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Abstract

Testing for a mediation effect is important in many disciplines, but is made difficult
- even asymptotically - by the influence of nuisance parameters. Classical tests such as
likelihood ratio (LR) and Wald tests have very poor size and power properties in some parts
of the parameter space, and many attempts have been made to produce improved tests,
with limited success. In this paper we show that augmenting the critical region of the LR
test can produce a test with much improved behaviour everywhere. In fact, we first show
that there exists a test of this type that is (asymptotically) exact for certain test sizes α,
including the common choices α = .01, .05, .10. This is evidently an important result, but
we also observe that the critical region of this exact test has some undesirable properties.
Thus, we then go on to show that there is a very simple class of augmented LR critical
regions which provides tests that, while not exact, are very nearly so, and which avoid the
issues inherent in the exact test. We suggest an optimal member of this class, and provide
the tables needed to implement it. Although motivated by a simple two-equation linear
model, the results apply to any model structure that reduces to the same testing problem
asymptotically. A short application of the method to an entrepreneurial attitudes study is
included for illustration.
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1 Introduction

Testing for a mediation effect has important applications in many disciplines, including psy-
chology, accounting, marketing, sociology, epidemiology, and economics.1 A simple context
for the problem - which we will use to motivate the results to follow - is a model of the type

y = τx+ βm+ u1, (1)

m = θx+ u2. (2)

Here y, x, and m are n × 1 vectors of observed variables, y being the variable of ultimate
interest.2 The vectors u1, u2 are unobserved random errors. The variable m is potentially a
mediating variable, in that the influence of x on y may be both direct (the term τx), and/or
indirect via the term βm if θ is non-zero in the second equation. There is no mediation
effect if either β = 0, or θ = 0, or both, so a test for the absence of a mediation effect is a
test of H0 : βθ = 0.

This testing problem is complicated by the fact that, even asymptotically, there is a
nuisance parameter present under the null - either β or θ may be non-zero - and this seriously
impacts on the properties of most of the tests that have been proposed for the problem -
see MacKinnon et al. (2002) for a survey. Typically, the extant tests have very poor size
and power behaviour near the origin (β = θ = 0). Specifically, the null rejection probability
(NRP) of the test can be very much smaller than its nominal size - near zero in fact -
and its power and size can be very nearly equal. The bank of standard tests exhibiting
this behaviour all reject the null hypothesis when some particular test statistic is large.
However, in a recent paper Van Garderen and Van Giersbergen (2021) have shown that
both size and power can be improved considerably - particularly near the origin - by using a
critical region that cannot be defined in this way, but is simply a subset of a two-dimensional
sample space. After reducing the problem by invariance, they consider a critical region (CR)
consisting of the likelihood ratio region (CRLR), augmented by an additional region closer
to the origin. This additional region is carefully constructed using a piecewise-linear spline,
and is optimized in terms of both size and power.

In this paper we employ the same idea - augmenting the CRLR by an additional region.
We first show that, for certain test sizes (including the popular choices α = .01, .05, and
.10) an (asymptotically) exact test of this type does exist, and we show how to construct it.
However, this exact test has some undesirable characteristics, so we then go on to discuss
another augmented CRLR constructed by an alternative, very simple, device. We show that
there are tests in this class that have the correct size (i.e., maximum NRP), and identify
the best of these in terms of power. This test is very nearly, but not quite, exact, and it
does remedy some of the unsatisfactory aspects of the exact test. Tables are provided with
the data needed to implement the new test. The new tests are far superior to the LR test
in terms of size, and, trivially (because their critical regions are larger), also have greater
power. We begin by reducing the dimension of the relevant sample space by sufficiency and
invariance.

For any test with critical region w, and where the distribution of the statistics involved
depends on a vector of parameters ψ, we denote the power of the test by Pw(ψ), and the
NRP when the null distribution depends on the parameter ψ0 by Pw(ψ0). The size of the
test is as usual defined to be supψ0

Pw(ψ0). We emphasize that the issue we are concerned

1See, for example, Baron and Kenny (1986), Coletti et al. (2005), MacKenzie et al. (1986), Alwin and
Hauser (1975), Freedman and Schatzkin (1992), Heckman and Pinto (2015a,b).

2The vectors y, x, and m may be the projections of some initial variables onto a subspace associated with
a more extensive model - e.g., residuals. This has no bearing on what follows.
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with here is not that of finding tests of the correct size - the LR test has this property -
but that the usual tests can have NRP and power that are near zero in certain parts of the
parameter space.

2 Model, testing problem, invariance

The model is, under Gaussian assumptions:3

y|m ∼ N(xτ + βm, σ11In), (3)

m ∼ N(xθ, σ22In). (4)

Here, y, x, and m are n× 1 vectors of observables; y is the interest variable, and m is the
so-called mediation variable: the influence of x on y may be both direct (the term xτ), and
indirect via m if neither θ nor β is zero. To test for the absence of a mediation effect we
want to test the composite null hypothesis H0 : θβ = 0, i.e., that either m does not appear
in (1), or x does not appear in (2), or both. The variances σ11, σ22 are assumed unknown to
begin with. A more general version of the model would have x n× k, and m n× p. We deal
here only with the case k = p = 1, but briefly discuss the more general case in Section 7.

The statistics of interest are the sufficient statistics in the Gaussian model:(
τ̂

β̂

)
= [(x,m)′(x,m)]−1(x,m)′y, s11 = y′Mx,my (5)

from equation (1), and

θ̂ = (x′x)−1x′m, s22 = m′Mxm (6)

from equation (2). Here, for any matrix A of full column rank, MA = In − A(A′A)−1A′.
The distributions of these statistics are, respectively:(

τ̂

β̂

)
|m ∼ N

((
τ

β

)
, σ11[(x,m)′(x,m)]−1

)
, (7)

s11/σ11 ∼ χ2(n − 2), θ̂ ∼ N(θ, σ22/sxx), where sxx = x′x, and s22/σ22 ∼ χ2(n − 1). The
joint density of the sufficient statistics under Gaussian assumptions may be written down
directly from these facts, and is equivalent to the likelihood for (τ , β, θ, σ11, σ22). However,
we will not use the Gaussian joint density directly in this paper.

Not surprisingly in view of H0, the testing problem possesses some important invariance
properties that reduce the dimension of the relevant statistics - the maximal invariants - to
two, rather than five. These are as described in the following:

Theorem 1 The testing problem is invariant under the group K = {a1, a2, c : a1, a2 > 0, c ∈
R} of transformations acting on (τ̂ , β̂, s11, θ, s22) by

(τ̂ , β̂, s11, θ̂, s22)→ (
√
a1 (τ̂ + c) ,

√
a1/a2β̂, a1s11,

√
a2θ, a2s22).

A sample-space maximal invariant under this group of transformations is

T1 = β̂/
√
s11/s22, T2 = θ̂/

√
s22/sxx. (8)

3The Gaussian assumption is used - by invoking sufficiency and invariance - to shrink the relevant sample
space to that of a two-dimensional statistic, T. However, we will later restrict attention to the asymptotic
distribution of the statistic T, which is valid under much more general assumptions.
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The induced group of transformations on (τ , β, σ11, θ, σ22) is (τ , β, σ11, θ, σ22) → (
√
a1(τ +

c),
√
a1/a2β, a1σ11,

√
a2θ, a2σ22). A parameter-space maximal invariant under the induced

group is

µ1 = β/
√
σ11/σ22, µ2 = θ/

√
σ22/sxx. (9)

The distribution of (T1, T2) depends only on (µ1, µ2).

The proof is straightforward and provided in Appendix A. The usual t-statistics for
testing β = 0 in (1) and θ = 0 in (2), t1 and t2, respectively, are simple multiples of
T1, T2 : t1 =

√
n− 2T1 and t2 =

√
n− 1T2. Hence, these are also maximal invariants under

the transformations in K.

3 Asymptotic Problem

It is straightforward to show that, under mild conditions, the asymptotic joint distribution
of the maximal invariants (t1, t2) is given by:(

t1
t2

)
→d N

((
µ1

µ2

)
, I2

)
. (10)

The remainder of the paper will be based on this asymptotic distribution; the exact joint
distribution of (t1, t2) is tractable, but too complicated to provide a useful basis for infer-
ence. Based on this asymptotic distribution, the problem becomes: we observe indepen-
dent random variables t1, t2, with ti ∼ N(µi, 1), i = 1, 2, and wish to test the hypothesis
H0 : µ1µ2 = 0. It is clear that this problem is invariant under the group of sign changes
ti → −ti, i = 1, 2, and under this group of transformations the statistics fi = t2i , i = 1, 2, are
maximal invariants. These are independent noncentral χ2

1 variates with noncentrality pa-
rameters λi = µ2

i , i = 1, 2. The canonical problem thus becomes to test H0 : min{λ1, λ2} = 0
against H1 : λi > 0 for i = 1, 2. This problem is clearly also invariant under the group
of permutations of (f1, f2), and maximal invariants under this action are (v1, v2), with
vi = f(i) the i − th order statistic (so v2 ≥ v1 ≥ 0). Thus, we are finally led to focus
attention on the pair of order statistics (v1, v2) = (f(1), f(2)), which live on the octant
V = {(v1, v2); 0 ≤ v1 ≤ v2 < ∞}. The reader should bear in mind, though, that any
test (CR) formulated in terms of (v1, v2) can equally well be re-expressed in terms of the
t-statistics (t1, t2).

Remark 1 Although this asymptotic version of the problem has been derived in the context
of the model (1) - (2), more general models may also lead to an asymptotic testing problem
of this form. That is, our setting is not as restrictive as it appears, and what follows applies
to any testing problem that reduces to the form just described asymptotically.

Thus, the null hypothesis is composite and involves a nuisance parameter λ = max{λ1, λ2},
the (possibly non-vanishing) noncentrality parameter. It is therefore not obvious how to con-
struct tests (critical regions) whose NRP Pw(λ) does not depend on λ. However, we will show
below that for all non-negative integers r ≥ 0 there is in fact a critical region that properly
contains the LR critical region, and has exact size (r+ 2)−1 for all λ. In particular, tests of
exact size α = .01, α = .05, and α = .10 exist, and correspond to the choices r = 98, r = 18,
and r = 8 respectively.4 Trivially, these tests have power functions uniformly above that of

4Tests of any size α ∈ [0, 1] can be constructed by randomization from the exact results given, but we do
not discuss randomized tests here.
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the LR test. The construction of these exact tests resembles those mentioned by Lehmann
(1952), p. 542, and later by Nomakuchi and Sakata (1987), p. 492. See also Berger (1989)
for related constructions. As in those earlier examples, however, the critical regions corre-
sponding to these exact tests have some undesirable features. Thus, after presenting these
results, we go on to discuss a class of tests which, although not exact, are close to being so,
and which avoid some of the undesirable aspects of the exact test.

The noncentral χ2
κ density for a variate f with noncentrality λ can be expressed in several

ways, one of which is as a Poisson mixture:

gκ(f ;λ) = exp

{
−1

2
λ

} ∞∑
j=0

(λ/2)j

j!
gκ+2j(f),

where gκ(f) = [2
κ
2 Γ(κ

2
)]−1 exp{−1

2
f}f κ

2
−1 denotes the χ2

κ density function, and we write
g1(f) simply as g(f). The corresponding CDFs are denoted by Gκ(·;λ), and Gκ(·) in the
central case, the subscript being omitted when κ = 1. For α ∈ [0, 1], we define zα by
G(zα) = 1− α.5

As already remarked, there is no difficulty finding a test whose NRP is bounded above by
a known number - the LR test has that property. But, the NRP and power of the LR test,
and other standard tests, can in fact be extremely small - size when the nuisance parameter
is small, power when both λ1, λ2 are small. The popular Wald test is uniformly very much
worse than the LR test in both respects. There is clearly an incentive to seek a test whose
NRP is closer to the nominal size for all values of the nuisance parameter, and has better
power. This is the motivation for what follows.

3.1 Likelihood Ratio and Wald tests

The likelihood ratio (LR) test is derived by minimising (t1−µ1)
2 + (t2−µ2)

2 subject to the
constraint µ1µ2 = 0. It is straightforward to show that this results in the following critical
region in the space of the order statistics (v1, v2) : reject H0 when

LR = min{f1, f2} = v1 (11)

is large. As usual, the LR test embodies all invariance properties of the testing problem.
We denote the critical region for the LR test of nominal size α, i.e., the set {zα < v1 <
v2, v2 > zα}, by CRLR.

The Wald test, which is certainly not guaranteed to be invariant, in this case is. This
test rejects H0 when

W =
f1f2
f1 + f2

=
v1v2
v1 + v2

(12)

is large, W > zα. The Sobel test (Sobel (1982)) is based on
√
W , and seems to be the test

favored by practitioners. It is easy to see that the inequality W ≥ zα implies that v1 > zα,

5The distribution g(·) is not a member of the exponential family, but does have monotone likelihood ratio.
The cdf Gκ(z, λ), for z fixed, is monotone decreasing in both κ and λ when the other is fixed. For these and
other properties, see Ghosh (1973). In view of the monotone likelihood ratio property, the Karlin-Rubin
Theorem says that, for the problem of testing λ = 0, the best critical region is of the form f > z, and has
size α if z is chosen so that

∫
f>z

g(f)df = α. This test is unbiased, similar, and has power tending to one as

λ→∞. Thus, the problem of testing H0 : λ = 0 for a single noncentral χ2
1 variate is straightforward. Our

problem involving a pair of such variates is more complicated because there is a nuisance parameter present
under the null.
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so the critical region of the Wald test is a subset of that of the LR test. Hence, both the
NRP and power of the LR test always exceed that of the W test. We will see shortly that
the difference in NRP can be substantial, and that the W test has very poor properties
indeed, a fact that has long been appreciated.

3.2 Maximal Invariant Distributions

From equation (6) in Vaughan and Venables (1972)) the joint density of the order statistics
for (v1, v2) ∈ V is as given in part (i) of the following theorem, which also gives complete
details of the distribution of the order statistics: 6

Theorem 2 (i) The joint density of the order statistics on the region V = {(v1, v2); 0 ≤
v1 ≤ v2 <∞} is given by

pdf(v1, v2|λ1, λ2) = [g(v1;λ1)g(v2;λ2) + g(v2;λ1)g(v1;λ2)] . (13)

(ii) When either λ1 = 0 or λ2 = 0 the null density is, for (v1, v2) ∈ V,

pdf(v1, v2|λ) = g(v1)g(v2;λ) + g(v2)g(v1;λ); (14)

Here λ is the non-zero member of the pair (λ1, λ2), or zero when both vanish.
(iii) The marginal density of the smaller order statistic v1, i.e., the LR statistic, is given

by

pdf(v1|λ1, λ2) = g(v1;λ1) [1−G(v1;λ2)] + g(v1;λ2) [1−G(v1;λ1)] , v1 ≥ 0, (15)

with corresponding CDF

H(v1;λ1, λ2) = G(v1;λ1) +G(v1;λ2)−G(v1;λ1)G(v1;λ2). (16)

In the null case, when one non-centrality parameter vanishes, these reduce to

pdf(v1|λ) = g(v1)[1−G(v1;λ)] + g(v1;λ)[1−G(v1)], (17)

and

H(v;λ) = G(v) +G(v;λ)−G(v)G(v;λ), (18)

respectively. Finally,

1−H(v; 0) = 1− 2G(v) +G(v)2 = (1−G(v))2. (19)

Proof. Part (i) is direct from Vaughan and Venables (1972). Part (iii) is simply the fact
that, on integrating over v1 < v2 <∞, we have

pdf(v1|λ1, λ2) = g(v1;λ1)

∫
v>v1

g(v;λ2)dv + g(v1;λ2)

∫
v>v1

g(v;λ1)dv. (20)

The results for the null case are specializations of this. It is trivial to check that the
derivatives of H(v1;λ1, λ2) and H(v;λ) yield the densities given in (15) and (17).

6Since the order statistics are maximal invariants under the action of the symmetric group S2 on (f1, f2),
the main result in part (i) can also be obtained by invoking Stein’s method of obtaining the density of the
maximal invariant by averaging the joint density over the group.
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Remark 2 Observe that

(∂/∂v1)[G(v1;λ1)G(v1;λ2)] = [g(v1;λ1)G(v1;λ2) + g(v1;λ2)G(v1;λ1)]. (21)

This and similar identities are useful in what follows. For example, to verify that the joint
density integrates to one:∫

0<v1<v2

∫
v2>0

pdf(v1, v2|λ1, λ2)dv2dv1 =

∫
v2>0

[G(v2;λ1)g(v2;λ2) +G(v2;λ2)g(v2;λ1)] dv2

=

∫
v2>0

(∂/∂v2)[G(v2;λ1)G(v2;λ2)]dv2

= [G(v2;λ1)G(v2;λ2)]
∞
0 = 1.

3.3 Properties of the LR test

Theorem 2 provides a very direct description of the properties of the LR test:

Corollary 1 The NRP PCRLR(λ) of the LR test is given by

PCRLR(λ) = Pr{v1 > zα|λ} = α[1−G(zα;λ)], (22)

and its power function by

PCRLR(λ1, λ2) = [1−G(zα;λ1)][1−G(zα;λ2)] = Pr{χ2
1(λ1) > zα}Pr{χ2

1(λ2) > zα}. (23)

Note that the power of the LR test, PCRLR(λ1, λ2), will always be greater than its NRP,
PCRLR(λ), since, for given (λ1, λ2),

Pr{χ2
1(λ1) > zα}Pr{χ2

1(λ2) > zα} > min
[
αPr{χ2

1(λ1) > zα}, αPr{χ2
1(λ2) > zα}

]
= PCRLR(λ). (24)

Next, for any fixed z > 0, 1 − G(z;λ) is an increasing function of λ, tending to one as
λ→∞. Therefore,

Corollary 2 For the LR test of nominal size α, and all λ ≥ 0,

α2 ≤ PCRLR(λ) ≤ α. (25)

Thus, the LR test has size α, but, for small λ the NRP of the LR test will be near α2,
hence very near zero, and only approaches the nominal size α as λ → ∞. The analogous
results for the Wald (Sobel) test are given in the next subsection.

The tests we consider below are constructed by augmenting the LR critical region, and
it is clear from the expression for PCRLR(λ) above that the region added should have null
content either exactly equal to αG(zα;λ) for all λ, rendering the test exact, or have this prop-
erty approximately. Both exact and approximate augmented LR tests will be constructed
below.
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3.4 Properties of the Wald Test

The CDF of the Wald statistic W is given in the next Proposition:

Proposition 1 The CDF of the Wald statistic W is given by

Pr{W ≤ z;λ1, λ2} = G(2z;λ1)G(2z;λ2)

+

∫
v2>2z

[
g(v2;λ2)G

(
zv2
v2 − z

;λ1

)
+ g(v2;λ1)G

(
zv2
v2 − z

;λ2

)]
dv2.

(26)

The NRP of the Wald test with critical value zα, PW (λ), is therefore:7

PW (λ) = 1−G(2zα)G(2zα;λ)

−
∫
v2>2zα

[
g(v2)G

(
zαv2
v2 − zα

;λ

)
+ g(v2;λ)G

(
zαv2
v2 − zα

)]
dv2. (27)

A simple application of integration by parts applied to the null density shows that, as
λ → ∞, PW (λ) → α. But, as remarked earlier, PW (λ) can be very much smaller than
PCRLR(λ) when λ is small. For instance, for λ near zero the NRP of the Wald test at
nominal size .05 is near .00009, while that of the LR test is near (.05)2 = .0025. The two
power functions behave similarly. Since it is uniformly inferior to the LR test we will not
discuss the Wald test further.

3.5 Partition of the sample space

It is convenient at this point to partition the region V into three disjoint regions determined
by a scalar z > 0 :

A1 = {v2 > z, z < v1 < v2}, (28)

A2 = {v2 > z, 0 < v1 < z}, (29)

A3 = {v2 < z, 0 < v1 < v2}. (30)

The first of these, A1, is the level-α CRLR when z = zα. It is not difficult to obtain the
following under the null: for any fixed z > 0,

PA1(λ) = [1−G(z)][1−G(z;λ)], (31)

PA2(λ) = G(z)[1−G(z;λ)] +G(z;λ)[1−G(z)], (32)

PA3(λ) = G(z)G(z;λ), (33)

so that

PA2∪A3(λ) = G(z) +G(z;λ)−G(z)G(z;λ). (34)

In particular, for the choice z = zα, PA1(λ) = α[1−G(zα;λ)], as we have just seen, PA2(λ) =
1−α−(1−2α)G(za;λ), and PA3(λ) = (1−α)G(zα;λ), so that PA2∪A3(λ) = 1−α+αG(zα;λ).
Here and in what follows the regions A1, A2, A3 will be assumed to be defined by z = zα. It
follows that:

Proposition 2 (i) PA1∪A3(λ) = α + (1 − 2α)G(zα;λ), which varies with λ unless α = .5.
(ii) For α = .5, the region A1 ∪ A3 has size α for all λ.

Remark 3 Part (ii) shows that there does exist an exact test of size α = .5, namely, the
test with CR A1 ∪A3. We will generalize this property shortly, and show that exact tests of
size α = (r + 2)−1 exist for all integers r ≥ 0. The case just mentioned is the case r = 0.

7We let W denote the Wald statistic itself, and the critical region it defines: W > zα.
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4 An exact test

The poor size and power properties of the classical tests motivates the search for more
satisfactory tests. Specifically, we would hope to be able to construct tests whose size is
exact, or nearly so, for all λ, and whose power improves on that of the LR test, in particular.
In this section we shall show that an exact test does indeed exist for certain choices of α, and
is easily constructed. We confine attention to tests whose critical regions properly contain
that of the LR test. That is, if H0 is rejected by the LR test it must also be rejected by the
new test (but not vice versa).

As we have already observed, PA1∪A3(λ) = α+(1−2α)G(zα;λ), so that there is an exact
test of size α = 1/2. That is, there is a choice of α, α = .5, such that PA1∪A3(λ) = α for all
λ ≥ 0. We shall show that for each α = (r + 2)−1, with r a non-negative integer, there is
likewise an exact test of size α. The simple case A1 ∪ A3 is the case r = 0, α = 1/2.

To illustrate the general result, consider first choosing a single value z1 < zα, and using
this to define the two triangular regions, disjoint subsets of A3, A30 = {0 < v1 < v2, 0 <
v2 < z1} and A31 = {z1 < v1 < v2, z1 < v2 < zα}. These have null combined probability
content

(1− α−G(z1))G(zα;λ)− (1− α− 2G(z1))G(z1;λ),

which differs from the target value αG(zα;λ) by

(1− 2α−G(z1))G(zα;λ)− (1− α− 2G(z1))G(z1;λ). (35)

Taking z2 = zα, so that α = 1−G(z2), we can choose the pair (z1, z2) so that the coefficients of
the two non-central distribution functions both vanish, yielding a test of size 1−G(z2) for all
λ. This requirement produces two linear equations, 2G(z2)−G(z1) = 1, and G(z2)−2G(z1) =
0, with unique solution G(z1) = 1/3, G(z2) = 2/3, so that α = 1−G(z2) = 1/3. This is the
case r = 1, α = 1/3.

Generalizing this construction, we may prove:

Theorem 3 For each integer r ≥ 0 there exist unique numbers z1 < z2 < ... < zr < zα such
that the critical region CRLR ∪ wr(z), where wr(z) = A3\Ar(z), with

Ar(z) = Ar(z1, ..., zr) =
r⋃
i=1

{0 < v1 < zi, zi < v2 < zi+1}, (36)

where zr+1 = zα, has null rejection probability α = (r + 2)−1 for all λ ≥ 0. These numbers
zi are the solutions to the identities

G(zi) =
i

r + 2
, i = 1, ..., r + 1. (37)

In particular, zr+1 = zα, so that α = (r + 2)−1.

When the zi are chosen in this optimal fashion we denote the augmenting region simply
by wr.

8 For the common case α = .05 we require r = 18 points to construct a region that
has content α = .05 for all λ, and similar constructions are available for α = .1 (r = 8) and
α = .01 (r = 98).

8We believe that, within the class of tests whose critical regions consist of CRLR, augmented by a subset
of A3 bounded below by a weakly increasing function v1 = h(v2), the tests described above are the only
exact tests. A proof of this is lacking at the time of writing.
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Example 1 In the case α = .05, r = 18, the critical region is defined by z.05 = 3.841,
together with the following 18 values zi :

i = 1 2 3 4 5 6 7 8 9

zi .004 .016 .036 .064 .101 .148 .206 .275 .357

i = 10 11 12 13 14 15 16 17 18

zi .455 .571 .708 .873 1.074 1.323 1.6424 2.0722 2.7055

The augmenting critical region wr is shown in blue in Figure 1 for the case α = .05 (r = 18);
CRLR is the green region. The red line will be explained shortly.

CRLR

AR

wr

wr

wr

wr

wr

wr

wr

2 4 6 8
→ v2

2

4

6

8

↑ v1

Figure 1: CRLR (green) and augmenting region wr (blue) for the exact test; α = .05 (r=18).

Remark 4 This construction of exact regions (tests) obviously only works for α ≤ 1
2
. Using

a different constructive proof, Van Garderen and Van Giersbergen (2021) show that, within a
class of test with weakly increasing cadlag boundary, a similar test exists if and only 1/α ∈N

including α = 1 and trivially α = 0. Their test with α = 1/(r + 2) is essentially the same
as the exact test here.

4.1 Power gain

The power function of the exact test described above is obviously above that of the LR test
for all (λ1, λ2), whatever the value of r. It is easy to check that the content of the region A3

under the alternative is G(zα;λ1)G(zα;λ2). The power added by the augmenting region is
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therefore given by

Pwr(λ1, λ2) = G(zα;λ1)G(zα;λ2)

−
r∑
i=1

∫
0<v1<zi

∫
zi<v2<zi+1

[g(v1;λ1)g(v2;λ2) + g(v2;λ1)g(v1;λ2)] dv1dv2

= G(zα;λ1)G(zα;λ2)−
r∑
i=1

G(zi;λ1)[G(zi+1;λ2)−G(zi;λ2)]

−
r∑
i=1

G(zi;λ2)[G(zi+1;λ1)−G(zi;λ1)]. (38)

This is naturally symmetric in (λ1, λ2), and vanishes in the limit as either noncentrality
parameter goes to infinity. That is, there is no power gain over the LR test in the limit,
but there certainly is for (λ1, λ2) near the origin. The NRP gain at the origin is obviously
α(1− α) = (r + 1)α2. The power function behaves similarly for points (λ1, λ2) close to the
origin with a power gain around .0475 over the LR test when α = .05.

4.2 Pros and Cons

For a restricted, but relevant, range of nominal sizes (α of the form (r+2)−1) the construction
described above provides, for the first time, a non-randomized exact test of the no-mediation
hypothesis. And, whilst the augmenting critical region does contain points close to the origin,
which might be considered counter-intuitive, over 90% of the area of the augmenting critical
region in the case of α = .05 is accounted for by the four largest triangular regions, and
these regions are well away from the origin. Nevertheless, the critical region of the exact
test does have several undesirable properties. First, the region CRLR ∪ wr = CRr, say, is
not monotone in (v1, v2). That is, (v1, v2) ∈ CRr does not imply that (v′1, v

′
2) ∈ CRr when

v′1 ≥ v1 and v′2 ≥ v2. Similarly, the acceptance region for the test is not convex, which is
somewhat counter-intuitive. Also, unlike the LR test itself, the exact test does not possess
an important coherence property, namely, that rejection at level α does not imply rejection
at every level smaller than α. That is, as the reader may easily confirm, the critical region
for α = (r + 2)−1 is not a subset of that for α = (r + 1)−1. The simply-augmented LR test
introduced in the next section will remedy some of these deficiencies.

To motivate the class of tests we consider next, observe that one could approximate the
exact augmenting region (i.e., the blue triangles in Figure 1) with the region above a line
v1 = bv2, for some suitable choice of b. For instance, the (geometric) area of the augmenting
region of the exact test in the case r = 18 (α = .05) is 1.08403, which is equal to the area
above the line v1 = (.87187)v2. This is the red line in Figure 1. We denote this value of b
by br. Unlike the exact CR, the NRP of the region defined in this way does vary slightly
with λ (see Figure 4 below). However, this suggests that an augmenting region consisting of
the the region above a line v1 = bv2 but outside CRLR might produce a test that is almost
exact, but without the negative properties of the exact CR. 9 Obviously the acceptance
region corresponding to such a CR will be convex by construction. We consider the general
class of such tests next.

9The paper by Van Garderen and Van Giersbergen (2021) discusses (in present notation) more general
augmenting regions close to the v1 = v2 line, but bounded below by a piecewise linear spline. The exact
test just described is of this form, but a very special case: the alternate knots are constrained to lie on the
line v1 = v2, and the linear components are constrained to be alternately horizontal and vertical.
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5 Simpler augmented LR tests

5.1 Simply-augmented LR tests

In view of these comments, we now consider tests defined by the following simple augmen-
tation of CRLR : the region wb bounded below by the line v1 = bv2, with 0 ≤ b ≤ 1, and
bounded above by min{v2, zα}. Since the line v1 = bv2 meets the line v1 = zα at v2 = zα/b,
wb has the following form:

wb = {(v1, v2) : (bv2 < v1 < v2, 0 < v2 < zα) ∪ (bv2 < v1 < zα, zα < v2 < zα/b)}, (39)

for 0 < b ≤ 1, and wb = A2 ∪A3 for b = 0. For a fixed value of b ∈ (0, 1] the nominal level-α
test therefore has the simple form: reject H0 if either v1 ≥ zα, or v1 < zα and v1/v2 > b.
Note that wb is empty when b = 1, so the critical region is CRLR in that case. For 0 < b < 1
wb is part of the region A2 ∪ A3, and does not intersect CRLR (see Figure 2). We denote
the critical region CRLR ∪ wb by CRb, call tests of this form the class of simply-augmented
LR tests, and call a test with given value of b a LR(b) test. The LR test itself is thus the
LR(1) test. Some properties of this class of tests are given next; the proofs are in Appendix
A.

CRLR

wb

AR

2 4 6 8
→ v2

2

4

6

8

↑ v1

Figure 2: LR(b) A simply augmented LR test for α = 0.05.

Proposition 3 The NRP of the simply-augmented LR(b) test with parameter b < 1 is given
by 10

PCRb(λ) = α +

∫
0<v<zα

[g(v)G(v/b;λ) + g(v;λ)G(v/b)]dv −G(zα;λ). (40)

10The following properties of the NRP are easily seen from this Proposition: (i) PCR1
(λ) = α− αG(z;λ)

(the NRP for the LR test); (ii) PCRb
(λ)→ 1 as b→ 0 for all λ; (iii) PCR1

(0) = α2, and (iv) PCR1
(λ)→ α

as λ→∞.

12



When λ = 0,

PCRb(0) = 2α + 2

∫
0<v<zα

g(v)G(v/b)dv − 1. (41)

Let us next define the discrepancy function

Dα(b, λ) = Aα(b;λ)−G(za;λ), (42)

where

Aα(b;λ) =

∫
0<v<zα

[g(v;λ)G(v/b) + g(v)G(v/b;λ)]dv. (43)

When Dα(b, λ) < 0 the test has NRP < α, and vice versa. The following result says that
there is no member of this class of tests that has NRP equal to α (i.e., Dα(b, λ) = 0) for all
λ :

Proposition 4 There is no value of b for which Dα(b, λ) = 0 for all λ ≥ 0.

Now Dα(b, λ) is obviously continuous in b on the interval (0, 1], and is (strictly) monotonic
decreasing in b, with Dα(0, λ) = 1 − α > 0 and Dα(1, λ) = −αG(zα;λ) < 0. The following
result is therefore clear:

Proposition 5 For each finite λ there is a unique b(λ) ∈ (0, 1] for which Dα(b, λ) = 0. At
this point Dα(b, λ) changes sign, from positive to negative.

This result says that the equation Dα(b, λ) = 0 implicitly defines a function b(λ) : R+ 7−→
[0, 1]. Table 1 illustrates the behaviour of b(λ) for a few values of λ when α = .05.

λ→ 0 .1 .5 1 2 5 20

b(λ) .8588 .8599 .8634 .8666 .8707 .8743 .8685

Table 1: Values of b(λ) for various values of λ;α = .05.

Next, the LR test of nominal size α has the property that its NRP→ α as λ→∞ (since
G(zα;λ)→ 0 as λ→∞). This property is shared by all members of the class of LR(b) tests:

Proposition 6 For any fixed b ∈ (0, 1], and any α,

lim
λ→∞

Dα(b, λ) = 0. (44)

That is, for any b ∈ (0, 1],

lim
λ→∞

PCRb(λ) = α. (45)

Note that, since PCRLR(λ)→ α as λ→∞, this result implies that, for any b ∈ (0, 1], Pwb(λ)→
0, as λ→∞. The result in Proposition 6 can be seen in Figure 4 below.

It remains to decide which member of the class of simply-augmented LR tests to recom-
mend, i.e., which choice of b is best. In the next two subsections we consider two possible
choices, each of which has merit.
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5.2 Best simply-augmented LR test of size α

Proposition 6 says that all members of the class of LR(b) tests have the correct limiting
NRP as λ→∞, but not that the NRP is less than α for all λ. We have already noted that
the LR test v1 > zα has the correct size α, i.e., that PCRLR(λ) ≤ α for all λ ≥ 0. This raises
the question: do there exist values b < 1 with the property that Dα(b, λ) < 0 for all λ? In
fact there are such values, and there is a smallest value of b, bu say, satisfying Dα(b, λ) ≤ 0
for all λ ≥ 0. This value cannot be computed directly, but is easily located numerically.
Since bu depends on α we write it as bu(α). We may then state:

Theorem 4 For given α, all members of the class of simply-augmented LR tests with
bu(α) ≤ b ≤ 1 have size α. Of these, the test with b = bu(α) has maximum power.

Figure 6 in Section 6.3 is a graph of the values bu(α) as a function of α, and in Table
4 in Appendix B we provide the values bu(α) for a fine grid of values of α ∈ [0, 1]. The
table also gives the chi-squared critical values, zα, needed to implement the test. Thus, the
table allows the implementation of the optimal test in this class. For the commonly used
test sizes α = .01, .05, .1, .2, the values required are given in the third and fourth columns
of Table 2 below.

α b0(α) bu(α) zα

.01 0.9693 0.9697 6.6349

.05 0.8588 0.8744 3.8415

.10 0.7408 0.8202 2.7055

.20 0.5503 0.7419 1.6424

Table 2: The values b0(α), bu(α), and zα for tests of size α = .01, .05, .10, .20.

For λ near zero the LR(bu) test has NRP well above that of the LR test itself. For
instance, when λ = 0 we have, for a test of nominal level α = .05, the value bu(α) = .8744,
and PCRbu(α)(0) = .0444, whereas the LR test itself has NRP .0025 at λ = 0. Figure 3 shows
the improved NRP behaviour (as a function of λ) of the LR(bu) test for the cases α = .05
and α = .10.

LR(b)

LR

0 5 10 15 20
→ λ

0.01

0.02

0.03

0.04

0.05

0.06
↑ NRP

LR(b)

LR

0 5 10 15 20
→ λ

0.02

0.04

0.06

0.08

0.10
↑ NRP

Figure 3: NRP of LR test and the optimal simply-augmented test; α = .05 and .10
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5.3 Slightly over-sized tests

The optimal test of size α just discussed has the correct size for all λ. However, since
our initial objective was to improve the behaviour of the NRP near the origin, it is worth
considering the test whose NRP is correct at the origin, i.e, the test based on the choice
b = b(0). Such a choice for b, which we denote below by b0(α), produces a test whose NRP
is correct at λ = 0, since Dα(b0(α), 0) = 0 by definition, and also as λ→∞, but which can
have NRP slightly above the nominal level for intermediate values of λ. Values of b0(α) are
given in the second column of Table 2. As for bu, the values of b0(α) need to be located
numerically. The actual sizes of the LR(b0) test for nominal sizes .01,.05,.1, and .2 are
.0101,.0536,.1095, and .2185, respectively, so the excess size is minimal.

Since our aim was to find a test with improved behaviour near the origin, and this can be
achieved at very little cost in terms of size, the LR(b0) can be entertained as an alternative
to the optimal LR(bu) test. And, since typically b0(α) < bu(α), the power of the LR(b0) test
is guaranteed to exceed that of the LR(bu) test for all (λ1, λ2). Figure 4 below shows the
discrepancies Dα(bu(α);λ) (blue), Dα(br(α);λ) (red), and Dα(b0(α);λ) (green) as functions
of λ when α = .05. In this case Dα(b0(α);λ) is always non-negative, and Dα(bu(α);λ) is
always non-positive. Similar behaviour is exhibited for other values of α, except the case
α = .01, where Dα(b0(α);λ) can be very slightly positive or negative, depending on λ.
However, the NRP of the test LR(b0) is never greater than .0101, and is correct at λ = 0. In
this case, though, b0 and bu are very similar (.969338 and .9697, respectively), so the tests
are essentially the same.

Notwithstanding that the LR(b(0)) test is an option, the properties discussed in the next
section are for the LR(bu) test alone. The properties of the LR(b(0)) test are similar.

b0

br

bu

5 10 15 20
→ λ

-0.006

-0.004

-0.002

0.002

0.004
↑ Dα(b,λ)

Figure 4: Discrepancy as a function of λ for the case α = .05 : Dα(b0;λ) in green, Dα(bu;λ)
in blue, and Dα(br;λ) in red.
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6 Power, coherence, p-values, and an example

6.1 Power

It is trivially true that the power of the LR(bu) test cannot be less than that of the LR test.
The power function of the augmented LR test can be calculated in exactly the same way as
we have done for the size. The result is, after simplifying:

P (CRbu|λ1, λ2) = [1−G(zα;λ1)][1−G(zα;λ2)]−G(zα;λ1)G(zα;λ2)

+

∫
0<v<zα

[g(v;λ1)G(v/bu;λ2) + g(v;λ2)G(v/bu;λ1)] dv. (46)

the first term being the power of the LR test. The power function is obviously symmetric
in (λ1, λ2). And again, as either noncentrality parameter goes to infinity the power of the
augmented test approaches that of the LR test. The power function, together with that of
the LR test itself (in brackets), is given in Table 3 for a selection of values of (λ1, λ2). The
table is, of course, symmetric.

λ1\λ2 .1 .5 1 2 5 20

.1 .0454
(.0038)

.5 .0475
(.0067)

.0528
(.0119)

1 .0498
(.0105)

.0588
(.0185)

.0694
(.0289)

2 .0530
(.0180)

.0690
(.0319)

.0882
(.0498)

.1240
(.0858)

5 .0578
(.0375)

.0893
(.0663)

.1287
(.1035)

.2052
(.1784)

.3917
(.3707)

20 .0615
(.0612)

.1087
(.1083)

.1696
(.1690)

.2918
(.2913

.6057
(.6052)

.988
(.988)

Table 3: Power of LR(b) and LR tests; α = .05, b = bu(.05) = .8744.

It is clear that, for (λ1, λ2) near the origin, the LR test has poor power, and that the
simply-augmented LR test of size .05 improves considerably upon it. In Appendix B we
display the power difference PCRbu (λ1, λ2) − PCRLR(λ1, λ2) for values of the λi ∈ [0, 10]. It
is evident that the power difference is quite small for large λi, but substantial for (λ1, λ2)
near the origin. It can be seen in both Table 3, and the power surfaces, that as either
noncentrality parameter increases the two converge, and for large departures from the null
they are identical.
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6.2 Coherence

The likelihood ratio critical region has the desirable property that, if an observed point
(v1, v2) falls in the rejection region at level α, it also falls in the rejection region at every
level smaller than α. That is, the CR at a given level properly contains that at any smaller
level. The LR test is thus coherent for inference on H0. An important property of the
augmented LR test as we have constructed it is that it retains this coherency property. This
is perhaps best illustrated graphically. Figure 5 shows the respective critical regions for the
levels α = .01, .05, and .1. It is clear that the proposed approach provides coherent inference
on H0 in this sense.

2 4 6 8 10 12
→ v2

2

4

6

8

10

12

↑ v1

α: 0.01

α: 0.05

α: 0.10

AR0.10

CR0.01

6.6349

3.84146

2.70554

Figure 5: Augmented LR critical regions for various α = 0.01, 0.05, 0.10

6.3 p-values

The coherence property just mentioned suggests that we can define a p-value for any observed
point (v1, v2) by reference to the critical regions CRbu(α). To do so, we simply locate the value
of α, say α0, for which the observed point lies on the boundary of the critical region CRbu(α0).
All points in the region CRbu(α0) lie in critical regions at levels smaller than α0, and in this
sense are ”more extreme” than the observed point under the null hypothesis. The value α0

then has a natural interpretation as the p-value for the observed point (v1, v2).
To define α0 explicitly we make three observations: First, since bu(α) is monotonic it has

an inverse, so for each b ∈ [0, 1] the value αb satisfying b = bu(αb) is well-defined. The value
αb can be (approximately) located by using Table 4 in the Appendix, or the graph of bu(α)
in Figure 6. Next, observe that all points in the region V = {(v1, v2); 0 ≤ v1 ≤ v2 < ∞}
can be associated with two coordinates, v1 ≥ 0, and b = v1/v2 ∈ [0, 1].11 And, each v1 ≥ 0

11The coordinate b identifies the ”direction” of the point (v1, v2), and v1 its distance from the origin.
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0.0 0.2 0.4 0.6 0.8 1.0
→ α0.0

0.2

0.4

0.6

0.8

1.0
↑ bu(α)

Figure 6: bu(α) as function of α

yields a value G(v1), hence a value α1 = 1−G(v1) ∈ [0, 1]. Finally, every point (v1, v2) ∈ V
lies on either the horizontal part of the boundary of some CRbu(α), or on the sloping part.

If b < bu(α1), then (v1, v2) lies on the horizonal part of the boundary of CRbu(α1), and
α0 = α1. That is because b < bu(α1) means that v2 > v1/bu(α1), which defines the horizontal
part of the boundary of CRbu(α1). On the other hand, if b > bu(α1), (v1, v2) must lie on the
sloping part of the boundary of some region CRbu(α), and the value of α for which this holds
is defined by b = bu(α), i.e., α = αb. Hence, we just need to calculate αb from either the
table or the graph of bu(α), and the p-value is α0 = αb.

6.4 An application

To illustrate our best simply-augmented LR test, data from Hayes (2017, Section 4.2) is con-
sidered; this data set is called ESTRESS and can be downloaded from www.afhayes.com.
The study involves entrepreneurs who were members of a networking group for small busi-
ness owners; see Pollack et al. (2012). They answered an online survey about the recent
performance of their business and also about their emotional and cognitive reactions to
the economic climate. Hence, Y , X and M denote disengagement from entrepreneurial
activities (withdraw), economic stress (estress) and depressed affect (affect) respectively.
There are also three confounding variables C1, C2 and C3 that are related to entrepreneurial
self-efficacy (ese), gender (sex) and length of time in the business (tenure); see Figure 4 of
Hayes (2017) for a causal diagram. We focus on females with short tenure (less than 0.6
years). OLS gives the following results (showing t-values in parentheses):

Ŷ = 1.3229
(0.652)

− 0.1776
(−0.661)

X + 0.5249
(1.130)

M + 0.0772
(0.286)

C1 + 1.6398
(1.318)

C3,

M̂ = 2.0328
(2.037)

+ 0.1606
(1.120)

X − 0.2451
(−1.802)

C1 + 0.4795
(0.705)

C3.

From these estimation results, we get the following test statistics: (f1, f2) = (1.277, 1.254)
and (v1, v2) = (1.254, 1.277), so that LR = 1.254. Since LR < 3.84, the null of no mediation
is not rejected at 5% using the likelihood ratio test. However, we see that both F -statistics
are very similar, leading to a ratio v1/v2 = .982 that is larger than bu(.05) = .8744. Hence,
based on the best simply-augmented critical region CRbu(.05), there is sufficient evidence to
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reject the null of no mediation. In fact, based on Table 4, the p-value is approximately
.59% using linear interpolation. In summary, performing the best simply-augmented LR
test requires just one additional step: if the LR test statistic is smaller than the critical
value, simply compare the ratio v1/v2 to the appropriate value bu(α) from Table 2 (or Table
4 for other values of α).

7 A higher-dimensional problem

A model analogous to (1)-(2) but with x and m of higher dimension would be:

y = Xτ + Y β + u, (47)

Y = XΠ + U, (48)

where X is now n × k and Y is n × p, say (k + p < n). If we assume that the rows of U
are independent with covariance matrix Σ, and that the elements of u are independent with
variance σ2, the second equation here is a multivariate linear model (Muirhead (1982)). A
natural analogue of the null hypothesis for the case k = p = 1 would be12

H0 : Π = 0, or β = 0, or both. (50)

Tests may, as before, be based on the sufficient statistics (eliminating τ̂)

β̂ = (Y ′MXY )−1Y ′MXy, ; s11 = y′MX,Y y (51)

for equation (1), and

Π̂ = (X ′X)−1X ′Y ;S = Y ′MXY. (52)

for (2). Then, given Y, the conditional density of β̂ depends only on S :

β̂|S ∼ N(β, σ2S−1); s11/σ
2 ∼ χ2

n−k−p, (53)

and

Π̂ ∼ N(Π, (X ′X)−1 ⊗ Σ); S ∼ Wp(n− k,Σ). (54)

Invariance arguments analogous to those used for the simpler case reduce the problem
to consideration of the statistics

f1 = β̂
′
Sβ̂/s11; f2 = π̂′((X ′X)⊗ S−1)π̂ = tr

[
S−1Π̂′X ′XΠ̂

]
, (55)

where π̂ = vec[Π̂] is kp× 1. Simple arguments give the asymptotic distributions

f1 ∼ χ2
p(λ1); f2 ∼ χ2

pk(λ2), (56)

where

λ1 = β′Σβ/σ2, λ2 = π′((X ′X)⊗ Σ−1)π = tr
[
Σ−1Π′X ′XΠ

]
, (57)

12An altenative formulation of the null would be

H0 : Πβ = 0, (49)

which would lead to a different analysis altogether. The problem described in the text seems a more relevant
formulation.
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with π = vec[Π]. The hypothesis becomes, as before,

H0 : λ1λ2 = 0. (58)

However, in this case the problem is invariant under permutations of the variates only if
k = 1. For the case k = 1 all of the results given above will go through unchanged, except that
all densities and cdfs have p degrees of freedom rather than 1. For k > 1 this permutation
invariance does not hold, because the joint density changes under permutations. Thus, when
k > 1 invariant tests tests are based on (f1, f2), and the LR test rejects for (f1, f2) ∈ {f1 >
zα(p), f2 > zα(pk)}. The size of the test will be either [1 − Gp(zα(p);λ1)][1 − Gpk(zα(pk)]
when λ2 = 0, or [1−Gp(zα(p))][1−Gpk(zα(pk);λ2] when λ1 = 0. Evidently, because of the
loss of symmetry, the null density does depend on which noncentrality parameter is zero,
if both are not. At the origin the size is [1 − Gp(zα(p))][1 − Gpk(zα(pk))] = α2 again, and
it will be near this in either case for points near the origin. Thus, to remedy this there is
again an incentive to augment the LR test critical region. We leave the remaining details
for this case to further work.

8 Conclusion and closing comments

We have demonstrated constructively that exact tests of the no-mediation hypothesis exist
for tests of the nominal levels that are typically used in practice. Because the exact test
described has some undesirable features, we have also proposed a very simple modification
of the LR test for the absence of mediation effects that to a large extent remedies its two
main deficiencies: very small size for small values of the nuisance parameter, and very poor
power near the origin of the parameter space. The test is extremely easy to understand,
and to implement, and it has the important property of coherence. The earlier paper by
Van Garderen and Van Giersbergen (2021), in which the idea of augmenting the LR critical
region was first proposed for this problem, provides a much more sophisticated method
of augmentation. Although discussed and implemented in terms of the variates (t1, t2),
rather than the order statistics (v1, v2) used here, it essentially uses a carefully constructed
piecewise-linear spline in place of our simple straight line as the lower boundary of the
augmenting region. Correspondingly, it performs somewhat better than the simple method
proposed here in both size and power. Our method has the important advantage of extreme
simplicity.

There is no doubt that both the approach discussed in this paper, and that of Van
Garderen and Van Giersbergen, fall into the class of tests - departures from the likelihood
ratio method - that is frowned upon by Perlman and Wu (1999). Both lead to critical regions
that imply rejection of the null hypothesis when the observed sample point is close to the
origin. And, the arguments claiming an improvement over the LR test are certainly based
firmly on the Neyman-Pearson criteria of size and power. If one does not approve, the LR
test is still available of course.
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9 Appendix A: Proofs

9.1 Proof of Theorem 1

As mentioned in Section 2, the joint distribution of the sufficient statistics is a product of
the form

f(τ̂ , β̂, s11, θ̂, s22) =N
(
τ − θ̂

(
β̂ − β

)
, σ11 (x′x)

−1
)
×N (β, σ11/s22)×

(
σ11χ

2
n−2
)

×N(θ1, σ22(x
′x)−1)×

(
σ22χ

2
n−1
)

The transformations s11 → a1s11 and s22 → a2s22 with a1, a2 > 0 leave the joint density
of (s11, s22) in the same family with (σ11, σ22) replaced by (a1σ11, a2σ22) and have no bearing
on the hypothesis under test. The same parameters σ11 and σ22 are present in the other
components, so we need to transform the remaining variables accordingly, namely by: θ̂ →√
a2θ̂ and β̂ →

√
a1/a2β̂. And, since τ is not involved in the inference problem, we may

transform τ̂ by the affine transformation τ̂ → √a1 (τ̂ + c)
These transformations preserve the family of distributions for the sufficient statistics

(and MLEs), and the induced transformation on the mediation effect is that θβ → √a1θβ.
Thus, the transformations do not change the truth or falsity of the hypothesis under test
(i.e. H0 is true before iff it is true after the transformation). The transformations on τ̂ are
transitive, so no invariant test can depend on τ̂ . We can therefore restrict attention to the

four remaining statistics
(
β̂, s11, θ̂, s22

)
, and the group K, say, of (scale) transformations of

them. The invariance of (T1, T2) under the transformations is obvious. To show that (T1, T2)
are maximal we need to show that T1(β̂, θ̂, s11, s22) = T1(β̃, θ̃, s̃11, s̃22) and T2(β̂, θ̂, s11, s22) =
T2(β̃, θ̃, s̃11, s̃22) implies that there exists a group element K ∈ K such that (β̃, θ̃, s̃11, s̃22) =
K(β̂, θ̂, s11, s22).

Thus, assume that

β̂/
√
s11/s22 = β̃/

√
s̃11/s̃22 (59)

and

θ̂/
√
s22/sxx = θ̃/

√
s̃22/sxx (60)

Then θ̃ =
√
a2θ̂, with a2 = s̃22/s22, and β̃ =

√
a1/a2β̂ with a1 = s̃11/s11 and a2 as above.

Since also s̃11 = a1s11, and s̃22 = a2s22, this shows that the invariance of (T1, T2) implies
that the two sets of statistics are related by a group element, so (T1, T2) are indeed maximal.
The same argument applies for the induced group acting on the parameter space, and the
last statement is a well-known property of maximal invariants.

9.2 Proof of Theorem 3

Excluding the region Ar(z) from A3 leaves r + 1 disjoint triangles lying along the 45◦ line,
the region wr(z) ⊂ A3, and it is easy to see that the null probability content of this region
is

Pwr(z)(λ) = (1− α−G(zr))G(zα;λ)−
r∑
i=1

[G(zi+1)− 2G(zi) +G(zi−1)]G(zi;λ).

This differs from the target value αG(zα;λ) by

(1− 2α−G(zr))G(zα;λ)−
r∑
i=1

[G(zi+1)− 2G(zi) +G(zi−1)]G(zi;λ). (61)

21



This is a linear combination of r+1 non-central chi-square CDFs, theG(zi;λ), andG(zr+1;λ) =
G(zα;λ), and vanishes for all λ if and only if the coefficients of all r+ 1 terms that involve λ
vanish. With α = 1−G(zr+1), these conditions give rise to a system of r+1 linear equations
in r + 1 unknowns G(zi), i = 1, ..., r + 1 (we take z0 = 0, so that G(z0) = 0), and these
determine z1, ..., zr and zr+1 = zα, hence α. It is easy to see that the matrix of the system
is non-singular, so the solution is unique, and it is straightforward to check that the solution
is:

G(zi) =
i

r + 2
, i = 1, ..., r + 1, (62)

so that α = 1−G(zr+1) = (r + 2)−1.

9.3 Proof of Proposition 1

The region W ≤ z has the form

{0 < v1 < v2, 0 < v2 < 2z} ∪ {v1 ≤
zv2
v2 − z

, v2 ≥ 2z}. (63)

Thus,

Pr{W ≤ z;λ1, λ2} =

∫
0<v1<v2

∫
0<v2<2z

[g(v1;λ1)g(v2;λ2) + g(v2;λ1)g(v1;λ2)] dv1dv2

+

∫
0<v1<

zv2
v2−z

∫
v2>2z

[g(v1;λ1)g(v2;λ2) + g(v2;λ1)g(v1;λ2)] dv1dv2

= G(2z;λ1)G(2z;λ2)

+

∫
v2>2z

[
G

(
zv2
v2 − z

;λ1

)
g(v2;λ2) +G

(
zv2
v2 − z

;λ2

)
g(v2;λ1)

]
dv2,

as stated. The expression for PW (λ) follows on putting λ1 = λ, λ2 = 0, and z = zα.

9.4 Proof of Proposition 3

Under H0 the probability content of the augmenting region is given by

Pr{(v1, v2) ∈ wb;λ) =

∫
0<v2<z

∫
bv2<v1<v2

pdf(v1, v2;λ)dv1dv2

+

∫
z<v2<z/b

∫
bv2<v1<z

pdf(v1, v2;λ)dv1dv2. (64)

Substituting for the density and evaluating the integral over v1 produces, after simplification,

Pr{(v1, v2) ∈ wb;λ} = G(z)[G(z/b;λ)−G(z;λ)] +G(z;λ)G(z/b) (65)

−
∫
0<v2<z/b

[g(v2;λ)G(bv2) + g(v2)G(bv2;λ)] dv2. (66)

Integrating each term in the second line by parts gives

Pr{(v1, v2) ∈ wb;λ} = b

∫
0<v2<z/b

[G(v2;λ)g(bv2) +G(v2)g(bv2;λ)] dv2−G(z)G(z;λ). (67)

Then, transforming to v = bv2 in the integral, we obtain

Pr{(v1, v2) ∈ wb;λ} =

∫
0<v<z

[G(v/b;λ)g(v) +G(v/b)g(v;λ)] dv − (1− α)G(z;λ). (68)

The result follows.
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9.5 Proof of Proposition 4

Expanding the two non-central components in the integrand in Aα(b;λ) as Poisson mixtures
we have

Aα(b;λ) = e−
1
2
λ

∞∑
j=0

(λ/2)j

j!

∫
0<v<zα

[g2j+1(v)G(v/b) + g(v)G2j+1(v/b)]dv, (69)

and also

G(za;λ) = e−
1
2
λ

∞∑
j=0

(λ/2)j

j!
G2j+1(zα). (70)

The two power series coincide for all λ if and only if all coefficients agree, that is∫
0<v<zα

[g2j+1(v)G(v/b) + g(v)G2j+1(v/b)]dv = G2j+1(zα) (71)

for all j. There is no b ∈ (0, 1] satisfying this equation for all j.

9.6 Proof of Proposition 6

It is well-known that limλ→∞G(z;λ) = 0 for any finite z > 0. The term Aα(b;λ) in Dα(b, λ)
is evidently positive, and is less than G(zα/b)G(zα;λ) +G(zα)G(zα/b;λ) for all λ. Since this
→ 0 as λ→∞ for any b > 0, both terms in Dα(b, λ) go to zero as λ→∞.

10 Appendix B: Additional Graph and Table

Figure 7: Power difference between the LR(bu) test and the LR test; α = .05.
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α bu(α) zα α bu(α) zα α bu(α) zα

0.00 1.0000000 ∞ 0.33 0.6416808 0.9488978 0.66 0.3177177 0.1935236

0.01 0.9696672 6.6348966 0.34 0.6336214 0.9104313 0.67 0.3058554 0.1816021

0.02 0.9418996 5.4118944 0.35 0.6254586 0.8734571 0.68 0.2937820 0.1701258

0.03 0.9168437 4.7092922 0.36 0.6172028 0.8378932 0.69 0.2816199 0.1590854

0.04 0.8943913 4.2178846 0.37 0.6088914 0.8036645 0.70 0.2694031 0.1484719

0.05 0.8744076 3.8414588 0.38 0.6004699 0.7707019 0.71 0.2570733 0.1382770

0.06 0.8568178 3.5373846 0.39 0.5919717 0.7389420 0.72 0.2447520 0.1284927

0.07 0.8468088 3.2830203 0.40 0.5834148 0.7083263 0.73 0.2323988 0.1191116

0.08 0.8376316 3.0649017 0.41 0.5747498 0.6788007 0.74 0.2199257 0.1101266

0.09 0.8287311 2.8743734 0.42 0.5659807 0.6503152 0.75 0.2075763 0.1015310

0.10 0.8201655 2.7055435 0.43 0.5570348 0.6228235 0.76 0.1951608 0.0933185

0.11 0.8118556 2.5542213 0.44 0.5479180 0.5962824 0.77 0.1828105 0.0854831

0.12 0.8036448 2.4173209 0.45 0.5387653 0.5706519 0.78 0.1705896 0.0780191

0.13 0.7957459 2.2925045 0.46 0.5295689 0.5458947 0.79 0.1583169 0.0709213

0.14 0.7878599 2.1779592 0.47 0.5202967 0.5219760 0.80 0.1464034 0.0641848

0.15 0.7800219 2.0722509 0.48 0.5108375 0.4988633 0.81 0.1344952 0.0578047

0.16 0.7723088 1.9742261 0.49 0.5012439 0.4765263 0.82 0.1228917 0.0517767

0.17 0.7647238 1.8829433 0.50 0.4915770 0.4549364 0.83 0.1114934 0.0460968

0.18 0.7570699 1.7976241 0.51 0.4817126 0.4340671 0.84 0.1003974 0.0407610

0.19 0.7494630 1.7176176 0.52 0.4715323 0.4138933 0.85 0.0896371 0.0357658

0.20 0.7419282 1.6423744 0.53 0.4615902 0.3943916 0.86 0.0792623 0.0311078

0.21 0.7344272 1.5714263 0.54 0.4513865 0.3755398 0.87 0.0693260 0.0267841

0.22 0.7267313 1.5043712 0.55 0.4409336 0.3573172 0.88 0.0598636 0.0227917

0.23 0.7192705 1.4408614 0.56 0.4303885 0.3397042 0.89 0.0509320 0.0191281

0.24 0.7116751 1.3805940 0.57 0.4197496 0.3226825 0.90 0.0425622 0.0157908

0.25 0.7040628 1.3233037 0.58 0.4089752 0.3062346 0.91 0.0348502 0.0127777

0.26 0.6964302 1.2687570 0.59 0.3980636 0.2903443 0.92 0.0277903 0.0100869

0.27 0.6886447 1.2167470 0.60 0.3869441 0.2749959 0.93 0.0214448 0.0077167

0.28 0.6810198 1.1670899 0.61 0.3756828 0.2601749 0.94 0.0158541 0.0056656

0.29 0.6733092 1.1196214 0.62 0.3644757 0.2458676 0.95 0.0110635 0.0039321

0.30 0.6654990 1.0741942 0.63 0.3528319 0.2320608 0.96 0.0071027 0.0025154

0.31 0.6575840 1.0306758 0.64 0.3413743 0.2187422 0.97 0.0039968 0.0014144

0.32 0.6495982 0.9889465 0.65 0.3296234 0.2059001 0.98 0.0017679 0.0006285

0.33 0.6416808 0.9488978 0.66 0.3177177 0.1935236 0.99 0.0004349 0.0001571

0.34 0.6336214 0.9104313 0.67 0.3058554 0.1816021 1.00 0.0000000 0.0000000

Table 4: The values bu(α) and zα for values of α ∈ [0, 1].
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