrutinize a vague prediction. However,
precision is not a requirement for a stringent test as Mayo (2018)
defines it.

alternative is that “fewer than 80% of all swans are white”,
however, the observation of a single white swan is relatively
uninformative, and a large sample of swans is needed to
discriminate between both hypotheses. If C encompasses
all that is possible (except ¬C), no test —no matter how
probative it usually is— will be capable of severely testing
C. This suggests that the Severity Principle should not be
interpreted in absolute, but in relative terms, comparing
the claim to the most plausible and most severely tested
competing hypotheses (e.g., as done by Eddington in the
1919 solar eclipse experiment). This contrastive aspect of
severe testing is missing in Mayo’s formalization.

This problem comes into sharper focus when we consider
Mayo’s operationalization of the Severity Principle Mayo
(2018, p. 92):

Severity Requirement: for data to warrant hypothesis
H requires not just that
(S-1) H agrees with the data (H passes the test), but
also
(S-2) with high probability, H would not have passed
the test so well, were H false.

Suppose that the hypothesis of interest is μ ≥ μ0 + δ,
where δ > 0 expresses the effect size relative to the default
value μ0. Mayo calls the hypothesis of interest the ‘Claim’
and indicates it with C. The application of (S-1) is then
similar to the Neyman-Pearson (and NHST) approach (see
Mayo 2018, p. 142): C passes a statistical test when H0 :
μ ≤ μ0 is rejected at the pre-specified Type I error level α.3

This happens when the probability of the observed data, or
data deviating more extremely from H0, is lower than α (i.e.,
p(d(X) ≥ d(x); H0) < α), where the statistic d measures
divergence of the data from H0).

To assess the evidence in favor of C, Mayo applies
(S-2) and computes a severity function (SEV : see the
corresponding Shiny App by Richard Morey). The severity
function takes as arguments the statistical test, the observed
data, and the target hypothesis C. The severity function
outputs the probability of obtaining the observed data x or
data closer to H0 and deviating more from C, if C were
false. As a representative of the negation of C, we choose
the point hypothesis in C that is closest to H0, which is
μ = μ0 + δ. If this hypothesis is rejected with test T based
on data x, the severity with which C has passed the test is
defined as

SEV (T , x, C) = p(d(X) ≤ d(x); ¬C)

= p(d(X) ≤ d(x); μ = μ0 + δ),

3Actually, H0 is rejected in favor of the standard alternative hypothesis
Ha : μ > μ0, to keep the parameter space neatly partitioned, but this
does mean that the data are consistent with C.
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Fig. 1 SEV results for the original water plant example. In this case, H0 : μ = 150, C : μ = 153, x = 152, and SEV = 0.159. This
image is a screenshot from the Severity Demonstration application. This Shiny App was developed by Morey (2020) and can be accessed via
https://richarddmorey.shinyapps.io/severity

which is (a lower bound on) the probability of observing the
actually observed data, or data more deviating from C, in
the direction of H0 if C were false.4

To show how the severity function works in practice,
we borrow a simple example from (Mayo, 2018, pp. 142–
144). The example concerns the scenario of an “accident
at a water plant” (p. 142) where a leak in the cooling
system is discharging water into the ecosystem. The cooling
system is “meant to ensure that the mean temperature of
discharged water stays below the temperature that threatens
the ecosystem, perhaps not much beyond 150 degrees
Fahrenheit.”

The question is, whether the temperature of the water
high enough to constitute an ecological disaster that requires
counter measures beyond mere repair of the cooling
system. When the cooling system is working properly, the
temperature of the water discharged into the ecosystem
is around 150 degrees Fahrenheit and a temperature of
153 or higher is considered a “full-on emergency for the
ecosystem” (p. 143). A series of 100 water measurements
are taken at random time periods and their sample mean
x is computed. The standard deviation is known and when
the cooling system is working properly, the distribution of
means from samples of 100 measurements is captured by
X ∼ N(μ = 150, 1). Mayo supposes that initially the test
concerns “H0 : μ ≤ 150 vs. C : μ > 150” (p. 142). She
sets the Type I error rate to 2.5% (α = 0.025), thus rejects

4For convenience, the SEV function is evaluated at μ = μ0 + δ,
because the probability value that it produces will be even greater for
μ < μ0 + δ (for detailed explanation, see Mayo 2018, p. 144).

“H0 (infer there’s an indication that μ > 150) iff X ≥ 152”
(p. 142).5

In this scenario, we observe a sample mean of 152
degrees Fahrenheit and thus reject H0, fulfilling (S-1) of the
Severity Requirement. According to the severity rationale,
we are warranted in concluding that μ > 150, because
“[w]ere the mean temperature no higher than 150, then over
97% of the time their method would have resulted in a lower
mean temperature than observed” (p. 143). However, we
are primarily concerned with the extent to which these data
indicate that the water has reached devastating temperatures
of 153 Fahrenheit or higher (μ ≥ 150 + δ; δ = 3).
According to the Severity Requirement (S-2), we need the
probability of observing our mean temperature of 152 or
lower if the actual temperature is equal the critical threshold
of 153 degrees. This can be calculated with the SEV

function, which is p(X ≤ 152; μ = 153) ≈ 0.16.
From these results, one can conclude that one does not
have evidence for the claim that the water has reached
temperatures of 153 degrees Fahrenheit or higher. Namely,
the “severity principle blocks μ > 153 because it is fairly
probable (84% of the time) that the test would yield an even
larger mean temperature than we got, if the water samples
came from a body of water whose mean temperature is 153”
(p. 144). Thus, the results do not meet requirement (S-2)
and the hypothesis that the temperature of the water is 153
degrees or higher does not pass a severe test (see Fig. 1).

With this depiction, a consequence of the second problem
described above comes into view; the severity principle
operationalized as the SEV function implies a curious,

5For convenience, Mayo rounds 151.96 up to 152.
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perhaps outright problematic concept of statistical evidence.
In the water plant example, the observed mean temperature
of 152 degrees Fahrenheit is not considered evidence that
the water has reached the dangerous temperature of 153
degrees (SEV (T , x, μ > 153) ≈ 0.16). However, this
result is independent of what is considered the normal or
default state of affairs. In Mayo’s example, this is 150
degrees Fahrenheit, but this value is irrelevant for her SEV

function as long as the observed mean is sufficiently high to
reject the null hypothesis. Suppose that we had observed the
same mean temperature of 152 degrees Fahrenheit, though
the normal mean temperature is 100 degrees. Then one
would again reject H0 and meet requirement (S-1); one
would again not meet (S-2) and draw the same conclusion
as before (see Fig. 2).

However, when normal temperatures are around 100
degrees, you observe a mean temperature of 152 with a
standard error of 1, and an “full-on emergency for the
ecosystem” is imminent when the temperature is 153, it is
clear that counter measures are acutely required. Evidence
must be evaluated in context and relative to the competing
or default hypotheses. The error-statistical analysis of the
case goes against any intuition one might have about the
concept of severity, treatments of this concept by other
philosophers and methodologists (e.g., Popper, 1959/2002;
Meehl, 1990b; 2005; Roberts and Pashler, 2000), and
even against a reasonable interpretation of Mayo’s Severity
Principle (Mayo, 2018, p. 14).

For this reason, we disagree that Mayo’s Severity
Principle and Severity Requirement (as explicated by the
Severity Function) are good operationalizations of the

function of severity in scientific inference and statistical
testing. To recapitulate, our main criticism are (1) any
theory of severe testing must be sensitive to what is
considered the normal or default state of affairs, and
Mayo’s theory does not; (2) more generally, Mayo’s theory
neglects that the severity of a test is a function of the
degree of similarity between the competing hypotheses,
and the specificity of their predictions. Mayo’s explications
of severity in statistical inference are decoupled from the
scientific context in which the data are collected.

Severity in Bayesian inference

In Bayesian inference, an observation x supports hypothesis
H if and only if x raises the subjective probability of H

(e.g., Carnap, 1950; Horwich, 1982; Howson & Urbach,
2006; Evans, 2015; Sprenger & Hartmann, 2019):

p(H | x) > p(H).

Equivalently, in the case of a null hypothesis H0 and an
alternative H1, x is evidence for H1 if and only if x is better
predicted under H1 than under H0, i.e., if the Bayes factor
BF10 exceeds 1:

BF10(x) := p(x | H1)

p(x | H0)
> 1.

The higher the Bayes factor, the stronger the evidence for
H1, and the closer it is to zero, the stronger the evidence for
H0. See Table 1 for a conventional classification of Bayes
factors.

Fig. 2 SEV results for the original water plant example. In this case, H0 : μ = 100, C : μ = 153, x = 152, and SEV = 0.159. This
image is a screenshot from the Severity Demonstration application. This Shiny App was developed by Morey (2020) and can be accessed via
https://richarddmorey.shinyapps.io/severity
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Table 1 Classification of Bayes factors according to Lee and
Wagenmakers (2013), adjusted from Jeffreys (1961)

Bayes Factor BF10 Interpretation

>100 Extreme evidence for H1

30–100 Very strong evidence for H1

10–30 Strong evidence for H1

3–10 Moderate evidence for H1

1–3 Anecdotal evidence for H1

1 No evidence for either hypothesis

1/3–1 Anecdotal evidence for H0

1/3–1/10 Moderate evidence for H0

1/10–1/30 Strong evidence for H0

1/30–1/100 Very strong evidence for H0

<1/100 Extreme evidence for H0

The posterior probability of a theory H0 given data x

is calculated as p(H0 | x) = p(H0) · p(x | H0)/p(x). This
allows us to write the posterior odds in favor of H0 over H1

as

p(H0 | x)

p(H1 | x)
= p(H0)

p(H1)
· p(x | H0)

p(x | H1)
.

Thus, keeping the prior probability p(H0) fixed, the
posterior probability of H0 will be the larger (1) the better
H0 predicts x and (2) the more surprising (worse predicted)
x is under H1 (e.g., Roberts and Pashler, 2000; Howson &
Urbach, 2006).

By construction, the Bayes factor is relative to an explicit
choice of context, i.e., the alternative hypothesis. Quite
often, this alternative hypothesis will depend on the prior
distribution of the parameter of interest, e.g., when we
test a point null hypothesis H0 : μ = μ0 against an
unspecific alternative H0 : μ �= μ0. However, as argued
by Vanpaemel (2010), this property of Bayes factors is a
virtue rather than a vice: the prior distribution expresses,
after all, our theoretical expectations and predictions. A
scientist using Bayesian inference needs to think about the
prior distribution in advance, strengthening the link between
scientific theorizing and statistical analysis whose absence
has often been named as a cause of the lack of reliability
and replicability of psychological research (compare Meehl,
1967; Ioannidis, 2005; Dienes, 2021).

At first glance, severity-related aspects appear to be
lacking in the Bayesian paradigm: the Bayes factor only
depends on the probability of the data in light of the
two competing hypotheses. As Mayo emphasizes (e.g.,
Mayo and Kruse, 2001; Mayo, 2018), the Bayes factor is
insensitive to variations the sampling protocol that affect
the error rates, i.e., optional stopping of the experiment.
The Bayes factor only depends on the actually observed
data, and not on whether they have been collected from

an experiment with fixed or variable sample size, and so
on. In other words, the Bayesian ex-post evaluation of the
evidence stays the same regardless of whether the test has
been conducted in a severe or less severe fashion.

We agree with this observation, but we believe that the
proper place for severity in statistical inference is in the
choice of the tested hypotheses (are they specific? are they
sufficiently contrastive?), and in the experimental design.
Bayesians cash out severity by ensuring that an experiment
gives positive answers to the two questions below:

Evidential Value Is it probable to obtain strong, discrimi-
natory evidence from this particular experiment?

Error Control Does the design of the experiment limit the
probability of finding misleading evidence? That is, does
it limit the probability of making an erroneous inference?

These properties also depend on the experimental design as
a whole (e.g., the chosen sample size), but specifically on
the choice of the tested hypotheses:

Specificity Do the competing hypotheses H0 and H1

make specific predictions? That is, do they rule out,
or make implausible, a large proportion of possible
outcomes?

Contrastivity Are the predictions of hypothesis H0 and H1

sufficiently different that the experiment can discriminate
between them?

In other words, the specificity and contrastivity of a
hypothesis contributes to the severity of a test by increasing
its evidential value and controlling error in inference. We
will now discuss these concepts in detail.

Specificity and evidential value in Bayesian
inference

For a test to be severe, the tested hypothesis needs to impose
substantial restrictions on the range of potential data that
are consistent with it. This is a basic ingredient of severe
testing that has been retained both by philosophers such
as Popper and psychological science methodologists. For
example, Roberts and Pashler (2000, p. 359) argue that
a good fit between data and model does not have to be
convincing as evidence when the parameter values of the
model are fully adjustable to accommodate the data:

Theorists who use good fits as evidence seem to
reason as follows: if our theory is correct, it will be
able to fit the data; our theory fits the data; therefore
it is more likely that our theory is correct. However, if
a theory did not constrain possible outcomes, the fit is
meaningless. (Italics added for emphasis)

Figure 3 shows for a theory concerned with the relation
between the values of two measures that the data provide

522 Psychonomic Bulletin and Review  (2023) 30:516–533



Fig. 3 Four possible relations between data and theory. Measures P
and Q are both measures of some observable. The axes cover the
range of possible values. The highlighted areas indicate the outcomes
that are consistent with the theory. Standard errors of the observation
are indicated by the error bars. In this example, the theory fits the
data, though only when both theory and data are sufficiently constraint
(upper left) does this provide significant evidence for the theory (this
figure is published under CC-BY 4.0 and is adapted from: Roberts &
Pashler, 2000, p. 360)

strong support only if (a) a narrow range of possible values
is consistent with the theory; (b) the data fall in this narrow
range; (c) the experimental measurements were precise.
These three criteria can be summarized as specificity of
predictions, fit and measurement precision.

Vanpaemel (2010, 2020) points out that the Bayesian
can express criterion (a) by means of the prior predictive
distribution

∫
p(x|θ, H)p(θ |H) dθ : all outcomes that fall

outside the “core predictions” of a hypothesis H (e.g., the
data points with the 95%, 99% or 99.99% prior probability
mass) are judged to be inconsistent with the theory.6

In particular, Vanpaemel (2020) demands that the tested
hypothesis do not only rule out possible, but also plausible
outcomes. This means that possible outcomes that fall
outside the X% highest density region as predicted by the
hypothesis have some non-negligible probability based on,
for instance, prior results (for a more detailed explanation,

6This idea is similar to using credible intervals based on regions of
highest posterior density (ROPE) in order to draw inferences from
Bayesian hypothesis tests (Kruschke, 2018; Kruschke & Liddell,
2018).

see Vanpaemel, 2020). Only in this case can a hypothesis be
tested severely.7

Two comments or amendments on Vanpaemel’s account
are in order. First, Vanpaemel defines the “plausible”
in the requirement of excluding plausible outcomes as
independent of the models that are entertained. However,
he does not explain how this understanding squares with,
or should be reconciled with, the definition of “plausible”
via the data prior in the model that encompasses the
tested hypotheses. Neither does Vanpaemel offer a clear
specification of how many plausible outcomes, relative to
the overall data space, need to be excluded.

Second, Vanpaemel argues that the threshold for counting
outcomes as inconsistent with a model depends on the
context: in his running example of the 2020 paper, he
chooses 99.99%, but he adds that in other contexts, other
thresholds may be possible. Also here, we agree, but we
would like to add that we (still) cannot test a hypothesis H

in isolation, in the sense of “if the actual data fall outside
the core predictions, the theory is H refuted”. This would
amount to relying on Fisher’s infamous disjunction (Fisher,
1956; Cohen, 1994)—either a very improbable event has
occurred, or the tested hypothesis must be wrong—and
replicating the inverse probability fallacy: since p(E|H) is
low, and since we want to explain events in a systematic
way, we infer that p(H |E) is low. A theory must always
be tested against a competitor. Indeed, this aspect of severe
testing is underappreciated in Vanpaemel’s account, just as
it is missing in Pashler and Roberts’s and Mayo’s account.

From a Bayesian perspective, specificity contributes
to severity by means of increasing the diagnosticity or
expected evidential value of a hypothesis test. This concept
can be operationalized as the expected absolute log-Bayes
factor8 of the experiment (Good, 1950; 1975; 1983; 1979;
Lindley, 1956; Nelson, 2005; Schönbrodt & Wagenmakers,
2018; Stefan et al., 2019):

Ey

[| log BF10|
] =

∫
p(y)| log BF10(y)| dy, (1)

7For Vanpaemel, the prior probability distribution for the model
parameters is an indispensable element of evaluating the severity of
a tests, since the data prior depends on the prior over the parameter
space: “Wide data priors make for lenient tests; narrow data priors
imply strong tests” (142 ; Vanpaemel, 2020). Since narrow data priors
are usually obtained by means of choosing specific hypotheses that
occupy only a small range of the parameter space, severe testing is also
connected to specificity on his account.
8Nelson (2005) objects to the use of the expected log-Bayes factor as
a measure of diagnostic value on a variety of reasons, of which we
recapitulate the two most important ones: (1) it takes infinite value if
an outcome is logically excluded by H0; (2) the lack of sensitivity to
the prior probability of the hypotheses is not psychologically adequate,
as he seeks to demonstrate using a series of cognitive experiments.
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where p is the prior probability density function over the
sample space that encompasses both H0 and H1.9 The
expected absolute log-Bayes factor quantifies the amount of
evidence one can expect, for and against combined, where
values close to Ey |log BF10| = 0 constitute uninformative
tests (i.e., the hypotheses make similar predictions).10

When a hypothesis is highly specific, its predictions
will in general differ notably from the alternative, and
this means that we can expect strong evidential support
for either one or the other hypothesis. Furthermore, the
expected evidential value is higher for the more restricted
hypothesis: it is easier to find evidence against it when it is
false, and one obtains more easily evidence for it when it is
true. Testing simple, restrictive hypotheses is thus valuable
from a Bayesian perspective. Typically—but not always—
the most simple, and most severely testable hypothesis
is a point null hypothesis H0 which fixes the parameter
of interest to a single number. More generally, there is
a systematic connection between the degree to which a
hypothesis restricts its parameters, and the degree to which
it restricts the range of data consistent with it.11 We will now
illustrate this reasoning with a simple binomial model.

An example of specific hypothesis testing

Let us clarify this specification of the Bayes factor with a
simple fictitious example. For this example, we have adap-
ted the informative hypothesis testing approach (Klugkist &
Hoijtink, 2005; Klugkist et al., 2005; Hoijtink, 2011). The
Bayes factors reported in this section are calculated with
respect to an encompassing model with a uniform prior. We
have added the mathematical explication as an Appendix.

In this example, we imagine that military veterans
receive either one of two treatments to address post
traumatic stress disorder (PTSD). Treatment A is regular
psychotherapy (e.g, Cognitive Processing Therapy; Monson
et al., 2006). Treatment B is the same psychotherapy
but enhanced with regulated dosages of the drug 3,4-
Methylene-dioxymethamphetamine (Sessa, 2017).

Based on the theory and previous research, success
rates of these treatments should fall in a particular range.
The more uncertainties there are in the theory about
what could influence the success rate (e.g., inter-patient
psychological variability) and the more measurement error

9This expression does not depend on the choice of H0 vs. H1 since
| log BF10| = | log BF10|.
10The idea of taking an expectation over the sample space may look
alien to Bayesian inference, but it is a well-established part of the
modern Bayesian’s toolbox: see de Finetti (1974, pp. 90-91), Pérez and
Berger (2002) and O’Hagan and Forster (2004, pp. 166-167).
11Popper notes that a hypothesis is the more testable, and the more
restrictive on the data, the simpler it is, where simplicity is defined as
paucity of parameters (Popper, 1959/2002, pp. 126–128 and 392–394).

one can expect (e.g., low reliability of PTSD assessment),
the wider the interval around these expected values that are
still considered consistent with the theory.

Specifically, assume that either treatment has a true
success rate, θA and θB . Under an encompassing model
these rates can have any value between 0 and 1, He : θA =
[0.0, 1.0], θB = [0.0, 1.0]. For simplicity, we consider
these values equally likely and adopt a uniform prior over
θA and θB in the encompassing model. The scenario can
be modelled as two independent binomial distributions.
We start treating participants, randomly divided in equal
number to each treatment, and count the number of
successful treatments. In this case, for a treatment we would
have a specific number of participants Ni , where i ∈ {A, B},
and the number of successes for this treatment Si would be
determined by the actual value of θi and sampling error:
Si ∼ Bin(Ni, θi).

We use four scenarios to allow comparison with the
four cases in Fig. 3 identified by Roberts and Pashler
(2000). Specifically, we consider two hypotheses, one vague
and one specific, and two different datasets, one with
few and one with many patients. In the first and second
scenario, corresponding to the bottom panels in Fig. 3,
the hypothesis makes vague predictions: Hv : θA =
[0.00, 0.50], θB = [0.50, 1.00].12 Thus, Hv takes up 25%
of the encompassing model and it predicts that the success
rates for Treatment A and B will very likely be below
and above 0.5, respectively (see Fig. 4). From Vanpaemel’s
perspective, a severe test of this (vague) hypothesis is
possible, because plausible outcomes fall outside the highest
density region. Specifically, between 14 and 20 successes
for treatment A and between 0 and 6 successes for treatment
B fall outside the 99% highest density region.

In the third and fourth scenario, corresponding to the two
top panels in Fig. 3, the hypothesis makes specific predic-
tions and strongly restricts the possible parameter values:
Hs : θA = [0.20, 0.30], θB = [0.70, 0.80]. Thus, Hs takes
up 1% of the encompassing model and it predicts that success
rates between 0.2 and 0.3 for Treatment A and between
0.7 and 0.8 for Treatment B are most probable while
success rates above and below those values are increasingly
unlikely (see Fig. 5). From Vanpaemel’s perspective, a
severe test of this (specific) hypothesis is possible, because
plausible outcomes fall outside the highest density region.
Specifically, 0 and between 12 and 20 successes for
treatment A and between 0 and 9 and 20 successes for
treatment B fall outside the 99% highest density region.13

12Locations of these hypotheses are chosen for symmetry; not much
changes when different locations are used.
13A case could be made that 0 and 20 successes are implausible
outcomes, because they fall outside the highest density regions for both
treatments. However, this is irrelevant for deciding whether or not the
hypothesis can be tested severely according to Vanpaemel (2020).
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Fig. 4 Data predictions for the vague hypothesis. If twenty patients were to be tested in both Treatment A and Treatments B, then according to
Hv we would expect to see these numbers of success with these probabilities

These hypotheses are compared on two data sets. A
small data set of four participants per treatment, NA =
NB = 4 represents the two right panels of the Roberts and
Pashler (2000) quartet. A relatively large data set of twenty
participants per treatment, NA = NB = 20, represents the
two left panels of the Roberts and Pashler (2000) quartet. If
the data align well with each hypothesis (e.g., SA = 1

4 NA

and SB = 3
4 NB ), the specific hypothesis Hs is better

supported than the vague hypothesis Hv . It is even the
case that the specific hypothesis is better supported by the
small data set (BFse = 4.37) than the vague hypothesis is
supported by the large data set (BFve = 3.89). As shown
in Fig. 6, this scenario qualitatively reproduces the figure of
Roberts and Pashler (2000).

However, the benefit of a specific hypothesis when right
comes at a cost when wrong. As is visible in Fig. 7, Hs

only has a small amount wiggle room and the Bayes factor
quickly drops towards zero when the number of successes
deviates from the predicted range, while Hv has a large area

to move in with respect to possible success rates that support
it.

This is also reflected in the expected evidential value of
the experiment in the four situations of the example. As
explained in the previous section (see Eq. 1), the expected
absolute log-Bayes factor describes the evidential value one
can expect either for or against the specific hypothesis in
relation to the encompassing model, where the expectation
is taken over all possible data y:

E
[| log BFse|

] =
∫

p(y)| log BFse(y)| dy

where p(y) is

p(y) = p(Hs)p(y | Hs) + p(He)p(y | He)

and p(y | H) is

p(y | H) =
∫

p(y | θ, H)g(θ | H) dθ

Fig. 5 Data predictions for the specific hypothesis. If twenty patients were to be tested in both Treatment A and Treatments B, then according to
Hs we would expect to see these numbers of success with these probabilities
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Fig. 6 Four relations between hypothesis and data. The top two graphs
show the results of specific hypothesis Hs . The bottom two graphs
show the results of the vague hypothesis Hv . The gradient gray areas
depict the probabilities mass with respect to the hypotheses’ predicted
outcomes (a top view of Figs. 5 and 4). The dotted-lines in gray
visualize the hypotheses’ restrictions on the parameter values. The
point estimates and standard errors are visualized as black crosses.

The graphs in the left column display the results of the large data set
(Ni = 20) and the graphs in the right column display the results of the
small data set (Ni = 4). In this example, the data align perfectly with
the hypotheses. The evidential support for the hypotheses in compari-
son to the encompassing model is quantified as Bayes factors (top-left
of each plot). From top-left to bottom-right, these Bayes factors are
16.53, 4.37, 3.89, and 2.64 respectively

In this example, the computation of E
[| log BFse|

]
comes

down to taking the average of absolute log Bayes factors
over all possible treatment outcomes for both Treatment
A and Treatment B, weighted by the marginal probability
of these treatment outcomes according to Hs and the
encompassing model. Analogously for E

[| log BFve|
]
.

As can be gleaned from Fig. 7, there is substantial sim-
ilarity between the vague hypothesis and the encompassing
model, in the sense that a quite large set of possible out-
comes is explained to a similar degree by either hypothesis.

This property decreases the expected evidential value of
the experiment. When we move to specific hypothesis, on
the other hand, there are striking differences between the
outcomes expected under the hypothesis and the encom-
passing model. This is also reflected in the expected evi-
dential values: Ey

[| log BFse|
]

> Ey

[| log BFve|
]
. The

expected evidential value is highest for the specific hypoth-
esis with the predetermined sample size of 20 per treatment,
E[| log BFse|] = 6.32. This is followed by the vague
hypothesis with Ni = 20 per treatment, E[| log BFve|] =
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Fig. 7 Specific hypotheses can yield more evidence than vague
hypotheses, though in most situations this is evidence against the
hypothesis. The graphs displays the size of the Bayes factor with
respect to possible combinations of outcomes for the specific hypoth-
esis Hs (left) and the vague hypothesis Hv (right). The x-axis and
y-axis indicate, for treatment A and treatment B respectively, the num-
ber of successful treatments (Si ) out of the 20 participants that are

treated (Ni = 20). The values within the lattice indicate the evidence
for the hypothesis that results from the particular combination of SA

and SB . This evidence is quantified in terms of the Bayes factor for
the hypothesis (left: specific, right: vague) with respect to the encom-
passing model. The size of the Bayes factor is also indicated as the
intensity in color

3.14; the specific hypothesis with Ni = 4 per treatment,
E[| log BFse|] = 1.61; and the vague hypothesis with Ni =
4 per treatment, E[| log BFve|] = 1.25.14

Summing up, the evidence is much more telling
and discriminatory when testing specific hypotheses (cf.
Etz et al., 2018). From a Bayesian perspective, these
numbers show why severe testing is important for inference
and decision-making, and what specific hypotheses with
contrastive predictions contribute to the value of an
experiment. We have examined the case of testing a nested
hypothesis against an encompassing model, but the case
generalizes straightforwardly to other statistical models, and
specifically, to models with contrastive, mutually exclusive
hypotheses.

Error control and contrastive hypotheses in
Bayesian inference

For the Bayesian, it is essential that theory testing,
and scientific method as a whole, are comparative.
Experiments can be probative and severe only when
contrasting a hypothesis H0 to an explicit alternative H1.
And this alternative must be specified in the light of
our best scientific knowledge, i.e., in the light of our
prior expectations. Specifically, the Bayesian answers the
question “... what constitutes a good theory?” (Lindley,
2006, p. 196) in terms of its potential to yield high likelihood
ratios in testing the theory against its negation:

[...] A good theory is one that makes lots of predictions
that can be tested, preferably predictions that are less

14The example suggests that point hypotheses are easier to test
severely than composite hypotheses, but this holds only ceteris paribus
and cannot be generalized without qualification.

probable were the theory not true. [...] what is wanted
are data that are highly likely when the theory is
true, and unlikely when false. A good theory cries out
with good testing possibilities (Lindley, 2006, p. 197,
notation changed).

That experiments should be as contrastive as possible
has already been highlighted in the previous section. It
is especially important because the more two hypotheses
make contrasting predictions, the better can we limit the
probability of misleading evidence, along the lines of
the Lindley) (see also Royall 2000, for a semi-Bayesian,
likelihoodist treatment), and assess whether the test was
severe.

One Bayesian tool for making this assessment is a
Bayes Factor Design Analysis (BFDA; Schönbrodt &
Wagenmakers 2018, see also shinyapps.org/apps/BFDA/).
Before collecting data, the experimenter decides on a
threshold for when a Bayes factor counts as evidence for
a hypothesis, e.g. BF10 > 3 or BF10 < 1/3. Of course,
one can set more stringent requirements as one desired (e.g.,
BF10 = 10, the threshold for strong evidence). Suppose the
alternative hypothesis H1 is in fact true. The BFDA then
calculates

• the probability of obtaining positive evidence for H1

(e.g., BF10 > 3);
• the probability of obtaining inconclusive evidence (e.g.,

1/3 ≤ BF10 ≤ 3); and
• the probability of obtaining misleading evidence for H0

(e.g., BF10 < 1/3).

Identically, one can define the probability of obtaining
positive evidence for H0, and misleading evidence for H1

(when H0 is true). A graphical illustration is given in Fig. 8
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Fig. 8 Graphical illustration of the distribution of Bayes factors and probability of misleading evidence in the Bayesian framework for N=36, a
two-sided t-test and hypothesized effects of d = 0 and d = 0.4. Figure produced with the BFDA app https://shinyapps.org/apps/BFDA/ based on
Schönbrodt and Wagenmakers (2018)

for a two-sided t-test with a moderate group size N = 36 in
both groups. The probability of finding misleading evidence
for H0 when H1 is true is relatively large: 9.6%. Moreover,
the most likely result is actually to obtain inconclusive
evidence (55.1%). Certainly such an experiment controls
error rates (here defined not as Type I or Type II errors, but
in the above sense of finding misleading evidence) poorly
and cannot be counted as a severe test of the competing
hypotheses.

When the sample size increases, the impact of sampling
variability is reduced and this facilitates the control of the
probability of misleading evidence. With N = 190, for
example, these rates drop to 0,2% and 1%, respectively. See
Fig. 9.

This shows that error rates are no unique feature of
frequentist statistics: the Bayesian has analogous tools to
calculate the probability of misleading evidence and to
construct his (or her) experiment in a way to control for
the probability of misleading evidence. This is exactly what
Mayo alludes to in her Severity Principle, which we quote
again for convenience:

Severity Principle (strong): We have evidence for
a claim C just to the extent it survives a stringent
scrutiny. If C passes a test that was highly capable of
findings flaws or discrepancies from C, and yet none
or few are found, the passing result, x, is evidence
for C.

Fig. 9 Graphical illustration of the distribution of Bayes factors and probability of misleading evidence in the Bayesian framework for N=190, a
two-sided t-test and hypothesized effects of d = 0 and d = 0.4. Figure produced with the BFDA app https://shinyapps.org/apps/BFDA/ based on
Schönbrodt and Wagenmakers (2018)
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Reinterpreting Mayo from a Bayesian viewpoint, we have
evidence for the claim C if and only if (a) we observe
a Bayes factor in favor of C beyond a context-sensitive
threshold, and (b) the probability of finding misleading
evidence for C (under the assumption that C’s competitor is
true) is low. The Shiny apps and the R package for a Bayes
Factor Design Analysis make the implementation of this
planning explicit and easy to handle for an experimenter.
There is thus no reason why a Bayesian needs to give up an
appreciation of severity in terms of error control. What is
more, in the light of the challenges inherent to Mayo’s own
operationalization of her Severity Principle, one could even
draw the conclusion that Bayesian inference is suited best
to implement her philosophical stance into experimental
practice.

Discussion

This article presents a Bayesian proposal on how to
accommodate the concept of severity when testing sta-
tistical hypotheses. It provides a translation of Popper’s
(1959/2002) falsificationist philosophy and the intuitive
impressiveness of risky predictions in terms of a test of spe-
cific hypotheses. The specificity of a hypothesis is defined
by the degree to which predictions are spread out across
the sample space, while evidence is defined by relative pre-
dictive performance, that is, how much probability mass is
allocated to the data under the competing hypotheses (i.e.,
the Bayes factor).

A complex or vague hypothesis spreads out its predictive
mass across a wide range of options, and by hedging its bets
will lose out against a more restrictive hypothesis that makes
a more precise (and accurate) prediction. The more precise
the predictions from the competing hypotheses, the higher
the expected diagnosticity, and the more severe the test.
This approach clearly quantifies Popper’s idea of evaluating
theories on the basis of their empirical content and degree
of falsifiablity (Popper, 1959/2002). In the specific case of
a parameter space whose regions correspond to different
statistical hypotheses, the specificity of a hypothesis can
often be measured by the proportion of the parameter space
it occupies (weighted with the prior probability density; cf.
Appendix).

Popper and Bayes can thus be reconciled: the evaluation
of hypotheses in terms of Bayes factors is influenced by
their specificity and Bayesian inference has the conceptual
resources to reward specific predictions. Notably, obtaining
this conclusion does not require any blending of Bayesian
and frequentist inference; our account stays faithful to the
principles of subjective Bayesianism. While error statistics
postulates severe testing as a key virtue of statistical
inference, our approach also explains why severity matters

for conducting efficient hypothesis tests and making good
decisions.

Advantages of specific hypothesis testing

There are several clear advantages to testing specific
hypotheses in a Bayesian framework. First and foremost,
it is to the researchers’ benefit to make more specific
predictions. As outlined earlier, the more specific the
hypothesis is, the more evidence one can expect: either more
evidence is obtained from the same amount of data, or less
data are needed for the same amount of evidence. This is
in stark contrast with orthodox frequentist methods where
“more evidence” requires more data if the discrepancy
between null hypothesis and alternative hypothesis is fixed.
In experimental psychology, demonstrations of the benefit
of informed/specific Bayes factor hypothesis tests includes
Vohs et al. (in press), Gronau et al. (2017), Ly et al. (2019)
and in particular the work of Zoltan Dienes (e.g., Dienes,
2008; 2011; 2014; 2016; 2019). For cognitive models, the
value of informed prior distributions has been highlighted
by Vanpaemel and Lee (2012) and Lee and Vanpaemel
(2018).15 All in all, unlike frequentists, Bayesian can
directly integrate theoretical expectations into the premises
of a statistical inference and use them to test hypotheses
severely.

Second, our account makes explicit why vague predic-
tions lack diagnostic value. This is most clearly expressed in
cases where (almost) everything is consistent with the the-
ory. In such cases where all parameter values are allowed
by the theory, one can never expect to obtain strong evi-
dence either in favor or against the theory. Only when the
theory is restrictive, strong confirming or undermining evi-
dence can plausibly be expected. Consequently, evidence is
limited by the specificity of the hypothesis. Intuitively, the
possible evidence in favor of a theory should be limited by
its strength and how well it is tested. The specific hypothesis
testing approach provides this feature, because the maxi-
mum amount of evidence in terms of the Bayes factor is one
divided by the specificity of the hypothesis.

Third, our approach extends the treatment of severity by
Vanpaemel (2019; 2020), who argues that predictions are
risky, and tests severe, only if the tested hypothesis rules out
plausible outcomes a priori. Vanpaemel’s approach is so far
qualitative, and the exclusion of plausible outcomes can be

15Vohs et al. (in press) assign a positive-only Gaussian prior for
effect size with mean .30 and standard deviation .15 – the Vohs
prior. Gronau et al. (2017) assign to effect size a positive-only t-
distribution with location 0.350, scale 0.102, and three degrees of
freedom – the Oosterwijk prior, see (Gronau et al., 2020). Finally,
Ly et al. (2019) outline a test to assess replication success, where
the posterior distribution of the original experiment functions as the
prior distribution of the replication experiment; see also Verhagen and
Wagenmakers (2014).
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taken as a minimal requirement of a severe test as we did in
the example discussed in the previous section.

Fourth, our approach to severity can be extended to
the research planning phase. Specifically, the specificity
of one’s hypothesis, or the restrictiveness of one’s theory,
can inform the researcher about the sample size required
to be fairly certain of strongly supporting or contradicting
results. Vice versa, in the case where the sample size is
predetermined, the researcher can infer how specific the
tested hypothesis needs to be in order to be fairly certain of
obtaining high degrees of confirmation or disconfirmation.
Explicitly, our approach could be integrated into the Bayes
Factor Design Analysis discussed in the previous section
(BFDA; SchÖnbrodt & Wagenmakers, 2018; Stefan et al.,
2019). Given background assumptions concerning the rival
models and the data-generating process, BFDA provides
either the distribution of Bayes factors for a fixed sample
size, or the distribution of sample sizes to obtain a fixed
Bayes factor. The use of more specific models will affect the
BFDA such that the same data will become more diagnostic:
a fixed sample size is projected to yield more evidence, and
a given level of evidence is reached with smaller samples.

Similarly, in Adaptive Design Optimization (ADO; e.g.,
Ahn et al., 2020; Myung et al., 2013) the next stimulus
to be presented is determined by maximizing expected
information gain. As the observations accumulate, the
rival hypotheses become increasingly specific (i.e., their
constituent posterior distributions become more peaked),
and therefore easier to discriminate. Our research thus
connects to the growing literature that considers Bayesian
inference not only a method of hypothesis evaluation, but
also uses it in planning and designing experiments that are
both reliable and efficient.

Disclaimers and conclusion

Our approach is susceptible to any objection that may
be raised against Bayesian statistics as a whole (e.g.,
Moyé, 2008; Senn, 2011; Mayo, 2010; 2018). Our claim
here is just that the epistemic value of severity is not a
compelling argument for preferring frequentist to Bayesian
statistics. Severity is a notoriously elusive and hard-to-
quantify concept in the frequentist paradigm, too, and the
state-of-the-art explications are arguably unsatisfactory. At
the same time, it is possible to give a Bayesian account of
the evidential value of severity. We hope that our approach
provides a useful tool that can fill an empty spot in the
researcher’s toolbox of statistical methods, specifically with
regard to the role of severe testing Bayesian inference.
At the very least, we expect that this paper will inspire
criticism, which might stimulate fruitful debate on how
theories can show their probative value irrespective of the
preferred statistical paradigm.

Appendix: specific hypothesis testing with
encompassing priors

The Bayesian informative hypothesis testing approach (e.g.,
Klugkist et al., 2005; Klugkist & Hoijtink, 2005) can
be used to illustrate how Bayesian inference incorporates
the concept of severity as the ability of an experimental
design to discriminate the hypotheses at hand. Within this
approach, each hypothesis to be tested is derived from a
more general encompassing model. This model consists
of all pertinent parameters free from any constraints (e.g.,
He : μa, μb); all specific hypotheses are nested in this
model (e.g., H0 : μa = μb, H1 : μa > μb, H2 : μa <

μb). Only a prior for the parameters in the encompassing
model needs to be specified and the priors from the
nested hypotheses follow from this encompassing prior.
Specifically, the hypotheses occupy particular sections of
the parameter space, allotting each hypothesis a segment
of the encompassing prior (for further explanation of the
encompassing prior, see Klugkist & Hoijtink, 2005).

We can denote the encompassing model as He and the
encompassing prior as g(θ | He), where θ is the vector
of parameters of interest. The prior distribution of any
hypothesis Hi nested in He can be obtained from the
encompassing prior by restricting the parameter space
according to the limits of the hypothesis, given by

g(θ | Hi) = g(θ | He)IHi
(θ)

∫
g(θ | He)IHi

(θ)dθ
.

Here, IHi
(θ) is an indicator function which equals 1 if

the parameter value is within the limits of Hi and 0 if it is
outside the limits of Hi .

The evaluation of the hypothesis is based on the Bayes
factor. Specifically, support provided by the data for one
versus another hypothesis is quantified as the ratio of
marginal likelihoods of hypotheses (Kass & Raftery, 1995).
For data x and hypotheses Hi and He, the Bayes factor (BF)
is

BFie = p(x | Hi)

p(x | He)
,

that is, the quotient of the marginal likelihoods for the
hypotheses Hi and He. Due to Bayes’ Theorem

p(θ | x, H) = p(x | θ , H)g(θ | H)

p(x | H)
,

the marginal likelihood can, for any value of the unknown
parameter θ consistent with H , also be written as

p(x | H) = p(x | θ , H)g(θ | H)

p(θ | x, H)
.

In this formulation, the denominator is the posterior
density of θ under model Hi and the numerator is the
product of the likelihood function and the prior distribution.
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As a consequence, the Bayes factor of Hi and He can be
written as

BFie = p(x | Hi)

p(x | He)
= p(x | θ , Hi)g(θ | Hi)/p(θ | x, Hi)

p(x | θ , He)g(θ | He)/p(θ | x, He)
.

(2)

If we then suppose, more specifically, that the value θ is
allowed by Hi , (2) delivers

BFie = g(θ | Hi)p(θ | x, He)

g(θ | He)p(θ | x, Hi)
.

Through Hi being nested in He, the densities g(θ | Hi)

and p(θ | x, Hi) can be rewritten as follows:

g(θ | Hi) = ci × g(θ | He)

p(θ | x, Hi) = fi × p(θ | x, He),

where ci and fi are constants. Thus, Hi’s prior and
posterior densities can be given in terms of the densities
of the encompassing model He. 1/ci denotes how much
of the prior distribution of Hi is in agreement with
the encompassing model He, and 1/fi denotes the same
quantity for the posterior distribution. 1/ci is therefore a
natural measure of the complexity of the nested model Hi ,
1/fi of its post hoc fit. Since Hi is nested within He, we can
write the Bayes factor simply as

BFie = 1/fi

1/ci

= fit

complexity

From this specification of the Bayes factor, it follows
that good model fit is not enough as evidence for one’s
hypothesis. Near perfect fit is easily reached when close
to all possible parameter values and functional forms are
allowed. Only when one’s hypothesis is restrictive enough
that it occupies only a small fraction of possible parameter
values and functional forms a priori, though still is in
accordance with the data a posteriori, does one have
evidence in favor of the hypothesis under consideration
when supporting observations are made.
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