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1

I N T RO D U C T I O N

Chinese philosopher Lao Tzu stated in his prominent book “Tao Te Ching” [141]: “If
you have Tao while no Skill, Skill still can be obtained by Tao. While, if you have no Tao
but only Skill, your life will be influenced due to the lack of Tao.” If we understand “Tao”
and “Skill” as the data and the annotation needed for a modern artificial intelligence
system, it suggests prioritization of data over annotations, as the annotation itself can
be acquired from the data. This philosophy, furthermore, poses a thought-provoking
question to us: can we achieve machine learning with little reliance on annotations?

1.1 L E A R N I N G T O S E E

The story of this thesis begins with the concept of human vision. Human vision is
essential for humans to interact with an ever changing world. We continuously learn to
visually recognize things from the world around us, such as through watching TV or
reading books. Visual concepts are an indispensable part of our environment, and we
have managed to learn them without too much supervision per concept. For example,
a child can recognize a snake in real life, even when they have only seen the snake’s
contour in a comic book. These abilities can generally be applied well in life, beyond
recognizing various species of snakes. This raises a fundamental question: Can machines
that see also learn to generalize in the broad world without too much supervision?

Inspired by the remarkable abilities of human vision, researchers have been exploring
ways to build machine vision that imitates human vision. These efforts aim to make
machine vision more interpretable [15,286], improve its accuracy [53,65], and bridge the
gap between machine vision and biological vision [134], among other objectives. Much
of the progress in machine vision has been driven by computer science, most notably by
the field of computer vision. The current state-of-the-art in computer vision emphasizes
on formulating visual recognition problems as deep learning algorithms [53]. Essentially,
these neural network algorithms learn associations between images and labels during
training, enabling them to predict labels for unseen images during testing. Labels in these
images are typically assigned to either the entire image [53, 65], boxes around objects in
these images [33, 198] or even individual object pixels [40, 155]. These deep learning
techniques have significantly transformed various important application areas, such as
security surveillance [223], medical imaging [225], and molecule design [113].

Despite the great success of computer vision, most existing solutions rely on annotated
labels [53, 95, 150, 236]. However, label annotation poses several challenges, including
the labor-intensive process of annotation [53], the inherent lack of labels in most data [7],
and the difficulty of dealing with long-tail label distribution problems [269]. These issues
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Figure 1: In this thesis, we address label-efficient learning to see for six computer
vision tasks: (a) few-shot segmentation, (b) few-shot object detection, (c) few-shot video
action localization, (d) imbalanced video action retrieval, (e) point cloud classification
with mix-up, and (f) self-guided generative image diffusion. Some components of this
figure are courtesy of the CVPR2022 diffusion tutorial by Kreis et al. and Wikipedia.

are further exacerbated when pixel-level annotation is required [65, 245]. To address
these challenges, our approach aims to focus on label-efficiency. The goal is to reduce
reliance on supervision signals from label annotation in computer vision and to improve
the utilization of the supervision signal to imitate the learning process of a human being.
These facts highlight the need to achieve label-efficient learning in the era of computer
vision.

1.2 R E S E A R C H Q U E S T I O N S

To achieve label-efficient learning in computer vision, we need deep learning algorithms
that use a considerably reduced set of labels or even zero labels, at the expense of only a
small drop in performance compared to using the full set of labels. How can we resolve
this problem? How can we enable such label-efficient learning for various computer
vision challenges? To answer these questions, we pose the central research question of
this thesis:

How to achieve computer vision by label-efficient learning?

To showcase the diversity of our research tasks, we address the main research question
across six typical computer vision challenges: image segmentation, object detection,
video localization, video retrieval, point cloud classification, and generative image
diffusion. A visual depiction of those tasks deployed with the label-efficient solutions
proposed in this thesis is provided in Fig. 1.
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1.2 R E S E A R C H Q U E S T I O N S

Figure 2: Few-shot learning. The support images consist of four classes, each with one
instance. For any image in the query set, the network categorizes it into one of the classes
from the support set. Figure adapted from [239].

1.2.1 Image Segmentation

Image segmentation is a pixel-level prediction task on an image and has been a classical
problem in computer vision, see [103, 170] for recent surveys covering the topic more
exhaustively. Modern solutions rely on deep neural networks, which expect an image
as input and outputs a same-size segmentation mask, which denotes the semantic repre-
sentation of the input image. The state-of-the-art [40, 155, 170, 259] relies on thousands
of image-mask pairs to learn an optimal representation for segmentation. Unfortu-
nately, a dense pixel-level annotation over multiple images is quite labor-consuming, e.g.,
segmenting 2,500,000 object instances required over 22 worker hours per 1,000 segmenta-
tions [150]. The annotation cost grows further as image resolutions tend to become larger
and larger or annotation requirement is denser, for example in medical imaging [180],
remote sensing [161], or crowd counting [39]. At the same time, too few image-mask
annotations could potentially backfire the learning process by overfitting [147]. This
dilemma spurs us to pose the question:

How to achieve label-efficient learning for image segmentation?

To answer the question, we take inspiration from the few-shot learning paradigm
for image classification [68, 215, 239]. As shown in Figure 2, the goal is to design
and optimize a neural network that can generalize well to a dynamic classification
hypersphere when conditioned on the guidance signals consisting of only a few image
instances per class. The support images serve as guidance and are composed of several
classes. The network is designed and pre-trained to be able to generalize and recognize
any given query image into one of those classes from the support set. The training
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I N T RO D U C T I O N

stage of few-shot learning is usually conducted with a closed set of classes, meaning
the number of classes is always bounded due to the restrictions of the training dataset.
However, the paradigm of few-shot learning enables us to conduct inference on an open
set of classes, as long as a few annotations of the open-set classes are supplied in the
support set.

We propose a few-shot learning solution for image segmentation. Concretely, we have
several binary image-mask pairs acting as support set, accompanied by an extra unlabeled
image as query set. Ideally, we hope our network can generalize well to segment any
concept based on the guidance signal from the support sets. This can bring us two
advantages: 1). A marginal amount of annotation is needed per class during inference.
2). Different from traditional closed-vocabulary image segmentation solutions [40], the
network readily generalizes to classes it has not seen during training. In Chapter 2, we
present an attention-based multi-context guiding network for few-shot segmentation. It
consists of three branches: a support branch, a query branch, and a feature fusion branch.
A key feature of our network is the integration of multi-scale context features between
support and query branches, enforcing better guidance from the support set. Besides
achieving state-of-the-art results on challenging benchmarks, our method reaches label-
efficient learning in semantic segmentation for unseen novel classes without annotating
many pixels for those classes.

1.2.2 Object Detection

As our second computer vision challenge, we consider the task of object detection. Here
the goal is to localize an object in an image by its enclosing bounding box and to assign
an object class label from a predefined set of object classes. Modern approaches can be
separated into two-stage [94, 189, 198] and single-stage [33, 153, 197] neural network
architectures. Independent of the architecture design, all approaches depend on numerous
triplets of images, bounding boxes and labels to achieve competitive performance [33,94].
This dependence on predefined images, boxes and labels lead to several weaknesses.
Firstly, annotators need to annotate at least two points per bounding box for each object
class, which is labor-intensive, e.g., it can take nearly 20 minutes for a single image in the
well-known COCO dataset to be fully annotated [31, 58, 150]. Secondly, detection with a
predefined closed-set of object labels yields the application unrealistic and hazardous as
well, especially in the scenario of autonomous driving [21] and medical imaging [76], as
we can not sidestep the appearance of the open-set (unseen) classes in those scenarios.
We, therefore, pose the research question:

How to achieve label-efficient learning for object detection?

In Chapter 3, we propose a new label-efficient task named few-shot common-localization,
that is again inspired by few-shot learning for images. Given a few weakly-supervised
support images, we aim to localize the common object in the query image without the
need for any box and label annotation. To tackle this new problem, we propose a network
that aims to get the most out of the support and query images. To that end, we introduce a
spatial similarity module that searches the spatial commonality among the given images.
We furthermore introduce a feature reweighting module, which balances the influence of

12



1.2 R E S E A R C H Q U E S T I O N S

different support images through graph convolutional networks. Experimental evaluation
of the new settings demonstrates the label-efficient ability of our method to achieve
object detection in an open-set setting.

So far, we only considered the label-efficient learning problem for spatial 2D images.
However, computer vision is not bounded by 2D imagery only and one may think about
the label-efficient learning problem for more complex vision data. In the next chapter,
we focus on spatio-temporal image data and consider the problem of temporal activity
recognition in video.

1.2.3 Video Action Localization

Video action localization aims to localize a target action temporally and/or spatially from
a long untrimmed video. Like its object detection counterpart, the leading methods can
be divided into two-stage [258, 262, 284] and single-stage [118, 265] architectures, and
most of the works laboriously rely on the video-annotation pairs, and commonly, those
annotations can be a start-end timestamp, spatial start-end tubes, and a label describing
the action category. Noticeably, those video annotations are even more complex and
demanding than those for image tasks, as the annotators need to scan every frame of
the videos manually [32, 139, 166] . How to reduce the annotation complexity renders a
serious challenge for video-related tasks. We thus pose the next research question:

How to achieve label-efficient learning for action recognition?

In Chapter 4, we seek to localize the temporal extent of an action in a long untrimmed
video to remove the necessity of (temporal) label-annotations. While existing work
leverages many examples with their start, their ending, and/or the class of the action
during training time, we propose few-shot common action localization. The start and
end of an action in a long untrimmed video are determined based on just a handful of
trimmed video examples containing the same action, without knowing their common
class label. To tackle this task, we introduce a new 3D convolutional network architecture
able to align representations from the support videos with the relevant query video
segments. Evaluation of few-shot common action localization in untrimmed videos
containing single or multiple action instances demonstrates the effectiveness of label-
efficient learning for action recognition.

1.2.4 Video Action Retrieval

In addition to the problem of temporal action recognition, we also address the issue of
video action retrieval. Since the data is inherently characterized by a long-tail distribu-
tion [279], the imbalance of action classes in the video data needs to be addressed to
facilitate the learning process. A key problem is how to better utilize the labels under the
imbalanced scenario. Therefore, we pose the following research question:

How to achieve label-efficient learning for action retrieval?

13



I N T RO D U C T I O N

In Chapter 5, we explore how to conduct label-efficient learning in action retrieval
from a video query in an imbalanced scenario. In the query-by-activity-video literature, a
common assumption is that all activities have sufficient labeled examples when learning
an embedding. This assumption does however practically not hold, as only a portion of
activities have many examples, while other activities are only described by few examples.
This raises the importance of label-efficient learning of action retrieval in the wild. We
propose a visual-semantic embedding network that explicitly deals with the imbalanced
scenario for activity retrieval. By matching the activity representations from the perspec-
tive of visual and semantic alignment, we no longer ignore infrequent activities during
retrieval, consequently improving the label-efficiency under this unbalanced setting.
Experiments on a new imbalanced activity retrieval benchmark show the effectiveness of
our approach for better label-efficient learning.

1.2.5 Point Cloud Classification

So far we focused on label-efficient learning for visual grid structures, i.e., image and
video. Here we alter our focus to a 3D point cloud. In a point cloud, an instance-level
and point-level annotation is laborious before being able to consider tasks such as point
cloud classification [66, 188] and segmentation [250]. Annotating 3D point clouds is
extremely difficult due to their unordered, unstructured, and non-uniform nature [105].
For example, it can take over 1700 person-hours to annotate KITTI dataset [16], and
around 22.3 minutes for a single indoor scene measuring 5m × 5m × 2m [50]. There is a
general lack of exploration on how to facilitate label-efficient learning in those tasks. We
therefore pose the research question:

How to achieve label-efficient learning for point cloud classification?

In Chapter 6, we introduce a data augmentation technique for point clouds that
uses interpolation between examples to increase label-efficiency. Data augmentation
by interpolation [276] has proven to be a simple and effective approach in the image
domain, but it is not directly transferable to point clouds because there is no one-to-one
correspondence between the points of two different objects. Instead, we define data
augmentation between point clouds as a shortest path linear interpolation. To achieve
this, we introduce PointMixup, an interpolation method that generates new examples
through an optimal assignment of the path function between two point clouds. With this
interpolation definition, PointMixup allows for the introduction of strong interpolation-
based regularizers such as mixup and manifold mixup to the point cloud domain. In our
experiments, we demonstrate the label-efficiency potential of PointMixup for point cloud
classification, as well as increased robustness to noise and geometric transformations of
points.

1.2.6 Generative Image Diffusion

In all chapters we have focused on discriminative vision tasks e.g., classification, de-
tection, and segmentation. Here, we consider a computer vision challenge from the
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generative perspective, namely diffusion modeling. Diffusion models [99, 130, 216, 220]
rely on a fixed noise schedule to gradually corrupt an input image to a standard multi-
variate Gaussian distribution in a forward process. In a reverse process, the trained
network predicts the appropriate amount of noise needed to gradually recover the original
image from a multivariate Gaussian distribution. For different aims of the diffusion
model, it can be designed and applied in the form of a cascade [203] or in a latent
space [200]. The diffusion model can also be categorized into conditional diffusion and
unconditional diffusion models according to its dependence on a condition as input. It
was recently shown that the conditional diffusion model outperforms the unconditional
model in terms of fidelity [100, 200]. Also, the extra condition can empower the model
with more controllability on the generation process [54,100]. However, a large amount of
labor-intensive annotations such as labels [100], bounding boxes [200], and segmentation
masks [49] are mandated for conditional diffusion models. Thus hindering progress of
the diffusion model in terms of fidelity and controllability [99, 100]. Accordingly, we
pose the following research question:

How to achieve label-efficient learning for generative image diffusion?

Diffusion models have demonstrated remarkable progress in image generation quality,
especially when guidance is used to control the generative process [100]. However,
guidance requires a large amount of image-annotation pairs for training, which seriously
hinders their label-efficiency. In Chapter 7, we eliminate the need for such annotation by
instead exploiting the flexibility of self-supervision signals to design a framework for self-
guided diffusion models. By leveraging a feature extraction function and a self-annotation
function, our method provides guidance signals at various image granularities: from the
level of holistic images to object boxes and even segmentation masks. Those guidance
signals boost the label-efficient learning in generative diffusion tasks considerably.

The introduction part of the thesis concludes here. In the following section, we present
a list of all publications that resulted from the research. Furthermore, each research
question introduced in the beginning is expanded upon in the subsequent chapters. Finally,
we provide an ultimate conclusion in the last chapter of the thesis.

1.3 L I S T O F P U B L I C AT I O N S

• Chapter 2 is based on “Attention-based Multi-Context Guiding for Few-Shot
Semantic Segmentation”, AAAI 2019 [109], by Tao Hu, Pengwan Yang, Chiliang
Zhang, Gang Yu, Yadong Mu, and Cees G. M. Snoek.

Contribution of authors

Tao Hu: all aspects,
Pengwan Yang: guidance and technical advice,
Chiliang Zhang: guidance and technical advice,
Gang Yu: guidance and technical advice,
Yadong Mu: guidance and technical advice,
Cees G. M. Snoek: Overall discussion.
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• Chapter 3 is based on “SILCO: Show a Few Images, Localize the Common
Object”, published in ICCV, 2019 [107], by Tao Hu, Pascal Mettes, Jia-Hong
Huang, Cees G. M. Snoek.

Contribution of authors

Tao Hu: all aspects,
Pascal Mettes: guidance and technical advice,
Jia-Hong Huang: help with experiments,
Cees G. M. Snoek: supervision and insight.

• Chapter 4 is based on “Localizing the Common Action Among a Few Videos”,
published in ECCV, 2020 [270], by Pengwan Yang*, Tao Hu*, Pascal Mettes, Cees
G. M. Snoek.

Contribution of authors

Pengwan Yang*, Tao Hu*,: all aspects,
Pascal Mettes: guidance and technical advice,
Cees G. M. Snoek: supervision and insight.

• Chapter 5 is based on “Query by Activity Video in the Wild”, submitted for
publication, by Tao Hu, William Thong, Pascal Mettes, Cees G. M. Snoek.

Contribution of authors

Tao Hu: all aspects,
William Thong: guidance and technical advice,
Pascal Mettes: guidance and technical advice,
Cees G. M. Snoek: supervision and insight.

• Chapter 6 is based on “PointMixup: Augmentation for Point Clouds”, published in
ECCV, 2020 [44], by Yunlu Chen*, Tao Hu*, Efstratios Gavves, Thomas Mensink,
Pascal Mettes, Pengwan Yang, Cees G. M. Snoek.

Contribution of authors

Yunlu Chen*, Tao Hu*: all aspects,
Efstratios Gavves: guidance and technical advice,
Pascal Mettes: guidance and technical advice,
Thomas Mensink: guidance and technical advice,
Pengwan Yang: guidance and technical advice,
Cees G. M. Snoek: supervision and insight.

• Chapter 7 is based on “Self-Guided Diffusion Models”, published in CVPR
2023 [110], by Tao Hu*, David W Zhang*, Yuki M. Asano, Gertjan J. Burghouts,
Cees G. M. Snoek.

Contribution of authors

Tao Hu*, David W Zhang*: all aspects,
Yuki M. Asano: guidance and technical advice,
Gertjan J. Burghouts: guidance and technical advice,
Cees G. M. Snoek: supervision and insight.
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More works by the author are provided in the following:

• Self-supervised Video Representation Learning with Cross-Stream Prototypical
Contrasting, WACV, 2022 [232], Martine Toering, Ioannis Gatopoulos, Maarten
Stol, Tao Hu

• Interactivity Proposals for Surveillance Videos, ICMR, 2020 [41], Shuo Chen,
Pascal Mettes, Tao Hu, Cees G. M. Snoek

• Accelerating Convolutional neural networks with dynamic channel pruning, DCC,
2019 [275], Chiliang Zhang, Tao Hu, Yingda Guan, Zuochang Ye

• Dense In Dense: Training Segmentation from Scratch, ACCV, 2018 [106], Tao Hu

• Sobel heuristic kernel for aerial semantic segmentation, ICIP, 2018 [108], Tao Hu,
Yao Wang, Yisong Chen, Peng Lu, Heng Wang, G Wang
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2

AT T E N T I O N - BA S E D M U LT I - C O N T E X T G U I D I N G F O R
F E W- S H OT S E M A N T I C S E G M E N TAT I O N

2.1 I N T RO D U C T I O N

The state-of-the-art of image classification, detection, segmentation techniques have been
greatly advanced by the convolution neural network (CNN). Although CNN exhibits
superior performances in a variety of tasks, it has the key problem of being data hungry.
Typically, gigantic data with annotations are required for achieving high performance.
This issue becomes more severe in pixel-level annotations. In recent years, there emerges
a new research thrust which learns new concepts from limited data, known as few-shot
learning in the literature [196, 215, 239]. Though widely explored in tasks like image
classification, few-shot learning is rarely considered in dense pixel prediction problems.

Most of existing methods in few-shot semantic segmentation are based on the frame-
work as shown in the top panel of Figure 3. Conceptually, the framework is composed
of the support branch and query branch. The support branch provides discriminative
support feature to assist the target segmentation, the query branch is the feature extractor
for target segmentation. This paradigm has the following difficulties: (1). Inefficient
support feature utilization. The feature of the support branch is precious, as it determines
the final category the network will segment. However, most of the previous methods only
consider the single output from the end of the network, which do not take full advantage
of multi-context features. (2). Lack of attention. As the amount of support and query
data is often very small, optimization based on a large amount of data is impossible,
some self-supervised methods such as attention mechanism should be introduced to make
the network concentrate on our target class. (3). Inconvenience in multi-shot learning.
Traditional fusion method for multi-shot semantic segmentation is logical OR operation,
this inflexible approach lacks in exploring the inner common feature between various
support images.

To attack the above problems in few-shot semantic segmentation, we propose an
Attention-based Multi-Context Guiding network (A-MCG) shown in the bottom panel
of Figure 3. Our A-MCG tries to fuse small-to-large scale context information to globally
guide the query branch to make the right segmentation decision. A multi-context feature
will largely facilitate query branch segmentation based on multiple scales of support
feature. In addition, we utilize the Residual Attention Module (RAM) [242] to carry
out a self-supervised attention mechanism for further improvement of the segmentation.

Published in Proceedings of the AAAI Conference on Artificial Intelligence, 2019 [109].
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2.2 R E L AT E D W O R K

Support Branch

Query Branch

Attention based Multi-Context Guiding(A-MCG)
Support Image

Query Image

Support Branch

Query Branch

Support Image

Query Image

Traditional Method

Our Method

Figure 3: Our motivation. The support image mask is overlaid with ground truth in red,
and the query image is overlaid with ground truth in blue. The above is the traditional
method, and below is our method. Our A-MCG network can help the support branch
fuse multi-context information to guide the query branch.

To deal with multi-shot learning, ConvLSTM [260] is incorporated for better fusing
multi-shot support features.

Our A-MCG network makes the following contributions: (1). We first propose a
Multi-Context Guiding structure to fuse the small-to-large scale context features between
the support branch and query branch to globally guide the query branch segmentation.
(2). We introduce a Residual Attention Module [242] in our MCG network to realize
the attention mechanism in few-shot learning of segmentation. (3). We embed the
ConvLSTM [260] module into the end of our network to better merge the feature map
from the support set in multi-shot semantic segmentation. (4). Compared with previous
methods, our A-MCG reaches state-of-the-art 61.2%, 62.2% measured in mIoU in the
1-shot or 5-shot setting respectively.

2.2 R E L AT E D W O R K

Semantic Segmentation. During the early period, the CNN is only employed in the
classification tasks, most of them [136, 227] are composed of convolution layers and
fully connected layers. Fully Convolutional Network(FCN) [155] firstly applies CNN
for the task of image semantic segmentation. FCN’s key contribution is building “fully
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Figure 4: Attention-based Multi-Context Guiding Network Architecture for One-
Shot Segmentation. It includes three parts: (1). support branch. (2). query branch.
(3). A-MCG module. Res1, 2, 3, 4, 5 represent different block in ResNet. C is 1 × 1
convolution unit, stride=2 convolution is employed when the image size becomes smaller.
We design two exclusive location settings of the attention mechanism: A1, A2. The
detail illustration of the attention architecture are deferred in Figure 5.

convolutional” network that takes an input of arbitrary size and produces correspondingly-
sized output with efficient inference and learning.

In Deeplab [40], Dilated Convolutions are introduced as an alternative to CNN pooling
layers in deep part to capture larger context without reducing the image resolution. A
module named Atrous Spatial Pyramid Pooling (ASPP) is also included in Deeplab where
parallel Dilated Convolution layers with different rates capture multi-scale information.
Our method is also illuminated by the multi-context fusion pattern of ASPP and merges
the multi-context information by borrowing the multi-scale context from support branch
and query branch.

Attention Mechanism. In this chapter, we mainly talk about two types of attention
mechanism: (1). Spatial Attention such as Residual Attention Module(RAM) [242].
Inside each Attention Module, an Hourglass-like [174] bottom-up and top-down feed-
forward structure is used for generating attention map. (2). Channel Attention like
SENet [104]. “Squeeze-and-Excitation”(SE) block is designed that adaptively recali-
brates channel-wise feature responses by explicitly modeling interdependencies between
channels. We mainly attempt to employ these two types of attention mechanism into our
MCG architecture.

Few-Shot Learning in Semantic Segmentation. The first work in few-shot semantic
segmentation is OSLSM [207]. They proposed the basic paradigm in few-shot segmen-
tation. Support branch and query branch are constructed by VGG [213] to supervise
training. However, the structure is not fully convolutional, which leads to inefficient
utilization of spatial information. Later co-FCN [191] turns both of the support and
query branches into FCN architecture, but the exploration of multi-scale context is not
thorough as our method.
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2.3 M E T H O D

Table 1: Problem Formulation Notations.

notation meaning

Ii
S i-th image in support set

Y i
S (l) i-th image-binary mask for class l

S = {(Ii
S , Y i

S (l))}
k
i=1 support set

Iq image in query set
Ltrain train label set
Ltest test label set

On the other side, OSVOS [30] tries to solve the task of semi-supervised video object
segmentation. OSVOS is also based on a fully-convolutional network architecture and
transfers generic semantic information to the task of foreground segmentation. OSVOS
shows the effectiveness of fine-tuning for video object segmentation, but fine-tuning for
every test video is too time-consuming.

Convolutional Long Short-Term Memory. Long Short-Term Memory(LSTM) [101]
is proposed as a special RNN structure to model long-range dependencies in various
previous studies. However, LSTM is not suitable for handling spatiotemporal data
because the input-to-state and state-to-state are all full connections thus no spatial
information is encoded. To tackle this problem, ConvLSTM [260] is put forward by
using a convolution operator in the state-to-state and input-to-state transitions.

In our network, ConvLSTM works as a memory unit to capture and integrate the
previous support set feature for better multi-shot learning in semantic segmentation. This
method gives us more interpretability and can better smoothen our k-shot learning result
compared with traditional fusion method.

2.3 M E T H O D

2.3.1 Problem Formulation

We follow the paradigm and notations in [207], which are detailed in Table 1. The target
is to learn a model f (Iq, S ) that, when given a support set S and query image Iq, predicts
a binary mask M̂q for the semantic class l. The f function is parameterized by neural
networks of support branch and query branch.

During training, the algorithm has access to a large set of image-mask pairs D =
{(I j, Y j)}Nj=1 where Y j ∈ LH×W

train is the binary mask for training image I j. At testing, the
query images are only annotated for new(unseen) semantic classes i.e. Ltrain ∩ Ltest = ≺,
which leads us to divide the PASCAL VOC12 dataset like Table 2. This is the key
difference between one-shot learning for segmentation and traditional segmentation,
what we really care about is the segmentation performance on unseen data. Similar to the
extension from one-shot learning to k-shot learning in classification task, k-shot learning
can also be applied in semantic segmentation. In OSLSM [207], k-shot learning results
are fused by a logical OR operation between the k binary masks.
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2.3.2 Preliminary Knowledge of Attention Mechanism

Residual Attention Module(RAM) is first proposed by Wang et al. [242] for image
classification. We here review the structure of RAM in Figure 5. The original RAM
proceeds many ablation studies for its setting, we directly use the explored optimal
structure. In this chapter, we mainly explore the attention location in our MCG module
in Section 2.4.

The RAM actually utilizes a two-scale(down sample 2 times, then up sample 2 times )
Hourglass structure to construct a soft attention mask M(x). In the original ResNet [95],
residual learning is formulated as:

Hi,c = x + Fi,c(x), (2.1)

where Fi,c(x) approximates the residual function, i ranges over all spatial positions and
c ∈ {1, ..., C} is the index of the channel.

In RAM, the attention module is modified as:

Hi,c = (1 + Mi,c(x)) ∗ Fi,c(x), (2.2)

where M(x) ranges from [0,1] because of the sigmoid function. With M(x) approximating
0, H(x) will approximate original features F(x). The key of RAM lies in M(x), which
works as feature selectors that enhance good features and suppress noises from trunk
features. This characteristic of RAM is particularly important for few-shot learning
cases.

Except that, we also explored the SE block [104], which is a typical channel attention
structure. Our later ablation study in Section 2.4 shows that SE block fails to compete
with RAM under the condition of same parameters.

2.3.3 Attention-based MCG

We propose an Attention-based Multi-Context Guiding network (A-MCG) illustrated
in Figure 4. Our A-MCG network is composed of three parts: (1). support branch. (2).
query branch. (3). A-MCG(fusion) branch. The backbones of support branch, query
branch are ResNet101. We elaborate our network as input image size 320 × 320, and
their output feature map size is also marked in Figure 4. Notably, the convolutions
in Res-4, Res-lass5 blocks are equipped with Dilated Convolution [40] whose dilated
rate=2. Therefore, the feature map size no long decreases after Res-3, but the receptive
field continues to be enlarged due to Dilated Convolution.

Our A-MCG module tries to utilize multi-context feature from support branch to
globally improve the query branch segmentation. We attempt two types of attention
location pattern. In the following, we denote the bi

s as feature maps after Res-i block
in support branch, bi

q as feature maps after Res-i block in query branch, C as naive
convolution(without ReLU [173], BN), H as our attention function, Fi as the mixed
features after Res-i block of support branch and query branch.

Therefore, we mainly come up with three variants.
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Figure 5: Residual Attention Module(RAM). The left side is an hourglass-like Soft
Mask Branch, followed by a softmax operation. Right side is the whole structure of
RAM. residual unit is a typical bottleneck structure which is detailed in ResNet [95].

(1). Multi-context guiding module:

Fi+1 = C{C(bi
s) +C(bi

q) + Fi} (2.3)

Multi-context information from both branches are mixed by convolution operation.
Notably, convolution here doesn’t include ReLU, BN.

(2). Multi-context guiding with separate attention:

Fi+1 = C{H(C(bi
s)) + H(C(bi

q)) + Fi}, (2.4)

which corresponds to A1 in Figure 4.

Attention mechanism is employed separately both in query branch and support branch.

(3). Multi-context guiding with share attention:

Fi+1 = C{H(C(bi
s) +C(bi

q) + Fi)}, (2.5)

which corresponds to A2 in Figure 4. Attention mechanism is applied after the fusion of
query branch and support branch.
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2.3.4 Convolutional LSTM for k-shot Learning

In previous work, we mainly focus on the circumstance of 1-shot learning in semantic
segmentation. How shall we deal with k-shot learning? In OSLSM [207], k-shot learning
results are fused by a logical OR operation. However, this straightforward process
is unexplainable and fails to utilize the inner relationship between sequential support
images.

To better solve this multi-shot learning problem, we attempt to embed ConvLSTM
[260] at the end of the fusion branch as illustrated in Figure 4. At last, a 1× 1 convolution
will be appended to generate segmentation probability map.

ConvLSTM is firstly applied to the precipitation nowcasting task. The key idea of
ConvLSTM is to implement all operations, including state-to-state and input-to-state
transitions, with kernel-based convolutions. The inner feature of the sequential support
image mask can be sustained by ConvLSTM. We here adopt a popular LSTM variant
with “peephole connections” [77]. In detail, the three gating functions in ConvLSTM are
calculated according to the equations below:

it = σ(Wx,i ⊗ Xt +Wh,i ⊗ Ht−1 +Wc,i ⊗Ct−1), (2.6)

ot = σ(Wx,o ⊗ Xt +Wh,o ⊗ Ht−1 +Wc,o ⊗Ct), (2.7)

ft = σ(Wx, f ⊗ Xt +Wh, f ⊗ Ht−1 +Wc, f ⊗Ct−1), (2.8)

where we let Xt, Ht be the input/hidden state at time t respectively. ⊗ represents spatio-
temporal convolution operator.

Investigating previous H and current X, the recurrent model synthesizes a new proposal
for the cell state, namely

C̃t = tanh(Wx,c ⊗ Xt +Wh,c ⊗ Ht−1) (2.9)

The final cell state is obtained by linearly fusing the new proposal C̃t and previous state
Ct−1:

Ct = ft ⊙Ct−1 + it ⊙ C̃t, (2.10)

where ⊙ denotes the Hadamard product. To continue the recurrent process, it also
renders a filtered new H:

Ht = ot ⊙ tanh(Ct) (2.11)

In our previous structure, the network is trained on one-shot support set. Once
ConvLSTM is imported into our framework, it will enable us to train with k-shot support
set. For every batch(if batch size=1), one query image and k support image masks will
be fed into our neural network.

We unroll this procedure in Figure 6 for better understanding the k-shot fusion process.
k-shot support image masks enter ConvLSTM in turn. ConvLSTM plays a critical role
in summarizing the total features of the k-shot support image masks.
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Figure 6: Unrolling view of ConvLSTM. Q, F, and S represents the query branch, fusion
branch, and support branch accordingly. Best viewed in color.

For better mixing the feature from the support set in k-shot learning, a function loss is
designed as follows:

L = −
1

ks2

k∑
i=0

s∑
m=0,n=0

Ym,nlogXm,n, (2.12)

where Y is binary label, X means the neural network output probability, k is shot number,
s represents image size.

This loss enforces our A-MCG module to function well on every support set image
rather than only supervises the segmentation of single support image.

2.4 E X P E R I M E N TA L R E S U LT

2.4.1 Training Details

We implement our code based on the tensorflow framework [1]. Specially, a scaffold
framework named tensorpack [254] is used for quickly setting up our experiment. All
our models are trained by Stochastic Gradient Descent(SGD) [25] solver with learning
rate=1e-4, momentum=0.99 on one Nvidia Titan XP GPU. To fully fill GPU memory,
we set the batch size 12. The weights of support branch and query branch are initialized
with ImageNet [53] pre-trained weights. For the weight initialization of A-MCG module,
Xavier initialization [82] is adopted. All the images in the support and query branch are
resized to 320 × 320. No further augmentation is employed except the image resizing.
For Batch Normalization(BN) [114], we employ current batch statistics at training and
use the moving average statistics of BN during validation time.

We use the cross-entropy loss as the object function for training the network. The loss
is summed up over all the pixels in a mini-batch.
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Table 2: PASCAL-i5 group information. The top table displays 4 groups of label
and their semantic classes. The bottom table shows 4 sub-datasets and their training,
validation components.

label set index semantic classes

0 aeroplane, bicycle, bird, boat, bottle
1 bus, car, cat, chair, cow
2 diningtable, dog, horse, motorbike, person
3 potted plant, sheep, sofa, train, tv/monitor

sub-dataset train label set val label set

0 1,2,3 0
1 0,2,3 1
2 0,1,3 2
3 0,1,2 3

When we experiment with ConvLSTM for k-shot learning, we set k=5 by default. The
max batch size can only be 6 because every time k support image masks will be fed into
the support branch. Layer Normalization [10] is utilized in our ConvLSTM for speeding
up convergence.

2.4.2 Dataset and Metric

Dataset: We utilize dataset PASCAL-5i [207] to conduct our experiment. This dataset is
originated from PASCAL VOC12 [65] and extended annotations from SDS [89]. The set
of 20 classes in PASCAL VOC12 is divided into four sub-datasets as indicated in Table 2.
Three sub-datasets are used as the training label-set Ltrain, the left one sub-dataset is
utilized for test label-set Ltest.

The training set Dtrain is composed of all image-mask pairs from PASCAL VOC12
and SDS training sets that include at least one pixel in the segmentation mask from the
label-set Ltrain. The masks in Dtrain are modified into binary masks by setting pixels
whose semantic class are not in Ltrain as background class lϕ. The test set Dtest is from
PASCAL VOC12 and SDS validation sets, and the processing procedure for test set Dtest
is similar with training set Dtrain. Our evaluation mIoU is the average of 5 sub-dataset
mIoUs. For a fair comparison with [207], we take the same random seed and sample
N=1000 examples for testing each of our models.

Metric: To compare the quantitative performance of the different models, mean
intersection over union(mIoU) over two classes is used for our benchmark evaluation.
For binary segmentation in our work, we firstly calculate the 2× 2 confusion matrix, then
compute the according IoUl as tpl

tpl+ f pl+ f nl
. tpl is the number of true positives for class l,

f pl is the number of false positives for class l and f nl is the number of false negatives
for class l. The final mIoU is its average over the set of classes.
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Table 3: Ablation Study for fusion width. The experiment is conducted on PASCAL-i5
sub-dataset 0.

fusion width 1-shot #params(M)

64 63.4 85.6
128 63.3 86.1
256 63.6 87.2
512 63.6 89.8

1024 63.2 96.1

2.4.3 Ablation Study

Baseline. Our method is mostly compared with OSLSM [207] and co-FCN [191].
Both of them utilize the VGG [213] as basic model. Different from them, we adopt
ResNet101 [95] as our basic model, for ResNet101 owns much less parameter than
VGG16, thus it is less prone to over-fitting. Besides, ResNet also enables larger batch
size training in our architecture.

After removing the fully connected layers in the end, our ResNet101 baseline becomes
a fully-convolutional structure. Support branch and query branch are fused by element-
wise Add between the Res-5 output of them, followed by a naive convolution.

MCG. We explore several factors of our Multi-Context Guiding(MCG) architecture
such as (1). fusion width. Fusion width is the channel number in the MCG branch, all
the features in the support branch and query branch will be transformed into features
with width of fusion width. Different settings of fusion width are stated in Table 3. (2).
multi-context pattern, we try to explore what kind of context combination is better for
the few-shot learning in Table 4. The number after “context” is the feature we will adopt
for fusion. For example, context-45 means that only features from Res-4, Res-5 are used
for fusion. For convenience, we only proceed the ablation study in the sub-dataset 0 in
this part.

From Table 3, we can conclude that when the fusion width is too small such as 64
,128, the one-shot mIoU is 0.2% lower than width=256. Meanwhile, larger fusion width
like 1024 will make the mIoU worse due to over-fitting. Taking into consideration of the
balance between mIoU and parameter cost, we choose fusion width=256 as our default
setting. The latter ablation study will also adopt the default value.

As for the multi-context pattern in Table 4, more level context fusion often leads to a
better result. Context-2345 outperforms context-5 nearly 2.4% mIoU. This shows that
our multi-context guiding strategy works as our motivation. Multi-context information
fusion from both support branch and query branch could efficiently “support” the query
branch’s segmentation.

Attention Mechanism. We set two variants about the attention module: (1). Spatial
Attention. Residual Attention Module(RAM) is applied here as a representative method.
(2). Channel Attention. SENet [104] is explored in our ablation study. At the same time,
two attention location patterns “separate” and “share” are also explored. “sep” denotes
the support branch and query branch adopt separate attention. “share” represents the
support branch and query branch share the same attention.
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Table 4: Ablation Study for multi-context pattern. The experiment is conducted on
PASCAL-i5 sub-dataset 0.

Method 1-shot #params(M)

context-2345 63.6 87.2
context-45 63.2 86.7
context-5 61.2 86.1

Table 5: Ablation Study for Attention Mechanism. ChannelAttention means SENet
Block, SpatialAttention means Residual Attention Block. “sep” denotes the support
branch and query branch adopt separate attention. “share” represents the support branch
and query branch share the same attention.

Method 1-shot #params(M)

MCG 63.3 87.2
MCG-ChannelAttention-sep1 63.6 89.6

MCG-ChannelAttention-share2 61.7 89.8
MCG-SpatialAttention-sep 63.3 93.3

MCG-SpatialAttention-share 65.8 89.5
1 For fair comparison with SpatialAttention method, we

change the fusion width to 428 to make #param nearly
the same.

2 For fair comparison with SpatialAttention method, we
change the fusion width to 480 to make #param nearly
the same.

As shown in Table 5. We can find that Spatial Attention works much better than
Channel Attention under the circumstance of same parameters. We conclude that spatial
information is more useful in dense pixel task like image segmentation, while channel
information plays a more important role in classification task.

It can be obviously figured out that sharing the same attention is basically better than
separate attention. We speculate that for support branch, the input has been already
masked so that it does not need attention mechanism, while sharing attention mechanism
will make the query branch pay more attention to the support branch’s input mask.

On the other hand, we demonstrate some images’ feature map visualization and feature
map histogram in Figure 7. From the visualization, we can qualitatively observe that
the feature map becomes more focusing on the target segmentation objects. As for the
feature map histogram, we can discovery that the histogram peak move towards small
value. We owe this observation to the fact that the Spatial Attention enhances good
features and suppresses noises from trunk features.

ConvLSTM for k-shot learning. We mainly contrast two loss variants in ConvL-
STM. (1). 1-loss ConvLSTM. Only output from the last shot is supervised. (2). 5-loss
ConvLSTM. Every output from ConvLSTM is supervised. As indicated in Table 6, the
ConvLSTM highly boosts our mIOU both in 1-shot and 5-shot learning. 1-shot result
on 1-loss ConvLSTM is 0.7% lower than our baseline, we speculate that 1-loss Con-
vLSTM fails to fully supervise single-shot learning. Interestingly, both the 1-shot and
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Low High

Before After

Before After

Figure 7: Attention Mechanism Visualization. Two images are demonstrated for the
comparison between “before attention” and “after attention”. The image is overlaid with
predicted mask in green. The according histogram of the feature map is displayed in the
right side. The feature map’s activation value is normalized to 1. The support image is
ignored. Best viewed in color.

5-shot result on 5-loss LSTM outperform our baseline, which sufficiently validates our
motivation.

Furthermore, we also conduct k-shot learning where k ranges from 1 to 10 in Figure 8.
k-loss ConvLSTM fully surpasses the traditional logical or method in all shot number
range. When k ≤ 4 , the performance of 1-loss ConvLSTM is less than 5-loss ConvLSTM,
while partially larger than our baseline. This proves that our 5-loss ConvLSTM better
integrates multi-shot support features than traditional method.

Final result. As shown in Table 7, our A-MCG architecture could outperform nearly
61.2% in 1-shot mIoU, 62.2% in 5-shot mIoU. Based on our baseline, we continue
applying the MCG, attention mechanism, ConvLSTM, reach a new state-of-the-art result
on PASCAL-i5 dataset in the end.
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Table 6: Ablation Study for loss function in ConvLSTM. Baseline is our A-MCG
module, we mainly compare the difference between 1-loss ConvLSTM and 5-loss LSTM.
The experiment is conducted on PASCAL-i5 sub-dataset 0.

Method 1-shot 5-shot #params(M)

baseline 65.8 66.2 89.5
1-loss ConvLSTM 65.1 67.5 90.8
5-loss ConvLSTM 66.1 67.9 90.8

Figure 8: The relationship between shot number and validation mIoU. We mainly
compare among three multi-shot learning fusion strategies: (1). Logical Or. (2). 1-
loss ConvLSTM. (3). k-loss ConvLSTM(k=5 in our experiment). The experiment is
conducted on PASCAL-i5 sub-dataset 0.

Some visualization result can be seen in Figure 9. We also explore the effect of
increasing the support set size as shown in Figure 10.

2.5 C O N C L U S I O N

We propose an Attention-based Multi-Context Guiding network (A-MCG) which incor-
porates multi-level concentrated context. The benefits of our network are in three folds:
(1). The shallow part of our network generates low-level semantic features, meanwhile
deep part of our network captures high-level semantic features. Context features in
equal level are fused by our MCG module, which highly facilitates the support branch
to globally “support” the query branch. (2). Spatial Attention is employed along with
the whole MCG branch, which makes our network focus on different scales of context
information. (3). The import of ConvLSTM enables the network better integrate the
feature from support set in multi-shot semantic segmentation. The performance of our
model surpasses state-of-the-art methods in few-shot semantic segmentation.
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Table 7: Result on PASCAL-i5 Dataset. All results are computed by taking the average
of the 5 sub-datasets in PASCAL-i5. The 5-shot result is obtained by logic or fusion
except the method with ConvLSTM.

Method 1-shot 5-shot #params(M)

OSLSM [207] 40.8 43.9 276.7
co-FCN(Multi-class) [191] 50.9 50.9 –

co-FCN(Overall) [191] 60.1 60.8 –

Baseline 53.0 54.8 85.1
MCG 55.3 56.5 87.2

A-MCG 57.3 57.8 89.5
A-MCG-ConvLSTM 61.2 62.2 90.8

Figure 9: Qualitative results of our method for 1-shot learning. Inside each tile, we
have the support set at the top and the query image at the bottom. The support is overlaid
with the ground truth in red and the query is overlaid with our predicted mask in blue.
Best viewed in color.
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Figure 10: Effect of increasing the size of the support set. Results of 1-shot and 5-shot
learning on the same query image are in the first and second rows, respectively. The
prediction is in blue. Best viewed in color.
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S I L C O : S H OW A F E W I M AG E S , L O C A L I Z E T H E C O M M O N
O B J E C T

3.1 I N T RO D U C T I O N

Convolutional networks exhibit superior accuracy in a wide variety of computer vision
challenges, but a key limitation remains their hunger for labeled data [53, 163, 229].
Typically, large amounts of annotated examples are required to achieve a high accuracy.
This issue becomes even more severe for localization tasks, which typically require
additional localized annotations [153, 197, 198]. In recent years, a new research line
has emerged that strives to learn new concepts from limited amounts of data, known as
few-shot learning [215, 239]. Though widely explored in tasks like image classification,
few-shot learning is rarely considered for object localization problems.

In this chapter, we propose the new task of few-shot common-localization, which takes
N support images (without box annotations) and one query image as input and tries to
localize the common object in the query image guided by the support images. Our task
is demonstrated in Figure 11 for four support images and one query image. Unique to
our task is we only know there is a common class among the support and query images,
but the class itself and its spatial extent is unknown. In practice, we can obtain query
and support images with a common class by leveraging social tags, hash tags, or an
off-the-shelf image classification network. Our method adds the bounding box for free.

We investigate this task in an attempt to alleviate the double burden of annotation in
visual localization tasks, namely regarding the number of examples and regarding the
box annotations for each example. This task is therefore on the intersection between
few-shot learning [215,239] and weakly-supervised detection [19,230]. We also envision
a number of applications that arise from this task. First, few-shot common-localization
enables us to search spatially for specific instances in large and complex scenes. Second,
we can use this task to enhance other learning tasks. Few-shot common localization can
for example be used as a quick annotation tool or as a form of prior annotation for tasks
such as active learning [75]. Third, this approach enables easier search in tasks such as
remote sensing [108, 161].

At the core of few-shot common-localization is getting the most out of the limited
information. To that end, we propose a new deep network made for this task, shown
in Figure 11. First, the support and query images are fed into a backbone network to

Published in Proceedings of the International Conference on Computer Vision, 2019 [107].
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Figure 11: Few-shot common-localization. Starting from a few weakly-supervised
support images and a query image, we are able to localize the common object in the
query image without the need for a single box annotation. We only know that there is a
common object, we do not know where and what the common object is.

obtain spatial features. Second, we discover what is common among the support and
query images. We propose a spatial similarity module that learns the spatial regions of
commonality through non-local operations. Third, we hypothesize that support images
are not equally important and propose a feature reweighting module. This module
employs graph convolutional networks to balance the support images. Fourth, we use the
spatial and weight information with a class-agnostic localization network to localize the
object in the query image.

To experiment on few-shot common-localization, we repurpose and reorganize the
well-known Pascal VOC 2007, Pascal VOC 2012, MS-COCO, and ImageNet VID
datasets. Experimental results show the importance of spatial similarity and feature
reweighting for few-shot common-localization. This results in a system that outperforms
baselines from related tasks such as object detection and few-shot learning. The setup
and method serve as a catalyst for future work in this task and are all publicly available
along with the code of our networks and modules at http://taohu.me/SILCO/.

3.2 R E L AT E D W O R K

Object detection. Modern object detectors can be categorized into two categories: one-
stage and two-stage detectors. One-stage detectors such as YOLO [197] and SSD [153]
directly use the backbone architecture for object instance detection. Two-stage detectors
such as Faster R-CNN [198] and FPN [149] first propose many possible object locations
and use a sub-network for determining and regressing the best proposals. In this work,
we rely on basic components such as SSD [153]. Where standard object detection
requires many examples and dense annotations, we utilize such networks to deal with
few examples and no box annotations. Weakly-supervised object detection [19, 47, 55,
210,230] has recently been investigated for the scenario where many examples are given,
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but these examples are not annotated with boxes. Compared with our method, both
approaches do not require bounding box annotations. Our method localizes arbitrary
objects from a few support images only, while weakly-supervised localization requires
many examples per class from a pre-defined vocabulary [83].

Object co-detection. More closely connected to the task of few-shot common-
localization is object co-detection [12, 85, 91]. Given two images with the same object,
the goal of co-detection is to localize the common instance in both two images. This task
differs from few-shot common-localization in two aspects. First, co-detection can only
handle the scenario with two input images, while we can handle more inputs. Second,
our task evaluates few-shots from previously unseen classes, while co-detection uses the
same classes for training and evaluation.

Few shot learning. A central task in few-shot learning is global classification [73,
133, 215, 239, 257, 266]. Approaches such as deep siamese networks [133], matching
networks [239], and prototypical networks [215] aim to solve this task by learning embed-
ding spaces. The work of Garcia et al. [73] leverages graph convolutional networks [132]
for few-shot, semi-supervised, and active learning. We are inspired by the success of
graph convolutional networks in few-shot settings and incorporate them in the context of
common-localization from few examples.

A number of works have investigated few-shot learning beyond classification [38, 56,
109,122,123,167,168,192,207]. HU et al. [109] propose a model for image segmentation
from few examples. While effective, this work requires dense pixel-wise annotations for
the support images, same as [207]. In this work, we relax this constraint by localization
without any spatial annotations. Dong et al. [56] study object detection using a large
pool of unlabeled images and only a few labeled images per category. Pseudo-labels
for the unlabeled images are utilized to iteratively refine the detection result. Akin
to HU et al. [109], Dong et al. rely on spatial annotations for the support examples,
while we do not utilize any box annotations for our few examples. Chen et al. [38]
construct a target-domain detector from few target training annotations by leveraging
rich source-domain knowledge. Different from their work, our method tries to solve this
problem by utilizing weak prior information of common object existence.

Recently, object detection and segmentation have been investigated from a zero-shot
perspective [11,74,256]. While promising, the results are not yet at the level of supervised
tasks, hence we do not compare to zero-shot approaches.

3.3 M E T H O D

3.3.1 Problem Formulation

For our task of few-shot common-localization, the goal is to learn a model f (S N
c , Qc)

that, when given a support image set S N
c of N images and query image Qc, predicts

bounding boxes for class c. The function f (·) is parameterized by a deep network
containing a support branch and a query branch. During training, the algorithm has
access to a set of image tuples T = (S N

c , Qc), where c ∈ Ltrain . At testing, we focus on
new (unseen) semantic classes, i.e. c ∈ Ltest and Ltrain ∩ Ltest = ∅.
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Figure 12: Overview of the spatial similarity module, feature reweighting module,
and the aggregation. The feature maps are shown as the shape of their tensors . B, N,
C denotes batch size, number of support images, and number of channels respectively.
The image size is W

′

× H
′

, the size after the backbone is W × H. GAP denotes Global
Average Pooling. L denotes the number of GCN blocks. M denotes the number of
Conv2d-LReLU combinations. Graph Propagation means multiplication between vertex
feature and graph adjacency matrix.

3.3.2 SILCO Network

For the problem of few-shot common-localization, we propose the SILCO (Show a
Few Images, Localize the Common Object) network. An overview of our approach is
shown in Figure 11. Our framework starts from the Single Shot Detector (SSD) architec-
ture [153], using VGG [213] as our backbone. Motivated by multi-scale fusion [149],
different scales of features are used to deal with different scales of bounding boxes. The
SILCO network facilitates the query image to help the few shot co-localization based for
the common class given the weakly-supervised support images at different scales, the
key function is to try to integrate support feature and query feature, i.e.:

q̃i = ϕ(qi, S i), (3.1)

for query feature qi and support feature S i at scale i. In total, akin to SSD [153], our
network contains five scales. Output q̃i ∈ RB×C×W×H denotes the result of combining
the query and support branches. Multiple scales are utilized to help the support branch
guide the query branch. The final prediction of SILCO Network is as follows:

f (q, S ) = DET(CONCATi∈S(q̃i)), (3.2)

where CONCAT means concatenation along channel axis, DET is the final detection
module used for classification and localization, and S denotes the set of scales.

There are three choices for function ϕ in our network. We first present a basic
way to perform few-shot common-localization with this network. Then we introduce
two modules to best leverage the few weakly-supervised support images for common-
localization.
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A basic version: Global Average Pooling. The common object may exist in different
zones in every support image. Therefore, a starting point in the SILCO network is to
only consider the channel support and remove spatial information, i.e.:

ϕ(qi, S i) = qi +
1
N

N∑
j=1

GAP(S ( j)
i ) (3.3)

where GAP denotes global average pooling to remove spatial information, enabling us to
directly obtain a representation for localization. Auto Broadcasting is conducted when
shape is different. However, this setup does not fully leverage the few support examples
we have been given. Therefore, we introduce two new modules.

Spatial Similarity Module. Building upon our starting network and inspired by
recent success of the Transformer structure in language processing [236] and non-local
blocks [247], we have designed a spatial similarity module, depicted on the right of
Figure 12. The main goal of this module is to search for spatial support between the
support images and the query image.

The inputs of the spatial similarity module are the query and support features. The
outputs are spatially enhanced query features. We investigate two ways to perform spatial
similarity. For the first one, the spatial similarity calculates the inner product of the
features from support and query branch first, after which softmax is applied to formulate
a pixel-wise attention matrix. This matrix then is multiplied with the support features in
order to enforce a spatial similarity search between support image and query image. The
overall process of this spatial similarity is formulated as:

SSM j
im(qi, S i) =c1(so f t(c2(qi)

T × c3(S
( j)
i ))

× c4(S
( j)
i )) + qi,

(3.4)

where c1, c2, c3, c4 are convolutional layers, so f t means softmax activation, and × denotes
matrix multiplication, SSM j

im(qi, S i) denotes the spatial similarity between query image

qi and j-th support image S ( j)
i at scale i. For simplicity, some normalization operators

such as Dropout [222], Rescaling, Layer Normalization [10] are ignored here. More
details of the spatial similarity can be observed in Figure 12. For the final spatial
similarity, we can simply take the average over the enhanced features from all support
images:

SSMim(qi, S i) =
1
N

N∑
j=1

SSM j
im(qi, S i), (3.5)

where N is the number of support images.

The first image-wise spatial similarity is performed for each support image separately.
Another choice of spatial similarity calculation is to consider all support images at once
(dubbed “global spatial similarity” throughout this work). The global spatial similarity is
given as:

37



S I L C O : S H OW A F E W I M AG E S , L O C A L I Z E T H E C O M M O N O B J E C T

SSMg(qi, S i) =c1(so f t(c2(qi)
T × c3(S c)i)

× c4(S c)i) + qi,
(3.6)

where S c is the concatenation of all support features. Global spatial similarity considers
all support features at once and tries to search for the spatial similarity accordingly. The
final formulation of ϕ is given as:

ϕ(qi, S i) = SSMim/g(qi, S i), (3.7)

where SSMim/g(qi, S i) denotes the choice for image-wise or global spatial similarity.

Feature Reweighting Module. The spatial similarity module incorporates spatial
commonality between support and query images. It assumes that each support image is
equally informative for common-localization. Here, we propose a feature reweighting
module that reweights the influence of examples in the support branch by interpreting
the few-shot images as a connected graph. The weights of this graph are learned through
graph convolutional networks (GCNs). The overall structure of the feature reweighting
module is demonstrated in Figure 12.

The input of the module are the features of the support images, the output is the weight
of each support image. The structure of the module is formulated by a GCN. First we
detail how to calculate the weight per support example, then we detail how to conduct
the feature reweighting.

Support weights. A GCN is typically fed with an input signal x ∈ RN×d on the
vertices of a weighted graph G. We consider an operator family A of graph intrinsic
linear operators that act locally on this signal. The simplest is the adjacency operator
A. Motivated by ResNet [95], the identity operator is also applied as a form of skip
connection in long-ranges. Therefore, we opt for the operator familyA = {A, 1} in our
work. A GCN receives a feature input x(k) ∈ RN×dk and produces x(k+1) ∈ RN×dk+1 ,
which can be formulated as:

x(k+1)
l = gcn(·) = ρ(

∑
F∈A

Fx(k)θ(k)F,l ), l = d1, ..., dk+1, (3.8)

where Θ = θ
(k)
1 , ..., θ(k)

|A|k
, θ(k)F,l ∈ Rdk×dk+1 , are trainable parameters and ρ(·) is a point-

wise non-linearity, LReLU [261] in our work. Furthermore, the graph adjacency matrix in
adjacency operator can also be learned from the current node hidden representation [80]:

Ã(k)
i, j = φθ̃(|x

(k)
i − x(k)j |), (3.9)

where φ is a symmetric function that can be parameterized by a neural network, the
neural network is stacked after the absolute difference between two vector nodes. To
obtain the feature weight, Eq. 3.8 will be cascaded for L times to capture the long-range
connection in the graph. In the end, inspired by SENet [104], a sigmoid layer is appended
to generate final weight. The detail can be formulated as:

FRM(S ) = σ(gcn(· · · gcn(S ))), (3.10)
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Figure 13: Spatial similarity module visualization. Two examples are demonstrated,
the left is the query image, the top, bottom images are image-wise similarity visualization
and global similarity visualization respectively. For image-wise similarity, the top 20
activations are visualized per image. For global similarity, the top 100 activations are
visualized in all 5 images. The green dot in the query image is the reference point. The
green dots in the support images are calculated based on the reference point in the query
image. Best viewed in color.

where σ is a sigmoid layer, and the output represents feature weight for every support
image FRM(S ) ∈ RB×N .

Feature Reweighting. To combine the features from the spatial similarity module
and the weights from the feature reweighting module, we multiply them both the feature
image-wise. In the end, by utilizing the Equation 3.4, ϕ can be further formulated as:

ϕ(qi, S i) = RS(CONCATN
j=1(SSM j

im(qi, S i)) ⊗ FRM(S i)), (3.11)

where SSM j
im(qi, S i)) is spatial similarity between query image qi and j-th support image

S i at scale i, FRM is feature reweighting module, ⊗ is hadamard product(broadcasting
is ignored if shape mismatches), CONCAT is the concatenation operation, which is
a mapping from RB×C×W×H to RB×N×C×W×H. The final RS denotes the reduce sum
operation that eliminates the second dimension and leads to RB×C×W×H .

Optimization. Similar to the framework of SSD, our loss function is also composed
of a bounding box regression loss and a cross entropy classification loss. The difference
is that our classification is class-agnostic, it depends on the common class of the support
images and query image. Accordingly, the overall loss function is:

L(x, c, l, g) =
1

BD

B,D∑
i, j=1

(bce(ci j, xi j) + ℓs
1(li j, gi j)), (3.12)

where B is the batch size, D is the number of matched default boxes, bce means binary
classification entropy loss function, ℓs

1 denotes smoothed ℓ1 norm loss function [81].
ci j,xi j, li j , gi j are the class probability, class ground truth, predicted coordinate, ground
truth coordinate of i-th image, j-th bounding box proposal, respectively.
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3.4 E X P E R I M E N TA L S E T U P

3.4.1 Common-localization Datasets

To accompany the new task of few-shot common-localization, we have prepared a
revised setup for three well-known datasets intended for object detection, namely Pascal
VOC [65], MS-COCO [150], and ImageNet VID [53].

CL-VOC. We divide the 20 classes of PASCAL VOC into two disjoint groups, one
group is used for training, the other for validation/testing. We use both groups for both
tasks and report the mean performance of the two runs. We perform experiments both
on Pascal VOC 2007 and 2012, dubbed CL-VOC-07 and CL-VOC-12 respectively. The
training set Dtrain is composed of all image pairs from the PASCAL VOC training set
that include one common class from the label-set Ltrain. The validation set Dval and test
set Dtest are both from the PASCAL VOC validation set. For a detailed explanation of
our dataset organization procedure, please refer to the supplementary materials.

CL-COCO. We furthermore recompile a common-localization dataset based on the
MS-COCO 2014 dataset [150]. The 80 classes in MS-COCO are divided into two disjoint
groups. The classes in each group are provided in the supplementary materials.

CL-VID. To evaluate a generalization to videos, we employ the ImageNet VID
dataset [53], a benchmark for video object detection. We use the 3,862 video snippets
from the training set for evaluation, which includes 30 objects. We employ this dataset
to evaluate our approach on open-set (i.e., unseen) classes. We train our model on
CL-VOC-12. There are some overlapping classes between Pascal VOC and ImageNet
VID. We keep videos which have one target class and no overlap with any Pascal VOC
class. For details on the retained classes, please refer to the supplementary materials.
The support images are selected from ImageNet DET [53] for evaluation. Each frame of
a test video acts as query image.

3.4.2 Implementation Details

We use PyTorch [182] for implementation. The network is trained with SGD [25] with a
learning rate of 1e-4 and momentum of 0.99 on one Nvidia GTX 1080TI. The weights of
the support and query branch are pre-trained on ImageNet [53]. All the images in the
support and query branch are resized to 300 × 300 and the batch size is set to 6. For the
query branch we choose photo-metric distortion, random mirror, random sample crop,
akin to SSD [153]. M is set to 2 in the feature reweighting. Considering the long-range
connection in graphs, L is always equal to the number of support images.

3.4.3 Evaluation

For the training tuples, we randomly sample tuples T = (S N
c , Qc), such that all tuples

contain the common classes c ∈ Ltrain. For evaluation, we randomly sample several
tuples T = (S N

c , Qc), which contain the common class c ∈ Ltest. We evaluate on 5000
tuples in CL-VOC and 10000 tuples in CL-COCO. Our training, validation, and test
images are always disjunct. The object classes in training are disjunct from those in
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Table 8: Spatial similarity module. Mean average precision (%) for image-wise versus
global spatial similarity on CL-VOC-12. For both groups, image-wise similarity works
better and we will use this form of spatial similarity for further experiments.

Group 1 Group 2 mean
Global 51.71 55.49 53.60

Image-wise 54.04 57.39 55.71

validation/test. The hyperparameter search is done once on Group 1 of CL-VOC-12.
We use the same hyperparameters for all experiments on CL-VOC-07, CL-VOC-12,
CL-COCO, and CL-VID. On the respective validation sets we choose the best model.

We employ the (mean) Average Precision as evaluation measure throughout our
experiments. The overall mAP is averaged on the mAPs of the two groups and computed
using the setup of [65]. For evaluation we only consider the top 200 detected bounding
boxes, and rank these boxes according to their objectness score. Each prediction that
overlaps with the closest ground truth with a value of at least 0.5 will be regarded as a
positive detection. After that, a non-maximum suppression with a threshold of 0.45 is
applied.

3.5 E X P E R I M E N TA L R E S U LT S

3.5.1 Ablation Study

Spatial similarity module. In the spatial similarity module, there are two ways to relate
features from the support and query branches. The first, image-wise spatial similarity,
computes a matrix of size HW × HW for each support image. The second, global spatial
similarity, computes a single matrix of size HW × NHW, which regards all N support
images as a whole to the spatial similarity. We compare the two different forms of
similarities in Table 8. We observe that image-wise spatial similarity outperforms global
spatial similarity. Our hypothesis is that image-wise spatial similarity more explicitly
exploits the prior knowledge of the common-localization task that all support images
are of the same class. To highlight this ability of image-wise spatial similarity, we
visualize the top activation pixels in Figure 13. We find that image-wise spatial similarity
balances the attention of every support image, while global spatial similarity exhibits a
less uniform attention distribution. For the bird example, the global similarity misses the
common object in the first and fourth support image, while many irrelevant areas in the
second support images are targeted. Based on this study, image-wise spatial similarity
will be adopted for the rest of the experiments.

Feature reweighting module. We also explore the effect of feature reweighting based
on the previous results. The ablation result is indicated in Table 9. We first observe that
spatial similarity outperforms the global average pooling baseline, further validating its
effectiveness. Across all three datasets, adding feature reweighting on top of the spatial
similarity benefits the common-localization accuracy. To better understand the inner
mechanism of feature reweighting, we visualize the feature heatmaps before and after
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Table 9: Ablation of spatial similarity and feature reweighting. The metric is mean
average precision (%). As we adopt spatial similarity (SSM) and feature reweighting
(FRM) the accuracy gradually increases over a simple global average pooling (GAP),
indicating the effectiveness of our proposed modules.

dataset GAP SSM FRM Group 1 Group 2 mean

CL-VOC-07
! 55.17 52.18 53.67

! 56.12 55.52 55.82
! ! 57.17 56.45 56.82

CL-VOC-12
! 53.55 54.61 54.08

! 54.04 57.39 55.71
! ! 55.11 58.62 56.86

CL-COCO
! 13.37 6.50 9.94

! 18.50 7.70 13.10
! ! 18.62 8.20 13.40

Figure 14: Feature reweighting heatmap visualization (blue means low, red means high).
The first row shows the support images, the second row shows the query image with
ground truth (blue box) and prediction (red box), the bottom row shows the heatmap
visualization. The heatmaps are the normalized feature map selected from the output
of our network. For both examples, the left and right columns show the results with
and without feature reweighting. The heatmap results show that feature reweighting can
better highlight the areas containing the common object. Label information is only used
for illustration here, we don’t utilize them in experiment.
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Figure 15: Effect of support images on CL-VOC-12. For better visualization results,
our y-axis starts from 50% mAP. Compared to a global average pooling (GAP) baseline,
our spatial similarity (SSM) and feature reweighting modules (FRM) already works well
with little support, and our modules capture the common object even better when support
increases.

feature reweighting in Figure 14. The figure shows that the reweighted features better
focus on the common class to further enhance the common-localization.

Effect of support images. Our common-localization is optimized to work with few
examples as support. To show this capability, we have explored the effect of gradually
increasing the number of support images in Figure 15. We have evaluated with 3, 5, 7,
and 9 support images. The results show that our approach obtains high accuracy with
only a few support images. As the number of support images increases, the gap of our
approach with and without spatial similarity and feature reweighting gradually becomes
larger, which indicates that our modules can capture the common object even better when
the support set grows. We have also investigated the ability to localize more than one
common object and we show qualitative examples in the supplementary materials.

Support image corruption. Our approach even works when some of the support
images do not contain the common object. We did an experiment for the 5-shot setting,
where we insert a corrupted support image. On CL-VOC-12 the mAP drops from 56.86
to 56.53 and on CL-COCO from 13.40 to 13.03.

Effect of object size. We explore the effect of different object sizes on CL-VOC-12 in
Table 10. The small, medium, large object are defined as area ratio per image ranging
from [0, 0.15],[0.15, 0.3],[0.3, 1]. We observe most gain for medium-sized objects, while
we observe a gain for all settings. Localizing large objects may be easier, so the gain is
modest, explaining their relatively modest improvement.
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Saliency Object Size

Instance ConceptContext information

Figure 16: Success and failure case analysis on CL-VOC-12. Top two rows: four
success cases. Bottom two rows: four common failure cases, where confusion is caused
by saliency, object size, lack of context, or instance confusion. For each case, we present
5 support images in the top and the query image in the bottom. Blue indicates ground
truth, red means prediction. Label information is only used for illustration here, we don’t
utilize them in experiment.
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Table 10: Effect of object size on CL-VOC-12 in mAP(%). Compared to a global
average pooling (GAP) baseline, our spatial similarity (SSM) and feature reweighting
modules (FRM) especially improves for medium-sized objects.

method small medium large
GAP 9.60 10.87 28.64

SSM, FRM 10.99 13.85 29.24

Table 11: Comparative evaluation on CL-VOC-07, CL-VOC-12, and CL-COCO.
Across all datasets, our approach outperforms the center box and Region Proposal
Network (RPN) [198] baselines by a large margin. Furthermore, our Spatial Similarity
(SSM) and Feature Reweighting (FRM) modules are preferred over the ConvLSTM of
HU et al. [109] for few-shot common-localization.

CL-VOC-07 CL-VOC-12 CL-COCO CL-VID
group 1 group 2 mean group 1 group 2 mean group 1 group 2 mean mean

Center box 5.28 4.05 4.67 6.56 6.90 6.73 0.54 0.51 0.53 -
RPN [198] 18.72 15.13 16.93 20.23 18.54 19.39 3.20 1.93 2.57 -
Contrastive RPN [87] 18.89 15.33 17.21 19.21 18.53 18.87 3.54 2.01 2.77 -

This chapter
w/ ConvLSTM [109] 53.46 54.90 54.18 51.34 57.42 54.38 16.37 6.72 11.54 53.02
w/ SSM and FRM 57.17 56.10 56.64 55.12 58.62 56.87 18.62 7.47 13.04 54.40

Success and failure case analysis. Figure 16 shows that our method can perform
common-localization in complex query images, which contain multiple objects. The right
example of row two shows that our method even works well when multiple instances exist
in a single query image. We also observe several failure cases: 1). Saliency. The most
salient object is often mistaken as the true positive. 2). Object size. Our method fails to
localize the object that is extremely small. 3). Context information. Our method doesn’t
consider the context information, for example in this case, that a chair is unlikely to be
on a table. 4). Instance concept. Our method may fail if there exists no clear boundary
between instances. These all provide interesting avenues for future enhancement of
common-localization.

3.5.2 Comparative Evaluation

Baselines. We first compare to baselines using a fixed center box or a Region Proposal
Network(RPN) [198]. The center box baseline serves as a sanity check to understand
the complexity of the few-shot common-localization task. The RPN serves as a state-of-
the-art comparison to standard object detection. For the center box baseline, we simply
select the center box of the query image as the final object proposal. The optimal size
of the center box is determined through grid search per dataset. For the RPN, we first
train a class-agnostic RPN, after which we extract both the ROI scores and features from
the query image and support images. Second, we generate candidate support features by
choosing the ROI with the highest score per support image. Third, we match candidate
support features and the query ROI features according to L2 distance. The query ROI
with the lowest feature distance is used as the final proposal.
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We also extend the RPN baseline by adding a Siamese Network constrained by a
contrastive loss [87] to learn a discriminative distance metric. To obtain pairs during
training, we sample ground truth boxes with a 1:1 ratio. A distance margin of 0.5 is
chosen by cross-validation. The remaining process is the same as the RPN baseline.

To evaluate the spatial similarity and feature reweighting modules, we extend our base
approach with the ConvLSTM of HU et al. [109], previously used for few-shot image
segmentation. ConvLSTM is adopted between support and query features. Because this
baseline is GPU-inefficient, we scale down the number of channels to half the original
size through a 1 × 1 convolution. After the ConvLSTM fusion, we scale up the channel
number to the original number by another 1 × 1 convolution.

Results. The results are shown in Table 11. The center box baseline scores lowest
across all datasets, indicating that this task is not easy to solve. For the RPN baselines,
we obtain a stable gain compared to the center box baseline, illustrating that deep
features and their similarity have an important role in our task. Our method, either with
ConvLSTM [109] or the proposed spatial similarity and feature reweighting modules
outperforms the center box and RPN baseline, which shows that our common-localization
structure is more suitable for the few-shot common-localization task. Furthermore, our
method with the combination of spatial similarity and feature reweighting works best
compared to all other methods in three datasets, which indicates the spatial similarity
and feature reweighting modules can function well in a mutually beneficial way.

Time and complexity analysis. SILCO has 37.1M parameters and an inference time
of 0.12 seconds with 5 shots. For comparison, ConvLSTM [109] has 56.3M parameters,
while the inference time is a bit faster with 0.09 seconds.

3.5.3 Video Common-localization

To validate generalization abilities, we also evaluate on video detection dataset ImageNet
VID [53]. We use randomly selected images from ImageNet DET as support images,
and every frame of a video from VID as query image. The results in Table 11 again
confirm our method obtains consistent gains by incorporating spatial similarity and
feature reweighting.

3.6 C O N C L U S I O N

This chapter introduces the task of few-shot common-localization. From a few support
images without box annotations, we aim to localize the object in the query image that
is common among all images. To that end, we introduce a network specific to this
problem and propose two modules to improve the common-localization. The first module
enhances the spatial similarity among the support and query images. The second module
balances the influence of each support image and reweights the features from the spatial
similarity accordingly. Experiments show that our approach can robustly localize the
common objects from few examples, outperforming baselines from related fields. We
see this work as a first step into localized learning from double-weak supervision, where
examples are both scarce and without box annotations.
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Common Class:  dog, person Common Class:  aeroplane, car

Figure 17: Localization from support images with multiple objects. Blue denotes
ground truth, red denotes prediction. The two objects common in all support images are
localized correctly in the query images.

Table 12: The #image of CL-VOC 07, CL-VOC 12, CL-COCO Few-Shot Common
Localization Dataset.

dataset train val test
CL-VOC07 2501 1010 1500
CL-VOC12 5717 2623 3200
CL-COCO 62783 20000 40504

3.7 A P P E N D I X

3.7.1 Multiple Common Object

We also assess the ability to localize more than one common object. We have re-trained
SILCO on images that also include multiple objects. Figure 17 shows two examples. In
both cases, we detect the two objects that appear in all five support images. This further
indicates the practical use of SILCO.

3.7.2 Dataset Details

We mainly elaborate the image numbers of CL-VOC07, CL-VOC12, CL-COCO in
Table 12, the detail classes of all datasets is shown in Table 14, Table 15.

For experiment in VID, we only keeps the classes: bear, elephant, fox, giant panda,
hamster, lion, lizard, monkey, rabbit, red panda, snake, squirrel, tiger, turtle, whale.

The data splitting principle of different subset is shown in Figure 18. For train,validation
and test, the images are isolated with each other. When training, we random sample
tuples(1+N for N-shot common-localization) from the pool.The detail algorithm is shown
in Algorithm 1.
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Table 13: The comparison between “before channel attention” and “after chan-
nel attention”. A typical channel attention method SENet [104] is deployed in our
experiment.

dataset method Group 1 Group 2 mAP(%)

CL-VOC07
before 57.17 56.45 56.82
after 57.50 56.96 57.23

CL-VOC12
before 55.11 58.62 56.86
after 56.55 59.22 57.89

train image val image test image

Group 1

Group 2

whole images

Figure 18: The dataset splitting demonstration. The total data are composed of train
image, validation image, test image. Our labels are separate between different images.

3.7.3 Another Perspective of the Method

From the aspect of space, our spatial similarity can be viewed as a kind of spatial
attention mechanism between query feature and support feature. Furthermore, from
the perspective of image, feature reweighting tries to rescale and balance the influence
of different support images. A natural question is whether we can introduce channel-
level attention into our framework to reach a spatial, channel, image-level attention.
Therefore, we try to adopt SENet [104] upon our framework and obtain the result in
Table 13. It indicates that the performance can be further improved by channel attention.
The result demonstrates that spatial, channel, image-level attention mechanism can be
combined in a mutually beneficial way.

Table 14: The class grouping for CL-VOC. One group is used to initialize the model,
the other group is used to perform the few-shot common-localization.

Group Semantic Classes

1
aeroplane, bicycle, bird, boat

bottle, bus, car, cat, chair, cow

2
dining table, dog, horse, motorbike

person, potted plant, sheep, sofa
train, tv/monitor
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Table 15: The class grouping for CL-COCO. One group is used to initialize the model,
the other group is used to perform the few-shot common-localization.

Group Semantic Classes

1

person, bicycle, car, motorcycle,
airplane,bus, train, truck, boat,

traffic light, fire hydrant, stop sign ,
parking meter, bench, bird, cat,

dog, horse, sheep, cow ,
elephant, bear, zebra, giraffe,

backpack, umbrella, handbag, tie ,
suitcase, frisbee, skis, snowboard,

sports ball, kite, baseballbat, baseball glove,
skateboard, surfboard, tennis racket bottle

2

wine glass, cup, fork, knife,
spoon, bowl, banana, apple,

sandwich, orange, broccoli, carrot,
hot dog, pizza, donut, cake,

chair, couch, potted plant, bed,
dining table, toilet, tv,

laptop, mouse, remote, keyboard,
cell phone, microwave, oven,

toaster, sink, refrigerator, book,
clock, vase, scissors, teddy bear,

hair drier, toothbrush

Algorithm 1 Dataset Preparation Algorithm
Notations:
C: target class set
Di : the i-th image in the datasetD
d: dictionary for (label, image list) pairs

forDi inD do
for C j in C do

ifDi has the class of C j and
d has key C j then

d [C j ] .append(D j )
else

d [C j ] = [D j]
end if

end for
end for
while Not Stop do

random choose 1 item C̃ from C
random choose k+1 items R from d[C̃]
yield R

end while
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4

L O C A L I Z I N G T H E C O M M O N AC T I O N A M O N G A F E W
V I D E O S

4.1 I N T RO D U C T I O N

The goal of this chapter is to localize the temporal extent of an action in a long untrimmed
video. This challenging problem [61, 179] has witnessed considerable progress thanks to
deep learning solutions, e.g. [71, 148, 211], fueled by the availability of large-scale video
datasets containing the start, the end, and the class of the action [29, 52, 112]. Recently,
weakly-supervised alternatives have appeared, e.g. [22, 115, 137, 138, 176, 183, 244, 268].
They avoid the need for hard to obtain start and end time annotations, but still require
hundreds of videos labeled with their action class. In this chapter, we also aim for a
weakly-supervised setup, but we avoid the need for any action class labels. We propose
few-shot common action localization, which determines the start and end of an action in
a long untrimmed video based on just a hand-full of trimmed videos containing the same
action, without knowing their common class label.

We are inspired by recent works on few-shot object detection [56, 107, 205, 208].
Dong et al. [56] start from a few labeled boxes per object and a large pool of unlabeled
images. Pseudo-labels for the unlabeled images are utilized to iteratively refine the object
detection result. Both Shaban et al. [208] and Hu et al. [107] further relax the labeling
constraint by only requiring a few examples to contain a common object, without the
strict need to know their class name. Hu et al. [107] introduce two modules to reweigh
the influence of each example and to leverage spatial similarity between support and
query images. We also require that our few examples contain a common class and we
adopt a reweighting module. Different from Hu et al., we have no module to focus on
masking objects spatially in images. Instead, we introduce three alternative modules
optimized for localizing actions temporally in long untrimmed videos, as illustrated
in Figure 19.

We make three contributions in this work. First, we consider common action local-
ization from the few-shot perspective. All we require is that the few trimmed video
examples share a common action, which may be obtained from social tags, hash tags or
off-the-shelve action classifiers. Second, we propose a network architecture for few-shot
common action localization, along with three modules able to align representations from
the support videos with the relevant query video segments. The mutual enhancement

Published in Proceedings of the European Conference on Computer Vision, 2020 [270].
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Figure 19: Common action localization in an untrimmed query video from three
trimmed support videos during inference. The action is localized in the query video
based on the common action in the support videos.

module strengthens the representations of the query and support representations simul-
taneously by building upon non-local blocks [247]. The progressive alignment module
iteratively integrates the support branch into the query branch. Lastly, the pairwise
matching module learns to weigh the importance of different support videos. As a
third contribution, we reorganize the videos in ActivityNet1.3 [29] and Thumos14 [112]
to allow for experimental evaluation of few-shot common action localization in long
untrimmed videos containing a single or multiple action instances.

4.2 R E L AT E D W O R K

Action localization from many examples. Standard action localization is concerned
with finding the start and end times of actions in videos from many training videos with
labeled temporal boundaries [27, 62, 211]. A common approach is to employ sliding
windows to generate segments and subsequently classify them with action classifiers [51,
70, 211, 243, 267]. Due to the computational cost of sliding windows, several approaches
model the temporal evolution of actions and predict an action label at each time step [62,
159, 214, 272]. The R-C3D action localization pipeline [262] encodes the frames with
fully-convolutional 3D filters, generates action proposals, then classifies and refines them.
In this chapter, we adopt the proposal subnet of R-C3D to obtain class-agnostic action
proposals. In weakly-supervised localization, the models are learned from training videos
without temporal annotations. They only rely on the global action class labels [175,
176, 244]. Different from both standard and weakly-supervised action localization, our
common action localization focuses on finding the common action in a long untrimmed
query video given a few (or just one) trimmed support videos without knowing the
common action class label, making our task class-agnostic. Furthermore, the videos used
to train our approach contain actions that are not seen during testing.
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Action localization from few examples. Yang et al. [267] pioneered few-shot labeled
action localization, where a few (or at least one) positive labeled and several negative
labeled videos steer the localization via an end-to-end meta-learning strategy. It relies on
sliding windows to swipe over the untrimmed query video to generate fixed boundary
proposals. Rather then relying on a few positive and many negative action class labels,
our approach does not require any predefined positive nor negative action labels, all we
require is that the few support videos have the same action in common. Moreover, we
propose a network architecture with three modules that predicts proposals of arbitrary
length from commonality only.

Action localization from one example. Closest to our work is video re-localization by
Feng et al. [67], which introduces localization in an untrimmed query video from a single
unlabeled support video. They propose a bilinear matching module with gating functions
for the localization. Compared to video relocalization, we consider a more general
and realistic setting, where more than one support video can be used. Furthermore, we
consider untrimmed videos of longer temporal extent and we consider action localization
from a single frame. To enable action localization under these challenging settings, we
introduce modules that learn to enhance and align the query video with one or more
support videos, while furthermore learning to weigh individual support videos. We find
that our proposed common action localization formulation obtains better results, both in
existing and in our new settings.

Action localization from no examples. Localization has also been investigated from
a zero-shot perspective by linking actions to relevant objects [116, 121, 165]. Soomro et
al. [221] tackle action localization in an unsupervised setting, where no annotations are
provided overall. While zero-shot and unsupervised action localization show promise,
current approaches are not competitive with (weakly-)supervised alternatives, hence we
focus on the few-shot setting.

4.3 M E T H O D

4.3.1 Problem Description

For the task of few-shot common action localization, we are given a set of trimmed
support videos S N

c , where N is small, and an untrimmed query video Qc. Both the
support and query videos contain activity class c, although its label is not provided. The
goal is to learn a function f (S N

c , Qc) that outputs the temporal segments for activity class
c in the query video. The function f (·, ·) is parametrized by a deep network consisting
of a support and query branch. During training, we have access to a set of support-query
tuples T = {(S N

l , Ql)}l∈Ltrain . During both validation and testing, we are only given a few
trimmed support videos with corresponding long untrimmed query video. The data is
divided such that Ltrain ∪Lval ∪Ltest = ∅.

4.3.2 Architecture

We propose an end-to-end network to solve the few-shot common action localization
problem. A single query video and a few support videos are fed into the backbone, a C3D
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Figure 20: Modules for aligning representations from the support videos with the
relevant query video segments. The mutual enhancement module augments the support
and query representations simultaneously through message passing. Then, the progressive
alignment module fuses the support into the query branch through recursive use of the
basic block. Finally, the pairwise matching module reweighs the fused features according
to the similarity between the enhanced query segments and the enhanced support videos.

network [234], to obtain video representations. The weights of the backbone network are
shared between the support and query videos. For the query video, a proposal subnet
predicts temporal segments of variable length containing potential activities [262]. Let
FQ ∈ RR×C denote the feature representation of the query video for R temporal proposal
segments, each of dimensionality C. Let FS ∈ RS T×C denote the representations of the
S support videos, where we split each support video into T fixed temporal parts. The
main goal of the network is to align the support representations with the relevant query
segment representation:

F = ϕ(FQ,FS ), (4.1)

In Equation 4.1, F ∈ RR×C denotes the temporal segment representations after align-
ment with the support representations through ϕ. In our common localization network,
representations F are fed to fully-connected layers that perform a binary classification
to obtain the likelihood that each proposal segment matches with the support actions,
which is followed by a temporal regression to refine the activity start- and end-times for
all segments.

In our network, we consider the following: i) the representations of the support videos
need to be aligned with the representations of the activity in the query video, ii) not
all support videos are equally informative, and iii) common action localization is a
support-conditioned localization task, where the activityness of different query segments
should be guided by the support videos. We propose three modules, namely mutual
enhancement module, progressive alignment module, and pairwise matching module to
deal with these considerations.

Mutual enhancement module. Building on the recent success of the transformer
structure [236] and the non-local block [247], which are forms of self-attention, we
propose a module which can simultaneously enhance the representations of the support
and query videos from each other. The basic block for this module is given as:

m(I1, I2) = c1(soft(c2(I1) × c3(IT
2 )) × c4(I2)) + I1, (4.2)

where c1, c2, c3, c4 are fully-connected layers, soft denotes the softmax activation, and
× denotes matrix multiplication. I1 and I2 denote the two inputs. A detailed overview
and illustration of the basic block is provided in the supplementary materials. Based on
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the basic block, we design a mutual enhancement module to learn mutually-enforced
representations, both for query proposals and support videos, as shown in Figure 20.
The mutual enhancement module has two streams ms→q, mq→s that are responsible for
enhancing query proposals and support videos respectively. The inputs to the mutual
enhancement module, FQ and FS , will be enhanced by each other:

ms→q = m(FQ,FS ), (4.3)

mq→s = m(FS ,FQ). (4.4)

Progressive alignment module. We also propose a progressive alignment module
to achieve a better fusion of representations from query proposals and support videos.
The idea behind this module is to reuse the basic block from the mutual enhancement
module to integrate the support branch into the query branch. Inspired by the successful
application of residual learning [95, 104], we employ a residual block to make the
progressive alignment effective:

r(I) = c1(relu(c2(I))) + I, (4.5)

where c1, c2 are fully-connected layers, relu denotes the ReLU activation. A detailed
overview and illustration of the residual block is provided in the supplementary materials.
We first take query proposal representations from the first module ms→q as 0-depth
outcome P0. On top, we adopt our basic block m to integrate this outcome with mq→s
which has been recalibrated by our residual block r. We perform this operation multiple
times in a recursive manner, i.e.:

P0 = ms→q, (4.6)

Pk = m(Pk−1, r(mq→s)), k = 1, 2, . . . , n. (4.7)

where we set n = 3 in practice. The advantage of a progressive design is that it
strengthens the integration of the support branch into the query branch as we increase
the number of basic block iterations. By using the same efficient basic blocks as our
first module, the computational overhead is small. An illustration of the progressive
alignment module is shown in Figure 20.

Pairwise matching module. In common action localization, a small number of
support videos is used. Intuitively, not every support video is equally informative for
the query segments. In addition, different query segments should not be treated equally
either. To address these intuitions, we add a means to weigh the influence between each
support video and each query segment, by introducing a pairwise matching module.

The input for the matching module are all segments of the query video and all support
videos. The pair-wise matching is a mapping PMM : (RR×C , RS×T×C) 7→ RS×R×1.
To align the two components, we first perform an expansion operation e on the query
segments, denoted as e(Pn) ∈ RS×R×C . Then a pooling p is applied over the support
videos along the temporal dimension, denoted as p(mq→s) ∈ RS×1×C . Afterwards,
we perform an auto broadcasting operation b on p(mq→s), which can broadcast the
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dimension of p(mq→s) from RS×1×C to RS×R×C to align with the dimension of e(Pn).
For query segments Pn and for support videos mq→s, their match is given by the cosine
similarity (cos) and ℓ2 Euclidean distance (dℓ2) along the segment axis:

M = cos(Pn, mq→s) =
<e(Pn), b(p(mq→s))>

∥e(Pn)∥ · ∥b(p(mq→s))∥
, (4.8)

N = dℓ2(Pn, mq→s) = ∥e(Pn) − b(p(mq→s))∥. (4.9)

We combine both distance measures:

W = PMM(Pn, mq→s) = M ⊙σ(−N), (4.10)

where σ denotes the Sigmoid operation. Tensor W ∈ RS×R×1 can be interpreted as
a weight tensor to achieve attention over the R and S dimensions. W [i, j] is a scalar
depicting the similarity between the j-th query segment representation and the i-th support
representation. For the j-th query segment representation,W [:, j] ∈ RS×1 corresponds
to the weight for different support videos, while for the i-th support representation,
W [i, :] ∈ RR×1 resembles the weight for different query segments. In the end, we
enforce the pairwise matching weightW:

ϕ(FQ,FS ) = Pn ⊙AP(W), (4.11)

where AP denotes an average pooling operation along the support dimension, in other
words, AP : RS×R×1 7→ RR×1.

4.3.3 Optimization

To optimize our network on the training set, we employ both a classification loss and
a temporal regression loss. Different than e.g., R-C3D [262], our classification task is
specifically dependent on the few support videos. Accordingly, the loss function is given
as:

L =
1

Ncls

∑
i

Lcls(ai, a∗i ) +
1

Nreg

∑
i

a∗i Lreg(ti, t∗i ), (4.12)

where Ncls and Nreg stand for batch size and the number of proposal segments, while
i denotes the proposal segment index in a batch, ai is the predicted probability of the
proposal segment, a∗i is the ground truth label, and ti represents predicted relative offset to
proposals. In the context of this work, the ground truth label is class-agnostic and hence
binary (foreground/background), indicating the presence of an action or not. Lastly, t∗i
represents the coordinate transformation of ground truth segments to proposals.

The above loss function is applied on two parts: the support-agnostic part and the
support-conditioned part. All losses for the two parts are optimized jointly. In the support-
agnostic part, the foreground/background classification loss Lcls predicts whether the
proposal contains an activity, or not, and the regression loss Lreg optimizes the relative
displacement between proposals and ground truths. For the support-conditioned part, the
loss Lcls predicts whether the proposal has the same common action as the one among
the few support videos. The regression loss Lreg optimizes the relative displacement

55



L O C A L I Z I N G T H E C O M M O N AC T I O N A M O N G A F E W V I D E O S

Table 16: Overview of the common (multi-)instance datasets. The common instance
datasets contain a single target action per video, while the common multi-instance
datasets contain more frames and more actions per video, adding to the challenge of
few-shot common action localization.

Common instance Common multi-instance
ActivityNet Thumos ActivityNet Thumos

Video statistics
number of instances 1 1 1.6 14.3
number of frames 266.9 284.6 444.5 5764.2
length (sec) 89.0 11.4 148.2 230.6
number of train videos 10035 3580 6747 1665
number of val+test videos 2483 775 1545 323

Class statistics
number of train actions 160 16 160 16
number of val+test actions 40 4 40 4

between activities and ground truths. We note explicitly that this is done for the training
set only.

During inference, the proposal subnet generates proposals for the query video. The
proposals are refined by Non-Maximum Suppression (NMS) with a threshold of 0.7. Then
the selected proposals are fused with the support videos through the mutual enhancement,
progressive alignment, and pairwise matching modules. The obtained representation is
fed to the classification subnet to again perform binary classification and the boundaries
of the predicted proposals are further refined by the regression layer. Finally, we conduct
NMS based on the confidence scores of the refined proposals to remove redundant
ones, and the threshold in NMS is set a little bit smaller than the overlap threshold θ in
evaluation (θ = 0.1 in this chapter).

Optimizing for long videos. The longer the untrimmed query video, the larger the
need for common localization, as manual searching for the activity becomes problematic.
In our setup, the length of the input video is set to 768 frames to fit the GPU memory.
When the query video is longer than 768 frames, we employ multi-scale segment genera-
tion [211]. We apply temporal sliding windows of 256, 512, and 768 frames with 75%
overlap. Consequently, we generate a set of candidates Φ =

{
(sh,ψh,ψ′h)

}H
h=1

as input
for the proposal subnet, where H is the total number of sliding windows, and ψh and ψ′h
are the starting time and ending time of the h-th segment sh. All refined proposals of all
candidate segments together go through the NMS to remove redundant proposals.

4.4 E X P E R I M E N TA L S E T U P

4.4.1 Datasets

Existing video datasets are usually created for classification [112, 128], temporal local-
ization [29], captioning [37], or summarization [86]. To evaluate few-shot common
action localization, we have revised two existing datasets, namely ActivityNet1.3 [29]
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Table 17: Module evaluation on ActivityNet and Thumos in the common instance
setting. All three modules have a positive mAP effect on the localization performance
with only a slight increase in parameters.

ActivityNet Thumos
MEM PAM PMM one-shot five-shot one-shot five-shot

42.4 42.5 37.5 38.4
✓ 49.7 52.0 42.3 44.5
✓ ✓ 51.3 53.6 44.8 46.0

✓ ✓ 52.5 55.3 47.6 49.6
✓ ✓ ✓ 53.1 56.5 48.7 51.9

and Thumos14 [112]. Both datasets come with temporal annotations suitable for our
evaluation. We consider both common instance and common multi-instance, where the
latter deals with query videos containing multiple instances of the same action.

Common instance. For the revision of ActivityNet1.3, we follow the organization of
Feng et al. [67]. We divide videos that contain multiple actions into independent videos,
with every newly generated video consisting of just one action and background. Next we
discard videos longer than 768 frames. We split the remaining videos into three subsets,
divided by action classes. We randomly select 80% of the classes for training, 10% of
the classes for validation, and the remaining 10% of the classes for testing. Besides
ActivityNet, we also revise the Thumos dataset using the same protocol.

Common multi-instance. Query videos in real applications are usually unconstrained
and contain multiple action segments. Therefore, we also split the original videos of
ActivityNet1.3 and Thumos14 into three subsets according to their action classes without
any other video preprocessing. As a result, we obtain long query videos with multiple
action instances. The support videos are still trimmed action videos.

During training, the support videos and query video are randomly paired, while the
pairs are fixed for validation and testing. The differences between the common instance
and common multi-instance video datasets are highlighted in Table 16.

4.4.2 Experimental Details

We use PyTorch [182] for implementation. Our network is trained with Adam [131] with
a learning rate of 1e-5 on one Nvidia GTX 1080TI. We use 40k training iterations and
learning rate is decayed to 1e-6 after 25k iterations. To be consistent with the training
process of our baselines [67, 283], we use the same C3D backbone [234]. The backbone
is pre-trained on Sports-1M [124] and is fine-tuned with a class-agnostic proposal loss
on the training videos for each dataset. The batch size is set to 1. The proposal score
threshold is set as 0.7. The proposal number after NMS is 128 in training and 300 in
validation and testing.
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query proposals
support

Figure 21: Without our modules.

Figure 22: With our modules.

Figure 23: Module evaluation by t-SNE visualization of support and query represen-
tations. Colors of query proposals indicate their overlap with the ground truth action,
the darker, the better. Without our modules (left), both relevant and irrelevant query
proposals are near the support videos. Afterwards (right), only relevant proposals remain
close to the support videos, highlighting the effectiveness of our modules for localizing
common actions among a few videos.
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Table 18: Influence of noisy support videos on common-instance ActivityNet for the
five-shot setting. The result shows that our approach is robust to the inclusion of noisy
support videos, whether they come from the same or different classes.

No noise 56.5

1 noisy support video 53.5
2 noisy support videos of different class 51.9
2 noisy support videos of same class 50.6

4.4.3 Evaluation

Following [67,211], we measure the localization performance using (mean) Average Pre-
cision. A prediction is correct when it has the correct foreground/background prediction
and has a ground truth overlap larger than the overlap threshold. The overlap is set to 0.5
unless specified otherwise.

4.5 E X P E R I M E N TA L R E S U LT S

4.5.1 Ablation Study

Module evaluation. We evaluate the effect of the mutual enhancement module (MEM),
the progressive alignment module (PAM), and the pairwise matching module (PMM) for
our task on the common instance datasets. We report results using one and five support
videos in Table 17. To validate the effectiveness of our modules, we compare to our
baseline system without any modules. Here the support representations are averaged
and added to the query representations. We observe that the progressive alignment
module increases over the baseline considerably, showing its efficacy. Adding the
pairwise matching on top of the progressive alignment or using the mutual enhancement
before the progressive alignment further benefits few-shot common action localization.
Combining all three modules works best.

To get insight into the workings of our modules for common action localization,
we have analysed the feature distribution before and after the use of our modules.
In Figure 23, we show the t-SNE embedding [160] before and after we align the five
support videos with the 300 proposals in one query video. We observe that after the
use of our modules, the proposals with high overlap are closer to the support videos,
indicating our ability to properly distill the correct action locations using only a few
support videos. Irrelevant proposals are pushed away from the support videos, which
results in a more relevant selection of action locations.

Few-shot evaluation. Our common action localization is optimized to work with
multiple examples as support. To show this capability, we have measured the effect of
gradually increasing the number of support videos, we found that the mAP gradually
increases as we enlarge the number of support videos from one to six on common-
instance ActivityNet. We obtain an mAP of 53.1 (one shot), 53.8 (two shots), 54.9 (three
shots), 55.4 (four shots), 56.5 (five shots), 56.8 (six shots). The results show that our
approach obtains high accuracy with only a few support videos. Using more than one
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support video is beneficial for common action localization in our approach, showing that
we indeed learn from using more than one support video. Results stagnate when using
more than six examples.

Effect of support video length. We ablate the effect of the length of the support
videos on the localization performance in Figure 24. We sample 16, 32, 48 and 64 frames
for each support video respectively. We find that the result gradually increases with
longer support videos, which indicates that temporal information in the support videos is
beneficial to our modules for common action localization.

Influence of action proportion in query video. Figure 25 shows that for query videos
with a dominant action, we can obtain high scores. An open challenge remains localizing
very short actions in very long videos.

Influence of noisy support videos. To test the robustness of our approach, we have
investigated the effect of including noisy support videos in the five-shot setting. The
results are shown in Table 18. When one out of five support videos contains the wrong
action, the performance drops only 3% from 56.5 to 53.5. The performance drop remains
marginal when replacing two of the five support videos with noisy videos. When two
noisy support videos are from the same class, the drop is larger, which is to be expected,
as this creates a stronger bias towards a distractor class. Overall, we find that our approach
is robust to noise for common action localization.

Qualitative results. To visualize the result of our method, we show three cases
in Figure 27. For the first example, we can find the common action location from one
support video. Adding more support videos provides further context, resulting in a better
fit. For the second one, our method can recover the correct prediction only when five
support videos are used. As shown in the third case, our method can also handle the
multi-instance scenario. We show a query video with three instances. With only one
support video, we miss one instance and have low overlap with another. When more
support videos are added, we can recover both misses.

4.5.2 Comparisons

To evaluate the effectiveness of our proposed approach for common action localization,
we perform three comparative evaluations.

One-shot comparison. For the one-shot evaluation, we compare to the one-shot video
re-localization of Feng et al. [67] and to Hu et al. [107], which focuses on few-shot
common object detection. We evaluate on the same setting as Feng et al. [67], namely the
revised ActivityNet dataset using the one-shot setting (common instance). Note that we
both use the C3D base network. To evaluate the image-based approach of Hu et al. [107],
we use their proposed similarity module on the temporal video proposals, rather than
spatial proposals based on author provided code [107]. The results in Table 19 show
that across all overlap thresholds, our approach is preferred. At an overlap threshold
of 0.5, we obtain an mAP of 53.1 compared to 41.0 for [107] and 43.5 for [67]. It
is of interest to note that without our three modules, we obtain only 42.4 ( Table 17).
This demonstrates that a different training setup or a different model architecture by
itself does not benefit common action localization. We attribute our improvement to
the better alignment between the support and query representations as a result of our
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Figure 24: Effect of support video length.
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Figure 25: Effect of action ratio in query video.

Figure 26: Ablation studies on the length of the support videos and the action proportion
in the query video. Both studies are on common-instance ActivityNet. Left: The longer
the support videos, the better we perform, as we can distill more knowledge from the
limited provided supervision. Right: High scores can be obtained when the common
action is dominant, localization of short actions in long videos remains challenging.
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Figure 27: Qualitative result of predictions by our approach under 1-shot, 3-shot
and 5-shot settings. Correct predictions with an overlap larger than 0.5 are marked in
green, and incorrect predictions are marked in red. The length and start-end boundary of
segment are indicated in frame numbers.

three modules. Next to a comparison on the common instance dataset, we also perform
the same experiment on the longer multi-instance ActivityNet variant. In this more
challenging setting, our approach again outperforms the baselines. We note that we are
not restricted to the one-shot setting, where the baseline by Feng et al. [67] is.

Five-shot comparison. Second, we evaluate the performance of our approach on all
datasets in the five-shot setting. We compare to a modified version of SST by Buch et
al. [27]. We add a fusion layer on top of the original GRU networks in SST to incorporate
the support feature, and then choose the proposal with the largest confidence score.
SST is used as baseline, because the approach of Feng et al. [67] cannot handle more
than one support video. We also include another comparison to Hu et al. [107]. This
time also using their feature reweighting module. The results are shown in Figure 28.
We observe that our method performs favorably compared to the two baselines on all
datasets, reaffirming the effectiveness of our method. Also note that even when our
support videos are noisy ( Table 18), we are still better than the baselines without any
noise based on Buch et al. [27] and Hu et al. [107] (39.7 and 45.4 for a threshold of 0.5
on common instance ActivityNet). The large amount of distractor actions in the long
videos of common multi-instance Thumos results in lower overall scores, indicating that
common action localization is far from a solved problem.

Localization from images. Next to using videos, we can also perform common action
localization using images as support. This provides a challenging setting, since any
temporal information is lost. We perform localization from support images by inflating
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Table 19: One-shot comparison on common instance ActivityNet. Results marked
with * obtained with author provided code. In both settings, our approach is preferred
across all overlaps, highlighting its effectiveness.

Overlap threshold
0.5 0.6 0.7 0.8 0.9 0.5:0.9

Common instance
Hu et al. [107] * 41.0 33.0 27.1 15.9 6.8 24.8
Feng et al. [67] 43.5 35.1 27.3 16.2 6.5 25.7
This chapter 53.1 40.9 29.8 18.2 8.4 29.5

Common multi-instance
Hu et al. [107] * 29.6 23.2 12.7 7.4 3.1 15.2
Feng et al. [67] * 31.4 25.5 16.1 8.9 3.2 17.0
This chapter 42.1 36.0 18.5 11.1 7.0 22.9

Figure 28: Five-shot comparison. We evaluate our method as well as modified versions
of Hu et al. [107] and Buch et al. [27] on all common instance and multi-instance datasets,
we obtain favourable results. Detailed numerical results are provided in supplementary
file to facilitate the comparison for the follow-up works. Best viewed in color.

the images to create static support videos. We perform a common action localization
on common instance ActivityNet and Thumos. We compare to the recent approach of
Zhang et al. [283], which focuses on video retrieval from images. Results in Table 20
show we obtain favourable results on both datasets, even though our approach is not
designed for this setting.

4.6 C O N C L U S I O N

In this chapter we consider action localization in a query video given a few trimmed
support videos that contain a common action, without specifying the label of the action.
To tackle this challenging problem, we introduce a new network architecture along with
three modules optimized for temporal alignment. The first module focuses on enhancing
the representations of the query and support representation simultaneously. The second
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Table 20: Localization from images on the common instance datasets. Our method
generalizes beyond videos as support input and outperforms Zhang et al. [283]

ActivityNet Thumos
one-shot five-shot one-shot five-shot

Zhang et al. 45.2 48.5 36.9 38.9
This chapter 49.2 52.8 43.0 45.6

module progressively integrates the representations of the support branch into the query
branch, to distill the common action in the query video. The third module weighs the
different support videos to deal with non-informative support examples. Experiments
on reorganizations of ActivityNet and Thumos dataset, both with settings containing
a single and multiple action instances per video, show that our approach can robustly
localize the action which is common amongst support videos in both standard and long
untrimmed query videos.

4.7 A P P E N D I X

4.7.1 Detail of Class Statistics

We list the class names for the train, validation and test sets of the common instance and
multi-instance ActivityNet in Table 23, and for the common instance and multi-instance
Thumos in Table 24.

4.7.2 Overview of the Basic Block and the Residual Block

The structure of the basic block is illustrated in Figure 29. The main idea of the basic
block is to align the features I2 to the features I1. Figure 30 depicts the schema of the
residual block. Here, the residual block performs recalibration on the input features I.

4.7.3 More Results

Numerical results of five-shot comparison. Table 21 displays the numerical results of
the five-shot comparison between our method and modified versions of Buch et al. [27]
and Hu et al. [107] on both the common instance and multi-instance datasets. The
numerical results are provided here to facilitate the comparison for the follow-up works.

Effect of depth in the progressive alignment module. n in Equation 7 denotes
the depth of the progressive alignment module which is set to 3 in practice. We ablate
the effect of the depth of the progressive alignment module in Table 22 under the five-
shot setting on the common instance ActivityNet dataset. From depth 1 to 3, the mAP
improves steadily with only a slight increase in parameters. Results stagnate when the
depth is higher than 3.
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Figure 29: Scheme of basic block.
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Figure 30: Scheme of residual block.

Figure 31: Overview of our blocks. I1, I2 denote the inputs of our basic block (left) and
I denotes the input of our residual block (right). ⊗ denotes matrix multiplication and ⊕ is
element-wise sum. r is set to 4.
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Table 21: Numerical results of five-shot comparison.

ActivityNet Thumos
0.5 0.6 0.7 0.8 0.9 0.5:0.9 0.5 0.6 0.7 0.8 0.9 0.5:0.9

Common instance
Buch et al. 39.7 33.6 27.0 14.0 4.6 23.3 35.7 29.4 20.8 11.7 3.4 20.2
Hu et al. 45.4 35.0 29.9 17.6 5.2 27.0 42.2 32.6 20.3 13.7 5.2 22.8
This chapter 56.5 47.0 37.4 21.5 11.9 34.9 51.9 42.7 24.4 17.7 10.1 29.3

Common multi-instance
Buch et al. 30.4 25.1 19.6 12.9 6.6 18.9 2.7 1.9 1.4 0.9 0.4 1.5
Hu et al. 38.9 27.2 18.3 12.7 7.3 20.9 6.8 3.1 2.2 1.8 1.3 3.1
This chapter 43.9 37.4 20.2 13.4 7.7 24.5 8.6 5.6 3.8 2.5 1.7 4.4

Table 22: Ablation study on the depth of the progressive alignment module under
five-shot setting on common instance ActivityNet. From depth 1 to 3, the mAP improves
steadily with a slight increase in parameters. Results stagnate when the depth is more
than 3.

n-depth
1 2 3 4 5

#param 47.2M 48.2M 49.3M 50.3M 51.4M
mAP 53.9 55.6 56.5 56.7 56.4
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Table 23: Subset labels on common (multi-)instance ActivityNet.

Training: Fun sliding down, Beer pong, Getting a piercing, Shoveling snow, Kneeling,
Tumbling, Playing water polo, Washing dishes, Blowing leaves, Playing congas,
Making a lemonade, Playing kickball, Removing ice from car, Playing racquetball,
Swimming, Playing bagpipes, Painting, Assembling bicycle, Playing violin, Surfing,
Making a sandwich, Welding, Hopscotch, Gargling mouthwash, Baking cookies,
Braiding hair, Capoeira, Slacklining, Plastering, Changing car wheel, Chopping wood,
Removing curlers, Horseback riding, Smoking hookah, Doing a powerbomb, Playing
ten pins, Getting a haircut, Playing beach volleyball, Making a cake, Clean and
jerk, Trimming branches or hedges, Drum corps, Windsurfing, Kite flying, Using
parallel bars, Doing kickboxing, Cleaning shoes, Playing field hockey, Playing squash,
Rollerblading, Playing drums, Playing rubik cube, Sharpening knives, Zumba, Raking
leaves, Bathing dog, Tug of war, Ping-pong, Using the balance beam, Playing lacrosse,
Scuba diving, Preparing pasta, Brushing teeth, Playing badminton, Mixing drinks,
Discus throw, Playing ice hockey, Doing crunches, Wrapping presents, Hand washing
clothes, Rock climbing, Cutting the grass, Wakeboarding, Futsal, Playing piano,
Baton twirling, Mooping floor, Triple jump, Longboarding, Polishing shoes, Doing
motocross, Arm wrestling, Doing fencing, Hammer throw, Shot put, Playing pool,
Blow-drying hair, Cricket, Spinning, Running a marathon, Table soccer, Playing
flauta, Ice fishing, Tai chi, Archery, Shaving, Using the monkey bar, Layup drill in
basketball, Spread mulch, Skateboarding, Canoeing, Mowing the lawn, Beach soccer,
Hanging wallpaper, Tango, Disc dog, Powerbocking, Getting a tattoo, Doing nails,
Snowboarding, Putting on shoes, Clipping cat claws, Snow tubing, River tubing,
Putting on makeup, Decorating the Christmas tree, Fixing bicycle, Hitting a pinata,
High jump, Doing karate, Kayaking, Grooming dog, Bungee jumping, Washing
hands, Painting fence, Doing step aerobics, Installing carpet, Playing saxophone, Long
jump, Javelin throw, Playing accordion, Smoking a cigarette, Belly dance, Playing
polo, Throwing darts, Roof shingle removal, Tennis serve with ball bouncing, Skiing,
Peeling potatoes, Elliptical trainer, Building sandcastles, Drinking beer, Rock-paper-
scissors, Using the pommel horse, Croquet, Laying tile, Cleaning windows, Fixing
the roof, Springboard diving, Waterskiing, Using uneven bars, Having an ice cream,
Sailing, Washing face, Knitting, Bullfighting, Applying sunscreen, Painting furniture,
Grooming horse, Carving jack-o-lanterns

Validation: Swinging at the playground, Dodgeball, Ballet, Playing harmonica, Paint-
ball, Cumbia, Rafting, Hula hoop, Cheerleading, Vacuuming floor, Playing blackjack,
Waxing skis, Curling, Using the rowing machine, Ironing clothes, Playing guitarra,
Sumo, Putting in contact lenses, Brushing hair, Volleyball

Testing: Hurling, Polishing forniture, BMX, Riding bumper cars, Starting a campfire,
Walking the dog, Preparing salad, Plataform diving, Breakdancing, Camel ride, Hand
car wash, Making an omelette, Shuffleboard, Calf roping, Shaving legs, Snatch,
Cleaning sink, Rope skipping, Drinking coffee, Pole vault
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Table 24: Subset labels on common (multi-)instance Thumos.

Training: BaseballPitch, BasketballDunk, Billiards, CleanAndJerk, CliffDiving,
CricketBowling, CricketShot, Diving, FrisbeeCatch, GolfSwing, HammerThrow, High-
Jump, JavelinThrow, LongJump, PoleVault, Shotput

Validation: SoccerPenalty, TennisSwing

Testing: ThrowDiscus, VolleyballSpiking
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Q U E RY B Y AC T I V I T Y V I D E O I N T H E W I L D

5.1 I N T RO D U C T I O N

This chapter investigates the problem of activity retrieval given a video as example query.
In the literature, activity retrieval is often framed as a classification task [5], a localization
task [285], or as a retrieval-by-text problem [63]. For the less common task of activity
retrieval by video, several works have shown that activities can be retrieved directly from
a user-provided query [218, 249]. A standard assumption however is that the activities
form a closed set, i.e., they assume a fixed set of activities, each with many training
videos. In practice, most activities, especially the more fine-grained ones, will have only
few examples. Without an explicit focus on such activities, they will be ignored in favor
of coarse-grained activities with many examples. In this work, we focus on obtaining a
balanced video representation of activities for retrieval, regardless of whether they have
many or few examples.

Learning with imbalanced data is an active research topics for various visual recogni-
tion tasks, including image classification [154], image segmentation [129], and object
detection [178]. A central theme in these works is to either make classes with few
examples more prominent, or switch to a setting where all classes have an equally-sized
representation, e.g., using memory banks [28, 158] or prototypes [126, 288]. In this
chapter, we take inspiration from existing imbalanced vision tasks for the problem of
imbalanced activity retrieval from video queries. We introduce two alignment modules
to match the activity feature regardless of whether they have many or few examples, see
Figure 32. Different from existing works, we do so by using both visual and semantic
prototypes, where we emphasize the importance of a global alignment with respect to all
activities. By this, we can enjoy the advantage of global alignment visually to deal with
the imbalance and also owns the ability of interpolation in semantic level [169] to further
align the feature.

As a first contribution, we introduce a new task centered around video query by activity
in the wild, which emphasizes the importance of balancing performance between the
activities with many examples and the activities with few examples. Second, we introduce
a visual-semantic embedding network for retrieval by a video query. The network
extends the standard classification loss in networks with two novel modules. The visual
alignment module maintains a visual bank with equal space of feature representation

Submitted for publication.
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Figure 32: Our motivation. In typical activity retrieval, the training set is composed
of activities with many examples (base) and activities with few examples (novel). We
propose a visual-semantic alignment to balance the retrieval performance between base
and novel classes.

for each activity. The representation of an input video is globally aligned with the
visual bank representation of all activities to obtain a loss that disregards the amount of
examples available for each activity. The semantic alignment module performs a similar
global alignment and loss, but between the input video and video-independent semantic
representations of activities such as word embeddings. These modules explicitly target
the problem of imbalance in video datasets. Third, we perform extensive evaluation and
analyses to examine the workings of our approach for imbalanced activity retrieval.

5.2 R E L AT E D W O R K

Video retrieval. For video retrieval, a common direction is to retrieve videos by a textual
query [59, 263]. Hendricks et al. [96] propose a network that localizes text queries
in videos using local and global temporal video representations. Hendricks et al. [97]
further propose to model the context as a latent variable to bridge the gap between videos
and textual queries. For activity retrieval by query video, current works are generally
concerned with an efficient matching setup between query and test videos. Examples
include retrieval using hashing [60] or using quantized video representations [48]. A
common starting assumptions is that the activities to retrieve have ample training exam-
ples to learn such an efficient matching. In this work, we challenge this assumption and
propose a network able to retrieve both activities with many examples and activities with
few examples from a query video.

Learning with imbalanced data. When dealing with frequent classes (base classes [90])
and infrequent classes (novel classes [90]), a persistent issue is overfitting to the base
classes. Transfer learning to novel classes provides a way to boost the performance on
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Figure 33: Visual-Semantic Embedding Network. During the training phase, we
augment the classification loss with visual alignment and semantic alignment modules to
preserve the visual and semantic representations of all activities. During testing, we only
use the frame-level embedding z.

novel classes, although this is paired with a catastrophic forgetting problem on base
classes [206]. Meta-learning is similarly focused on improving generalization to novel
classes, e.g. through a few steps of fine-tuning [46]. However, these methods only
consider the generalization on novel classes while ignoring the performance of base
classes [158]. We aim to achieve a balance between both.

To attain such a balance, early work attempted to use a single example of the novel class
to adapt classifiers from similar base classes using hand-crafted features [14]. Learning
with imbalanced classes has since actively been researched in image classification [280],
image segmentation [3], and object detection [143]. Hariharan and Girshick [90], for
example, tackle the imbalance problem by hallucinating additional training examples for
rare novel classes.

5.3 V I S UA L - S E M A N T I C E M B E D D I N G N E T W O R K

We aim to learn a video representation for activity retrieval, where the task is to retrieve
trimmed videos containing the same human activity as the one given in a query video. Let
{(x(i), y(i))}Ni=1 be a set of N activity videos, where x is a video of T frames describing
an activity y ∈ Y. Our goal is to learn an embedding function f (·) ∈ RC such that two
different videos x(i) and x( j) of the same activity y are close in the embedding space.
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In large collections of activities, there usually exists an imbalance in the number of
examples per activity. Following Hariharan and Girshick [90], we denote activities with
many examples as the base classes and activities with few examples as the novel classes.
Formally, Y is then split into Ybase and Ynovel, with Ybase ∩ Ynovel = ∅. Having an
imbalanced training set causes the embedding function f (·) to be geared towards Ybase
in the evaluation phase. As a consequence, this induces a poor retrieval performance for
the under-represented classes Ynovel. To alleviate this issue, we propose two alignment
modules to preserve the visual and semantic representations of all activities.

Action representations. To learn video representations of activities, we opt for a
frame-level convolutional neural network (ConvNet) as our embedding function. Working
at the frame-level rather than at the video level (e.g., with 3D convolutions) offers more
flexibility at the evaluation phase.

We extract the embedding representation for every frame xt and simply average them
over time to obtain a video-level representation z ∈ RC:

z =
1
T

T∑
t=1

f (xt). (5.1)

The embedding representation is then further projected on a label space for classifica-
tion. The probability of class c ∈ Y given an embedding representation z is:

pA(y = c|z) =
exp(−Wc · z)∑

k∈Y exp(−Wk · z)
, (5.2)

where W is the learnable parameter of the linear projection.

Visual alignment. While a standard classification embedding uses examples of
all activities, the loss is in practice dominated by activities with many examples. In
an effort to balance base and novel activity representations, we first focus on a visual
alignment between all activities. Let V ∈ RK×C denote a visual bank matrix consisting
of features representations of dimension C for every activity y ∈ Y. The size of the
bank then corresponds to K = |Y| activities. The idea of the visual bank is to obtain
a single prototypical representation for every activity. Hence, all activities are treated
equally, regardless of the number of examples available for training. For a new activity
embedding z of activity y, we update the visual bank V through a convex combination of
the current embedding representation z and the corresponding entry in V followed by an
ℓ2 normalization:

Vy = α
z
∥z∥2

+ (1 − α)Vy,

Vy = Vy/∥Vy∥,
(5.3)

where α controls the amount of update in the visual bank. The visual bank is initialized
to zero when training.

Building upon such visual banks, we propose to align the representations of different
activities. For this purpose, we rely on the attention mechanism from the non-local
operator [247]. Compared to the original non-local block, we aim to capture the re-
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lation between different prototypical representations rather than spatial [107, 247] or
temporal [247, 251] relations.

Let GA denote a global alignment operator that reasons the attention between the visual
bank representation of one activity in V , in detail, GA : (R1×C , RK×C) 7→ R1×C . When
compared to the prototypes in the visual bank, the aligned representation z⋆=GA(Vc, z)
can then be used to provide the probability of class c:

pV(y = c|z) =
exp
(
− d(z⋆, Vc)/τ

)
∑

k∈Y exp
(
− d(z⋆, Vk)/τ

) , (5.4)

where τ is the temperature of the softmax function and d is the Euclidean distance.

Semantic alignment. We additionally leverage word embeddings of activity names as
prior information. A semantic representation of an activity encapsulates relations amongst
all pairs of activity classes. We use this information to align activity representations
towards such semantic knowledge. We denote ϕ(y) ∈ RW as the word embedding of the
activity y. Let S ∈ RK×W be the semantic bank which compiles the word embedding
ϕ(y) of all K activities. For the semantic alignment, we simply opt for a multilayer
perceptron g(·). Similar to the visual alignment, a probability for class c can be derived
after aligning the representation z with the semantic activity embedding:

pS(y = c|z) =
exp
(
− d(g(z), S c)/τ

)
∑

k∈Y exp
(
− d(g(z), S c)/τ

) . (5.5)

Compared to the visual bank, the semantic bank remains fixed during training. We
initialize the semantic bank from an existing word embedding (e.g., word2vec [169],
ELMo [185] GloVe [184]).

Optimization Training the overall network amounts to minimizing the cross-entropy
loss function for all three components over the training set:

L = − log(pA) − λV log(pV) − λS log(pS ), (5.6)

where λV and λS are trade-off hyper-parameters. Once the network has been trained, we
extract the video-level representations z followed by an ℓ2 normalization for all videos in
the gallery set.

5.4 E X P E R I M E N TA L S E T U P

Video Retrieval Dataset. We reorganize ActivityNet1.3 [29] for our video retrieval
setting and refer to the reorganization as VR-ActivityNet. As our method aims at
evaluating the performance of base classes and novel classes, we split the 200 activity
labels into 100 base classes (C0−100) and 100 novel classes (C100−200). We also divide
the dataset into a training, validation, and test set. The validation set is trying to evaluate
the balanced performance between the C0−100 and C100−120. Similarly, the test set is
designed to evaluate the balanced performance between the C0−100 and C120−200. The
detailed activity splits will be provided on our project website.
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Table 25: Visual module ablation. Both base and novel classes benefit from the module
compared to the baseline.

method base novel H
(mAP) (mAP)

w/o visual 25.76 16.28 19.95
w/ visual 31.99 18.17 23.18

Table 26: Scatteredness ablation. The module works because activities are distin-
guished well from each other.

method base novel overall
baseline 0.84 0.90 0.87
+visual 1.19 1.17 1.18

Evaluation metrics. For video retrieval, we consider the mean average precision
(mAP) both on base classes and novel classes. We also compute the harmonic mean (H)
between the mAP of base classes and novel classes to evaluate the balance between base
and novel class performance.

Implementation details. We set the learning rate to 1e − 4 with Adam [131] and a
weight decay of 1e − 5 for 16k iterations and reduce the learning rate to 1e − 5 after 8k
iterations. We use a batch size of 16. The trade-off hyper-parameters λV , λS are set to 1 by
cross-validation and the convex coefficient α of the visual bank update is set to 0.9. Three
video frames are extracted per second, resulting in an average of 32 frames per activity
video. Every frame is randomly cropped and resized to 112 × 112. We use Fasttext [120]
with 1,024 dimension as our default word embedding method. We use PyTorch for
implementation and the Faiss [119] library to measure video similarities. We employ
ResNet-18 [95] as a backbone network with weights pre-trained on ImageNet [53]. Code
will be made available.

5.5 R E S U LT S

Ablation: Visual alignment. We first ablate our visual alignment module for imbalanced
activity retrieval. In Table 25 we show the results for the baseline setting, which only
uses a cross-entropy loss on a linear projection of the video representations, as well as the
inclusion of the proposed module. We observe an improvement of 6.2 percent point (p.p.)
for base classes and 1.9 p.p. for novel classes. Hence, for both frequent and infrequent
activities, the module provides a benefit. We also consider the scatteredness of the visual
activity proposals with and without the use of the visual alignment module. The results
are in Table 26. The scatteredness is consistently higher with our module, making all
activities more unique, which in turn leads to a more discriminative retrieval.

Ablation: Semantic alignment. For the semantic alignment module, we ablate its
effect using four different word embedding methods. The results are shown in Table 27
using word2vec [169], ELMo [185], GloVe [184], and fasttext [120]. For all word
embedding methods, the multilayer perceptron in the semantic alignment module is
kept the same except for the last layer. We find that all word embeddings provide an
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Table 27: Word embeddings ablation. Adding a semantic prior provides an improve-
ment, regardless of the word embedding.

method base novel H
(mAP) (mAP)

baseline+visual 31.99 18.17 23.18
+word2vec [169] 33.31 18.73 23.97
+ELMo [185] 32.42 19.26 24.16
+GloVe [184] 32.59 19.28 24.23
+Fasttext [120] 32.36 19.44 24.29

Table 28: Retrieval result in various activity taxonomy hierarchy. Level-1 contains 6
super classes, level-2 contains 38 super classes. The mAP is evaluated on the overall
classes.

method level-1(6 -cls) level-2(38-cls)
(mAP) (mAP)

baseline+visual 22.41 20.35
+semantic 23.14 21.76

Table 29: Comparison with other methods. Our approach is preferred over both internal
and external baselines, since our modules explicitly give equal importance to base and
novel classes.

base novel H
(mAP) (mAP)

ImageNet [53] 9.18 13.02 10.76
Triple loss [102] 24.47 16.48 19.70
Margin loss [252] 25.84 17.36 20.76
Baseline 25.76 16.28 19.95
w/ MSIB [126] 26.00 17.80 21.13
w/ our modules 32.42 19.26 24.16

improvement over the setting with the baseline and our visual alignment module. Overall,
fasttext provides the best balance between base and novel classes and we will use this
word embedding for our remaining experiments. Having a semantic bank offers another
benefit, namely an enhanced retrieval performance for different levels of the activity
taxonomy. We show this is the case by utilizing the ActivityNet taxonomy [29] and
evaluate the mAP for both the parent classes of the activities and the grandparent classes.
Table 28 shows our method can provide improved scores for broader activity categories,
highlighting that the proposed alignment results in a semantically more coherent retrieval.

Comparison with other methods. Using our two modules, we perform a comparative
evaluation to several baseline retrieval approaches. The first baseline serves as a starting
point. We use the network used in this work but only pre-trained on ImageNet [53] to
obtain video representations by simply averaging their frames. Query and candidate
videos are then matched using the Euclidean distance. As the result in Table 29 shows,
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the low scores indicate the difficulty of the task. Interestingly, the off-the-shelf baseline
does not suffer from an imbalance performance gap between the base classes and novel
classes. This confirms that when fine-tuning, representations of videos tend to be
more discriminative towards the base classes as they appear more frequent. We also
introduce MSIB [126] as extra baseline, the fixed matrix 199× 200 initialized by MSIB is
appended to the end of the backbone, we still keep the form of losses unchanged. Table 29
also shows the consequence of imbalanced fine-tuning for two accepted approaches in
retrieval, namely the triplet loss [102] and the margin loss [252] optimized on top of the
same video representations as for our approach. Both approaches obtain a boost in base
mAP and a smaller improvement in novel mAP. Both the sampling-based loss baselines
and our baseline setup do not explicitly cater for novel classes, resulting in similar scores
for the harmonic mean. Our proposed approach performs favorably compared to all
baselines, both for base and for novel classes. Our harmonic mAP is respectively 13.4,
4.5, 3.4, and 4.2 percent point higher than the baselines. Specially, our harmonic mAP
also outperforms MSIB [126]. We conclude that our formulation is preferred for activity
retrieval regardless of whether they have many or few examples.

5.6 C O N C L U S I O N

In this work we consider the new task of video retrieval by activity in the wild, and
emphasize the importance of dealing with imbalanced data when retrieving activities
from a video query. We introduce an embedding network that learns to balance frequent
base activities and infrequent novel activities. The network contains two novel modules.
A visual alignment module matches input videos with visual prototype representations
of activities. A semantic alignment module on the other hand matches videos with word
embedding representations of activities. Visual and semantic activity representations are
of the same length, regardless of the number of examples each activity has. As a result,
we arrive at an activity retrieval that better balances both types of activities. Experiments
highlight the effectiveness of our approach, a series of ablations and analyses are designed
to gain more insight into the problem.
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6.1 I N T RO D U C T I O N

The goal of this chapter is to classify a cloud of points into their semantic category, be
it an airplane, a bathtub or a chair. Point cloud classification is challenging, as they are
sets and hence invariant to point permutations. Building on the pioneering PointNet by
Qi et al. [187], multiple works have proposed deep learning solutions to point cloud
classification [146, 188, 231, 248, 253, 282]. Given the progress in point cloud network
architectures, as well as the importance of data augmentation in improving classification
accuracy and robustness, we study how could data augmentation be naturally extended
to support also point cloud data, especially considering the often smaller size of point
clouds datasets (e.g. ModelNet40 [255]). In this work, we propose point cloud data
augmentation by interpolation of existing training point clouds.

To perform data augmentation by interpolation, we take inspiration from augmentation
in the image domain. Several works have shown that generating new training examples,
by interpolating images and their corresponding labels, leads to improved network
regularization and generalization, e.g., [84,233,237,276]. Such a mixup is feasible in the
image domain, due to the regular structure of images and one-to-one correspondences
between pixels. However, this setup does not generalize to the point cloud domain, since
there is no one-to-one correspondence and ordering between points. To that end, we seek
to find a method to enable interpolation between permutation invariant point sets.

In this work, we make three contributions. First, we introduce data augmentation for
point clouds through interpolation and we define the augmentation as a shortest path
interpolation. Second, we propose PointMixup, an interpolation between point clouds
that computes the optimal assignment as a path function between two point clouds, or
the latent representations in terms of point cloud. The proposed interpolation strategy
therefore allows usage of successful regularizers of Mixup and Manifold Mixup [237] on
point cloud. We prove that (i) our PointMixup indeed finds the shortest path between
two point clouds; (ii) the assignment does not change for any pairs of the mixed point
clouds for any interpolation ratio; and (iii) our PointMixup is a linear interpolation, an
important property since labels are also linearly interpolated. Figure 34 shows two pairs
of point clouds, along with our interpolations. Third, we show the empirical benefits of
our data augmentation across various tasks, including classification, few-shot learning,

Published in Proceedings of the European Conference on Computer Vision, 2020 [44].
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Figure 34: Interpolation between point clouds. We show the interpolation between
examples from different classes (airplane/chair, and monitor/bathtub) with multiple ratios
λ. The interpolants are learned to be classified as (1 − λ) the first class and λ the second
class. The interpolation is not obtained by learning, but induced by solving the optimal
bijective correspondence which allows the minimum overall distance that each point in
one point cloud moves to the assigned point in the other point cloud.

and semi-supervised learning. We furthermore show that our approach is agnostic to
the network used for classification, while we also become more robust to noise and
geometric transformations to the points.

6.2 R E L AT E D W O R K

Deep learning for point clouds. Point clouds are unordered sets and hence early
works focus on analyzing equivalent symmetric functions which ensures permutation
invariance. [187, 195, 274]. The pioneering PointNet work by Qi et al. [187] presented
the first deep network that operates directly on unordered point sets. It learns the global
feature with shared multi-layer perceptions and a max pooling operation to ensure
permutation invariance. PointNet++ [188] extends this idea further with hierarchical
structure by relying on a heuristic method of farthest point sampling and grouping to
build the hierarchy. Likewise, other recent methods follow to learn hierarchical local
features either by grouping points in various manners [144, 146, 231, 248, 253, 264, 282].
Li et al. [146] propose to learn a transformation from the input points to simultaneously
solve the weighting of input point features and permutation of points into a latent and
potentially canonical order. Xu et al. [264] extends 2D convolution to 3D point clouds
by parameterizing a family of convolution filters. Wang et al. [248] proposed to leverage
neighborhood structures in both point and feature spaces.

In this work, we aim to improve point cloud classification for any point-based approach.
To that end, we propose a new model-agnostic data augmentation. We propose a Mixup
regularization for point clouds and show that it can build on various architectures to obtain
better classification results by reducing the generalization error in classification tasks. A
very recent work by Li et al. [145] also considers improving point cloud classification by
augmentation. They rely on auto-augmentation and a complicated adversarial training
procedure, whereas in this work we propose to augment point clouds by interpolation.

Interpolation-based regularization. Employing regularization approaches for train-
ing deep neural networks to improve their generalization performances have become
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standard practice in deep learning. Recent works consider a regularization by interpolat-
ing the example and label pairs, commonly known as Mixup [84, 233, 276]. Manifold
Mixup [237] extends Mixup by interpolating the hidden representations at multiple
layers. Recently, an effort has been made on applying Mixup to various tasks such as
object detection [281] and segmentation [69]. Different from existing works, which are
predominantly employed in the image domain, we propose a new optimal assignment
Mixup paradigm for point clouds, in order to deal with their permutation-invariant nature.

Recently, Mixup [276] has also been investigated from a semi-supervised learning
perspective [17, 18, 238]. Mixmatch [18] guesses low-entropy labels for unlabelled
data-augmented examples and mixes labelled and unlabelled data using Mixup [276].
Interpolation Consistency Training [238] utilizes the consistency constraint between the
interpolation of unlabelled points with the interpolation of the predictions at those points.
In this work, we show that our PointMixup can be integrated in such frameworks to
enable semi-supervised learning for point clouds.

6.3 M E T H O D

6.3.1 Problem Setting

In our setting, we are given a training set {(S m, cm)}Mm=1 consisting of M point clouds.
S m = {pm

n }
N
n=1 ∈ S is a point cloud consisting of N points, pm

n ∈ R3 is the 3D point, S is
the set of such 3D point clouds with N elements. cm ∈ {0, 1}C is the one-hot class label
for a total of C classes. The goal is to train a function h : S 7→ [0, 1]C that learns to map
a point cloud to a semantic label distribution. Throughout our work, we remain agnostic
to the type of function h used for the mapping and we focus on data augmentation to
generate new examples.

Data augmentation is an integral part of training deep neural networks, especially
when the size of the training data is limited compared to the size of the model parameters.
A popular data augmentation strategy is Mixup [276]. Mixup performs augmentation
in the image domain by linearly interpolating pixels, as well as labels. Specifically, let
I1 ∈ RW×H×3 and I2 ∈ RW×H×3 denote two images. Then a new image and its label are
generated as:

Imix(λ) = (1 − λ) · I1 + λ · I2, (6.1)

cmix(λ) = (1 − λ) · c1 + λ · c2, (6.2)

where λ ∈ [0, 1] denotes the mixup ratio. Usually λ is sampled from a beta distribution
λ ∼ Beta(γ, γ). Such a direct interpolation is feasible for images as the data is aligned.
In point clouds, however, linear interpolation is not straightforward. The reason is that
point clouds are sets of points in which the point elements are orderless and permutation-
invariant. We must, therefore, seek a definition of interpolation on unordered sets.
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Figure 35: Intuition of shortest-path interpolation. The examples lives on a metric
space (S, d) as dots in the figure. The dashed lines are the interpolation paths between
different pairs of examples. When the shortest-path property is ensured (left), the
interpolation paths from different pairs of source examples are likely to be not intersect
in a complicated metric space. While in non-shortest path interpolation (right), the paths
can intertwine with each other with a much higher probability, making it hard to tell
which pair of source examples does the mixed data come from.

6.3.2 Interpolation between Point Clouds

Let S 1 ∈ S and S 2 ∈ S denote two training examples on which we seek to perform
interpolation with ratio λ to generate new training examples. Given a pair of source ex-
amples S 1 and S 2, an interpolation function, fS 1→S 2 : [0, 1] 7→ S can be any continuous
function, which forms a curve that joins S 1 and S 2 in a metric space (S, d) with a proper
distance function d. This means that it is up to us to define what makes an interpolation
good. We define the concept of shortest-path interpolation in the context of point cloud:

Definition 1 (Shortest-path interpolation) In a metric space (S, d), a shortest-path
interpolation f ∗S 1→S 2

: [0, 1] 7→ S is an interpolation between the given pair of source

examples S 1 ∈ S and S 2 ∈ S, such that for any λ ∈ [0, 1], d(S 1, S (λ)) + d(S (λ), S 2)) =
d(S 1, S 2) holds for S (λ) = f ∗S 1→S 2

(λ) being the interpolant.

We say that Definition 1 ensures the shortest path property because the triangle inequality
holds for any properly defined distance d : d(S 1, S (λ)) + d(S (λ), S 2)) ≥ d(S 1, S 2). The
intuition behind this definition is that the shortest path property ensures the uniqueness
of the label distribution on the interpolated data. To put it otherwise, when computing
interpolants from different sources, the interpolants generated by the shortest-path inter-
polation is more likely to be discriminative than the ones generated by a non-shortest-path
interpolation.

To define an interpolation for point clouds, therefore, we must first select a reasonable
distance metric. Then, we opt for the shorterst-path interpolation function based on the
selected distance metric. For point clouds a proper distance metric is the Earth Mover’s
Distance (EMD), as it captures well not only the geometry between two point clouds,
but also local details as well as density distributions [2, 66, 151]. EMD measures the
least amount of total displacement required for each of the points in the first point cloud,
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xi ∈ S 1, to match a corresponding point in the second point cloud, y j ∈ S 2. Formally, the
EMD for point clouds solves the following assignment problem:

ϕ∗ = arg min
ϕ∈⊕

∑
i

∥xi − yϕ(i)∥2, (6.3)

where ⊕ = {{1, . . . , N} 7→ {1, . . . , N}} is the set of possible bijective assignments, which
give one-to-one correspondences between points in the two point clouds. Given the
optimal assignment ϕ∗, the EMD is then defined as the average effort to move S 1 points
to S 2:

dEMD =
1
N

∑
i

∥xi − yϕ∗(i)∥2. (6.4)

6.3.3 PointMixup: Optimal Assignment Interpolation for Point Clouds

We propose an interpolation strategy, which can be used for augmentation that is anal-
ogous of Mixup [276] but for point clouds. We refer to this proposed PointMixup as
Optimal Assignment (OA) Interpolation, as it relies on the optimal assignment on the
basis of the EMD to define the interpolation between clouds. Given the source pair of
point clouds S 1 = {xi}

N
i=1 and S 2 = {y j}

N
j=1, the Optimal Assignment (OA) interpolation

is a path function f ∗S 1→S 2
: [0, 1] 7→ S. With λ ∈ [0, 1],

f ∗S 1→S 2
(λ) = {ui}

N
i=1, where (6.5)

ui = (1 − λ) · xi + λ · yϕ∗(i), (6.6)

in which ϕ∗ is the optimal assignment from S 1 to S 2 defined by Eq. 6.3. Then the inter-
polant S S 1→S 2,(λ)

OA (or S (λ)
OA when there is no confusion) generated by the OA interpolation

path function f ∗S 1→S 2
(λ) is the required augmented data for point cloud Mixup.

S (λ)
OA = {(1 − λ) · xi + λ · yϕ∗(i)}

N
i=1. (6.7)

Under the view of f ∗S 1→S 2
being a path function in the metric space (S, dEMD), f is

expected to be the shortest path joining S 1 and S 2 since the definition of the interpolation
is induced from the EMD.

6.3.4 Analysis

Intuitively we expect that PointMixup is a shortest path linear interpolation. That is, the
interpolation lies on the shortest path joining the source pairs, and the interpolation is
linear with regard to λ in (S, dEMD), since the definition of the interpolation is derived
from the EMD. However, it is non-trivial to show the optimal assignment interpolation
abides to a shortest path linear interpolation, because the optimal assignment between
the mixed point cloud and either of the source point cloud is unknown. It is, therefore,
not obvious that we can ensure whether there exists a shorter path between the mixed
examples and the source examples. To this end, we need to provide an in-depth analysis.
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To ensure the uniqueness of the label distribution from the mixed data, we need to
show that the shortest path property w.r.t. the EMD is fulfilled. Moreover, we need to
show that the proposed interpolation is linear w.r.t the EMD, in order to ensure that the
input interpolation has the same ratio as the label interpolation. Besides, we evaluate
the assignment invariance property as a prerequisite knowledge for the proof for the
linearity. This property implies that there exists no shorter path between interpolants
with different λ, i.e., the shortest path between the interpolants is a part of the shortest
path between the source examples. Due to space limitation, we sketch the proof for each
property. The complete proofs are available in the supplementary material.

We start with the shortest path property. Since the EMD for point cloud is a metric, the
triangle inequality dEMD(A, B) + dEMD(B, C) ≥ dEMD(A, C) holds (for which a formal
proof can be found in [202]). Thus we formalize the shortest path property into the
following proposition:

Property 1 (shortest path) Given the source examples S 1 and S 2, ∀λ ∈ [0, 1],
dEMD(S 1, S (λ)

OA) + dEMD(S
(λ)
OA , S 2) = dEMD(S 1, S 2).

Sketch of Proof From the definition of the EMD we can derive dEMD(S 1, S (λ)
OA) +

dEMD(S 2, S (λ)
OA) ≤ dEMD(S 1, S 2). Then from the triangle inequity of the EMD, only the

equality remains.
We then introduce the assignment invariance property of the OA Mixup as an inter-

mediate step for the proof of the linearity of OA Mixup. The property shows that the
assignment does not change for any pairs of the mixed point clouds with different λ.
Moreover, the assignment invariance property is important to imply that the shortest path
between the any two mixed point clouds is part of the shortest path between the two
source point clouds.

Property 2 (assignment invariance) S (λ1)
OA and S (λ2)

OA are two mixed point clouds from
the same given source pair of examples S 1 and S 2 as well as the mix ratios λ1 and λ2 such
that 0 ≤ λ1 < λ2 ≤ 1. Let the points in S (λ1)

OA and S (λ2)
OA be ui = (1 − λ1) · xi + λ1 · yϕ∗(i)

and vk = (1 − λ2) · xk + λ2 · yϕ∗(k), where ϕ∗ is the optimal assignment from S 1 to S 2.

Then the identical assignment ϕI is the optimal assignment from S (λ1)
OA to S (λ2)

OA .

Sketch of Proof We first prove that the identical mapping is the optimal assignment
from S 1 to S (λ1)

OA from the definition of the EMD. Then we prove that ϕ∗ is the optimal

assignment from S (λ1)
OA to S 2. Finally we prove that the identical mapping is the optimal

assignment from S (λ1)
OA to S (λ2)

OA similarly as the proof for the first intermediate argument.
Given the property of assignment invariance, the linearity follows:

Property 3 (linearity) For any mix ratios λ1 and λ2 such that 0 ≤ λ1 < λ2 ≤ 1,
the mixed point clouds S (λ1)

OA and S (λ2)
OA satisfies that dEMD(S

(λ1)
OA , S (λ2)

OA ) = (λ2 − λ1) ·
dEMD(S 1, S 2).

Sketch of Proof The proof can be directly derived from the fact that the identical
mapping is the optimal assignment between S (λ1)

OA and S (λ2)
OA .
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The linear property of our interpolation is important, as we jointly interpolate the point
clouds and the labels. By ensuring that the point cloud interpolation is linear, we ensure
that the input interpolation has the same ratio as the label interpolation.

On the basis of the properties, we find that PointMixup is a shortest path linear
interpolation between point clouds in (S, dEMD).

6.3.5 Manifold PointMixup: Interpolate between Latent Point Features

In standard PointMixup, only the inputs, i.e., the XYZ point cloud coordinates are mixed.
The input XYZs are low-level geometry information and sensitive to disturbances and
transformations, which in turn limits the robustness of the PointMixup. Inspired by
Manifold Mixup [237], we can also use the proposed interpolation solution to mix the
latent representations in the hidden layers of point cloud networks, which are trained
to capture salient and high-level information that is less sensitive to transformations.
PointMixup can be applied for the purpose of Manifold Mixup to mix both at the XYZs
and different levels of latent point cloud features and maintain their respective advantages,
which is expected to be a stronger regularizer for improved performance and robustness.

We describe how to mix the latent representations. Following [237], at each batch
we randomly select a layer l to perform PointMixup from a set of layers L, which
includes the input layer. In a point cloud network network, the intermediate latent
representation at layer l (before the global aggregation stage such as the max pooling
aggregation in PointNet [187] and PointNet++ [188]) is Z(l) = {(xi, z(x)

i )}Nz
i=1, in which

xi is 3D point coordinate and z(x)
i is the corresponding high-dimensional feature. For the

mixed latent representation, given the latent representation of two source examples are
Z(l),1 = {(xi, z(x)

i )}Nz
i=1 and Z(l),2 = {(yi, z(y)i )}Nz

i=1, the optimal assignment ϕ∗ is obtained
by the 3D point coordinates xi, and the mixed latent representation then becomes

Z(λ)

(l),OA = {(xmix
i , zmix

i )}, where

xmix
i = (1 − λ) · xi + λ · yϕ∗(i),

zmix
i = (1 − λ) · z(x)

i + λ · z(y)
ϕ∗(i)

.

Specifically in PointNet++, three layers of representations are randomly selected to
perform Manifold Mixup: the input, and the representations after the first and the second
SA modules (See appendix of [188]).

6.4 E X P E R I M E N T S

6.4.1 Setup

Datasets. We focus in our experiments on the ModelNet40 dataset [255]. This dataset
contains 12,311 CAD models from 40 man-made object categories, split into 9,843 for
training and 2,468 for testing. We furthermore perform experiments on the ScanOb-
jectNN dataset [235]. This dataset consists of real-world point cloud objects, rather than
sampled virtual point clouds. The dataset consists of 2,902 objects and 15 categories.
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We report on two variants of the dataset, a standard variant OBJ ONLY and one with
heavy permutations from rigid transformations PB T50 RS [235].

Following [146], we discriminate between settings where each dataset is pre-aligned
and unaligned with horizontal rotation on training and test point cloud examples. For
the unaligned settings, we randomly rotate the training point cloud along the up-axis.
Then, before solving the optimal assignment, we perform a simple additional alignment
step to fit and align the symmetry axes between the two point clouds to be mixed.
Through this way, the point clouds are better aligned and we obtain more reasonable
point correspondences. Last, we also perform experiments using only 20% of the training
data.

Network architectures. The main network architecture used throughout the chapter
is PointNet++ [188]. We also report results with PointNet [187] and DGCNN [248], to
show that our approach is agnostic to the architecture that is employed. PointNet learns a
permutation-invariant set function, which does not capture local structures induced by the
metric space the points live in. PointNet++ is a hierarchical structure, which segments
a point cloud into smaller clusters and applies PointNet locally. DGCNN performs
hierarchical operations by selecting a local neighbor in the feature space instead of the
point space, resulting in each point having different neighborhoods in different layers.

Experimental details. We uniformly sample 1,024 points on the mesh faces according
to the face area and normalize them to be contained in a unit sphere, which is a standard
setting [146, 187, 188]. In case of mixing clouds with different number of points, we can
simply replicate random elements from the each point set to reach the same cardinality.
During training, we augment the point clouds on-the-fly with random jitter for each
point using Gaussian noise with zero mean and 0.02 standard deviation. We implement
our approach in PyTorch [182]. For network optimization, we use the Adam optimizer
with an initial learning rate of 10−3. The model is trained for 300 epochs with a batch
size of 16. We follow previous work [237, 276] and draw λ from a beta distribution
λ ∼ Beta(γ, γ). We also perform Manifold Mixup [237] in our approach, through
interpolation on the transformed and pooled points in intermediate network layers. In this
work, we opt to use the efficient algorithm and adapt the open-source implementation
from [151] to solve the optimal assignment approximation. Training for 300 epochs
takes around 17 hours without augmentation and around 19 hours with PointMixup or
Manifold PointMixup on a single NVIDIA GTX 1080 ti.

Baseline interpolations. For our comparisons to baseline point cloud augmentations,
we compare to two variants. The first variant is random assignment interpolation, where
a random assignment ϕRA is used, to connect points from both sets, yielding:

S (λ)
RA = {(1 − λ) · xi + λ · yϕRA(i)}.

The second variant is point sampling interpolation, where random draws without replace-
ment of points from each set are made according to the sampling frequency λ:

S (λ)
PS = S (1−λ)

1 ∪ S (λ)
2 ,

where S (λ)
2 denotes a randomly sampled subset of S 2, with ⌊λN⌋ elements. (⌊·⌋ is the

floor function.) And similar for S 1 with N − ⌊λN⌋ elements, such that S (λ)
PS contains
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Figure 36: Baseline interpolation variants. Top: point cloud interpolation through
random assignment. Bottom: interpolation through sampling.

exactly N points. The intuition of the point sampling variant is that for point clouds as
unordered sets, one can move one point cloud to another through a set operation such
that it removes several random elements from set S 1 and replace them with same amount
of elements from S 2.

6.4.2 Point Cloud Classification Ablations

We perform four ablation studies to show the workings of our approach with respect to
the interpolation ratio, comparison to baseline interpolations and other regularizations,
as well robustness to noise.

Effect of interpolation ratio. The first ablation study focuses on the effect of the
interpolation ratio in the data augmentation for point cloud classification. We perform
this study on ModelNet40 using the PointNet++ architecture. The results are shown in
Fig. 37 for the pre-aligned setting. We find that regardless of the interpolation ratio used,
our approach provides a boost over the setting without augmentation by interpolation.
PointMixup positively influences point cloud classification. The inclusion of manifold
mixup adds a further boost to the scores. Throughout further experiments, we use γ = 0.4
for input mixup and γ = 1.5 for manifold mixup in unaligned setting, and γ = 1.0 for
input mixup and γ = 2.0 for manifold mixup in pre-aligned setting.

Comparison to baseline interpolations. In the second ablation study, we investigate
the effectiveness of our PointMixup compared to the two interpolation baselines. We
again use ModelNet40 and PointNet++. We perform the evaluation on both the pre-
aligned and unaligned dataset variants, where for both we also report results with a
reduced training set. The results are shown in Table 30. Across both the alignment
variants and dataset sizes, our PointMixup obtains favorable results. This result highlights
the effectiveness of our approach, which abides to the shortest path linear interpolation
definition, while the baselines do not.

PointMixup with other regularizers. Third, we evaluate how well PointMixup
works by comparing to multiple existing data regularizers and mixup variants, again
on ModelNet40 and PointNet++. We investigate the following augmentations: (i)
Mixup [276], (ii) Manifold Mixup [237], (iii) mix input only without target mixup, (iv)
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Figure 37: Effect of interpolation ratios. MM denotes Manifold Mixup.

mix latent representation at a fixed layer (manifold mixup does so at random layers),
and (v) label smoothing [228]. Training is performed on the reduced dataset to better
highlight their differences. We show the results in Table 31 on the left. Our approach
with manifold mixup obtains the highest scores. The label smoothing regularizer is
outperformed, while we also obtain better scores than the mixup variants. We conclude
that PointMixup is forms an effective data augmentation for point clouds.

Robustness to noise. By adding additional augmented training examples, we enrich
the dataset. This enrichment comes with additional robustness with respect to noise
in the point clouds. We evaluate the robustness by adding random noise perturbations
on point location, scale, translation and different rotations. Note that for evaluation
of robustness against up-axis rotation, we use the models which are trained with the
pre-aligned setting, in order to test also the performance against rotation along the up-axis
as a novel transform. The results are in Table 31 on the right. Overall, our approach
including manifold mixup provides more stability across all perturbations. For example,
with additional noise (σ = 0.05), we obtain an accuracy of 56.5, compared to 35.1 for
the baseline. We similar trends for scaling (with a factor of two), with an accuracy of
72.9 versus 59.2. We conclude that PointMixup makes point cloud networks such as
PointNet++ more stable to noise and rigid transformations.

Qualitative analysis. In Figure 38, we show eight examples of PointMix for point
cloud interpolation; four interpolations of cups and tables, four interpolations of chairs
and cars. Through our shortest path interpolation, we end up at new training examples
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Table 30: Comparison of PointMixup to baseline interpolations on ModelNet40
using PointNet++. PointMixup compares favorable to excluding interpolation and to the
baselines, highlighting the benefits of our shortest path interpolation solution.

No mixup Random assignment Point sampling PointMixup

Manifold mixup × × ✓ × ✓ × ✓

Full dataset
Unaligned 90.7 90.8 91.1 90.9 91.4 91.3 91.7
Pre-aligned 91.9 91.6 91.9 92.2 92.5 92.3 92.7
Reduced dataset
Unaligned 84.4 84.8 85.4 85.7 86.5 86.1 86.6
Pre-aligned 86.1 85.5 87.3 87.2 87.6 87.6 88.6

Table 31: Evaluating our approach to other data augmentations (left) and its robust-
ness to noise and transformations (right). We find that our approach with manifold
mixup (MM) outperforms augmentations such as label smoothing and other variations
of mixup. For the robustness evaluation, we find that our approach with strong regu-
larization power from manifold mixup provides more robustness to random noise and
geometric transformations.

PointMixup

× ✓

Baseline with no mixing 86.1 –
Mixup – 87.6
Manifold mixup – 88.6

Mix input, not labels – 86.6
Mix input from same class – 86.4

Mixup latent (layer 1) – 86.9
Mixup latent (layer 2) – 86.8

Label smoothing (0.1) 87.2 –
Label smoothing (0.2) 87.3 –

Transforms PointMixup

× w/o MM w/ MM

Noise σ2 = 0.01 91.3 91.9 92.3
Noise σ2 = 0.05 35.1 51.5 56.5
Noise σ2 = 0.1 4.03 4.27 7.42

Z-rotation [-30,30] 74.3 70.9 77.8
X-rotation [-30,30] 73.2 70.8 76.8
Y-rotation [-30,30] 87.6 87.9 88.7

Scale (0.6) 85.8 84.5 86.3
Scale (2.0) 59.2 67.7 72.9

DropPoint (0.2) 84.9 78.1 90.9

that exhibit characteristics of both classes, making for sensible point clouds and mixed
labels, which in turn indicate why PointMixup is beneficial for point cloud classification.

6.4.3 Evaluation on other Networks and Datasets

With PointMixup, new point clouds are generated by interpolating existing point clouds.
As such, we are agnostic to the type of network or dataset. To highlight this ability, we
perform additional experiments on extra networks and an additional point cloud dataset.

PointMixup on other network architectures. We show the effect of PointMixup to
two other networks, namely PointNet [187] and DGCNN [248]. The experiments are
performed on ModelNet40. For PointNet, we perform the evaluation on the unaligned
setting and for DGCNN with pre-aligned setting to remain consistent with the alignment
choices made in the respective papers. The results are shown in Table 32 on the left. We
find improvements when including PointMixup for both network architectures.
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Figure 38: Qualitative examples of PointMixup. We provide eight visualizations
of our interpolation. The four examples on the left show interpolations for different
configurations of cups and tables. The four examples on the right show interpolations for
different chairs and cars.

PointMixup on real-world point clouds. We also investigate PointMixup on point
clouds from real-world object scans, using ScanObjectNN [235], which collects object
from 3D scenes in SceneNN [111] and ScanNet [50]. Here, we rely on PointNet++ as
network. The results in Table 32 on the right show that we can adequately deal with
real-world point cloud scans, hence we are not restricted to point clouds from virtual
scans. This result is in line with experiments on point cloud perturbations.

Table 32: PointMixup on other networks (top) and another dataset (bottom). We find
our approach is beneficial regardless the network or dataset.

PointNet DGCNN

× w/o MM × w/o MM w/ MM
Full 89.2 89.9 92.7 92.9 93.1
Reduced 81.3 83.4 88.2 88.8 89.0

ScanObjectNN

× w/o MM w/ MM
Standard 86.6 87.6 88.5
Perturbed 79.3 80.2 80.6

88



6.4 E X P E R I M E N T S

Table 33: Evaluating PointMixup in the context of semi-supervised (top) and few-
shot learning (bottom). When examples are scarce, as is the case for both settings, using
our approach provides a boost to the scores.

Semi-supervised classification

Supervised [238]+PointMixup
400 examples 69.4 76.7
600 examples 72.6 80.8
800 examples 73.5 82.0

Few-shot classification

[215] + PointMixup
5-way 1-shot 72.3 77.2
5-way 3-shot 80.2 82.2
5-way 5-shot 84.2 85.9

6.4.4 Beyond Standard Classification

The fewer training examples available, the stronger the need for additional examples
through augmentation. Hence, we train PointNet++ on ModelNet40 in both a few-shot
and semi-supervised setting.

Semi-supervised learning. Semi-supervised learning learns from a dataset where
only a small portion of data is labeled. Here, we show how PointMixup directly enables
semi-supervised learning for point clouds. We start from Interpolation Consistency Train-
ing [238], a state-of-the-art semi-supervised approach, which utilizes Mixup between
unlabeled points. Here, we use our Mixup for point clouds within their semi-supervised
approach. We evaluate on ModelNet40 using 400, 600, and 800 labeled point clouds.
The result of semi-supervised learning are illustrated in Table 33 on the left. Compared
to the supervised baseline, which only uses the available labelled examples, our mixup
enables the use of additional unlabelled training examples, resulting in a clear boost
in scores. With 800 labelled examples, the accuracy increases from 73.5% to 82.0%,
highlighting the effectiveness of PointMixup in a semi-supervised setting.

Few-shot learning. Few-shot classification aims to learn a classifier to recognize
unseen classes during training with limited examples. We follow [68, 196, 215, 224, 239]
to regard few-shot learning a typical meta-learning method, which learns how to learn
from limited labeled data through training from a collection of tasks, i.e., episodes.
In an N-way K-shot setting, in each task, N classes are selected and K examples for
each class are given as a support set, and the query set consists of the examples to be
predicted. We perform few-shot classification on ModelNet40, from which we select 20
classes for training, 10 for validation, and 10 for testing. We utilize PointMixup within
ProtoNet [215] by constructing mixed examples from the support set and update the
model with the mixed examples before making predictions on the query set. We refer to
the supplementary material for the details of our method and the settings. The results in
Table 33 on the right show that incorporating our data augmentation provides a boost in
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scores, especially in the one-shot setting, where the accuracy increases from 72.3% to
77.2%.

6.5 C O N C L U S I O N

This work proposes PointMixup for data augmentation on point clouds. Given the lack of
data augmentation by interpolation on point clouds, we start by defining it as a shortest
path linear interpolation. We show how to obtain PointMixup between two point clouds
by means of an optimal assignment interpolation between their point sets. As such, we
arrive at a Mixup for point clouds, or latent point cloud representations in the sense
of Manifold Mixup, that can handle permutation invariant nature. We first prove that
PointMixup abides to our shortest path linear interpolation definition. Then, we show
through various experiments that PointMixup matters for point cloud classification. We
show that our approach outperforms baseline interpolations and regularizers. Moreover,
we highlight increased robustness to noise and geometric transformations, as well as its
general applicability to point-based networks and datasets. Lastly, we show the potential
of our approach in both semi-supervised and few-shot settings. The generic nature of
PointMixup allows for a comprehensive embedding in point cloud classification.

6.6 A P P E N D I X

6.6.1 Proofs for the Properties of PointMixup Interpolation

We provide detailed proofs for the shortest path property, the assignment invariance
property and the linearity, stated in Section 3.4.

Proof for the shortest path property We denote xi ∈ S 1 and y j ∈ S 2 are the points in

S 1 and S 2, then the generated S (λ)
OA = {ui}

N
i=1 and ui = (1 − λ) · xi + λ · yϕ∗(i), where ϕ∗

is the optimal assignment from S 1 to S 2.
Then we suppose an identical one-to-one mapping ϕI such that ϕI(i) = i. Then by

definition of the EMD as the minimum transportation distance, so

dEMD(S 1, S (λ)
OA) ≤

1
N

∑
i

∥xi − uϕI(i)∥2, (6.8)

where the right term of (6.8) is the transportation distance under identical assignment
ϕI . Since 1

N
∑

i ∥xi − uϕI(i)∥2 = 1
N
∑

i ∥xi − ((1 − λ) · xi + λ · yϕ∗(i))∥2 = λ 1
N
∑

i ∥xi −

yϕ∗(i)∥2 = λ · dEMD(S 1, S 2). Thus,

dEMD(S 1, S (λ)
OA) ≤ λ · dEMD(S 1, S 2). (6.9)

Similarly as in (6.8) and (6.9), the following inequality (6.10) can be derived by assigning
the correspondence from S (λ)

OA to S 2 with ϕ∗:

dEMD(S
(λ)
OA, S 2) ≤ (1 − λ) · dEMD(S 1, S 2). (6.10)
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With (6.9) and (6.10),

dEMD(S 1, S (λ)
OA) + dEMD(S 2, S (λ)

OA) ≤ dEMD(S 1, S 2). (6.11)

However, as the triangle inequality holds for the EMD, i.e.

dEMD(S 1, S (λ)
OA) + dEMD(S 2, S (λ)

OA) ≥ dEMD(S 1, S 2). (6.12)

Then by summarizing (6.11) and (6.12), dEMD(S 1, S (λ)
OA) + dEMD(S 2, S (λ)

OA)
= dEMD(S 1, S 2) is proved.

Proof for the assignment invariance property We introduce two intermediate ar-
guments. We begin with proving the first intermediate argument: ϕI is the optimal
assignment from S 1 to S (λ1)

OA . Similarly as in (6.9) ,(6.10) and (6.12) from the proof for
Proposition 1, in order to allow all the three inequalities, the equal signs need to be taken
for all of the three inequalities. Consider that the equal sign being taken for (6.9) is
equivalent to the equal sign being taken for (6.8), then,

dEMD(S 1, S (λ1)
OA ) =

1
N

∑
i

∥xi − uϕI(i)∥2, (6.13)

which in turn means that ϕI is the optimal assignment from S 1 to S (λ1)
OA by the definition

of the EMD. So the first intermediate argument is proved.

The second intermediate argument is that ϕ∗ is the optimal assignment from S (λ1)
OA to

S 2. This argument can be proved samely as the first one. Say the equal sign being taken
for (6.10) is equivalent to that

dEMD(S
(λ1)
OA , S 2) =

1
N

∑
i

∥ui − yϕ∗(i)∥2. (6.14)

Thus, ϕ∗ is the optimal assignment from S (λ1)
OA to S 2 is proved.

Then, with the two intermediate arguments, we can reformalize the setup to regard that
S (λ2)

OA is interpolated from source pairs S (λ1)
OA and S 2 with the mix ratio λ2−λ1

1−λ1
, because

the optimal assignment from S (λ1)
OA to S 2 is the same as the optimal assignment from S 1

to S 2. This argument then becomes an isomorphic with respect to the first intermediate
argument. Then we prove that ϕI is the optimal assignment from S (λ1)

OA to S (λ2)
OA similarly

as the proof for the first intermediate argument.

Proof for linearity We have shown that ϕI is optimal assignment between S (λ1)
OA =

{uk} = {(1 − λ1) · xk + λ1 · yϕ∗(k)} and S (λ2)
OA = {vl} = {(1 − λ2) · xl + λ2 · yϕ∗(l)}.

Thus, dEMD(S
(λ1)
OA , S (λ2)

OA ) = 1
N
∑

k ∥((1 − λ1) · xk + λ1 · yϕ∗(k)) − ((1 − λ2) · xϕI(k) +

λ2 · yϕ∗(ϕI(k)))∥2 = 1
N
∑

k ∥(λ2 − λ1)(xk − yϕ∗(k))∥2 = (λ2 − λ1)
1
N
∑

k ∥(xk − yϕ∗(k))∥2 =
(λ2 − λ1) · dEMD(S 1, S 2).
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6.6.2 Few-shot Learning with PointMixup

We test if our PointMixup helps point cloud few-shot classification task, where a classifier
must generalize to new classes not seen in the training set, given only a small number of
examples of each new class. We take ProtoNet [215] as the baseline method for few-shot
learning, and PointNet++ [188] is the feature extractor hθ.

Episodic learning setup. ProtoNet takes the episodic training for few-shot learning,
where an episode is designed to mimic the few-shot task by subsampling classes as well
as data. A NC-way NS -shot setting is defined as that in each episode, data from NC
classes are sampled and NS examples for each class is labelled. In the ith episode of
training, the datasetDi consists of the training example and class pairs from NC classes
sampled from all training classes. Denote DS

i ⊂ Di is the support set which consists
of labelled data from NC classes with NS examples, andDQ

i = Di\D
S
i is the query set

which consists of unlabelled examples to be predicted.

Baseline method for few-shot classification: ProtoNet [215]. In each episodeDi,
ProtoNet computes a prototype as the mean of embedded support examples z̄c for each
class c, from all examples from the support set DS

i . The latent embedding is from the
network hθ (for which we use PointNet++ [188] without the last fully-connected layer).
Then each example S from the query setDQ

i is classified into a label distribution by a
softmax over (negative) distance to the class prototypes:

p(ŷ = c|S ) =
exp(−d(S , z̄c))∑
c′ exp(−d(S , z̄c′))

,

Algorithm 2 Episodic training of ProtoNet with PointMixUp. From line 3 to line 8 is
where PointMixUp takes a role in addition to the ProtoNet baseline. Testing stage is similar as
training stage, but without line 13 and line 14 which learn new weight from query examples.

Require: Set of sampled episodes {Di}, whereDi = DS
i ∪D

Q
i denoting the support and query

sets
Require: hθ: feature extractor network: input→ latent embedding

1: randomly initialize θ
2: for episode i do
3: for class c do
4: calculate prototype z̄c fromDS

i , with hθ.
5: end for
6: Construct Mixup samplesDmix

i from support setDS
i .

7: Predict the label distributions for mixed examples inDmix
i , with distance to z̄c.

8: Update θ with prediction from mixed examples, as episode-specific weights θi.
9: for class c do

10: calculate new prototype z̄(θi)
c fromDS

i , with hθi

11: end for
12: Predict the label distributions for query examples inDQ

i , with distance to z̄(θi)
c .

13: Update θi with prediction from query examples.
14: θ ← θi

15: end for
16: return θ
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where d(·, ·) is the Eudlidean distance in the embedding space. In training stage, the
weights θ for the feature extractor hθ is updated by the cross-entropy loss for the predicted
query label distribution and the ground truth.

Few-shot point cloud classification with PointMixup. We use PointMixup to learn
a better embedding space for each episode. Instead of using the hθ directly to predict
examples from query set, we learn a episode-specific weight θi from the mixed data, and
the query examples are predicted by hθi . We use PointMixup to construct a mixed set
Dmix

i from the labelled support setDS
i , which consists of examples from (Nc

2 ) class pairs
and for each class pairs Ns mixed examples are constructed from randomly sampling
support examples. Then the weight θ is updated as θi from backprop the loss from the
prediction of mixed examples fromDmix

i . After that, the label of query examples from
D

Q
i is then predicted with the updated feature extractor hθi . See Algorithm 2 for an

illustration of the learning scheme.

6.6.3 Further Discussion on Interpolation Variants

The proposed PointMixUp adopts Optimal Assignment (OA) interpolation for point cloud
because of its advantages in theory and in practice. To compare Optimal Assignment
interpolation with the two alternative strategies, Random Assignment (RA) interpolation
and Point Sampling (PS) interpolation, the proposed PointMixUp with OA interpolation
is the best performing strategy, followed by PS interpolation. RA interpolation, which
has a non-shortest path definition of interpolation, does not perform well.

Here we extend the discussion on the two alternative interpolation strategies, through
which we analyze the possible advantages and limitations under certain conditions,
which in turn validates our choice of applying Optimal Assignment interpolation for
PointMixup.

Random Assignment interpolation. From our shortest path interpolation hypothesis
for Mixup, the inferiority of RA interpolation comes from that it does not obey the
shortest path interpolation rule, so that the mixed point clouds from different source
examples can easily entangle with each other. From Section 6.4.1 in the main chapter,
the Random assignment interpolation produces chaotic mixed examples which can
hardly been recognized with the feature from the source class point clouds. Thus, RA
interpolation fails especially under heavy Mixup (the value of λ is large).

Point Sampling interpolation: yet another shortest path interpolation. Point Sam-
pling interpolation performs relatively well in PointNet++ and sometimes comparable
with the Optimal Assignment interpolation. From Fig. 3 in the main chapter, the PS
interpolation produces mixed examples which can be recognized which classes of source
data it comes from.

Reviewing the shortest path interpolation hypothesis, We argue that when the number
of points N is large enough, or say N → ∞, Point Sampling interpolation also (ap-
proximately) defines a shortest path on the metric space (S, dEMD) (Note that given the
initial and the final points, the shortest path in (S, dEMD) is not unique). This is a bit
counter-intuitive, but reasonable.

We show the shortest path property. Recall that point sampling interpolation randomly
draws without replacement of points from each set are made according to the sampling
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Table 34: Different interpolation strategies on PointNet [187] Following the original
paper [187] we test on unaligned setting. PS interpolation fails with PointNet as a
density-invariant model. The numbers are accuracy in percentage.

Baseline PointMixup Random Assignment Point Sampling
89.2 89.9 88.2 88.7

frequency λ: S (λ)
PS = S (1−λ)

1 ∪ S (λ)
2 , where S (λ)

2 denotes a randomly sampled subset of

S 2, with ⌊λN⌋ elements. (⌊·⌋ is the floor function.) And similar for S (1−λ)
1 with N − ⌊λN⌋

elements, such that S (λ)
PS contains exactly N points. Imagine that a subset S (1−λ)

1 with

a number of N − ⌊λN⌋ points in S (λ)
PS are identical with that in S 1. For dEMD(S

(λ)
PS , S 1),

the optimal assignment will return these identical points as matched pairs, thus they
contribute zero to the overall EMD distance. Thus,

dEMD(S
(λ)
PS , S 1) =

N − ⌊λN⌋
N

dEMD(S
(λ)
PS \ S (1−λ)

1 , S 1 \ S (1−λ)
1 )

=
N − ⌊λN⌋

N
dEMD(S

(λ)
2 , S 1 \ S (1−λ)

1 )

≈
N − ⌊λN⌋

N
dEMD(S 2, S 1)

≈ (1 − λ) · dEMD(S 1, S 2),

from which dEMD(S
(λ)
2 , S 1 \ S (1−λ)

1 ) ≈ dEMD(S 2, S 1) is because that S 1 and S 1 \ S (1−λ)
1

are the point clouds representing the same shape but with different density, and the same
with S 2 and S (λ)

2 .

Similarly, dEMD(S
(λ)
PS , S 2) ≈ λ ·dEMD(S 1, S 2), and thus dEMD(S

(λ)
PS , S 1)+ dEMD(S

(λ)
PS , S 2) =

dEMD(S 1, S 2), which in turn proves the shortest path property.
We note that the linearity of PS interpolation w.r.t. dEMD also holds and the proof

can be derived similarly. Thus, although strictly not an ideally continuous interpolation
path, PS interpolation is (appoximately) a shortest path linear interpolation in (S, dEMD),
which explains its good performance.

Point Sampling interpolation: limitations. The limitation of PS interpolation is
from that the mix ratio λ controls change of local density distribution, but the underlying
shape does not vary with λ. So, as shown in Table 34, PS interpolation fails with
PointNet [187], which is ideally invariant to the point density, because a max pooling
operation aggregates the information from all the points.

A question which may come with PS interpolation is that how it performs relatively
well with PointNet++, which is also designed to be density-invariant. This is due to the
sampling and grouping stage. PointNet++ takes same operation as PointNet in learning
features, but in order to be hierarchical, the sampling and grouping stage, especially the
farthest point sampling (fps) operation is not invariant to local density changes such that
it samples different groups of farthest points, resulting in different latent point cloud
feature representations. Thus, PointNet++ is invariant to global density but not invariant
to local density differences, which makes PS interpolation as a working strategy for
PointNet++. However, we may still expect that the performance of Mixup based on PS
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interpolation is limited, because it does not work well with PointNet as a basic component
in PointNet++.

By contrast, the proposed PointMixup with OA interpolation strategy is not limited
by the point density invariance. As a well established interpolation, OA interpolation
smoothly morphes the underlying shape. So we claim that OA interpolation is a more
generalizable strategy.
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S E L F - G U I D E D D I F F U S I O N M O D E L S

7.1 I N T RO D U C T I O N

Diffusion models have recently enabled tremendous advancements in many computer
vision fields related to image synthesis, but counterintuitively this often comes with the
cost of requiring large annotated datasets [193, 203]. For example, the image fidelity of
samples from diffusion models can be spectacularly enhanced by conditioning on class
labels [54]. Classifier guidance goes a step further and offers control over the alignment
with the class label, by using the classifier gradient to guide the image generation [54].
Classifier-free guidance [100] replaces the dedicated classifier with a diffusion model
trained by randomly dropping the condition during training. This has proven a fruitful
line of research for several other condition modalities, such as text [194, 203], image
layout [200], visual neighbors [8], and image features [78]. However, all these condition-
ing and guidance methods require ground-truth annotations. In many domains, this is
an unrealistic and too costly assumption. For example, medical images require domain
experts to annotate very high-resolution data, which is infeasible to do exhaustively [180].
In this paper, we propose to remove the necessity of ground-truth annotation for guided
diffusion models.

We are inspired by progress in self-supervised learning [35,42], which encodes images
into semantically meaningful latent vectors without using any label information. It usually
does so by solving a pretext task [6, 79, 93, 277] on image-level to remove the necessity
of labels. This annotation-free paradigm enables the representation learning to upscale to
larger and more diverse image datasets [72]. The holistic image-level self-supervision
has recently been extended to more expressive dense representations, including bounding
boxes (e.g., [164, 212]) and pixel-precise segmentation masks (e.g., [88, 289]). Some
self-supervised learning methods even outperform supervised alternatives [35, 93]. We
hypothesize that for diffusion models, self-supervision may also provide a flexible and
competitive, possibly even stronger guidance signal than ground-truth labeled guidance.

In this paper, we propose self-guided diffusion models, a framework for image gen-
eration using guided diffusion without the need for any annotated image-label pairs,
the detailed structure is shown in Figure 39. The framework encompasses a feature
extraction function and a self-annotation function, that are compatible with recent self-
supervised learning advances. Furthermore, we leverage the flexibility of self-supervised

Published in Proceedings of the Computer Vision and Pattern Recognition Conference, 2023 [110].
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Self-guidance

Self-annotation

Images 
without annotations

Self-labeled

cluster-ID 23

Self-segmentedSelf-boxed

, cluster-ID 2
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Generated
samples

k-means
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Figure 39: Self-guided diffusion framework. Our method can leverage large and diverse
image datasets without any annotations for training guided diffusion models. Starting
from a dataset without ground-truth annotations, we apply a self-supervised feature
extractor to create self-annotations. Using these, we train diffusion models with either
self-labeled, self-boxed, or self-segmented guidance that enable controlled generation
and improved image fidelity.

learning to generalize the guidance signal from the holistic image level to (unsupervised)
local bounding boxes and segmentation masks for more fine-grained guidance. We
demonstrate the potential of our proposal on single-label and multi-label image datasets,
where self-labeled guidance always outperforms diffusion models without guidance
and may even surpass guidance based on ground-truth labels. When equipped with
self-supervised box or mask proposals, our method further generates visually diverse yet
semantically consistent images, without the need for any class, box, or segment label
annotation.

7.2 R E L AT E D W O R K

C O N D I T I O NA L G E N E R AT I V E M O D E L S . Earlier works on generative adversarial
networks (GANs) have observed improvements in image quality by conditioning on
ground-truth labels [26, 36, 171]. Recently, conditional diffusion models have reported
similar improvements, while also offering a great amount of controllability via classifier-
free guidance by training on images paired with textual descriptions [193, 194, 203],
semantic segmentations [246], or other modalities [24, 219, 271]. Our work also aims
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to realize the benefits of conditioning and guidance, but instead of relying on addi-
tional human-generated supervision signals, we leverage the strength of pretrained
self-supervised visual encoders.

Zhou et al. [287] train a GAN for text-to-image generation without any image-text
pairs, by leveraging the CLIP [190] model that was pretrained on a large collection of
paired data. In this work, we do not assume any paired data for the generative models
and rely purely on images. Additionally, image layouts are difficult to be expressed
by text, thus our self-boxed and self-segmented methods are complementary to text
conditioning. Instance-Conditioned GAN [36], Retrieval-augmented Diffusion [20] and
KNN-diffusion [8] are three recent methods that utilize nearest neighbors as guidance
signals in generative models. Similar to our work, these methods rely on conditional
guidance from an unsupervised source, we differ from them by further attempting to
provide more diverse spatial guidance, including (self-supervised) bounding boxes and
segmentation masks.

S E L F - S U P E RV I S E D L E A R N I N G I N G E N E R AT I V E M O D E L S . Self-supervised
learning [6, 34, 35, 42] has shown great potential for representation learning in many
downstream tasks. As a consequence, it is also commonly explored in GAN for evaluation
and analysis [172], conditioning [36, 162], stabilizing training [43], reducing labeling
costs [157] and avoiding mode collapse [4]. Our work focuses on translating the benefits
of self-supervised methods to the generative domain and providing flexible guidance
signals to diffusion models at various image granularities. In order to analyze the
feature representation from self-supervised models, Bordes et al. [24] condition on
self-supervised features in their diffusion model for better visualization in data space.
We instead condition on the compact clustering after the self-supervised feature, and
further introduce the elasticity of self-supervised learning into diffusion models for
multi-granular image generation.

7.3 A P P ROAC H

Before detailing our self-guided diffusion framework, we provide a brief background on
diffusion models and the classifier-free guidance technique.

7.3.1 Background

D I FF U S I O N M O D E L S . Diffusion models [99, 216] gradually add noise to an image
x0 until the original signal is fully diminished. By learning to reverse this process one
can turn random noise xT into images. This diffusion process is modeled as a Gaussian
process with Markovian structure:

q(xt|xt−1) B N(xt;
√

1 − βtxt−1, βtI)

q(xt|x0) B N(xt;
√
αtx0, (1 − αt)I,

(7.1)
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where β1, . . . , βT is a fixed variance schedule on which we define αt B 1 − βt and
αt B

∏t
s=1 αs. All latent variables have the same dimensionality as the image x0 and

differ by the proportion of the retained signal and added noise.

Learning the reverse process reduces to learning a denoiser xt ∼ q(xt|x0) that recovers
the original image as (xt − (1 − αt)ϵθ(xt, t))/

√
αt ≈ x0. Ho et al. [99] optimize the

parameters θ of noise prediction network by minimizing:

L(θ) = Eϵ,x,t
[
||ϵθ(xt, t) − ϵ ||22

]
, (7.2)

in which ϵ ∼ N(0, I), x ∈ D is a sample from the training dataset D and the noise
prediction function ϵθ(·) are encouraged to be as close as possible to ϵ.

The standard sampling [99] requires many neural function evaluations to get good
quality samples. Instead, the faster Denoising Diffusion Implicit Models (DDIM) sam-
pler [217] has a non-Markovian sampling process:

xt−1 =
√
αt−1

xt −
√

1 − αtϵθ(xt, t)√
αt

 + √1 − αt−1 −σ
2
t · ϵθ(xt, t) + σtϵ, (7.3)

where ϵ ∼ N(0, I) is Gaussian noise independent of xt.

C L A S S I FI E R - F R E E G U I DA N C E . To trade off mode coverage and sample fidelity
in a conditional diffusion model, Dhariwal and Nichol [54] propose to guide the image
generation process using the gradients of a classifier, with the additional cost of having to
train the classifier on noisy images. Motivated by this drawback, Ho and Salimans [100]
introduce label-conditioned guidance that does not require a classifier. They obtain a
combination of a conditional and unconditional network in a single model, by randomly
dropping the guidance signal c during training. After training, it empowers the model
with progressive control over the degree of alignment between the guidance signal and
the sample by varying the guidance strength w:

ϵ̃θ(xt, t; c, w) = (1 −w)ϵθ(xt, t) + wϵθ(xt, t; c). (7.4)

A larger w leads to greater alignment with the guidance signal, and vice versa. Classifier-
free guidance [100] provides progressive control over the specific guidance direction at
the expense of labor-consuming data annotation. In this paper, we propose to remove
the necessity of data annotation using a self-guided principle based on self-supervised
learning.

7.3.2 Self-Guided Diffusion Models

The equations describing the diffusion model for classifier-free guidance implicitly
assume dataset D and its images each come with a single manually annotated class
label. We prefer to make the label requirement explicit. We denote the human annotation
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process as the function ξ(x;D,C) : D → C, where C defines the annotation taxonomy,
and plug this into Equation (7.4):

ϵ̃θ(xt, t; ξ(x; D,C), w) = (1 − w)ϵθ(xt, t) + wϵθ(xt, t; ξ(x; D,C)). (7.5)

We propose to replace the supervised labeling process ξ with a self-supervised process
that requires no human annotation:

ϵ̃θ(xt, t; fψ(gϕ(x; D); D), w) = (1 − w)ϵθ(xt, t) + wϵθ(xt, t; fψ(gϕ(x; D); D),
(7.6)

where g is a self-supervised feature extraction function parameterized by ϕ that maps the
input data to feature spaceH , g : x→ gϕ(x),∀x ∈ D, and f is a self-annotation function
parameterized by ψ to map the raw feature representation to the ultimate guidance signal
k, fψ : gϕ(·;D) → k. The guidance signal k can be any form of annotation, e.g., label,
box, pixel, that can be paired with an image, which we derive by k= fψ(gϕ(x; D); D).
The choice of the self-annotation function f can be non-parametric by heuristically
searching over dataset D based on the extracted feature gϕ(·; D), or parametric by
fine-tuning on the feature map gϕ(·; D).

For the noise prediction function ϵθ(·), we adopt the traditional UNet network architec-
ture [201] due to its superior image generation performance, following [99,193,203,220].

Stemming from this general framework, we present three methods working at different
spatial granularities, all without relying on any ground-truth labels. Specifically, we
cover image-level, box-level, and pixel-level guidance by setting the feature extraction
function gϕ(·), self-annotation function fψ(·), and guidance signal k to an approximate
form.

S E L F - L A B E L E D G U I DA N C E . To achieve self-labeled guidance, we need a self-
annotation function f that produces a representative guidance signal k ∈ RK . Firstly,
we need an embedding function gϕ(x), x ∈ D which provides semantically meaningful
image-level guidance for the model. We obtain gϕ(·) in a self-supervised manner by
mapping from image space, gϕ(·) : RW×H×3 → RC , where W and H are image width
and height and C is the feature dimension. We may use any type of feature for the
feature embedding function g, which we will vary and validate in the experiments. As
the image-level feature gϕ(·; D) is not compact enough for guidance, we further conduct
a non-parametric clustering algorithm, e.g., k-means, as our self-annotation function f .
For all features gϕ(·), we obtain the self-labeled guidance via self-annotation function
fψ(·) : RC → RK . Motivated by [199], we use a one-hot embedding k ∈ RK for each
image to achieve a compact guidance.

We inject the guidance information into the noise prediction function ϵθ by concate-
nating it with timestep embedding t and feed the concatenated information concat[t, k]
into every block of the UNet. Thus, the noise prediction function ϵθ is rewritten as:

ϵθ(xt, t; k) = ϵθ(xt,concat[t, k]), (7.7)
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where k= fψ(gϕ(x; D); D) is the self-annotated image-level guidance signal. For
simplicity, we ignore the self-annotation function fψ(·) here and in the later text. Self-
labeled guidance focuses on image-level global guidance. Next, we consider a more
fine-grained spatial guidance.

S E L F - B OX E D G U I DA N C E . Bounding boxes specify the location of an object in an
image [33, 198] and complement the content information provided by class labels. Our
self-boxed guidance approach aims to attain this signal via self-supervised models. We
represent the bounding box as a binary mask ks ∈ RW×H rather than coordinates, where
1 indicates that the pixel is inside the box and 0 outside. This design directly aligns the
image and mask along the spatial dimensions. We propose the self-annotation function
f that obtains bounding box ks by mapping from feature spaceH to the bounding box
space via fψ(·; D) : RW×H×C → RW×H , and inject the guidance signal by concatenating
in the channel dimension: xt B concat[xt, ks]. Usually in self-supervised learning, the
derived bounding box is class-agnostic [240, 241]. To inject a self-supervised pseudo
label to further enhance the guidance signal, we again resort to clustering to obtain k
and concatenate it with the time embedding t B concat[t, k]. To incorporate such
guidance, we reformulate the noise prediction function ϵθ as:

ϵθ(xt, t; ks, k) = ϵθ(concat[xt, ks],concat[t, k]), (7.8)

in which ks is the self-supervised box guidance obtained by self-annotation functions
fψ, k is the self-supervised image-level guidance from clustering. ks and k denotes the
location and class information, respectively. The design of fψ is flexible as long as it
obtains self-supervised bounding boxes by fψ(·; D) : RW×H×C → RW×H. Self-boxed
guidance guides the diffusion model by boxes, which specifies the box area in which the
object will be generated. Sometimes, we may need an even finer granularity, e.g., pixels,
which we detail next.

S E L F - S E G M E N T E D G U I DA N C E . Compared to a bounding box, a segmentation
mask is a more fine-grained signal. Additionally, a multichannel mask is more expressive
than a binary foreground-background mask. Therefore, we propose a self-annotation
function f that acts as a plug-in built on feature gϕ(·; D) to extract the segmentation
mask ks via function mapping fψ(·; D) : RW×H×C → RW×H×K , where K is the number
of segmentation clusters.

To inject the self-segmented guidance into the noise prediction function ϵθ, we consider
two pathways for injection of such guidance. We first concatenate the segmentation mask
to xt in the channel dimension, xt B concat[xt, ks], to retain the spatial inductive bias
of the guidance signal. Secondly, we also incorporate the image-level guidance to further
amplify the guidance signal along the channel dimension. As the segmentation mask
from the self-annotation function fψ already contains image-level information, we do
not apply the image-level clustering as before in our self-labeled guidance. Instead, we
directly derive the image-level guidance from the self-annotation result fψ(·) via spatial
maximum pooling: RW×H×K → RK , and feed the image-level guidance k̂ into the noise
prediction function via concatenating it with the timestep embedding t Bconcat[t, k̂].
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The concatenated results will be sent to every block of the UNet. In the end, the overall
noise prediction function for self-segmented guidance is formulated as:

ϵθ(xt, t; ks, k̂) = ϵθ(concat[xt, ks], concat[t, k̂]), (7.9)

in which ks is the spatial mask guidance obtained from self-annotation function f , k̂ is a
multi-hot image-level guidance derived from the self-supervised learning mask ks.

We have described three variants of self-guidances by setting the feature extraction
function gϕ(·), self-annotation function fψ(·), guidance signal k to an approximate form.
In the end, we arrive at three noise prediction functions ϵθ, which we utilize for diffusion
model training and sampling, following the standard guided [100] diffusion approach as
detailed in Section 7.3.1.

7.4 E X P E R I M E N T S

In this section, we aim to answer the overarching question: Can we substitute ground-
truth annotations with self-annotations? First, we consider the image-label setting, in
which we examine what kind of self-labeling is required to improve image fidelity. In
addition, we explore what semantic concepts are induced by self-labeling approaches
that broaden the control over the content beyond the standard ground-truth labels. Next,
we look at image-bounding box pairs. Finally, we examine whether it is possible to gain
fine-grained control with self-labeled image-segmentation pairs. We first present the
general settings relevant for all experiments.

E VA L UAT I O N M E T R I C . We evaluate both diversity and fidelity of the generated
images by the Fréchet Inception Distance (FID) [98], as it is the de facto metric for the
evaluation of generative methods, e.g., [26,54,125,203]. It provides a symmetric measure
of the distance between two distributions in the feature space of Inception-V3 [228]. We
use FID as our main metric for the sampling quality.

BA S E L I N E S & IMPLEMENTATION DETAILS. As baselines, we compare against
both the unconditional diffusion model and a diffusion model trained with classifier-free
guidance using ground-truth annotations [100]. We use the same neural network and
hyperparameters for the baselines and our method. Note that applying more training
steps generally tends to further improve the performance [130, 203], thus to facilitate
a fair comparison we use the same computational budget in every experiment when
comparing the baselines to our proposed method. We use DDIM [217] samplers with
250 steps, σt=0 to efficiently generate samples. For details on the hyperparameters, we
refer to Section 7.6.2 . Source code can be found at: https://taohu.me/sgdm/.

7.4.1 Self-Labeled Guidance

We use ImageNet32/64 [53] and CIFAR100 [135] to validate the efficacy of self-labeled
guidance. On ImageNet, we also measure the Inception Score (IS) [204], following
common practice [26, 54, 125]. IS measures how well a model fits into the full ImageNet
class distribution.
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FID↓ IS↑

Label-supervised
ResNet50 22.00 8.23
ViT-B/16 22.30 7.81

Self-supervised
MAE ViTBase 32.58 8.20
SimCLR-v2 23.16 9.35
MSN ViT-B/16 21.16 10.59
DINO ViT-B/16 19.35 10.41

Table 35: Choice of feature extraction function on ImageNet32. DINO and MSN
ViT-B/16 obtain good trade-offs between FID and IS.

K=1

K=10

K=5,000

K=100

K=500

K=1,000

K=10,000

Figure 40: Effect of number of clusters. Self-labeled guidance outperforms DDPM
without any guidance beyond a single cluster, is competitive with classifier-free guidance
beyond 1,000 clusters and is even able to outperform guidance by ground-truth (GT)
labels for 5,000 clusters. We visualize generated samples from ImageNet64 (middle)
and ImageNet32 (right) for ground-truth labels guidance (top) and self-labeled guidance
(bottom). More qualitative results in Section 7.6.3 .

C H O I C E O F F E AT U R E E X T R AC T I O N F U N C T I O N G . We first measure the in-
fluence of the feature extraction function g used before clustering. We consider two
supervised feature backbones: ResNet50 [95] and ViT-B/16 [57], and four self-
supervised backbones: SimCLR [42], MAE [92], MSN [9] and DINO [35]. To assure a
fair comparison, we use 10k clusters for all architectures. From the results in Table 35,
we make the following observations. First, features from the supervised ResNet50, and
ViT-B/16 lead to a satisfactory FID performance, at the expense of relatively limited
diversity (low IS). However, they still require label annotation, which we strive to avoid
in our work. Second, among the self-supervised feature extraction functions, the MSN-
and DINO-pretrained ViT backbones have the best trade-off in terms of both FID and IS.
They even improve over the label-supervised backbones. This implies that the benefits
of guidance is not unique to human annotated labels and self-supervised learning can
provide a much more scalable alternative. Since DINO ViT-B/16 achieves the best FID
performance, from now on we pick it as our self-supervised feature extraction function g.

E FF E C T O F N U M B E R O F C L U S T E R S . Next, we ablate the influence of the num-
ber of clusters on the overall sampling quality. We consider 1, 10, 100, 500, 1,000, 5,000
and 10,000 clusters on the extracted CLS token from the DINO ViT-B/16 feature. For
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efficient, yet uniform, comparison we only run 20 epochs on ImageNet32. To put our sam-
pling results in perspective, we also provide FID and IS results for the no guidance and
ground-truth guidance baselines. From the result in Figure 40 we first observe that when
the cluster number is ranging from 1 to 5,000, our model’s performance monotonously
improves and always surpasses the no guidance baseline. At 1,000 clusters, self-labeled
guidance is competitive with the baseline trained using ground-truth labels. For 5,000
clusters, there is a sweet spot where our method outperforms the model using ground-
truth labels with an FID of 16.4 vs. 17.9 and an IS of 10.35 vs. 9.94. See also the
generated images in Figure 40. The FID performance starts to deteriorate between 5,000
and 10,000 clusters. When the cluster number becomes too large the self-supervised
clusters tend to pick up on dataset-specific details that no longer correspond to general
semantic concepts. We suspect that this deterioration in cluster quality also leads to the
observed deterioration in FID performance. On the other hand, we observe that samples
generated from the same cluster id have high semantic coherence. This signifies that the
self-supervised clusters represent semantically meaningful concepts and can be used to
control the generation process. We provide further discussion on how to assign semantic
descriptions to clusters in Section 7.6.3.

I M P O RTA N C E O F S E L F - S U P E RV I S E D C L U S T E R S . In the previous paragraph,
we observed that training a diffusion model with 5,000 clusters can outperform the 1,000
ground-truth labels. Here, we check whether we can reproduce this result on another
dataset and examine how the performance varies when we inject different degrees of
noise into the cluster assignment. On CIFAR100 [135] we compare the ground-truth 100
labels with 400 self-supervised clusters. We corrupt the cluster assignments at different
levels by randomly shuffling the cluster id for 25% to 100% of the images before training.
The results in Figure 41 highlight the importance of using self-supervised features for
assigning clusters and that assigning cluster ids for a subset of the dataset is already
sufficient to see improvements.

S E L F - L A B E L E D C O M PA R I S O N S O N I M AG E N E T 32 / 64 . We compare our self-
labeled guidance method against the baseline trained with ground-truth labels. For a
fair comparison, we use the same compute budget for all runs. In particular, each model
is trained for 100 epochs taking around 6 days on four RTX A5000 GPUs. Results
on ImageNet32 and ImageNet64 are in Table 36. Similar to [54], we observe that any
guidance setting improves considerably over the unconditional & no-guidance model.
Surprisingly, our self-labeled model even outperforms the ground-truth labels by a
large gap in terms of FID of 1.9 and 4.7 points respectively. We hypothesize that the
ground-truth taxonomy might be suboptimal for learning generative models and the
self-supervised clusters offer a better guidance signal due to better alignment with the
visual similarity of the images. In Figure 42 we report the FID at different training stages.
It is worth noting that the performance advantage of our self-guided method remains
consistent over the entire training process. The results suggest that the label-conditioned
guidance from [100] can be completely replaced by guidance from self-supervision,
which would enable guided diffusion models to learn from even larger (unlabeled)
datasets than feasible today.
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Figure 41: Corruption of cluster assignments on CIFAR100. Self-labeled guidance
with 400 clusters outperforms the baseline trained with ground-truth labels. The FID
performance deteriorates monotonically with the percentage of corrupted cluster as-
signments, underscoring the importance of assigning cluster ids via the self-supervised
features.
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Figure 42: Performance at different compute budgets. After training for ∼100 GPU
hours self-labeled guidance achieves persistent FID reduction over training with ground-
truth labels.

Annotation
free?

ImageNet32 ImageNet64

Diffusion Method FID↓ IS ↑ FID↓ IS↑

Ground-truth labels guidance ✗ 9.2 19.0 16.8 18.6
No guidance ✓ 14.3 10.8 36.1 10.4
Self-labeled guidance ✓ 7.3 20.3 12.1 23.1

Table 36: Self-labeled comparisons on ImageNet32/64. Self-labeled guidance surpasses
the no-guidance baseline by a large margin on both datasets and even outperforms the
guided diffusion model trained using ground-truth class labels.
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Annotation
free?

ImageNet-100 LSUN-Churches

Diffusion Method FID↓ IS ↑ FID↓ IS↑

Ground-truth labels guidance ✗ 11.2 64.1 — —
No guidance ✓ 19.1 41.1 7.2 5.5
Self-labeled guidance ✓ 5.1 78.3 4.2 7.2

Table 37: Higher resolution image generation. ImageNet-100 and LSUN-Churches
results for images of size 256×256.

Figure 43: Generated samples at 256 × 256 resolution using self-labeled guidance
on LSUN-Churches. Samples in each row are based on the same cluster. Self-labeled
guidance enables semantically coherent samples, despite the absence of ground-truth
annotations.

H I G H E R R E S O L U T I O N I M AG E G E N E R AT I O N . Finally, we verify the effective-
ness of self-labeled guidance on larger images. We report on the ImageNet-100 [64] (a
subset of ImageNet-1k with 100 classes) and the LSUN-Churches dataset [273], both
with images of size 256 × 256. Notably, the latter does not come with any annotations
rendering a ground-truth guided baseline infeasible. Too limit computation, we use the
Latent Diffusion Model [200] which is much more efficient at training with large image
sizes than directly learning a diffusion model in the pixel space.

Table 37 shows that self-labeled guidance significantly outperforms the baselines,
indicating the effectiveness of our method for high-resolution images. Note that the lack
of ground-truth labels for LSUN-Churches reflects an advantage of our method since
most real-world images are unlabeled. We show generated samples for two different
clusters in Figure 43. The samples are diverse and reflect shared characteristics for
samples guided by the same cluster. For more qualitative and quantitative results we
refer to Section 7.6.1.
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Annotation
free? Pascal VOC COCO 20KDiffusion Method

Ground-truth labels guidance ✗ 23.5 19.3
No guidance ✓ 58.6 42.5
Self-boxed guidance ✓ 18.4 16.0

Table 38: Self-boxed comparisons on Pascal VOC and COCO 20K. Self-boxed
guidance outperforms the no-guidance baseline FID considerably for multi-label datasets
and is even better than a label-supervised alternative.

7.4.2 Self-Boxed Guidance

We run experiments on Pascal VOC and COCO 20K to validate the efficacy of self-
boxed guidance. The self-boxed guidance model takes a bounding box in addition to the
cluster-ID as guidance signal. To obtain the class-agnostic object bounding boxes, we
use LOST [212] as our self-annotation function f in Equation (7.6). For the clustering,
we empirically found k=100 to work well for both datasets, as both are relatively small
in scale when compared to ImageNet. We train our diffusion model for 800 epochs with
images of size 64×64. We report train FID for Pascal VOC and train/validation FID
for COCO 20K. We evaluate the performance on the validation split by extracting the
guidance signal from the training dataset to ensure that there is no information leakage.
See Section 7.6.2 for more details.

S E L F - B OX E D C O M PA R I S O N S O N PA S C A L VO C A N D C O C O 20K. For the
ground-truth labels guidance baseline, we condition on a class embedding. Since there
are now multiple objects per image, we represent the ground-truth class with a multi-hot
embedding. Aside from the class embedding which is multi-hot in our method, all other
settings remain the same for a fair comparison. The results in Table 38, confirm that the
multi-hot class embedding is indeed effective for multi-label datasets, improving over the
no-guidance model by a large margin. This improvement comes at the cost of manually
annotating multiple classes per image. Self-boxed guidance further improves upon this
result, by reducing the FID by an additional 5.1 and 3.3 points respectively without using
any ground-truth annotation. In Figure 44, we show our method generates diverse and
semantically well-aligned images.

7.4.3 Self-Segmented Guidance

Finally, we validate the efficacy of self-segmented guidance on Pascal VOC and COCO-
Stuff. For COCO-Stuff we follow the split from [45, 88, 117, 278], with a train set of
49,629 images and a validation set of 2,175 images. Classes are merged into 27 (15
stuff and 12 things) categories. For self-segmented guidance, we apply STEGO [88] as
our self-annotation function f in Equation (7.6). We set the cluster number to 27 for
COCO-Stuff, and 21 for Pascal VOC, following STEGO. We train all models on images
of size 64×64, for 800 epochs on Pascal VOC, and for 400 epochs on COCO-Stuff. We
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Original Image Generated Samples

Figure 44: Self-boxed guided diffusion results on Pascal VOC. Each column is sampled
using different random noise. Our method generates visually diverse and semantically
consistent images. The image-level guidance signal successfully puts a limit on the model
to create train station, port scenarios. The backgrounds are realistic and in harmony with
the guidance boxes.

Annotation
free?

Pascal VOC COCO-Stuff

Diffusion Method Train Val

Ground-truth labels guidance ✗ 23.5 16.3 20.5
No guidance ✓ 58.6 29.1 34.1
Self-segmented guidance ✓ 17.1 12.5 17.7
Ground-truth masks ✗ 12.5 8.1 11.2

Table 39: Self-segmented comparisons on Pascal VOC and COCO-Stuff. Any form
of guidance results in a considerable FID reduction over the no-guidance model. Self-
segmented guidance improves over ground-truth multi-hot labels guidance and narrows
the gap with guidance by annotation-intensive ground-truth masks.

Original image Self-Segmentation Generated Samples

Baseline

Ours

Figure 45: Self-segmented guided diffusion results on Pascal VOC. Each column is
sampled using different random noise. The visualization indicates our self-segmented
guidance provides more fine-grained guidance than ground-truth labels guidance for the
generation of bus images. Note how the noisy window-bar in the self-segmented mask
(marked by dotted ellipse) still results in plausible window separations in the generated
image samples. We provide more examples in Section 7.6.3 .
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report the train FID for Pascal VOC and both train and validation FID for COCO-Stuff.
More details on the dataset and experimental setup are provided in Section 7.6.2.

S E L F - S E G M E N T E D C O M PA R I S O N S O N VO C A N D C O C O - S T U FF. We com-
pare against both the ground-truth labels guidance baseline from the previous section
and a model trained with ground-truth semantic masks guidance. The results in Table 39
demonstrate that our self-segmented guidance still outperforms the ground-truth labels
guidance baseline on both datasets. The comparison between ground-truth labels and
segmentation masks reveals an improvement in image quality when using the more fine-
grained segmentation mask as the condition signal. But these segmentation masks are
one of the most costly types of image annotations that require every pixel to be labeled.
Our self-segmented approach avoids the necessity for annotations while narrowing the
performance gap, and more importantly offering fine-grained control over the image
layout. We demonstrate this controllability with examples in Figure 45 and explain
how to assign semantic descriptions to the clusters in Section 7.6.3. These examples
further highlight a robustness against noise in the segmentation masks, which our method
acquires naturally due to training with noisy segmentations.

7.5 C O N C L U S I O N

We have explored the potential of self-supervision signals for diffusion models and
propose a framework for self-guided diffusion models. By leveraging a feature extraction
function and a self-annotation function, our framework provides guidance signals at
various image granularities: from the level of holistic images to object boxes and even
segmentation masks. Our experiments indicate that self-supervision signals are an
adequate replacement for existing guidance methods that generate images by relying
on annotated image-label pairs during training. Furthermore, both self-boxed and self-
segmented approaches demonstrate that we can acquire fine-grained control over the
image content, without any ground-truth bounding boxes or segmentation masks. Though
in certain cases, clusters can capture visual concepts that are challenging to articulate
in everyday language, such as in the case of LSUN-Churches. For future research, it
would be interesting to investigate the efficacy of our self-guidance approach on feature
extractors trained on larger datasets or with image-text pairs [190]. Ultimately, our goal
is to enable the benefits of self-guided diffusion for unlabeled and more diverse datasets
at scale, wherein we believe this work is a promising first step.

7.6 A P P E N D I X

7.6.1 More Results and Details

Results on Churches-256

Implementation details. We directly use the official code of Latent Diffusion
Model1 [200], and reduce the base channel number from 192 to 128 and attention

1 https://github.com/CompVis/latent-diffusion
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Figure 46: Generated samples using self-labeled guidance on LSUN-Churches
256×256. Each row corresponds to a different cluster. Clusters can capture concepts like
nighttime, a far shot that includes the city, a close shot of the church, and the church’s
color.

Diffusion Method Annotation-free? ImageNet32 ImageNet64

FID↓ IS ↑ P ↑ R ↑ FID↓ IS↑ P↑ R ↑

Ground-truth labels guidance ✗ 9.2 19.0 0.71 0.62 16.8 18.6 0.71 0.62
No guidance ✓ 14.3 10.8 0.49 0.61 36.1 10.4 0.59 0.60
Self-labeled guidance ✓ 7.3 20.3 0.77 0.63 12.1 23.1 0.78 0.62

Table 40: Comparison with baseline on ImageNet32 and ImageNet64 dataset with
FID, IS, Precision (P), Recall (R).

resolution from [32, 16, 8, 4] to [8, 4] to accelerate training. Note that these changes
significantly reduce the number of parameters from 294M to 108M.

Qualitative and Quantitative result. We present more qualitative results in Figure 46.
We use the FID metric for quantitative comparison. For non-guidance and our self-
labeled guidance, we get an FID of 23.1 and 16.2 respectively. Our self-labeled guidance
improves by almost 7 points for free.

Precision and Recall in ImageNet32/64 dataset

We show the extra results of ImageNet on precision and recall in Table 40. We follow
the evaluation code of precision and recall from ICGAN [36], our self-labeled guidance
also outperforms ground-truth labels in precision and remains competitive in the recall.

Varying Guidance Strength w

We consider the influence of the guidance strength w on our sampling results. We mainly
conduct this experiment in ImageNet32, as the validation set of ImageNet32 is strictly
balanced, we also consider an unbalanced setting which is more similar to real-world
deployment. Under both settings, we compare the FID between our self-labeled guidance
and ground-truth guidance. We train both models for 100 epochs. For the standard
ImageNet32 validation setting in Figure 47, our method achieves a 17.8% improvement
for the respective optimal guidance strength of the two methods. Self-labeled guidance is
especially effective for lower values of w. We observe similar trends for the unbalanced
setting in Figure 48, be it that the overall FID results are slightly higher for both methods.
The improvement increases to 18.7%. We conjecture this is due to the unbalanced nature

110



7.6 A P P E N D I X

-17.8%

Figure 47: Setting I: ImageNet32 balanced

-18.7%

Figure 48: Setting II: ImageNet32 unbalanced

Figure 49: Varying guidance strength w. Self-labeled guidance surpasses the guidance
based on ground-truth labels for both (a) ImageNet32 balanced and (b) ImageNet32
unbalanced. The dotted gray line indicates the best-achieved performance of both
methods under various guidance strengths. The difference between them is slightly
more prominent for unbalanced data, we conjecture that this is because our self-labeled
guidance is obtained by clustering based on the statistics of the overall dataset, which
can potentially lead to more robust performance in unbalanced setting.
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Figure 50: Epoch loss trend.

of the k-means algorithm [142], and clustering based on the statistics of the overall
dataset can potentially lead to more robust performance in an unbalanced setting.

Cluster Number Ablation in Self-boxed Guidance

In Table 41, we empirically evaluate the performance when we alter the cluster number in
our self-boxed guidance. We find the performance will increase from k = 21 to k = 100,
and saturated at k = 100.

Cluster number k FID ↓

21 22.5
50 18.6
100 18.5

Table 41: Cluster number ablation on Pascal VOC dataset for self-boxed guidance.

Trend Visualization of Training Loss and Validation FID

We visualize the trend of training loss and validation FID in Figure 50.

7.6.2 More Experimental Details

Training details. For our best results, we train 100 epochs on 4 GPUs of A5000
(24G) in ImageNet. We train 800/800/400 epochs on 1GPU of A6000 (48G) in Pascal
VOC, COCO 20K, and COCO-Stuff, respectively. All qualitative results in this chapter
are trained in the same setting as mentioned above. We train and evaluate the Pascal
VOC, COCO 20K, and COCO-Stuff in image size 64, and visualize them by bilinear
upsampling to 256, following [152].

Sampling details. We sample the guidance signal from the distribution of training
set in our all experiments. For each timestep, we need twice of Number of Forward
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Figure 51: The structure of UNet module.

Evaluation (NFE), we optimize them by concatenating the conditional and unconditional
signal along the batch dimension so that we only need one time of NFE in every timestep.

Evaluation details. We use the common package Clean-FID [181], torch-fidelity [177]
for FID, IS calculation, respectively. For IS, we use the standard 10-split setting, we only
report IS on ImageNet, as it might be not an appropriate metric for non object-centric
datasets [13]. For the checkpoint, we pick the checking point every 10 epochs by minimal
FID between generated sample set and the train set.

UNet structure

Guidance signal injection. We describe the detail of guidance signal injection in Fig-
ure 51. The injection of self-labeled guidance and self-boxed/segmented guidance is
slightly different. The common part is by concatenation between timestep embedding
and noisy input, the concatenated feature will be sent to every block of the UNet. For the
self-boxed/segmented guidance, we not only conduct the information fusion as above but
also incorporate the spatial inductive-bias by concatenating it with input, the concatenated
result will be fed into the UNet.

Timestep embedding. We embed the raw timestep information by two-layer MLP:
FC(512, 128)→SiLU→FC(128, 128).

Guidance embedding. The guidance is in the form of one/multi-hot embedding RK ,
we feed it into two-layer MLP: FC(K, 256)→SiLU→FC(256, 256), then feed those
guidance signal into the UNet following in Figure 51.

Cross-attention. In training for non object-centric dataset, we also tokenize the
guidance signal to several tokens following Imagen [203], we concatenate those tokens
with image tokens (can be transposed to a token from typical feature map by RW×H×C →

RC×WH), the cross-attention [20, 200] is conducted by CA(m, concat[k,m]). Due to
the quadratic complexity of transformer [127, 156], we only apply the cross-attention in
lower-resolution feature maps.
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Base channels: 128 Optimizer: AdamW
Channel multipliers: 1, 2, 4 Learning rate: 3e − 4
Blocks per resolution: 2 Batch size: 128
Attention resolutions: 4 EMA: 0.9999
number of head: 8 Dropout: 0.0
Conditioning embedding dimension: 256 Training hardware: 4 × A5000(24G)
Conditioning embedding MLP layers: 2 Training Epochs: 100
Diffusion noise schedule: linear Weight decay: 0.01
Sampling timesteps: 256

Table 42: 3×32×32 model, 4GPU, ImageNet32.

Base channels: 128 Optimizer: AdamW
Channel multipliers: 1, 2, 4 Learning rate: 1e − 4
Blocks per resolution: 2 Batch size: 48
Attention resolutions: 4 EMA: 0.9999
number of head: 8 Dropout: 0.0
Conditioning embedding dimension: 256 Training hardware: 4 × A5000(24G)
Conditioning embedding MLP layers: 2 Training Epochs: 100
Diffusion noise schedule: linear Weight decay: 0.01
Sampling timesteps: 256

Table 43: 3×64×64 model, 4GPU, ImageNet64.

Base channels: 128 Optimizer: AdamW
Channel multipliers: 1, 2, 4 Learning rate: 1e − 4
Blocks per resolution: 2 Batch size: 80
Attention resolutions: 4 EMA: 0.9999
Number of head: 8 Dropout: 0.0
Conditioning embedding dimension: 256 Training hardware: 1 × A6000(45G)
Conditioning embedding MLP layers: 2 Training Epochs: 800/800/400
Diffusion noise schedule: linear Weight decay: 0.01
Sampling timesteps: 256 Context token number: 8
Context dim: 32

Table 44: 3×64×64 model, 1GPU, Pascal VOC, COCO 20K, COCO-Stuff.

Base channels: 128 Optimizer: AdamW
Channel multipliers: 1, 2,2,3, 4 Learning rate: 5e − 5
Blocks per resolution: 2 Batch size: 48
Attention resolutions: 4,8 EMA: 0.9999
Number of head: 8 Dropout: 0.0
Conditioning embedding dimension: 256 Training hardware: 4 × A5000(24G)
Conditioning embedding MLP layers: 2 Training Steps: 600k
Diffusion noise schedule: linear Weight decay: 0.01
Sampling timesteps: 200

Table 45: 3×256×256 model, 4GPU, Churches-256.
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Training Parameter

Dataset Preparation

The preparation of unbalanced dataset. There are 50,000 images in the validation set
of ImageNet with 1,000 classes (50 instances for each). We index the class from 0 to
999, for each class ci, the instance of the class ci is ⌊i × 50/1000⌋ = ⌊i/200⌋.

Pascal VOC. We use the standard split from [212]. It has 12,031 training images. As
there is no validation set for Pascal VOC dataset, therefore, we only evaluate FID on
the train set. We sample 10,000 images and use 10,000 random-cropped 64-sized train
images as reference set for FID evaluation.

COCO 20K. We follow the split from [150, 212, 240]. COCO 20k is a subset of
the COCO2014 trainval dataset, consisting of 19,817 randomly chosen images, used in
unsupervised object discovery [212, 240]. We sample 10,000 images and use 10,000
random-cropped 64-sized train images as reference set for FID evaluation.

COCO-Stuff. It has a train set of 49,629 images, validation set of 2,175 images, where
the original classes are merged into 27 (15 stuff and 12 things) high-level categories.
We use the dataset split following [45, 88, 117, 278], We sample 10,000 images and use
10,000 train/validation images as reference set for FID evaluation.

LOST, STEGO Algorithms

LOST algorithm details. We conduct padding to make the original image can be
patchified to be fed into the ViT architecture [57], and feed the original padded image
into the LOST architecture using official source code 2. LOST can also be utilized in
a two-stage approach to provide multi-object, due to its complexity, we opt for only
single-object discovery in this chapter.

STEGO algorithm details. We follow the official source code 3, and apply padding to
make the original image can be fed into the ViT architecture to extract the self-segmented
guidance signal.

For COCO-Stuff dataset, we directly use the official pretrained weight. For Pascal
VOC, we train STEGO ourselves using the official hyperparameters.

In STEGO’s pre-processing for the k-NN, the number of neighbors for k-NN is 7. The
segmentation head of STEGO is composed of a two-layer MLP (with ReLU activation)
and outputs a 70-dimension feature. The learning rate is 5e − 4, the batch size is 64.

7.6.3 Qualitative Results

Assigning Semantic Descriptions in Self-labeled/segmented Guidance

In order to control the semantic content of a sample using self-guidance we can assign
descriptions to each self-supervised cluster by manually checking a few example images
per cluster. This is much more scalable since the total number of training images available
are multiple orders of magnitude greater than the number of clusters. Furthermore, images

2 https://github.com/valeoai/LOST
3 https://github.com/mhamilton723/STEGO
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giraffe sky tree ground

human head grass building human body

Figure 52: Self-segmented guidance samples from COCO-Stuff companies with
segmentation mask from STEGO [88]. The color map is shared among the overall
dataset. The semantic description is deduced based on a few images. Best viewed in
color.

in the same self-supervised cluster are highly semantically coherent and humans can
easily describe their shared abstract concept [140].

In Figure 53 we show examples of self-labeled guidance that highlight the semantic
coherence of samples guided by the same cluster id. In Figure 52 we show how this
approach is also extendable to self-segmented guidance.

More Qualitative Results
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Semantic Assignment

Dog with white fur

Brown and white dog

Kitchen bowl

Store

Bird with 
clean background

Bird with 
branchy background

Figure 53: Self-labeled guidance samples conditioning on the same guidance from
ImageNet64. We assign a cluster description based on a few sample images. Best viewed
in color.
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Figure 54: Self-segmented guidance samples from COCO-Stuff. Best viewed in color.
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Self-
segmentation

Denoising Process

Figure 55: Denoising process of self-segmented guidance samples (uncurated) from
COCO-Stuff. The first column is the self-segmented guidance mask from STEGO [88],
The remaining columns are from the noisiest period to the less noisy period. Best viewed
in color.
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Guidance signal from training set:

Guidance signal from validation set:

Original Image Self-
Segmentation

Self-guided Samples

Figure 56: Self-segmented guidance samples (uncurated) from COCO-Stuff. The
first column is the real image where we attain the conditional mask. The second column
is the self-segmented mask we obtain from STEGO [88], The remaining columns are the
random samples conditioning on the same self-segmented mask. Best viewed in color.
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Original Image Self-Seg Increasing guidance strength w from 0 to 3 averagely by 8 steps. 

Figure 57: Self-segmented guidance samples from Pascal VOC. The first column
is the real image where we attain the conditional mask. The second column is the
self-segmented mask we obtain from STEGO [88]. The remaining columns are the
visualization when we averagely increase guidance strength w from 0 to 3 by 8 steps.
Best viewed in color.
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Figure 58: Self-segmented guidance samples (uncurated) from COCO-Stuff companies
with segmentation mask from STEGO [88]. The color map is shared among the overall
dataset. Best viewed in color.
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Figure 59: Self-labeled guidance samples (uncurated) from ImageNet64. Best viewed
in color.
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Figure 60: Self-labeled guidance samples (uncurated) from ImageNet32. Best viewed
in color.

124



7.6 A P P E N D I X

Figure 61: Denoising process for ImageNet64.

Conditioned

Unconditioned

Figure 62: Denoising process for Pascal VOC. The first two rows are sampled from
guidance strength w = 2 using our self-segmented guidance, the last two rows are
sampled from guidance strength w = 0. By conditioning on our self-segmented guidance,
the denoising process becomes easier and faster, this efficient denoising aligns with the
observation from [186].
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Figure 63: Sphere interpolation between two random self-labeled guidance signals
on ImageNet64. The sphere interpolation follows the DDIM [217]. Best viewed in
color.

Figure 64: cluster625

Figure 65: cluster807

Figure 66: cluster890

Figure 67: Cluster visualization of real images in ImageNet32 after k-means.
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Figure 68: Bounding box result from LOST on Pascal VOC. As LOST [212] is an
unsupervised-learning method, some flaws in the generated box are expected. Images
are resized squarely for better visualization.
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Figure 69: Bounding box result from LOST [212] on COCO 20K. Images are resized
squarely for better visualization.
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Figure 70: Segmentation mask result from STEGO on Pascal VOC dataset. Cluster
number k is 21. Images are resized squarely for better visualization. The color map is
shared among the overall dataset. Best viewed in color.
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S U M M A RY A N D C O N C L U S I O N S

8.1 S U M M A RY

This thesis aims to achieve label-efficient learning in computer vision. We demonstrate
various algorithms that use a considerably reduced set of labels, or even no labels at all,
to achieve label-efficiency. The main research question is addressed across six typical
computer vision challenges: image segmentation, object detection, video localization,
video retrieval, point cloud classification, and generative image diffusion. A brief
summary of each label-efficient computer vision solution per chapter is provided as
follows:

CHAPTER 2 IMAGE SEGMENTATION. To tackle label-efficient learning in image
segmentation, we propose the Attention-based Multi-Context Guiding (A-MCG) net-
work, which consists of three branches: support branch, query branch, feature fusion
branch. A key differentiator of A-MCG is the integration of multi-scale context features
between support and query branches, enforcing a better guidance from the support set.
In addition, we also adopt a spatial attention mechanism along the fusion branch to
highlight context information from several scales, enhancing self-supervision in one-shot
learning. To address the fusion problem in multi-shot learning, ConvLSTM is adopted to
collaboratively integrate the sequential support features to elevate the final accuracy. Our
architecture strikes a state-of-the-art result on unseen classes in a variant of PASCAL
VOC12 dataset and performs favorably against the previous work with large gains of
1.1%, 1.4% measured in mIoU in the 1-shot or 5-shot setting respectively.

CHAPTER 3 OBJECT DETECTION. In this chapter, we propose a new task to explore
the label-efficient learning in object detection, we call few-shot common-localization.
Given a few weakly-supervised support images, we aim to localize the common object
in the query image without any box annotation. This task differs from standard few-
shot settings, since we aim to address the localization problem, rather than the global
classification problem. To tackle this new problem, we propose a network that aims to
get the most out of the support and query images. To that end, we introduce a spatial
similarity module that searches the spatial commonality among the given images. We
furthermore introduce a feature reweighting module, which balances the influence of
different support images through graph convolutional networks. To evaluate few-shot
common-localization, we repurpose and reorganize the well-known Pascal VOC and MS-
COCO datasets, as well as a video dataset from Imagenet VID. Experimental evaluation
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on the new settings for few-shot common-localization shows the importance of searching
for spatial similarity and feature reweighting, outperforming baselines from related tasks.

CHAPTER 4 VIDEO ACTION LOCALIZATION. To explore label-efficient learning in
video action localization, this chapter strives to localize the temporal extent of action in a
long untrimmed video. Where existing work leverages many examples with their start,
their ending, and/or the class of the action during training time, we propose few-shot
common action localization. The start and end of an action in a long untrimmed video
are determined based on just a handful of trimmed video examples containing the same
action, without knowing their common class label. To address this task, we introduce
a new 3D convolutional network architecture able to align representations from the
support videos with the relevant query video segments. The network contains: (i) a
mutual enhancement module to simultaneously complement the representation of the
few trimmed support videos and the untrimmed query video; (ii) a progressive alignment
module that iteratively fuses the support videos into the query branch; and (iii) a pairwise
matching module to weigh the importance of different support videos. Evaluation of
few-shot common action localization in untrimmed videos containing single or multiple
action instances demonstrates the effectiveness and general applicability of our proposal.

CHAPTER 5 VIDEO ACTION RETRIEVAL. This chapter considers the retrieval of
videos containing human activity from just a video query to explore label-efficiency in
imbalanced scenarios. In the literature, a common assumption is that all activities have
sufficient labelled examples when learning an embedding for retrieval. However, this
assumption does not hold in practice, as only a portion of activities have many examples,
while other activities are only described by few examples. In this chapter, we propose a
visual-semantic embedding network that explicitly deals with the imbalanced scenario
for activity retrieval. Our network contains two novel modules. The visual alignment
module performs a global alignment between the input video and visual feature bank
representations for all activities. The semantic module aligns between the input video
and semantic activity representations. By matching videos with both visual and semantic
activity representations of overall activities, we no longer ignore infrequent activities
during retrieval. Experiments on a new imbalanced activity retrieval benchmark show
the effectiveness of our proposal.

CHAPTER 6 POINT CLOUD CLASSIFICATION. This chapter introduces data aug-
mentation for point clouds by interpolation between examples to arrive label-efficient
learning in point cloud. Data augmentation by interpolation has shown to be a simple
and effective approach in the image domain. Such a mixup is however not directly
transferable to point clouds, as we do not have a one-to-one correspondence between
the points of two different objects. In this chapter, we define data augmentation between
point clouds as a shortest path linear interpolation. To that end, we introduce PointMixup,
an interpolation method that generates new examples through an optimal assignment
of the path function between two point clouds. We prove that our PointMixup finds
the shortest path between two point clouds and that the interpolation is assignment
invariant and linear. With the definition of interpolation, PointMixup allows introducing
strong interpolation-based regularizers such as mixup and manifold mixup to the point
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cloud domain. Experimentally, we show the potential of PointMixup for point cloud
classification, especially when examples are scarce, as well as increased robustness to
noise and geometric transformations to points.

CHAPTER 7 GENERATIVE IMAGE DIFFUSION Diffusion models have demonstrated
remarkable progress in image generation quality, especially when guidance is used to
control the generative process. However, guidance requires a large amount of image-
annotation pairs for training and is thus dependent on their availability, correctness and
unbiasedness. To achieve better label-efficiency in terms of guidance in diffusion models,
in this chapter, we eliminate the need for such annotation by instead leveraging the
flexibility of self-supervision signals to design a framework for self-guided diffusion
models. By leveraging a feature extraction function and a self-annotation function,
our method provides guidance signals at various image granularities: from the level
of holistic images to object boxes and even segmentation masks. Our experiments on
single-label and multi-label image datasets demonstrate that self-labeled guidance always
outperforms diffusion models without guidance and may even surpass guidance based on
ground-truth labels, especially on unbalanced data. When equipped with self-supervised
box or mask proposals, our method further generates visually diverse yet semantically
consistent images, without the need for any class, box, or segment label annotation.
Self-guided diffusion is simple, flexible and expected to profit from deployment at scale.

8.2 C O N C L U S I O N S

This thesis presents several novel approaches to achieving label-efficient learning in
computer vision. By demonstrating the effectiveness of various algorithms that use a
reduced set of labels or even zero labels, we have addressed the main research question
across six typical computer vision challenges. Our research highlights the importance of
leveraging unlabeled data [110], exploring alternative learning paradigms [107,109,270],
boosting the label-efficiency by augmentation [44] and carefully designing network
structure [107, 109, 270] to achieve label-efficiency. Our results suggest that label-
efficient learning has the potential to significantly reduce the amount of labeled data
required for training computer vision models, opening up new possibilities for real-world
applications. This thesis also presents practical implications for the development of such
applications. By reducing the reliance on labeled data, our approach can significantly
lower the cost and time required for data annotation. As a result, it becomes easier to
develop computer vision solutions for a wide range of industries.

However, further research is needed to explore the full potential of label-efficient
learning and to develop new algorithms that can achieve even greater label-efficiency.
One interesting direction is about exploring how to utilize the synergy functionality from
multi-modalities e.g., image, video, audio, caption, flow, etc. Those explorations can be
conducted either in discriminative learning by contrasting views [42] or in generative
modeling by learning a joint distribution [226]. What is more, exploration of the potential
of Large Language Models [209] and Foundation Models [23] needs to be carried out to
check how to achieve an intelligence system that can arrive at self-evolution by constantly
consuming data without reliance on labels.
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In conclusion, this thesis provides a contribution to the field of computer vision,
demonstrating the potential of label-efficient learning and providing insights into how it
can be achieved. We hope that our work will inspire further research and development in
this area, leading to even more efficient and effective computer vision solutions in the
future.
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Localizing objects with self-supervised transformers and no labels. In BMVC, 2021.

[213] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
In NeurIPS, 2014.

[214] B. Singh, T. K. Marks, M. Jones, O. Tuzel, and M. Shao. A multi-stream bi-directional recurrent
neural network for fine-grained action detection. In CVPR, 2016.

[215] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In NeurIPS, 2017.

[216] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In ICML, 2015.

[217] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In ICLR, 2021.

[218] J. Song, H. Zhang, X. Li, L. Gao, M. Wang, and R. Hong. Self-supervised video hashing with
hierarchical binary auto-encoder. In TIP, 2018.

[219] Y. Song, L. Shen, L. Xing, and S. Ermon. Solving inverse problems in medical imaging with
score-based generative models. In ICLR, 2022.

[220] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based
generative modeling through stochastic differential equations. In ICLR, 2021.

[221] K. Soomro and M. Shah. Unsupervised action discovery and localization in videos. In ICCV, 2017.

[222] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. In JMLR, 2014.

[223] W. Sultani, C. Chen, and M. Shah. Real-world anomaly detection in surveillance videos. In CVPR,
2018.

[224] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales. Learning to compare:
Relation network for few-shot learning. In CVPR, 2018.

[225] K. Suzuki. Overview of deep learning in medical imaging. In Radiological Physics and Technology,
2017.

[226] M. Suzuki, K. Nakayama, and Y. Matsuo. Joint multimodal learning with deep generative models.
In ICLR, 2016.

[227] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabi-
novich, et al. Going deeper with convolutions. In CVPR, 2015.

[228] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture
for computer vision. In CVPR, 2016.

[229] M. Tang, F. Perazzi, A. Djelouah, I. Ben Ayed, C. Schroers, and Y. Boykov. On regularized losses
for weakly-supervised cnn segmentation. In ECCV, 2018.

[230] P. Tang, X. Wang, A. Wang, Y. Yan, W. Liu, J. Huang, and A. Yuille. Weakly supervised region
proposal network and object detection. In ECCV, 2018.

[231] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J. Guibas. Kpconv:
Flexible and deformable convolution for point clouds. In ICCV, 2019.

[232] M. Toering, I. Gatopoulos, M. Stol, and V. T. Hu. Self-supervised video representation learning
with cross-stream prototypical contrasting. In WACV, 2022.

[233] Y. Tokozume, Y. Ushiku, and T. Harada. Between-class learning for image classification. In CVPR,
2018.

[234] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with
3d convolutional networks. In ICCV, 2015.

[235] M. A. Uy, Q.-H. Pham, B.-S. Hua, T. Nguyen, and S.-K. Yeung. Revisiting point cloud classification:
A new benchmark dataset and classification model on real-world data. In ICCV, 2019.

144



Bibliography

[236] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. In NeurIPS, 2017.

[237] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, A. Courville, D. Lopez-Paz, and
Y. Bengio. Manifold mixup: Better representations by interpolating hidden states. In ICML, 2019.

[238] V. Verma, A. Lamb, J. Kannala, Y. Bengio, and D. Lopez-Paz. Interpolation consistency training
for semi-supervised learning. In IJCAI, 2019.

[239] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning.
In NeurIPS, 2016.
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S A M E N VAT T I N G

Dit proefschrift heeft als doel label-efficiënt leren te bereiken in computervisie. We laten
verschillende algoritmen zien die een aanzienlijk verminderde set van labels gebruiken, of
zelfs helemaal geen labels, om label-efficiëntie te bereiken. De belangrijkste onderzoeksvraag
wordt behandeld in zes typische uitdagingen op het gebied van computervisie: beeldsegmentatie,
objectdetectie, video lokalisatie, video retrieval, puntwolkclassificatie en generatieve beelddiffusie.
Een korte samenvatting van elke label-efficiënte computervisie-oplossing per hoofdstuk wordt nu
gegeven:

CHAPTER 2 BEELDSEGMENTATIE. Om label-efficiënt leren in beeldsegmentatie aan te
pakken, stellen we het Attention-based Multi-Context Guiding (A-MCG) netwerk voor, dat
bestaat uit drie takken: de ondersteuningstak, de vraagtak, en de feature-fusietak. Een belangrijk
onderscheidend kenmerk van A-MCG is de integratie van multi-schaal contextuele kenmerken
tussen ondersteunende en vragende takken, die een betere begeleiding vanuit de ondersteuningsset
afdwingen. Daarnaast introduceren we ook een ruimtelijk aandachtsmechanisme langs de fusietak
om contextinformatie van verschillende schalen te benadrukken, waardoor zelftoezicht in one-shot
leren wordt verbeterd. Om het fusieprobleem in multi-shot leren aan te pakken, wordt ConvLSTM
gebruikt om de opeenvolgende ondersteuningskenmerken samen te voegen om de uiteindelijke
nauwkeurigheid te verhogen. Onze architectuur behaalt een state-of-the-art resultaat op ongeziene
klassen in een variant van de PASCAL VOC12 dataset en presteert gunstig tegenover het vorige
werk met grote winsten van 1,1%, 1,4% gemeten in mIoU in respectievelijk de 1-shot of 5-shot
setting.

CHAPTER 3 OBJECTDETECTIE. In dit hoofdstuk stellen we een nieuwe taak voor om het
label-efficiënt leren in objectdetectie te onderzoeken, we noemen het few-shot gemeenschappeli-
jke lokalisatie. Gegeven een paar zwak gesuperviseerde ondersteuningsafbeeldingen, is ons doel
om het gemeenschappelijke object in de vraagafbeelding te lokaliseren zonder enige box-annotatie.
Deze taak verschilt van standaard few-shot instellingen, aangezien we het lokalisatieprobleem
willen aanpakken, in plaats van het globale classificatieprobleem. Om dit nieuwe probleem aan te
pakken, stellen we een netwerk voor dat het meeste uit de ondersteunende en vragende afbeeldin-
gen wil halen. Hiervoor introduceren we een ruimtelijke gelijkheidsmodule die de ruimtelijke
gemeenschappelijkheid onder de gegeven afbeeldingen zoekt. We introduceren ook een feature
herwegingsmodule, die de invloed van verschillende ondersteuningsbeelden balanceert door
middel van graaf-convolutionele netwerken. Om few-shot gemeenschappelijke lokalisatie te
evalueren, herformuleren en herorganiseren we de bekende Pascal VOC en MS-COCO datasets,
evenals een videodataset van Imagenet VID. Experimentele evaluatie van de nieuwe instellingen
voor few-shot gemeenschappelijke lokalisatie toont het belang aan van het zoeken naar ruimtelijke
gelijkheid en kenmerkherweging, waarbij baselines van gerelateerde taken worden overtroffen.

CHAPTER 4 VIDEO ACTIE LOKALISATIE. Om label-efficiënt leren in videoactie lokalisatie
te onderzoeken, streeft dit hoofdstuk ernaar om de temporele omvang van actie in een lange
ongetrimde video te lokaliseren. Waar bestaand werk veel voorbeelden met hun start, hun einde
en/of de klasse van de actie tijdens de trainingstijd benut, stellen wij few-shot gemeenschappelijke
actie lokalisatie voor. Het begin en einde van een actie in een lange ongetrimde video worden
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bepaald op basis van slechts een handvol getrimde video-exemplaren die dezelfde actie bevatten,
zonder hun gemeenschappelijke klasse label te kennen. Om deze taak aan te pakken, introduceren
we een nieuwe 3D convolutionele netwerk architectuur die in staat is om representaties van de
ondersteuningsvideo’s af te stemmen op de relevante query video segmenten. Het netwerk bevat:
(i) een gemeenschappelijke verbeteringsmodule om gelijktijdig de representatie van de weinige
getrimde ondersteuningsvideo’s en de ongetrimde query video te complementeren; (ii) een pro-
gressieve uitlijningsmodule die iteratief de ondersteuningsvideo’s in de query tak fuseert; en (iii)
een paarsgewijze matchingsmodule om het belang van verschillende ondersteuningsvideo’s te
wegen. Evaluatie van few-shot gemeenschappelijke actie lokalisatie in ongetrimde video’s met
enkele of meerdere actie-instanties toont de effectiviteit en algemene toepasbaarheid van ons
voorstel aan.

CHAPTER 5 VIDEO ACTIE OPHALEN. Dit hoofdstuk beschouwt het ophalen van video’s
die menselijke activiteit bevatten van slechts een video query om label-efficiëntie in oneven-
wichtige scenario’s te onderzoeken. In de literatuur is een veelvoorkomende aanname dat alle
activiteiten voldoende gelabelde voorbeelden hebben bij het leren van een embedding voor het
ophalen. Deze aanname geldt echter niet in de praktijk, aangezien slechts een deel van de
activiteiten veel voorbeelden heeft, terwijl andere activiteiten slechts door een paar voorbeelden
worden beschreven. In dit hoofdstuk stellen we een visueel-semantisch embedding netwerk voor
dat expliciet omgaat met het onevenwichtige scenario voor activiteiten ophalen. Ons netwerk
bevat twee nieuwe modules. De visuele afstemmingsmodule voert een globale afstemming uit
tussen de inputvideo en visuele feature bank representaties voor alle activiteiten. De semantische
module stemt af tussen de inputvideo en semantische activiteitsrepresentaties. Door video’s
te matchen met zowel visuele als semantische activiteitsrepresentaties van totale activiteiten,
negeren we niet langer zeldzame activiteiten tijdens het ophalen. Experimenten op een nieuwe
onevenwichtige activiteitenophalingsbenchmark tonen de effectiviteit van ons voorstel aan.

CHAPTER 6 PUNTWOLK CLASSIFICATIE. Dit hoofdstuk introduceert data-vermeerdering
voor puntwolken door interpolatie tussen voorbeelden om label-efficiënt leren in puntwolk te
bereiken. Data-vermeerdering door interpolatie heeft zich bewezen als een eenvoudige en effec-
tieve aanpak in het beelddomein. Een dergelijke mixup techniek is echter niet direct overdraagbaar
op puntwolken, aangezien we geen één-op-één correspondentie hebben tussen de punten van twee
verschillende objecten. In dit hoofdstuk definiëren we data-vermeerdering tussen puntwolken als
een kortste pad lineaire interpolatie. Daartoe introduceren we PointMixup, een interpolatiemeth-
ode die nieuwe voorbeelden genereert door middel van een optimale toewijzing van de padfunctie
tussen twee puntwolken. We bewijzen dat onze PointMixup het kortste pad vindt tussen twee
puntwolken en dat de interpolatie toewijzingsmatrices globaal optimaal zijn. Experimenten tonen
aan dat PointMixup het label-efficiënte leren van 3D objecten kan bevorderen.

CHAPTER 7 GENERATIEVE BEELDDIFFUSIE. Dit hoofdstuk onderzoekt label-efficiënt
leren door het genereren van ongelabelde afbeeldingen. We presenteren een framework dat
ongelabelde afbeeldingen genereert door diffusieprocessen en probeert label-efficiënt leren te
bereiken door zelfsupervisie. Het door ons voorgestelde framework, Self-supervised Generative
Diffusion Model (SGDM), bestaat uit twee componenten: een generatief diffusiemodel en een
paar diffusiegerichte zelfsupervisie-modules. Het generatieve diffusiemodel is verantwoordelijk
voor het genereren van ongelabelde beelden, terwijl de zelfsupervisie-modules geleidende sig-
nalen bieden om het leren van de ongelabelde beelden te begeleiden. Onze SGDM streeft ernaar
om het label-efficiënte leren in ongelabelde gegevens te maximaliseren, en toont veelbelovende
resultaten op diverse beeldgeneratiebenchmarks.
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8.3 C O N C L U S I E E N T O E KO M S T I G W E R K

Dit proefschrift onderzoekt label-efficiënt leren in zes typische uitdagingen in de computervisie.
Het blijkt dat label-efficiënt leren kan worden bereikt door het ontwerp van gespecialiseerde algo-
ritmen voor elke taak, zoals beeldsegmentatie, objectdetectie, videoactie lokalisatie en ophalen,
puntwolk classificatie, en generatieve beelddiffusie. Terwijl we specifieke oplossingen bieden
voor elk van deze taken, merken we ook dat sommige principes over alle taken heen gedeeld
worden. In het bijzonder vinden we dat de keuze van de begeleiding (zoals ondersteuningsbeelden
in few-shot taken, of door mensen geannoteerde beelden in puntwolk classificatie en generatieve
beelddiffusie) een cruciale rol speelt bij het bereiken van label-efficiënt leren.

In de toekomst kunnen we overwegen om de concepten en principes die we in dit proefschrift
hebben geı̈dentificeerd, toe te passen op nieuwe domeinen of taken. Er zijn bijvoorbeeld veel
andere taken in de computervisie die kunnen profiteren van label-efficiënt leren, zoals actieherken-
ning, gezichtsherkenning, en beeldsynthese. Bovendien kan de combinatie van de verschillende
principes en technieken die we hebben ontdekt, wellicht leiden tot nieuwe benaderingen of
theorieën voor label-efficiënt leren.
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