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ABSTRACT
This paper addresses the problem of finding exact and explicit
(closed-form) expressions for the stationary marginal distribution
of threshold-type time series processes, their associated moments,
autocovariance and autocorrelation coefficients. The innovation
process of the models under consideration follows three central
symmetric distribution functions: Gaussian, Laplace, and Cauchy.
Theoretical results for both two- and three-regime threshold-type
models are derived. Various examples give rise to a deeper under-
standing of certain features of the stationary process structure. Exact
results for the stationary density, central moments, and autocorre-
lations of threshold-type processes are compared with approximate
density andmoment results obtained through an existing numerical
methods.
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1. Introduction

The impact of univariate threshold-type time series processes is enormous across many
areas of science. Particular forms of these processes, such as the subclass of self-exciting
threshold autoregressive (SETAR) processes have been defined and explored in detail; see,
e.g. Chen et al. [1] and Hansen [2]. Indeed, much is known about the estimation and test-
ing performance of threshold-type processes. By contrast, and somewhat surprising, little
is known about the exact stationary marginal distribution function of the data generating
process (DGP) underlying these processes. Knowledge of the exact marginal distribu-
tion of a threshold-type process is very useful in understanding the structure of the DGP,
and in formulating or selecting models appropriate to given situations. For instance, it is
often desirable to investigate such statistics as process mean, variance, skewness, kurtosis
and autocorrelation. By obtaining an explicit exact expression for the stationary marginal
distribution function, these statistics can readily be obtained. The distribution may also
shed light on many other process characteristics, including multi-modality. The station-
ary marginal distribution function may serve as a basis for generating a typical value of a
threshold-type process to start off a simulation study. Furthermore, the exact calculation
of the likelihood function requires knowledge of the stationarymarginal distribution since
it enters the likelihood through the first observation.

CONTACT Jan G. De Gooijer j.g.degooijer@uva.nl Amsterdam School of Economics, University of Amsterdam,
PO Box 15867, Amsterdam 1001NJ, The Netherlands

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/02331888.2022.2029862&domain=pdf&date_stamp=2022-03-09
http://orcid.org/0000-0002-5434-8550
mailto:j.g.degooijer@uva.nl
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 J. G. DE GOOIJER

In this paper, we focus on the exact stationary marginal distribution function of low-
order threshold-type processes and their moment and (auto)correlation properties. In
particular, special attention is given to two- and three regime self-exciting threshold autore-
gressive (SETAR) processes; see Section 2 for a definition. We assume that these processes
have error terms (innovations) following a central symmetric distribution function, and
hence, we go beyond the usual assumption of Gaussian distributed innovations. The struc-
ture of low-order SETAR processes is simple, useful and interpretable in a wide range of
contexts. Our aim is to derive explicit exact expressions of the stationary marginal dis-
tribution function of threshold-type models. This will allow us to better understand the
structure of these models. For completeness, we also summarize several studies on this
topic. To some extent, this part of the paper complements the limited review of stationary
distributions provided by Ranocha [3].

Closely linked to some of the threshold models under consideration, is the two-regime
threshold AR(1) process with an exogenous trigger and Gaussian innovations of Knight
and Satchell [4]. In the case, the trigger follows a Bernoulli distribution, these authors
obtained closed-form expressions for the stationary marginal distribution of the DGP,
and the associated mean, variance and autocovariance function; see also Grynkiv and
Stentoft [5] for a two-regime threshold vector AR model with an exogenous trigger. Guay
and Scaillet [6] derived exact expressions for the conditional skewness and the conditional
kurtosis of a time series following a contemporaneous first-order asymmetric process
with Gaussian innovations, a special case of the threshold asymmetric moving average
model briefly discussed in Remark 6.3. It appears that for higher-order processes with non-
Gaussian innovations, extensions of the results in the above studies get very complicated.
Therefore, these threshold-type specifications are outside the scope of this paper.

The rest of the paper is organized as follows. In Section 2, we give a general formulation
of the stationary distribution of a Markov chain. Next, we introduce the multiple-regime
SETAR process with central symmetric innovations. Also, we present some moment
expressions to be evaluated explicitly later. In Section 3.1, we derive an explicit and exact
expression for the stationary marginal distribution function, its moments and covariance
function of a two-regime piecewise constant model (PCM), a subclass of the SETAR pro-
cess introduced in Section 2. The PCM has Gaussian innovations. Section 3.2 provides
a similar explicit expression but now for PCMs with central symmetric innovations. The
section also exemplifies some features of themarginal density function for central symmet-
ric tick- and thin-tailed innovation distribution functions. Section 4 contains an explicit
formula for the stationary density of a three-regime PCM with central symmetric inno-
vations. Section 5 considers a multiplicative PCM with general innovations. In Section 6,
the focus is on two-regime first-order SETAR process with Gaussian, Laplace, and Cauchy
innovations. In Section 7, we discuss a numerical procedure to approximate the stationary
marginal distribution function. In addition, we compare the quality of the procedure with
the exact pdf given earlier in Section 6. Finally, in Section 8, we investigate the stationary
marginal density of a simple three-regime SETARmodel for a modified random walk pro-
cess. Some concluding remarks are given in Section 9. The proofs of new theoretical results
are presented in the Appendix.
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2. Preliminaries

Consider a strictly stationary and ergodic univariate time series process {Yt , t ∈ Z}. We
wish to evaluate its invariant probability distribution π . Let {Yt} be an ergodic Markov
chain in R with a given initial distribution. Then π satisfies the integral equation

π(A) =
∫ ∞

−∞
P(A|y)π(dy), (1)

where A is a Borel set of R, and P(·|·) is the usual conditional probability (transition ker-
nel). Finding an explicit expression of (1) for linear and nonlinear time series processes is
a non-trivial problem. In this paper, we mainly focus on special cases of a k-regime SETAR
model of order (k; p1, . . . , pk) with delay d = 1. This model is defined as

Yt = α
(j)
0 +

pj∑
u=1

α
(j)
u Yt−uI(rj−1,rj](Yt−1) + εt , (j = 1, . . . , k), (2)

where −∞ = r0 < r1 < · · · < rk = ∞ are the threshold values, {εt} is a sequence of
independent and identically distributed (i.i.d.) central symmetric innovations having an
absolutely continuous probability density function (pdf) onRwith density g(ε; ·) and dis-
tribution function G(·), and IA(·) denotes the indicator of a set A, i.e. IA(x) = 1 if x ∈ A
and IA(x) = 0 otherwise.

One possible extension of (2) is to allow the εt ’s to be different in each regime with dif-
ferent variances, assuming that they are independent across regimes. This extension, while
not pursued in this paper, can easily be accommodated in the derivation of the stationary
marginal densities. Another extension is to allow formoving average (MA) lag polynomials
in (2); see, e.g. Remark 6.4, and Remark 7.1.

In the next sections, we give explicit expressions (often in closed form) of the exact
stationary marginal pdf f (y) for various special cases of (2). Using these expressions, we
provide explicit expressions for the sth non-central moment νs = ∫∞

−∞ ysf (y) dy, assuming
it exists. Based on the non-central moments, we also show exact and explicit expressions
for the mean, variance, skewness and kurtosis which are, respectively, defined as

μ = ν1, σ 2 =ν2 − μ2, S=(ν3 − 3ν2ν1 + 2ν31
)
/σ 3,

K = (
ν4 − 4ν3ν1 + 6ν2ν21 − 3ν41

)
/σ 4.

In addition, we provide exact expressions for the lag � covariance function γ� and the
lag � autocorrelation function ρ� which for a stationary process {Yt , t ∈ Z} are, respectively
defined as

γ� = E(YtYt−�), ρ� = (
γ� − μ2)/σ 2, (� = 1, 2, . . .).

Knowledge of these statistics makes it possible to obtain a deeper understanding of the
statistical properties of the threshold-type models without resorting to extensive Monte
Carlo simulations.
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3. A two-regime piecewise constant model

3.1. Gaussian innovations

We start with a simple subclass of the SETAR model in (2) in which the autoregressive
function has the form of a piecewise constant function of its arguments. The resulting zero-
order SETAR process, called two-regime piecewise constant model (PCM), is defined by

Yt = α−
0 I(−∞,r](Yt−1) + α+

0 I(r,∞)(Yt−1) + εt , (3)

where {εt} i.i.d.∼ N (0, σ 2
ε )withσ 2

ε < ∞.Without loss of generality, we takeσ 2
ε = 1.Note that

the process {I(−∞,r](Yt−1)} is a Markov chain. As we will see below, the simple structure
of (3) makes a full investigation of features of nonlinearity possible.

The conditional distribution of Yt given Yt−1 = yt−1 is

h(yt|yt−1) =
{

ϕ(yt ;α−
0 ) if yt−1 ≤ r,

ϕ(yt ;α+
0 ) if yt−1 > r,

where ϕ(y;μ) ≡ ϕ(y;μ, 1) is the pdf of a Gaussian distributed random variable X with
meanμ and variance 1. Denoting the stationary density ofYt−1 by f (yt−1), the joint density
of Yt and Yt−1 is given by

g(yt , yt−1) = h(yt|yt−1)f (yt−1) =
{

ϕ(yt ;α−
0 )f (yt−1) if yt−1 ≤ r,

ϕ(yt ;α+
0 )f (yt−1) if yt−1 > r.

(4)

The density f (yt) is stationary if and only if it is also the marginal density of {Yt , t ∈ Z}.
This gives the condition

f (yt) =
∫ r

−∞
ϕ(yt ;α−

0 )f (yt−1) dyt−1 +
∫ ∞

r
ϕ(yt ;α+

0 )f (yt−1) dyt−1. (5)

Using (5), the stationary marginal density fα−
0 ,α

+
0
(y) is given in Proposition 3.1.

Proposition 3.1: The stationary marginal density of the PCM (3) is given by

fα−
0 ,α

+
0
(y) = wϕ(y;α−

0 ) + (1 − w)ϕ(y;α+
0 ), (6)

where

w = P(Yt ≤ r) =
�(r−α+

0 )

1 − �(r−α−
0 ) + �(r−α+

0 )

∈ [0, 1), (7)

with �(x) = ∫ x
−∞ ϕ(z; 0)dz the distribution function ofN (0, 1).

Next, we derive the first four non-central moments of {Yt}. Making use of the result
1√
2π

∫∞
−∞ x exp(− 1

2 (x − a)2)dx = 1√
2π

∫∞
−∞(x + a) exp(− 1

2x
2)dx = a (a ∈ R), it is easy
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to see that the mean of {Yt} is given by

ν1 =
∫ ∞

−∞
yf (y) dy = wα−

0 + (1 − w)α+
0 .

To obtain the second-, third- and fourth-order non-central moments, we first introduce
the following integral equations:∫ ∞

−∞
x2ϕ(x; a) dx = (1 + a2),

∫ ∞

−∞
x3ϕ(x; a) dx = (3 + 3a3),∫ ∞

−∞
x4ϕ(x; a) dx = (3 + 6a2 + a4).

Then, on expanding (y + α±
0 )s in a binomial form for each value of s, we have

ν2 = w
(
1 + (α−

0 )2
)+ (1 − w)

(
1 + (α+

0 )2
)
,

ν3 = w
(
3α−

0 + (α−
0 )3

)+ (1 − w)
(
3α+

0 + (α+
0 )3

)
,

ν4 = w
(
3 + 6(α−

0 )2 + (α−
0 )4

)+ (1 − w)
(
3 + 6(α+

0 )2 + (α+
0 )4

)
.

For general central symmetric innovations, explicit and exact expressions for S and K
are given in Example 3.1.

Corollary 3.1: The covariance coefficient γ� at lag � (� ≥ 1) is given by

γ� = A1γ1,� + A2γ2,�, (8)

where the lag �, regime-specific covariance coefficients γ1,� = E(YtYt−�I(−∞,r](Yt−1)) and
γ2,� = E(YtYt−�I(r,∞)(Yt−1)) (� ≥ 2) can be expressed recursively as

γ1,� = (
1 − �(r−α−

0 )

)
γ2,�−1 + �(r−α−

0 )γ1,�−1 with γ1,1 = α−
0 ,

γ2,� = (
1 − �(r−α+

0 )

)
γ2,�−1 + �(r−α+

0 )γ1,�−1 with γ2,1 = α+
0 ,

and where A1 and A2 are the constants

A1 = (1 − w)
{− ϕ(r − α+

0 ) + α+
0 �(r−α+

0 )

}+ w
{− ϕ(r − α−

0 ) + α−
0 �(r−α−

0 )

}
,

A2 = (1 − w)
{
ϕ(r − α+

0 ) + α+
0
(
1 − �(r−α+

0 )

)}+ w
{
ϕ(r − α−

0 ) + α−
0
(
1 − �(r−α−

0 )

)}
,

with ϕ(r − α±
0 ) = (1/

√
2π) exp(−(r − α±

0 )2/2).

Note thatA1 + A2 = wα−
0 + (1 − w)α+

0 . By substituting this result in (8) and rearrang-
ing terms, we obtain the following relationship between γ� and γ�−1 for � ≥ 2,

γ� = (
�(r−α−

0 ) − �(r−α+
0 )

)
γ�−1 +

(
(1 − �(r−α−))γ2,�−1 + �(r−α+

0 )γ1,�−1

)
(A1 + A2),

(9)

where γ1 = A1α
−
0 + A2α

+
0 , γ1,1 = α−

0 and γ2,1 = α+
0 . The corresponding lag � autocor-

relation function of {Yt , t ∈ Z} takes the form ρ� = (γ� − μ2)/σ 2 (� ≥ 1) where σ 2 =
1 + w(1 − w)(α+

0 − α−
0 )2. Consider the special case α+

0 = −α−
0 ≡ α, with r = 0. Then,

A1 + A2 = 0, so that (9) reduces to (�(α) − �(−α))
�−1γ1 (� ≥ 2), where γ1 = 2αA2 with

A2 = ϕ(α) + (α/2)(�(α) − �(−α)).
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3.2. Central symmetric innovations

Assume that the random variable ε1 follows a strictly and continuously positive pdf on
R with a central symmetric distribution function G(·). This setup includes, for instance,
the Gaussian distribution, the Student t-distribution, or the classical symmetric Laplace
(standard double exponential) distribution. Then, in analogy with Proposition 3.1, the
stationary marginal density fα−

0 ,α
+
0
(y) is given in Proposition 3.2.

Proposition 3.2: The stationary marginal density fα−
0 ,α

+
0
(y) of the PCM (3) with central

symmetric innovations is given by

fα−
0 ,α

+
0
(y) = ωfα−

0
(y) + (1 − ω)fα+

0
(y), (10)

where

ω = P(Yt ≤ r) =
G(r−α+

0 )

1 − G(r−α−
0 ) + G(r−α+

0 )

∈ [0, 1), (11)

and fα−
0
(y) and fα+

0
(y) are the densities of {Yt , t ∈ Z} in the lower and upper regime,

respectively.

Remark 3.1: The proof of Proposition 3.2 has been omitted from the paper since it can be
obtained along the same lines as the proof of Proposition 3.1 given in the Appendix.

Example 3.1 (Li et al. [7]): The lag � autocorrelation functionρ�, skewnessS , and kurtosis
K of the PCM (3) with central symmetric innovations are given by

ρ� = γ�

γ0
=

λ�(α
−
0 − α+

0 ) + ω(1 − ω)
(G(r−α−

0 ) − G(r−α+
0 )

)�
(α−

0 − α+
0 )2

σ 2
ε + ω(1 − ω)(α−

0 − α+
0 )2

(� ≥ 1),

(12)

S = E(ε31) + (ω − 3ω2 + 2ω3)(α−
0 − α+

0 )3

[σ 2
ε + ω(1 − ω)(α−

0 − α+
0 )2]3/2

, (13)

K = E(ε41) + 6σ 2
ε ω(1 − ω)(α−

0 − α+
0 )2 + (ω − 4ω2 + 6ω3 − 3ω4)(α−

0 − α+
0 )4

[σ 2
ε + ω(1 − ω)(α−

0 − α+
0 )2]2

, (14)

where λ� = E[εt−�I(−∞,r](Yt−1)].

Remark 3.2: Consider the numerator of (12) with � = 1. Let α+
0 = −α−

0 ≡ α, r = 0,
and {εt} i.i.d.∼ N (0, 1). Then γ1 = [2αϕ(α) + (�(α) − �(−α))α

2], which is identical to the
expression γ1 = 2αA2 given in Section 3.1.

Example 3.2: To provide some insight into the relation between r and the shape of the
marginal stationary density, we consider the case (α−

0 ,α
+
0 ) = (−1.25, 1.25). Figure 1 shows

fα−
0 ,α

+
0
(y) as a function of r for a PCM with {εt} i.i.d.∼ N (0, 1) and for a PCM with {εt} i.i.d.∼ t5.

For both innovation distributions the pdf for r = 0 is bimodal around the points α−
0 and
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Figure 1. Stationary marginal densities fα−
0 ,α+

0
(y) of the PCM (3) withN (0, 1) and Student t5 innova-

tions, and with (α−
0 ,α

+
0 ) = (−1.25, 1.25).

α+
0 which follows from the fact that ω = 1/2. So, both DGPs alternate between these two

points. As r increases the pdfs become unimodal around the point−1.25. Note that for the
PCM with t5 innovations the curves of the pdfs for r = 1, 2, and 3 are hard to distinguish
at this scale.

Example 3.3: To explore the shape of the marginal stationary density of a PCM with
central symmetric short-tailed (or thin-tailed) innovations, we consider a pdf proposed
by Akkaya and Tiku [8]. In particular, for a random variable X the pdf is defined
as f (x; h) = (C/

√
2π){1 + (x2/2h)}2 exp(−x2/2) (−∞ < x < ∞), where C = 1/(1 +

1/h + 3/(4h2)) with h = 2−c, c<2 a constant. All odd moments of X are zero. The sec-
ond and fourth centralmoments ofX are given byC(1 + 3/h + 15/(4h2)) and 3 + [48(2 +
h)/(3 + 4h(1 + h))], respectively. Adopting f (ε; h) as the pdf of {εt , t ∈ Z}, Figure 2 shows
the skewness and kurtosis of the PCM (3) as a function of r for five values of c when
(α−

0 ,α
+
0 ) = (4,−1). Note that as |r| increases the kurtosis becomes larger with increasing

values of c.

4. Multiple-regime PCMwith central symmetric innovations

Underlyingmodel (3) is aMarkov chain, {Mt}, with k = 2 states or regimes. This setup can
be extended to a PCM with k ≥ 2 multiple states. Assuming Mt = j if and only if Yt−1 ∈
(rj−1, rj], the resulting k-regime PCM can be written as

Yt = α
(j)
0 I(rj−1,rj](Yt−1) + εt , (j = 1, . . . , k), (15)

where {εt , t ∈ Z} are i.i.d. central symmetric innovations. Clearly, (15) can be analysed
using Markov chain techniques. To this end, let P = (pij) denote a k × k matrix of tran-
sition probabilities, where pij = P(Mt = j|Mt−1 = i) = G(rj−αi) − G(rj−1−αi). Under fairly
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Figure 2. Skewness (S) and kurtosis (K) of the PCM (3) as a function of the threshold parameter r, for
five values of c representing different innovation processes each withK < 3.

weak conditions [9] on α
(j)
0 and {εt}, {Mt}will be ergodic and will possess a stationary dis-

tribution denoted by the row vector of probabilities π = (π1, . . . ,πk). This is the unique
solution to the system π = πP with

∑k
j=1 πj = 1.

Let fn,j(y) denote the conditional distribution of Yt+n given Yt−1 ∈ (rj−1, rj] (n ∈ Z+).
Applying the law of total probability, the k × 1 vector fn(y) = (fn,1(y), . . . , fn,k(y))T sat-
isfies the recursive relationship fn(y) = Pfn−1(y) (n ≥ 2), where f1(y) = (g(y;α(1)

0 ), . . . ,
g(y;α(k)

0 ))T. Using this result, the stationary marginal density f
α

(1)
0 ,...,α(k)

0
(y) for the

PCM (15) is easily derived to be

f
α

(1)
0 ,...,α(k)

0
(y) =

k∑
j=1

πjg(y;α(j)
0 ). (16)

We see that (16) is a mixture of densities g(y; ·)with weights given by k transition prob-
abilities. From (16) it follows that the first and second non-central moments of (15) are
given by ν1 = ∑k

j=1 πjα
(j)
0 and ν2 = 1 +∑k

j=1 πj(α
(j)
0 )2, respectively.

To obtain an expression for the covariance function γ�, we assume that P has distinct
eigenvalues 1 = λ1, λ2, . . . , λk, where |λj| < 1 for j ≥ 2. Let the corresponding right and
left eigenvectors be v1, . . . , vk and w1, . . . ,wk, normalized so that wT

i vj = δij, Kronecker’s
delta. Also, we introduce the regime-specific mean μ

(j)
n defined as

μ
(j)
n = E[Yt+nI(rj−1,rj](Yt−1)], (n ≥ 1).

Then the covariance function γ� = E(YtYt−�) (� ≥ 1) is given by

γ� =
k∑

j=1
πjE[Yt−�I(rj−1,rj](Yt−1)]E[YtI(rj−1,rj](Yt−1)],

= μT
� μ, (17)
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where the k × 1 vectors μ� and μ are given by

μ� = (μ
(1)
� , . . . ,μ(k)

� )T and μ = (π1μ
(1)
0 , . . . ,πkμ

(k)
0 )T,

with πjμ
(j)
0 = E[YtI(rj−1,rj](Yt−1)] = ∫ rj

rj−1
yf

α
(1)
0 ,...,α(k)

0
(y) dy (j = 1, . . . , k). Since fn(y) =

Pn−1f1(y) (n ≥ 2), it follows that

μ� = P�−1μ1 = P�−1α, (18)

where α = (α
(1)
0 , . . . ,α(k)

0 )T, i.e. a k × 1 parameter vector. On substituting (18) in (17) and
using the spectral decomposition of P, the covariance function at lag � can be written as

γ� =
k∑

j=2
λ�−1
j vjwT

j α, (� ≥ 1). (19)

It is easy to see that if I(rj−1,rj](Yt−d) (d ≥ 1) is used instead of I(rj−1,rj](Yt−1) in (15)
then the resulting model describes d independent processes, each of which has the same
covariance structure as the equivalent model with delay one.

Using the above approach, Pemberton [10] noted that the covariance structure of (15)
is the same as that of a linear autoregressive moving average (ARMA) process of order
(p, p)with p ≤ k − 1, andwith i.i.d. central symmetric innovations. The following example
provides a simple illustration.

Example 4.1 (Pemberton [11]): Consider the PCM (15) with k = 2, α(2)
0 = −α

(1)
0 ≡ α,

and {εt} i.i.d.∼ N (0, 1), i.e.

Yt = −αI(−∞,0](Yt−1) + αI(0,∞)(Yt−1) + εt . (20)

Then the stationary marginal density of {Yt , t ∈ Z} is given by

fα(y) =
2∑

j=1
πjϕ(y;αj) = {ϕ(y;−α) + ϕ(y;α)}/2. (21)

Note that (21) is a special case of (6). In particular, for r = 0 and α+
0 = −α−

0 ≡ α the
weight factor w = 1/2 so that (6) reduces to (21). Further, we see that μ = 0 and σ 2 ≡
γ0 = (1 + α2).

At frequency τ ∈ [−π ,π], the spectral density function f (τ ) is given by

f (τ ) = 1
2π

{
γ0 − 2C(α)α

∞∑
n=1

βn−1 cos(nτ)
}
, (22)

where C(α) = 2ϕ(y;α) − αβ , and β = 1 − 2�(α). The function f (τ ) defined by (22) is
identical to the spectral density of a linear ARMA(1, 1) process of the form

Yt − βYt−1 = εt − θεt−1, (23)
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where θ is the root of z2 + A(α)z + 1 = 0 which lies inside the unit circle, A(α) = (β2 −
2βρ1 + 1)/(ρ1 − β) with ρ1 = −αC(α)/γ0 the lag one autocorrelation of {Yt , t ∈ Z}. It
can be shown that 0 > θ > β so that there is a peak at the frequency τ = π . This corre-
sponds to a limit cycle of period 2; recall the comment in Example 3.2 about the limit cycle
of (3) for the case (α−

0 ,α
+
0 ) = (−1.25, 1.25).

Proposition 4.1: Consider the PCM (15) with k = 3 regimes, αj ≡ α
(j)
0 (j = 1, 2, 3), and

{εt} i.i.d.∼ N (0, 1), i.e.

Yt = α1I(−∞,r1](Yt−1) + α2I(r1,r2](Yt−1) + α3I(r2,∞)(Yt−1) + εt . (24)

Then the stationary marginal density of (24) is given by

fα1,α2,α3(y) = τ1fα1(y) + τ2fα2(y) + τ3fα3(y), (25)

where

τ1 = w1�(r1−α1) + w2�(r1−α2) + w3�(r1−α3),

τ2 = w1(�(r2−α1) − �(r1−α1)) + w2(�(r2−α2) − �(r1−α2)),

τ3 = w1(1 − �(r2−α1)) + w2(1 − �(r2−α2) + w3(1 − �(r2−α3)),

with

w1 = P(Yt ≤ r1) = �(r2−α3)�(r1−α2) + �(r1−α3)�(α2−r2)

�(r1, r2)
∈ [0, 1),

w2 = P(r1 < Yt ≤ r2) = �(r2−α3)�(α1−r1) − �(r1−α3)�(α1−r2)

�(r1, r2)
∈ [0, 1),

w3 = 1 − w1 − w2,

and

�(r1, r2) = [�(r1−α2) − �(r1−α3)][�(α1−r2)+�(r2−α3)]

+ [�(α2−r2)+�(r2−α3)][�(α1−r1)+�(r1−α3)].

Remark 4.1: The proof of the proposition can be obtained along similar lines as the proof
of Proposition 3.2, using standard but lengthy algebra. The link between Propositions 3.2
and 4.1 can be made explicit by rewriting τi (i = 1, 2, 3) as follows:

τ1 = 1
�(r1, r2)

{
�(r1−α3)�(r1−α1) + [�(r2−α3) − �(r1−α3)]�(r1−α2)

− �(r1−α3)

2∑
i=1

(−1)i�(r2−αi)�(r1−α3−i) + �(r2−α3)

2∑
i=1

(−1)i�(r1−αi)�(r3−i−α3−i)

}
+ w3�(r1−α1),

τ2 = 1
�(r1, r2)

{
[�(r2−α3) − �(r1−α3)][�(r2−α2) − �(r1−α2)
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Figure 3. Skewness (S) and kurtosis (K) of the PCM (24) (N (0, 1) innovations) as a function of the
threshold parameters r1 and r2.

−
2∑

i=1
(−1)i�(r1−α3−i)�(r2−αi)]

}
+ w3{�(r2−α3) − �(r1−α3)},

τ3 = 1
�(r1, r2)

{
�(r2−α3)[1 − �(r1−α1) − �(r2−α2) + �(r1−α2)

−
2∑

i=1
(−1)i�(r1−αi)�(r2−α3−i)]

}
+ w3{1 − �(r2−α3)}.

In the case k = 2, we have �(r1−α3) = 1, �(r2−α3) = 1, and r1 = r2 = r. Then, it is
easy to see that �(r, r) = 1 − �(r−α1) + �(r−α2), w3 = 0, τ1 = �(r−α1)/�(r, r), τ2 = 0,
and τ3 = (1 − �(r−α1))/�(r, r). On setting α1 = α−

0 , α2 = 0 and α3 = α+
1 , and substitut-

ing the above results in (25), we obtain the stationary marginal density (6). Observe that
the assumption of {εt} i.i.d.∼ N (0, 1) can be relaxed to {εt} is i.i.d. with mean zero and unit
variance. The shape of fα1,α2,α3(y) is unimodal but not symmetric; see Example 4.2.

Corollary 4.1: The first four non-central moments of the PCM (24) are given by

ν1 =
3∑

i=1
τiαi, ν2 =

3∑
i=1

τi
(
1 + α2

i
)
,

ν3 =
3∑

i=1
τi
(
3αi + α3

i
)
, ν4 =

3∑
i=1

τi
(
3 + 6α2

i + α4
i
)
. (26)

Example 4.2: Figure 3 shows the skewnessS and kurtosisK for the PCM(24)withα1 = 1,
α2 = 2, and α3 = 3. For S the minimum and maximum values are, respectively, −0.5547
(r1 = −2, r2 = 2) and 0.2180 (r1 = 2, r2 = 2). ForK the minimum and maximum values
are, respectively, 2.4596 (r1 = 1.75, r2 = 2) and 3.5936 (r1 = −2, r2 = 1.5).
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5. Multiplicative PCMwith general innovations

The PCMs in (3) and (15) are additive in structure. Chan et al. [12] studied multiplicative
PCMs, called threshold heteroscedastic ARmodels or T-CHARM for short. In its simplest
form the model is given by

Yt = σ(Yt−1)εt , (27)

where {εt , t ∈ Z} are i.i.d. (but not necessarily normal), and σ(Yt−1) = σj > 0 for Yt−1 ∈
R(j) = (rj−1, rj] where {R(j); j = 1, . . . , k} defines a partitioning of the real lineR such that
∪k
j=1R

(j) = R and R(j) ∩ R(j′) = ∅ if j 
= j′. Similar to (15), the process underlying (27) is
a Markov chain with k states or regimes.

If the density of εt is positive onR and the Lebesgue measure of each regime is positive,
then it is straightforward to show that the volatility process {σ 2(Yt−1)} has the following
covariance structure

Cov
(
σ 2(Yt−1), σ 2(Yt−�)

) =
k∑

i=1

k∑
j=1

σ 2
i σ 2

j δij(�), (� ≥ 0), (28)

where δij(�) satisfies the recursive equations

δij(�) =
k∑

s=1
P(σsεt ∈ R

(j))δsi(� − 1),

δij(0) = P(Yt ∈ R
(i) ∪ R

(j)) − P(Yt ∈ R
(i))P(Yt ∈ R

(j)),

with

P(Yt ∈ R
(j)) =

k∑
i=1

P(σiεt ∈ R
(j))P(Yt ∈ R

(i)) and
k∑

j=1
P(Yt ∈ R

(j)) = 1.

It is easy to see that the autocovariance function γ� of {Yt , t ∈ Z} satisfies the
Yule–Walker equations of a stationary linear ARMA(k − 1, k − 1) process, which also
follows from generalizing the results in Example 4.1.

Example 5.1: Consider (27) for the case k = 2, i.e.

Yt = {σ1I(−∞,r](Yt−1) + σ2I(r,∞)(Yt−1)}εt . (29)

Using (28), the lag � ≥ 0 covariance structure of (29) is given by

Cov
(
σ 2(Yt−1), σ 2(Yt−�)

) = (σ 2
2 − σ 2

1 )2δ(1 − δ)
{
P(σ2εt ∈ R

(2)) − P(σ1εt ∈ R
(1))
}�,

where

δ ≡ P(Yt ∈ R
(1)) = P(σ2εt ∈ R(2))

1 − P(σ1εt ∈ R(1)) + P(σ2εt ∈ R(2))
∈ [0, 1). (30)

Note the equivalence in structure between (30) and, respectively, (7) and (11).
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6. SETAR(2; 1, 1)

6.1. Gaussian innovations

A SETAR(2; 1, 1) process with parameters of opposite signs and the same absolute value,
with r = 0, and with {εt} i.i.d.∼ N (0, 1) is given by

Yt = α−
1 Yt−1I(−∞,0](Yt−1) + α+

1 Yt−1I(0,∞)(Yt−1) + εt ,

α+
1 = −α−

1 ≡ α, (0 < α < 1). (31)

Necessary and sufficient conditions for geometric ergodicity of a general SETAR(2; 1, 1)
process are α+

1 < 1, α−
1 < 1, and α+

1 α−
1 < 1. Model (31) has also been called an absolute

AR(1) process, and its model formulation is given by Yt = α|Yt−1| + εt .

Proposition 6.1 (Anděl et al. [13]): The stationary marginal density fα(y) of the
SETAR(2; 1, 1) process (31) is given by

fα(y) = 2�(−αy)ϕ

(
y; 0,

1
1 − α2

)
,

= 2
(
1 − α2

2π

)1/2

exp{−(1 − α2)y2/2}�(−αy). (32)

Corollary 6.1: The first four non-central moments of the stationary SETAR (2; 1, 1) pro-
cess (31) are given by

νs = (−1)sα−s−1[2(1 − α2)/π]1/2Js, (s = 1, . . . , 4), (33)

where

J1 = −k−1(k + 1)−1/2, J2 = k−1(π/(2k)
)1/2,

J3 = (
2/k + 1/(k + 1)

)1/2J1, J4 = (3/k)J2,

with k = (1 − α2)/α2.

Corollary 6.2: The lag one covariance coefficient, γ1 = E(YtYt−1), is given by

γ1 = α

1 − α2 + 2α2

π(1 − α2)1/2
− 2α

π(1 − α2)
arctan

(√
1 − α2

α2

)
. (34)

Remark 6.1: Anděl et al. [13] overlooked that the parameter α should be introduced in
the numerator of the third term of (34). For � ≥ 2, γ� has not been obtained.

Remark 6.2: Das and Genton [14] obtained an explicit expression for the stationary
marginal pdf of a multivariate (m-dimensional) SETAR(2; 1, 1) process with multivariate
Gaussian innovations. Also formulae formeasuringmultivariate skewness and kurtosis are
derived. In addition, these authors characterize the stationarymarginal pdf for a subclass of
the multivariate SETAR(2; 1, 1) process with central symmetric multivariate innovations.
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Remark 6.3: There exists an interesting duality between the stationarymarginal density in
Proposition 6.1 and themarginal density of a time series {Yt , t ∈ Z} following an asymmet-
ric moving average (asMA) of order (1, 1). In particular, consider the following asMA(1, 1)
process

Yt = β−
1 εt−1I(−∞,0](εt−1)

+ β+
1 εt−1I(0,∞)(εt−1) + εt , |β−

1 |, |β+
1 | < 1, β+

1 = −β−
1 ≡ β , (35)

where {εt} i.i.d.∼ N (0, 1). From Brännäs and De Gooijer [15, Appendix], it can be deduced
that the marginal density of {Yt , t ∈ Z} is given by

fβ(y) = 2
{(1 + β2)2π}1/2 exp{−(1 + β2)−1y2/2}�(−βy/(1+β2)1/2). (36)

The form of fβ(y) is unimodal and symmetric. Note that by setting α = β/(1 + β)1/2 in
model (31) the marginal density (32) is completely identical to the marginal density (36).
Thus in this special case, exact moment expressions of a SETAR(2; 1, 1) process can be
obtained from (36) directly. Using fβ(y) the first four non-central moments of (35) are
given by

ν1 = 2β√
2π

, ν2 = (1 + β2), ν3 = 3
2
√
2π

(
2 + 4

3
β2
)
, ν4 = 3(1 + β2)2, (37)

and the lag � ≥ 1 covariance function is given by γ� = 0.
Wecker [16] provides exact expressions for the mean, variance and autocovariances

of a general asMA(q, q) process. We refer to Brännäs and De Gooijer [15, Appendix]
for explicit/closed-form expressions of the marginal pdf and non-central moments of
{Yt , t ∈ Z} following an ARasMA process with AR(1) and asMA(1, 1) lag polynomials. De
Gooijer [17] gives explicit expressions for themean vector, variance-covariancematrix, and
lag � cross-covariance matrix for anm-dimensional asymmetric vector moving average of
order (q, q) with multivariate Gaussian innovations.

Example 6.1: Table 1 contains exact values of the mean, variance, skewness, kurtosis, and
lag one autocorrelation coefficient of the SETAR(2; 1, 1) process (31) for various parameter
values α. However, using the density (32) it is impossible to obtain explicit exact formulae
for ρ� (� ≥ 2). This problem can be “solved” by obtaining an approximation ρ̃� of ρ� (� ≥
2)which depends on a constant c(α) such that ρ̃�/ρ̃�−1, with ρ̃1 ≡ ρ1. Column 7 of Table 1
shows c(α) values obtained for a time series {Yt}Tt=1 of length T = 20, 000, using 20, 000
replications. Table 2 contains the “true” values of ρ�, based on the simulation study, and
the approximate values ρ̃� for various values of α with � = 1, . . . , 5. It is clear that the
approximation method is excellent since the values of ρ̃� are identical to those of ρ� in
almost all cases.

Remark 6.4: Closely related to a SETAR process is a self-exciting thresholdMA (SETMA)
process. De Gooijer [18] derived an approximate expression for the lag � (� ≥ 1) covari-
ance function γ� of a two-regime SETMA process of order (q1, q2) and with i.i.d.N (0, 1)
innovations. Li [19] obtained an explicit/closed form expression for the autocorrelation
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Table 1. Exact values of themean, variance, skewness, kurtosis, andρ1 of the SETAR(2; 1, 1)process (31)
(N (0, 1) innovations). The factor c(α) canbeused to obtain approximate values ofρ� (� = 2, 3, . . .); see
Section 6.1.

α Mean (μ) Variance (σ 2) Skewness (S) Kurtosis (K) ρ1 c(α)

0.1 0.0802 1.0037 0.0002 3.0000 0.0064 –
0.2 0.1629 1.0151 0.0018 3.0002 0.0258 0.04
0.3 0.2509 1.0359 0.0064 3.0010 0.0589 0.08
0.4 0.3482 1.0692 0.0164 3.0036 0.1072 0.16
0.5 0.4607 1.1210 0.0353 3.0101 0.1729 0.24
0.6 0.5984 1.2044 0.0696 3.0250 0.2594 0.35
0.7 0.7821 1.3491 0.1310 3.0582 0.3726 0.48
0.8 1.0638 1.6460 0.2447 3.1339 0.5220 0.63
0.9 1.6474 2.5491 0.4715 3.3210 0.7241 0.80

Notes: (1) The values of c(α) are based on 20, 000 replications of the SETAR(2; 1, 1) process with series of length T = 20,
000; (2) For−1 < α < 0, the exact values ofμ and S have negative signs.

Table 2. Comparing two computed autocorrelation coefficients of the SETAR(2; 1, 1) process (31)
(N (0, 1) innovations): 1) ρ� obtained via Monte Carlo simulation, and 2) ρ̃� = c(α)ρ̃�−1 with ρ̃1 = ρ1.

α = 0.2 α = 0.4 α = 0.6 α = 0.8

� ρ� ρ̃� ρ� ρ̃� ρ� ρ̃� ρ� ρ̃�

1 0.03 0.03 0.11 0.11 0.26 0.26 0.52 0.52
2 0.00 0.00 0.02 0.02 0.09 0.09 0.32 0.33
3 0.00 0.00 0.00 0.00 0.03 0.03 0.20 0.21
4 −0.00 0.00 0.00 0.00 0.01 0.01 0.13 0.13
5 −0.00 −0.000 0.00 0.00 0.00 0.00 0.08 0.08

Note: Using (34), the exact values of ρ1 are: 0.0258 (α = 0.2), 0.1072 (α = 0.4), 0.2594 (α = 0.6), and 0.5220 (α = 0.8).

function ρ� of a simple three-regime SETMA process of order (1, 1). The model is defined
as

Yt = βjεt−1I(rj−1,rj](Yt−2) + εt , (j = 1, 2, 3), (38)

where {εt} is i.i.d. with mean zero andE(ε2t ) < ∞. Let aj = βjεt−1 + εt (j = 1, 2, 3). Then
the exact result for ρ� is given by

ρ1 = β2 + (β1 − β2)w1 + (β3 − β2)w2

1 + β2
2 + (β2

1 − β2
2 )w1 + (β2

3 − β2
2 )w2

and ρ� = 0 for � ≥ 2, (39)

where

w1 = P(a2 ≤ r1)P(a3 ≤ r2) + P(a2 > r2)P(a3 ≤ r1)
�(r1, r2)

∈ [0, 1),

w2 = P(a1 > r1)P(a2 > r2) + P(a1 > r2)P(a2 ≤ r1)
�(r1, r2)

∈ [0, 1),

with

�(r1, r2) = {P(a1 > r1) + P(a2 ≤ r1)}{P(a2 > r2) + P(a3 ≤ r2)}
− {P(a2 ≤ r1) − P(a3 ≤ r1)}{P(a1 ≤ r2) − P(a2 ≤ r2)}.

Furthermore, the distribution function Fβ1,β2,β3(·) of {Yt , t ∈ Z} takes the form
Fβ1,β2,β3(x) = w1P(a1 ≤ x) + (1 − w1 − w2)P(a2 ≤ x) + w2P(a3 ≤ x), (40)
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which is a weighted average of P(aj ≤ x)’s (j = 1, 2, 3).

6.2. Laplace innovations

Loges [20] derived explicit expressions of the stationary marginal density of a
SETAR(2; 1, 1) processes with Laplace innovations in three parameter cases. These expres-
sions are not in closed form since they involve infinite sums of certain functions (see
below). Now a random variable X has a symmetric Laplace distribution with loca-
tion parameter μ and shape parameter b, denoted by L(μ, b), if its pdf is fX(x;μ, b) =
(1/2b) exp(−|x − μ|/b). Without loss of generality, we consider SETAR(2; 1, 1) processes
with {εt} i.i.d.∼ L(0, 1). This distribution implies that E(εst) = 0 when s odd, and E(εst) = s!
when s is even. We summarize and expand on Loges [20] results. In particular, new results
are given in Corollary 6.4, Corollary 6.6, and Corollary 6.8.

Case 6.1: A SETAR(2; 1, 1) process with positive parameters, with r = 0, and with {εt} i.i.d.∼
L(0, 1) is given by

Yt = α−
1 Yt−1I(−∞,0](Yt−1) + α+

1 Yt−1I(0,∞)(Yt−1) + εt , 0 < α−
1 , α+

1 < 1. (41)

To simplify notation, we introduce the following functions:

g1(λ) :=
∞∑
q=0

d1(λ, q), g2(λ) := 1 −
∞∑
q=0

(
1

2(1 − λq+1)

)
d1(λ, q)

and

g3(λ) := g1(λ)/g2(λ), (42)

where

d1(λ, 0) := 1, and d1(λ, q) :=
q−1∏
j=0

(
λ2j+2

λ2j+2 − 1

)
for q ≥ 1, 0 ≤ λ < 1. (43)

Proposition 6.2: The invariant marginal density fα−
1 ,α

+
1
(y) of the SETAR(2; 1, 1) pro-

cess (41) is given by

fα−
1 ,α

+
1
(y) = 2g(α−

1 ,α
+
1 )
[
g3(α−

1 )fα−
1
(y)I(−∞,0](y) + g3(α+

1 )fα+
1
(y)I(0,∞)(y)

]
, (44)

where

g(α−
1 ,α

+
1 ) = (

g3(α−
1 ) + g3(α+

1 )
)−1 for all 0 ≤ α−

1 ,α
+
1 < 1,

fα±
1
(y) = (

2g1(α±
1 )
)−1

∞∑
q=0

d1(α±
1 , q)(α

±
1 )−q exp

(−(α±
1 )−q|y|).

Remark 6.5: It can be proved that fα±
1
(y) is the stationary marginal density of an AR(1)

processwith parameter |α±
1 | < 1 andL(0, 1) innovations; Loges [20]. Clearly, fα−

1 ,α
+
1
(y) is a
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mixture of pdfs fα−
1
(y) and fα+

1
(y)with weights 2g(α−

1 ,α
+
1 )g3(α−

1 ) and 2g(α−
1 ,α

+
1 )g3(α+

1 ),
respectively. The weights are non-negative and they do not add up to one. The shape of
fα−

1 ,α
+
1
(y) is unimodal (not symmetric) with vertex at the origin.

Corollary 6.3: The non-central moments of the stationary SETAR(2; 1, 1) process (41) can
be expressed as

ν2s−1 = 2g(α−
1 ,α

+
1 )(2s − 1)

⎡⎣⎧⎨⎩
s∏

j=1

(
1 − (α+

1 )2j−1)⎫⎬⎭
−1⎧⎨⎩

s∏
j=1

(
1 − (α−

1 )2j−1)⎫⎬⎭
−1⎤⎦ ,

ν2s = 2g(α−
1 ,α

+
1 )(2s)!

⎡⎣g3(α+
1 )

⎧⎨⎩
s∏

j=1

(
1 − (α+

1 )2j
)⎫⎬⎭

−1

+ g3(α−
1 )

⎧⎨⎩
s∏

j=1

(
1 − (α−

1 )2j
)⎫⎬⎭

−1⎤⎦ ,

for all s ∈ N.

Remark 6.6: For all s ∈ N, the following relations can be used to re-express the non-
central moments in Corollary 6.3:

g4(λ, 2s) = g1(λ)

⎧⎨⎩
s∏

j=1
(1 − λ2j)

⎫⎬⎭
−1

and

g4(λ, 2s − 1) = 2g1(λ)

g3(λ)

⎧⎨⎩
s∏

j=1
(1 − λ2j−1)

⎫⎬⎭
−1

,

where

g4(λ, s) =
∞∑
q=0

d1(λ, q)λqs, (0 ≤ λ < 1). (45)

Corollary 6.4: The lag one covariance coefficient, γ1 = E(YtYt−1), is given by

γ1 = 2g(α−
1 ,α

+
1 )

{
α−
1
g3(α−

1 )

g1(α−
1 )

g4(α−
1 , 2) + α+

1
g3(α+

1 )

g1(α+
1 )

g4(α+
1 , 2)

}
. (46)

Case 6.2: A SETAR(2; 1, 1) process with parameters of opposite signs, r = 0, and with
L(0, 1) innovations is given by

Yt = α−
1 Yt−1I(−∞,0)(Yt−1) + α+

1 Yt−1I[0,∞)(Yt−1) + εt , −1 < α−
1 < 0, 0 < α+

1 < 1.
(47)
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In addition to the notations introducedwith Case 6.1, we define the following functions:

g5(α−
1 ,α

+
1 ) =

∞∑
q=0

d2(α−
1 ,α

+
1 , q), g6(α−

1 ,α
+
1 ) =

∞∑
q=0

1
2
(
1 − (α+

1 )q|α−
1 |)d2(α−

1 ,α
+
1 , q),

g7(α−
1 ,α

+
1 , p) = |α−

1 |p
∞∑
q=1

d2(α−
1 ,α

+
1 , q)(α

+
1 )(q−1)s, s ∈ N,

g8(α−
1 ,α

+
1 ) = g2(α+

1 )/g6(α−
1 ,α

+
1 ),

g9(α−
1 ,α

+
1 ) := (

g3(α+)g6(α−
1 ,α

+
1 ) + g5(α−

1 ,α
+
1 )
)−1, (48)

where

d2(α−
1 ,α

+
1 , 0) = 1, d2(α−

1 ,α
+
1 , q) =

q−1∏
j=0

(α+
1 )2j(α−

1 )2

(α+
1 )2j(α−

1 )2 − 1
.

Proposition 6.3: The invariant marginal density fα−
1 ,α

+
1
(y) of the SETAR process (47) is

given by

fα−
1 ,α

+
1
(y) = h(α−

1 ,α
+
1 )
(
g8(α−

1 ,α
+
1 ) exp(y)I(−∞,0](y)

+ (
r1(y,α+

1 ) + g8(α−
1 ,α

+
1 )r2(y,α−

1 ,α
+
1 )
)
I(0,∞)(y)

)
, (49)

where

h(α−
1 ,α

+
1 ) = (

g1(α+
1 ) + g5(α−

1 ,α
+
1 )g8(α−

1 ,α
+
1 )
)−1,

r1(y,α+
1 ) =

∞∑
q=0

d1(α+
1 , q)(α

+
1 )−q exp(−(α+

1 )−qy),

r2(y,α−
1 ,α

+
1 ) =

∞∑
q=1

d2(α−
1 ,α

+
1 , q)(α

+
1 )1−q|α−

1 |−1 exp(−(α+
1 )1−q|α−

1 |−1y). (50)

Remark 6.7: The shape of the function fα−
1 ,α

+
1
(y) is unimodal but not symmetric.

Corollary 6.5: The non-central moments of the stationary SETAR(2; 1, 1) process (47) can
be expressed as

ν2s−1 = g9(α−
1 ,α

+
1 )(2s − 1)!

⎡⎣2g6(α−
1 ,α

+
1 )

⎧⎨⎩
s∏

j=1

(
1 − (α+

1 )2j−1)⎫⎬⎭
−1

− 1

+g7(α−
1 ,α

+
1 , 2s − 1)

⎧⎨⎩
s∏

j=1

(
1 − (α+

1 )2j−1)⎫⎬⎭
−1⎤⎦ ,
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ν2s = g9(α−
1 ,α

+
1 )(2s)!

⎡⎣g3(α+
1 )g6(α−

1 ,α
+
1 )

⎧⎨⎩
s∏

j=1

(
1 − (α+

1 )2j
)⎫⎬⎭

−1

+ 1 + g7(α−
1 ,α

+
1 , 2s)

]
,

for all s ∈ N.

Corollary 6.6: The lag one covariance coefficient, γ1 = E(YtYt−1), is given by

γ1 = 2α−
1 h(α

−
1 ,α

+
1 )g8(α−

1 ,α
+
1 ) + 2α+

1 h(α
−
1 ,α

+
1 )g4(α+

1 , 2)

+ 2α+
1 h(α

−
1 ,α

+
1 )g8(α−

1 ,α
+
1 )g7(α+

1 , 2). (51)

Case 6.3: As a special case of model specification (47), we consider a SETAR(2; 1, 1) pro-
cess with parameters of opposite signs and the same absolute value, r = 0, and withL(0, 1)
innovations, i.e.,

Yt = α−
1 Yt−1I(−∞,0](Yt−1) + α+

1 Yt−1I(0,∞)(Yt−1) + εt , 0 < α−
1 < 1, α−

1 = −α+
1 ≡ α.

(52)

From the formulas in Case 6.1 and Case 6.2, it can be deduced that

h(α,−α)g8(α,−α) ≡ 1
g3(α)

, d1(α, q) ≡ d3(α,−α, q), (53a)

g1(α) ≡ g5(α,−α), (53b)

h(−α,α) + 1
g3(α)

≡ 1
g1(α)

. (53c)

Then the following proposition is a special case of Proposition 6.3.

Proposition 6.4: The invariant marginal density fα(y) of the SETAR(2; 1, 1) process (52) is
given by

fα(y) = exp(y)
g3(α)

I(−∞,0](y) +
(
r(y,α)

g1(α)
− exp(−y)

g3(α)

)
I(0,∞)(y), (54)

where r(y,α) = ∑∞
q=0 d1(α, q)α

−q exp(−α−qy).

Remark 6.8: For 0 ≤ α < 1, the infinite sum r(y,α) quickly goes to zero as q increases. In
that case, fα(y) is a mixture of a standard inverse exponential pdf and a standard exponen-
tial pdf with weights 1/g3(α) and −1/g3(α), respectively. The form of fα(y) is unimodal
but not symmetric.

Corollary 6.7: The non-central moments of the stationary SETAR(2; 1, 1) process (52) can
be expressed as

ν2s−1 = 2(2s − 1)!
g3(α)

⎡⎣⎧⎨⎩
s∏

j=1
(1 − α2j−1)

⎫⎬⎭
−1

− 1

⎤⎦ , ν2s = (2s)!

⎧⎨⎩
s∏

j=1

(
1 − α2j)⎫⎬⎭

−1

for all s ∈ N.
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Table 3. Exact values of themean, variance, skewness, kurtosis, andρ1 of the SETAR(2; 1, 1)process (52)
(L(0, 1) innovations).

α Mean (μ) Variance(σ 2) Skewness (S) Kurtosis (K) ρ1

0.1 0.1009 2.0100 0.0007 5.9703 0.0051
0.2 0.2069 2.0405 0.0055 5.8844 0.0209
0.3 0.3228 2.0936 0.0181 5.7489 0.0493
0.4 0.4541 2.1748 0.0418 5.5704 0.0926
0.5 0.6091 2.2956 0.0799 5.3526 0.1538
0.6 0.8025 2.4810 0.1372 5.0949 0.2374
0.7 1.0634 2.7908 0.2216 4.7916 0.3498
0.8 1.4662 3.4060 0.3502 4.4359 0.5016
0.9 2.3004 5.2345 0.5644 4.0477 0.7110

Note: see note 2) to Table 1.

Corollary 6.8: The lag one covariance coefficient, γ1 = E(YtYt−1), is given by

γ1 = − 4α
g3(α)

+ 2α
g1(α)

g4(α, 2). (55)

Remark 6.9: Note that the formula for the even non-central moments, ν2s, is the same as
for the moments of a stationary linear AR(1) process with {εt} i.i.d.∼ (0, 1) innovations.

Remark 6.10: In all Cases 6.1–6.3, the functions d1(·, q) and d2(·, q) converge quickly to
zero as q increases and, hence, the infinite sums g5(·), g6(·), g7(·) are equal zero for some
low values of q. In fact, one can safely set q = 11, which gives the same moment values
(agreement to four decimal places) when cutting the infinite sums off at q = 1, 001, which
we adopt for obtaining the numerical results of this paper.

Example 6.2: Table 3 shows exact values of the mean, variance, skewness, kurtosis, and
the lag one autocorrelation coefficient (ρ1) of the SETAR(2; 1, 1) process (52) for various
parameter values α. We see that the distribution function is positively skewed for all values
of α.

Remark 6.11: Recall the conditions for stationarity of a general SETAR(2; 1, 1) process
with delay d = 1 given in Section 6.1. Given these conditions, Tables 1 and 3 show that as
α approaches unity, the process {Yt , t ∈ Z} has a higher variability (as indicated by its vari-
ance σ 2) than for a low value of α. Clearly, the variability is higher for L(0, 1) innovations
(Table 3) than forN (0, 1) innovations (Table 1). There is also a lack of symmetry in both
cases (as indicated by the skewness values S) with stronger evidence for SETAR(2; 1, 1)
processes with L(0, 1) innovations.

Remark 6.12: For the asMA(1, 1) process (35) with {εt} i.i.d.∼ L(0, 1) it is easy to show that
the first four non-central moments are given by

ν1 = 1
2
(β+

1 − β−
1 ), ν2 = 1 + (β+

1 )2 + (β−
1 )2 + 1

2
β+
1 β−

1 ,

ν3 = 3(β+
1 − β−

1 ) + 3
4
(
(β−

1 )2 − (β+
1 )2

)+ 3
(
(β+

1 )3 − (β−
1 )3

)
,

ν4 = 24 + 12
(
(β+

1 )2 + (β−
1 )2

)+ 12
(
(β+

1 )4 + (β−
1 )4

)
.
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6.3. Cauchy innovations

A random variable X has a Cauchy distribution with location parameter zero, and scale
parameter λ (λ > 0), denoted by C(0, λ), if its pdf is given by fX(x; 0, λ) = (πλ)−1(1 +
(x/λ)2). For λ = 1, this distribution coincides with the Student t1-distribution. Anděl and
Bartoň [21] obtained an explicit expression for the stationary marginal density fα(y) of
the SETAR(2; 1, 1) process defined in (31) with parameter α (|α| < 1) and assuming that
{εt} i.i.d.∼ C(0, 1). However, Li and Tong [22] noted that the expression for fα(y) contains an
error, resulting in negative values of the density for some special cases of y and α. The
correct version of the density is given in Proposition 6.5.

Proposition 6.5 (Li and Tong [22]): Denote A = α/(1 − |α|) (|α| < 1). Then the station-
ary marginal density fα(y) of a SETAR(2; 1, 1) process with a single parameter α and C(0, 1)
innovations is given by

fα(y) = 2
π2[y2 + (A − 1)2][y2 + (A + 1)2]

×
{
Ay log

(
y2 + 1
A2

)
+ A(y2 + A2 − 1) arctan(y)

+|A|π
2

(y2 + A2 − 1) + π

2
(y2 − A2 + 1)

}
. (56)

Remark 6.13: The shape of the function fα(y) is unimodal but not symmetric. For α > 0
the distribution function is positively skewed, and for α < 0 negatively skewed.

Remark 6.14: Consider the asMA(1,1) process in (36) but now with {εt} i.i.d.∼ C(0, 1).
Let g(ε) be the density of {εt}. Then the marginal density of {Yt} is given by fβ(y) =∫ 0
−∞ f (y|ε)g(ε)dε + ∫∞

0 f (y|ε)g(ε)dε, where f (y|ε) is the regime-specific conditional
density. After some algebra, it can be deduced that the marginal density is given by

fβ(y) = 2
π2[y2 + (β − 1)2][y2 + (β + 1)2]

×
{
βy log

(
y2 + 1

β2

)
+ β(y2 + β2 − 1) arctan(y)

+|β|π
2

(y2 + β2 − 1) + π

2
(y2 − β2 + 1)

}
. (57)

Clearly, if β = A = α/(1 − |α|) (|α| < 1) the density (57) is the same as the den-
sity (56). This is another example of the duality between the stationary marginal densities
of a special form of an asMA(1,1) process and a special form of a SETAR(2; 1, 1) process;
see also Remark 6.3.
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7. Approximations

7.1. Markov chain

Anděl et al. [13] provided a Markov chain approximation as well as a numerical method
to approximate the stationary pdf of the SETAR(2; 1, 1) process defined in (31) (N (0, 1)
innovations). However, theMarkov chain approach gives only rough estimates of a number
of distribution characteristics when compared to the exact solution. One reason is that its
accuracy depends on the number of states and their location. The numerical method pro-
vides a more accurate solution, but its quality decreases for AR parameters approaching
unity in absolute value. More importantly, the method induces cumulative errors due to
repeated, recursive, iterations used for solving an integral equation. Other numerical inte-
gration methods for approximating the stationary pdf of nonlinear processes are provided
by Tong [23, Section 4.2]. In general, these methods are quite complicated to handle, and
they depend heavily on certain tuning parameters.

7.2. Riemann–Stieltjes integration

As an alternative to the numericalmethods discussed by Tong [23], Li andQiu [24] provide
a simple numerical method to solve the following integral equation

H(x) =
∫

R

K(x, y)H (dy), (58)

where H(·) is an arbitrary distribution function, and K(·, ·) is a bounded, continuous and
positive function, i.e. a transition kernel density.Note the equivalence between (58) and (1).

For a positive integer m, let −∞ = x0 < x1 < x2 < · · · < xm < xm+1 be a partition
of R. Then, by the definition of the Riemann–Stieltjes integral, a discrete approximation
of (58) is given by

H(xk) =
m+1∑
j=1

K(xk, x∗
j )
(
H(xj) − H(xj−1)

)
=

m∑
j=1

[
K(xk, x∗

j ) − K(xk, x∗
j+1)

]
H(xj) + K(xk, x∗

m+1), (59)

where x∗
j ∈ [xj−1, xj] (j = 1, . . . ,m + 1). A convenient choice is to take x∗

j = (xj−1 + xj)/2
(j = 2, . . . ,m) and x∗

1 = x1 − 1 and x∗
m+1 = xm + 1. Define the m × m matrix K = (kij)

with elements kij = K(xi, x∗
j ) − K(xi, x∗

j+1), them × mmatrixH = (H(x1), . . . ,H(xm))T,
and the m × 1 vector a = (K(x1, x∗

m+1), . . . ,K(xm, x∗
m+1))

T. Then H = KH + a, which
yieldsH = (Im − K)−1a.

Li and Qiu [24] apply the above approximation method to various first-order nonlinear
processes, including a two-regime SETARMA process with a regime-dependent constant,
and regime-dependent AR(1) and MA(1) terms. For this particular process, Example 7.1
shows results on the kernel K(x, y) of the DGP and on the implied non-central moments.
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Example 7.1: Consider a stationary time series process {Yt , t ∈ Z} generated by the
following two-regime SETARMAmodel

Yt = (α−
0 + α−

1 Yt−1 + β−
1 εt−1)I(−∞,r](Yt−1)

+ (α+
0 + α+

1 Yt−1 + β+
1 εt−1)I(r,∞)(Yt−1) + εt ,

= Vt + εt , (60)

where Vt = (α−
0 + α−

1 Yt−1 + β−
1 εt−1)I(−∞,r](Yt−1) + (α+

0 + α+
1 Yt−1 + β+

1 εt−1)I(r,∞)

(Vt−1 + εt−1) (a Markov chain), and {εt , t ∈ Z} is a central symmetric innovation pro-
cess having an absolutely continuous pdf on R with density gε(·). Model (60) will be
denoted by SETARMA(2; 1, 1, 1, 1). Clearly, the model includes the two-regime PCM of
Section 3, and the two-regime SETAR(2; 1, 1) process of Section 6 as special cases. Chan
andGoracci [25] derived necessary and sufficient conditions for the ergodicity of invertible
SETARMA(2; 1, 1, 1, 1) processes.

Let G∗(x) be the distribution function of the process {Vt}. Then

G∗(x) =
∫

R

K(x, y)G∗ (dy),

where for x ∈ R the transition kernel P(Vt+1 ≤ x|Vt = y) ≡ K(x, y) is given by

K(x, y) = P

(
εt ≤ x − α−

0 − α−
1 y

α−
1 + β−

1
, εt ≤ r − y

)

+ P

(
εt ≤ x − α+

0 − α+
1 y

α+
1 + β+

1
, εt > r − y

)
. (61)

In other words,G∗(x) satisfies the form (58) and consequently by the convolution prop-
erty, it follows that an approximation of the stationary marginal density of the SETARMA
process (60) is given by

f ∗
θ−
1 ,θ+

1
(y) =

∫
R

gε(x − u)G∗ (du), (62)

where θ−
1 and θ+

1 denote the set of parameters associated with the negative and positive
regime, respectively. That is,

θ−
1 = {α−

0 ,α
−
1 ,β

−
1 }, θ+

1 = {α+
0 ,α

+
1 ,β

+
1 }.

To simplify notation, let φ−
1 = α−

1 + β−
1 , φ

+
1 = α+

1 + β+
1 , and

ξ−
1 = (x − α−

0 − α−
1 y), ξ+

1 = (x − α+
0 − α+

1 y), ζ−
1 = ξ−

1 /φ−
1 , ζ+

1 = ξ+
1 /φ+

1 .
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Now, depending on φ+
1 � 0 and φ−

1 � 0, (61) can be expressed into nine distinct cases:

K(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G∗(ζ+
1 ) − G∗(min{(ζ+

1 , r − y})
+G∗(min{ζ−

1 , r − y}) if φ+
1 > 0 and φ−

1 > 0,
G∗(ζ+

1 ) − G∗(min{ζ+
1 , r − y})

+G∗(r − y)I[0,∞)(ξ
−
1 ) if φ+

1 > 0 and φ−
1 = 0,

G∗(ζ+
1 ) − G∗(min{ζ+, r − y})

+G∗(r − y) − G∗(min{ζ−
1 , r − y}) if φ+

1 > 0 and φ−
1 < 0,(

1 − G∗(r − y)
)
I[0,∞)(ξ

+
1 )

+G∗(min{ζ−
1 , r − y}) if φ+

1 = 0 and φ−
1 > 0,

(1 − G∗(r − y))I[0,∞)(ξ
+
1 )

+G∗(r − y)I[0,∞)(ξ
+
1 ) if φ+

1 = 0 and φ−
1 = 0,

(1 − G∗(r − y))I[0,∞)(ξ
+
1 )

+G∗(r − y) − G∗(min{ζ−
1 , r − y}) if φ+

1 = 0 and φ−
1 < 0,

1 − G∗(max{ζ+
1 , r − y})

+G∗(min{ζ−
1 , r − y}) if φ+

1 < 0 and φ−
1 > 0,

1 − G∗(max{ζ+
1 , r − y})

+G∗(r − y)I[0,∞)(ξ
−
1 ) if φ+

1 < 0 and φ−
1 = 0,

1 − G∗(max{ζ+
1 , r − y})

+G∗(r − y) − G∗(min{ζ−
1 , r − y}) if φ+

1 < 0 and φ−
1 < 0.

For a SETARMA(2; 1, 1, 1, 1) process with {εt} i.i.d.∼ N (0, 1) the upper and lower limits of
the support interval of the distribution of {Vt} are ±2.5758 ± C(θ−

1 , θ+
1 ), where ±2.5758

are the 0.5th and 99.5th percentiles of an N (0, 1) distribution, and where C(θ−
1 , θ+

1 ) ≡
max{|α−

0 | + |α+
0 |, 0} × max{|α−

1 | + |α+
1 |, |β−

1 | + |β+
1 |}. For a SETARMA process with

Laplace innovations, the lower and upper limits of the support interval of {Vt} are
±9.2103 ± C(θ−

1 , θ+), where ±9.2103 are the 0.5th and 99.5th percentiles of an L(0, 1)
distribution. Similarly, for a SETARMA process with Cauchy innovations the lower and
upper limits of the support interval are ±13.4673 ± C(θ−

1 , θ+), where ±13.4673 are the
0.5th and 99.5th percentiles of a C(0, 1) distribution.

Let {yi}ni=−n denote the set of (2n + 1) equally spaced values, covering the support inter-
val of {Vt}, and let {f ∗

θ−
1 ,θ+

1
(yi)}ni=−n be the associated set of values of the density function.

Then the implied non-central moments of f ∗
θ−
1 ,θ+

1
(y) are given by

νs =
{ n∑
i=−n

ysi f
∗
θ−
1 ,θ+

1
(yi)

}/
(2n + 1), (s = 1, 2, . . .).

Thus, we can readily compute the central moments of f ∗
θ−
1 ,θ+

1
(y). Finding, however,

an expression for the lag one covariance coefficient γ1 = E(YtYt−1) depends on the
model specification and the distribution function of the innovation process. For instance,
the implied lag one covariance coefficient γ1 for a SETAR(2; 1, 1) process with N (0, 1)
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innovations and threshold parameter r is given by

γ1 =

⎧⎪⎨⎪⎩α−
1

n∑
i=−n
yi<r

f ∗
α−
1 ,α

+
1
(yi)

[
(1+(α−

1 yi)
2)�(r−α−

1 yi)

− (2π)−1/2(r + α−
1 yi) exp

(
−1
2
(r − α−

1 yi)
2
)]

+ α−
1

n∑
i=−n
yi≥r

f ∗
α−
1 ,α

+
1
(yi)

[
(1+(α+

1 yi)
2)�(r−α−

1 yi)

− (2π)−1/2(r + α+
1 yi) exp

(
−1
2
(r − α+

1 yi)
2
)]

+ α+
1

n∑
i=−n
yi<r

f ∗
α−
1 ,α

+
1
(yi)

[
(1+(α−

1 yi)
2)�(α−

1 yi−r)

+ (2π)−1/2(r + α−
1 yi) exp

(
−1
2
(r − α−

1 yi)
2
)]

+α+
1

n∑
i=−n
yi≥r

f ∗
α−
1 ,α

+
1
(yi)

[
(1 + (α+

1 yi)
2)�(α+

1 yi−r)

+(2π)−1/2(r + α+
1 yi) exp

(
−1
2
(r − α+

1 yi)
2
)]}/

(2n + 1). (63)

The proof of (63) is relegated to the Appendix. In a similar way an approximate expres-
sion of γ1 for a SETAR(2; 1, 1) process with L(0, 1) innovations can be obtained. In the
numerical computation, we use equidistant grid points of yi on the interval [−10, 10] with
step size of 0.1.

Example 7.2: Table 4 shows the implied mean, variance, skewness, and kurtosis for
six SETAR(2; 1, 1) processes with L(0, 1) innovations, and r = 0. The numbers within
parentheses are the corresponding approximate values based on the Riemann–Stieltjes
integrationmethod. All densities are unimodal. Note that the quality of the approximation
method deteriorates slightly as the α− parameter approaches unity. The approximation
method is excellent for μ and σ 2, but is less satisfactory for S and K due to numerical
inaccuracies in the computation of the third and fourth non-central moments.

The quality of the approximation method can be further assessed by comput-
ing a norm of the vector ν = [νi]2n+1

i=1 :=((f ∗
α−
1 ,α

+
1
(y−n) − fα−

1 ,α
+
1
(y−n)), . . . , (f ∗

α−
1 ,α

+
1
(yn) −

fα−
1 ,α

+
1
(yn))). Table 5 contains values of the Frobenius norm ||ν||F ={∑i ν

2
i }1/2, and values

of the supremumnorm ||ν||∞ = maxi(νi) of three SETAR(2; 1, 1)models with parameters
of opposite signs, and withN (0, 1), L(0, 1), and C(0, 1) innovations. The exact stationary
marginal density function fα−

1 ,α
+
1
(·) of the processeswithGaussian andCauchy innovations

are based on (32) and (56), respectively. The exact stationary marginal distribution results
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Table 4. Exact and approximate (in parentheses) values of the mean, variance, skewness, and kurtosis
of various SETAR(2; 1, 1) processes withL(0, 1) innovations, and r = 0.

α+
1 = −α−

1 = α α+
1 = 0.5 α+

1 = 0.5

α = 0.25 α = 0.75 α−
1 = 0.1 α−

1 = 0.85 α−
1 = −0.75 α−

1 = −0.9

μ 0.263
(0.263)

1.239
(1.236)

0.324
(0.324)

−0.969
(−0.962)

0.711
(0.710)

0.769
(0.769)

σ 2 2.064
(2.059)

3.038
(3.017)

2.302
(2.295)

4.719
(4.649)

2.399
(2.390)

2.486
(2.475)

S 0.011
(0.007)

0.279
(0.250)

0.084
(0.079)

−0.395
(−0.348)

0.126
(0.113)

0.177
(0.193)

K 5.822
(5.681)

4.620
(4.433)

5.344
(5.213)

3.937
(3.701)

5.243
(5.098)

5.222
(5.071)

Table 5. Values of the Frobenius norm ||ν||F and the supremumnorm ||ν||∞ for a SETAR(2; 1, 1)model
with α+

1 = −α−
1 ≡ α, and with ν defined in Section 7.2.

α = 0.25 α = 0.5 α = 0.75

Innovations ||ν||F ||ν||∞ ||ν||F ||ν||∞ ||ν||F ||ν||∞
N (0, 1) 0.990 0.2625 0.866 5.913 0.686 0.175
L(0, 1) 2.039 1.228 1.217 0.655 0.680 0.277
C(0, 1) 7.493 1.249 22.870 4.272 64.707 9.583

All values are multiplied by 103.

for the SETAR(2; 1, 1) processes with L(0, 1) innovations are based on formulas given in
Propositions (6.2)–(6.4). As can be seen, the quality of the approximation by this particu-
lar numerical method is excellent forN (0, 1) and L(0, 1) innovations and irrespective of
the value of α. Note, however, that the values for the Cauchy distribution are higher than
those reported forN (0, 1) and L(0, 1). This result can be due to the fact that the Cauchy
distribution does not possess finite non-central moments of order greater than or equal to
1. Obviously, this is a matter for further research.

Remark 7.1: The results in Example 7.1 can be readily extended to first-order k ≥ 3
regime SETARMA processes. For instance, in the case k = 3 the model is given by

Yt =
3∑

j=1

(
α

(j)
0 + α

(j)
1 Yt−1 + β

(j)
1 εt−1

)
I(rj−1,rj](Yt−1) + εt

= Vt + εt , (64)

where Vt = ∑3
j=1(α

(j)
0 + α

(j)
1 Yt−1 + β

(j)
1 εt−1)I(rj−1,rj](Vt−1 + εt−1), and {εt} is defined as

in (60). Then, for x ∈ R the transition kernel K(·, ·) of the process {Vt} is given by

K(x, y)=P

(
εt ≤ x − α

(1)
0 − α

(1)
1 y

α
(1)
1 + β

(1)
1

, εt ≤ r1 − y
)

+ P

(
εt ≤ x − α

(2)
0 − α

(2)
1 y

α
(2)
1 + β

(2)
1

, r1 − y < εt ≤ r2 − y
)

+ P

(
εt ≤ x − α

(3)
0 − α

(3)
1 y

α
(3)
1 + β

(3)
1

, εt > r2 − y
)
.
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Section 8 contains an example of the corresponding pdf.

8. Illustration

A well-known DGP is the random walk without drift, which says that the next value of
the process {Yt , t ∈ Z} is the current value plus an “error” that is not correlated with the
previous history. A simple modification of this process is given by

Yt = −rI(−∞,−r](Yt−1) + Yt−1I(−r,r](Yt−1) + rI(r,∞)(Yt−1) + εt , (65)

where {εt} i.i.d.∼ N (0, 1). The constant term r in the outer regimes triviallymakes the process
stationary. The stationary marginal density fr(yt) of (65) is given by

fr(yt) =
∫ −r

−∞
ϕ(yt ;−r)f (yt−1) dyt−1 +

∫ r

−r
ϕ(yt ; 1)f (yt−1) dyt−1

+
∫ ∞

r
ϕ(yt ; r)f (yt−1) dyt−1. (66)

This equation does not have a closed-form solution, but the approximation method
of Section 7.2 can readily be used. Specifically, note that (65) is a special case of the
SETAR(3; 1, 1, 1) process

Yt = (α
(1)
0 + α

(1)
1 Yt−1)I(−∞,r1](Yt−1) + (α

(2)
0 + α

(2)
1 Yt−1)I(r1,r2](Yt−1)

+ (α
(3)
0 + α

(3)
1 Yt−1)I(r2,∞)(Yt−1) + εt , (67)

where {εt} i.i.d.∼ N (0, 1). Now, depending on α
(1)
1 � 0, α(2)

1 � 0, and α
(3)
1 � 0, there are 27

distinct cases to consider for the evaluation of the transition kernel (61).
Figure 4(a) shows the density f ∗r (y) obtained for r = 1, 2, 4, and 6, using the approx-

imation method of Section 7.2. We note here the general pattern of the near-uniformity
between the thresholds as r increases, with slight ‘shoulder’ sections beyond each thresh-
old to accommodate the few observations that are expected to overshoot them. This is
intuitively in agreement with the idea that, for large r, the modified randomwalk results in
series values being contained in an interval, symmetric around zero, in which no one value
has a greater probability than any other.

Figure 4(b) displays the first 10 lags of the autocorrelation function ρ∗
� associated with

the approximation f ∗r (y). We are led to the conclusion that a realization of model (65) will
tend to exhibit the same properties as a linear AR(1) process with a parameter value near
to unity. As r increases the model approaches non-stationarity, but for lower values of r,
the autocorrelations are more moderate. Figure 4(a ,b) together suggests that the simple
class of models given by (65) offer a wide range of patterns, seemingly useful additions to
an armoury for dealing with non-stationarity.

9. Some concluding remarks

We have obtained explicit and exact expressions of the stationary marginal distribution
density of several low-order threshold-type processes with central symmetric innovations.
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Figure 4. (a) Stationary marginal densities f∗r (y) and (b) autocorrelations ρ∗
� (� = 1, . . . , 10) of the

threshold randomwalk model (65), using the approximation method of Section 7.2.

Also, closed-form and exact expressions for the associated moments, autocovariance and
autocorrelation functions have been derived. The marginal distribution can be used to
compute the exact likelihood function, and hence improve statistical inference. In empir-
ical studies, comparing the empirical and the exact marginal distributions offers insight
about the accuracy of the model fit. This may further be enhanced by a comparison of the
sample- and exact autocorrelation function. In addition, the exact lag one autocorrelations
may be used to generate pseudo-random low-order threshold-type processes.

For high-order andmultiple-regime processes, exact analysis gets very complicated due
to correlations among model parameters within and across regimes. Nonetheless, for two-
and three-regime threshold-typemodels onemay approximate the stationarymarginal dis-
tribution by the Riemann-Stieltjes integration method discussed in Section 7.2. Through
a comparison with the exact marginal distribution and its moments, we assessed the
excellent accuracy of this approximation method.
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Appendix. Proofs of new results

Proof of Proposition 3.1: The first term on the right-hand side (RHS) of (5) is given by

RHS1 =
(

(1 − w)

∫ r

−∞
ϕ(yt−1;α−

0 ) dyt−1 + w
∫ r

−∞
ϕ(yt−1;α+

0 ) dyt−1

)
ϕ(y;α−

0 )
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=
(
(1 − w)�(r−α+

0 ) + w�(r−α−
0 )

)
ϕ(y;α−

0 ).

Similarly, the second term on the RHS of (5) is

RHS2 =
(
(1 − w)

(
1 − �(r−α+

0 )

)+ w
(
1 − �(r−α−

0 )

))
ϕ(y;α+

0 ).

From the definition of w in (7), it can be readily verified that

w
{
1 − �(r−α−

0 )

}+(1 − w)
{
1 − �(r−α+

0 )

} = 1 − w, and w�(r−α−
0 )+(1 − w)�(r−α+

0 ) = w.

Using these results, and substituting RHS1 and RHS2 in (5), expression (6) follows directly. �

Proof of Corollary 3.2: Wemay write

γ� =
∫ ∞

r

∫ ∞

−∞
ytyt−�g(yt , yt−�) dyt dyt−� +

∫ r

−∞

∫ ∞

−∞
ytyt−�g(yt , yt−�) dyt dyt−� (A1)

=
∫ ∞

−∞
ytk(yt|yt−�+1)ϕ(yt−�+1;α+

0 ) dyt
∫ ∞

r
yt−�f (yt−�) dyt−�

+
∫ ∞

−∞
ytk(yt|yt−�+1)ϕ(yt−�+1;α−

0 ) dyt
∫ r

−∞
yt−�f (yt−�) dyt−�

= A2γ2,� + A1γ1,�, (A2)

where A1 = ∫ r
−∞ yt−�f (yt−�) dyt−�, A2 = ∫∞

r yt−�f (yt−�) dyt−�, k(yt|yt−�+1) = ∏�−2
j=0 h(yt−j|

yt−j−1) (� ≥ 2), and where

γ1,� ≡
∫ ∞

−∞
ytk(yt|yt−�+1)ϕ(yt−�+1;α−

0 ) dyt , γ2,� ≡
∫ ∞

−∞
ytk(yt|yt−�+1)ϕ(yt−�+1;α+

0 ) dyt .

The constants A1 and A2 can easily be calculated using the identities∫ r

−∞
yϕ(y; δ) dy = −ϕ(r − δ) + δ�(r−δ),

∫ ∞

r
yϕ(y; δ) dy = ϕ(r − δ) + δ

(
1 − �(r−δ)

)
,

where ϕ(r − δ) = (1/
√
2π) exp(−(r − δ)2/2). By straightforward calculation, it can be shown that

γ1 = A1α
−
0 + A2α

+
0 . So, γ1,1 = α−

0 and γ2,1 = α+
0 .

Next, we derive a recursive relationship between γi,� and γi,�−1 for i = 1, 2. From (5) we
have g(yt , yt−�) = ∫∞

−∞ k(yt|yt−�+1)h(yt−�+1|yt−�)f (yt−�) dyt−�+1 Thus, the first term on the RHS
of (A1) can be written as∫ ∞

r

∫ ∞

−∞
ytyt−�g(yt , yt−�) dyt dyt−�

=
∫ ∞

r
yt−�f (yt−�) dyt−�

{∫ ∞

−∞

∫ ∞

−∞
ytk(yt|yt−�+1)ϕ(yt−�+1;α−

0 ) dyt−�+1 dyt
}
. (A3)

Note that

k(yt|yt−�+1) =
{

k(yt|yt−�+2)ϕ(yt−�+2;α−
0 ) if yt−�+1 < r,

k(yt|yt−�+2)ϕ(yt−�+2;α+
0 ) if yt−�+1 ≥ r.

Upon substituting k(yt|yt−�+1) into (A3), we get∫ ∞

r
yt−�f (yt−�) dyt−�

{∫ ∞

−∞

∫ r

−∞
ytk(yt|yt−�+2)ϕ(yt−�+2;α−

0 )ϕ(yt−�+1;α−
0 ) dyt−�+1 dyt

+
∫ ∞

−∞

∫ ∞

r
ytk(yt|yt−�+2)ϕ(yt−�+2;α+

0 )ϕ(yt−�+1;α−
0 ) dyt−�+1 dyt

}
= A2

{
�(r−α+

0 )γ2,�−1 + (
1 − �(r−α+

0 )

)
γ1,�−1

}
.
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The second term on the RHS of (A1) can be evaluated similarly. Then combining these results,
we obtain

γ� = A2

{
�(r−α+

0 )γ2,�−1+
(
1 − �(r−α+

0 )

)
γ1,�−1

}
+ A1

{
�(r−α−

0 )γ1,�−1 + (
1 − �(r−α−

0 )

)
γ2,�−1

}
, (A4)

which together with (A2) completes the proof. �

Proof of Corollary 6.4: Let Yt = X and Yt−1 = Y . The joint density of Yt and Yt−1 is given by

gα−
1 ,α+

1
(x, y) =

⎧⎪⎨⎪⎩
1
2
exp{−|x − α−

1 y|}fα−
1 ,α+

1
(y) if y ≤ 0,

1
2
exp{−|x − α+

1 y|}fα−
1 ,α+

1
(y) if y > 0,

(A5)

where fα−
1 ,α+

1
(y) is given by (44). Then

E(XY) =
∫ ∞

−∞

∫ ∞

−∞
xy gα−

1 ,α+
1
(x, y) dx dy

= g(α−
1 ,α

+
1 )

⎧⎨⎩g3(α−
1 )

g1(α−
1 )

∫ 0

−∞
y

∞∑
q=0

d1(α−
1 , q)(α

−
1 )−q exp(−(α−

1 )qy)

×
∫ ∞

−∞
x exp(−|x − α−

1 y|) dx dy

+ g3(α+
1 )

g1(α+
1 )

∫ ∞

0
y

∞∑
q=0

d1(α+
1 , q)(α

+
1 )−q exp(−(α+

1 )qy)

×
∫ ∞

−∞
x exp(−|x − α+

1 y|) dx dy
}

= g(α−
1 ,α

+
1 )

⎧⎨⎩g3(α−
1 )

g1(α−
1 )

∫ 0

−∞
y2

∞∑
q=0

d1(α−
1 , q)(α

−
1 )−q+1 exp

(− (α−
1 )qy

)
dy

+g3(α+
1 )

g1(α+
1 )

∫ ∞

0
y2

∞∑
q=0

d1(α+
1 , q)(α

+
1 )−q+1 exp

(− (α+
1 )−qy

)
dy

⎫⎬⎭ . (A6)

With g4(λ, 2) defined by (45) and since
∫∞
0 x2 exp(−λ−qx)dx = 2λ3q (λ > 0), (A6) can be written

as

E(XY) = 2g(α−
1 ,α

+
1 )

{
g3(α−

1 )

g1(α−
1 )

g4(α−
1,2) + g3(α+

1 )

g1(α+
1 )

g4(α+
1,2)

}
,

which completes the proof. �

Proof of Corollary 6.6: Similar to the proof of Corollary 6.4, we have

E(XY) =
∫ ∞

−∞

∫ ∞

−∞
xy gα−

1 ,α+
1
(x, y) dx dy

= h(α−
1 ,α

+
1 )g8(α−

1 ,α
+
1 )

∫ 0

−∞
y exp(y)

∫ ∞

−∞
x
{
1
2
exp{−|x − α−

1 y|}dx
}
dy

+
∫ ∞

0
h(α−

1 ,α
+
1 )y

(
r1(y,α+

1 ) + g8(α−
1 ,α

+
1 )r2(y,α−

1 ,α
+
1 )
)
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×
∫ ∞

−∞
x
{
1
2
exp{−|x − α+

1 y|} dx
}
dy

= α−
1 h(α

−
1 ,α

+
1 )g8(α−

1 ,α
+
1 )

∫ 0

−∞
y2 exp(y) dy + α+

1 h(α
−
1 ,α

+
1 )

×
∫ ∞

0
y2r1(y,α+

1 ) dy

+ α+
1 h(α

−
1 ,α

+
1 )g8(α−

1 ,α
+
1 )

∫ ∞

0
y2r2(y,α−

1 ,α
+
1 ) dy

= 2α−
1 h(α

−
1 ,α

+
1 )g8(α−

1 ,α
+
1 ) + 2α+

1 h(α
−
1 ,α

+
1 )

∞∑
q=0

d1(α+
1 , q)(α

+
1 )2q

+ 2α+
1 h(α

−
1 ,α

+
1 )g8(α−

1 ,α
+
1 )|α−

1 |2
∞∑
q=0

d2(α−
1 ,α

+
1 , q)(α

+)2(q−1)

= 2α−
1 h(α

−
1 ,α

+
1 )g8(α−

1 ,α
+
1 )+2α+

1 h(α
−
1 ,α

+
1 )g4(α+

1 , 2)

+ 2α+
1 h(α

−
1 ,α

+
1 )g8(α−

1 ,α
+
1 )g7(α+

1 , 2),

where g4(α+
1 , 2) is defined by (45), g7(α−

1 ,α
+
1 , 2) is defined by (48), and where we note that∫∞

0 y2 exp(−λ
1−q
1 |λ2|−1y)dy = 2λ−3+3q

1 |λ2|3 (0 ≤ λ1, λ2 < 1). �

Proof of Corollary 6.8: With α+
1 = −α−

1 ≡ α, the third term on the RHS of (51) can be written as

RHS3 = 2αh(−α,α)g8(−α,α)

⎛⎝α2
∞∑
q=0

d2(−α,α, q)α2(q−1) − α2d2(−α,α, 0)α−2

⎞⎠
= 2αh(−α,α)g8(−α,α)

⎛⎝ ∞∑
q=0

d2(−α,α, q)α2q − 1

⎞⎠
= 2αh(−α,α)g8(−α,α)

(
g4(α, 2) − 1

)
, (A7)

where d2(−α,α, 0) = 1, d2(−α,α, q) = d1(α, q), and g4(α, 2) = ∑∞
q=0 d1(α, q)α

2q. Next, substitut-
ing (A7) into (51), and using (53a) and (53c) gives

γ1 = 2α
(
h(−α,α) + 1

g3(α)

)
g4(α, 2) − 4α

g3(α)

= 2α
g1(α)

g4(α, 2) − 4α
g3(α)

,

which completes the proof. �

Proof of (63): Let Yt = X and Yt−1 = Y . Then

E(XY) =
n∑

i=−n
f ∗
α−
1 ,α+

1
(yi)

∫ r

−∞
yqα−

1
(y|yi)

∫ ∞

−∞
x(2π)−1/2 exp

{
−1
2
(x − α−

1 y)
2
}
dx dy

+
n∑

i=−n
f ∗
α−
1 ,α+

1
(yi)

∫ ∞

r
yqα+

1
(y|yi)

∫ ∞

−∞
x(2π)−1/2 exp

{
−1
2
(x − α+

1 y)
2
}
dx dy
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= α−
1

n∑
i=−n

f ∗
α−
1 ,α+

1
(yi)

∫ r

−∞
y2qα−

1
(y|yi) dy

+ α+
1

n∑
i=−n

f ∗
α−
1 ,α+

1
(yi)

∫ ∞

r
y2qα+

1
(y|yi) dy,

where qα−
1
(y|yi) is the density ofN (α−

1 yi, 1) if yi ≤ r, and qα+
1
(y|yi) is the density ofN (α+

1 yi, 1) if
yi > r. Consequently,

E(XY) = α−
1

n∑
i=−n
yi≤r

f ∗
α−
1 ,α+

1
(yi)

∫ r

−∞
y2
{
(2π)−1/2 exp

{
−1
2
(y − α−

1 yi)
2
}}

dy

+ α−
1

n∑
i=−n
yi>r

f ∗
α−
1 ,α+

1
(yi)

∫ r

−∞
y2
{
(2π)−1/2 exp

{
−1
2
(y − α+

1 yi)
2
}}

dy

+ α+
1

n∑
i=−n
yi≤r

f ∗
α−
1 ,α+

1
(yi)

∫ ∞

r
y2
{
(2π)−1/2 exp

{
−1
2
(y − α−

1 yi)
2
}}

dy

+ α+
1

n∑
i=−n
yi>r

f ∗
α−
1 ,α+

1
(yi)

∫ ∞

r
y2
{
(2π)−1/2 exp

{
−1
2
(y − α+

1 yi)
2
}}

dy. (A8)

Let a ∈ R, b ∈ R. From standard computation, we have the following integral equations

(2π)−1/2
∫ b

−∞
x2 exp

{
−1
2
(x − a)2

}
dx = (1+a2)�(b−a) − (2π)−1/2(b+a) exp

{
−1
2
(b − a)2

}
,

(A9)

(2π)−1/2
∫ ∞

b
x2 exp

{
−1
2
(x − a)2

}
dx = (1+a2)�(a−b)+(2π)−1/2(b+a) exp

{
−1
2
(b − a)2

}
.

(A10)

Inserting (A9) and (A10) in (A8) completes the proof. �
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