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Abstract

Understanding the latent causal factors of a dy-
namical system from visual observations is con-
sidered a crucial step towards agents reasoning in
complex environments. In this paper, we propose
CITRIS, a variational autoencoder framework that
learns causal representations from temporal se-
quences of images in which underlying causal
factors have possibly been intervened upon. In
contrast to the recent literature, CITRIS exploits
temporality and observing intervention targets to
identify scalar and multidimensional causal fac-
tors, such as 3D rotation angles. Furthermore, by
introducing a normalizing flow, CITRIS can be
easily extended to leverage and disentangle rep-
resentations obtained by already pretrained au-
toencoders. Extending previous results on scalar
causal factors, we prove identifiability in a more
general setting, in which only some components
of a causal factor are affected by interventions.
In experiments on 3D rendered image sequences,
CITRIS outperforms previous methods on recov-
ering the underlying causal variables. Moreover,
using pretrained autoencoders, CITRIS can even
generalize to unseen instantiations of causal fac-
tors, opening future research areas in sim-to-real
generalization for causal representation learning.

1. Introduction
Causal representation learning (Khemakhem et al., 2020a;
Lachapelle et al., 2022; Locatello et al., 2020a; Schölkopf
et al., 2021; Yang et al., 2021) focuses on learning repre-
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Figure 1. From a sequence of images with interventions (orange),
CITRIS learns a normalizing flow, which maps a pretrained au-
toencoder’s entangled latent representation to a causal representa-
tion. In this, multiple latent dimensions (blue blocks) can repre-
sent a single causal factor, where causal relations exist over time.

sentations of causal factors from high-dimensional observa-
tions, such as images. Commonly, in learning causal rep-
resentations, causal factors are assumed to be scalars. As
settings become more complex and high-dimensional, how-
ever, so do the causal dynamics, where estimating every
scalar causal variable becomes impractical. Consider for
instance a set of objects interacting in a three-dimensional
space. For each object, we can describe its position by three
variables x, y, z and its rotation in multiple angles. How-
ever, it is often more natural and sufficient to consider those
factors as two multidimensional variables, i.e. position and
rotation, especially when the definition of the default axes
is ambiguous. Such multidimensional causal factors are
reminiscent of macrovariables explored before in causality
(Chalupka et al., 2015; 2016a;b; Hoel et al., 2013; Höltgen,
2021), however, not in causal representation learning yet.

Hence, different from previous causal representation learn-
ing approaches, we consider causal factors as potentially
multidimensional vectors in this paper. This requires a rep-
resentation model to learn a latent space of disentangled fac-
tors of variation, where latent variables of the same causal
factor are grouped together. To identify these multidimen-
sional causal variables, we use sequences of observations
where interventions with known targets may have been per-
formed at any time step. This setup resembles a reinforce-
ment learning environment or an interactive real-world set-
ting, with an agent performing actions over time represent-
ing interventions on multidimensional causal factors. How-
ever, instead of learning a policy to optimize a reward func-
tion, we aim at using this setting to identify the causal fac-
tors. We assume we can observe the intervention targets in
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our data, which occurs for instance when we have access to
a set of observation and action trajectories. We refer to this
setup as TempoRal Intervened Sequences (TRIS).

Under this setting and common assumptions like an invert-
ible observation function and a stationary causal process,
we can identify the minimal causal variables, which only
model the information of a causal factor that is strictly af-
fected by a provided intervention. With this, we identify the
factors which can be directly and independently influenced
by, e.g., the action of an agent, and thus of the most prac-
tical relevance. Meanwhile, all information that cannot be
assigned to a causal factor with certainty and hence not di-
rectly influenced, is collected in a separate group of latent
variables. As a practical implementation of this, we pro-
pose CITRIS for Causal Identifiability from TempoRal Inter-
vened Sequences. CITRIS is a variational autoencoder that
learns an assignment of latent variables to causal factors,
and promotes disentanglement by conditioning each latent’s
prior distribution only on its respective intervention target.
In experiments on realistically rendered video datasets, CIT-
RIS is able to find and disentangle the causal factors with
high accuracy. Moreover, we extend CITRIS to pretrained
autoencoders. By using a normalizing flow (Rezende & Mo-
hamed, 2015), CITRIS learns a mapping from the entangled
autoencoder representation to a disentangled causal repre-
sentation, see Figure 1. We empirically show that the nor-
malizing flow can even generalize its disentanglement to
unseen instantiations of causal factors, holding promise for
future work on generalization of causal representations.

Our contributions are summarized as follows:

• We show that multidimensional causal factors can be
identified from temporal sequences with interventions
up to their minimal causal variables.

• We propose CITRIS, a VAE architecture for disentan-
gling causal factors in latent space based on this setup.

• Finally, we extend CITRIS to pretrained autoencoders
by learning a map from an entangled to a causally
disentangled latent space using normalizing flows.

2. Preliminaries and Causal Assumptions
We assume that the underlying latent causal process is a dy-
namic Bayesian network (DBN) (Dean & Kanazawa, 1989;
Murphy, 2002) G over a set of K causal variables. In the
corresponding graph G = (V,E), each node i ∈ V is as-
sociated with a causal variable Ci, which can be scalar or
vector valued. Each edge (i, j) ∈ E represents a causal re-
lation from Ci to Cj : Ci → Cj , where Ci is a parent of Cj
and paG(Ci) are all parents of Ci in G. Further, we assume
that the DBN is first-order Markov, stationary, and without
instantaneous effects. This means that in G each causal fac-
tor Ci is instantiated at each time step t, denoted by Cti , and

its causal parents can only be causal factors at time t − 1,
denoted as Ct−1

j , including its own previous value Ct−1
i .

In other words, for t ∈ J1..T K and for each causal factor
i ∈ J1..KK we can model Cti = fi(paG(C

t
i ), ϵi), where

paG(C
t
i ) ⊆ {Ct−1

1 , . . . , Ct−1
K }. We denote the set of all

causal variables at time t as Ct = (Ct1, . . . , C
t
K), where Ct

inherits all edges from its components Ci for i ∈ J1..KK
without introducing cycles. In this setting the structure of
the graph is time-invariant, i.e., paG(C

t
i ) = paG(C

1
i ) for

any t ∈ J1..T K. We also assume all ϵi for i ∈ J1..KK are
mutually independent noises.

We use a binary intervention vector It ∈ {0, 1}K to indicate
that a variableCti inG is intervened upon if and only if Iti =
1. We consider that the intervention vector components Iti
might be confounded by another Itj , i ̸= j, and represent
these dependencies with an unobserved regime variable Rt

(Didelez et al., 2006; Mooij et al., 2020). With this, we
construct an augmented DAG G′ = (V ′, E′), where V ′ =
{{Cti}Ki=1 ∪ {Iti}Ki=1 ∪ Rt}Tt=1 and E′ = {{paG(C

t
i ) →

Cti}Ki=1 ∪ {Iti → Cti}Ki=1 ∪ {Rt → Iti}Ki=1}Tt=1. We say
that a distribution p is Markov w.r.t. the augmented DAG
G′ if it factors as p(V ′) =

∏
j∈V ′ p(Vj | paG′(Vj)), where

Vj includes the causal factors Cti , the intervention vector
components Iti , and the regime Rt. Moreover, we say
that p is faithful to a causal graph G′, if there are no addi-
tional conditional independences to the d-separations one
can read from the graph G′. The augmented graph G′ can
model interventions with an arbitrary number of targets, in-
cluding observational data. In this paper we will consider
soft interventions (Eberhardt, 2007), in which the condi-
tional distribution changes, i.e., p(Cti |paG(C

t
i ), I

t
i = 1) ̸=

p(Cti |paG(C
t
i ), I

t
i = 0), which include as a special case

perfect interventions do(Ci = ci) (Pearl, 2009).

3. Identifiability of Minimal Causal Variables
We first describe our setting, TempoRal Intervened Se-
quences (TRIS). In this setting, we show that identifying
the underlying causal factors is not always possible, espe-
cially when considering multidimensional causal factors.
Therefore, we define the concept of minimal causal vari-
able, which represent the manipulable part of each causal
factor. Finally, we show under which conditions we can re-
cover the minimal causal variables in TRIS.

3.1. TempoRal Intervened Sequences (TRIS)

In TRIS, we consider data generated by an underlying
latent temporal causal process with K causal factors
(Ct1, C

t
2, ..., C

t
K)Tt=1. At each time step t, we observe a high-

dimensional observation XT representing a noisy, entan-
gled view of all causal factors. The following paragraphs
describe the details of this setup, visualized in Figure 2.
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Figure 2. An example causal graph in TRIS, with observed vari-
ables shown in gray and latent variables in white. A latent causal
factor Ct+1

i has as parents a subset of the causal factors at the pre-
vious time step Ct1, . . . , CtK , and its intervention target It+1

i . All
causal variablesCt+1 and noiseEt+1 cause the observationXt+1.
Rt+1 is a latent confounder between the intervention targets.

Multidimensional Causal Factors: As opposed to most
work on causal representation learning, which considers
causal factors to be one-dimensional (Khemakhem et al.,
2020a; Klindt et al., 2021; Lachapelle et al., 2022), we
allow them to be potentially multidimensional, i.e., Ci ∈
DMi
i with Mi ≥ 1 and in practice we let Di be R for

continuous variables (e.g., spatial position), Z for discrete
variables (e.g., the score of a player) or mixed. This allows
modeling different levels of causal variables (e.g. a 2D-
position encoded in a single factor with two dimensions
instead of two different causal factors). We define the causal
factor space as C = DM1

1 ×DM2
2 × ...×DMK

K .

Observation Function: We define the observation func-
tion h(Ct1, C

t
2, ..., C

t
K , E

t
o) = Xt, where Eto represents any

noise independent of the causal factors that influence the
observations, and h : C × E → X is a function from the
causal factor space C and the space of the noise variables
E to the observation space X . We assume that h is bijec-
tive, implying that the joint dimensionality of the noise and
causal model is limited to the image size. This allows us to
identify each causal factor uniquely from observations by
learning an approximation of f , while disregarding irrele-
vant features in the observation space.

Availability of Intervention Targets: Crucially, we assume
that in each time-step some causal factors might (or might
not) have been intervened upon and that we have access to
the corresponding intervention targets, but not the interven-
tion values. We denote these intervention targets by the bi-
nary vector It ∈ {0, 1}K where Iti = 1 refers to an inter-
vention on the causal variable Cti .

x

y

0

1

2

Figure 3. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes (blue
and orange) through an intervention, which does not influence the
relative position within a box.

3.2. A Necessary Condition for Disentanglement in TRIS

In TRIS, we generally cannot disentangle two causal factors
if they are always intervened upon jointly, or, on the contrary,
if they are never intervened upon.

Proposition 3.1. In TRIS, if two causal factors Ci and Cj
have only been jointly intervened on or not at all, then there
exists a causal graph in whichCi andCj cannot be uniquely
identified from observations X and intervention targets I .

We provide an example of such a graph in Figure 3, where
a ball can move in two dimensions, x and y. If both x and
y follow a Gaussian distribution with stationary variances
over time, then any two orthogonal axes can describe the
distribution equally well (Belouchrani et al., 1997; Hyvari-
nen & Morioka, 2017), making it impossible to uniquely
identify them without interventions. Similarly, if we only
observe joint interventions on x, y together, we cannot iden-
tify them either due to the same reasoning. We include the
proof for this proposition in Appendix B.6.

Additionally, in TRIS where the latent causal factors may
correspond to multidimensional vectors, we cannot even
completely reconstruct said factors, when by the nature of
the system the provided interventions leave some of the
causal factor’s dimensions unaffected. In the next section,
we will instead introduce the concept of minimal causal
variables to characterize what we can identify instead.

3.3. Minimal Causal Variables

To visualize this scenario, consider again the example in
Figure 3 with a ball in one of two boxes. Over time, the
ball can move freely within the box it is currently in, but it
can only jump into another box if there is an intervention.
The intervention moves the ball to the other box, but keeps
the relative position of the ball within the box intact. While
one could define this process by a single causal variable x
over time, it can also be described by two causal variables:
the relative position within the box x′ and the current box b.
Since only b is affected by the intervention, and we consider
causal factors to potentially be multidimensional, we could
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not identify which causal factor x′ belongs to.

We formalize this intuition as follows. Suppose for each
causal factor Ci ∈ DMi , there exists an invertible map
si : DMi

i → Dvar
i ×Dinv

i that splits the domain DMi of Ci
into a part that is variant and a part that is invariant under
intervention. We denote the two parts of this map as

si(C
t
i ) = (svari (Cti ), s

inv
i (Cti )) (1)

The split s must be invertible, so that we can map back and
forth between DMi

i and Dvar
i × Dvar

i without losing infor-
mation. Furthermore, to be called a split in this setup, s
must satisfy sinvi (Cti ) ⊥⊥ Iti | pa(Cti ), i.e., sinvi (Cti ) is in-
dependent of the intervention variable Iti given the parents
of Cti . Also, both parts of the split must be conditionally
independent, i.e. sinvi (Cti ) ⊥⊥ svari (Cti ) | pa(Cti ), I

t
i . This

means that svari (Cti ) will contain the manipulable, or vari-
able, part of Cti . In contrast, sinvi (Cti ) is the invariable part
of Cti which is independent of the intervention.

For any causal variable, there may exist multiple possible
splits. There is always at least the trivial split where Dvar

i =
DMi
i is the original domain of Ci, and Dinv

i = {0} is the
one-element set (no invariant information). But not all splits
are trivial: For the example in Figure 3, we can split the
causal factor x in svar(x) such that the box identifier b is in
svar(x) and the relative position in the box x′ is in sinv(x).

Intuitively, we want to identify the split where svari contains
only the manipulable information:

Definition 3.2. The minimal causal split of a vari-
able Cti with respect to its intervention variable Iti is
the split si which maximizes the information content
H(sinvi (Cti )|pa(Cti )). Under this split, svari (Cti ) is defined
as the minimal causal variable and denoted by svar

∗

i (Cti ).

Here H denotes the entropy in the discrete case, or the limit-
ing density of discrete points (LDDP) (Jaynes, 1957; 1968)
which measures information content of a continuous vari-
able and is invariant under the change of variables induced
by the map s. Intuitively, this ensures that only the informa-
tion which truly depends on the intervention is represented
in svari (Ci). The definition of the minimal causal split de-
pends on the characteristics of the provided intervention.
In our previous example, when an intervention on x would
also change the internal box position, the minimal causal
variable would contain the full causal factor x. Our goal be-
comes to identify these minimal causal variables.

Depending on the interventions, the causal graph among the
minimal causal graph may differ from the original graph on
C1, ..., CK . If the interventions are soft, the minimal causal
variable, svari (Ci), has as parents the subset of pa(Ci),
whose relation to Ci is influenced by the intervention. For
instance, consider a three-dimensional causal variable, of
which each dimension has a different set of parents. If an

intervention only affects the first dimension, svari (Ci) has
the same parents as the first dimension, and sinvi (Ci) the
same parents as the last two dimensions. For perfect inter-
ventions, the intervention-invariant part, sinvi (Ci), has no
parents since all temporal dependencies are influenced by
the intervention. Thus, in this case, the parents of svari (Ci)
are the same as of the true causal variable, pa(Ci).

3.4. Learning Minimal Causal Variables

As a practical example of TRIS, we consider a dataset D
of tuples {xt, xt+1, It+1} where xt, xt+1 ∈ RN represent
the observations at time step t and t + 1 respectively, and
It+1 describes the targets of the interventions performed on
Ct+1. To learn a causal representation, we consider a latent
space Z larger than the latent causal factor space C, i.e.
Z ⊆ RM ,M ≥ dim(E) +∑K

i=1Mi = dim(E) + dim(C).
In this latent space, we aim to disentangle the causal factors.
Since we may not know the exact dimensions M1, ...,MK ,
we overestimate its size in the latent space Z .

Our goal is to approximate the inverse of the observation
function h by learning two components. First, we learn
an invertible mapping from observations to latent space,
gθ : X → Z . Second, we learn an assignment function
ψ : J1..MK → J0..KK that maps each dimension of Z to
a causal factor. Learning a flexible assignment function ψ
allows us to allocate any dimension size per causal factor
without knowing the individual causal factor dimensions
M1, ...,MK in advance. Further, it also benefits the opti-
mization process, since some variables like circular angles
or categorical factors with many categories can have simpler
distributions when modelled in more dimensions, which we
verify empirically in Section 6.2. In addition to theK causal
factors, we use ψ(j) = 0, j ∈ J1..MK to indicate that the
latent dimension zj does not belong to any minimal causal
variable. Instead, those dimensions might model sinvi (Ci)
for some causal factor Ci or the observation noise Eto. Fi-
nally, we denote the set of latent variables that ψ assigns to
the causal factor Ci with zψi

= {zj |j ∈ J1..MK, ψ(j) = i}.

To enforce a disentanglement of causal factors, we model
a prior distribution in latent space, pϕ(zt+1|zt, It+1), with
zt, zt+1 ∈ Z , zt = gθ(x

t), zt+1 = gθ(x
t+1). This transi-

tion prior enforces a disentanglement by conditioning each
latent variable on exactly one of the intervention targets:

pϕ
(
zt+1|zt, It+1

)
=

K∏

i=0

pϕ

(
zt+1
ψi

|zt, It+1
i

)
(2)

where It+1
0 = 0. Then, the objective of the model is to

maximize the likelihood:

pϕ,θ(x
t+1|xt, It+1) =

∣∣∣∂gθ(x
t+1)

∂xt+1

∣∣∣ pϕ(zt+1|zt, It+1) (3)

Under the assumptions stated in Section 3.1, we can prove
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the following identifiability result for this setup:

Theorem 3.3. Suppose that ϕ∗, θ∗ and ψ∗ are the pa-
rameters that, under the constraint of maximizing the
likelihood pϕ,θ(xt+1|xt, It+1), maximize the information
content of pϕ(zt+1

ψ0
|zt). Then, with sufficient latent di-

mensions, the model ϕ∗, θ∗, ψ∗ learns a latent structure
where zt+1

ψi
models the minimal causal variable of Ci if

Ct+1
i ̸⊥⊥ It+1

i |Ct, It+1
j for any i ̸= j. All remaining infor-

mation is modeled in zψ0
.

We provide the proof for this statement in Appendix B,
which relies on It+1

i not being a deterministic function of
any other intervention target. A sufficient condition for
this is the interventions being independent of each other, or
single-target interventions with observational data. Finding
the minimal variables intuitively means that the latent vari-
ables zψi

model only the information of Ci which strictly
depends on the intervention target It+1

i , thus defining causal
variables by their intervention dependency. Going back to
the example of the x position of the ball in Figure 3, we
would model the box identifier in zψ1 if C1 = x, while the
internal box position is modeled in zψ0 . We empirically
verify the learned split for this example in Appendix D.3.
Nonetheless, one can always ensure that for any definition of
the causal process, zψi

only contains information of causal
variable Ci of that process, and no other causal variable.

4. Causal Identifiability from Temporal
Intervened Sequences

To identify causal factors from high-dimensional tem-
poral observations with interventions, we propose CIT-
RIS (Causal Identifiability from Temporal Intervened Se-
quences). Below, we discuss its architecture and variants.

4.1. Variational Autoencoder Setup

Inspired by several previous works (Higgins et al., 2017;
Locatello et al., 2020a; Träuble et al., 2021), we implement
the framework of Section 3.4 by learning a variational au-
toencoder (VAE) (Kingma & Welling, 2014), visualized in
Figure 4. The encoder qθ and decoder pθ approximate the
invertible mapping gθ from observations to latent space, and
pϕ
(
zt+1|zt, It+1

)
is the transition prior on the latent vari-

ables. In this VAE setup, the objective of the model be-
comes the Evidence Lower Bound (ELBO):

LELBO = −Ezt+1

[
log pθ

(
xt+1|zt+1

)]
+

Ezt,ψ

[
K∑

i=0

DKL

(
qθ(z

t+1
ψi

|xt+1)||pϕ(zt+1
ψi

|zt, It+1
i )

)] (4)

The KL divergence uses the prior definition of Equation (2).
This ensures that, conditioned on the previous time step and
the interventions, the different blocks of latent variables are

independent. Thereby, the assignment function of latent to
causal variables, ψ, is learned via a Gumbel-Softmax distri-
bution (Jang et al., 2017) per latent variable. Hence, during
training, we sample a latent-to-causal variable assignment
from these distributions, while for inference, we can use the
argmax to obtain a unique assignment. To encourage infor-
mation independent of any intervention to be modeled in
zψ0 , we weight the KL divergence of zψ0 with 1− λ, where
λ > 0 is a hyperparameter (usually λ = 0.01).

The prior pϕ for each set of latents zt+1
ψi

is implemented by
an autoregressive model. For each set of latents zt+1

ψi
, the

model takes zt, It+1
i and zt+1 as input, where we sample

from ψ and mask the dimensions of zt+1 for which ψ(j) ̸=
i. From this input, the model predicts one Gaussian per
latent variable. The autoregressive nature of the prior allows
complex distributions over the multiple latent dimensions,
while still being independent across causal variables.

Target Classifier Since a causal variable Ci is independent
of any other target variable when conditioned on Ii, we can
use those independence relations to guide the disentangle-
ment in latent space. For this, we propose a target classifier,
which is an additional small network trained to predict the
intervention targets from the latent variables over time, i.e.
modeling p(It+1|zt, zt+1

ψi
) for i ∈ J0..KK. To guide the dis-

entanglement, we take the gradients of the same objective
with respect to zt, zt+1

ψi
and ψ, but only for It+1

i . In other
words, we explicitly train zt+1

ψi
having a higher mutual in-

formation with the intervention target It+1
i of its intended

causal variable Ci. For all other targets It+1
j , we change

the label to the conditional distribution p(Ij |Ii), since It+1
j

should not be fully identifiable by any other set of latents
except zt+1

ψj
. This way, the target classifier ensures that in-

formation about all causal variables is encoded in the la-
tent space, while also guiding the disentanglement in latent
space. We provide further details in Appendix C.3.3, and
empirically verify its benefits in Section 6.2.

4.2. Using Pretrained Autoencoders

Despite the improved optimization process by the addition
of the target classifiers, VAEs can still struggle to model
high-dimensional complex images, especially when small
details in the image are relevant. To overcome this issue,
we propose an adaptation of CITRIS to pretrained autoen-
coders. In this setting, the invertible map gθ is implemented
by a deep autoencoder, which is trained to encode and de-
code the high-dimensional observations to low-dimensional
feature vectors, independently of any disentanglement. Dur-
ing training, we add small Gaussian noise to the latents to
prevent the latent distribution from collapsing to single delta
peaks. However, we do not enforce a certain prior like in a
VAE, hence allowing complex marginal distributions.
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Causal Identifiability from Temporal Sequences with Interventions

4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i
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3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It} where
xt, xt+1 represent the observations at time step t and t + 1
respectively, and It 2 [0, 1]K is a binary vector where It

i de-
notes whether the causal variable Ci has been intervened on
or not during the transition from xt to xt+1. We aim to learn
an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(z

t+1|zt, It) with zt, zt+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:
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where  i = {j 2 {1, ..., M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ..., M} ! {0, ..., K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(x

t+1)|g✓(xt), It), maximize the entropy of
p�(z

t+1
 0

|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0

.

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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 (i) is thereby a learnable assignment function which
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the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It) for all elements in
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Section 2.1, we show the following:
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Ci, and all other information is stored in z 0
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We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]
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• K - number of causal factors
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3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It} where
xt, xt+1 represent the observations at time step t and t + 1
respectively, and It 2 [0, 1]K is a binary vector where It

i de-
notes whether the causal variable Ci has been intervened on
or not during the transition from xt to xt+1. We aim to learn
an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(z

t+1|zt, It) with zt, zt+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:
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where  i = {j 2 {1, ..., M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ..., M} ! {0, ..., K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(x

t+1)|g✓(xt), It), maximize the entropy of
p�(z
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|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0

.

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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where  i = {j 2 {1, ..., M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ..., M} ! {0, ..., K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
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|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0
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We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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{Ct
1, C

t
2, ..., C

t
K}T

t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
o(Ct

1, C
t
2, ..., C

t
K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t� 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It

j |Ct�1
1 , ..., Ct�1

K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.

[

\

�

�

�

Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(z

t+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(z
t+1|zt, It+1) =

KY

i=0

p�
�
zt+1
 i

|zt, It+1
i

�
(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:

Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify
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t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
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K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct
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2, ..., C
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K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t� 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It

j |Ct�1
1 , ..., Ct�1

K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.
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Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(z

t+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(z
t+1|zt, It+1) =

KY

i=0

p�
�
zt+1
 i

|zt, It+1
i

�
(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:

Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify
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t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
o(Ct

1, C
t
2, ..., C

t
K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t� 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It

j |Ct�1
1 , ..., Ct�1

K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.
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Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(z

t+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(z
t+1|zt, It+1) =

KY

i=0

p�
�
zt+1
 i

|zt, It+1
i

�
(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:

Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify
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4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i

• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It} where
xt, xt+1 represent the observations at time step t and t + 1
respectively, and It 2 [0, 1]K is a binary vector where It

i de-
notes whether the causal variable Ci has been intervened on
or not during the transition from xt to xt+1. We aim to learn
an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(z

t+1|zt, It) with zt, zt+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:

p�(z
t+1|zt, It) =

KY

i=1

p�
�
zt+1
 i

|zt, It
i

�
(1)

where  i = {j 2 {1, ..., M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ..., M} ! {0, ..., K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(x

t+1)|g✓(xt), It), maximize the entropy of
p�(z

t+1
 0

|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0

.

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i

• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It} where
xt, xt+1 represent the observations at time step t and t + 1
respectively, and It 2 [0, 1]K is a binary vector where It

i de-
notes whether the causal variable Ci has been intervened on
or not during the transition from xt to xt+1. We aim to learn
an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(z

t+1|zt, It) with zt, zt+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:
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t+1|zt, It) =
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where  i = {j 2 {1, ..., M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ..., M} ! {0, ..., K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(x

t+1)|g✓(xt), It), maximize the entropy of
p�(z

t+1
 0

|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0

.

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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{Ct
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2, ..., C
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t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
o(Ct

1, C
t
2, ..., C

t
K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t� 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It

j |Ct�1
1 , ..., Ct�1

K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.
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Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(z

t+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(z
t+1|zt, It+1) =

KY

i=0

p�
�
zt+1
 i

|zt, It+1
i

�
(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:

Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify
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t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
o(Ct

1, C
t
2, ..., C

t
K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t� 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It

j |Ct�1
1 , ..., Ct�1

K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.

[

\

�

�

�

Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(z

t+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(z
t+1|zt, It+1) =

KY

i=0

p�
�
zt+1
 i

|zt, It+1
i

�
(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(x

t+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:

Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify

Figure 4. Comparing the VAE and AE+NF setup of CITRIS. Left: In the VAE, the encoder and decoder provide an approximate invertible
mapping. The transition prior promotes disentanglement in the latent space by conditioning each latent variable on only one intervention
target. Right: The Normalizing Flow setup uses a pretrained autoencoder, which remains frozen during training. The flow learns to map
the autoencoder latents to a new space, that promotes the disentanglement similar to the VAE. The decoder is not needed during training.

In a second step, after the autoencoder converged, we freeze
its parameters and learn a normalizing flow (Rezende & Mo-
hamed, 2015) that maps the entangled latent representation
to a disentangled version. The invertibility of the normaliz-
ing flow ensures that no information is lost when mapping
from the entangled to the disentangled latent space, and thus
we can use the pretrained decoder to reconstruct the obser-
vations without requiring any fine-tuning. Compared to the
VAE setup in Section 4.1, we replace the encoder by a suc-
cessive application of the frozen encoder and a normalizing
flow on the encoded latents, shown in Figure 4. Besides that,
we deploy the same setup, using both the transition prior
structure and target classifier.

Compared to the VAE setup, this approach has three main
benefits. First, the autoencoder can be trained on observa-
tional data alone, potentially reducing the amount of inter-
ventional data required. Second, learning a separate autoen-
coder provides an opportunity for generalizing causal factors
beyond the known dataset. For instance, one could train an
autoencoder on two datasets, where only one has interven-
tions, e.g. synthetic and real-world data. Then, since the au-
toencoder uses a joint latent space for both datasets, training
the normalizing flow on only the dataset with interventions
can lead to a disentanglement function that generalizes to the
purely observational dataset. We verify the viability of this
approach in a restricted setting in Section 6.2, which opens
up great potential to practical applications. Finally, the setup
is easier to optimize since the autoencoder can compress the
information in an almost unrestricted latent space, while the
normalizing flow solely focuses on disentanglement.

5. Related Work
Identifying independent factors of variations from data is a
well-studied field in machine learning (Higgins et al., 2017;
Klindt et al., 2021; Kumar et al., 2018; Locatello et al.,
2019; 2020a;b; Reed et al., 2014). One of the first lines of

work is Independent Component Analysis (ICA) (Comon,
1994; Hyvärinen et al., 2001). ICA tries to recover indepen-
dent latent variables that were transformed by some invert-
ible transformation. Although not generally possible in the
non-linear case (Hyvärinen & Pajunen, 1999), ICA was re-
cently extended to this setting by exploiting auxiliary vari-
ables under which the latents become conditionally mutu-
ally independent (Hyvärinen & Morioka, 2016; Hyvärinen
et al., 2019). Several follow-up works extended this work to
deep learning architectures like VAEs (Khemakhem et al.,
2020a;b; Sorrenson et al., 2020; Zimmermann et al., 2021).
Recent works draw a connection between causality and ICA
(Gresele et al., 2021; Monti et al., 2019). In particular,
Lachapelle et al. (2022); Yao et al. (2022) discuss identifi-
ability from temporal sequences and bring it into context
to causality. While Lachapelle et al. (2022) can model in-
terventions as external actions, Yao et al. (2022) can model
soft interventions through their non-stationary noise. On
the other hand, they do not exploit the knowledge of the in-
tervention targets as we do and therefore require additional
assumptions in terms of sufficient variation. Moreover, both
of these works require scalar causal variables, while CIT-
RIS generalizes to multidimensional causal factors.

A second, related line of work is causal representation learn-
ing (Schölkopf et al., 2021), which aims at discovering
causal structures and variables from data. For instance, Lo-
catello et al. (2020a) showed that one can identify indepen-
dent latent causal factors from pairs of observations that
only differ in k causal factors. Yang et al. (2021) propose
a VAE that integrates a structural causal model in its prior,
but requires the true causal variables as labels during train-
ing. von Kügelgen et al. (2021) demonstrated that common
contrastive learning methods can block-identify the causal
variables that remain unchanged under augmentations. CIT-
RIS similarly identifies multidimensional causal factors as a
block, and, furthermore, disentangles individual causal fac-
tors by grouping the latent space.
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Figure 5. The temporal causal graph among the 7 dimensions of
variation. The graph structure covers a wide range of scenarios,
such as confounders, chains, and up to 4 parents per variable.

6. Experiments
We evaluate CITRIS on two video datasets, and compare it
to common disentanglement methods. We include further
details for reproducibility in Appendix C, and make our
code publicly available.1

6.1. Experimental Setup

Temporal Causal3DIdent We evaluate CITRIS on an
adapted, temporal version of the Causal3DIdent identifia-
bility benchmark (von Kügelgen et al., 2021; Zimmermann
et al., 2021). The dataset consists of 3D renderings of ob-
jects, for which we consider seven different causal factors:
the object position as multidimensional vector [x, y, z] ∈
[−2, 2]3; the object rotation with two dimensions [α, β] ∈
[0, 2π)2; the hue of the object, background and spotlight
in [0, 2π); the spotlight’s rotation in [0, 2π); and the object
shape (categorical with seven values). The relations among
those variables are shown in Figure 5. Each continuous vari-
able follows a Gaussian distribution over time, where the
mean is a (non-linear) function of the parents. Overall, this
causes strong dependencies among the variables. We per-
form perfect interventions with Iti ∼ Bernoulli(0.1), ensur-
ing the minimal causal variables to be the true factors. Ex-
periments with confounded interventions are included in
Appendix D.1 with similar results. Further details on this
dataset are summarized in Appendix C.1.

Interventional Pong As a second benchmark, we adapt the
popular Atari game Pong (Bellemare et al., 2013), in which
we define 5 causal factors: the x, y position of the ball, the
y-positions of the two paddles, and the velocity direction
of the ball (angle in [0, 2π)). Further, we add the score as
a sixth causal factor, which is part of the game’s dynamics.
However, we do not provide any interventions on it. Hence,
in CITRIS, this information should be modeled in zψ0

. The
temporal dependencies follow the dynamics of Pong, where
the ball can collide with the paddles and walls, and the
two paddles move towards the ball to hit it. We provide
single-target interventions for the variables. For the paddles,
the imperfect interventions override the policy and take a

1https://github.com/phlippe/CITRIS

Figure 6. Examples of Interventional Pong. The score represents
a causal factor on which we do not have any interventions. The
velocity of the ball is encoded in a 4th channel, not visualized here.

random action (up/down), while keeping a smooth motion.
For the causal factors of the ball, we uniformly sample a new
value when intervened, causing a possible jump. Example
frames of the environment are shown in Figure 6.

Baselines We compare CITRIS to SlowVAE (Klindt et al.,
2021), a state-of-the-art disentanglement method for tem-
poral sequences. Notably, SlowVAE assumes that the fac-
tors of variation are independent. As we show, this assump-
tion, which often cannot be met in more complex settings
like Temporal Causal3DIdent, has detrimental effects on
modelling, underlining the importance of modelling the cor-
relations between causal variables. The second baseline
we consider is iVAE (Khemakhem et al., 2020a), a VAE
model which conditions its components on additional ob-
served variables u. In our setup, u corresponds to the pre-
vious time step observation xt and the intervention targets
It+1. As we aim to find a mapping from image to a causal
space, which is independent of those factors, we must adapt
iVAE to only condition its prior on u. We refer to this model
variant as iVAE∗. With this change, the main difference be-
tween iVAE∗ and CITRIS becomes the structure of the prior
p(zt+1|zt, It+1), showcasing the significance of CITRIS’s
identifiability guarantees in this setup. Hyperparameter de-
tails are listed in Appendix C, and the code is provided in
the supplementary material.

Correlation Metrics Following common practice, we re-
port the correlation of the learned latent variables to the
ground truth causal factors. Since in our setup, multiple la-
tent variables can jointly describe a single causal variable,
we first learn a mapping between such, e.g., with an MLP.
For CITRIS, we apply one MLP per set of latent variables
that are assigned to the same causal factor by ψ. The MLP
is then trained to predict all causal factors per set of latents,
on which we measure the correlation. Thereby, no gradients
are propagated through the model. iVAE∗ and SlowVAE do
not learn an assignment of latent to causal factors. As an al-
ternative, we assign each latent dimension to the causal fac-
tor it has the highest correlation with. Although this gives
the baselines a considerable advantage, it shows whether
CITRIS can improve upon the baselines beyond finding a
good latent to causal factor assignment. We report both
the R2 coefficient of determination (Wright, 1921) and the
Spearman’s rank correlation coefficient (Spearman, 1904)

https://github.com/phlippe/CITRIS
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Table 1. Results on the Temporal-Causal3DIdent dataset. All triplet distances have a distance at random of 1 and optimum of 0. Oracle
represents the accuracy of a CNN trained supervised to predict the causal factors from images, hence constituting a lower error limit. In
the correlation metrics, diag refers to the average score of the predicted causal factor to its true value (optimal 1), and sep for the average
of the maximum correlation per predicted causal variable besides its true factor (optimal 0). Standard deviations over 3 seeds shown in
Appendix C.1. CITRIS is able to disentangle the causal factors well, and CITRIS-NF even accurately models all 7 shapes.

Triplet evaluation distances ↓ Correlation metrics

pos x pos y pos z rot α rot β rot s hue s hue b hue o obj s Mean R2 diag ↑ R2 sep ↓ Spearman diag ↑ Spearman sep ↓
Temporal-Causal3DIdent Teapot

Oracle 0.02 0.02 0.02 0.02 0.03 0.01 0.02 0.01 0.02 - 0.02 - - - -

SlowVAE 0.13 0.10 0.12 0.50 0.59 0.22 0.64 0.21 0.17 - 0.30 0.65 0.20 0.62 0.27
iVAE∗ - 9dim 0.11 0.09 0.12 0.70 0.76 0.06 0.67 0.02 0.12 - 0.30 0.65 0.11 0.65 0.13
iVAE∗ - 32dim 0.04 0.03 0.04 0.25 0.31 0.03 0.58 0.02 0.05 - 0.15 0.78 0.21 0.77 0.17

CITRIS-VAE 0.05 0.04 0.05 0.10 0.20 0.03 0.08 0.02 0.05 - 0.07 0.96 0.02 0.95 0.04
- No target classifier 0.05 0.04 0.05 0.62 0.66 0.19 0.04 0.02 0.17 - 0.20 0.79 0.15 0.76 0.12
CITRIS-NF 0.04 0.03 0.04 0.06 0.10 0.03 0.04 0.01 0.04 - 0.04 0.98 0.01 0.97 0.05

Temporal-Causal3DIdent 7-shapes
Oracle 0.08 0.06 0.08 0.06 0.09 0.04 0.04 0.01 0.04 0.00 0.05 - - - -

SlowVAE 0.44 0.25 0.41 0.69 0.75 0.25 0.57 0.10 0.14 0.37 0.40 0.61 0.23 0.59 0.27
iVAE∗ 0.26 0.23 0.34 0.58 0.65 0.10 0.31 0.02 0.09 0.14 0.27 0.80 0.29 0.77 0.28

CITRIS-VAE 0.15 0.13 0.23 0.54 0.71 0.07 0.05 0.02 0.06 0.18 0.21 0.89 0.10 0.88 0.12
CITRIS-NF 0.12 0.08 0.11 0.09 0.14 0.05 0.05 0.02 0.06 0.00 0.07 0.98 0.04 0.97 0.08

of the predicted values against the ground truth causal fac-
tors. However, in our datasets, the causal factors are corre-
lated themselves. This makes it difficult to spot spurious cor-
relations between latents and causal factors. To overcome
this issue, we measure the correlations on a test dataset for
which we sample the causal factors independently.

Triplet Evaluation To also evaluate the decoding part of
the model, we propose another parameter-free evaluation,
triplet evaluation, to reveal complex dependencies between
latent variables. For this, we create triplets of images: the
first two are randomly sampled test images, while the third
one is created based on a random combination of causal
factors of the first two images. For example, in Figure 7, we
take the spotlight rotation and object shape from image 1,
and all other causal factors from image 2. For evaluation, we
then encode the two test images independently, perform the
combination of ground-truth causal factors as done for the
third image in latent space, and use the decoder to generate
a new image, which ideally resembles the ground truth third
image. Since the reconstruction error is not descriptive of
the errors being made, e.g. the rotation in Figure 7, we
train an additional CNN in a supervised manner that maps
images to the causal factors. With this model, we can extract
the causal factors from the generated image, and report the
average distance of these to the ground truth causal factors.

6.2. Temporal Causal3DIdent Experiments

Teapot Experiments The Causal3DIdent benchmark consti-
tutes a challenging dataset due to its various interactions of
causal factors in the high-dimensional observational space.
To slightly simplify the problem, especially for learning
a VAE on the high-dimensional observational space, we
first show experiments on the teapot shape only, Temporal-
Causal3DIdent Teapot. All results are summarized in Ta-

Image 1 Image 2 Ground Truth Prediction

Image 1 Image 2 Ground Truth Prediction

Image 1 Image 2 Ground Truth Prediction

Figure 7. Example triplet evaluations on the Temporal-
Causal3DIdent. In the first row, the ground truth combines the
spotlight rotation and object shape from Image 1 with all other
causal factors from Image 2. The prediction is generated by en-
coding the two images, and performing the same combination of
causal factors in latent space. The shown prediction by CITRIS-
NF only slightly differs in the object rotation. For details on the
other predictions, see Appendix D.1.

ble 1. Both the VAE and Normalizing Flow version of CIT-
RIS considerably outperformed the two baselines and were
able to achieve an average R2 and Spearman correlation
above 0.9, while keeping the correlation between factors low.
Moreover, CITRIS-NF achieves close-to optimal scores on
the triplet evaluation, and especially outperforms the VAE-
based approaches in modeling the rotations. This is because
the autoencoder is able to reconstruct images with negligi-
ble error, while the VAE optimization involves balancing
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Table 2. Results on the Temporal-Causal3DIdent dataset with
CITRIS-NF trained on 5 object shapes. The same metrics as in
Table 1 are reported, with “Spr” being the Spearman correlation
score. The full table is in Appendix D.1. For 2 unseen shapes,
CITRIS-NF can yet disentangle their causal factors well.

CITRIS-NF Triplets ↓ R2 diag ↑ R2 sep ↓ Spr diag ↑ Spr sep ↓
5 seen shapes 0.09 0.98 0.05 0.97 0.10
2 unseen shapes 0.23 0.94 0.15 0.93 0.19

the small difference in output space with its KL divergence
regularization in latent space. Further, an ablation study on
training CITRIS-VAE without the target classifier verifies
that the additional guidance can considerably help in opti-
mization. Finally, in Appendix D.1.4, we show that the orig-
inal causal graph can be found from CITRIS’s latents.

In contrast, the SlowVAE entangles the causal factors due
to their strong correlation over time. The iVAE∗ disentan-
gles the position and the rotation of the spotlight well. How-
ever, the hue of the spotlight was highly entangled since its
appearance differs with different background and object col-
ors. We further report the performance of an iVAE∗ with
equal number of latent dimensions as causal factors. It is
apparent that the smaller latent space is particularly insuffi-
cient for modeling the rotation angles, showing the need for
higher dimensional latent spaces, not only in CITRIS.

7-shapes Experiments We apply all models on the Tempo-
ral Causal3DIdent dataset with all seven shapes (Table 1).
The models have to align the rotation axes and central points
of all shapes, which caused higher triplet distances for rota-
tions across models. While CITRIS-VAE still outperformed
the other baselines, CITRIS-NF significantly improved upon
that, still maintaining a disentanglement similar to the single
shape experiments. This underlines the optimization ben-
efits of using pretrained autoencoders for disentanglement
learning on complex, high-dimensional observations.

Generalization of Causal Representations Since the au-
toencoder is trained on observational data, we evaluate
whether its causal representation can generalize to new, un-
seen settings. For this, we reuse the same autoencoder as
before, but train the Normalizing Flow on an interventional
dataset which excludes any observations from two shapes
(Head and Cow). Afterwards, we test its zero-shot general-
ization to the two unseen shapes (see Table 2). Note that op-
timal performance cannot be achieved here, since the central
point and default rotation of an object cannot be generalized
to other objects. Nonetheless, the results in Table 2 indi-
cate a strong disentanglement among factors, with slight de-
creases in position and rotation due to the forementioned lim-
itations. This shows that the learned disentanglement func-
tion can indeed generalize to unseen instantiations of causal
factors, promising potential for future work on generalizing
causal representations to unseen settings with CITRIS.

Table 3. Results on the Interventional Pong dataset. The same
metrics as in Table 1 are reported, with “Spr” being the Spearman
correlation score. The full table is in Appendix D.2. The results
how that CITRIS can handle imperfect interventions.

Triplets ↓ R2 diag ↑ R2 sep ↓ Spr diag ↑ Spr sep ↓
SlowVAE 0.34 0.61 0.17 0.66 0.23
iVAE∗ 0.09 0.91 0.04 0.92 0.06

CITRIS-VAE 0.03 0.99 0.01 0.99 0.05
CITRIS-NF 0.02 1.00 0.04 1.00 0.10

6.3. Interventional Pong

Finally, we report the disentanglement results of CITRIS on
the Interventional Pong dataset in Table 3. The challenge
of this dataset is its imperfect and correlated interventions,
and the score being an unintervened causal variable. Still,
CITRIS is able to disentangle the factors and also assign the
score variables to its correct set of latents, i.e. zψ0 , showing
that it can indeed handle imperfect interventions. Although
CITRIS-NF obtains a higher correlation among learned la-
tents, it again did not affect its triplet generations. SlowVAE
entangles the two paddles, since they are strongly correlated
by following the same movement policy and having imper-
fect interventions. iVAE∗ showed unstable behavior over
seeds, and entangled the ball position and velocity.

7. Conclusion
We propose CITRIS, a VAE framework for learning causal
representations. CITRIS identifies the minimal causal vari-
ables of a dynamical system from temporal, intervened se-
quences. Furthermore, by using normalizing flows, CITRIS
learns to disentangle the representation of pretrained au-
toencoders. In experiments, CITRIS reliably recovered the
causal factors of 3D rendered images. Moreover, we empiri-
cally showed that CITRIS can generalize to unseen instanti-
ations of causal factors. This promises great potential for fu-
ture work on simulation-to-real generalization research for
causal representation learning. As future work, CITRIS can
be extended to an active learning setup, allowing for more
data-efficient causal identifiability methods in practice. Fur-
ther, future work could consider the setup of robotic simu-
lators (Makoviychuk et al., 2021; Szot et al., 2021), where
interventions are available through sequences of actions.
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A. Reproducibility Statement
To ensure reproducibility, we publish the code for all models used in this paper at https://github.com/phlippe/
CITRIS. Further, we include the code for generating the Interventional Pong dataset and the sequences of the causal factors
in the Temporal-Causal3DIdent dataset. The complete datasets of this paper are released with corresponding licenses, and
links to those datasets are available in the code repository. Moreover, we give a detailed overview of the datasets and more
visual examples in Appendix C.1 and Appendix C.2.

Further, for all experiments of Section 6, we have included a detailed overview of the hyperparameters in C.4 and additional
implementation details of the evaluation metrics and model architecture components in Appendix C.3. All experiments have
been repeated with 3 seeds to obtain stable, reproducible results. We provide an overview of the standard deviations, as well
as additional results in Appendix D.

Finally, all experiments in this paper were performed on a single NVIDIA TitanRTX GPU with a 6-core CPU. The
overall computation time of all experiments together in this paper correspond to approximately 80 GPU days (excluding
hyperparameter search and trials during the research).

B. Proofs
The following section contains the proof for Theorem 3.3. We first give an overview of the notation and additional preliminary
discussions in Appendix B.1. Then, we give an outline of the proof. The remaining sections provide the details of the proof.

Additionally, we provide the proof and more details on Proposition 3.1 in Appendix B.6.

https://github.com/phlippe/CITRIS
https://github.com/phlippe/CITRIS
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B.1. Preliminaries

B.1.1. SUMMARY OF NOTATION

We summarize the notation, which is the same as used for the main paper, as follows:

• We assume K causal factors C1, . . . , CK such that Ci ∈ DMi
i with Mi ≥ 1;

• We can group all causal factors in a single variable C = (C1, . . . , CK) ∈ C, where C is the causal factor space
C = DM1

1 ×DM2
2 × ...×DMK

K ;
• The data is generated by a latent Dynamic Bayesian network with variables (Ct1, C

t
2, ..., C

t
K)Tt=1;

• We assume to know at each time step the binary intervention vector It ∈ {0, 1}K+1 where Iti = 1 refers to an
intervention on the causal factor Ct+1

i . As a special case It0 = 0 for all t;
• For each causal factor Ci, there exists a split svari (Ci), s

inv
i (Ci) such that svari (Ci) represents the variable/manipulable

part of Ci, while sinvi (Ci) represents the invariable part of Ci;
• The minimal causal split is defined as the one which only contains the intervention-dependent information in svari (Ci),

and everything else in sinvi (Ci). This split is denoted by svar
∗

i (Ci) and sinv
∗

i (Ci)
• At each timestep we can access observations xt, xt+1 ∈ X ⊆ RN ;
• E is the space of the noise variables that affect the observation without changing the encoding of the causal factors. For

example, this could be random color shifts in Pong, or brightness shifts in Causal3D, since no causal factor is encoded
in color and brightness in these setups respectively;

• Observation function h : C × E → X , where E is the space of the noise variables;
• Latent vector zt ∈ Z ⊆ RM , where Z is the latent space of dimension M ≥ dim(E) + dim(C);
• Inverse of the observation function in the latent space gθ : X → Z;
• Assignment function from latent dimensions to causal factors ψ : J1..MK → J0..KK;
• Disentanglement function δ∗ : X → C̃ × Ẽ with C̃ = DM̃1 × ...×DM̃K and M̃i being the number of latent dimensions

assigned to causal factor Ci by ψ∗. We denote the output of δ∗ for an observation X as δ∗(X) = (C̃1, C̃2, ..., Ẽ).
Then, δ∗ is a disentanglement function if there exist a set of deterministic functions h0, h1, ..., hK for which, for any
X = h(C,E), hi(C̃i) = Ci for all i ∈ J1..KK, and h0(Ẽ) = E.

• The representation of δ∗ in terms of the learnable function is denoted by g∗θ and ψ∗;
• Latent variables assigned to each causal factor Ci by ψ are denoted as zψi

= {zj |j ∈ J1..MK, ψ(j) = i} =
{gθ(xt)j |j ∈ J1..MK, ψ(j) = i};

• The remaining latent variables that are not assigned to any causal factor are denoted as zψ0 ;

• The goal is to learn for each Ci: pϕ
(
zt+1
ψi

|zt, It+1
i

)
≈ p

(
svari (Ct+1

i )|Ct, It+1
i

)
;

B.1.2. LIMITING DENSITY OF DISCRETE POINTS

In this section, we give a short overview on the difference between differential entropy and the limiting density of discrete
points approach, introduced by Jaynes (1957; 1968). Differential entropy on a continuous random variable X with a
distribution p(X) is defined as:

H(X) = −
∫
p(X) log p(X)dx (5)

While for discrete variables, entropy has the intuitive explanation of an uncertainty measure, or the ’information’ of a variable,
one cannot draw the same relation so easily for continuous variables. This is because differential entropy lacks properties that
would be necessary for that. For one, the entropy can become negative. Secondly, and most importantly for the use case in this
paper, it is not invariant under invertible transformations, i.e. a change of variables. For the example of the random variable
X , the entropy of H(X) does not necessarily equal to H(aX) where a is a constant factor, e.g. a = 2. Thus, it becomes
difficult to use differential entropy as a measure of information content of a continuous variable, like in the discrete case.

One approach that was proposed to overcome these issues is the limiting density of discrete points (LDDP) Jaynes (1957;
1968). It adjusts the definition of differential entropy by introducing an invariant measure m(X), which can be seen as a
reference distribution we measure the entropy of p(X) to. Intuitively, the LDDP adjustment is derived from arguing that
the continuous entropy should be derived by taking the limit of increasingly dense discrete distributions. In the limit of
infinitely many discrete points, one arrives at the entropy for continuous functions, which becomes:

H(X) = −
∫
p(X) log

p(X)

m(X)
dx (6)
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Note that in some formulations, a constant logN is added to this equation, where N is the number of discrete points
considered which goes against infinity in the limit. Since for this paper, we only require to compare two entropy values with
each other and do not require the entropy to take a specific value, we can neglect this constant.

One crucial property of LDDP, which we use in the following proof, is that the entropy stays invariant under a change of
variable. This is achieved by transforming the invariant measure m(X) by the exact same invertible transformation as done
for p(X). Therefore, when coming back to the example of scaling X by a constant factor, both p(X) and m(X) change in
the same way, resulting in H(X) = H(aX).

B.2. Proof Outline

The goal of this section is to proof Theorem 3.3: the global optimum of CITRIS will find the minimal causal variables. We
will take the following steps in the proof:

1. (Appendix B.3) Firstly, we show that the function δ∗ that disentangles the true latent variables C1, ..., CK and assigns
them to the corresponding sets zψ1 , ..., zψK

constitutes a global, but not necessarily unique, optimum for maximizing
the likelihood of Equation (2).

2. (Appendix B.4) Next, we characterize the class of disentanglement functions ∆∗ which all represent a global maximum
of the likelihood, i.e. get the same score as the true disentanglement. In particular, we show that in all optimal
disentanglement functions, each assignment set zψi

contains the variable part of the causal factor svari (Ci), but that it
might contain also the invariable parts of any other causal factor, thus creating multiple optimal solutions. We do this in
two sub-steps:

(a) First, we assume that all intervention targets are independent, i.e. It+1
i ⊥⊥ It+1

j |Ct for any i ̸= j.
(b) Secondly, we extend it to a wider group of intervention settings where interventions might be confounded, and

show that all of them fall in the same class ∆∗.

3. (Appendix B.5) Finally, we derive Theorem 3.3 by showing that the function δ̂ ∈ ∆∗, which maximizes the entropy
of zψ0

, identifies the minimal causal mechanisms, which intuitively represent the parts of the causal factors that are
affected by the available interventions.

Along the way, we will make use of Figure 8 summarizing the temporal causal graph. For the remainder of the proof, we
assume that the prior pϕ

(
zt+1|zt, It+1

)
and the invertible map gθ are sufficiently complex to approximate any possible

function and distribution one might encounter. To simplify the exposition, we also assume that the latent dimension size is
unlimited, i.e. M = ∞, so there are no limitations on how many latent variables zψi

can be used to represent a causal factor
Ci. In practice, however, this is not a limiting factor as long as we can overestimate the dimensions of the causal factors and
noise variables.

Throughout the proof, we will use Ct to refer to the set of all causal factors at time step t, i.e. Ct = {Ct1, ..., CtK}. Similarly,
we define It+1 = {It+1

1 , ..., It+1
K }.

B.3. Step 1: True Disentanglement δ∗ is one of the Global Maxima of the Conditional Likelihood p(Xt+1|Xt, It+1)

We start by proving the following Lemma:

Lemma B.1. The true disentanglement function δ∗ that correctly disentangles the true causal factors Ct+1
1 , ..., Ct+1

K from
observations Xt, Xt+1 using the true ψ∗ assignment function on the true latent variables Zt+1 is one of the global maxima
of the likelihood of p(Xt+1|Xt, It+1).

We are interested in optimizing p(Xt+1|Xt, It+1). We can first try to simplify this equation with the knowledge of the causal
graph in Figure 8, i.e. using the true underlying generative model, since we aim to show that learning the causal factors and
aligning them correspondingly in the prior of Equation (2) represents a global optimum of maximizing p(Xt+1|Xt, It+1).
Using the conditional independence relations of the graph in Figure 8, we write the joint distribution of all the variables in
the true generative model as:

p(Xt, Xt+1, Ct, Ct+1, It+1) = p(Xt+1|Ct+1) ·
[
K∏

i=1

p(Ct+1
i |Ct, It+1

i )

]
· p(Xt|Ct) · p(Ct) · p(It+1) (7)
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Figure 8. An example temporal causal graph in TRIS, with observed variables shown in gray and latent variables in white. A latent causal
factor Ct+1

i has as parents a subset of the causal factors at the previous time step Ct1, . . . , CtK , and its intervention target It+1
i . All causal

variables Ct+1 and the noise Et+1 cause the observation Xt+1. Rt+1 is a latent confounder between the intervention targets, but is not
strictly necessary (i.e. Rt+1 may also be constant). The goal is to identify the causal factors C1, ..., CK .

We can now condition on Xt and It+1, marginalize out Ct and Ct+1 and write the conditional likelihood as:

p(Xt+1|Xt, It+1) =

∫

Ct+1

∫

Ct

p(Xt+1|Ct+1) ·
[
K∏

i=1

p(Ct+1
i |Ct, It+1

i )

]
· p(Ct|Xt)dCtdCt+1 (8)

In our assumptions of Section 3.1, we have defined the observation function h to be bijective, meaning that there exists an
inverse f that can identify the causal factors Ct and noise variable Eto from Xt. Thus, we can write p(Ct|Xt) = δf(Xt)=Ct ,
where δ is a Dirac delta. Since the noise on the observations, Eto, is said to be independent of Xt+1 and Ct+1, we can
remove it from being in the conditioning set. This leads us to:

p(Xt+1|Xt, It+1) =

∫

Ct+1

[
K∏

i=1

p(Ct+1
i |Ct, It+1

i )

]
· p(Xt+1|Ct+1)dCt+1 (9)

Since we have assumed h to be bijective, we know that for each Xt+1, there exist only one combination of Ct+1 and Et+1
o .

Thus, by using the change of variables formula, we can rewrite the equation above by:

p(Xt+1|Xt, It+1) = |Jh|−1 ·
[
K∏

i=1

p(Ct+1
i |Ct, It+1

i )

]
· p(Et+1

o ) (10)

where Jh =
∂h(Ct+1,Et+1

o )

∂Ct+1∂Et+1
o

denotes the Jacobian of the bijective/invertible observation function h. Equation (10) constitutes
a global optimum of the maximum likelihood, since it represents the true underlying dynamics.

We relate this conditional likelihood to the prior setup of CITRIS. We show that assigning Ct+1
i to zt+1

ψi
, i.e., learning the

true assignment function ψ∗, provides us with the same maximum likelihood solution as in Equation (10). We have defined
our objective in Section 3 in Equation (2) as:

pϕ
(
zt+1|zt, It+1

)
=

K∏

i=0

pϕ

(
zt+1
ψi

|zt, It+1
i

)
(11)
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Since we know that g∗θ is an invertible function between X and Z , we know that zt must include all information of Xt.
Thus, we can also replace it with zt = [Ct, Eto], giving us:

pϕ
(
zt+1|Ct, Eto, It+1

)
=

K∏

i=0

pϕ

(
zt+1
ψi

|Ct, Eto, It+1
i

)
(12)

The optimal assignment function ψ∗ assigns sufficient dimensions to each causal factor C1, ..., CK . Since Z can have a
larger space than E × C, but E × C is sufficient to describe X , we know that the remaining dimensions of Z do not contain
any information. Thus, the assignment function ψ∗ can map them to any causal factor without a change in distribution.
Using this assignment function, we now consider zt+1

ψ∗
i

= Ct+1
i for i = 1, ...,K. Then, Equation (12) becomes:

pϕ
(
zt+1|Ct, Eto, It+1

)
=

[
K∏

i=1

pϕ

(
zt+1
ψ∗

i
= Ct+1

i |Ct, It+1
i

)]
· p(zt+1

ψ∗
0
|Ct, Eto) (13)

where we remove Eto from the conditioning set for the causal factors, since know that Ct+1 and Et+1
o is independent of Eto.

We further simplify by noting that zt+1
ψ∗

0
= Et+1

o is independent of any other factor.

pϕ
(
zt+1|Ct, Eto, It+1

)
=

[
K∏

i=1

pϕ

(
zt+1
ψ∗

i
= Ct+1

i |Ct, It+1
i

)]
· p(zt+1

ψ∗
0

= Et+1
o ) (14)

Finally, by using g∗θ , we can replace the distribution on zt+1 by a distribution on Xt+1 by the change of variables formula:

pϕ
(
Xt+1|Ct, Eto, It+1

)
=

∣∣∣∣
∂g∗θ(z

t+1)

∂zt+1

∣∣∣∣ ·
[
K∏

i=1

pϕ

(
zt+1
ψ∗

i
= Ct+1

i |Ct, It+1
i

)]
· p(zt+1

ψ∗
0

= Et+1
o ) (15)

Thereby, it is apparent that g∗θ is equal to h−1, since both are identical invertible functions between the same spaces (Z
becomes E × C here). Hence, Equation (15) represents the exact same distribution as Equation (10). Therefore, we have
shown that the function δ∗ that disentangles the true latent variables C1, ..., CK and assigns them to the corresponding sets
zψ1

, ..., zψK
constitutes a global, but not necessarily unique, optimum for maximizing the likelihood of Equation (2).

Note that while assigning Ct+1
i to zt+1

ψi
provides us with the same maximum likelihood solution as in Equation (10), this is

not the only possible representation. Additional possible representation will be discussed in Step 2.

B.4. Step 2: Characterizing the Disentanglement Class ∆

Showing that the correct disentanglement constitutes a global optimum is not sufficient for showing that a model trained on
solving the maximum likelihood solution converges to it, since there might potentially be multiple global optima. Hence,
this section discusses the class of causal representation functions δ ∈ ∆∗ which can achieve the same maximum likelihood
optimum as the true causal factor disentanglement discussed in Appendix B.3. For this, we first need to distinguish between
the variable and invariable information of a causal variable Ci, which is introduced in Appendix B.4.1. Next, we will
discuss the causal representation function class ∆ for the setting where interventions are independent, i.e. It+1

i ⊥⊥ It+1
j |Ct

for any i ̸= j, and finally extend it to confounded interventions.

B.4.1. INTERVENTION-INDEPENDENT VARIABLES

Interventions allow us to identify a causal variable by seeing the caused change in its conditional distribution. However,
especially when talking about multidimensional causal variables, one might have interventions that only affect a subset of
the actual causal variable dynamics, while the rest remains independent of the intervention. As we will see later, this can
have an influence on the identifiability result, making the found causal factors intervention-dependent.

We start by considering a single causal factor Ci ∈ DMi
i in the setup of Figure 8 under our previously discussed assumptions.

Suppose for each causal factor Ci ∈ DMi , there exists an invertible map si : DMi
i → Dvar

i × Dinv
i that splits the domain

DMi of Ci into a part that is invariant and a part that is variant under intervention. We denote the two parts of this map as

si(C
t
i ) = (svari (Cti ), s

inv
i (Cti )) (16)
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Figure 9. Splitting the causal variable Ci in its minimal causal split. (a) In the original causal graph, Ct+1
i has Ct (or an eventual subset

of it) and It+1
i as its parents. (b) In the minimal causal split, only the variable part svari (Ct+1

i ) depends on the intervention. The invariable
part, sinvi (Ct+1

i ), is independent of It+1
i , hence giving us an additional conditional independence. Note that svari (Ct+1

i ) and sinvi (Ct+1
i )

are conditionally independent.

x
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0

1
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Figure 10. Example for splitting a causal variable into an intervention-dependent and -independent part. The two ground truth causal
variables are the x and y positions of the ball. See Appendix B.4.1 for details.

The split s must be invertible, so that we can map back and forth between DMi
i and Dvar

i ×Dvar
i without losing information.

Furthermore, to be called a split, s must satisfy sinvi (Cti ) ⊥⊥ Iti | pa(Cti ), i.e., sinvi (Cti ) is independent of the intervention
variable Iti given the parents of Cti . Further, both parts of the split must be conditionally independent, i.e. sinvi (Cti ) ⊥⊥
svari (Cti ) | pa(Cti ), I

t
i . Hence, we can write their distributions as:

p
(
si(C

t+1
i )|Ct, It+1

i

)
= p

(
svari (Ct+1

i )|Ct, It+1
i

)
· p
(
sinvi (Ct+1

i )|Ct
)

(17)

This means that svari (Cti ) will contain the manipulable, or variable, part of Cti . In contrast, sinvi (Cti ) is the invariable part of
Cti which is independent of the intervention. This relation is visualized in Figure 9.

For any causal variable, there may exist multiple possible splits, but there is always at least the trivial split where Dvar
i = DMi

i

is the original domain of Ci, and Dinv
i = {0} is the one-element set (no invariant information). However, there might

also exist splits in which sinvi (Ct+1
i ) ̸= ∅. For instance, in a multidimensional causal variable Ĉ ∈ R3, if an intervention

only affects the first two dimensions while the last one remains unaffected, we obtain the split svar([Ĉ1, Ĉ2]), s
inv(Ĉ3).

Nonetheless, this can even happen for scalar variables, since we do not constraint the possible distributions of Ci. We give
an example for such a case below.

Example 1 Consider the scenario in Figure 10 where we have a ball with its two positional dimensions x and y as its causal
factors. For now, we only focus on its x position (in the remainder of the section, xt refers to the position of the ball on the
x-axis, not the full observation Xt which we denote by a capital letter). Over time, the ball moves within one of the two
boxes, but cannot jump in between boxes. An example of such a conditional could be:

p(xt+1|xt, It+1
x = 0) =

{
min(max(xt + ϵ, 0), 1) if xt < 1

min(max(xt + ϵ, 1), 2) otherwise
(18)

with ϵ ∼ N (0, 0.1). Intuitively, the ball therefore moves randomly around its previous position, while being bounded by the
box it is in. Due to its modular conditional distribution, we can rewrite the causal variable x and its distribution in terms of
two different variables: its position within its current box, u ∈ [0, 1], and a binary variable indicating in which box the ball
is, b ∈ 0, 1 (left/blue vs right/orange in Figure 10). Then, its conditional distribution becomes:

p(xt+1|xt, Itx) = p
(
bt+1|xt, It+1

x

)
· p
(
ut+1|xt, It+1

x

)
(19)



CITRIS: Causal Identifiability from Temporal Intervened Sequences

Now, suppose that an intervention It+1
x changes the box the ball is in, while the relative position keeps evolving as it would

under no intervention, i.e. still depending on its parents. Then, we can yet write its conditional distribution as:

p(xt+1|xt, Itx) = p
(
bt+1|xt, It+1

x

)
· p
(
ut+1|xt

)
(20)

Using the notation above, we therefore can define the split svar(x) = b, sinv(x) = u, where b depends on the intervention,
while u does not. Note that svar(x) = x, sinv(x) = ∅ is yet another valid split in this case.

Example 2 Consider the same example as before, however, now with a different intervention setup. Suppose that an
intervention It+1

x constitutes a perfect intervention on x, under which xt+1 ⊥⊥ xt|It+1
x = 1. Then, the previous split

svar(x) = b, sinv(x) = u is not valid anymore, if the intervention target It+1
x cannot be deterministically deduced from

xt, since an intervention changes the distribution of the relative position ut+1. Hence, the only valid split is svar(x) =
x, sinv(x) = ∅. This shows that the possible space of such splits depends on the available interventions.

Minimal causal variables In the examples above, one can see that for certain situations, a causal variable can have multiple
valid splits svari (Ci), s

inv
i (Ci) since intervention-independent information can be modeled in either svari (Ci) or sinvi (Ci).

The split that will be the most relevant for the identifiability discussion here is the one that assigns only the intervention-
dependent information to svari (Ci), and the rest to sinvi (Ci). We define this as follows:

Definition B.2. The minimal causal split of a variable Cti with respect to its intervention variable Iti is the split si which
maximizes the entropy of H(sinvi (Cti )|pa(Cti )). Under this split, svari (Cti ) is defined as the minimal causal variable and
denoted by svar

∗

i (Cti ).

Additionally, we also define:

Definition B.3. The minimal causal mechanism of a variable Ci with respect to its intervention Ii is defined as the
conditional distribution p

(
svar

∗

i (Cti )|pa(Ct+1
i ), It+1

i

)
.

We refer to p
(
svar

∗

i (Cti )|Ct, It+1
i

)
as minimal causal mechanism, since it is the distribution for which as little as possible

information depends on It+1
i . Hence, the definition of this mechanism depends on the characteristics of the provided

intervention. As we will see later, while we cannot guarantee to find the full causal mechanism, we can yet identify the
minimal causal mechanism.

The existence of a split where sinv(Ci) ̸= ∅ for any causal factor Ci creates additional, possible solutions that obtain the
same maximum likelihood as the true split. This is because sinv(Ci) is independent of the intervention target Ii, allowing it
to be modeled by any set zψj

without losing information. The following subsections further characterize the space of new
solutions with the existence of such splits.

B.4.2. INDEPENDENT INTERVENTIONS

In this section, we show by which class of disentanglement functions ∆ a maximum likelihood solution of the generative
model can be found.

However, to simplify the first steps, we assume that all intervention targets are independent of each other given the causal
factors of the previous time step, i.e. It+1

i ⊥⊥ It+1
j |Ct for any i ̸= j ∈ 1, . . . ,K. By construction, we also assume It+1

0 = 0
for all t. We will extend it afterwards in Appendix B.4.3.

Solutions for sinvi (Ci) = ∅ for all i ∈ J1..KK As a first step, we assume that for all causal factors C1, ..., CK , there does
not exist any minimal causal mechanism split besides sinvi (Ci) being the empty set. Therefore, all of Ci is dependent on
It+1
i . For this case, consider an arbitrary partition of Ci, s0(Ci), s1(Ci), with the same invertibility constraints as svar, sinv

and conditionally independence between s0(Ci), s1(Ci), but with a non-empty invariable part, i.e., s1(Ci) ̸= ∅. For this
partition, the conditional entropy of s1(Ci) given Ct must be strictly lower when conditioning also on It+1

i :

H
(
s1(Ct+1

i )|Ct, It+1
i

)
< H

(
s1(Ct+1

i )|Ct
)

(21)

If the conditional entropy was equal, then s1(Ct+1
i ) would be independent of It+1

i given Ct, which is only true for sinvi (Ci).
Since we assume sinvi (Ci) is empty, while s1(Ct+1

i ) is not, this can never happen. Thus, to model a causal factor Ci where
sinvi (Ci) = ∅, a maximum likelihood solution can only be found if all of svari (Ci) is conditioned on It+1. Further, since in
this setting Ct+1

j ⊥⊥ Ct+1
i |Ct, It+1 for all i, j ∈ J1..KK, i ̸= j, there cannot exist any split across multiple causal factors

that violate the entropy inequality above for It+1
i and It+1

j while still modeling the true conditional distributions.
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Similarly, in this setting under the specified assumptions, the information of It+1
i cannot be determined by any other target

variable It+1
j , i ̸= j, since otherwise, the targets would not be independent. Hence, we can write the following entropy

inequality for any i ̸= j:
H
(
Ct+1
i |Ct, It+1

i

)
< H

(
Ct+1
i |Ct

)
= H

(
Ct+1
i |Ct, It+1

j

)
(22)

Therefore, one can only achieve the maximum likelihood solution (i.e., the minimum entropy solution) if all information of
Ct+1
i is conditioned on It+1

i for i = 1, ...,K in addition to Ct. This implies that each factor pϕ(zt+1
ψi

|zt, It+1
i ) described in

Equation (2) will have p(Ct+1
i |zt, It+1

i ), and therefore zt+1
ψi

= Ct+1
i as its maximum likelihood solution.

Nonetheless, this excludes zψ0
, i.e. the factors independent of any intervention, in this case being the noise Et+1

o . Since it is
independent of any interventions, any distribution of Et+1

o across the different causal factor sets zψ0 , ..., zψK
will achieve

the same likelihood score, as long as the part of Et+1
o across factors is independent. Hence, in conclusion for this scenario,

we can guarantee that zψi
will model all information of Ci and no other causal factor Cj , i ̸= j, but can contain additional

information from Et+1.

Solutions with invariable parts Next, we consider the scenario where there exists a split with sinvi (Ci) ̸= ∅ for some causal
variables in i ∈ J1..KK. For this case, we can write the maximum likelihood solution of Equation (10) as:

p(Xt+1|Xt, It+1) =

∣∣∣∣
∂g∗θ(z

t+1)

∂zt+1

∣∣∣∣ ·
[
K∏

i=1

p(Ct+1
i |It+1

i , Ct)

]
· p(Et+1) (23)

=

∣∣∣∣
∂g∗θ(z

t+1)

∂zt+1

∣∣∣∣ ·
[
K∏

i=1

p(svari (Ct+1
i )|It+1

i , Ct)

]
·
[
K∏

i=1

p(sinvi (Ct+1
i )|Ct)

]
· p(Et+1) (24)

This equation shows that one can assign sinv1 (C1), ..., s
inv
K (CK) to any latent variable set zψ0

, ..., zψK
or split it across, while

achieving the same optimal likelihood, since they are independent of any intervention target. The remaining information
in sinv1 (C1), ..., s

inv
K (CK) thereby acts the same way as the noise variable Et+1. Thus, there exist multiple maximum

likelihood solutions with different splits of information to causal factors.

However, on the other hand, the solution space is yet restricted by the assignment of svari (Ci). In particular, if svari (Ci) cannot
be split further into an invariable/intervention-independent part, we can rely on the same results from the previous setting,
when considering svari (Ci) as new causal variables. In case there exist another split of Ci which would add more information
to sinvi (Ci), this part could not be guaranteed to be matched to the causal factor Ci due to its independence. Hence, in
conclusion here, we can guarantee that zψi will model all information of svar(Ci) and no other causal factor svar(Cj), i ̸= j,
if there does not exist another split of svar(Ci). The additional information of Et+1 as well as sinv(Cj) can be assigned to
any causal variable. In the third step of the proof (Appendix B.5), we discuss how one can yet obtain a unique solution.

B.4.3. CONFOUNDED INTERVENTIONS

In the previous discussion, we have used the assumption that interventions are independent of each other: It+1
i ⊥⊥ It+1

j |Ct.
This assumption was required for showing that conditioning information of Ct+1 on any other target will lead to the same
entropy as having it without a target, i.e. H

(
Ct+1
i |Ct, It+1

j

)
= H

(
Ct+1
i |Ct

)
. In this section, however, we consider a

wider range of interventions. Specifically, we assume that the intervention targets It+1
1 , ..., It+1

K are confounded by some
unobserved variable Rt+1 besides Ct. This allows the modeling of, for example, single-target interventions or groups of
interventions, e.g. It+1 ∈ {[0, 0, 0], [1, 1, 0], [0, 1, 1]} for a three-variable case. Under such a setup, the entropy equation
from before, i.e. H

(
Ct+1
i |Ct, It+1

j

)
̸= H

(
Ct+1
i |Ct

)
, is not valid anymore since It+1

j and It+1
i are not necessarily

independent anymore and hence Ct+1
i ̸⊥⊥ It+1

j can occur for some i, j ∈ J1..KK, i ̸= j.

Despite that, a causal factor Ct+1
i is still independent of any other target It+1

j , i ̸= j, as long as it is conditioned on its true
target and previous time step: Ct+1

i ⊥⊥ It+1
j |Ct, It+1

i . This is because Ct and It+1
i are all the parents of Ct+1

i , as shown
in the causal graph of Figure 8. Further, suppose that there exist information of Ct+1

i which is statistically independent
of the intervention It+1

i , i.e.sinvi (Ci) ̸= ∅. Then, this will also be independent of any other intervention target It+1
j , since

sinvi (Ci) ⊥⊥ It+1
i |Ct, and all paths from Ci to It+1

j include It+1
i . Hence, our discussion of the intervention-independent

parts follow the same logic as in Appendix B.4.2, and we are left with showing that svari (Ci) is modeled by zψi in any
maximum likelihood solution.

For this, we consider a pair of variables Ci, Cj , for which It+1
i ̸⊥⊥ It+1

j |Ct, and show under which circumstances we can
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guarantee that no information of svari (Ci) will be modeled in zψj
. It is sufficient to limit the discussion to pairs of variables,

since one latent variable can be only assigned to a single causal variable, hence to the actual one it belongs to, Ci, or any other
variable Cj here. A crucial insight to the discussion will be that the influence of It+1

j to Ct+1
i solely relies on It+1

i being
correlated to both variables. Further, one requirement is that no additional conditional independence relations exist, such as
svari (Ci) ⊥⊥ It+1

i |It+1
j , Ct, which is covered by our faithfulness assumption. Now, under this setup, we consider three cases:

1. for every time step t, the two variables Ci, Cj have always been intervened on together, i.e. It+1
i = It+1

j for any t;

2. there exist a time step t at which It+1
i = 0, It+1

j = 1;

3. there exist a time step t at which It+1
i = 1, It+1

j = 0.

Note that the only excluded case is when for every time step t, It+1
i = 0, It+1

j = 0. This case refers to not having observed
interventions for any of the two variables, and goes back to Appendix B.4.2, where the variable part of Ci is empty, i.e.
svari (Ci) = ∅. Hence, in that case, svari (Ci) would have no influence on the modeled solution.

In the first case, since the two factors have always been intervened on together, we know that It+1
i = It+1

j for any time step
t. Hence, one can assign the information of svari (Ct+1

i ), svarj (Ct+1
j ), or the union of both to either intervention target It+1

i

or It+1
j , without losing any information. Moreover, if svari (Ct+1

i ) has multiple independent dimensions, i.e. can be written
as a product of multiple, conditionally independent variables, one can even split information of Ci over the two targets. This
shows that in the general case, we cannot disentangle between two variables which have always been intervened on together.
Similarly, if more than 2 variables have always been intervened on together, we cannot disentangle among all those variables.

For the second case, we can deduce that there must be interventions provided for at least the observational case, i.e.
It+1
i = 0, It+1

j = 0, the case where Cj is intervened on but not Ci, i.e. It+1
i = 0, It+1

j = 1, and either the joint intervention
on both Ci, Cj or only interventions on Ci, not Cj . The reason why one of the two latter cases needs to exist is that
if it would not be the case, It+1

i = 0 would be zero for any t. In that case, the minimal causal mechanism of Ci uses
svari (Ci) = ∅, hence making the modeling of svari (Ci) irrelevant for the maximum likelihood solution.

Thus, from these different intervention settings, it is apparent that there cannot exist a deterministic function f with which we
can determine It+1

i from seeing It+1
j . If we observe joint interventions on both variables, then for It+1

j = 1, both It+1
i = 0

and It+1
i = 1 can occur. Similarly, if we observe interventions on Ci when Cj is not intervened on, then both It+1

i = 0
and It+1

i = 1 can occur for It+1
j = 0. If both joint interventions and single interventions on Ci have been observed, we

cannot determine It+1
i from It+1

j at either It+1
j = 0 or It+1

j = 1. Since svari (Ct+1
i ) ⊥⊥ It+1

j |Ct, It+1
i by definition and

svari (Ct+1
i ) ̸⊥⊥ It+1

i |Ct, It+1
j (the latter because It+1

i is not a deterministic function of It+1
j , and therefore the dependence

holds), we can write:

H
(
svari (Ct+1

i )|Ct, It+1
i

)
= H

(
svari (Ct+1

i )|Ct, It+1
i , It+1

j

)
< H

(
svari (Ct+1

i )|Ct, It+1
j

)
(25)

In conclusion, we cannot find the maximum likelihood solution if any information of Ct+1
i , which depends on It+1

i , is
assigned to latent variables zψj

. Hence, the maximum likelihood solution will strictly model svari (Ci) in zψi
.

Finally, in the third case, we can take a similar argument as for the second case. The only difference is that any of the
additional intervention cases (joint or single on Cj), we have that from It+1

j = 0, both It+1
i = 0 and It+1

i = 1 can occur.
Hence, the inequality in Equation (25) is still valid, and we cannot replace It+1

i by It+1
j for any subset of information of

svari (Ci). In summary, the maximum likelihood solution will strictly model svari (Ci) in zψi also for this case.

Therefore, we can summarize the results in the following statement. We can disentangle the intervention-dependent part of
any two variables Ci, Cj , if there does not exist a deterministic function f for which Iti = f(Itj) holds for every time step t.

B.5. Step 3: Deriving the Final Theorem

Now that we have discussed the class of disentanglement functions ∆∗ with their corresponding solutions, we can take
the final step by adding constraints that ensure a unique solution. In all the settings discussed in Appendix B.4.2 and
Appendix B.4.3, the problem is that intervention-independent information can be represented in any of the latent sets
zψ0 , ..., zψK

without affecting the optimal likelihood. However, our main goal in getting a causal representation is that we
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disentangle information from different causal factors, meaning that we want to guarantee that the latents of zψi
will only

model information of the causal factor Ci, and no other causal factor Cj , i ̸= j. Thus, we can do this by collecting all
intervention-independent information in zψ0 . In other words, our ideal solution would be to have the latents of zψi model
svari (Ci) (i = 1, ...,K), and zψ0

to model {sinv1 (C1), ..., s
inv
K (CK)}, where the split svari , sinvi was chosen to maximize the

entropy of p(sinvi (Ct+1
i )|Ct). To find both the right splits and collecting all intervention-independent information in zψ0

,
we thus want to find the representation function δ̂ ∈ ∆∗ which maximizes the entropy of zψ0

while maintaining the optimal
likelihood. If any intervention-independent information would not be modeled in zψ0

, it implies that there must exist another
solution with greater entropy in zψ0 , since all sinv1 (C1), ..., s

inv
K (CK) as well as svar1 (C1), ..., s

var
K (CK) are conditionally

independent of each other (i.e. adding parts to zψ0 cannot reduce the entropy). Further, since we try to maximize the entropy
of zψ0

, we find the information splits svari , sinvi that maximize the entropy of its intervention-independent part. This is the
same split as we had defined as minimal causal mechanisms in Appendix B.4.1. Thus, we can summarize this result as
follows:

Theorem B.4. Suppose that ϕ∗, θ∗ and ψ∗ are the parameters that, under the constraint of maximizing the likelihood
pϕ(gθ(x

t+1)|gθ(xt), It+1), maximize the entropy of pϕ(zt+1
ψ0

|zt, It+1). Then, with sufficient latent dimensions, the model
ϕ∗, θ∗, ψ∗ learns a latent structure where zt+1

ψi
models the minimal causal variable of Ci if Ct+1

i ̸⊥⊥ It+1
i |Ct, It+1

j for any
i ̸= j. All remaining information independent of any interventions is modeled in zψ0 .

The conditional independence Ct+1
i ̸⊥⊥ It+1

i |Ct, It+1
j ensures that there exists no deterministic function f for which

It+1
i = f(It+1

j ). This also includes when It+1
i is constant, i.e., when Ci is intervened all the time or not at all, since then,

Ci becomes independent of It+1
i .

B.6. Non-Identifiability without Interventions

This section discusses Proposition 3.1 and its accompanying proof. Proposition 3.1 states that in TRIS, if two causal factors
Ci and Cj have only been jointly intervened on or not at all, then there exists a causal graph in which Ci and Cj cannot
be uniquely identified from observations X and intervention targets I . In other words, without interventions, it cannot
be guaranteed that for all possible settings, the causal variables can be uniquely identified. A similar situation occurs in
(non-linear) independent component analysis (Hyvärinen et al., 2001; 2019), where the goal is to disentangle and identify
N independent sources/signals from observations in which the signals are entangled. In Hyvärinen et al. (2001, Section
7.5), it is shown that if we have two, independent variables s1, s2 that follow a standard Gaussian distribution N (0, 1),
then any mixing of the two variables with an orthogonal matrix A results in two variables, x1, x2 with x = As, which
yet again follow a standard Gaussian distribution. Thus, from the perspective of the probability density function, the two
representations cannot be distinguished, and hence no unique solution can be found. This also implies that simply from
samples of this distribution, one cannot uniquely identify the true sources.

In TRIS, we do not have two independent variables, but instead variables that have dependencies over time. This corresponds
to the setting described in Hyvärinen et al. (2001, Section 18), Belouchrani et al. (1997), or Hyvarinen & Morioka (2017).
Suppose that we have two variables st1, s

t
2 at a time step t, which follow a Gaussian distribution with constant variance over

time:

st1 ∼ N (µ1(s
t−1
1 , st−1

2 ), σ2), xt2 ∼ N (µ2(s
t−1
1 , st−1

2 ), σ2) (26)

where µ1, µ2 are arbitrary functions on the variables of the previous time step, st−1
1 , st−1

2 . The probability density function
of it is:

p(st1, s
t
2|st−1) =

1√
det(2πΣ)

exp

(
−1

2
(st − µt)TΣ−1(st − µt)

)
(27)

where µt represents the mean based on st−1, and Σ =

[
σ2 0
0 σ2

]
. Now, consider a mixing of the sources by an orthogonal
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matrix A, i.e. xt = Ast. Then, the probability density function of those are:

p(xt1, x
t
2|st−1) =

1√
det(2πATΣA)

exp

(
−1

2
(Ast −Aµt)T (ATΣA)−1(Ast −Aµt)

)
(28)

=
1√

2π det(AT ) det(Σ) det(A)
exp

(
−1

2
(st − µt)TATAΣ−1ATA(st − µt)

)
(29)

=
1√

2π det(Σ)
exp

(
−1

2
(st − µt)TΣ−1(st − µt)

)
(30)

(31)

where ATA = I since AT = A−1 for rotation matrices, and det(A) = 1. This shows that the density functions for the
rotated and original signal are identical. Thus, similar to the time-independent case, we cannot uniquely identify the original
sources.

Coming back to the setting of TRIS, the two sources st−1
1 , st−1

2 can represent two causal variables, C1 and C2, and the
orthogonal matrix A represents a valid observation function h. Hence, the previous conclusion also holds here, meaning
that there exist a setting in which C1 and C2 cannot be uniquely identified from observational data only. This concludes the
proof for Proposition 3.1.
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(a) Teapot (b) Cow (c) Head (d) Horse (e) Armadillo (f) Dragon (g) Hare

Figure 11. An example image for each object shape in the Temporal-Causal3DIdent dataset.

pos x pos y pos z rot α rot β rot s hue s hue b hue o obj s

Figure 12. Visualizing the different factors of variation in the Temporal Causal3DIdent dataset. Each column represents one dimension of
a causal factor, and the different rows show the original image (first row) with only the corresponding causal factor being changed.

C. Experimental Details
In this section, we describe the datasets and hyperparameter used in the experiments of Section 6 in detail. First, we discuss
the two datasets, the Temporal Causal3DIdent dataset (Appendix C.1) and the Interventional Pong dataset (Appendix C.2),
including giving more examples and insights in the underlying dynamics. The datasets will be publicly released upon
publication. In the second part, we discuss the experimental design (Appendix C.3), which includes a closer discussion of the
correlation metrics as well as implementation details of CITRIS. Finally, we give an overview of the used hyperparameters
in Appendix C.4.

C.1. Temporal Causal3DIdent Dataset

The creation of the Temporal Causal3DIdent dataset closely followed the setup of von Kügelgen et al. (2021). We used
the code provided by Zimmermann et al. (2021)2 to render the images via Blender (Blender Online Community, 2021).
We will publish the adapted code for this dataset generation as well as the full datasets used here upon publication with an
accompanying license.

C.1.1. CAUSAL FACTOR DESCRIPTION

To begin with, we give a more detailed description of the 7 causal factors here, and provide examples of varying individual
factors in Figure 12:

• The object position (pos o) is modeled in 3 dimensions (x - depth dimension, y - horizontal, z - vertical). All values are
scaled between -2 as minimum and a maximum of 2, following Zimmermann et al. (2021). For the y and z dimension,
this ensures that the object stays within the frame. For the x dimensions, it ensures that the object does not cover the

2https://github.com/brendel-group/cl-ica

https://github.com/brendel-group/cl-ica
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whole camera image, but also does not become too small in resolution for recognizing rotations and shapes.

• The object rotation (rot o) is modeled in 2 dimensions (α - roll angle, β - pitch angle). All dimensions use circular
values of [0, 2π), meaning that in distributions, we consider values close to 0 and 2π as close as well. The rotation is
restricted to two dimensions to guarantee that every object rotation has a unique value assignment of the angles. This
can be violated when modeling three angles with a value range of [0, 2π).

• The spotlight rotation (rot s) is the positioning of the spotlight as an angle. The value range is [0, 2π), where, similarly
as the object rotation, we consider it to be circular.

• The spotlight hue is the color of the spotlight. The value range is, again, [0, 2π), where 0 corresponds to red. Note that
the color appearance of the spotlight changes with the object and background color, since we only see the combined
reflected color.

• The background hue (hue b) is the color of the background. The value range is [0, 2π) with the same color spectrum
as the spotlight hue.

• The object hue (hue o) is the color of the object, and follows the same setup as the background hue.

• The object shape (obj s) is a categorical variable describing the object shape. For the 7-shape dataset version, we
consider the same object shapes as von Kügelgen et al. (2021): Cow (Crane, 2021), Head (Rusinkiewicz et al., 2021),
Dragon (Curless & Levoy, 1996), Hare (Turk & Levoy, 1994), Armadillo (Krishnamurthy & Levoy, 1996), Horse
(Praun et al., 2000), Teapot (Newell, 1975). An example image for each of the objects is shown in Figure 11.

C.1.2. DATASET GENERATION

The datasets are generated by starting at a random sample of all causal factors. For each next time step, we generate a
sample according to the conditional distributions of each causal factor (see Appendix C.1.3 for details on the distributions).
Additionally, we sample intervention targets It+1

1 , ..., It+1
7 for all 7 causal factors. For the datasets in Section 6, we sample

the targets from It+1
i ∼ Bernoulli(0.1), and show additionally intervention settings on this dataset in Appendix D.1.3.

For each causal factor for which the intervention target is one, we replace its previously sampled value with a new value
randomly sampled from a uniform distribution. For angles and hues, the distribution is U(0, 2π), while for the positions, we
use U(−2, 2). For the object shape, we uniformly sample one out of the seven shapes. After performing the interventions,
the sampled vector of causal factors is used to generate an image of a resolution of 64× 64 using Blender. Note that for
visualization purposes, the depicted images in this section are shown in higher resolution (256× 256). This makes it easier
to recognize the object shapes and their rotations. However, we use a resolution of 64 × 64 in experiments to keep the
computational cost of the experiments in a reasonable range.

Repeating this generation procedure for several steps results in one long sequence, which we use as a dataset. For the
experiments on Temporal-Causal3DIdent Teapot, we generate a sequence of 150,000 images. For the experiments on
Temporal-Causal3DIdent 7-shapes, the chosen dataset size was 250,000 images. The large dataset sizes were chosen to
prevent any sampling bias and focus the experiments on general identifiability. We noticed that smaller dataset sizes such as
50,000 images still gave good scores on the correlation metrics, but a decrease in the triplet evaluation was noticeable for
most causal factors, especially the position and rotation.

C.1.3. TEMPORAL CAUSAL RELATIONS

Below, we define the transition functions used in the causal graph of Temporal Causal3DIdent dataset, as shown in Figure 5
(see Figure 13 for the relations on individual causal dimensions). The chosen function forms are inspired by the ones defined
by von Kügelgen et al. (2021) for the Causal3DIdent dataset.
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pos x pos y pos z rot α rot βrot s hue s hue b hue o obj s

pos x pos y pos z rot α rot βrot s hue s hue b hue o obj s

Figure 13. Causal relations between all dimensions of the causal factors of the Temporal Causal3DIdent dataset. The causal graph of
Figure 5 summarizes pos x, pos y, pos z into pos o and rot α, rot β into rot o. See Appendix C.1.3 for details on the conditional
distributions.

(1) - (2) rot-α (3) pos-x (4) pos-y, hue-b (5) rot-α

(6) pos-y (7) - (8) - (9) - (10) hue-b, obj-s

(11) rot-β (12) - (13) rot-β (14) rot-β (15) -

(16) pos-y, rot-β (17) - (18) - (19) - (20) rot-s

Figure 14. An example sequence with 20 frames in the Temporal Causal3DIdent 7-shapes dataset with higher resolution (from left to
right, top to bottom). The causal variables denoted below each image indicate the variables which were intervened on at this time step.
For instance, when transitioning from the first to the second image, all variables were sampled according to their temporal dependency
except rot-α.

For the position, rotation, and hue values, we sample new values over time with the following functions:

pos xt+1 = f
(
1.5 · sin(rot βt), pos xt, ϵtx

)
(32)

pos yt+1 = f
(
1.5 · sin(rot αt), pos yt, ϵty

)
(33)

pos zt+1 = f
(
1.5 · cos(rot αt), pos zt, ϵtz

)
(34)

rot αt+1 = f
(
hue bt, rot αt, ϵtα

)
(35)

rot βt+1 = f
(
hue ot, rot βt, ϵtβ

)
(36)

rot st+1 = f
(
atan2(pos xt, pos yt), rot st, ϵtrs

)
(37)

hue st+1 = f
(
2π − hue bt, hue st, ϵths

)
(38)

hue bt+1 = hue bt + ϵtb (39)
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Object shape Object hue goal

Teapot 0
Armadillo 1

5 · 2π
Hare avg(hue spot, hue back)
Cow 2

5 · 2π
Dragon π + avg(hue spot, hue back)
Head 3

5 · 2π
Horse 4

5 · 2π

Table 4. The causal relation of the object shape, background hue, and spotlight hue to the object hue goal g with which we determine the
next step as hue ot+1 = f

(
g, hue ot, ϵtho

)
. The angle mean is defined as avg(α, β) = atan2

(
sin(α)+sin(β)

2
, cos(α)+cos(β)

2

)
.
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Figure 15. Overview of the joint marginal distributions of selected variables in the Temporal Causal3DIdent dataset, showcasing the
correlations among variables. The figures show histograms over the two variables, where yellow indicates a high likelihood/frequency,
while dark blue has close to zero samples. (a) The two causal variables pos y and pos z share a common confounder, rot α, which causes
them to follow a circle with radius 1.5. (b) rot α is a parent of pos y, and one can see that the marginal closely follows its functional form
(see Appendix C.1.3). (c) The hue of the background is an ancestor of pos z, with rot α in between the two variables. Yet, the marginal
clearly follows the cosine signal, showing that the correlation goes beyond parents.

where f(a, b, c) = a−b
2 + c, and all ϵ-variables being independent samples from a Gaussian distribution with standard

deviation 0.1 for positions, and 0.15 for angles and hues. Intuitively, the function f represents that we create a ’goal’
position for each variable based on its parents, and move towards the goal by taking the average between goal and current
position, with additive noise. This gives us a simulation of a moving system, which, however, also permits large changes
without interventions.

The function of the object hue depends on the categorical object shape, which is outlined in Table 4. We use the same setup
as von Kügelgen et al. (2021), where the hare is trying to blend into the background and spotlight, while the dragon tries to
stand out. The colors of the other objects are spread out across the color ring.

Finally, for the object shape, we use a noisy identity map over time. With a probability of 5%, we change the current object
shape with a newly sampled one from a uniform distribution. This introduces additional noise to the object shape besides
the interventions.

To showcase the dependency among causal variables, we plot the marginal distribution of tuples of variables in Figure 15.
The distributions are plotted based on a histogram of a dataset with 250,000 samples. Despite the occasional interventions, a
clear correlation among variables with a confounder and ancestor-descendant relations can be seen. Overall, this shows that
the chosen functions in Equation 32 to 39 introduce strong correlations among variables, which makes disentangling the
factors a difficult task.
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(1) - (2) - (3) - (4) - (5) - (6) ball vel dir (7) ball vel dir

(8) pright y (9) - (10) - (11) pright y (12) - (13) ball x (14) pright y

(15) pleft y (16) - (17) - (18) ball y (19) pleft y (20) pleft y (21) ball x

Figure 16. An example sequence with 21 frames in the Interventional Pong dataset. The causal variables denoted below each image
indicate the variables which were intervened on at this time step. For instance, when transitioning from the first to the second image, all
variables were sampled according to their temporal dependency except. The ball velocity direction is encoded in a 4th channel, which is
not visualized here. It encodes the velocity by showing the ball moved by the velocity at the current time step.

C.2. Interventional Pong

The Interventional Pong dataset models the dynamics of the popular Atari game Pong (Bellemare et al., 2013). We show a
sequence of 21 frames in Figure 16. Thereby, each frame has a resolution of 32× 32.

In this environment, we have six underlying causal factors:

• The ball x-position (ball x) describes the x-position (left to right) of the ball. The value range is limited to [−1, 1]
where −1 corresponds to hitting the left border, and 1 the right. Under interventions, we sample the x-position
uniformly in the space between the two paddles, which corresponds to a value range of approximately [−0.7, 0.7].

• The ball y-position (ball y) describes the y-position (top to bottom) of the ball. The value range is limited to [−1, 1]
where −1 corresponds to hitting the upper border, and 1 the lower border. Under interventions, we sample the y-
position uniformly from U(−1, 1).

• The ball velocity direction (ball vel dir) describes the angle of the velocity of the ball. The value range is [0, 2π)
where 0 corresponds to the ball heading to the right. Under interventions, we sample the velocity direction uniformly
from U(0, 2π).

• The paddle-left y-position (pleft y) describes the y-position of the left paddle (blue in the figures). It has the same
value range as the causal factor ball y. Over time, the paddle takes a step towards the ball y position of the previous
time step. The step size is sampled from a Gaussian mean of 0.05 and standard deviation of 0.017. If an intervention is
performed on pleft y, it flips the sign of the step, i.e. going up instead of down, with a chance of 50%. This replaces the
policy of following the ball with a random one.

• The paddle-right y-position (pright y) describes the y-position of the right paddle (green in the figures), and follows
the same dynamics as pleft y.

• The score (score) describes the player’s score (gray background numbers). It contains two scores (left player and
right player), each with an integer value between 0 and 4. When the ball hits one of the two border, the score for the
corresponding player is increased. Further, if a player scores their 5th goal, the score is reset to 0, 0. No interventions
are provided on this causal factor.

Given a previous time step, the game engine performs the following steps in order to determine the next step:
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Figure 17. An example sequence of 7 frames (left to right) in the Interventional Pong dataset, where the environment is being reset at the
fourth time step. The ball is returned to the center position and gets a new velocity direction, as well as the paddles being moved to new
random positions. The score of the respective player is increased as well.

ball x ball y ball vel dir pleft y pright y score

ball x ball y ball vel dir pleft y pright y score

Figure 18. Causal relations between all dimensions of the causal factors of the Interventional Pong dataset. Note that although the graph is
very dense, not all relations have an effect on the causal variables at each time step. For instance, the velocity only influences the paddles
and the score when the ball x position moved by the velocity ends up in one of the two boundaries.

1. Using the velocity direction at the previous time step, we determine the velocity in x and y direction. We then move
the x-position of the ball accordingly.

2. If this new ball-x position hits one of the two borders, we increase the score of the corresponding player and reset
the game. Resetting the game includes setting the ball to the center of the field, randomly sampling a ball velocity
direction, and replacing the position of the paddles with a new random position between −0.66 and 0.66. The latter is
done to prevent the paddles of ending up in one of the two corners when the ball is reset. An example of resetting the
environment is shown in Figure 17.

3. If the game was not reset, we do the following steps:

• We first move the two paddles according to their dynamics, as described before, moving towards the ball.
• We move the ball y position by the velocity in y direction. If the new ball y position collides with the upper or

lower boundary, we calculate the new y-position it would have after the collision, and mirror the velocity angle on
the x-axis.

• If the new ball x and y position collide with one of the two paddle positions in the previous time step, we reflect
the ball accordingly and calculate its new x position, as well as mirroring the velocity angle on the y-axis.

• Finally, we add Gaussian noise with standard deviation of 0.015 to the ball x and y position, as well as the velocity
direction. The small standard deviation was chosen to keep the dynamics similar to Pong and not divert too much
into random movements.

4. With a chance of about 35%, we do not perform any intervention. Otherwise, we randomly sample one out of the five
causal factors (excluding the score), and perform an intervention as described before.

We provide the full code of the dynamics and dataset generation for this Pong environment in the supplementary. The causal
graph implied by these dynamics are shown in Figure 18. Similarly to the Temporal Causal3DIdent dataset, we generate a
dataset by sampling one long sequence with a dataset size of 100,000.

C.3. Experimental Design

In this section, we give a more detailed description of elements used in the experiments. We first discuss the evaluation via
the correlation metrics and triplet evaluation, and then describe the implementation details of the target classifier.
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C.3.1. CORRELATION METRICS

As described in Section 6.1, we evaluate the models by measuring the correlation of the learned latent variables to the ground
truth causal factors. Typically, in the literature, the latent variables are one-dimensional. In our setup, however, the latent
variables span over multiple dimensions and can describe a causal factor in a non-linear relation. Thus, plotting the correlation
per variable would not reveal the true correlation between the learned, multidimensional latent variables and causal factors.

As a first step, we therefore need to learn a mapping between sets of latent variables and true causal factors. We emphasize
that during this whole evaluation, the models are frozen and will not be updated. We only make use of their encoders to map
observations to latent vectors. For CITRIS, we therefore apply one MLP per set of latent variables that, according to the
learned assignment function ψ, belong to the same causal factor. The MLP is then trained to predict all causal factors per
set of latents, on which we measure the correlation. To this end, we use a two-layer MLP with a latent dimensionality of
128. The MLP size was chosen sufficiently large to uncover any possible correlations between the latent and causal factors.
Using larger MLPs did not show any noticeable change in the correlation found, verifying that the MLP is large enough to
learn any potential non-linear mapping.

To train the MLP, we split the test dataset into two subsets: one for training the MLP (40% of the dataset), and one for
measuring the correlation metrics on (60% of the dataset). The test datasets are generated by randomly sampling sets of
causal variables of the respective dataset. We use a dataset size of 25,000 images to prevent any form of overfitting, and
ensure a sufficiently large sample size for the correlation metrics. However, in our datasets, the causal factors are correlated
themselves. This means that the optimal disentanglement function would yet measure a correlation from, e.g., the latents
describing the ball y position to the paddles’ y positions. This makes it difficult to spot spurious correlations between latents
and causal factors, since with sufficient latent dimensions, a model can describe the same causal factors in multiple sets of
latent dimensions. Since this would not follow the goal of a good disentanglement, we prevent measuring such correlations
by perform this evaluation on test datasets without temporal correlations among causal factors. In other words, we generate
samples by sampling each causal factor independently, and mapping those into the observation space.

As a loss function for training the MLP, we use a mean-squared-error loss (MSE) for all continuous values excluding the
circular values (angles and hues). For the circular values between 0 and 2π, using the MSE loss would be disadvantageous
since predicting a value of 2π − ϵ, when the label is 0, causes a large error although on a unit circle, the two points would be
very close. Hence, as a better alternative, we train the MLP by predicting a vector in two dimensions. We then use the cosine
distance between the predicted vector and the vector of the ground truth angle projected onto the unit circle. This gives us a
loss that respects the circular nature of the causal factor. Since the loss is independent of the length of the predicted vector,
we apply a small regularizer to stabilize the vector length. Finally, for the categorical causal factors, we use cross entropy as
a training loss.

After training the MLPs, we can use them to create predictions for all causal factors for a set of latents. Then, we determine
the correlation metrics between these predictions and the ground truth values for the individual causal factors. Note that for
multidimensional causal factors, we calculate the metrics for each dimension individually, and take the average correlation
coefficient over dimensions afterwards.

The R2 correlation coefficient (Spearman, 1904) is a metric which compares the prediction of a variable from a conditional
input set to the average prediction. For continuous variables, this is:

R2 = 1−
∑
i(xi − x̂i)

2

∑
i(xi − x̄)2

(40)

where xi is the ground truth value of the data point i, x̂i is the prediction, and x̄ =
∑
i xi/N is the average of the ground

truth values. For angles, we adjust the R2 metric by replacing the difference with the cosine distance, and take the angle
mean to calculate x̄, since the standard mean of two angles, i.e. α+β2 , does not take into account the circular nature of the
angle values. The mean over more than 2 angles is defined as:

avg(α1, ..., αn) = atan2

(
1

n

∑

i

sin(αi),
1

n

∑

i

cos(αi)

)
(41)

with atan2 being the 2-argument arctan. For the categorical variables, we replace x̄ with the most frequent category in
the dataset, and distance by a simple equal, i.e., δxi=x̂i . While one could also apply more suitable methods for finding
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correlations on categorical variables, we found this simple adjustment sufficient for the two categorical variables we consider
in this paper (the object shape in Temporal Causal3DIdent and the score in Pong).

The Spearman’s rank correlation (Wright, 1921) ranks both the prediction and ground truth values, and checks the difference
in ranking using the Pearson correlation coefficient. We can apply it as is for both categorical and continuous values,
excluding angles. For the circular values (angles and hues), we report the average Spearman’s rank of their sine and cosine
transform, since the original values do not have a unique ranking.

Both metrics result in a correlation matrix, where we have on one dimension the sets of latent variables, and the ground
truth causal variables on the other. We show examples of these matrices in Figure 21 and Figure 22. The optimal matrix
would contain 1s where the sets of latents was assigned to its respective causal factor by ψ in CITRIS, and zero everywhere
else. To summarize such a matrix, we therefore determine the average of these matching values (usually the diagonal).
Further, to show the entanglement with other causal factors, we determine for each set of latents the causal factor with the
highest correlation besides the matching one, and average these correlations across latents. Since the baselines, SlowVAE
and iVAE∗, do not learn an assignment function like ψ, we first need to determine one before calculating above’s metrics.
We do this by first calculating all metrics for all latent dimensions independently, and then assigning a latent variable to the
causal factor it has the highest correlation to according to the R2 correlation coefficient.

C.3.2. TRIPLET EVALUATION

The triplet evaluation provides a parameteric-free evaluation, which can reveal complex dependencies between latent
variables in any disentanglement model. To repeat the general approach, we create triplets of images: the first two are
randomly sampled test images, while the third one is created based on a random combination of causal factors of the first
two images. The test images are taken from a test dataset which contains a sequence of 10,000, generated in the same
fashion as the training dataset. Hence, it also contains the common correlations between causal factors. The third image is
generated by, e.g., taking the spotlight rotation and object shape from image 1, and all other causal factors from image 2. We
overall create a set of 10,000 of such triplets.

For evaluation, we then encode the two test images independently with the model that is supposed to be evaluated. We then
perform the combination of ground-truth causal factors as done for the third image in latent space. This means that for each
latent dimension zi, we pick the value of image 1 if the causal factor Cj , where Cj is the factor zi is assigned to, is taken
from image 1 for the ground truth third image. Otherwise, we pick the value of image 2. We repeat this procedure for every
latent dimension, and then use the decoder of the model to generate a new image. Note that for the normalizing flow, this
also includes inverting the flow before applying the decoder.

Since the reconstruction error is not descriptive of the errors being made, e.g. the rotation in Figure 7, we train an additional
CNN in a supervised manner that maps images to the causal factors. This CNN has the same architecture as the VAE
encoder (see Appendix C.4), and is trained on the same training dataset while using the ground truth causal factors as labels.
We use the same training methods for angles as for the MLPs in the correlation metrics. With this model, we can extract
the causal factors from the generated image, and report the average distance of these to the ground truth causal factors.
However, one common difference between the model’s prediction and the ground truth is that the prediction is more blurry,
and can cause surprising mispredictions of the CNN when it focused on clear corners in the original dataset. We found it to
be beneficial for both the VAE and the AE+NF approach to train the CausalEncoder on reconstructions from the pretrained
autoencoder. Since the autoencoder is able to reconstruct the images relatively well and only has minor blurring effects
compared to the VAE, the CNN still managed to predict most factors very accurately and, for the Pong dataset and Teapot,
with no noticeable difference to the original ground truth data.

C.3.3. TARGET CLASSIFIER IMPLEMENTATION

In this section, we give a detailed description of the target classifier. The target classifier is an additional small network with
the goal of predicting the intervention targets from the latent variables over time. While one cannot identify the intervention
target 100% of the time, the distribution change between time steps is yet often detectable. This way, the target classifier
ensures that information about all causal variables is encoded in the latent space, while guiding the disentanglement in latent
space and the assignment function ψ.

In detail, the classifier takes as input the latents zt and a masked set of zt+1 that, according to a sample from ψ, are assigned
to the causal variable Ci. We denote this mask with Tψi

j ∈ {0, 1}M , where Tψi

j is sampled from the Gumbel Softmax
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Figure 19. Visualization of the target classifier. From the latents of the first time step, zt, and masked latents of the second time step, zt+1
ψi

(here shown in the mask setting), the network tries to predict the intervention targets. If the intervention targets are independent and the
model has learned a good disentanglement, only It+1

i should be predicted well.

distribution, modeling the assignment of latent dimension j to the causal factor i. Then, the classifier is trained to recover all
intervention targets from those latents by optimizing:

Lφtarget = −ET,z

[
K∑

i=0

log pφ

(
It+1|zt, zt+1 ⊙ Tψi , T

ψ
i

)]
(42)

where φ are the parameters of the classifier. Intuitively, we train the parameters φ to predict as many intervention targets
from any input as possible, thus revealing any correlations between latents and intervention targets.

When training the classifier for a causal factor Ci, we also take gradients with respect to the latent variables zt and zt+1 as
well as the assignment ψ to optimize the target classification for It+1

i . However, for all other target variables, zt+1 ⊙ Tψi
should be uninformative since the intervention target It+1

i only affects the causal variable Ct+1
i while being conditionally

independent to all other causal variables. Hence, in this case, the latents and ψ are optimized to make the classifier’s
prediction follow the target’s marginal p(It+1

j |It+1
i ) (or p(It+1

j ) if It+1
i ⊥⊥ It+1

j ). This way, the latents and their assignment
to causal variables are trained to only contain information from the causal variables that they are assigned to by ψ, and not
any others. This training objective can be summarized as:

Lz,ψtarget = −ET,z

[
K∑

i=0

log pφ
(
It+1
i |Tzi

)
+
∑

j ̸=i

∑

l∈{0,1}
p
(
It+1
j = l|It+1

i

)
log pφ

(
It+1
j = l|It+1

i , T zi
)
]

(43)

where Tzi = [zt, zt+1 ⊙ Tψi , T
ψ
i ]. The second part of the objective is a cross-entropy between the marginal p(It+1

j |It+1
i )

and the classifier’s prediction. Hence, the full loss for CITRIS is L = LELBO + βclass ·
(
Lφtarget + Lz,ψtarget

)
, where βclass > 0

is a hyperparameter. In common Deep Learning frameworks like PyTorch (Paszke et al., 2019), this two-folded loss can
be implemented by stopping the gradients of z and ψ for Lϕtarget, and φ for Lz,ψtarget. We empirically verify that this simple
addition provides considerable benefits in disentanglement and overall optimization of the VAE (see Section 6.2).

C.4. Hyperparameters

C.4.1. NETWORK ARCHITECTURES

All models are implemented in the Deep Learning framework PyTorch (Paszke et al., 2019) and PyTorch Lightning (Falcon
& The PyTorch Lightning team, 2019). The trainings have been performed on a single NVIDIA TitanRTX GPU. Below, we
give details about the specific architectures used.

VAEs For all VAE architectures, we make use of the same network architecture to ensure a fair comparison. The encoder is a
convolutional architecture, applying several convolutions in sequence with stride 2 for decreasing the resolution. Its output is
two parameters per latent variable, which denote the mean and standard deviation for each latent variable. Experiments with
increased complexity of the predicted distribution did not show any improvements. For the decoder, we found it beneficial
to replace transposed convolutions with bilinear upsampling and using residual blocks. The full architectures are outlined in
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Table 5. The architecture for both the encoder and decoder. Every residual block consists of two convolutions, each 64 channels, kernel 3
and stride 1 with BatchNorm+SiLU non-linearity. The upsampling represent bilinear upsampling of the features with a scaling factor of 2.
The Tanh activation function on the output scales the output between -1 and 1.

Layer Feature Dimension Kernel Stride Activation Function
(H × W × C)

fenc

Conv 32 × 32 × 64 3 2 BatchNorm+SiLU
Conv 32 × 32 × 64 3 1 BatchNorm+SiLU
Conv 16 × 16 × 64 3 2 BatchNorm+SiLU
Conv 16 × 16 × 64 3 1 BatchNorm+SiLU
Conv 8 × 8 × 64 3 2 BatchNorm+SiLU
Conv 8 × 8 × 64 3 1 BatchNorm+SiLU
Conv 4 × 4 × 64 3 2 BatchNorm+SiLU
Conv 4 × 4 × 64 3 1 BatchNorm+SiLU
Reshape 1 × 1 × 1024 - - -
Linear 1 × 1 × 256 - - LayerNorm+SiLU
Linear 1 × 1 × 2·num latents - - -

fdec

Linear 1 × 1 × 256 - - LayerNorm+SiLU
Linear 1 × 1 × 1024 - - -
Reshape 4 × 4 × 64 - - -
Upsample 8 × 8 × 64 - - -
ResidualBlock 8 × 8 × 64 3 1 -
Upsample 16 × 16 × 64 - - -
ResidualBlock 16 × 16 × 64 3 1 -
Upsample 32 × 32 × 64 - - -
ResidualBlock 32 × 32 × 64 3 1 -
Upsample 64 × 64 × 64 - - -
ResidualBlock 64 × 64 × 64 3 1 -
Pre-Activation 64 × 64 × 64 - - BatchNorm+SiLU
Conv 64 × 64 × 64 1 1 BatchNorm+SiLU
Conv 64 × 64 × 3 1 1 Tanh

Table 5. Further, we make use of Batch Normalization (Ioffe & Szegedy, 2015) and the SiLU activation function (Hendrycks
& Gimpel, 2016; Ramachandran et al., 2017) for non-linearity. Together, the encoder and decoder have slightly less than 1
million parameters.

Autoencoders For the standard autoencoder training, we found it to be beneficial to increase the complexity of the decoder
by applying two residual blocks per resolution instead of one. We also experimented with this increased complexity for
the VAE approaches. However, it did not show any noticeable improvement while requiring a smaller batch size and
considerably longer training time.

Prior distribution For CITRIS, the prior distribution pϕ(zt+1
ψi

|zt, It+1
i ) is implemented using an autoregressive model.

We use a single autoregressive model that can model the distributions for all latent sets zψi
by providing a mask on the

intervention vector It+1. The autoregressive model follow a MADE architecture (Germain et al., 2015) where we assign 16
neurons per layer to each latent variable, and the input to these neurons are the features of all previous latents. Additionally, to
the latents, we use the latents of the previous layer as input. The prior is 2 layers deep, and uses the SiLU activation function.
Finally, the prior predicts a Gaussian distribution per latent. Similarly to the encoder distribution, one can make the prior more
flexible by using normalizing flows. However, in experiments, this showed to not provide any improvement compared to
increased computational cost and parameters. For the iVAE∗, we use a two-layer MLP with a hidden dimensionality of 128.

Normalizing Flows For the normalizing flow learned on top of the autoencoder, we found a simple affine autoregressive
flow to work well. More flexible coupling transformations such as a MixtureCDF layer (Ho et al., 2019) did not show
to improve the results. For the autoregressive network, we use the same MADE architecture as for the prior distribution.
Further, in between the coupling layer, we use common flow layers such as Activation Normalization and Invertible 1x1
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Table 6. An overview of the hyperparameter used for CITRIS-VAE, iVAE∗ and SlowVAE. This parameter configuration resulted in a
training time of about 2 days on one NVIDIA TitanRTX GPU for the Temporal Causal3DIdent, and 12 hours for the Interventional Pong
dataset.

Hyperparameter Value

Batch size 512
Optimizer Adam (Kingma & Ba, 2015)
Learning rate 1e-3
Learning rate scheduler Cosine Warmup (100 steps)
KL divergence factor β 1.0
KL divergence factor ψ0 (λ) 0.01
Number of latents 32 (Causal3DIdent), 16 (Pong)
Number of epochs 600
Target classifier weight 2.0
Gumbel Softmax temperature 1.0

Table 7. An overview of the hyperparameter used for the standard autoencoder. This parameter configuration resulted in a training time of
about 2 days on one NVIDIA TitanRTX GPU for the Temporal Causal3DIdent, and 12 hours for the Interventional Pong dataset.

Hyperparameter Value

Batch size 512
Optimizer Adam (Kingma & Ba, 2015)
Learning rate 1e-3
Learning rate scheduler Cosine Warmup (100 steps)
Number of latents 32 (Causal3DIdent), 16 (Pong)
Gaussian noise std 0.05
Number of epochs 1000

Table 8. An overview of the hyperparameter used for CITRIS-NF. This parameter configuration resulted in a training time of 6-10 hours
on one NVIDIA TitanRTX GPU.

Hyperparameter Value

Batch size 1024
Optimizer Adam (Kingma & Ba, 2015)
Learning rate 1e-3
Learning rate scheduler Cosine Warmup (100 steps)
KL divergence factor β 1.0
KL divergence factor ψ0 (λ) 0.01 (Causal3D), 0.1 (Pong)
Number of latents 32 (Causal3DIdent), 16 (Pong)
Number of coupling layers 4 (Causal3DIdent Teapot, Pong), 6 (Causal3DIdent 7-shapes)
Number of epochs 1000
Target classifier weight 2.0
Gumbel Softmax temperature 1.0

Convolutions (Kingma & Dhariwal, 2018).

Target classifier The target classifier uses a single-layer MLP with hidden dimensionality of 128, Layer Normalization (Ba
et al., 2016) and a SiLU activation function.

C.4.2. TRAINING HYPERPARAMETERS

We provide an overview of the used hyperparameters in Table 6 (VAE models), Table 7 (Autoencoder training), and Table 8.
In general, we use the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 1e-3. We use a Cosine Warmup
learning rate scheduler with 100 steps warmup. For the VAEs and autoencoder, we use the MSE loss as reconstruction
loss, which corresponds to predicting a Gaussian mean per pixel with fixed standard deviation. We found this to perform
considerably better than discrete approaches such as a softmax over the 256 pixel values. To balance the KL divergence
and reconstruction loss, we have experimented with scaling the KL divergence like in the β-VAE (Higgins et al., 2017) in
the range of β ∈ {0.25, 0.5, 1.0, 2.0, 4.0}. However, the best results for all three models were achieved when using a value
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of β = 1. Further, we ran a grid search over the γ hyperparameter for SlowVAE for the values γ ∈ {1, 2, 4, 8}, with the
model achieving the best disentanglement results for γ = 1. Finally, we also experimented with a KL warmup, which slowly
increases β to its maximum value. However, no noticeable improvement was found for all three models on the Temporal
Causal3DIdent dataset, such that we did not include it for the final experiments.

The autoencoder is trained via the MSE reconstruction loss. As mentioned in Section 4.2, we add small Gaussian noise
to the latents during training to prevent the latent space from collapsing into Dirac deltas. We have used a noise standard
deviation of 0.05, which did not show to negatively impact the reconstruction loss.

In the normalizing flow, we use 4 coupling layers for the Interventional Pong dataset and the Temporal Causal3DIdent
Teapot dataset. However, the more challenging dataset, Temporal Causal3DIdent 7-shapes, showed to benefit from using
more coupling layers, hence using 6 here. Note that one considerable benefit of the normalizing flow approach is that it
trains much quicker than the VAE once the autoencoder has been trained. Since one autoencoder can be used for multiple
different settings, it reduced the overall computational cost and simplified the hyperparameter search.



CITRIS: Causal Identifiability from Temporal Intervened Sequences

Table 9. Experimental results for the Temporal-Causal3DIdent Teapot dataset, including standard deviations over 3 seeds. See Table 1 for
a detailed discussion on the table and metrics.

Triplet evaluation distances ↓ Correlation metrics

pos x pos y pos z rot α rot β rot s hue s hue b hue o Mean R2 diag ↑ R2 sep ↓ Spearman diag ↑ Spearman sep ↓
Oracle 0.02 0.02 0.02 0.02 0.03 0.01 0.02 0.01 0.02 0.02 - - - -

SlowVAE 0.13 0.10 0.12 0.50 0.59 0.22 0.64 0.21 0.17 0.30 0.65 0.20 0.62 0.27
(stds) ±0.002 ±0.004 ±0.000 ±0.009 ±0.009 ±0.005 ±0.004 ±0.006 ±0.003 ±0.003 ±0.007 ±0.007 ±0.005 ±0.012

iVAE∗ 0.04 0.03 0.04 0.25 0.31 0.03 0.58 0.02 0.05 0.15 0.78 0.21 0.77 0.17
(stds) ±0.002 ±0.001 ±0.002 ±0.102 ±0.243 ±0.001 ±0.178 ±0.002 ±0.010 ±0.012 ±0.036 ±0.098 ±0.045 ±0.043

CITRIS-VAE 0.05 0.04 0.05 0.10 0.20 0.03 0.08 0.02 0.05 0.07 0.96 0.02 0.95 0.04
(stds) ±0.001 ±0.001 ±0.000 ±0.038 ±0.055 ±0.000 ±0.002 ±0.001 ±0.001 ±0.010 ±0.007 ±0.002 ±0.013 ±0.002

CITRIS-NF 0.04 0.03 0.04 0.06 0.10 0.03 0.04 0.01 0.04 0.04 0.98 0.01 0.97 0.05
(stds) ±0.001 ±0.001 ±0.001 ±0.002 ±0.004 ±0.003 ±0.002 ±0.004 ±0.005 ±0.002 ±0.001 ±0.004 ±0.001 ±0.007

Table 10. Experimental results for the Temporal-Causal3DIdent 7 shapes dataset, including standard deviations over 3 seeds. See Table 1
for a detailed discussion on the table and metrics.

Triplet evaluation distances ↓ Correlation metrics

pos x pos y pos z rot α rot β rot s hue s hue b hue o obj s Mean R2 diag ↑ R2 sep ↓ Spearman diag ↑ Spearman sep ↓
Oracle 0.08 0.06 0.08 0.06 0.09 0.04 0.04 0.01 0.04 0.00 0.05 - - - -

SlowVAE 0.44 0.25 0.41 0.69 0.75 0.25 0.57 0.10 0.14 0.37 0.40 0.61 0.23 0.59 0.27
(stds) ±0.035 ±0.030 ±0.021 ±0.012 ±0.003 ±0.003 ±0.064 ±0.001 ±0.004 ±0.040 ±0.018 ±0.053 ±0.005 ±0.038 ±0.006

iVAE∗ 0.26 0.23 0.34 0.58 0.65 0.10 0.31 0.02 0.09 0.14 0.27 0.80 0.29 0.77 0.28
(stds) ±0.013 ±0.038 ±0.015 ±0.051 ±0.043 ±0.011 ±0.003 ±0.000 ±0.001 ±0.039 ±0.002 ±0.002 ±0.013 ±0.001 ±0.019

CITRIS-VAE 0.15 0.13 0.23 0.54 0.71 0.07 0.05 0.02 0.06 0.18 0.21 0.89 0.10 0.88 0.12
(stds) ±0.002 ±0.000 ±0.001 ±0.009 ±0.009 ±0.002 ±0.002 ±0.000 ±0.002 ±0.050 ±0.004 ±0.001 ±0.007 ±0.002 ±0.006

CITRIS-NF 0.12 0.08 0.11 0.09 0.14 0.05 0.05 0.02 0.06 0.00 0.07 0.98 0.04 0.97 0.08
(stds) ±0.001 ±0.000 ±0.001 ±0.000 ±0.004 ±0.001 ±0.001 ±0.004 ±0.002 ±0.000 ±0.001 ±0.000 ±0.003 ±0.000 ±0.007

D. Additional Experiments and Results
D.1. Temporal Causal3DIdent

D.1.1. DETAILS OF THE MAIN RESULTS

In this section, we provide additional results on the Temporal Causal3DIdent dataset. Firstly, we report the standard
deviations over 3 seeds for the results in Table 1, which can be found in Table 9 and Table 10. Generally, CITRIS-VAE and
CITRIS-NF showed to be stable across seeds and reach similar performance with different seeds.

For the teapot experiments, the greatest difference is found in the modeling of the rotation angles, since the reconstruction
error of a VAE can already be optimized well when modeling the teapot as a sphere. Furthermore, the most common failure
mode in the rotations is having a difference of 180 degrees, which increases the triplet distance considerably. The reason is
yet again the form of the teapot. Rotating the teapot by 180 degrees in the β angle switches the handle with the spout, which
yet again gives a lower reconstruction error than other rotations. CITRIS-NF suffered much less from this problem since the
disentanglement is performed independently of the reconstruction error, and the pretrained autoencoder precisely modeled
the different rotations.

The iVAE∗, on the other hand, showed a more instable behavior. Especially, the hue of the spotlight was very often entangled
with different dimensions such as the hue of the object or background. Similarly to CITRIS-VAE, it struggled most with the
rotation angles, which also had a high variance in the triplet evaluation. Finally, the SlowVAE showed to be stable across
seeds, but achieve lower disentanglement than the other models due to assuming independent causal factors, which was not
the case here.

In the experiments on 7 shapes, the most common entanglement was the object shape with the rotation angle. For modeling
a change in the object shape independent of the rotation angle, the models need to learn the default rotation angles for
each object. Otherwise, one cannot align the different shapes correctly. Furthermore, since having multiple object shapes
considerably increased the modeling complexity, the VAE models often had blurry predictions on which the rotation could
not be determined. Thus, CITRIS-VAE was able to disentangle most factors well, except the rotation and the object shape.
However, CITRIS-NF did not have this difficulty due to relying on an autoencoder, which was trained independently of any
latent space prior regularization. This is why CITRIS-NF yet disentangled the different causal factors well, even the rotation.
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Image 1 Image 2 Ground Truth Prediction

Image 1 Image 2 Ground Truth Prediction

Image 1 Image 2 Ground Truth Prediction

Image 1 Image 2 Ground Truth Prediction

Row 1 Image 1 rot s, obj s
Image 2 pos o, rot o, hue o, hue s, hue b

Row 2 Image 1 rot o, rot s, hue o, hue s
Image 2 pos o, rot o, hue b

Row 3 Image 1 pos o, rot s, hue b, obj s
Image 2 rot o, hue o, hue s

Row 4 Image 1 rot s, hue o, obj s
Image 2 pos o, rot o, hue b, hue s

Figure 20. Visualizations of triplet generations. Each row represents one example of the triplet evaluation. The table on the right shows
which causal factors were combines from Image 1 and 2 respectively. The predictions were generated by CITRIS-NF trained on all 7
shapes. Despite the blurriness of some predictions, the model still clearly identifies the correct causal factors.

Table 11. Experimental results for the Temporal-Causal3DIdent 5 shapes dataset with additional testing on 2 unknown shapes (Cow and
Head), including standard deviations over 3 seeds for CITRIS-NF. See Table 2 for a detailed discussion on the table and metrics. Further,
we provide iVAE∗ as a baseline being trained on the same setting.

Triplet evaluation distances ↓ Correlation metrics

pos x pos y pos z rot α rot β rot s hue s hue b hue o obj s Mean R2 diag ↑ R2 sep ↓ Spearman diag ↑ Spearman sep ↓
Oracle 0.08 0.06 0.08 0.06 0.09 0.04 0.04 0.01 0.04 0.00 0.05 - - - -

CITRIS-NF
5 seen shapes 0.14 0.10 0.14 0.12 0.16 0.06 0.06 0.02 0.07 0.01 0.09 0.98 0.05 0.97 0.10
(stds) ±0.003 ±0.004 ±0.006 ±0.010 ±0.012 ±0.002 ±0.001 ±0.002 ±0.002 ±0.000 ±0.004 ±0.001 ±0.002 ±0.000 ±0.003

2 unseen shapes 0.32 0.26 0.35 0.36 0.52 0.12 0.10 0.03 0.11 0.10 0.23 0.94 0.15 0.93 0.19
(stds) ±0.026 ±0.027 ±0.021 ±0.037 ±0.048 ±0.007 ±0.009 ±0.005 ±0.008 ±0.033 ±0.018 ±0.003 ±0.012 ±0.005 ±0.012

iVAE∗

5 seen shapes 0.26 0.18 0.29 0.66 0.68 0.13 0.25 0.03 0.08 0.15 0.27 0.80 0.21 0.81 0.25
2 unseen shapes 0.37 0.28 0.70 0.95 0.94 0.15 0.24 0.03 0.09 0.86 0.46 0.69 0.19 0.68 0.25

CITRIS-NF
- Cow shape 0.32 0.25 0.36 0.38 0.53 0.10 0.09 0.03 0.10 0.09 0.22 0.93 0.14 0.92 0.22
(stds) ±0.030 ±0.024 ±0.017 ±0.035 ±0.049 ±0.002 ±0.006 ±0.004 ±0.004 ±0.013 ±0.015 ±0.004 ±0.010 ±0.004 ±0.009

- Head shape 0.32 0.27 0.35 0.33 0.51 0.13 0.11 0.04 0.12 0.12 0.23 0.94 0.15 0.93 0.16
(stds) ±0.023 ±0.029 ±0.026 ±0.038 ±0.047 ±0.012 ±0.011 ±0.005 ±0.012 ±0.052 ±0.021 ±0.001 ±0.014 ±0.006 ±0.015

iVAE∗

- Cow shape 0.46 0.27 0.98 0.97 0.96 0.14 0.25 0.03 0.09 0.90 0.51 0.69 0.17 0.68 0.26
- Head shape 0.27 0.29 0.42 0.95 0.94 0.16 0.24 0.03 0.10 0.83 0.42 0.69 0.20 0.69 0.25

We show some examples of the triplet generation of CITRIS-NF on this dataset in Figure 20.

In correspondence to the generalization experiments on the Temporal-Causal3DIdent dataset (Table 2), we show a detailed
version of the results in Table 11. Overall, the generalization performance shows to be stable across the 2 unseen shapes,
Cow (Crane, 2021) and Head (Rusinkiewicz et al., 2021). The most difficult causal factors to generalize are the position
and rotation, since both of them are heavily dependent on the object shape and hence also entangled in the autoencoder’s
representation. Nonetheless, the performance well above random holds promise for future work on exploring these
generalization capabilities. Furthermore, we provide a baseline in Table 2 by training an iVAE∗ on the same setting. To
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Table 12. Experimental results for the Temporal-Causal3DIdent Teapot dataset with a limited intervention set, including standard deviations
over 3 seeds. CITRIS performs very similar as in the setting of independent interventions (Table 9), showing that it can handle such
intervention sets as well.

Triplet evaluation distances ↓ Correlation metrics

pos x pos y pos z rot α rot β rot s hue s hue b hue o Mean R2 diag ↑ R2 sep ↓ Spearman diag ↑ Spearman sep ↓
Oracle 0.02 0.02 0.02 0.02 0.03 0.01 0.02 0.01 0.02 0.02 - - - -

SlowVAE 0.10 0.08 0.10 0.39 0.56 0.14 0.61 0.07 0.10 0.24 0.66 0.27 0.65 0.23
(stds) ±0.007 ±0.003 ±0.001 ±0.078 ±0.068 ±0.000 ±0.002 ±0.003 ±0.003 ±0.016 ±0.016 ±0.014 ±0.012 ±0.008

iVAE∗ 0.10 0.07 0.09 0.23 0.37 0.06 0.31 0.02 0.06 0.15 0.81 0.18 0.80 0.18
(stds) ±0.002 ±0.001 ±0.001 ±0.124 ±0.213 ±0.001 ±0.268 ±0.001 ±0.014 ±0.006 ±0.045 ±0.111 ±0.042 ±0.068

CITRIS-VAE 0.05 0.03 0.05 0.09 0.24 0.03 0.05 0.01 0.05 0.07 0.97 0.03 0.96 0.04
(stds) ±0.002 ±0.001 ±0.002 ±0.026 ±0.091 ±0.000 ±0.005 ±0.000 ±0.002 ±0.014 ±0.001 ±0.002 ±0.006 ±0.007

CITRIS-NF 0.05 0.03 0.04 0.04 0.07 0.03 0.04 0.02 0.04 0.04 0.98 0.05 0.98 0.08
(stds) ±0.002 ±0.000 ±0.001 ±0.001 ±0.003 ±0.001 ±0.001 ±0.000 ±0.001 ±0.001 ±0.002 ±0.015 ±0.002 ±0.023

reduce computational cost and previous experiments showing stable performance across seeds, we run the iVAE∗ for a
single seed. As one would expect, iVAE∗ heavily struggles with generalizing to unseen shapes since it’s en- and decoder
have not been trained on these shapes and the new shapes require non-trivial extrapolation. Hence, the model generates
arbitrary shapes for the new objects, from which no rotations can be inferred. While the factors independent of the object
shape obtain similar performance as for the known shapes, the model’s overall disentanglement performance degrades
considerably. This underlines the promise of CITRIS-NF to generalize to unseen instances of causal factors.

D.1.2. CORRELATION MATRICES

The results of Table 1 summarized the correlation matrices by reporting the mean on the diagonal and the maximum for
any other causal factor. In this section, we additionally show examples of full correlation matrices for all models on the
Temporal Causal3DIdent dataset. Figure 21 shows the results for the Temporal Causal3dIdent Teapot dataset. The x-axis
shows all dimensions of all causal factors, which includes the x, y and z dimensions of the position causal factor. The
optimal model would have 1s between pos o and pos x, pos y, pos z. The figure shows the difficulty with the rotation for all
models. Further, in the iVAE∗, one can see the difficulty the model had with the hue of the spotlight.

The results for the 7-shapes datasets are shown in Figure 22. As one could already see from the results in Table 1, only
CITRIS-NF is able to disentangle all causal factors well while the other models have especially difficulties with the rotation.

D.1.3. CONFOUNDED INTERVENTIONS

The previous experiments on the Temporal Causal3DIdent dataset were performed on interventions that were independently
sampled to show that CITRIS can handle both single-target and joint interventions. In this section, we repeat the experiments
on the Teapot dataset, but with a different intervention settings. Instead of sampling each intervention target independently,
we consider 6 possible intervention sets:

1. The observational regime, i.e., no causal variable being intervened upon

2. A single target intervention on the object position (pos o)

3. A single target intervention on the object rotation (rot o)

4. A joint intervention on the rotation and hue of the spotlight (rot s, hue s)

5. A joint intervention on the hue of the object and spotlight (hue o, hue s)

6. A joint intervention on the hue of the object and background (hue o, hue b)

Note that this set of interventions fulfills the intervention conditions of Theorem 3.3 for all causal variables. At each time
step, we perform one of these interventions, and use the same temporal dependencies and dynamics as before.

The results over 3 seeds for these experiments are summarized in Table 12. All models achieved very similar results as for
the setting with independent intervention targets. This verifies that CITRIS can also disentangle the different causal factors
in a setting with limited diversity in the observed intervention settings.
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(a) CITRIS-NF, R2 correlation matrix (b) CITRIS-NF, Spearman correlation matrix
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(c) CITRIS-VAE, R2 correlation matrix (d) CITRIS-VAE, Spearman correlation matrix
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(e) iVAE∗, R2 correlation matrix (f) iVAE∗, Spearman correlation matrix
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(e) SlowVAE, R2 correlation matrix (f) SlowVAE, Spearman correlation matrix

Figure 21. Correlation matrices for the experiments on the Temporal-Causal3DIdent Teapot dataset. The y-axis shows the sets of latent
dimensions that were assigned to a certain causal factor. The set zψ0 is represented by ’no variable’ in the plots of CITRIS. The x-axis
shows the ground truth causal factors with all dimensions, i.e., pos o represented by pos x, pos y, pos z. The heatmap is the correlation
matrix between those factors (R2 left, Spearman right).

D.1.4. LEARNING THE CAUSAL GRAPH

The transition prior pϕ of CITRIS takes as input all latent variables from the previous time-step, zt, in order to model a
distribution over zt+1. Once the model has converged, we can try to learn a sparser prior, which removes unnecessary edges
between sets of latent variables that have been assigned to different causal factors. More specifically, we are trying to find
the causal graph between ztΨ0

, ztΨ1
, ..., ztΨK

and zt+1
Ψ0

, zt+1
Ψ1

, ..., zt+1
ΨK

, where the directions of the directions of the edges are
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(a) CITRIS-NF, R2 correlation matrix (b) CITRIS-NF, Spearman correlation matrix
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(c) CITRIS-VAE, R2 correlation matrix (d) CITRIS-VAE, Spearman correlation matrix
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(e) iVAE∗, R2 correlation matrix (f) iVAE∗, Spearman correlation matrix
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(e) SlowVAE, R2 correlation matrix (f) SlowVAE, Spearman correlation matrix

Figure 22. Correlation matrices for the experiments on the Temporal-Causal3DIdent 7-shapes dataset. The y-axis shows the sets of latent
dimensions that were assigned to a certain causal factor. The set zψ0 is represented by ’no variable’ in the plots of CITRIS. The x-axis
shows the ground truth causal factors with all dimensions, i.e., pos o represented by pos x, pos y, pos z. The heatmap is the correlation
matrix between those factors (R2 left, Spearman right).

determined by t → t+ 1, and no edges within a time step exist. We find this graph by using ENCO (Lippe et al., 2022),
a continuous-optimization causal discovery method which supports the usage of arbitrary neural networks. The causal
graph is parameterized by a weight matrix γ ∈ RK+1×K+1, where σ(γij) represents the probability of having the edge
ztΨi

→ zt+1
Ψj

in the causal graph. To estimate the conditional likelihoods under different causal graphs, we learn a new
autoregressive prior pε(zt+1

Ψi
|zT ·M, It+1

i ) where M is mask on the latents at time-step t according to the causal graph:
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pos o rot orot s hue s hue b hue o

pos o rot orot s hue s hue b hue o

pos o rot orot s hue s hue b hue o obj s

pos o rot orot s hue s hue b hue o obj s

Figure 23. The learned graphs of CITRIS-NF from the Temporal-Causal3DIdent dataset. False positive edges are colored red. Left:
Temporal-Causal3DIdent Teapot. The learned causal graph is identical to the ground truth graph. Since we have a single object shape, we
do not include obj s as a causal variable in the graph. Additionally, the parent set of hue o is reduced due to the constant object shape.
Right: Temporal-Causal3DIdent 7-shapes. The edge obj s→rot o is predicted due to disentangling these two variables being the hardest
task of the dataset, and small correlations remain.
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(a) CITRIS-NF, R2 correlation matrix (b) CITRIS-NF, Spearman correlation matrix

Figure 24. Correlation matrices for the experiments on the Temporal-Causal3DIdent 7-shapes dataset where no intervention targets for the
causal variable hue-background are shown (left: R2 correlation, right: Spearman correlation). The set zψ0 is represented by ’no variable’
in the plots of CITRIS. As intended, CITRIS learns to map the background hue to zψ0 , i.e. the latents that represent all information that
does not belong to the causal variables for which we are given intervention targets. The remaining causal variables are disentangled as
well as when interventions were provided for all variables (compare to Figure 22).

Mj = M̂ψ(j), M̂k ∼ Bernoulli(γki). In other words, we sample a causal graph, and then mask a set of latents ztΨj
if the

causal variable Cj does not have an edge to Ci: ztΨj
̸→ zt+1

Ψi
. With this prior, we can then determine the gradients for γ on

a held-out test set following ENCO’s gradient updates. We use a sparsity regularizer of λ = 0.05 and train for 100 epochs.

We perform the experiments on two learned CITRIS-NF, one for Temporal-Causal3DIdent Teapot, and one for Temporal-
Causal3DIdent 7-shapes. The learned graphs are shown in Figure 23. For the teapot experiments, the graph is identical to the
ground truth, showing that CITRIS has indeed learned the causal variables. For the 7 shapes experiment, the model has one
false positive prediction, the edge obj s→rot o. This fits our previous discussion on the results of the 7 shape experiments
(Table 10) since the object shape and rotation was the most difficult to disentangle for all models. Hence, there remains
some correlation between the object shape and rotation in the CITRIS-NF model.

D.1.5. INTERVENTIONS ON A SUBSET OF VARIABLES

One property of CITRIS is that when interventions are only provided for a subset of variables, CITRIS is yet able to
disentangle these variables, while all remaining information is grouped into the latents zΨ0 . We have used this to disentangle
the score in the Interventional Pong experiments (see Section 6.3), and show here that it can also be applied to the more
complex Temporal Causal3DIdent dataset. Specifically, we reuse the datasets that have been used for the experiments in
Section 6.2, and remove the intervention targets for a subset of variables. This keeps all temporal relations intact, while
providing an additional challenge of modeling a multimodal distribution for the excluded variables.

As a first setting, we train CITRIS-NF on the Temporal Causal3DIdent 7-shapes dataset, where the interventions on the
hue of the background have been omitted. The correlation matrices in Figure 24 show that CITRIS learned to disentangle
all causal variables in a similar accuracy as in the full experiment (see Figure 22), while the background hue is assigned
to the latents of zψ0 . Additionally, we show in Figure 21 results on the Temporal Causal3DIdent Teapot dataset, in which
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(a) Excludes rot s, R2 correlation matrix (b) Excludes rot s, Spearman correlation matrix
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(c) Excludes hue s, R2 correlation matrix (d) Excludes hue s, Spearman correlation matrix

Figure 25. Correlation matrices for the experiments on the Temporal-Causal3DIdent Teapot dataset where no intervention targets for the
causal variable rotation-spotlight (a,b) and hue-spotlight (c,d) are shown (left: R2 correlation, right: Spearman correlation). The set zψ0

is represented by ’no variable’ in the plots of CITRIS. CITRIS assigns the variables without intervention targets to zψ0 , and the remaining
causal variables only show slightly worse disentanglement than for the full intervention set (compare to Figure 21).
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Figure 26. Learned latent-to-causal variable assignment map ψ for an CITRIS-NF trained on the Temporal Causal3DIdent 7-shapes
datasets with no interventions on the hue of the background. The map is learned via a Gumbel-Softmax, meaning that we have a softmax
distribution over the possible causal variables for each latent variable. Thus, the figure shows the probability that latent dimension i
(x-axis) is assigned to a specific causal variable (y-axis), where the distribution usually gets strongly peaked as training progresses. The
model has 32 dimensions, of which 5 are assigned to pos o, 7 to rot o, 4 to rot s, 2 to hue o, 3 to hue s, 6 to obj s, and 5 to ’no variable’,
i.e. zψ0 . In general, we find that the most complex causal variable, here rot o and obj s, are assigned the most dimensions, while circular
values have always at least 2 dimensions (the model commonly encodes them as two or more shifted sine-waves).

we exclude intervention targets for the spotlight rotation (a,b) and spotlight hue (c,d) respectively. Both models assign the
correct information to the ’no-variable’ slot. The disentanglement for all other variables shows to still be very good, but
slightly worse than the results on the full intervention set, which comes from additional entanglement in zψ0 . Still, the
experiments show that CITRIS can also handle variables without interventions in complex 3D rendered scenes.
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Table 13. Experimental results for the Interventional Pong dataset, extension of Table 3. The six causal factors are the ball x and y position,
the velocity direction, the left paddle y position, the right paddle y position, and the player’s score. In the correlation metrics, diag refers
to the average score on its diagonal (optimal 1), and sep for the average of the maximum correlation per causal variable besides itself
(optimal 0).

Triplet evaluation distances ↓ Correlation metrics

ball x ball y ball vel dir pleft y pright y score Mean R2 diag ↑ R2 sep ↓ Spearman diag ↑ Spearman sep ↓
Oracle 0.01 0.01 0.01 0.01 0.01 0.00 0.01 - - - -

SlowVAE 0.06 0.21 0.99 0.48 0.07 0.23 0.34 0.61 0.17 0.66 0.23
(stds) ±0.006 ±0.012 ±0.002 ±0.121 ±0.089 ±0.001 ±0.001 ±0.004 ±0.012 ±0.007 ±0.013

iVAE∗ 0.03 0.21 0.05 0.03 0.03 0.20 0.09 0.91 0.04 0.92 0.06
(stds) ±0.008 ±0.255 ±0.005 ±0.011 ±0.009 ±0.015 ±0.039 ±0.135 ±0.056 ±0.131 ±0.058

CITRIS-VAE 0.02 0.03 0.05 0.04 0.03 0.00 0.03 0.99 0.01 0.99 0.05
(stds) ±0.001 ±0.004 ±0.009 ±0.006 ±0.002 ±0.001 ±0.001 ±0.001 ±0.000 ±0.001 ±0.010

CITRIS-NF 0.02 0.02 0.02 0.03 0.03 0.00 0.02 1.00 0.04 1.00 0.10
(stds) ±0.002 ±0.002 ±0.001 ±0.002 ±0.001 ±0.001 ±0.001 ±0.001 ±0.011 ±0.001 ±0.023

D.1.6. VISUALIZING THE LEARNED ASSIGNMENT FUNCTION ψ

CITRIS learns an assignment between latent and causal variable, ψ. To get an intuition of what a learned function of such
looks like, we visualize the parameters of ψ of a trained CITRIS-NF in Figure 26. The model is trained on the Temporal
Causal3DIdent 7-shapes dataset, where no interventions have been shown for the background hue (i.e., the same model as in
Figure 24). Overall, the probabilities of a latent variable belonging to a certain causal variable are very peaked after training,
with the second-highest value per latent variable to be between 1e-6 and 1e-9. This shows that the soft relaxation of ψ
becomes discrete as training progresses. Further, we find that the most latent variables are assigned to the intuitively most
complex causal variables. In the Temporal Causal3DIdent 7-shapes dataset, this corresponds to the rotation of the object and
the shape of the object, assigned 7 and 6 latent respectively. The property of learning a flexible latent space size per causal
variable is thereby important, since when the causal variables are not known, it would be difficult to manually estimate
the number of latent variables per causal variable. Moreover, an interesting property we observe across all models is that
circular values like the hues are always encoded in at least two latent dimensions. On closer inspection, the model encodes
the angles as two or more shifted sine-waves, verifying our motivation of using multidimensional latent representation even
for single-dimensional causal variables.

D.2. Interventional Pong

The full experimental results for the interventional Pong dataset can be found in Table 13, and we plot the correlation
matrices for all models in Figure 27. The triplet evaluation distances show that SlowVAE had difficulties with disentangling
all the factors. This is since they are highly correlated, while SlowVAE assumes independence in the factors. Both the
iVAE∗ and SlowVAE had troubles with disentangling the y position of the ball (ball y), which was often entangled together
with the ball velocity direction (ball vel dir) in the models. Further, the player’s score was only consistently recovered by
CITRIS. Note that for the triplet evaluation, since there are no interventions given on the player’s score, we use the variables
zψ0 of CITRIS of that image of which the score it used for the third image. CITRIS-NF slightly improves upon CITRIS-
VAE, mostly due to better modeling of ball vel dir. This is because it only affects a single channel and hence has a lower
effect in the reconstruction error. Nonetheless, the experiments show that for simpler datasets, CITRIS-VAE can disentangle
the causal factors as well as the normalizing flow.
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(a) CITRIS-NF, R2 correlation matrix (b) CITRIS-NF, Spearman correlation matrix
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(c) CITRIS-VAE, R2 correlation matrix (d) CITRIS-VAE, Spearman correlation matrix
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(e) iVAE∗, R2 correlation matrix (f) iVAE∗, Spearman correlation matrix
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(e) SlowVAE, R2 correlation matrix (f) SlowVAE, Spearman correlation matrix

Figure 27. Correlation matrices for the experiments on the Interventional Pong dataset. The y-axis shows the sets of latent dimensions that
were assigned to a certain causal factor. The set zψ0 is represented by ’no variable’ in the plots of CITRIS, where no interventions on
score left and score right have been provided. The x-axis shows the ground truth causal factors. The heatmap is the correlation matrix
between those factors (R2 left, Spearman right).



CITRIS: Causal Identifiability from Temporal Intervened Sequences

(1) - (2) - (3) ball y (4) ball x (5) ball y (6) - (7) -

(8) - (9) - (10) ball x (11) ball x (12) - (13) - (14) -

Figure 28. An example sequence with 14 frames in the Ball-in-Boxes dataset. The causal variables denoted below each image indicate the
variables which were intervened on at this time step, where an intervention on ball x changes the box identifier (left or right), and ball y
the y position of the ball.

Table 14. Experimental results for the Ball-in-Boxes dataset. The three evaluation causal factors are the box identifier ball b, the internal
ball x position ball xin, and the ball y position. In the correlation metrics, diag refers to the average score on its diagonal (optimal 1), and
sep for the average of the maximum correlation per causal variable besides itself (optimal 0). For the correlation metrics, we consider zψ0

to be the latent variables in which ball xin should be modeled, i.e. have a high correlation with. From the results, one can clearly see that
CITRIS has indeed learned to disentangle ball b and ball xin, showing that CITRIS learns the minimal causal variables.

Triplet evaluation distances ↓ Correlation metrics

ball b ball y ball xin Mean R2 diag ↑ R2 sep ↓ Spearman diag ↑ Spearman sep ↓
Oracle 0.00 0.01 0.01 0.01 - - - -

CITRIS-VAE 0.00 0.01 0.02 0.01 0.99 0.00 1.00 0.02
(stds) ±0.001 ±0.003 ±0.005 ±0.002 ±0.001 ±0.001 ±0.001 ±0.002

D.3. Ball-in-Boxes Example

Throughout the paper, we have referred to the example of a ball in a 2D space, which can be in one of two boxes. It can move
freely within a box, but cannot switch between them by itself. Only under interventions on its x position, we switch the box.
However, this intervention does not influence the internal position of the ball in the box. Under our theoretical setup of
CITRIS, the box identifier represents the minimal causal variable of x, while the internal position should be modeled in zψ0 .

In this section, we give empirical evidence that this is indeed also the case in practice. For simplicity, we implement it
by generating frames of 32× 32 resolution similar to our Pong environment (see Figure 28). However, the dynamics are
replaced by the ball-in-boxes example: we consider two causal variables, ball x and ball y. Both ball x and ball y follow a
truncated Gaussian distribution, i.e. move randomly with Gaussian noise over time in the boundaries of the box the ball
is in. Under interventions on ball y, we uniformly resample the position of the ball. Under interventions on ball x, we
switch the box without influencing the internal ball position. We generate the dataset by using a sequence of 100, 000
frames, and sample the intervention targets from Iti ∼ Bernoulli(0.2). On this dataset, we apply CITRIS-VAE with the
same experimental setup as for the Pong dataset, including the small regularizer λ = 0.01, to show that little change in the
KL divergence already encourages the disentanglement to zψ0

.

For evaluation purposes, we perform the correlation and triplet evaluation by predicting both the box identifier ball b and
the box internal position ball xin instead of just ball x. Note that this choice does not influence the training of CITRIS in
any way, but simply allows us to identify whether the split between ball b and ball xin has been learned or not. The results
are shown in Table 14. One can clearly see that CITRIS learned to disentangle the internal ball position ball xin and ball b,
since zψ0

has a R2 correlation score of almost one to ball xin, and close to zero for ball b. We show a visualization of the
R2 and Spearman correlation matrix in Figure 29. In conclusion, this experiment validates that CITRIS indeed learns the
minimal causal variables, i.e. the information that strictly depends on the individual interventions.
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(a) CITRIS-VAE, R2 correlation matrix (b) CITRIS-VAE, Spearman correlation matrix

Figure 29. The learned correlation matrices of CITRIS-VAE on the Ball-in-Boxes dataset. The y-axis shows the sets of latent dimensions
which are assigned to causal variable 1 (ball b/ball x), causal variable 2 (ball y), and to none of them (zψ0 ). The x-axis shows the true
causal factors. Each element of the matrix therefore describes the correlation between a set of latent factors and a ground truth causal
factor. CITRIS disentangles the causal factors as intended, and assigning the internal box position ball xin to zψ0 since it is independent
of the provided interventions.


