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Abstract
In this paper, we present the details of our ap-
proaches that attained the second place in the
shared task of the ACL 2022 Cognitive Mod-
eling and Computational Linguistics Work-
shop. The shared task is focused on multi-
and cross-lingual prediction of eye movement
features in human reading behavior, which
could provide valuable information regarding
language processing. To this end, we train
‘adapters’ inserted into the layers of frozen
transformer-based pretrained language mod-
els. We find that multilingual models equipped
with adapters perform well in predicting eye-
tracking features. Our results suggest that uti-
lizing language- and task-specific adapters is
beneficial and translating test sets into similar
languages that exist in the training set could
help with zero-shot transferability in the pre-
diction of human reading behavior.

1 Introduction

Eye movements provide valuable information
about the contents of underlying cognitive pro-
cesses and where our attention falls (Rayner, 1977).
Predicting human reading behavior as reflected in
eye movements is an important task that requires
capturing universal aspects of language process-
ing as well as its language-specific properties (Li-
versedge et al., 2016; Hollenstein et al., 2021b).
This task could help us gain insight into language-
related eye movements and the predictive capabili-
ties of the models of human reading behavior.

Various approaches have been proposed for the
modeling of human reading behavior (Rayner,
1998; Reichle et al., 1998; Hahn and Keller, 2016).
The CMCL 2021 shared task focused on the pre-
diction of ‘monolingual’ reading behavior and the
participants applied various methodologies to pre-
dict eye-tracking features, e.g. gradient boosting,
ensembling, using handcrafted features, deep learn-
ing (Hollenstein et al., 2021a; Bestgen, 2021; Li
and Rudzicz, 2021; Oh, 2021; Vickers et al., 2021).

With regard to deep learning-based approaches,
there exist findings suggesting that, as compared to
transformer-based models (Vaswani et al., 2017),
recurrent neural networks exhibit attention patterns
closer to human attention (Sood et al., 2020). How-
ever, more recently, transformer-based models have
been shown to better account for human reading
behavior than recurrent neural networks (Merkx
and Frank, 2021). Moreover, pretrained language
models (PLM) such as BERT (Devlin et al., 2019)
and XLM (Conneau and Lample, 2019) can predict
multilingual human reading behavior well (Hollen-
stein et al., 2021b), in addition to having advanced
the state-of-the-art in many downstream NLP tasks.

The focus of the CMCL 2022 shared task (Hol-
lenstein et al., 2022) is to predict four eye-tracking
features for data containing sentences in 6 different
languages as well as transferring to a new language.
For this purpose, we train ‘adapters’ inserted into
transformer layers of frozen PLMs (Houlsby et al.,
2019). We find that training adapters for each lan-
guage separately within multilingual transformers
leads to good performance, attaining the second
place in the leaderboard. In addition, we show that
such models can transfer to new languages via sim-
ply translating the new test sets into closely-related
languages (e.g. lexically or grammatically) that the
model was exposed to during training.1

2 Background

2.1 Data and Subtasks

The CMCL 2022 shared task consists of 2 subtasks.
The data for Subtask 1 includes publicly-available
eye-tracking corpora for 6 languages (English, Chi-
nese, Russian, Hindi, German, Dutch). These cor-
pora differ in size as well as the nature of the sen-
tences they contain (i.e. news articles, scientific
texts, Wikipedia entries). The data is already par-

1Our repository: https://github.com/ecekt/
cmcl2022_dmg
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titioned into train, validation and test splits. For
Subtask 2, we are only supplied with a test set com-
prised of Danish sentences. We only use the data
provided in the shared task and preprocess the tex-
tual input utilizing the tokenizers of PLMs. For
more details, see Appendix A.

The eye-tracking features provided in the data
correspond to ‘first fixation duration’ (FFD, dura-
tion of the first fixation on the current word) and
‘total reading time’ (TRT, total duration of all fix-
ations on the current word including regressions).
The values of these features were provided per to-
ken entry, averaged across all the readers: FFDAvg
and TRTAvg. In addition, to account for the indi-
vidual differences between readers, the data also
includes the standard deviations of these features
across readers: FFDStd and TRTStd.

The aim of the subtasks is to predict these 4
features for each token. The submissions are
ranked with respect to test-set Mean Absolute Error
(MAE): the average of the absolute differences be-
tween the ground-truth values and the values output
by the model (see Appendix B). The shared task
system also reports coefficients of determination
(R2), which we provide in Appendix F.

2.2 Adapters

The common method for using PLMs in down-
stream tasks is to fine-tune them for each task. If
there are multiple tasks the model should handle at
the same time, this could lead to some issues (Pfeif-
fer et al., 2021). For instance, learning tasks in
parallel could cause interference and the model
might learn a certain task better than the others. In
the case of sequential training, we might observe
catastrophic forgetting, where the model forgets
the previously learned tasks. In addition, usually
the whole model is fine-tuned; hence, we might
need to save a new model per task, which increases
compute and memory requirements.

To overcome these issues, ‘adapters’ have been
proposed (Houlsby et al., 2019; Bapna and Firat,
2019). Adapters are bottleneck layers consisting of
new weights integrated into each layer of a trans-
former model. They first project down (WD ∈
Rh×d) the dimensions of the transformer hidden
state hl at layer l, apply a non-linearity, and then
project the activations back up (WU ∈ Rd×h) to the
original dimensions. The outcome is then summed
up with the residual rl via a skip-connection to

obtain the output of the adapter Al:

Al = WU (ReLU(WDhl)) + rl (1)

Keeping the pretrained model frozen and only
training adapters have been shown to yield perfor-
mances close to those of fully-fine-tuned models
while also maintaining efficiency (Houlsby et al.,
2019; Bapna and Firat, 2019; Rücklé et al., 2021).
Various types of adapters, insertion and training
schemes have been proposed for machine trans-
lation, multi-task settings and cross-lingual trans-
fer (Ansell et al., 2021; Pfeiffer et al., 2020b, 2021;
Philip et al., 2020; Üstün et al., 2020, 2021; Poth
et al., 2021).

Given their relevant advantages, we use Adapters
from AdapterHub framework (Pfeiffer et al.,
2020a)2 built on HuggingFace Transformers (Wolf
et al., 2020), to insert trainable adapters into frozen
PLMs for the prediction of eye-tracking features.
Then, we train language- and task-specific adapters
and store their trained weights along with a sin-
gle model. The details of the models and adapters
used in Subtasks 1 and 2 are provided in Sections
3 and 4, respectively. For reproducibility, the hy-
perparameters for the best models selected with
respect to their MAE scores on the validation set
and the details of the development environment are
provided in Appendices C and D.

3 Subtask 1: Multi-lingual

In this subtask, the aim is to predict eye-tracking
features for data from 6 languages, for which we
have training, validation and test sets. We focus
on comparing a single setup for all languages vs.
separate setups for different languages.

3.1 Methodology
Single adapter for all languages We first train a
single task-specific adapter integrated into a frozen
PLM on all the languages per eye-tracking fea-
ture. We utilize the XLM-RoBERTa-base (XLM-
R) model (Conneau et al., 2020), which is a mul-
tilingual version of RoBERTa (Liu et al., 2019),
trained with the masked language modeling objec-
tive on 100 languages covering all of the shared
task languages.3

We place a token-level regression head on top of
XLM-R. We then train this head and the adapters

2https://adapterhub.ml
3https://huggingface.co/

xlm-roberta-base
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to predict eye-tracking features for each contextu-
alized token in a given sentence. Since we keep the
underlying model frozen, this method only learns
a small set of parameters for the eye-tracking fea-
tures, which we expect would capture universal
patterns in human reading behavior.

Language-specific adapters When a single
model is trained on multiple languages, its capac-
ity for certain languages might decrease, which is
called ‘the curse of multilinguality’ (Conneau et al.,
2020; Pfeiffer et al., 2020b). To avoid this issue, we
increase the language-specific capacity by training
adapters separately for each language.

In this approach, we train a single adapter that is
specific to a language-task pair (yielding 6∗4 = 24
adapters) integrated into frozen XLM-R. In addi-
tion, we also implement another setup where we
stack language- and task-specific adapters on top
each other (Pfeiffer et al., 2020b). In the latter
setup, per language, we utilize a frozen language-
specific adapter that was trained on Wikipedia ar-
ticles with the masked language modeling objec-
tive, as provided on AdapterHub (Pfeiffer et al.,
2020b, 2021).4 We train the new task-specific
adapter and the token regression head to predict
eye-tracking features specific to each language. For
Dutch, AdapterHub did not have a language adapter
trained on Wikipedia; therefore, we only use a sin-
gle new adapter.5

PLM tokenizers produce multiple wordpieces for
some tokens. For such tokens, the models output
predictions for each wordpiece. We calculate their
average value and assign it as the prediction for the
whole token entry. To explore whether the way the
wordpieces are treated has an effect on accuracy,
we also train and test the stacked setup only keeping
the first wordpiece to represent the full token entry.

3.2 Results

In the top half of Table 1, we present the results
for Subtask 1. Overall, our models outperform
the mean baseline and seem to predict FFD fea-
tures better than TRT features. XLM-R with new
adapters trained from scratch on all languages

4https://adapterhub.ml/explore/text_
lang/ The names of the language-specific adapters are
‘{x}/wiki@ukp’, where {x} is to be replaced by the abbrevia-
tion corresponding to the language, e.g. ‘en/wiki@ukp’.

5We also experiment with training two new adapters
stacked together for Dutch to make the setups more compara-
ble. See Appendix E for the outcomes of additional models
including the use of RoBERTa and XLM-RoBERTa-large.

together performs the worst. XLM-R with new
language-specific adapters further improves the re-
sults, in particular decreasing the MAE of features
corresponding to averages.

The XLM-R setup that stacks adapters per lan-
guage yields our best results for Subtask 1 achiev-
ing second place in the leaderboard of the shared
task (MAE = 3.6533, our second submission). The
breakdown of results per language is provided in
Table 2 in Appendix E. It can be observed from this
table that the model performs well for languages
such as German and Dutch, yet struggles with lan-
guages such as Chinese and Russian, which could
be due to the differences in their typologies, the na-
ture of the corpora, vocabulary size and the issues
that might have been caused by the multilinguality
of the underlying PLM.

Finally, utilizing only the first wordpieces seems
to degrade the performance across the features
(MAE = 3.7261, our third submission). This find-
ing indicates that retaining all wordpieces provides
a better picture of the value to be predicted, as each
wordpiece might contribute to the processing of the
full token, affecting fixation duration times.

4 Subtask 2: Cross-lingual

For this subtask, we conduct various experiments to
obtain results for the Danish test set in the absence
of training and validation data in this language.

4.1 Methodology

Zero-shot We first feed the Danish test set di-
rectly into the XLM-R all-languages model. Since
the adapters in this case are expected to have
learned universal eye movement features and XLM-
R includes Danish in its training, we expect to see
this model to transfer well to Danish without being
exposed to eye-tracking data in this language.

Translate train In this approach, we translate
the training and validation set from their source
language into the target language to be used in the
training of a new model (Conneau et al., 2018). We
have chosen English as the source language, as it
constitutes almost half of the whole shared task
data and XLM-R performs well in English (Con-
neau et al., 2020). We translate the English train-
ing and validation data word-by-word6 into Danish

6Sentence-by-sentence translation could yield more reli-
able outcomes; however, it may cause issues in word order and
count: source and translated text would need to be aligned.
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Model setup FFDAvg FFDStd TRTAvg TRTStd MAE

All languages together 3.1449 1.9697 6.4339 4.6253 4.0434
Language-specific 2.8563 1.9741 5.5682 4.6956 3.7736
Language-specific-stack 2.6086 1.9219 5.6542 4.4284 3.6533
First wordpiece-only 2.6876 1.9609 5.7059 4.5501 3.7261

Zero-shot 3.4955 2.7370 7.1336 7.1502 5.1291
Translate train 14.6278 4.4001 19.8624 14.2824 13.2932
Translate test - EN 13.7903 5.1338 20.9214 13.5084 13.3385
Translate test - EN (without Provo) 4.5843 3.9382 9.3022 6.8426 6.1668
Translate test - DE 5.4512 1.7349 6.9036 5.7730 4.9657

Mean baseline 5.6858 2.5395 8.8200 5.8877 5.7332

Table 1: Test set results for Subtask 1 and Subtask 2. The best models per subtask are indicated in bold.

using the MarianMT en-da model.7 Since Adapter-
Hub currently does not host a language-specific
adapter for Danish, we do not implement stacking
and only train task-specific adapters for Danish.

Translate test In this setup, we translate the test
set into a language for which we have training and
validation data (Conneau et al., 2018) using Mari-
anMT models. We first translate the Danish test set
into English word-by-word. Using the best English
model we obtained in Subtask 1, we generate pre-
dictions for the translated test set. In addition, we
notice that the Provo corpus (Luke and Christian-
son, 2018) in the English subset has rather higher
values for the features as compared to the other
English corpora existing in the data. As a result,
we retrain the best English setup using the same
hyperparameters and skipping the Provo data.

In our final setup for Subtask 2, we translate Dan-
ish into German and utilize the best German model
from Subtask 1 to obtain predictions. The main rea-
son for opting for German was to better account for
the effects of word order, e.g. inversions in main
and subordinate clauses, exploiting the syntactic
similarities between Danish and German.

4.2 Results

The bottom half of Table 1 provides the results
for Subtask 2. First of all, the translate train ap-
proach does not seem to be a viable option, as its
accuracy is much lower than the mean baseline
(MAE = 13.2932, our first submission). Using the
translate test approach in English yields very simi-
lar results. However, as we hypothesized, remov-

7https://huggingface.co/docs/
transformers/model_doc/marian

ing the Provo corpus from the training improves
the translate test performance substantially (MAE
= 6.1668, our second submission), albeit still un-
derperforming. The zero-shot setup, on the other
hand, yields a MAE score better than the mean
baseline, suggesting that our adapters learn univer-
sal eye-tracking feature across languages combined
with the multilingual pretraining of XLM-R.

Finally, the translate test setup in German yields
our best results for this subtask achieving second
place in the leaderboard (MAE = 4.9657, our third
submission). These results indicate that the selec-
tion of source language and data has an effect on
the results. Furthermore, it can be claimed that
translate test is a viable option for adapters inte-
grated into PLMs for achieving good transfer to a
test set in a new language, without being exposed
to actual eye-tracking data in this language.

5 Conclusion

We have trained language- and task-specific
adapters for the prediction of eye-tracking features
reflecting human reading behavior in multi- and
cross-lingual settings. Our best models performed
well, attaining the second place in the CMCL 2022
leaderboard. This suggests that pretrained language
models enhanced with small adapter layers possess
the capability to predict eye-tracking features.

In addition to our setups, other methods such
as dropping adapters or adapter fusion could be
implemented (Rücklé et al., 2021; Pfeiffer et al.,
2021). It would also be informative to consider
autoregressive models and the possibility of mak-
ing use of various lexical and syntactic features
and additional cognitive signals. The prediction of
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each eye-tracking feature could also be informed
by other eye-tracking features, as each of them
represents different aspects of human reading be-
havior. Similar approaches could also be of help
in the modeling of other human cognitive signals,
opening up novel ways of predicting and inspecting
cognitive processes in humans.
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Appendix

A Data preprocessing

We use the XLM-RoBERTa tokenizer containing
250002 tokens. When converting the words into
IDs, the tokenizer maintains the cases of the words,
which could provide crucial information regarding
human reading behavior. However, the way the
tokens were presented to the readers differ from
how the tokenizer would partition a given sentence.
For instance, in the data, we see full stop appended
to the last word or ‘(1917-1919)’ as a single en-
try. For such cases, the tokenizer yields multiple
wordpieces per token. We assign the eye-tracking
feature values of the full entry to each of its word-
pieces and during training and validation, we in-
clude them in the loss separately. For the test set
predictions, we calculate the average of the predic-
tions for the wordpieces and assign it as a single
prediction for the whole entry.

We combine the token entries having the same
sentence ID into a single sentence. Since the sen-
tences do not include start- and end-of-sentence
tokens, we also add such special tokens where nec-
essary. In addition, we pad or truncate the input
to maintain a total wordpiece length of 200. For
all special tokens, we assign ‘-1’ as the dummy
eye-tracking feature value.

B Metric

We implement MAE as below:

∑N
i=1 |oi − ti|

N
(2)

where N is the number of tokens in the data, oi is
the value output by the model for a given token,
and ti is the ground-truth value for this token. We
calculate MAE for all 4 eye-tracking features and
take their average to obtain the final MAE.

C Hyperparameters

For each model, we have performed hyperparame-
ter search for learning rate (0.001, 0.0001, 0.00001,
0.00002) and batch size (4, 8, 16, 32). All the
models were trained up to 50 epochs.8 We saved
the best model based on the validation MAE per
epoch and ran random initializations of the best
model with 4 different seeds. The adapters were
optimized using the AdamW optimizer (Loshchilov
and Hutter, 2019) with respect to MSELoss follow-
ing a linear learning rate schedule. In Table 3, we
provide the hyperparameters of our best models for
Subtask 1 and Subtask 2.

D Environment details

We use AdapterHub version 2.2.0 based on Hug-
gingFace Transformers version 4.11.3.9 We imple-
ment and train our models in Python version 3.7.11
and PyTorch version 1.10.1.10 All models were run
on a computer cluster running Debian Linux OS,
with 4 NVIDIA GeForce GTX 1080 Ti GPUs with
driver version 470.103.01 and CUDA version 11.4.

E More results

RoBERTa + NER Our first submission to Sub-
task 1 was built on RoBERTa-base (Liu et al.,
2019),11 with a Named Entity Recognition (NER)
adapter trained on the CoNLL2003 dataset12 (Poth
et al., 2021; Tjong Kim Sang and De Meulder,
2003). We used the NER adapter as we noticed
a lot of named entities in the data. In this setup,
we remove the NER token classification head and
create a token-level regression head. The head is
trained from scratch and the NER adapter is fine-
tuned. The results revealed that this setup already

8It is possible that a higher epoch cap could produce bet-
ter results; however, in most cases, we observed declining
performance as the number of epochs approached 50.

9https://huggingface.co/docs/
transformers/

10https://pytorch.org/
11https://huggingface.co/docs/

transformers/model_doc/roberta
12https://adapterhub.ml/adapters/

AdapterHub/roberta-base-pf-conll2003/
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Model setup FFDAvg FFDStd TRTAvg TRTStd MAE Baseline MAE

EN stack 3.2360 1.9582 6.8383 4.9501 4.2456
EN large stack 3.0390 1.9921 6.1242 4.8968 4.0130

5.2736

ZH stack 3.1586 3.3608 6.8213 6.6955 5.0091
ZH large stack 3.1571 3.4448 7.3876 6.5892 5.1447

5.4616

DE stack 0.4304 0.4346 3.7796 2.8918 1.8841 2.8679

HI stack 2.5493 2.7178 5.7471 5.5693 4.1459 4.5668

RU stack 2.6062 2.6443 8.3637 5.5609 4.7938 4.9007

NL 1 new 1.8772 1.5720 3.3467 2.9443 2.4351
NL 2 new stack 1.8904 1.5911 3.2836 3.0673 2.4581

2.4176

Table 2: Test set results for Subtask 1 for the XLM-R language-specific models with stacking, broken down into
languages. Baseline MAE is calculated with respect to the means of the language-specific data. EN: English, ZH:
Chinese, DE: German, HI: Hindi, RU: Russian, NL: Dutch.

Model LR Batch size Seed

EN stack 0.0001 4 42
ZH stack 0.001 4 8
DE stack 0.001 8 42
HI stack 0.001 4 42
RU stack 0.001 4 8
NL 1 new 0.001 4 42

Table 3: Hyperparameters for our best submission for
Subtask 1 (Language-specific-stack). DE stack model
is also used in obtaining our best results for Subtask 2.
LR: Learning rate.

improves over the mean baseline across all fea-
tures (MAE = 4.0317, our first submission). Al-
though RoBERTa is monolingual (English) and its
vocabulary is much smaller than XLM-R’s vocabu-
lary (50265, also its tokenizer converts non-Latin
scripts into unintelligible wordpieces), this model
seemed to work quite well. However, we wanted
to make sure that the wordpieces work properly
and that the underlying frozen PLM was exposed
to multilingual data, which is why we switched to
XLM-RoBERTa.

Language breakdown The details of the
language-specific-stack models for Subtask 1 are
provided in Table 2. The majority of these models
outperform the corresponding mean baselines
computed with respect to the language-specific
means (except for the Dutch setup, which does not
include a pretrained language-specific adapter).

Dutch-specific models For Dutch, we only em-
ployed a single adapter as we did not have a Dutch-
specific adapter pretrained on Wikipedia articles.
As a result, we also tried stacking 2 new adapters.
This setup yielded slightly worse scores than the
former setup. Therefore, we opted for keeping the
single-adapter model in our submissions.

Large models We also use the large version of
XLM-RoBERTa.13 At the time of writing, only En-
glish and Chinese Wikipedia MLM adapters were
available on AdapterHub (Pfeiffer et al., 2020b,
2021).14 For English, the utility of the large model
was not substantially high, and for Chinese, the
large model caused a decrease in accuracy. These
findings suggest that the adapters are able to cap-
ture the patterns in eye-tracking features, without
the need to resort to larger language models. How-
ever, more hyperparameter tuning could be benefi-
cial to explore the capacity of the large models.

F R2 scores

In Table 4, we provide the R2 (coefficient of de-
termination) scores as reported by the shared task
system. The top half lists the results for Subtask 1
and the bottom half for Subtask 2.

13https://huggingface.co/
xlm-roberta-large

14EN: https://adapterhub.ml/adapters/
ukp/xlm-roberta-large-en-wiki_pfeiffer/,
ZH: https://adapterhub.ml/adapters/ukp/
xlm-roberta-large-zh-wiki_pfeiffer/
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Model FFDAvg FFDStd TRTAvg TRTStd R2

RoBERTa + NER 0.6963 0.3437 0.3293 0.2677 0.4093
Language-specific-stack 0.7581 0.3689 0.4868 0.3517 0.4914
First wordpiece-only 0.7506 0.3564 0.4836 0.3362 0.4817

Translate train -13.5708 -3.1490 -6.1914 -5.4032 -7.0786
Translate test - EN (without Provo) -1.0249 -2.3468 -0.8361 -0.7824 -1.2475
Translate test - DE -1.2176 -0.1296 -0.4203 -0.4929 -0.5651

Table 4: R2 scores for the submissions to Subtask 1 and 2.
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