UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

A Cyclic Proof System for Full Computation Tree Logic

Afshari, B.; Leigh, G.E.; Menéndez Turata, G.

DOI
10.4230/LIPlcs.CSL.2023.5

Publication date
2023

Document Version
Final published version

Published in
31st EACSL Annual Conference on Computer Science Logic

License
CcCBY

Link to publication

Citation for published version (APA):

Afshari, B., Leigh, G. E., & Menéndez Turata, G. (2023). A Cyclic Proof System for Full
Computation Tree Logic. In B. Klin, & E. Pimentel (Eds.), 31st EACSL Annual Conference on
Computer Science Logic: CSL 2023, February 13-16, 2023, Warsaw, Poland [5] (Leibniz
International Proceedings in Informatics; Vol. 252). Schloss Dagstuhl - Leibniz-Zentrum fr
Informatik. https://doi.org/10.4230/LIPlcs.CSL.2023.5

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:31 Aug 2023


https://doi.org/10.4230/LIPIcs.CSL.2023.5
https://dare.uva.nl/personal/pure/en/publications/a-cyclic-proof-system-for-full-computation-tree-logic(9f9c4f06-1493-4444-bfbb-a7d6a6ea0a53).html
https://doi.org/10.4230/LIPIcs.CSL.2023.5

A Cyclic Proof System for Full Computation Tree
Logic
Bahareh Afshari &

Institute for Logic, Language and Computation, University of Amsterdam, The Netherlands
Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg, Sweden

Graham E. Leigh
Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg, Sweden

Guillermo Menéndez Turata
Institute for Logic, Language and Computation, University of Amsterdam, The Netherlands

—— Abstract

Full Computation Tree Logic, commonly denoted CTL" is the extension of Linear Temporal Logic LTL
by path quantification for reasoning about branching time. In contrast to traditional Computation
Tree Logic CTL, the path quantifiers are not bound to specific linear modalities, resulting in a more
expressive language. We present a sound and complete hypersequent calculus for CTL*. The proof
system is cyclic in the sense that proofs are finite derivation trees with back-edges. A syntactic
success condition on non-axiomatic leaves guarantees soundness. Completeness is established by
relating cyclic proofs to a natural ill-founded sequent calculus for the logic.
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1 Introduction

Full Computation Tree Logic, CTL" is a well studied temporal logic in theoretical computer
science. Its roots can be traced to Prior’s stance of allowing time-distinctions (temporality)
and future-alternatives (branching) in the assessment of truth. As such, it builds on a binary
temporal operator until, written U to express “p is true until ¢ becomes true”, and a
unary next modality, written X, for denoting “¢ is true at the next step”. Additionally, path
quantification is explicitly available via the universal and existential operators, Ap and Eg
which, respectively, have the intended interpretation of all or some execution paths satisfy
property . If these path quantifiers are only allowed as guards of an eventuality, namely in
the form of Q(pUv) for Q € {A, E}, a strictly less expressive logic known as Computation
Tree Logic, CTL, is realised. Dispensing with the path quantifiers altogether results in the
most widely used temporal logic of all, Pnueli’s Linear Temporal Logic, LTL.!

Much has already been achieved for the proof theory of CTL" in terms of introducing
finitary, infinitary, and cyclic tableaux systems (see e.g. [1, 22, 24, 25, 12, 13]). Most
noteworthy is the complete (Hilbert-style) axiomatisation [22] provided by M. Reynolds in
2001. The system was later extended to include past modalities [23], a process which also
simplified Reynolds’ axioms and the completeness proof, though it remains a highly intricate
analysis.

1 For a comprehensive coverage of temporal logics in computer science we refer the reader to [10].
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A Cyclic Proof System for CTL*

In this article we revisit axiomatisation of CTL" in the light of recent developments in the
area of cyclic proof theory. We introduce a sound and complete cyclic hypersequent calculus
for the logic based on an intuitive set of inference rules. Local soundness of the inferences is
immediate. Global soundness is achieved by a correctness condition on cyclic proofs similar to
the annotated mechanism introduced by Jungteerapanich [14] and Stirling [30] for the modal
p-calculus. There are two notable deviations from the Jungteerapanich—Stirling framework.
First, it is sufficient to restrict attention to annotations of length < 1, i.e., annotations
that identify at most one temporal operator in a formula. Second, and in strong contrast
with the modal p-calculus, annotations may identify an occurrence of either the release
operator (the dual operator to “until”, corresponding to the v quantifier in p-calculus) or
the until operator (corresponding to the p quantifier). Annotations of until operators play a
crucial role in ensuring soundness of cycles featuring the existential path quantifier, and allow
the correctness condition on proofs to be determined by the simple cycles. In particular,
recognising whether a cyclic derivation is a proof requires only linear time. Finally, our
system is cut-free, a property which does not come naturally for temporal logics.?

Aside from furthering the study of temporal logics, the present work contributes to
the development of cyclic proof systems beyond the traditional realm of Gentzen-style
sequent calculi where the main focus of work in cyclic proof theory currently resides (see,
e.g., [30, 15, 4, 11, 17, 29, 27, 2] for recent contributions to modal and temporal logics). Such
a move seems inevitable as ever more structured fixpoint logics are analysed, as witnessed by
Rooduijn’s cyclic hypersequent calculi for modal logics with the master modality [26], and
Das and Girlando’s ill-founded hypersequent calculus for Transitive Closure Logic [9].

2  The full computation tree logic CTL"

Let Prop be a countably infinite set of propositional constants. Formulas of CTL* are given
by the following grammar.

pu=plpleneleVe|Xe|pUp | pRe |Ap | Ep

where p ranges over Prop. We use Q to denote either the universal (path) quantifier A or
the existential (path) quantifier E, and O to denote either the until operator U or the release
operator R. A literal formula is either a propositional constant or the negation of one. Given
a set of formulas @, we define X® := {X¢ : ¢ € ®}. The notion of subformula is defined in
the usual manner. We write ¢ < ¢ to denote that v is a subformula of .

A labelled transition system (LTS) is a triple S = (S5, —, A) where S is a non-empty set of
states, — is a binary relation on S, and A: S — P(Prop) is a labelling map which assigns to
each state a set of propositional constants. S is serial if for every s € S there is some t € S
such that s — t. A path through a serial LTS S is an infinite sequence of states o = sgs7 - - -
such that s; — s;41 for every i < w. The i-th state in o is denoted by o (i), and (o, %) denotes
the path $;8;41 .... Given paths o, and ¢, we write o ~ ¢’ if o(0) = ¢’(0).

Satisfaction for CTL* formulas is defined relative to paths through serial labelled transition
systems:

S,o = piff p € A(0(0));

S,o k= -piff p & Mo(0));

S,o Ay it S,0 = pand S,0 = ¢;

2 For a discussion on cut-free sequent systems for temporal logic see, e.g., [7].
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S,ocEeVyYif S;oE=porS,oEY;

S,0 EXpiff §,(0,1) E ¢;

S,0 E oUy iff there is a j such that S, (0,j) = ¢ and S, (0,%) |= @ for every i < j;

S,0 E Ry iff for every j, either S, (o, j) |E 1, or there is an ¢ < j such that S, (0,1) | ¢;

S,0 EApiff S0’ | ¢ for every ¢’ ~ o;

S,0 EEpiff S,0’ = ¢ for some ¢’ ~ 0.
Explicit mention of & may be omitted when no ambiguity arises.

The negation of a formula ¢, in symbols =, is defined inductively via the De Morgan
dualities with —=X¢ = X=p, =(oUe)) := =R, =(¢RY) := ~pU—, =Ap := E-p, and
—Ep := A-p. A formula ¢ is satisfiable if there is a serial LTS § and a path o through &

such that S,0 = ¢, and unsatisfiable otherwise. We say that ¢ is valid if = is unsatisfiable.

We write ¢ = 9, and say that ¢ and v are equivalent, if for every serial LTS S and every
path o on S, we have S,0 = ¢ iff S, 0 E 9.

Note that Uy = 9V [pAX(eUt)] and dually pRyp = AoV X(¢Re)]. These equivalences
exhibit the fixpoint nature of the until and release operators.

3 lli-founded proofs

In this section we present a sound and complete, ill-founded, sequent-style proof system for
the logic CTL™ inspired by Dam’s syntax trees for an embedding of CTL* into the modal
p-calculus [8]. Proofs are potentially infinite trees whose infinite branches satisfy a syntactic
correctness condition that ensures soundness of the calculus.

A tree is a pair (T, <r) where T is a non-empty, possibly countably infinite set of vertices,
and <7 is a partial order on T" such that {¢t € T': t <p s} is well-ordered for every s € T and
there is a root r € T satisfying r <p s for every vertex s. We abuse notation and write T in
place of (T, <r). For vertices s,t € T, we let [s,t]r = s---t be the maximal (finite) path
from s to t. If s L1 ¢, [s,t]r will be the empty sequence.

A sequent is an expression of the form Q®, where Q € {A,E} and ® is a finite set
of formulas. We identify the sequent Q{y} with the formula Qp, and write Q{®, ¢} as
shorthand for Q(® U {¢}). To each sequent Q® we associate a corresponding formula (Q®)*
by setting (A®)* := A\/ ® and (E®)* := E A ®. We abuse notation and write o = Q® for
o | (Q®)*. We define T := E@ and L := Ag@. A literal sequent is either T, L, or a sequent
of the form Q) where ) is a literal formula.

A hypersequent is a finite set of sequents. Hypersequents are denoted by symbols I'; A,
Y. We extend the translation (-)* to hypersequents by setting I'* := \/{(Q®)* : Q@ € T'}. As
with sequents, we abuse notation and write o =T for o = T'™*.

» Definition 3.1 (Derivation). A CTL, derivation of a formula ¢ is a finite or infinite tree
T whose vertices are labelled according to the rules in Figure 1 and such that:
1. The root of T has label Ap.

2. FEvery infinite branch of T contains infinitely many applications of AX or EX.

A vertex of a derivation is modal if it is the conclusion of an instance of AX or EX.
Condition 2 in the definition requires that every infinite branch of a derivation contains
infinitely many modal vertices. This prevents the construction of infinite branches by
“degenerate” applications of rules, for instance applying rule ALit repeatedly to sequent Ap.

The rules of CTL._ are correct in the following sense.

I, r,

» Proposition 3.2. The sequent rules of CTL.  are sound: If s an

instance of a CTLY, rule and each of T'1, ..., Iy, is valid, then A is valid.

5:3
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5:4 A Cyclic Proof System for CTL*
axp ——
Qp7 Qlﬁpz A

AD, AN, A

ALit 7A{<I>, LA

A{(I), ()07 w}7 A
A{®, oV} A

A{®, ¢}, A A{®, ¢}, A

A{®, o Ay}, A

A®,A{y}, A
A{®,Av}, A

A, E{y}, A

A A{®, By}, A

AD; EVy,...,EV,,

AX

AXD1, ..., AX®,,EXTy, ... EXT,,, 2

A{¢7W17¢2}7A A{@,@Q,X(¢1U@2)},A

axT

T,A

E®, A EX A
ELit

E{®,A}, A

E{®, ¢}, E{®, ¥}, A

B TE@, oVl A

E{(b? S07 ¢}7 A
E{(®, 0 A ), A

EG,A Ay}, A
A )

E{®,Av}, A

E$, A E{y},A

BT EG R A

EVy,...,EV,,
EX

EXUq,...,EXV,,, %

E{®, p2}, E{®, 01, X(p1Up2)}, A

AU
A{®, p1Upa}, A

A{D, 2}, A A{D, 1, X(p1Rp2)}, A

AR

A{®, p1Rp2}, A

E{®, ¢1Up2}, A

E{(Dv #1, Lp?}7 E{(I)7 ¥2, X(W1R<P2)}7 A

E{®, p1Rp2}, A

Figure 1 Rules of the system CTL),. Q and Q' are meta-variables for path quantifiers. In the
rules ALit and ELit, A ranges over literal formulas.

Let T be a CTL., derivation. For vertices s,t € T, we write s —» ¢ if ¢ is an immediate
successor of s in 7. We write s — ¢ to specify the rule R applied at s. A path through T is
a finite or infinite sequence of vertices sg —» s1 — - - -.

It is convenient to refer to the sequents labelling a vertex according to their role in the
applied CTLY, rules. The distinguished sequent(s) in the conclusion of rules in Figure 1, such
as the sequent A{®, p A1} in AA, are said to be principal. This includes all sequents in the
conclusion of rules AX and EX. The distinguished sequent(s) in the premises of the rules,
for instance A{®, p} and A{®,¢} in AA, are called active. All sequents occurring in the
hypersequent A are side sequents.

Let m = (8;)i<n be a path through T where N € wU {w}. For every i, we let [>; be the
sequent trace relation between the labels of s; and s; 1 given by Q= t>; Q' if Q' ¥ arises from
QZ in the rule with conclusion s;. That is, Q= >; Q'¥ holds if Q= = Q'V is a side sequent
or QE is principal and Q¥ an active sequent arising from QZ. In particular, if s; is a modal
rule, we require Z = XWU. A sequent trace on 7 is a sequence (Q;E;);<n of sequents such that
Q;Z; is in the label of s; and Q;Z; >; Q;+1Z;+1. We drop the subscript from t>; when no
ambiguity arises. A context extraction is a sequent trace of the form Q{Z, Q' ¢} > Q'¢ or
Q{=,\} > QA for a literal formula A. A finite sequent trace QuZg > - - - > Q,Z,, is stable if
Qo = -+ = Qu, and circular if n > 0 and Q,=,, = Qp=p. When it is useful to specify the
rule R by which Q;41Z;41 results from Q;Z;, we write Q;Z; >R Qi1 1Zi41.
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As with sequents, it is convenient to have a means of referring to the formulas in principal
and active sequents according to their role in the CTL%, rules. Distinguished formulas in
principal sequents in Figure 1 are called principal. Thus, ¢ A ¢ is the principal formula of
the rule AA. Every formula in the conclusion of rules AX and EX is principal. Formulas in
the set ® are side formulas. The distinguished formulas in active sequents are called active.

Let (Q;Z;)i<n be a sequent trace on w. For each i, let 1>; denote the corresponding
formula trace relation between =; and Z;11, given by ¢ b>; ¢ if formula 9 results from ¢ in
the sense that either ¢ is principal and v an active formula corresponding to ¢, or ¢ = 1) is
a side formula. A formula trace on (Q;Z;)i<n is a sequence of formulas (¢;);<n such that
w; € E; and ¢; B>; @;+1. As with sequent traces, we drop the subscript from >; when no
ambiguity arises. When we want to specify the rule R by means of which ¢; 1 results from
©;, we write @; >R @i 1.

A (fizpoint) unfolding is a formula trace of the form 1 > X#. Note that unfoldings can
only be produced by rules AU, AR, EU, ER, and thus % is of the form 1 Oy. Due to the
presence of fixpoint unfoldings, the system CTL._ does not satisfy the subformula property:
@ > Y does not imply ¥ < . However, ¥ does belong to the closure of ¢, which is the
natural replacement of the notion of subformula in this context:

» Definition 3.3. The closure of a formula ¢ is the smallest set of formulas Clos(y) satisfying:
1. ¢ € Clos(p);

If 41 % 1pg € Clos(ip), for x € {A,V}, then 11,19 € Clos(y);

If 1/J10¢2 € C|OS(Q0), fOT Oe {Uv R}7 then d)la ¢27X(¢10¢2) € CIOS(QP);

If X¢p € Clos(yp), then i € Clos(p);

If Qy € Clos(p), for Q € {A E}, then ¢ € Clos(p).

Tt is easy to see that Clos(y) is always finite. And, clearly, ¢ B ¢ implies ¢ € Clos(y).
Moreover, since Xy > 1 implies ¢ € {Xop, ¢}, we have:

LAl

» Lemma 3.4. Let p = (¢i)i<n be a finite or infinite formula trace. For every ¢ € p, either
¢ < g0, or @ = Xt for some 1 < o,

The following is a fundamental result about infinite formula traces that follows easily
from Lemma 3.4.

» Proposition 3.5. Let T be a CTLY, derivation of a formula ¢, and let (¢;)i<, be an
infinite formula trace on an infinite branch of T. There is a formula v = 1109 € Clos(p)
and some j < w such that for every k > j we have @i, € {1, X¢}. Moreover, both ¢ and X
occur infinitely often in (Yjti)icw-

Another consequence of Lemma 3.4 is that there cannot be a formula trace of the form
@ B> - > Qu, whence it follows that circular sequent traces must be stable.

» Proposition 3.6. Let (Q;®;)i<., be an infinite sequent trace. There is some j < w such
that Qi1+ = Q; for every k < w.

Given an infinite sequent trace 7 = (Q;®;);<w, we say that 7 is of type A (E) if there is a
j < w such that Qx = A for all k¥ > j (resp., Qx = E). Proposition 3.6 then says that every
infinite sequent trace is either of type A or of type E. Similarly, an infinite formula trace
p = (¢i)icw is of type U (R) if the operator O given by Proposition 3.5 is the until operator
(resp., the release operator). We call 110y the dominating formula in p.

We are now ready to identify the CTL, derivations that constitute proofs. Informally, a
derivation T is a proof if every leaf of T is axiomatic and every infinite branch of T" contains
a “good” sequent trace.

5:5
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A Cyclic Proof System for CTL*

» Definition 3.7 (lll-founded proof). A CTLZ, proof of a formula ¢ is a CTL., derivation T
of v satisfying:
1. Every leaf of T is labelled by an instance of an azxiom.
2. On every infinite branch of T there is an infinite sequent trace T such that either
a. 7 is of type E and contains no infinite formula trace of type U, or
b. 7 is of type A and contains an infinite formula trace of type R.

The next section is devoted to showing that ¢ is valid iff there exists a CTLY, proof of .

4  Soundness and completeness of CTL’_

To prove that the system CTLY  is sound we work with signatures, maps that assign natural
numbers to until and release formulas. We follow [8], where signatures are called indices.

For every n < w we define the n-th approximation U™ of a formula pUi by setting
©U%) 1= ¢p and pU 1) := 1 V (p A X(pU™)). Dually, we define the n-th approzimation
©R™p of pRY as pR™ ) := —(—pU")). Clearly, o = Uy iff o = U™y for some n < w,
and dually o = ¢Ry iff 0 = pR™) for all n < w.

An occurrence in ¢ of a subformula 11O, is said to be an O-eventuality of . An O-
eventuality of ¢ is top-level if it is not under the scope of U, R, A or E in ¢. An O-eventuality
of a set of formulas ® is an O-eventuality of A ®. We borrow this terminology from [8].

» Definition 4.1. An O-signature of a formula ¢ is a map v associating a natural number to
each top-level O-eventuality of ¢. An O-signature of a sequent QP is an O-signature of the
formula \ ®.

Given an O-signature ¢ of ¢, the O-signature ¢~ of ¢ is defined as = (¢10v9) =
max{¢(¢;O013) — 1,0} for each top-level O-eventuality 1)1 O1bo of . We inductively define
signed formulas @[i], with ¢ an O-signature of ¢:

Al¢] := A for every literal formula A.

U1 x i) [e] := (ha[e]) * (Y2[e]) for + € {A, V}.
Qy)[i] ;== Qu for Q € {A,E}.

1092)[1] i= 1h O ¥10¥2)gp,,

P102)[] := 1109y for O" # O.

X)[e] 1= X([e7]).-

A signed sequent is one of the form Q®[i] := Q{¢[t] : ¢ € ®} where ¢ is a signature of Q.

(
(
(
(

The following two fundamental results about existence of signatures are immediate.
» Proposition 4.2. If o [~ AD, then there is an R-signature v of AD such that o = AD[d].

Proposition 4.3. The following hold, where v is an R-signature of the appropriate sequent.

If o J= A{®, A\}[i] and X is a literal formula, then o = A®[l] and o = .

1o Ve A{®, oV G}, then o b A{D, o, G},

If o = A{®, o AY}[i], then either o = A{®, p}] or o = A{®, ¥}

If o = A{®,Qu}e], for Q € {A,E}, then o [~ AD[L].

If o} A{®, pRY}i] then there is an R-signature ' which agrees with v on all top-level

R-eventualities of ® U {pRy} and either o = A{®,}['] or o = A{P, ¢, X(pRY) ]

6. If o = A{D, Ui}t then there is an R-signature ' which agrees with v on all top-level
R-eventualities of ® U {pUp} and either o = A{®, @, ¥} ] or o = A{P, ¥, X(eUy)}].

7. If o = AXD[i], then there is a o' ~ o such that (¢’,1) = A®[.~].

aorLNDRY
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We are now ready to prove that the system CTLY, is sound. Some details are omitted for
brevity.

» Proposition 4.4 (Soundness). If there is a CTLS, proof of @, then ¢ is valid.

Proof. Let T be a CTLX, proof of ¢. Towards a contradiction, suppose ¢ is not valid.

Let S be an LTS and ¢ a path on S such that o £ Ap. We inductively find an infinite
branch m = (8;)i<, on T and paths (¢;);<, on S such that o; & T'; where T'; is the label
of s;. Propositions 4.2 and 4.3 associate to each sequent A® € I'; an R-signature ¢ such
that o; &= A®[i]. Choices at {AA, AU, AR}-vertices are resolved by Proposition 4.3. Choices
at {ELit, EA, EE}-vertices are resolved by picking the premise with simpler active sequent
whenever possible. Moreover, either 0,41 = oy, if s; is not modal, or else ;11 = (¢7,1) for
some o’ ~ o;.

For brevity we only consider the inductive case where the rule AX is applied at vertex s;.

So assume that at s; we have:

Ad; EV,,... EV,

AR AX®,...  AXD, EXT,.. .. EXT,.A

By the inductive hypothesis, o; refutes every sequent in the label of s;. In particular,
0; = AX®;[] where ¢ is the signature given by the inductive hypothesis. By Proposition 4.3,
there is a path o’ ~ o; such that (¢/,1) = A®;[.~]. It is easy to see that (0’,1) = E¥y, for
any 1 < k < m. We then let s;;1 be the premise of s; and ;41 := (¢/,1). To the sequent
A®; assign signature ¢~

We claim that the existence of the infinite branch 7 contradicts the fact that T is a proof.

The choice of signatures guarantees that there is no infinite sequent trace of type A on 7
containing an infinite formula trace of type R, as otherwise the signatures assigned to the
occurrences of the dominating formula would yield an infinite descending chain of natural
numbers.

Therefore, since T is a proof m must contain an infinite sequent trace 7 = (Q;P;)i<w
of type E in which there is no infinite formula trace of type U. Let then p = (¢;)i<, be
an infinite formula trace through 7 of type R (at least one exists by Kénig’s lemma). Let
1) = 1)1 Re9 be the dominating formula in p and let N < w be such that o = ¥, pn1 = X,
and ¢; € {1, X¢p} for all i > N.

For each i > N, let h(i) > i be least such that rule AX or EX is applied at sp(;). By
construction, we have o,;)41 = (0',1) for some o’ ~ 0, 50 04(;)41(0) is an immediate
successor of 0;(0). Let o* be the path on(0) o (n)+1(0) On(h(n)+1)+1(0) - - - through S.

We inductively define a function g: {N, N + 1,...} — w such that o; ~ (¢*,¢(i)) for
every i > N. To that end, let g(N) = g(N +1) =--- = g(h(N)) = 0 and assume that g
is defined on N, N +1,...,h(7); set g(h(i) +1) = --- = g(h(h(i) + 1)) = g(h(i)) + 1. The
subtrace (¢;);>n then has the following form, where the numbers below the formulas are the
indices and the ones below the braces are the g-images of the indices:

WYX > pXy B> Y oY XYB o> XY Y-
N N+l R(N)  h(N)+1 h(h(N)+1)

0 1

Since oy £ E®y and o* ~ oy, we have o* &£ A\ ®n. To reach a contradiction we show, by
induction on x, that if x € ®;, i > N, then (0*,¢(4)) E x. In particular, o* = A On.

For brevity we present only the inductive case where xy = x1Uyx2. We show the existence
of an n < w such that (¢*,¢(i) + n) = x2 and (6*,¢9(i) + m) | x1 for all m < n. The
fact that there is no infinite formula trace of type U on 7 and a context extraction is never
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encountered along (¢ )r>n, means that there is a least j > 4 such that x3Ux2 is principal in
s; with unique active formula x2 in s;1;. Let n be such that ¢(j) = g(j + 1) = ¢(i) + n. By
the inductive hypothesis, (¢*, g(i) + n) = x2. Let m < n. Then, g(i) < g(i) + m < g(j), so
there is a least ¢ < k < j such that g(k) = g(¢) + m. Since g(k) < g(j), there is an instance
of AX or EX in between sj and s;. So, by the minimality of j, there is a k < &k’ < h(k) such
that @ 3 x > x1,Xx € Ppry1, whence (6%, g(k + 1)) | x1 by the inductive hypothesis.
And g(k' +1) = g(k') = g(k) = g(i) + m, so (0%, g(i) + m) = x1. <

Now we turn to the proof that the system CTLY, is complete. We argue game-theoretically
and appeal to the soundness and completeness result for satisfiability of CTL* formulas in [12].

» Definition 4.5. A proof-search tree for a formula ¢ is a finite or infinite tree T whose
vertices are labelled according to the rules on Figure 1 and such that

1. The root of T has label Ap.

2. A vertex of T is a leaf iff it is either axiomatic or a set of literal sequents.

3. FEvery instance of rule EX in T is of the form

EV,,....ET,,

EX " EXT,. .. EXT,, A

where A is a non-axiomatic set of literal sequents.
4. In place of rule AX, a branching rule AX, is used in T':

A®, EV,, ... . EV,,  --- A, EV,, ... EV,,
AXD1, ..., AXD, EXT, ... EXV,,, A

AXp

where again A is a non-axiomatic set of literal sequents.
5. Every infinite path of T contains infinitely many applications of AX or EX.

Our aim is to show that any proof-search tree for o contains either a CTL%_ proof of ¢ or
else a refutation of o, a subtree from which the satisfiability of =y follows.

» Definition 4.6 (Refutation). A refutation of a formula ¢ is a subtree T’ of a proof-search

tree T for ¢ satisfying

1. Every leaf of T is labelled by a non-aziomatic set of literal sequents.

2. If a vertex s € T' is obtained in T by an application of a rule other than AXy, then s has
ezactly one immediate successor in T".

3. If a verter s € T' is obtained in T by an application of rule AXy, then T’ contains every
immediate successor of s in T.

4. On every infinite sequent trace T in T’
a. if 7 is of type A, then every infinite formula trace is of type U;
b. if T is of type E, then some infinite formula trace is of type U.

The term refutation, which we borrow from [20], is justified by the following proposition,
dual to the soundness and completeness result in [12]:

» Proposition 4.7 ([12, Thm. 10]). A formula ¢ is valid iff there is no refutation of .

To finish the proof of completeness we set up a game for two players whose arena is
a proof-search tree in which one of the players looks for a proof and the other one for a
refutation. Determinacy of the game then yields completeness of CTLY_.



B. Afshari, G. E. Leigh, and G. Menéndez Turata

» Definition 4.8. Let T be a proof-search tree for . We define the game G(p,T) with arena

T and players Prov and Ref as follows.

1. The starting position is the root of T.

2. Prov owns all modal vertices.

3. Ref owns every branching non-modal vertex.

4. A finite play is won by Prov if it is maximal and the last position is labelled by an instance
of an axiom; otherwise Ref wins.

5. An infinite play is won by Prov if it contains an infinite sequent trace T such that either
a. 7 is of type E and contains no infinite formula trace of type U, or
b. 7 is of type A and contains an infinite formula trace of type R.
Otherwise Ref wins.

Informally, Prov attempts to find a (branch of a) proof within 7', whereas Ref tries to
find a (branch of a) refutation.

» Proposition 4.9. There is a winning strategy for Prov (Ref) in G(o, T) iff T contains a
CTLY, proof of ¢ (resp., a refutation of ).

Proof. It is clear from Definition 4.8 that a winning strategy for Prov (Ref) determines a
subtree of T' which is a CTL%_ proof of ¢ (resp., a refutation). Conversely, let 7" be a CTL,
proof of ¢ (resp. a refutation) contained in 7. Then, Prov (resp., Ref) has the following
winning strategy: move so as to always remain inside T". <

As the winning condition in G(p,T) is Borel, Martin’s theorem [18] implies the games are
always determined, whence completeness of CTLY_ follows.

» Proposition 4.10 (Completeness). If ¢ is valid, then there is a CTLYL, proof of .

Proof. Let T be a proof-search tree for ¢ (one always exists). Since ¢ is valid, Proposition 4.9
and Proposition 4.7 ensure that Ref cannot have a winning strategy in G(p,T). By determ-
inacy, there is a winning strategy for Prov and thus ¢ is provable by Proposition 4.9. |

Combining Proposition 4.4 and Proposition 4.10:
» Theorem 4.11. A formula ¢ is valid iff there is a CTLL proof of .

CTL., was formulated without any internal (i.e., formula level) or external (sequent level)
structural rules except for the implicit external weakening that may accompany applications
of AX, EX. Contraction (at both levels) is implicit in our choice of sets rather than multisets
or sequences. The external and internal weakening rules are, respectively,

W QeA , AD, A
Q. QT A Ao U A

Note, the internal weakening rule is only sound for A sequents. Soundness and completeness
confirms both rules are admissible in CTL.,. When working with cyclic proofs, however, it
will be convenient to have at our disposal the external weakening as an explicit inference;
internal weakening can be included, but is not necessary for completeness.

In the rule eW above, both Q® and Q’V are considered principal in the conclusion and Q®
is the only active sequent in the premise. As in the modal rules we impose that Q¥ ¥ Q"=
for any sequent Q"= in the premise.

We denote by CTL., + eW the proof system resulting by adding eW to CTL_.

» Proposition 4.12. There is a CTL., proof of ¢ iff there is a CTLL, + eW proof of .
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5 Cyclic proofs

We now introduce a cyclic version of the system CTLX . Formulas are annotated in the style
of [14, 30] to keep track of fixpoint unfoldings and determine the existence of “good” traces
on cycles. Whereas a CTLY, derivation is represented as a possibly infinite tree, a CTL}
derivation is a finite tree with back-edges, that is, a pair (T,1 — ¢;) where T is a finite tree
and [ — ¢; is a partial function defined on a subset Rep; of the leaves of T such that each
l € Repy is mapped to a vertex ¢; <p l. We call ¢; the companion of [, and leaves in Rep;
are called repeats. For repeats [ and I’, we say that I’ is reachable from [, in symbols [ < I, if
¢ <7 lU'. Given a tree with back-edges T', we denote by T° the result after adding an edge
from each repeat | € Repy to its companion ¢;. The sequence of vertices visited by an infinite
branch on T° is always of the form

[, lolT + [co, lh]r + -+ + [ens lnalr + -

where r is the root of T', each [; is a repeat with companion ¢;, and “4” denotes sequence
concatenation. The following result ensures that a path through 7° which visits a repeat [
more than once also passes through every vertex in [¢;, {]7.

» Proposition 5.1. Let (T,1 — ¢;) be a tree with back-edges and 7 a path through T°. If
there are 0 < m < n such that #(m) =1 and w(n) =1’ for repeats l,1' € Repy such that l<l,
then [c;, U]y € {m(k) :m <k <n}.

Fix a formula ¢. To each eventuality 1109 in ¢ we associate a unique identifier X and
write 110X 1)y. We say that X is an O-identifier if the eventuality corresponding to X is
an O-formula. For each identifier X we assume a countably infinite set Nx = {zg,21,...}
of names for X. A name z € Nx is an O-name if X is an O-identifier. In the sequel,
eventualities with different identifiers will be considered as different subformulas.

An annotated formula is a pair (¢, u), henceforth written ¥*, where v is a formula and
u is either the empty string or a name for an identifier in 1». We call u an annotation. An
annotated sequent is an expression of the form Q®, where Q € {A,E} and ® is a finite set of
annotated formulas. An annotated hypersequent is an expression of the form © : ', where I'
is a finite set of annotated sequents and © is a linear ordering of the names occurring in T'.
We call © the control of © : T.

Given a finite sequence of names O, we define the following strict linear order <g on the
collection of annotations contained in ©: u <g v if either v = @ and u # &, or both v and v
are non-empty and the name in u occurs in O strictly before the name in v.

» Definition 5.2 (Cyclic derivation). A CTL} derivation of a formula ¢ is a finite tree with
back-edges (T, 1 — ¢;) whose vertices are labelled according to the rules in Figures 2 and 3
and satisfying

1. The root of T has label Ap.

2. Every leaf not labelled by an instance of an axiom is a repeat and has the same label as
its companion.

3. For every | € Repy, there is an instance of rule AX or EX in [¢;,l]T.

4. In rules AR and EU, if u = & then x is the first name for X not already occurring in ©.
In ERy, either u = &, in which case Ou = O, or u is the first name for X not already
occurring in ©.

5. Rule iThin has priority over other rules: If a hypersequent in T can be witnessed as the
conclusion of an application of iThin, then it is.
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axy axT ————
0:Qp,Q—p, A 0:T,A
ALit 0 :Ad AN A EL O:E® A O :E)NA
"o A[®, )L A 't 0 :E{®, A}, A
y O : A{D,p, 9}, A E O : E{®, ¢}, E{®, 9}, A
O :A{®, oV i) A Y TTeE(®, VLA
0:A{®,0},A  O:A{P¢P},A O : E{®, 0,0}, A
O :A{D, oAU}, A O:E{D,p Ay}, A
AA 0 : A®,A{y}, A O:E®,A O : AW} A
0 : A{®, Ay}, A 0 : E{Q,AV}, A
AE O0: AP E{y},A ©:E®,A O :E{y},A
O : A{®,Ey}, A ©:E{®,Ey}, A
Ax O : A®;,EV,,... ET,, @' :EV,,...,ET,,
0 : AX®D,,...,AXD, EXT,, ... EXU,,. % EX 6 EXT, .. EXU,, %
O : Q{P, "}, A ’.
iThin Q. ") T <e v eW ©:Q9,4
0: Q{P, 9", ¢"}, A ©0:Q2,Q¥, A

Figure 2 Non-fixpoint rules of system CTLJ. In ALit and ELit, A is a literal formula. In all rules,
©’ is the result of removing from © all names not occurring in the associated hypersequent.

For clarity of presentation the ER inference is split into two rules, depending on whether

the principal formula is annotated. We refer to the two rules ERy and ER; jointly as ER.

Sequent traces, as well as principal and active sequents and formulas, follow the definition
from the unannotated calculus. In the case of iThin, both ¢” and ¢ are principal and we let
©* > p® and ¥ > p”.

The prioritisation of iThin in the definition above is not necessary and the notion of a
cyclic proof given below is sound and complete without this restriction. However, it ensures
that all sequents in a derivation are bounded in size. Judicious use of external weakening
in the form of an external thinning rule can be used to ensure a bound on the size of
hypersequents also. We isolate a particular form of the rule eW that will be useful in proving
completeness. This is rule

0" Q{pp°, .-, ohm A
©: Q{%ma---WZ"}vQ{@SO,---a@ii"}vA

with the restriction that some name u; precedes all the names v, ..

eThin

., Up, l.e., for some
i < n, we have u; <g v; for every j < n. The condition ensures that the first name in ©
} occurs in {ug, . .., u,} and

Vp

distinguishing the sequent Q{¢g°, ..., ¢% } from Q{vy°, ..., ¥
is preserved in the premise.

Prioritising applications of eThin alongside iThin ensures that sequents and hypersequents
never grow past a finite bound. More precisely, given a CTL%_ + eW derivation T', let ann(T)
be the result after annotating the hypersequents in T according to the rules of CTL} and
applying rules iThin and eThin whenever possible. We then have
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O: A{(I)’9017502}7A O: A{CI)7<P2aX(801U<P2)}7A
© : A{P, p1Ups}, A

O A{D, JA Oz : A{®, 1, X(p1RX p2)"}, A
AR { @2} z ){( ¥1 (801 302) } = {@,JI}
O : A{?, (p1R p2)"}, A

O : E{q)a ¢2}a E{(I)a @1, X(@IUXQDZ):C}, A
0 : E{®, (p1U p2)"}, A

u € {@,x}

Ou : E{®, ¢1, po}, E{®, 02, X(1R¥ ¢2)"}, A
6 : E{(I)a QolRXSDZ}a A

ERg u € {g}UNx

ER; O E{®, p1, 02}, E{®, 2, X(9p1R¥ p2)"}, A u € {2, x}
©: E{®, (p1R¥p2)"}, A ’

Figure 3 Fixpoint rules of system CTL}. In all rules, ©’ denotes the result of removing from ©
all names not occurring in the associated hypersequent. The control Oz denotes © if x € © and the
concatenation of © and z otherwise. Rule ERg is subject to the restriction: w is either & or a name
for X not occurring in ©.

» Proposition 5.3. There are only finitely many distinct annotated hypersequents in ann(T).

A name is fized on a path 7 through a CTL} derivation if it occurs in every control in 7.
Similarly, a name is fized on a sequent (formula) trace if it occurs in each sequent (resp.,
formula) on the trace.

» Definition 5.4 (Good trace). Let T be a CTL} derivation, and let T be a (finite) stable
sequent trace on a path through T. We say that T is good if the following hold.

1. There is an R-name fized on 7.

2. No U-name is fixed on 7.

Otherwise T is said to be bad.

» Definition 5.5 (Successful repeat). Let T be a CTL. derivation. A repeat | € Repy is
successful if the following hold.

1. There is a good sequent trace on [cy,l]1.

2. No R-name is fixed on a bad trace on [c;,l]7.

In other words, [ is successful if there is a good trace on [¢;,l]r and, moreover, the path
contains no E-trace on which an R-name and a U-name are both fixed. Observe that the rule
EU always annotates the active U operator and the only rules eliminating U-names along
sequent traces are the thinning rules; on the contrary, the rule ER; provides a mechanism
for eliminating R-names along a path. Thus, on a successful repeat, if EU affects an E-trace
between companion and leaf, then all R-names on the trace must eventually be eliminated
(cf. Lemma 6.6 below).

» Definition 5.6 (Cyclic proof). A CTL proof of a formula ¢ is a CTL} derivation T of ¢
each of whose leaves is either axiomatic or else a successful repeat.

Figure 4 contains a CTL._ proof of the valid formula (—pUp) V (LR—p) together with its
cyclic version. The unique infinite branch in the ill-founded proof corresponds to the unique
cycle in the cyclic one.
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A{-pUp, LR-p}
A{X(=pUp), X(LR=p)}, Ap, A=p A{X(=pUp), X(LR-p)}, Ap
A{X(=pUp), =p, X(LR=p)}, Ap A{X(=pUp), p, X(LR-p)}, Ap
A{X(=pUp), L, X(LR-p)}, Ap
A{X(=pUp), LR-p}, Ap
A{p,X(=pUp), LR-p}
A{-pUp, LR-p}
A{-pUp Vv LR-p}

(t) x: A{=pUp, (LR-p)*}
z : A{X(=pUp), X(LR=p)*}, Ap, A=p z : A{X(=pUp), X(LR-p)®}, Ap
x : A{X(=pUp), =p, X(LR-p)"}, Ap z : A{X(=pUp), p, X(LR-p)*}, Ap
z : A{X(=pUp), L, X(LR-p)}, Ap
z : A{X(=pUp), (LR-p)”}, Ap
x : A{p, X(=pUp), (LR—-p)*}
(f) x: A{=pUp, (LR—-p)*}
x : A{X(=pUp), X(LR-p)"}, Ap
z : A{X(=pUp), L, X(LR=p)*}, Ap
A{X(=pUp), LR-p}, Ap
A{=pUp Vv LR-p}

Figure 4 Top: A CTL}, proof of the valid formula (—pUp) V (LR-p) where L := p A —p. Bottom:
A CTL} proof of the same formula. The unique repeat in the cyclic proof and its companion are
marked with . Double line indicates that some vertices are omitted for brevity.

In the next section we prove that ¢ is valid iff there exists a CTL proof of ¢. We do so
by showing that ill-founded proofs can be seen as unravellings of cyclic proofs.

6 Soundness and completeness of CTL]

Every successful repeat [ in a CTL} derivation T has an associated invariant, denoted inv(l),
the shortest sequence of names wx such that x is an R-name witnessing condition 1 of
Definition 5.5 and wz is a prefix of every control in [¢;, []7. The existence of invariants follows
from the fact that new names are always appended to the right of the controls.

Invariants induce the following (reflexive) quasi-order on repeats of a proof: [ < I’ if
inv(l) is a prefix of inv(l’). The orders < and < are related in the sense of the following
propositions, both of which are easily verified.

» Proposition 6.1. For every infinite reachability sequence lg <1y < --- there exists k > 0
such that l, < 1l; for all j > k.

» Proposition 6.2. Iflg<l1 <<l <lg and w is a prefix of inv(l;) for each i < m, then
w is a prefic of each control on [cy, ,lo]T-
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The following lemmas concerning names fixed on paths through cyclic derivations are
used to show soundness and completeness for CTL.. We omit the proofs for brevity.

» Lemma 6.3. Let 7 = (s;)i<n be a finite path through o CTL] derivation. If names
T1,...,Tm are fited on w and there is a sequent Q® in the label of s, such that x1,...,Tm
all occur in Q®, then there is a sequent trace T on 7 such that x1,..., T, are all fized on T.

» Lemma 6.4. Let m = (s;)i<w, be an infinite path through a CTL) derivation. If names

X1, ..., Ty are fired on m and for every i < w there is a j > i and a sequent QP in the label
of sj such that x1,...,%m all occur in Q®, then there is an infinite sequent trace T on 7
fixing x1, ..., T

The next lemmas are immediate consequences of the success condition on CTL proofs.

» Lemma 6.5. Let T be a CTL, proof, and let w be an infinite path through T°. There is an
R-name x and an infinite sequent trace on m containing an infinite formula trace on which x
1s fized.

» Lemma 6.6. Let T be a CTL) derivation, T an infinite sequent trace on T° of type E, and
p an infinite formula trace on T of type U. There is a U-name eventually fized on p.

Soundness of CTL, now follows easily.
» Proposition 6.7 (Soundness). If there is a CTLY proof of ¢, then ¢ is valid.

Proof. Let T be a CTL} proof of . We show that the trace conditions on Definition 3.7
hold for T°. By the priority assigned to rule iThin, this suffices to ensure that the (possibly
infinite) tree of paths on T° once stripped of the annotations, is a CTL%_ + eW proof of ¢.

Let 7 be an infinite path on 7° By Lemma 6.5 there is an infinite sequent trace T on
m containing an infinite formula trace p on which an R-name z is eventually fixed. If 7 is
of type A we are done, so suppose 7 is of type E. Towards a contradiction, assume that 7
contains an infinite formula trace £ of type U. By Lemma 6.6, there is a U-name y which is
eventually fixed on £. Then, there is a tail 7/ of 7 such that both x and y are fixed on 7/. Let
7' be the tail of m corresponding to 7/, and let [ be a repeat encountered infinitely often on 7’.
By Proposition 5.1, every vertex on [¢;, []7 occurs infinitely often on 7', so « and y are fixed
on [c;, l]7 and some sequent in the label of [ contains both x and y. By Lemma 6.3, there is
a bad trace on [¢, |7 on which x is fixed, contradicting the fact that [ is successful. |

We now turn to the completeness proof for CTL.. An application of rule iThin is trivial
if, using the same notation as in Figure 2, v = &. Due to the priority given to iThin in
derivations, non-trivial instances of iThin satisfy the following.

» Lemma 6.8. Let T be a CTL. derivation, and let s € T be labelled by the premise of a
non-trivial instance of iThin, say:
O Q{P, o™ }, A
0: Q{®, 0™, ¢™} A

Then, @ = X1 for some 1 = 10Xy and there is a vertex t <7 s such that there is a sequent
trace on [t, s|r of the form

iThin only

QU X¢™ b} > Q{U, X¢p™  Xep™ } 1> -+ > Q{®, Xp™, Xep™ } > Q{@, X¢p™ }.
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Proof. By the priority given to iThin and the fact that x; occurs before x5 in ©. <
» Proposition 6.9 (Completeness). If o is valid, then there is a CTL} proof of .

Proof. Let T be a CTL%, proof of ¢, and let ann(T) be the result of annotating 7' in
accordance with the rules of CTL}, applying iThin and eThin whenever possible and always
choosing u # @ when applying either ERy or ER;. It suffices to show that every infinite branch
on ann(T) contains a vertex satisfying the requirements of a successful repeat. Proposition 5.3
implies each branch of ann(T') contains only finitely many distinct annotated hypersequents.

Let ann(7) be an infinite branch on T, where 7 = (8;);<,, is the corresponding branch on
T. Let T be the collection of all infinite sequent traces 7 on ann(r) such that either 7 is of
type A and contains an infinite formula trace of type R, or 7 is of type E and contains no
infinite formula trace of type U. Since T is a proof, T+ # &. Let T~ be the collection of all
infinite sequent traces on ann(m) of type E that contain an infinite formula trace of type U.

We modify the annotations on ann(r) by applying the following procedure to every trace
Te€T™. Let 7 = (Q;®i)icw, and let p = (¢;*)i<w be an infinite formula trace on 7 of type
U, say with dominating formula ¥¥. Let n < w be such that ¢} € {¢¥,Xy¥} for all i > n.
For every application of ER on 7>, = (s;)i>» with principal sequent in 7, we remove the
annotation (using instead the rule instance with u = &) and propagate this change upwards
appropriately. Let T = (8;);<., be the result after applying this procedure to every 7 € T~

We claim that after all these changes the result remains an (annotated) derivation. This
is clear for all rules except iThin and eThin. Each application of eThin will either vanish
(because the two principal sequents now coincide), or remain an instance of eW. And every
trivial instance of iThin will remain so or else vanish. Finally, consider a non-trivial instance
of iThin in ann(7):

0 : Q{¥,y™},A
©: Q{¥,p™ Y™} A

The only way for this rule application to cease to be an instance of a CTL} rule after the

r1 <@ T2 (1>

changes performed is if x; has been removed and x5 remains. We claim this is impossible.
Let s be the vertex on ann(r) corresponding to the premise of (1). By Lemma 6.8, 1) = Xy
for some formula y = xy1R¥ x> (since x; is an R-name) and there is a vertex ¢ below s such
that there is a sequent trace on [t, s],nn(r) of the form

. . . iThin only . .

Q{Z, Xx™, x} > Q{X, Xx™, Xx™2} > -+ > Q{¥, Xx™, Xx"?} > Q{¥, X\ }.

So by the time x5 is introduced x; has already been removed, whence by construction of 7
we also removed x5 and thus (1) simply vanishes on 7.

Finally, we show that 7 passes through a successful repeat. Fix a trace 7 = (Q;®;)i<w, € TT
(note that 7 ¢ T7), and let p = (p;'");<, be an infinite formula trace on 7 of type R, say
with dominating formula 9. Let n < w be such that
1. o)t € {¢", Xyp*} for every i > n, and
2. every pair (0; : I';, Q;®;) for i > n is encountered infinitely often on {(©; : I';, Q;®;) }j<w,

where ©; : I'; is the label of §;.

Let S = {(EV;,y;, 2;)}icr be the collection of all triples (E¥,,y;, z;) where E¥; is a
sequent in the label of §,,, y; is a U-name occurring in E¥;, and z; is an R-name occurring in
EW,. Note that S is finite. For every ¢ € I there is a j; > n such that there is no sequent trace
on [8,, §;,]% starting from E¥; and where y; and z; are both fixed. Otherwise by Lemma 6.4
there would be an infinite sequent trace 7’ on 7 of type E such that y; and z; are both fixed
on 7/, contradicting the construction of 7. Let m > max{n, max{j; : i« € I'}} be such that §,
and 3, have identical labels. We claim that §,, is a successful repeat with companion §,,.
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Let 77" := (Q;®:)n<i<m. We know that z is fixed on 7/, and by the choice of m no
U-name is fixed on 77, so 7" is a good trace on [3,, §,,]z. Towards a contradiction, suppose
there is a bad trace £ on [$,, §;,)7 such that an R-name z is fixed on £. By definition, there
is a U-name y fixed on . Let E¥ be the first sequent on . Then, (EV,y,2) € S, say
(EY,y,2) = (E¥Wg, Yk, 21). So § restricted to [5,,, §;,]# is a sequent trace starting from EW;,

and on which both y; and zj are fixed, contradicting the choice of j. <
Combining Proposition 6.9 and Proposition 6.7 we have

» Theorem 6.10. A formula o is valid iff there is a CTL) proof of ¢.

7 A decision procedure for the universal fragment of CTL"

The completeness proofs for the cyclic and ill-founded calculi provide a deterministic proof-
search procedure which always yields a proof if the initial formula is valid. The argument
leaves open the question of whether validity can be decided via proof-search, i.e., that no
proof exists if none has been found within sufficiently many steps. In this section we provide
a positive answer for the universal fragment of CTL", that is, for formulas containing no
existential quantifier.

Given a universal formula ¢, we build a finite proof-search tree for ¢, annotate it according
to the rules of the cyclic calculus, and show that if it does not contain a CTL} proof of ¢
then ¢ is not valid.

» Definition 7.1. An annotated proof-search tree for a universal formula ¢ is a finite tree
T whose vertices are labelled according to the rules in Figure 2 and Figure 3 and such that
1. The root of T has label Ap.
2. A vertex uw € T is a leaf iff either

a. u s axiomatic,

b. w s labelled by literal sequents only, or

c. there is a verter v < u such that u and v have identical labels.
3. In place of rule AX, the branching rule AX; is used in T':

@1 : A‘I)l ce @n : A(I)n

AX;
b O : AXDq, ..., AXD,, A

where A is a non-azxiomatic set of literal sequents and ©; is the result of removing from
O all names not occurring in AD;.

4. In every application of rule ALit in T, say with principal formula A and principal sequent
A{®D, A}, we have D\ {\} # &.

5. All instances of eW in T are instances of eThin.

6. The thinning rules iThin and eThin are prioritised over the rest in T.

As a consequence of Proposition 5.3, we have:

» Proposition 7.2. For every universal formula ¢ there exists an annotated proof-search
tree for .

In the absence of existential quantifiers, the success condition for repeats drastically
simplifies.

» Proposition 7.3. A repeat | in an annotated proof-search tree T is successful iff there is
an R-name fized on [c,l]7.
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Proof. Since unfoldings of U-formulas under a universal quantifier are never annotated, there
are no U-names in T, whence [ is successful iff there is a sequent trace on [¢;, {]7 where an
R-name is fixed. By Lemma 6.3, this is the case iff there is an R-name fixed on [¢;,l]7. <

Finally, we show that if an annotated proof-search tree for ¢ does not contain a CTL}
proof of ¢, then ¢ is not valid.

» Proposition 7.4. Let T be an annotated proof-search tree for a universal formula . If T
cannot be pruned at AX}-vertices down to a CTL}, proof of ¢, then ¢ is not valid.

Proof. Starting bottom-up, let 77 be the result of pruning T at AA-, AU- and AR-vertices
by keeping the subtree that fails to produce a proof. Note that branching in 7" is due solely
to AXj, that there are no axiomatic leaves in 7", and that every repeat in 7" is unsuccessful.
So, by Proposition 7.3, for every repeat | € T' the following holds: there is no R-name fixed
on [y, l]7. Tt follows that there cannot be an infinite sequent trace of type A containing an
infinite formula trace of type R on (7”)°, because unfoldings of R-formulas under a universal
quantifier are always annotated. Therefore, stripping (77)° of the annotations yields a
refutation of ¢, whence ¢ is not valid by Proposition 4.7. |

Proposition 7.4 yields a decision procedure for validity of universal formulas: given a
universal formula ¢, build an annotated proof-search tree for ¢ and check whether it contains
a CTL. proof of ¢. This procedure fails in the presence of existential quantifiers. Using the
notation from the proof of Proposition 7.4, T/ may contain an unsuccessful repeat [ with a
good sequent trace of type A on [¢;, l]7». Thus, we cannot guarantee that (7")°, once stripped
of the annotations, is a refutation.

8 Conclusion

We introduce a sound and complete cyclic hypersequent calculus for Full Computation Tree
Logic CTL* and a decision procedure for validity of the universal fragment. Hypersequents
— sets of sets of formulas — offer a natural framework for accommodating the existential
and universal path quantifiers of the logic. Each “sequent” in a hypersequent is a labelled
set of formulas, either A® or E®, interpreted as along all paths \/ ® and along some path
A\ @ respectively. Through this interpretation, a natural system of ill-founded proofs arises
wherein every infinite path of a proof must contain either an infinite sequent trace of type A
through which some infinite formula trace stabilises (on a release operator), or an infinite
trace of type E in which all infinite formula traces stabilise. Correctness conditions of the
latter kind are rare in ill-founded (and cyclic) proof calculi. Indeed, together with [9], which
employs a similar trace condition, these appear to be the only examples of cyclic systems
that fall outside the scope of the category theoretic notion of cyclic proof introduced in [5].

In contrast to the ill-founded calculus, correctness of cyclic proofs is determined by the
simple cycles only, i.e., the shortest path between leaf and companion. Soundness is ensured
by annotating formulas in the cyclic calculus in a manner similar to [2, 3, 14, 17, 30]. As a
result, proof-checking a cyclic derivation is linear time, in contrast to the trace condition
along all paths which is PSPACE complete in general [21, 5.3 Even so, the annotation
mechanism necessary for CTL" is significantly simpler than those developed for the p-calculus
and related logics. For example, each formula is annotated by at most one name and vice
versa.

3 Tt should be noted, however, that the trace condition for regular ill-founded CTL* proofs in Definition 3.7
does not directly fit within the known PSPACE completeness results.
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Future directions include investigating whether an analytic calculus for CTL* can assist

with proving completeness of Hilbert-style calculi. Also of interest is the development of
robust proof systems for related logics such as hybrid [28], graded [19], memory-full [16], and
multi-agent [6] extensions of CTL"
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