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Abstract

Research at the intersection of personality psy-
chology, computer science, and linguistics has
recently focused increasingly on modeling and
predicting personality from language use. We
report two major improvements in predict-
ing personality traits from text data: (1) to
our knowledge, the most comprehensive set
of theory-based psycholinguistic features and
(2) hybrid models that integrate a pre-trained
Transformer Language Model BERT and Bidi-
rectional Long Short-Term Memory (BLSTM)
networks trained on within-text distributions
(‘text contours’) of psycholinguistic features.
We experiment with BLSTM models (with and
without Attention) and with two techniques
for applying pre-trained language representa-
tions from the transformer model - ‘feature-
based’ and ‘fine-tuning’. We evaluate the per-
formance of the models we built on two bench-
mark datasets that target the two dominant the-
oretical models of personality: the Big Five Es-
say dataset (Pennebaker and King, 1999) and
the MBTI Kaggle dataset (Li et al., 2018). Our
results are encouraging as our models outper-
form existing work on the same datasets. More
specifically, our models achieve improvement
in classification accuracy by 2.9% on the Essay
dataset and 8.28% on the Kaggle MBTI dataset.
In addition, we perform ablation experiments
to quantify the impact of different categories
of psycholinguistic features in the respective
personality prediction models.

1 Introduction

Personality is broadly defined as the combina-
tion of a person’s behavior, emotions, motivation,
and characteristics of thought patterns (Corr and
Matthews, 2020). Our personality has a major
impact on our lives, influencing our life choices,
well-being, health, and preferences and desires
(Ozer and Benet-Martinez, 2006). Specifically,

personality has been repeatedly linked to individ-
ual (e.g., happiness, physical and mental health),
interpersonal (e.g., quality of relationships with
peers, family, and romantic partners), and social-
institutional outcomes (e.g., career choice, satisfac-
tion and achievement, social engagement, political
ideology) (Soto, 2019).

While there are several models of human person-
ality, the predominant and widely accepted model
is the Big Five or Five Factor Model (McCrae
and John, 1992; McCrae, 2009). In this model,
personality traits are divided into five factors: (1)
Extraversion (assertive, energetic, outgoing, etc.),
(2) Agreeableness (appreciative, generous, com-
passionate, etc.), (3) Conscientiousness (efficient,
organized, responsible, etc.), (4) Neuroticism (anx-
ious, self-pitying, worried, etc.), and (5) Openness
(curious, empathetic, imaginative, etc.). These five
personality traits are commonly assessed by ques-
tionnaires in which a person reflects on his or her
typical patterns of thinking and behavior, such as
the NEO Five Factor Inventory (Costa and Mc-
Crae, 1992), and the Big-Five Inventory (John et al.,
1991); (see Matthews et al., 2009, for a compre-
hensive overview). The Myers–Briggs Type Indi-
cator (MBTI) is another widely administered ques-
tionnaire, in particular in applied settings (Meyers
et al., 1990). In contrast to the Big Five person-
ality taxonomy, which conceptualizes human per-
sonality as latent trait scores, the MBTI model de-
scribes personality in terms of 16 types that result
from combining binary categories into four dimen-
sions: (a) Extraversion/Introversion (E/I) - prefer-
ence for how people direct and receive their energy,
based on the external or internal world, (b) Sens-
ing/Intuition (S/N) - preference for how people take
in information, through the five senses or through
interpretation and meanings, (c) Thinking/Feeling
(T/F) - preference for how people make decisions,
relying on logic or emotion over people and partic-
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ular circumstances, and (d) Judgment/Perception
(J/P) - how people deal with the world, by ordering
it or remaining open to new information.

Given its central importance in capturing the
essential aspects of human life, increasing atten-
tion is being paid to the development of models
that can leverage behavioral data to automatically
predict personality. Data obtained from verbal be-
havior is one of the key types of such data. Even
in the early years of psychology, a person’s use of
language was seen as a distillation of his or her
underlying drives, emotions, and thought patterns
(see Tausczik and Pennebaker, 2010; Boyd and Pen-
nebaker, 2017, for historical overviews). Early ap-
proaches to automatic personality prediction (APP)
– also referred to as automatic personality predic-
tion or recognition – from textual data have relied
on machine learning models based on psycholin-
guistic features, whereas more recent approaches
to APP typically draw on deep learning techniques
that use pre-trained word embeddings (see Vincia-
relli and Mohammadi, 2014, for an overview of the
former) (see Mehta et al., 2020b, for an overview
of deep learning-based APP).

In this paper, we make a valuable contribution
to this dynamic area of APP research by presenting
two important improvements in predicting person-
ality traits from textual data: (1) to our knowl-
edge, the most comprehensive set of psycholin-
guistic features and (2) hybrid models that inte-
grate a pre-trained Transformer Language Model
BERT and Bidirectional Long Short-Term Mem-
ory (BLSTM) networks trained on in-text distribu-
tions (’text contours’) of psycholinguistic features.
Since our goal is to demonstrate the utility of our
modeling approach, we conduct our experiments
on two widely used benchmark datasets: the Big
Five Essay dataset (Pennebaker and King, 1999)
and the MBTI-Kaggle dataset (Li et al., 2018),
which align with the dominant personality mod-
els described above. The remainder of this paper
is organized as follows: In Section 2, we briefly
review recent related work on these two benchmark
datasets. Then, in Section 3, we present the two
benchmark datasets and the extraction of psycholin-
guistic features using automated text analysis based
on a sliding window approach. In Section 4, we
describe our modeling approach, and in Section
5, we present and discuss the results. Finally, we
conclude with possible directions for future work
in Section 6.

2 Related work

Majumder et al. (2017) used a convolutional neu-
ral network (CNN) feature extractor in which sen-
tences were fed to convolution filters to obtain n-
gram feature vectors. Each individual text of the
Big Five Essay dataset was represented by aggre-
gating the vectors of its sentences and the obtained
vectors were concatenated with psycholinguistic
(Mairesse) features (Mairesse et al., 2007). For
classification, they fed the resulting document vec-
tor to a fully connected neural network with one
hidden layer. Using this method, they were able
to achieve an average classification accuracy of
58% for the Big Five personality traits on the Es-
says dataset. Kazameini et al. (2020) were the first
to use a Transformer-Based Language model to
extract contextualized word embeddings. Specifi-
cally, they built a Bagged-SVM classifier fed with
contextualized embeddings extracted from BERT,
a pre-trained language model with a Bidirectional
Encoder from Transformers (Devlin et al., 2018).
Their model outperformed the CNN-based model
proposed by the Majumder et al. (2017) model by
1.04%. Amirhosseini and Kazemian (2020) used a
Gradient Boosting Model (GBM) based on Term
Frequency–Inverse-Document-Frequency features
(TF-IDF) to predict personality dimensions in the
Kaggle MBTI dataset. Their modeling approach
achieved an average classification accuracy across
all dimensions of 76.1%. Using both the Big Five
Essay dataset and the Myers-Briggs’ type indicator
Kaggle Dataset, Mehta et al. (2020a) proposed the
integration of deep learning models and psycholin-
guistic features with language model embeddings
for APP. They extracted a total of 123 psycholin-
guistic features, including the Mairesse features set
(Mairesse et al., 2007), SenticNet (Cambria et al.,
2010), NRC-Emotion Lexicon (Mohammad and
Turney, 2013), and NRC-VAD Lexicon (Moham-
mad, 2018). Language model features were ex-
tracted using BERT. Their experiments compared
the performance of BERT-base and BERT-large
in synergy with SVM or Multi-layer Perceptron
(MLP) classifiers. BERT-base + MLP yielded an
average score of 60.6 on the Essay dataset, while
BERTlarge + MLP yielded an average score of
77.1 on the Kaggle dataset. The approach taken
in Mehta et al. (2020a) outperformed the previ-
ously best-performing model by Amirhosseini and
Kazemian (2020) by 1%. Zooming on classifi-
cation accuracy for specific personality traits, the
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models in Mehta et al. (2020a) achieved the high-
est performance on two of the Big Five personality
traits in the Essays dataset (openness, accuracy =
64.6%, and conscientiousness, accuracy = 59.2%)
and on three of the four MBTI dimensions in the
Kaggle MBTI dataset (Intuitive/Sensing (N/S), ac-
curacy = 86.6%, Thinking/Feeling (T/F), accu-
racy = 76.1% and Perception/Judging (P/J), accu-
racy = 67.2%). The highest performance on the
Introversion/Extraversion (I/E) MBTI dimension
(79%) was obtained by the ‘GBM + TFIDF’ model
reported in Amirhosseini and Kazemian (2020).
The highest performance on the three remaining
Big Five dimensions was achieved recently by
Ramezani et al. (2021), which used an ensemble
modeling approach (stacking) to combine linguis-
tic and ontology-based features with deep learning-
based methods based on a hierarchical attention
network as a meta-model. Although the overall
performance of SOTA on the Essay dataset was
not superior - mainly due to relatively poor perfor-
mance on the Openness trait (accuracy = 56.3%),
this work has demonstrated the utility of model
stacking as an effective way to boost the prediction
of personality traits. For a performance overview
of the models reviewed here for different data sets
and personality dimensions, see Table 1 in Section
4.

3 Method

3.1 Datasets
We conducted our experiments with two widely
used personality benchmark datasets: (1) The Es-
says Dataset (Pennebaker and King, 1999) and (2)
Kaggle MBTI Dataset (Li et al., 2018). (1) Essays:
This stream-of-consciousness dataset consists of
2468 essays written by students and annotated with
the binary labels of the Big Five personality traits,
which were obtained through a standardized self-
report questionnaire. The average text length is
672 words and the total size of the dataset is ap-
proximately 1.6 million words. One of the reasons
why Essays is an established benchmark dataset is
the relatively large amount of continuous language
use and the fact that the personality traits were ob-
tained using a validated instrument. (2) Kaggle
MBTI: This dataset was collected through the Per-
sonalityCafe forum1 and thus provides a diverse
sample of people interacting in an informal online
social environment. It consists of samples of social

1https://www.personalitycafe.com/

media interactions from 8675 users, all of whom
indicated their MBTI type. The average text length
is 1,288 words. The total size of the entire dataset
is approximately 11.2 million words.

3.2 Measurement of text contours of
psycholinguistic features

The texts from both datasets (the Big Five Essay
dataset and the MBTI Kaggle dataset) were auto-
matically analyzed using an automated text anal-
ysis (ATA) system that employs a sliding window
technique to compute sentence-level measurements.
These measurements capture the within-text dis-
tributions of scores for a given psycholinguistic
feature, referred to here as ‘text contours’ (for re-
cent applications of the ATA system in the context
of text classification, see (Kerz et al., 2020; Qiao
et al., 2021a,b). We extracted a set of 437 theory-
based psycholinguistic features that can be binned
into four groups: (1) features of morpho-syntactic
complexity (N=19), (2) features of lexical richness,
diversity and sophistication (N=77), (3) readability
features (N=14), and (4) lexicon features designed
to detect sentiment, emotion and/or affect (N=326).
Tokenization, sentence splitting, part-of-speech tag-
ging, lemmatization and syntactic PCFG parsing
were performed using Stanford CoreNLP (Man-
ning et al., 2014). The group of morpho-syntactic
complexity features includes (i) surface features
related to the length of production units, such as
the average length of clauses and sentences, (ii)
features of the type and frequency of embeddings,
such as number of dependent clauses per T-Unit or
verb phrases per sentence and (iii) the frequency
of particular structure types, such as the number
of complex nominals per clause. This group also
includes (iv) information-theoretic features of mor-
phological and syntactic complexity based on the
Deflate algorithm (Deutsch, 1996). The group of
lexical richness, diversity and sophistication fea-
tures includes six different subtypes: (i) lexical
density features, such as the ratio of the number of
lexical (as opposed to grammatical) words to the
total number of words in a text, (ii) lexical vari-
ation, i.e. the range of vocabulary as manifested
in language use, captured by text-size corrected
type-token ratio, (iii) lexical sophistication, i.e. the
proportion of relatively unusual or advanced words
in a text, such as the number of words from the
New General Service List (Browne et al., 2013),
(iv) psycholinguistic norms of words, such as the
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average age of acquisition of the word (Kuperman
et al., 2012) and two recently introduced types of
features: (v) word prevalence features that cap-
ture the number of people who know the word
(Brysbaert et al., 2019; Johns et al., 2020) and (vi)
register-based n-gram frequency features that take
into account both frequency rank and the number of
word n-grams (n ∈ [1, 5]). The latter were derived
from the five register subcomponents of the Con-
temporary Corpus of American English (COCA,
560 million words, Davies, 2008): spoken, mag-
azine, fiction, news and academic language (see
Kerz et al., 2020, for details see e.g.). The group
of readability features combines a word famil-
iarity variable defined by a prespecified vocabu-
lary resource to estimate semantic difficulty along
with a syntactic variable, such as average sentence
length. Examples of these measures include the
Fry index (Fry, 1968) or the SMOG (McLaugh-
lin, 1969). The group of lexicon-based senti-
ment/emotion/affect features (SentiEmo) was de-
rived from a total of ten lexicons that have been
successfully used in personality detection, emotion
recognition and sentiment analysis research: (1)
The Affective Norms for English Words (ANEW)
(Bradley and Lang, 1999), (2) ANEW-Emo lexi-
cons (Stevenson et al., 2007), (3) DepecheMood++
(Araque et al., 2019), (4) The Geneva Affect Label
Coder (GALC) (Scherer, 2005), (5) The General
Inquirer (Stone et al., 1966), (6) The LIWC dic-
tionary (Pennebaker et al., 2001), (7) The NRC
Word-Emotion Association Lexicon (Mohammad
and Turney, 2013), (8) The NRC Valence, Arousal,
and Dominance (NRC-VAD) lexicon (Mohammad,
2018), (9) SenticNet (Cambria et al., 2010), and
(10) the Sentiment140 lexicon (Mohammad et al.,
2013). The feature value for each subcategory in a
given lexicon is the mean value of all rated/scored
words in a given sentence. The informational gain
of ‘text contours’ compared to text-averages is il-
lustrated in Figure 1. The Figure shows the distri-
bution of z-standardized values of three selected
features for a randomly selected text from the Es-
say dataset. The red line represents the average
feature value of the text. As can be seen from the
graphs, all feature values fluctuate within the text,
with high values for one feature often offset by
lower values for another. The contour-based clas-
sifiers, discussed in more detail in Section 3, can
take advantage of this high-resolution assessment
of psycholinguistic features.

4 Modeling approach
Our models are constructed from three components:
(a) a ‘contour encoder’ that converts a sequence of
psycholinguistic features into a hidden represen-
tation vector, (b) a pre-trained transformer-based
language model, BERT, that converts a sequence
of tokens into a hidden representation vector, and
(c) a classifier that outputs the probability of a per-
sonality feature given the hidden representation of
the sample. We conduct experiments with three
types of personality prediction models: (1) con-
tour encoder + classifier, (2) hybrid models that
combine the contour encoder with a transformer-
based language model + classifier, and (3) a stack-
ing model that combines ten repetitions of the best
performing model. As for the contour encoder, we
experiment with BLSTM and BLSTM with atten-
tion models. Attention-based models have been
successfully used in a variety of tasks, including
machine translation (Bahdanau et al., 2014), speech
recognition (Huang and Narayanan, 2016) and re-
lation classification (Zhou et al., 2016). In the con-
text of personality classification, learning a scoring
function gives sentence weighting to the attention
mechanism and allows a model to pay more atten-
tion to the most influential sentences in a text for a
personality trait. As for the hybrid models, we ex-
periment with different strategies for applying the
pre-trained language model - ‘feature-based’ and
‘fine-tuning’: In the feature-based approach, we
freeze model weights during training and use the
pre-trained contextualized word embeddings from
BERT. In the ‘fine-tuning’ approach, we unfreeze
all 12 layers and fine-tune towards the personality
detection task (see Devlin et al., 2018).

All models are implemented using PyTorch
(Paszke et al., 2019). Unless specifically stated
otherwise, we use binary cross entropy as our loss
function, ’AdamW’ as optimizer, a fixed learning
rate of 8×10−4 and dropout = 0.1, l2 = 1×10−4

as the regularization. The optimal network struc-
tures and values of hyperparameters were found
by grid-search. The performance of the models is
evaluated by 10-fold cross-validation (ten repeti-
tions) to counter variability due to initialization of
the weights. We report the results of the best per-
forming models in comparison to the performance
of the APP systems presented in Section 2 Table 1.

4.1 Components
Contour Encoder: The contour encoder,
EncoderPSY LING(X), transforms a sequence of
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Figure 1: Text contours for three selected features of first 40 sentences of a randomly selected text from the Essays
dataset (ID: 2004 499).

psycholinguistic features X = (x1, x2, . . . , xn)
to a hidden psycholinguistic representation vector
PPSY LING of a given text. Here, xi is a 436 di-
mensional vector for the ith sentence obtained from
the APA system described in Section 3.2. In this
paper, two architectures of contour encoder are ap-
plied: BLSTM and BLSTM with attention (ATTN).
The BLSTM contour encoder is a L-layer BLSTM
with number of hidden states of dh. The hidden
representation from this model is a do = 2dh
dimensional vector, which is a concatenation of
the last hidden states of the last layer in forward
(
−→
hn) and backward direction (

←−
h1). Specifically,

X 7→ EncoderBLSTM (X) = P :

[
−→
H,
←−
H ] = BLSTM(X)

P = [
−→
hn

T |←−h1T ]T

where [·|·] is concatenation operator,
−→
H =

(
−→
h 1,
−→
h 2, . . . ,

−→
h n) and

←−
H = (

←−
h 1,
←−
h 2, . . . ,

←−
h n)

are BLSTM model’s last layer hidden states in the
forward and backward direction.

The ATTN contour encoder model was con-
structed as follows: Given a input sequence X ,
a sequence of weights will be computed with the
help of a BLSTM model. Then the hidden represen-
tation of a given text can be obtained by computing
the weighted sum of (a) concatenated hidden vec-
tors from the last layer of the BLSTM model in
forward and backward direction (b) feature vectors
in X . We also experimented with (c) computing
weights for each individual dimension of xi and
then taking weighted sum of X by applying this
weights. Our experiments shows, that the approach
(c) works best for both dataset. So in this paper, we

define X 7→ EncoderATTN (X)=P:

H = BLSTM(X)

M = Tanh(WattH + batt)

ααα = Softmax(M)

V =
∑n

i=1αiαiαi ⊙ xixixi

P = Tanh(WpoolV + bpool)

where Watt ∈ R436×do , batt ∈ R436. H and do is
defined as in BLSTM encoder description. Softmax
is defined as: αij =

emij∑n
k=1 e

mkj

BERT Language Model: We use a pre-trained
BERT transformer model, ‘bert-base-uncased’,
from Huggingface’s transformers library (Wolf
et al., 2019). The model consists of 12 transformer
layers with a hidden size of 768 and 12 attention
heads. Texts are tokenized using BERT’s BPE tok-
enizer. We use as input to BERT language model
the initial 512 tokens T = (t1, t2, . . . , tm) of a
given text, i.e. up to 510 word tokens plus the [cls]
token at the beginning and the [sep] token at the
end of a given text). Assuming the output of the
l layer of BERT is H(l) = (h

(1)
1 , h

(l)
2 , . . . , h

(l)
n ),

then a hidden vector is computed by either (a) the
output for the [cls]-token, i.e. i.e., V = h

(l)
1 or

by (b) averaging the output at the position of the
actual tokenized words, i.e., V = 1

m−2

∑m−2
i=i h

(l)
i .

Experiments with both approaches for l ∈ [1, 12]
revealed that that (a) the latter approach consis-
tently works better than the former and (b) that
l = 11 works best for the Essays dataset, wheras
l = 12 works best for the MBTI dataset. So we
define X 7→ EncoderBERT (T ) = P
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H(l) = BERT(T )

V = 1
m−2

∑m−2
i=i h

(l)
i

P = Tanh(WpoolV + bpool)

Classifier: We use a multi-layer feed-forward
neural network as our classifier component. The
input to the classifier has a dimension correspond-
ing to the underlying encoder’s output dimension.
We use PReLU as the activation function. Batch
normalization was applied between layers of the
classifier. All hidden layers share a same hidden
size.

4.2 Models
We first construct models based solely on psy-
cholinguistic features. These models (1) serve as
interpretable baselines for the hybrid prediction
models and (2) allow us to determine feature im-
portance of individual features groups in predict-
ing personality traits. To fully utilize the infor-
mation provided by the contour-based measure-
ment of text features, the models rely on BLSTM
or BLSTM with attention architecture, i.e. at
position of EncoderPSY LING, EncoderBLSTM or
EncoderATTN is applied.

P = EncoderPSY LING(X)

y = Classifier(P )

EncoderBLSTM has 3 layers with 256 hidden
states. We applied a learning rate of 0.001 dur-
ing training of this model. The BLSTM in
EncoderATTN has 3 layers with 512 hidden states.
The classifier has 3 layers with hidden size of 512.

Our hybrid architecture combines text contours
of psycholinguistic features with Transformer-
based language models using a late-fusion method
by concatenating the hidden representations from
the psycholinguistic contour encoder and BERT,
specifically

PPSY LING = EncoderPSY LING(X)

PBERT = EncoderBERT (T )

P = [P T
PSY LING|P T

BERT ]
T

y = Classifier(P )

At the position of EncoderPSY LING,
EncoderBLSTM can be used, which has 3
layers with hidden states of 256, or EncoderATTN ,
of which BLSTM also has 3 layers with hidden
states of 256 with dropout = 0.2. During training,

parameters of BERT has a fixed learning rate of
2×10−5 while learning rate of 8×10−5 is applied
to other parameters. The classifier has 3 layers
with hidden size of 512.

The final model used in our experiments em-
ployed a stacking approach to ensemble our best
performing models (Wolpert, 1992), which has
been shown to effectively increase the accuracy
of the ensembled individual models. Specifi-
cally, we employed model stacking to combine
BERT+ATTN-PSYLING (FT) model instances for
both dataset.

The training procedure consists of two stages: In
stage one, we take the model prediction on the dev-
fold of each model trained on the train-fold of a
k-fold CV. These predictions are then concatenated
and constitute the one dimension out of 10 of the in-
put data in a subsequent stage (stage 2). We did the
same for all 10 iterations. The final predictions of
the model are derived from another logistic regres-
sion model trained on the concatenated prediction
vectors from stage 1 (10-fold CV).

4.3 Feature importance

To assess the relative importance of the feature
groups, we employed Submodular Pick Lime (SP-
LIME; Ribeiro et al. (2016)). SPLIME is a method
to construct a global explanation of a model by
aggregating the weights of linear models, that lo-
cally approximate the original model. To this end,
we first constructed local explanations using LIME.
Analogous to super-pixels for images, we catego-
rized our features into four groups – lexical rich-
ness, morphosyntactic complexity, readability, sen-
timent/emotion (see section 3.2). We used binary
vectors z ∈ {0, 1}d to denote the absence and pres-
ence of feature groups in the perturbed data sam-
ples, where d is the number of feature groups. Here,
‘absent’ means that all values of the features in the
feature group are set to 0, and ‘present’ means that
their values are retained. For simplicity, a linear re-
gression model was chosen as the local explanatory
model. An exponential kernel function with Ham-
ming distance and kernel width σ = 0.75

√
d was

used to assign different weights to each perturbed
data sample. After constructing their local explana-
tion for each data sample in the original dataset, the
matrix W ∈ Rn×d was obtained, where n is the
number of data samples in the original dataset and
Wij is the jth coefficient of the fitted linear regres-
sion model to explain data sample xi. The global
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Essays MBTI Kaggle
O C E A N Avg I/E N/S T/F P/J Avg

Majumder et al. (2018) 61.1 56.7 58.1 56.7 57.3 58 - - - - -
Kazameini et al (2020) 62.1 57.8 59.3 56.5 59.4 59 - - - - -
Amirhosseini & Kazemian (2020) - - - - - - 79 86 74.2 65.4 76.1
Mehta et al (2020):
Psycholinguistic + MLP 60.4 57.3 56.9 57 59.8 58.3 77.6 86.3 72 61.9 74.5
BERT-base + MLP 64.6 59.2 60 58.8 60.5 60.6 78.3 86.4 74.4 64.4 75.9
All features (base) + MLP 61.1 57.4 57.9 58.6 60.5 59.1 78.4 86.6 75.9 64.4 76.3
BERT-large + MLP 63.4 58.9 59.2 58.3 58.9 59.7 78.8 86.3 76.1 67.2 77.1
Ramezani et al. (2021) 56.30 59.18 64.25 60.31 61.14 60.24 - - - - -
Psycholinguistic models (ours)
BLSTM-PSYLING 61.69 59.22 58.12 56.87 57.52 58.68 77.29 86.31 72.91 61.01 74.38
ATTN-PSYLING 63.15 59.79 59.18 58.29 59.79 60.04 77.29 86.19 73.97 63.69 75.29
Hybrid models (ours)
BERT+BLSTM-PSYLING (FB) 64.25 60.80 60.92 59.26 60.48 61.14 78.39 86.58 74.42 64.17 75.89
BERT+ATTN-PSYLING (FB) 64.78 61.13 60.44 59.30 60.68 61.27 78.82 86.78 76.62 65.78 77.00
BERT+BLSTM-PSYLING (FT) 65.55 60.72 60.72 60.52 62.14 61.93 85.78 90.86 83.79 79.79 85.06
BERT+ATTN-PSYLING (FT) 66.23 60.60 61.61 61.05 61.65 62.28 86.25 90.96 84.66 79.65 85.38
BERT+PSYLING Ensemble 71.95 61.38 63.01 60.16 60.98 63.50 85.47 92.27 85.70 82.58 86.51

Table 1: Performance comparison (classification accuracy) of our models (bottom) with previous state-of-the-art-
models (top). Best performance indicated in bold.

importance score of the SP-LIME for feature j can
then be derived by: Ij =

√∑n
i=1 |Wij |

5 Results and Discussion

An overview of the results of our models in com-
parison to those reported in the previous studies
reviewed above is presented in Table 1. As Table 1
shows, we achieve state-of-the-art (SOTA) results
on both benchmark personality datasets: On the
Big Five Essay dataset, our best-performing model
achieves a classification accuracy of 63.5%, which
corresponds to an increase of 2.9% over the pre-
vious SOTA. On the MBTI Kaggle dataset, our
best model improved the classification accuracy of
SOTA by 8.28%. On both datasets the highest clas-
sification accuracy was achieved by the ensemble
model, which combined ten iterations of a hybrid
model integrating a fine-tuned BERT model with
an attention-based BLSTM model trained on text
contours (see BERT+PSYLING Ensemble in Table
1). Our models achieve the highest performance
on four of the Big Five - all except Extraversion -
and on all four MBTI dimensions, with the largest
increase in performance for the Big Five on the
Openness dimension (+7.35%) and for the MBTI
on the T/F dimension (+9.6%). Comparing the
accuracy for each personality trait from Table 1
for the hybrid models trained with the ”feature-

based” strategy (denoted by ”FB”) with the cor-
responding value for the models trained with the
”fine-tuning” strategy (denoted by ”FT”), we find
that the accuracy of all traits improved when each
pre-trained model was fine-tuned on the data set.
Comparing the accuracy for each personality trait
for the models trained with an attention mecha-
nism (denoted by ‘ATTN’) to the corresponding
value for the models trained without this mecha-
nism (denoted by ‘BLSTM’), we find that accuracy
on all dimensions except the MBTI N/S improved
when an attention mechanism was used. Our re-
sults also show that approaches grounded in inter-
pretable features can achieve competitive perfor-
mance with Transformer-based approaches: Our
best-performing model trained solely on psycholin-
guistic features, the attention-based BLSTM model
(ATT-PSYLING), achieved an average classifica-
tion accuracy of 60.04%, approaching the previ-
ous SOTA model, BERT-base + MLP Mehta et al.
(2020a), by only 0.54%. This is a promising find-
ing given the need for more interpretable person-
ality prediction models that can provide valuable
insights into key psycholinguistic features to drive
personality prediction and advance personality psy-
chology research. See e.g. Rudin (2019) for more
general calls for using white-box models to solve
practical problems, particularly in the context of

188



O C E A N
Group I Group I Group I Group I Group I

SentiEmo 18.49 SentiEmo 21.36 SentiEmo 16.39 SentiEmo 9.28 SentiEmo 16.62
lexical 12.90 lexical 14.48 lexical 10.93 lexical 7.52 lexical 10.23

readability 9.57 readability 9.57 morph.syn 9.17 morph.syn 6.23 morph.syn 8.11
morph.syn 7.08 morph.syn 8.91 readability 7.51 readability 4.21 readability 7.06

I/E N/S T/F P/J
Group I Group I Group I Group I

SentiEmo 33.73 SentiEmo 21.32 SentiEmo 45.06 SentiEmo 24.97
lexical 29.94 lexical 14.25 lexical 24.64 readability 17.21

morph.syn 20.65 readability 12.55 morph.syn 20.31 morph.syn 16.02
readability 18.33 morph.syn 10.40 readability 18.76 lexical 14.48

Table 2: Results of the feature ablation for Big Five Essays datset (top) and Kaggle MBTI dataset (bottom): Feature
importance (Model: ATTN-PSYLING) macro-averaged across 100 model instances. (10 × 10-fold CV).

critical industries such as healthcare, criminal jus-
tice, and news. This is due to the fact that hu-
man experts in a given application domain require
both accurate and understandable models (Loyola-
Gonzalez, 2019).

In what follows, we present the results of the
ablation experiments. Feature group importance
was quantified using SP-LIME on the best per-
forming model trained only on text contours of
psycholinguistic features, the ATTN-PSYLING
model. The results of the feature ablation exper-
iment are presented in Table 2. The table shows
that the prediction of personality traits was influ-
enced by all four feature groups (all I > 4.21).
Overall, personality traits were best predicted by
the sentiment/emotion/affect (SentiEmo) feature
group. The lexical richness, diversity and sophis-
tication group consistently ranked second on all
traits except the P/J MBTI dimension. This result
indicates that in addition to words associated with
affective-emotional categories, personality traits
are also related to more general aspects of vocabu-
lary. Morphosyntactic complexity and readability
play a minor role but still achieve high I-scores
compared to the highest scoring group in predict-
ing Extraversion, Neuroticism, and Agreeableness
(ratio: I(groupj) / I(SentEmo) > 0.45). Finally,
zooming in on the specific interactions between
psycholinguistic cues and personality traits, we cal-
culated the difference between the average feature
scores of text samples with different labels for each
personality trait. Visualizations of the most im-
portant psycholinguistic features that influence the
prediction of personality traits are shown in Figures
4 and in the Appendix. Some interesting patterns

emerged: For example, texts produced by extro-
verts tend to (a) have less complex morphosyn-
tax than those by introverts (as indicated by the
lower scores of the information-theoretic complex-
ity measures), (b) contain a greater proportion of
positive words, and (c) have a higher proportion of
frequently used n-grams from the spoken language,
news, and magazine registers. The language use
of individuals scoring high on Neuroticism showed
(a) a higher proportion of self-referencing words,
(b) higher proportions of words related to sadness,
anxiety and disappointment, but also (c) a higher
proportion of longer n-grams from the fiction regis-
ter. Highly conscientious individuals showed (a) a
higher proportion of words with high prevalence,
i.e. words that are known by a larger percentage
of the population, (b) more words associated with
affiliation (ally, friend) and (c) a higher proportions
of frequently used n-grams from the academic reg-
ister. These results replicate and extend previous
findings reported in the literature (for overviews
see, e.g., Mairesse et al., 2007; Park et al., 2015;
Boyd and Schwartz, 2021).

6 Conclusion

Due to its central importance in capturing the es-
sential aspects of human life, increasing attention is
being paid to the modeling and predicting person-
ality traits. In this work, we made valuable contri-
butions to advance the state of the art in automatic
prediction of personality traits from verbal behav-
ior. We demonstrated that models trained with a
comprehensive set of theory-based psycholinguis-
tic features can compete with a Transformer-based
model when their within-text distribution is taken
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into account. Moreover, we showed that hybrid
models incorporating such features can improve the
performance of pre-trained Transformer language
models, even when the latter is based on a larger
model (BERT-large). We also showed that differ-
ent techniques for applying pre-trained language
representations from the Transformer model have
an impact on model performance. Our ablation ex-
periments have yielded interesting insights into the
interplay between theory-based psycholinguistic
features and personality traits. Here, we decided
to focus on the two most widely used benchmark
datasets. In our future work, we intend to con-
duct experiments with more recent, larger person-
ality datasets such as PANDORA (Gjurkovic et al.,
2020). Since this dataset also includes metadata
(gender, age, and location/region), it would be in-
teresting to see how they contribute to modeling
and predicting personality traits from language use.
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Figure 4: Essays dataset: Upper panel: Top 20 most characteristic features from each feature group by personality
trait. Lower panel: Top 2 most characteristic features from each feature group by personality trait. Plotted scores
represent the difference between the z-standardized mean scores of high- and low-scoring individuals on a given
personality trait. Positive scores are characteristic of the high-scoring individuals on a given trait (e.g. individuals
with high extraversion scores).
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Figure 5: MBTI Kaggle dataset: Upper panel: Top 20 most characteristic features from each feature group by
personality trait. Lower panel: Top 2 most characteristic features from each feature group by personality trait.
Plotted scores represent the difference between the z-standardized mean scores of high- and low-scoring individuals
on a given personality trait. Positive scores are characteristic of the high-scoring individuals on a given trait (e.g.
individuals with high extraversion scores).
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