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Prelude 

Preparative liquid chromatography was introduced around the start of the 20th 

century. A few decades after its introduction it was realized that chromatography 

could offer a separation selectivity unmatched by any other technique. This selectivity 

meant the technique could be used to obtain pure substances from mixtures of 

components. Previously, such pure substances were acquired by extraction and 

crystallization, which was an arduous task, as it could take years to obtain the amount 

(several grams) of purified substance required for the reactions that were to be 

performed afterwards. Luckily, this changed with the introduction of 

chromatography, which could be performed significantly faster. Many developments 

occurred in the latter half of the century, aided by the introduction of the first 

microprocessors and the transfer from analogue to digital. As a result, the present-

day situation is significantly different. Whilst the ability to perform large-scale 

purification, or elimination, of particular compounds is still desirable, many 

separations are carried out at much smaller, so-called “analytical” scale and are 

combined with statistics and chemometrics, so that the information gathered from a 

small amount of sample is sufficient to answer contemporary questions. 

Chromatography is invaluable for resolving questions regarding the quality of water, 

the degradation of paintings, the health of an individual, the cause of a disease, the 

development of drugs and vaccines, the properties of a material, and many other 

important aspects of science and society.  
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Introduction  

In the field of separation science no process is more prevalent than chromatography. 

At the heart of any chromatographic separation is the distribution of compounds 

over two phases, usually one stationary (the stationary phase) and the other mobile 

(the mobile phase). In case a liquid mobile phase is used, the method is referred to 

as liquid chromatography (LC). The stationary phase may be either entirely a liquid, 

a solid, or a liquid immobilized on a solid support. Of these the latter two are 

currently most common. In its simplest form LC is realized by applying sample at the 

bottom of a sheet of inert material coated with a layer of adsorbent material (the 

stationary phase) and then allowing a solvent (the mobile phase) to be drawn 

through the sample and up the sheet through capillary action. A separation may be 

achieved because analytes in the mixture ascend the plate at different rates based 

on the type of stationary and mobile phase and the affinity of the analyte towards 

one phase relative to the other. This implementation of LC is termed thin-layer 

chromatography (TLC). TLC is still often employed, for example in organic-chemistry 

laboratories, due to its simplicity and low costs, allowing for quick and simple 

reaction monitoring. However, because TLC is challenging to automate and cannot1 

separate highly complex mixtures, LC is more commonly implemented as a technique 

in which the mobile phase and the unknown mixture are flushed through a steel or 

glass tube, termed a column, either by gravity or, preferably, by using a pump. 

Irrespective of the type of column used, this format is termed column LC, henceforth 

referred to simply as LC. It was the first documented implementation of 

chromatography, invented around the start of the previous century by Tswett [1].  

In LC the stationary phase can take many different forms [2–4]. Most commonly it is 

a layer of adsorbent material coated onto fine porous or non-porous inert particles 

that are packed into the column. In other cases the particles themselves are the 

stationary phase, or monolithic structures synthesized directly inside the column act 

as the stationary phase [2,3]. Sometimes no particles are used at all and the 

adsorbent layer is created on the inner wall of the column [4].  

 

 
1 At least not unless very specific adaptations are made that make the instrumental set-up significantly 

more complex   

 1 
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1.1. Basics of migration in (isocratic) chromatography  

Irrespective of the LC format (plate, column) or the type of stationary phase (particles, 

layer, monolith), as long as there is a constant homogenous flow of mobile phase 

moving in a constant direction through a homogenous medium (and if the 

separation conditions do not change) then the mean velocity at which the analyte 

migrates (𝑢𝑖) through the column remains constant and is a fraction (𝑅) of the 

velocity at which the solvent migrates (𝑢𝑚), or  

𝑢𝑖 = 𝑅𝑢𝑚                                (1.1)  

Hence, 𝑅 is a direct measure of the migration rate of the analyte. If 𝑅 does not 

depend on 𝑢𝑚, then the time it takes to obtain a separation is, logically, shortened 

when 𝑢𝑚 is increased, i.e. when the volumetric flowrate of the mobile phase through 

the column (𝐹) is increased. For an empty column with a volume 𝑉, given by the 

cross-sectional area (𝐴) and the length of the column (𝐿) as 𝑉 = 𝐴𝐿, 𝐹 is the volume 

pumped over a given time (𝑡) and is related to the average linear velocity of the 

mobile phase through the empty column (𝑢𝑚) as 𝐹 =
𝑉

𝑡
= 𝐴𝑢𝑚. When the column 

contains a solid medium the volume that is available is reduced by the volume of the 

solid. This is captured in the “porosity” (휀). The velocity through the column is 

reduced because of 휀 as, 𝐹 =
𝑉𝜀

𝑡0
= 𝐴𝑢𝑚휀. This reduced volume is referred to as the 

void volume of the column (𝑉0 = 𝑉휀, or 𝑉𝑚 = 𝑉휀, note that both 𝑉0 and 𝑉𝑚 are used 

interchangeably throughout this thesis). The time it takes for the mobile phase to 

move through this volume is referred to as the void time (𝑡0), given by,  

𝑡0 =
𝑉0

𝐹
=

𝐿

𝑢
                    (1.2) 

An analyte moves through the column at a velocity that is a fraction 𝑅 of the mobile 

phase and takes a different time to move through the column, which is commonly 

referred to as the retention time (𝑡𝑅) and given by        

𝑡𝑅 =
𝑉0

𝑅𝐹
=

𝑉𝑅

𝐹
=

𝐿

𝑢𝑖
                   (1.3)  

The times 𝑡0 and 𝑡𝑅 are the experimental parameters determined from a separation. 

For a single component, and in the absence of peak dispersion, or if dispersion results 

in symmetrical peaks, 𝑡𝑅 corresponds to the top of the peak. In reality peaks always 
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show some asymmetry and 𝑡𝑅 is better described as the first (uncorrected or raw) 

moment of the distribution, i.e. the centre of mass of the peak. Typically, 𝑡0 is 

measured by injecting a low-molecular-weight unretained tracer component. 

Assuming a homogenous column packing, i.e. a constant column permeability over 

the length of the column, 𝑡0 is representative of 𝑉0 or 𝑉𝑚 . However, if there are zones 

within the packing that cannot be entered by the tracer, as might be the case for a 

porous stationary phase, then 𝑡0 is influenced by the experimental conditions [5–7]. 

In such a case 𝑡0 may be a measure for the entire mobile phase volume in the column, 

i.e. the sum of the stagnant volume inside the pores (𝑉𝑝) and the moving interparticle 

volume (𝑉𝑖), or it may correspond more closely to only 𝑉𝑖 . Throughout this thesis we 

assume that 𝑡0 is representative of the entire volume 𝑉0.  

1.1.1. Size-exclusion chromatography  

Particularly for high-molecular-weight analytes, i.e. macromolecules such as proteins 

or polymers, 𝑉𝑝 may not be entirely accessible due to the size of the analyte. This is 

the basis for a technique called size-exclusion chromatography (SEC) [8–12]. In SEC 

the analyte elutes at a time given by,  

 𝑡𝑒 =
𝑉𝑖+𝐾SEC𝑉𝑝

𝐹
                     (1.4) 

where 𝐾SEC is the SEC distribution coefficient (𝐾SEC =
𝑉𝑒−𝑉𝑖

𝑉𝑝
), which describes how 

much of 𝑉𝑝 is accessible to the analyte (or to what extent an analyte is excluded from 

𝑉𝑝). In SEC the terms elution time (𝑡𝑒) and elution volume (𝑉𝑒 = 𝑉𝑖 + 𝐾SEC𝑉𝑝) are used, 

instead of “retention” time or volume, because there is no retention in SEC. For SEC, 

the mobile and stationary phase are chosen such as to minimize interactions of the 

analyte with the stationary phase. Because analytes cannot enter all of 𝑉𝑝, they elute 

before 𝑡0.  This corresponds to an 𝑅 in Equation 1.1 that is larger than one. Because 

the exclusion of the analyte depends on its hydrodynamic volume or its size, SEC can 

provide information on the molecular weight of the analyte. To obtain this 

information a calibration must be performed by using standards of known molecular 

weight, or the SEC separation must be coupled with light-scattering or viscometric 

techniques. Typically SEC yields information on a molecular-weight distribution 

(MWD), rather than a single value for the molecular weight. This is because most 

(synthetic) polymers consist of chains of different length, and because in SEC a 

 1 
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packing is used with a broad pore-size distribution. The MWD obtained from SEC is 

often translated into averages. Most commonly used are the number average and 

weight average molecular weights. These are defined as,  

𝑀𝑛 =
∑ 𝑁𝑖𝑀𝑖

∞
𝑖=1

∑ 𝑁𝑖
∞
𝑖=1

                     (1.5) 

𝑀𝑤 =
∑ 𝑁𝑖𝑀𝑖

2∞
𝑖=1

∑ 𝑁𝑖𝑀𝑖
∞
𝑖=1

                             (1.6) 

Where 𝑁 is the number of molecules and 𝑀 is the molecular mass of said molecules. 

The ratio of these two averages (
𝑀𝑤

𝑀𝑛
) is indicative of the width of the distribution of 

molecular weight in the sample. This ratio used to be, and still is commonly, referred 

to as the polydispersity index (PDI), although nowadays also the term dispersity (Đ𝑀) 

is used. In most cases the obtainable PDI depends on the polymerization technique. 

For free-radical and condensation polymerization relatively large values are obtained 

(larger than 1.5 in both cases), while with other methods, such as ionic 

polymerization, narrow distributions can be obtained.  

1.1.2. Interaction liquid chromatography  

For small2 compounds exclusion effects usually do not play a significant role. This is 

a simpler situation, because 𝑡𝑅 now reflects the analyte distribution between the 

mobile and stationary phase on a specific column. In this case 𝑅 corresponds to the 

equilibrium fraction of the analyte in the mobile phase and 1 − 𝑅 corresponds to the 

fraction in the stationary phase. Nowadays, the ratio 
1−𝑅

𝑅
 is commonly referred to as 

the retention factor (𝑘), given by:  

𝑘 =
1−𝑅

𝑅
=

𝑡𝑅−𝑡0

𝑡0
=

𝑉𝑅−𝑉0

𝑉0
                            (1.7) 

For small components the values of 𝑘, 𝑡𝑅 and 𝑅 depend on how much stationary-

phase surface area there is available for the analyte to interact with (adsorb onto, or 

partition into) relative to 𝑉0. As previously mentioned, the stationary phase usually 

corresponds to a layer of adsorbent material grafted onto an inert packing. Often 

this layer is accessible to the analyte and is of a finite thickness, so that it is better 

described as a volume or a volume equivalent, 𝑉𝑠,  rather than a surface, although 

 
2 Relative to the average pore diameter of the packing.  
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both are used interchangeably. The ratio 
𝑉𝑠

𝑉0
 can change based on the packing inside 

a column and, for example, on how much of the stationary phase was grafted onto 

the inert support. To account for such differences, 𝑘 may be converted to the 

distribution coefficient (𝐾LC), if two conditions are met. Namely, i) the exact volumes 

or volume equivalents of the mobile and stationary phase must be known, and ii) the 

separation must be performed on an analytical scale, using low concentrations of 

injected sample, so that it can be assumed that no competition occurs between 

analytes for interaction with the stationary phase. This latter condition is often 

referred to as “linear chromatography”. Under these conditions the concentration of 

the analyte in one phase is proportional to its concentration in the other phase, so 

that the equilibrium isotherm is a straight line with slope 𝑘𝛽−1 or,  

𝑘 =
𝑁𝑠

𝑁𝑚
=

𝑉𝑠

𝑉𝑚
𝐾LC = 𝛽𝐾LC                         (1.8) 

Where the subscripts 𝑠 and 𝑚 denote the stationary and mobile phase, respectively; 

𝑁 is the number of molecules in the respective phase, 𝑉 is the volume (or volume 

equivalent) of the respective phase and 𝛽 is the volumetric phase ratio of the column 

(sometimes also defined in literature as 𝛷 = 𝛽−1). In practice, 𝛽 and 𝑡0 are difficult to 

determine precisely, and may change based on experimental conditions [13–15].  

1.1.3. Interaction polymer chromatography  

So far two extremes have been discussed. Namely, i) large analytes that do not 

interact with the stationary phase and undergo a separation solely by being excluded 

from (part of) 𝑉𝑝, and ii) small compounds that can enter all of 𝑉𝑝 and are separated 

by means of differing types or strengths of interactions with the stationary phase. 

However, depending on the experimental conditions and the analyte, other 

situations can be imagined. For example, if the pore diameter becomes sufficiently 

small, then exclusion will start to play a role even for small analytes. Vice versa, if the 

mobile and stationary phase and temperature are chosen such that interaction with 

the stationary phase is promoted, then large analytes can experience both exclusion 

and interaction. Of these two examples the former is rare, because most columns 

that are in use today feature (relatively) large pore sizes. The latter situation is more 

common and may be referred to as liquid adsorption chromatography (LAC) or 

interaction polymer chromatography (IPC). Because there is also a stationary phase 

 1 
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layer on the outside of the porous packing material, a macromolecule can be 

simultaneously excluded from 𝑉𝑝, while also being delayed due to interactions with 

the fraction of 𝑉𝑠 that is in contact with the interparticle volume. Because not all 

analytes are fully excluded from all pores, each analyte will have a different fraction 

of 𝑉𝑠 available to interact with. However, the effect of a difference in accessible 𝑉𝑠 on 

𝑡𝑅 is not usually observed, because the strength of interaction with the stationary 

phase is magnified by the size of the analyte. In other words, those analytes that 

should be most affected by a lower amount of accessible stationary phase also tend 

to be fully retained. The differences in accessible 𝑉𝑠  (𝑉𝑠′) likely only matters when 

interactions are very weak. Experimental examples that might correspond to this 

situation are included in Chapter 4. To account for both exclusion and interaction, 

Equations 1.4, 1.7 and 1.8 can be combined, and the elution volume is given by  

𝑉𝑒 = 𝑉𝑖 + 𝐾SEC𝑉𝑝 + 𝐾LC𝑉𝑠                                        (1.9) 

The above equation assumes that the probability that an analyte is excluded from 

the pore volume is separate from the probability that the analyte interacts with the 

stationary phase. When 𝐾SEC is considered to be not only representative of the 

amount of exclusion from pores, but also representative of potential differences in 

𝑉𝑠′, then both events can be described by a single distribution coefficient as 𝐾 =

𝐾SEC𝐾LC. The potential situations described by Equation 1.9 are illustrated in Figure 

1.1 

Figure 1.1: Situations corresponding to 𝑲𝐋𝐂 > 𝟏 and A) 𝑲𝐒𝐄𝐂 = 𝟎, B) 𝑲𝐒𝐄𝐂 = 𝟏, and C) 

𝟎 < 𝑲𝐒𝐄𝐂 < 𝟏.    

 

The distribution coefficients (𝐾, 𝐾SEC and 𝐾LC) may be described in terms of the 

partial molar change in Gibbs free energy, through the van ’t Hoff equation:   
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𝐾 = 𝑒
−

∆𝐺°

𝑁𝐴𝑘𝐵𝑇 = 𝑒
−

∆𝐻°

𝑁𝐴𝑘𝐵

1

𝑇
+

∆𝑆°

𝑁𝐴𝑘𝐵             (1.10) 

where ∆𝐺°, ∆𝐻° and ∆𝑆° are the partial molar changes in Gibbs free energy, enthalpy, 

and entropy, respectively, for transfer of the analyte from the mobile phase to the 

stationary phase. 𝑁𝐴 and 𝑘𝐵 are Avogadro’s  and Boltzmann’s  constant, and 𝑇 is the 

temperature in Kelvin. ∆𝐻°, and ∆𝑆° (and 𝑉𝑠) are often considered invariant with 𝑇, 

and pressure (𝑃), which is not always correct [16]. The logarithmic form of the van ’t 

Hoff equation (ln 𝑘 = −
∆𝐻°

𝑁𝐴𝑘𝐵

1

𝑇
+

∆𝑆°

𝑁𝐴𝑘𝐵
+ ln 𝛽), or a mathematically equivalent form 

(log 𝑘 = 𝑎 + 𝑏
1

𝑇
), have also been used to model the effect of 𝑇 on 𝑘. Provided that 𝑉𝑠, 

∆𝐻°, and ∆𝑆° are invariant with 𝑇, and assuming the resulting change in pressure 

does not significantly affect these parameters, there is a linear relationship between 

ln 𝑘 and 
1

𝑇
, with a slope of −

∆𝐻°

𝑁𝐴𝑘𝐵
 and a y-intercept of 

∆𝑆°

𝑁𝐴𝑘𝐵
+ ln 𝛽 These assumptions 

are often reasonable over the range of temperatures used in LC (5 to 80ºC), but are 

not always valid [16]. Typically the slope increases with the molecular weight of the 

analyte, so that small temperature differences result in large changes in 𝑘 for 

macromolecules. This effect is used in Chapter 2 of this thesis to demonstrate that 

polymers can relatively easily be trapped by creating only small differences in 

temperature.  

When the statistical definition of entropy is used, i.e. 𝑆 = 𝑘𝑏 ln 𝛺, where 𝛺 is the 

number of microstates of the system, it follows that, according to our definition of 

∆𝑆°, in SEC ∆𝑆° < 0, since there is a reduction in the number of conformational states 

a polymer can have upon entering a pore. On the other hand, a change in ∆𝐻° upon 

entering a pore is considered negligible (∆𝐻° = 0)3. When an analyte instead 

interacts with (i.e. adsorbs on, or partitions into) the stationary phase, it is also 

expected that ∆𝑆° < 0, as the number of conformations near the surface of the 

stationary phase is reduced relative to the number of possible conformations in 

solution. In some literature this effect is considered negligible. However, to obtain 

reasonable retention factors (1 < 𝑘 < 10), experimental parameters are implicitly 

tuned such that the chromatographic separation is performed under conditions 

where ∆𝐻° and ∆𝑆° are (nearly) compensated. This is the case irrespective of the size 

of the analyte, indicating that the latter change in ∆𝑆° is not negligible. Finally, for 

 
3 Note that these changes are not indicative of the sign of ∆𝐺°. 
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interactions with the stationary phase ∆𝐻° < 0. With these assumptions 𝐾 can be 

written as:   

𝐾 = 𝐾SEC𝐾LC ≅ 𝑒
∆𝑆°SEC
𝑁𝐴𝑘𝐵 𝑒

−
∆𝐻°

𝑁𝐴𝑘𝐵𝑇
+

∆𝑆°LC
𝑁𝐴𝑘𝐵              (1.11)  

Where the changes in ∆𝑆° due to exclusion, and due to adsorption or partitioning 

into the stationary phase are separated into ∆𝑆°SEC and ∆𝑆°LC. For a column packed 

with non-porous particles, or for small analytes that do not experience exclusion, 

𝐾SEC = 1 and so the equation (and situation) are easier to describe   

𝐾 = 𝐾LC ≅ 𝑒
−

∆𝐻°

𝑁𝐴𝑘𝐵𝑇
+

∆𝑆°LC
𝑁𝐴𝑘𝐵                           (1.12) 

Furthermore, in such a packing differences in 𝑉𝑠 with analyte size do not affect the 

retention and 𝑡0 should be more representative of 𝑉0 (𝑉𝑖) than in a porous packing.   

1.1.4. Liquid chromatography at critical conditions  

For certain experimental conditions it can be observed that the elution order of a 

homopolymer featuring non-interacting end groups becomes independent of 

molecular weight. These conditions are often referred to as “critical”, and the method 

is thus called liquid chromatography at critical conditions (LCCC) [17–21]. These 

conditions can be found by fine-tuning the mobile-phase composition (e.g. by 

varying the volume fraction of strong mobile phase modifier, 𝜑, in a binary solvent 

mixture), 𝑇 or 𝑃. Usually, 𝜑 is adjusted while 𝑇 and 𝑃 are constant. For a specific 

binary solvent mixture critical conditions then correspond to 𝜑crit. However, in 

principle it should be possible to find critical conditions at multiple combinations of 

mobile-phase composition, temperature and pressure. For example, a larger 𝜑crit will 

be found at lower temperatures, if retention increases with a decrease in 

temperature, and vice versa. This also means that it is possible to obtain critical 

conditions while simultaneously changing solvent polarity through the use of ternary 

solvents [22,23].  

At critical conditions the free energy of transfer of a particular type of monomer in 

the polymer backbone is zero (∆𝐺mon
𝑜 = 0). In other words, at these conditions ∆𝐻° 

scales with analyte molecular weight in the same way that 𝑇∆𝑆° does. Often LCCC is 

portrayed as an intermediate mode of chromatography, between exclusion (elution 

before 𝑡0) and interaction chromatography (elution after 𝑡0). As a result, in some 
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cases critical conditions are referred to as those conditions where the entropic term 

from exclusion (∆𝑆°SEC) counteracts the enthalpic term (∆𝐻°) of the interaction with 

the stationary phase. This can only be the case if interaction with the stationary phase 

increases the same way as does exclusion. However, in Chapter 3 it is shown that 

critical conditions can also be obtained on columns packed with non-porous 

particles, while on a porous packing no conditions could be found that were entirely 

critical. On a non-porous packing exclusion is absent and so to reach critical 

conditions ∆𝐻LC
𝑜  must equal 𝑇∆𝑆LC

𝑜 , or 𝐾LC = 1. Since it is unlikely that 𝑇∆𝑆LC
𝑜  would 

be absent on a porous packing, it is likely that partial exclusion from the pores 

actually hinders obtaining fully critical conditions on a porous packing.   

One of the primary applications of LCCC for homopolymers is a separation based on 

end groups [20,24–26]. However, critical conditions do not solely exist for 

homopolymers that have a backbone consisting of an identical repeating unit. For 

statistical copolymers critical conditions can also be established [27–30]. For such 

copolymers the critical conditions will be determined by the chemical composition 

of the copolymer. However, because most copolymers feature a chemical 

composition distribution (CCD) the sample will also feature a distribution in 𝜑crit, and 

so LCCC can only be used to analyse a small (compositional) fraction of such a 

copolymer. For (large) block copolymers critical conditions do not exist for the entire 

copolymer [28,31]. However, critical conditions for individual blocks may be 

established. Therefore, in case of di-block copolymers it is possible to obtain 

separations based on the block-length of one of the blocks by performing an 

isocratic separation at 𝜑crit of the other block  [31]. For this to be practical, 𝜑crit for 

one of the blocks must correspond to “exclusion” conditions of the other block, as 

otherwise an isocratic interaction-based separation will occur for the block that is not 

at critical conditions and retention would increase too strongly with molecular weight 

to elute a polydisperse sample. If the block is too large and starts to interact with the 

stationary phase very broad peaks will be obtained, or the copolymer will not elute 

from the column. Usually, which of the two modes the non-critical block elutes in 

can be adjusted based on whether critical conditions are established in normal-phase 

LC, or the reverse mode, RPLC. LCCC usually works best for a di-block copolymer, 

because for tri-block or even larger number of segments, the order of the blocks 

begins to matter. For example, while the middle block in a tri-block copolymer can 
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be made to not interact with the stationary phase, it still connects the two outside 

blocks physically, which will affect the separation that is obtained.   

1.1.5. Modelling the effect of mobile-phase composition on migration  

After selection of the stationary phase, the most common parameter to be adjusted 

for method development is the mobile-phase composition. A change in 𝑘, or the 

extent of interaction of the analyte with the stationary phase, may be described in 

terms of 𝜑. It is valuable to know the relationship between 𝑘 and 𝜑, as this allows 

one to estimate 𝑡𝑅 when 𝜑 is adjusted without actually performing the experiment, 

which can greatly reduce method development time. Several strategies exist [32]. 

One of these is to model the influence of 𝜑 on 𝑘 empirically. Depending on the mode 

of chromatography and the analyte, different models may be applicable [33,34]. Of 

course any model is only applicable if the analyte actually elutes from the column 

after experiencing interaction with the stationary phase. A wealth of different models 

exists for specific situations [16,33–41]. For an isocratic RPLC separation of uncharged 

analytes the influence of 𝜑 on 𝑘 has been shown to be effectively described using a 

quadratic model (QM) [42],  

ln 𝑘 = ln 𝑘0 − 𝑆1𝜑 − 𝑆2𝜑2                            (1.13) 

Where ln 𝑘0 is the y-intercept, or ln 𝑘 extrapolated to 100% weak solvent (𝜑 = 0), 𝑆1 

is a slope parameter, and 𝑆2 is a curvature parameter. Because reasonable 𝑘 values 

(e.g. 1 < 𝑘 < 10) for polymers are only encountered across a (very) narrow range of 

𝜑, Equation 1.13 can often be simplified to 

ln 𝑘 = ln 𝑘0 − 𝑆𝜑                              (1.14) 

𝑘 = 𝑘0 𝑒−𝑆𝜑               (1.15) 
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which is a log-linear model often 

referred to as the linear-solvent 

strength (LSS) model [43]. When 

determined on different columns of 

the same type (e.g. C18), Equation 

1.8 suggests that larger values of 𝑘0 

will be encountered for columns 

featuring larger values of 𝛽. In 

practice this corresponds to 

columns featuring smaller pore 

sizes. For a homologues series ln 𝑘0 

and 𝑆 are correlated, resulting in a 

bundle of lines, where the largest 

analyte has the steepest slope and 

vice versa [27,30]. This is illustrated 

in Figure 1.2.  

When the effect of exclusion can be neglected (such as on non-porous packings), 

the critical composition (𝜑crit) corresponds to the intersection point of this bundle. 

Even when the individual lines do not perfectly intersect at one point 𝜑crit may still 

be estimated by assuming a linear correlation between 𝑆 and ln 𝑘0, i.e. 𝑆 = 𝑝 + 𝑞 ln 𝑘0 

[27,30]. In that case a plot of 𝑆 versus ln 𝑘0 features a slope of 𝑞 ≅
1

𝜑crit
 and a y-

intercept of 𝑝 ≅
ln(𝛽−1)

𝜑crit
. The retention factor at 𝜑crit, in the absence of end-group 

effects, should be 𝑘crit = 𝛽.  

For large analytes the above model can only be correct when the contribution of 

exclusion is absent (𝐾SEC ≅ 1) or if exclusion effects cannot occur during the 

experiment (as in a solvent gradient experiment). In reality, when analytes are eluted 

from porous packings (𝐾SEC < 1) and so the measured elution volume would be 

smaller than predicted. Naturally, this will be more noticeable when 𝐾LC is very small, 

i.e. when 𝜑 is very close to 𝜑crit. At such conditions (𝐾𝐿𝐶 ≅ 1) it may be necessary to 

account for the contribution of exclusion. Assuming 𝐾SEC and 𝑉𝑝 are independent of 

𝜑, the predicted retention time can be corrected by adjusting 𝑉0 based on analyte 

size. The correction factor can be determined with a prior SEC experiment.  

Figure 1.2: Natural logarithm of the retention 

factor vs. mobile-phase composition for a series 

of polystyrene standards of increasing 

molecular weight (increasing from red to purple 

traces).   
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In certain cases a different, so-called polymer model (PM), is used to account for the 

contribution of SEC. This model is based on a statistical theory of polymers in large 

slit-like pores [35,44]. In that model 𝐾𝑃𝑀 is given by       

𝐾𝑃𝑀 = 1 −
4

√𝜋

𝑅𝑔

𝐷
+ 2

𝑅𝑔

𝐷

𝑌(−𝑐𝑅𝑔)−1

𝑐𝑅𝑔
                                 (1.16a)  

𝑌(−𝑐𝑅𝑔) = 𝑒𝑐𝑅𝑔
2

[1 − erf (−𝑐𝑅𝑔)] = 𝑒𝑐𝑅𝑔
2

[erfc (−𝑐𝑅𝑔)]                           (1.16b) 

where 𝑅𝑔 is the radius of gyration of the polymer molecule, 𝐷 is the (average) pore 

diameter, and 𝑐 is an interaction parameter that varies from 𝑐 < 0 to 𝑐 > 0 during 

the transition from SEC to IPC. In Equation 1.16b erf denotes the error function and 

erfc the complimentary error function (erfc(x) = 1 − erf (x)). To calculate 𝑉𝑅 the 

relationship between 𝑐 and 𝜑 must be known. Often 𝑐 is considered to vary linear 

with 𝜑 over a small range of 𝜑, which is the same assumption made in LSS theory 

(i.e. ∆𝐻° decreases linearly with 𝜑). It is further assumed that both 𝑅𝑔 and 𝐷 are 

invariant with 𝜑, or that those effects are negligible.  

If all assumptions hold 𝑉𝑅 is calculated (if 𝑉𝑖 and 𝑉𝑝 are known) from Equation 1.4 by 

determining three parameters: 𝑅𝑔
𝑑𝑐

𝑑𝜑
, 

𝑅𝑔

𝐷
, and 𝜑crit, from at least three (isocratic) 

experiments. It is assumed that the equation for SEC (Equation 1.4) can also describe 

retention in IPC, and that the influence of 𝑉𝑠 is represented by 𝑉𝑝, which is likely not 

correct. The value of 𝐾𝑃𝑀 varies between 𝐾𝑃𝑀 < 1 for 𝑐 < 0 to 𝐾𝑃𝑀 > 1 for 𝑐 > 0. At 

𝑐 ≅ 0, the last term in Equation 1.16a approaches 
4

√𝜋

𝑅𝑔

𝐷
 so that 𝐾𝑃𝑀 = 1. In this 

model the SEC contribution is (for the most part) captured in the first part of the 

equation (−
4

√𝜋

𝑅𝑔

𝐷
), since the last part, which captures the contribution of interaction, 

(+2
𝑅𝑔

𝐷

𝑌(−𝑐𝑅𝑔)−1

𝑐𝑅𝑔
) quickly becomes negligible when 𝑐 ≪ 0. This model has the benefit 

of being able to describe SEC, LCCC and IPC, but it also implies that a (negative) SEC 

contribution is required to cancel out the last term, to reach critical conditions, which 

may not be realistic.   
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Within the vicinity of 𝜑crit a simplified model has been described [28], i.e.   

𝐾 = 𝑒
(2

𝑅𝑔
2

𝐷𝑎

(𝑐𝑐𝑟𝑖𝑡−𝑐)

𝑘𝑏𝑇
)
                                                     (1.17) 

where 𝑘𝑏 is the Boltzmann constant, and 𝑎 is the thickness of a “monomolecular” 

adsorption layer. This model is essentially equivalent to the LSS model (Equation 

1.15) if ln 𝑘0 = ln (𝛽𝑒
2𝑅𝑔

2

𝐷𝑎𝑘𝑏𝑇
𝜑crit

) and 𝑆 =
2𝑅𝑔

2

𝐷𝑎𝑘𝑏𝑇
, so that ln 𝑘 = ln (𝛽𝑒

2𝑅𝑔
2

𝐷𝑎𝑘𝑏𝑇
𝜑crit

) −

2𝑅𝑔
2

𝐷𝑎𝑘𝑏𝑇
𝜑, as long as it is assumed that 𝑐 varies linearly with 𝜑 over a small range of 𝜑.  

 

1.1.6. Modelling migration in solvent-gradients   

To expand upon the range of analytes that may be analysed within one experiment 

and within a reasonable time, gradient-elution can be used. In the case of polymers 

gradients are typically required, as retention scales approximately exponentially with 

molecular weight. Mobile-phase (or sometimes temperature) gradients are 

abundantly used, especially to assess a copolymer’s CCD. As copolymers feature a 

wealth of critical compositions, based on their CCD, it is not possible to obtain critical 

conditions for all analytes in a copolymer sample. However, with gradient-elution it 

is possible to obtain pseudo-critical behaviour for all analytes, if the influence of 

molecular weight in the gradient can be sufficiently supressed [29].  

While the principle of solvent-gradient-elution LC appears straightforward, it is 

significantly more complex than isocratic LC, because a change in mobile-phase 

composition is accompanied by changes in, for example, solvent viscosity, analyte 

solubility and size (in solution) [45], the possibility of system or column-induced 

gradient deformation [46], and potential changes in the stationary phase [47]. 

Additionally, mobile-phase components may be (partly) retained during the gradient 

[13,48–50]. Typically, solvents are chosen that do not have large differences in 

viscosity. However, there is still a change in pressure during the gradient that is often 

not taken into account. Pressure effects are usually small for low-molecular-weight 

analytes [51–55], but they tend to increase with increasing analyte molecular weight. 

The other parameters (analyte solubility, size, gradient deformation, changes in 

stationary phase) are not commonly accounted for. The effects are expected to be 
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small, but this will again depend on the method, system hardware, and analyte. 

Equations have been derived that allow for reasonable predictions of retention time 

in gradient-elution LC, which ignore these secondary effects [36–39,42]. Accurate 

predictions require that i) the initial mobile-phase composition of the gradient is 

sufficiently weak, ii) the actual gradient shape, or the change in 𝜑 with time (𝑡), is 

known, and iii) it is known (or an assumption is made on) how 𝑘 changes with 𝜑. For 

polymers an additional requirement is that the analyte is soluble in a relatively weak 

mobile phase, so that the analytes can be retained on the column, before the analyte 

elutes under “SEC-like” elution in a phenomenon called “breakthrough” [56]. In case 

of a linear gradient program, and neglecting potential gradient deformation, the 

change in 𝜑 with 𝑡 is considered equivalent to a simple linear equation:  

𝜑(𝑡) = 𝜑init +
𝑑𝜑

𝑑𝑡
𝑡 = 𝜑init + 𝜑′𝑡                                     (1.18)  

In which 𝜑init equals 𝜑 at the start of the gradient (𝑡 = 0), and 
𝑑𝜑

𝑑𝑡
 is the slope of the 

gradient or the gradient rate (𝜑′). For the dependence of 𝑘 on 𝜑 it is assumed that 

one of the above models (QM, LSS, PM) can describe a change in the local retention 

factor of the analyte due to the gradient. For a polymer different situations can be 

imagined in gradient-elution (disregarding the situations where elution occurs by 

breakthrough or does not occur at all), such as  

i) The polymer is soluble only in combinations of mobile phases that are 

stronger than those in which the polymer has significant interactions 

with the stationary phase. The analyte elutes during or after the gradient 

around the mobile-phase composition where it is first soluble (𝜑sol) if 

the solubilization kinetics are sufficiently fast. In this case column length 

is not expected to influence the elution composition.  

ii) The polymer is soluble in a relatively weak mobile phase, so that 

interaction with the stationary phase may determine retention. In this 

case the polymer will elute before or around the critical composition 

(𝜑crit) if the final mobile phase-composition of the gradient is sufficiently 

strong. If the latter is not the case, only lower-molecular-weight analytes 

may elute from the column with 𝑘 > 0.   
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These two cases can be referred to as precipitation/redissolution chromatography 

and interaction chromatography, respectively, and are illustrated in Figure 1.3 

[45,57,58].   

 

Figure 1.3: Two types of gradient-elution liquid chromatography (precipitation/redissolution, 

and interaction chromatography) for polymers.  

    

Note that case i) can be shown to occur even without a column (providing a 

separation based on molecular weight), but that this results in bad peak shapes and 

significant breakthrough, since the analyte cannot be sufficiently focused or 

separated from the injection solvent. Provided that the polymer is soluble in a weak 

mobile-phase, two different situations may occur depending on the initial mobile-

phase composition of the gradient. Namely,  

i) When 𝜑init > 𝜑crit,  so that the gradient will not play a role and elution 

occurs with a SEC-like mechanism before 𝑡0.   

ii) When 𝜑init < 𝜑crit. In this case elution will depend primarily on the 

retention factor of the analyte at the initial mobile-phase composition 

and on 
𝑑𝑘

𝑑𝜑
.  

For case ii), 𝜑init < 𝜑crit, elution will occur either isocratically before the gradient 

catches up with the analyte zone, during the gradient, or after the gradient. When an 

analyte elutes during the gradient the elution mechanism cannot change from IPC 

to SEC because if the analyte would experience exclusion it would nearly immediately 

experience a weaker solvent and a strong interaction with the stationary phase. 
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Therefore, the ability to describe a transition from IPC to SEC, as offered by the PM, 

loses its main advertised  advantage when isocratic elution is replaced by mobile-

phase gradients. The retention time of an analyte during a gradient can be calculated 

by solving a differential equation, given by Equation 1.19 [37–42].  

∫
1

𝑡0

𝑑𝑡

𝑘
 

𝑡𝑅

0
= 1                (1.19) 

For the LSS model (Equation 1.14) and a linear gradient (Equation 1.20) the solution 

for an analyte eluting within the gradient, after accounting for a delay (𝑡dwell) due to 

the dwell volume of the instrument (the volume required for a change in mobile-

phase composition to reach the start of the column), is  

𝑡𝑅 =
1

𝜑′𝑆
ln [1 + 𝑆𝜑′𝑘init (𝑡0 −

𝑡dwell

𝑘init
)] + 𝑡dwell + 𝑡0              (1.20) 

in which 𝑘init is the retention factor at the initial conditions. In case an initial delay is 

programmed into the gradient, this can be added to 𝑡dwell . For polymers eluting 

within the gradient, within a narrow range of 𝜑 (i.e. for large-molecular-weight 

polymers) the LSS model has been shown to allow for reasonable predictions of the 

retention time, as long as gradient experiments are also used to establish 𝑘0 (or 𝑘init) 

and 𝑆. Note that there will likely be differences in 𝑘0 and 𝑆 measured on different 

systems, since a change in pressure occurs during the mobile phase gradient, and 

potentially because of system-induced gradient deformation [46]. As mentioned 

above Equation 1.19 can only be solved for linear gradients, and not for the more-

complex gradient profiles obtained due to insufficient mixing and/or other system 

imperfections [46,59]. A correction procedure for these cases is described in Chapter 

5. For such, more-complex gradients shapes a combination of multiple linear 

gradient segments can be used to approximate the gradient profile. To do so 

Equation 1.20 can be extended, as has been done in various works [39,46].  

1.1.7. Challenges when modelling the retention of (co)polymers 

Irrespective of the validity of the above retention models, for polymers a retention 

modelling approach is much-more challenging than for low-molecular-weight 

analytes, because the elution time is a function of multiple properties. The most-

important of these are the molecular weight and the chemical composition. As a rule, 

we are dealing with distributions, rather than with uniquely defined properties. The 
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first problem with modelling the retention of polymers is the extreme change in 𝑘 

with 𝜑 for large analytes. As a result, high-molecular-weight analytes, such as most 

synthetic polymers, experience measurable retention only within a very narrow range 

of 𝜑, and will not elute from the column at weaker mobile-phase compositions. This 

makes it often difficult, or practically impossible, to achieve isocratic IPC separations 

of high-molecular-weight (co)polymers. Therefore, gradient-elution LC must be 

used. However, this does not solve all problems. For small analytes retention 

modelling can be challenging, primarily when analytes cannot be properly tracked 

between measurements, for example due to changing elution orders and analyte co-

elution. In those cases mass spectrometry is very helpful to discriminate between 

various analytes [60,61]. For polymers this problem is largely the same, but 

exacerbated by the molecular weight of the analytes and the much larger number of 

individual species, especially in the case of copolymers. Additionally, aspects such as 

crystallinity or solubility may hinder the retention modelling of (co)polymers [45,62].  

If online LC-MS is not feasible, then to apply the above retention models either an 

off- or on-line fractionation is required so that the polymer distribution may be 

deconvoluted. A different strategy is to predict the retention of copolymers 

consisting of two different monomers based on the retention characteristics of 

individual homopolymers. Such an approach is significantly more feasible, since 

standards featuring a narrow MWD are more likely available for homopolymers than 

for copolymers. Some work on this has been performed by Brun et al. and Fitzpatrick 

et al. [27,28]. The results from this work show that for high-molecular-weight 

copolymers, that elute close or at the (pseudo) critical composition, that feature a 

random distribution of the two (and likely also more) monomers in the chain, 

retention under gradient conditions can be considered equivalent to the weighted 

average of the natural logarithms of the retention factors of both homopolymers. 

Accounting for the mass fractions of each monomer, 𝑋𝐼 and 𝑋𝐼𝐼 = (1 − 𝑋𝐼), this 

corresponds to:     

ln 𝑘𝐶𝑃 = 𝑋𝐼ln 𝑘𝐼 + (1 − 𝑋𝐼) ln 𝑘𝐼𝐼                       (1.21) 

For copolymers that feature larger sections of one repeat unit in the chain, i.e. more 

blocky copolymers, this is generally believed to be no longer true and the retention 
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of the polymer is expected to depend on the “randomness” (or “blockiness”) of the 

copolymer [28], as 

ln 𝑘𝐶𝑃 =
1

2
[ln 𝑘𝐼 (1 − 𝜈𝑋𝐼𝐼) + ln 𝑘𝐼𝐼 (1 − 𝜈𝑋𝐼) +  {[ln 𝑘𝐼 (1 − 𝜈𝑋𝐼𝐼) + ln 𝑘𝐼𝐼 (1 − 𝜈𝑋𝐼)]2 −

4 ln 𝑘𝐼 ln 𝑘𝐼𝐼(1 − 𝜈)}
1

2]              (1.22) 

where 𝜈 corresponds to the randomness of the copolymer, and varies from 0 to 1 to 

2 for a block, random and alternating copolymer, respectively. This model returns 

Equation 1.21 for 𝜈 = 1 and predicts increased retention for copolymers featuring 

𝜈 < 1, i.e. copolymers that feature a more blocky structure. The idea that a block 

copolymer elutes later than a statistical copolymer of equivalent overall chemical 

composition corresponds fairly well to experimental results [28]. However, so far no 

work has been performed to validate Equation 1.22 experimentally. This is most 

likely because samples that feature a well-defined randomness are very difficult to 

obtain. In part this is because no methods are available that can separate based 

purely on polymer sequence. In fact, no experimental methods exist that can provide 

detailed information on the underlying sequence distribution. According to 

Equation 1.22 information on sequence distributions may, in principle, be obtained 

by using (gradient-elution) IPC.   

1.2. Peak dispersion, resolution and peak capacity   

1.2.1. Plate model  

The degree of separation between a pair of compounds, in isocratic elution, can be 

characterized by the ratio of the net retention times of the two compounds, known 

as the selectivity.  

𝛼 =
𝑡𝑅,2−𝑡0

𝑡𝑅,1−𝑡0
=

𝑘2

𝑘1
                              (1.23)  

Of course, the actual performance of a separation depends not only on the positions 

of peaks in the chromatogram, but also on their width. The peak width that is 

recorded at the end of a separation is the result of multiple sources of variance from 

within the system. Examples include broadening in the volume of the detector cell 

or connection capillaries or during the injection procedure, broadening during the 

separation, and broadening as a result of stagnant volumes in the system caused by, 
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for example, bad connections between the different parts of the system. 

Furthermore, in gradients a small sharpening of the analyte zone may occur due to 

a difference in retention between the front and rear of the peak. However, this effect 

is usually small. Additional sources of variance can be differences in viscosity, or 

temperature gradients in the system, most typically caused by viscous heating within 

the column [63]. The measured peak width will be the sum of all variances [64]. These 

different sources of band broadening or sharpening also often induce changes in the 

peak shape. Since peaks are often described by a (symmetrical) Gaussian distribution, 

most of the equations that were previously derived to describe the performance of 

a separation are not entirely correct. Instead, peaks are better described by, for 

example, exponentially modified gaussian (EMG) or modified Pearson VII 

distributions, allowing one to take into account the peak asymmetry [65,66]. 

Nevertheless, since most of the equations derived for symmetrical peaks are still 

commonly used we have chosen to describe those in this thesis.  

Usually peak width is directly related to the plate number (𝑁), which is a property 

adapted to chromatography from industrial-scale distillation columns by Martin and 

Synge in 1941 [67]. In this plate theory, a column is considered (incorrectly) to consist 

of a number of locations or plates of finite volume. At each plate an equilibrium is 

achieved between the mobile and stationary phases and transfer from one plate to 

the next occurs when a certain amount of mobile phase is added. Accordingly, peak 

broadening is essentially only caused by the distribution coefficient and the number 

of plates. The resulting predictions of this theory were that peak broadening 

increased with increasing retention time and that it is minimized by decreasing the 

(theoretical) plate height (𝐻), which is a measure for the distance between successive 

plates. The results of this theory can be summarized in Equations 1.24 to 1.26,  

𝜎𝑡 =
𝑡𝑅

√𝑁
=

1

√𝑁
𝑡0(1 + 𝑘)                        (1.24a) 

𝜎𝑉 =
𝑉𝑅

√𝑁
=

1

√𝑁
𝑉0(1 + 𝑘)                        (1.24b) 

𝜎𝑥 = √𝐻𝑥                      (1.24c)        

𝐻 =
𝐿∗σ𝑡

2

𝑡𝑅
2 =

𝐿

𝑁
                              (1.25) 
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𝑁 = 16 (
𝑡𝑅

𝑤𝑏
)

2

= 5.54 (
𝑡𝑅

𝑤1/2
)

2

= (
𝑡𝑅

𝜎𝑡
) 2              (1.26) 

With 𝜎𝑡 and 𝜎𝑉 are a measure of the peak width in time and volume units, 𝜎𝑥 the 

same measure but in terms of distance travelled, 𝑥 the path length travelled by the 

analyte, 𝑤1/2 the peak width at half height, 𝑤𝑏 the peak width at the “base” of the 

peak (determined from the two intersection points of tangent lines drawn from the 

inflection points of the peak with the baseline on either side of the peak). Equation 

1.26 is derived by assuming that each peak can be described as a (symmetrical) 

Gaussian distribution, implying 𝑤1/2 is equal to 2.354𝜎𝑡, or 𝑤𝑏 equal to 4𝜎𝑡 . This 

equation can be used to obtain an indication of separation efficiency, in the case of 

isocratic separations. With gradient-elution 𝑘 changes during the gradient and an 

additional (usually small) peak compression occurs as a result of a (small) difference 

in 𝑘 between the front and end of the peak [68,69]. The peak width is described by   

𝜎𝑡 =
𝑡𝑅

√𝑁
𝐺 =

1

√𝑁
𝑡0(1 + 𝑘𝑒)𝐺               (1.27) 

Where 𝐺 is a gradient compression factor (smaller than one), and 𝑘𝑒 is the retention 

factor at the time of elution. Based on this simplified view one may be inclined to 

consider 𝑁 to be a property of a specific column. In reality peak broadening does 

not only depend on retention, but on a combination of analyte-, solvent- and 

column-specific parameters. These effects are not accounted for by the plate model. 

The most well-known of many (more-or-less) comprehensive models that do 

incorporate such contributions is the “van Deemter” equation [70].  

1.2.2. Van Deemter equation  

Plate theory does not provide a full description of the peak broadening that occurs 

during separation. A more-comprehensive theory was developed by van Deemter in 

1956 [70]. The result of this work is the well-known van Deemter equation, the non-

expanded version of which is given by   

𝐻 = 𝐴 +
𝐵

𝑢𝑚
+ 𝐶𝑢𝑚                    (1.28) 
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This equation relates the (theoretical) plate height to the linear flow velocity (𝑢𝑚) 

through three parameters, viz. (𝐴) eddy dispersion, (𝐵) longitudinal diffusion and (𝐶) 

resistance to mass transfer. Equation 1.28 is visualized in Figure 1.4.  

Figure 1.4: Van Deemter plot, illustrating the A-, B- and C-term contributions to peak 

broadening. A) Eddie dispersion or diffusion, B), Longitudinal diffusion, and C) 

Resistance to mass transfer.   

The A-term describes the dispersion of an analyte band due to differing path lengths 

through the column. To decrease its effect, a packing consisting of small particles 

with a narrow particle-size distribution or a pillar-array column with an ordered 

structure [71] should be used. 

The B-term describes the band spreading due to diffusion, caused by analyte 

molecules moving from high-concentration to low-concentration areas. Entropy 

increases and the steepness of the concentration gradient that exists when the 

analyte is injected in the mobile-phase is gradually reduced, before it entirely 
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disappears. The effect of longitudinal diffusion can be reduced by increasing the flow 

velocity or viscosity of the mobile phase, or by reducing the temperature. This term 

is usually not significant due to the nature of HPLC (low 𝐷𝑚)  and the flow velocities 

that are employed (reduced linear velocity, 𝜈 =
𝑢𝑚𝑑𝑝

𝐷𝑚
≫ 5, where 𝑑𝑝 is the particle 

size), but it may become important at low flow velocities, especially for small analytes.  

The third and in many cases dominant term related to peak broadening in HPLC is 

the resistance to mass transfer (C-term), which consists of a 𝐶𝑠 term that describes 

the movement into and out of the stationary phase, and a 𝐶𝑚 term comprising 

velocity differences in the column. The effects of mass transfer can be reduced by 

using i) smaller particles, to decrease the distance analytes must travel when moving 

in and out of the particles or between fast and slow streamlines between the 

particles, ii) higher temperatures, since more-rapid diffusion will increase the 

movement of analyte molecules, and iii) using lower flowrates. Typically the C-term 

is the main contributor to peak width for large analytes.    

Various improvements in describing peak width have been made since the work of 

van Deemter, and are still ongoing. The description of these models is outside the 

scope of this thesis. The reader is instead referred to some of the literature which 

discusses these models more in-depth [68,69,72–78].   

1.2.3. Resolution and peak capacity  

For Gaussian peaks of equal peak area, knowledge of the position and variance is 

sufficient to fully describe the extent to which two compounds can be resolved. This 

is commonly referred to as the resolution (𝑅𝑠) [79]. 

𝑅𝑠 =
1

2

𝑡𝑅,2−𝑡𝑅,1

𝜎𝑡,1+𝜎𝑡,2
                    (1.29) 

𝑅𝑠 =
√𝑁

2(𝛼+1)
(

𝑘mean

𝑘mean+1
) (𝛼 − 1)               (1.30) 

In which 𝑘mean is the mean retention factor between the two peaks (𝑘mean =
𝑘1+𝑘2

2
). 

The plate number in Equation 1.30 is assumed to be equal for both analytes (𝑁 =

𝑁1 = 𝑁2). This equation illustrates the degree to which each parameter improves 

resolution. For example, an increase in selectivity will have more of an effect than an 
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increase in the number of plates. This is the primary reason why multidimensional 

chromatography (described in the next section) allows for the separation of more-

complex samples. As already described above Equation 1.30 is only valid given a 

number of assumptions, and is restricted to isocratic elution. Many forms exist, given 

different assumptions [79].  

Most chromatograms contain more than two peaks. In that case the resolution of all 

peaks pairs must be determined to assess how well the separation performs, ideally 

taking into account also the measurement duration. In practice, there are a plethora 

of objectives against which a separation may be optimized, apart from “simply” 

maximizing the lowest observed 𝑅𝑠 value. Perhaps the most common metric to 

compare the performance of separation methods is the peak capacity (𝑛𝑐). In the 

case of isocratic separations Giddings defined the peak capacity as an approximation 

of the “maximum number of peaks to be separated on a given column” [80] and he 

derived the following equation: 

𝑛𝑐 = 1 +
√𝑁

4𝑅𝑠
ln

𝑡𝑅,𝑛

𝑡𝑅,1
= 1 +

√𝑁

4𝑅𝑠
ln

1+𝑘𝑛

1+𝑘1
               (1.32) 

In which 𝑛𝑐 depends on the retention of both the first (𝑡𝑅,1) and last (𝑡𝑅,𝑛) eluting 

component as well as on 𝑁 and 𝑅𝑠. Given a particular mobile-phase composition at 

which all analytes can elute from the column, the optimal peak capacity will be 

obtained when 𝑁 is maximized for a given 𝑅𝑠. Assuming that 𝑁 is independent of the 

retention factor, this involves using long columns and large particles. In practice, 

small particle diameters and relatively short columns are used, resulting in slightly 

lower peak capacities, but in significantly shorter analysis times. For gradient 

separations the peak capacity can be approximated as,   

𝑛𝑐 =  
𝑡𝑔

𝑤𝑏,𝑎𝑣𝑔
+ 1               (1.33) 

where 𝑤𝑏,𝑎𝑣𝑔 is the average peak width measured from the base of the peak and 𝑡𝑔 

is the gradient duration. When 𝑛𝑐 is sufficiently large, adding one to the outcome 

(latter part of Equation 1.33) is insignificant. Again, care should be taken that 𝑁 is 

analyte specific. Hence the use of 𝑤𝑏,𝑎𝑣𝑔 in Equation 1.33, which should give a 

reasonable estimation of 𝑛𝑐 .  
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The caveat to both equations are that they assume every peak to be perfectly spaced 

apart with sufficient resolution (~1). This implies an ordered distribution of peaks 

throughout the chromatogram, which in reality will almost never be the case. The 

concept was further improved by Davis and Giddings in 1983 [81], who instead 

assumed a random distribution of peaks, which is much closer to reality. For a 

saturated chromatogram, where the number of peaks is equal to the peak capacity, 

the number of completely resolved peaks that will then be observed will be at most 

37% of the peaks expected to be in the chromatogram had they been uniformly 

spaced [81]. In fact, as a rule-of-thumb, if 90% of expected peaks are to be resolved 

a peak capacity approximately 20 times larger than the number of peaks present is 

required.    

In the case of polymers it is not completely straightforward to use metrics such as 

𝑛𝑐 , since these samples contain many different, often very similar, analytes, resulting 

in low resolution. This is generally the case for all homologues, except the smallest 

oligomers. As a result it may be better to evaluate the quality of polymer separations 

by the type (for example the MWD, CCD, or FTD), rather than the amount (in terms 

of the number of peaks) of information that is obtained.  

1.3. Two-dimensional chromatography 

The performance of a one-dimensional (1D) LC separation depends on many factors, 

including the chemical nature of the analytes, the particle size and particle-size 

distribution, flow velocity, column parameters (i.e. diameter, length), operating 

pressure, temperature, the type and viscosity of the mobile phase, the type of 

stationary phase, the column permeability, particle porosity, the effective gradient 

steepness, the gradient shape, system dwell volume, and sources of extra-column 

band broadening that cannot be avoided [82]. Often it is desirable to obtain 

conditions that result in the highest possible overall peak capacity in the shortest 

possible time, i.e. maximizing separation efficiency. This has been the subject of 

research by, among others, Giddings [83], Knox [77], Guiochon [82], Poppe [84], and 

Desmet et al. [76,78]. Based on this research 1D-LC separations are most attractive 

for analysis times of about one hour or less, resulting in peak capacities of a few 

hundred. For longer analysis times two-dimensional LC (2D-LC) is deemed more 

appropriate [85].  
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2D-LC separations involve the coupling of two or more separations that ideally 

provide vastly different (“orthogonal”) selectivity towards the sample [86–88]. The 

simplest implementation of 2D-LC involves taking fractions from a first separation 

and reinjecting these in a second separation, i.e. off-line 2D-LC [85]. This approach is 

challenging to automate, and even when automation were to succeed, there is a 

significant risk of sample losses and contamination. Therefore, a more common 

implementation of the 2D-LC involves the coupling of two one-dimensional LC 

separations using a so-called modulator [86]. The latter is typically some type of 

switching valve that allows the system to temporarily store a (small) fraction of the 

effluent from the first-dimension (1D) separation, which is then transferred to the 

second-dimension (2D) separation. Different modes of operation have also been 

envisioned, such as spatial 2D-LC [89,90]. However, as of now these still require 

significant development. Depending on how much of the first-dimension effluent is 

sampled, different terms are used to describe 2D-LC approaches, such as heart-cut 

(LC-LC), where only one selected fraction is transferred; multiple-heart-cut (mLC-LC), 

where multiple fractions are transferred; selective comprehensive (sLC×LC), where 

series of fractions are transferred from multiple regions; and fully comprehensive 

(LC×LC), where the entire effluent is sampled. In the case of polymers sometimes the 

name “cross-fractionation” is used [91].   

For 2D-LC separations selectivity can be optimized based on at least two parameters 

e.g. size and charge, or size and polarity. This dramatically increases the total 

separation “space”, or peak capacity. This is true even if the peak capacity for one of 

the separations is low, since an increase in resolution is most easily achieved by 

tweaking the selectivity. Therefore, multidimensional separations are often the prime 

choice for separations of samples that feature high dimensionality [92]. The actual 

peak capacity for a 2D-LC separation can be calculated in different ways. If the 

selectivity of both separations is completely uncorrelated, i.e. orthogonal, the peak 

capacity is calculated from 

𝑛𝑐 = 𝑛𝑐,1 × 𝑛𝑐,2                            (1.34) 

with 𝑛𝑐,1 and 𝑛𝑐,2 the peak capacity of the first and second dimension, respectively. 

However, often the two dimensions are somewhat correlated. For example, analyte 
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polarity often scales with analyte size. This results in a lower effective peak capacity 

(𝑛𝑐,eff) , i.e.  

𝑛𝑐,eff = 𝑛𝑐,1 × 𝑛𝑐,2𝑓coverage                           (1.35) 

where 𝑓coverage is a measure of the orthogonality between the two separations, i.e. a 

measure of incomplete surface coverage. Additionally, it is further assumed that the 

entire effluent is sampled sufficiently. As the effluent is transferred by means of a 

switching valve that is equipped with two sample loops, a loss in resolution may 

occur during the transfer from the first to the second-dimension separation due to 

re-mixing within the loop. This is referred to as under-sampling [93,94]. Whether this 

occurs will depend on the modulation time (𝑡mod), i.e. how quickly each loop is 

emptied, and the (average) first dimension peak width (1𝜎𝑡). To account for the 

possibility of under-sampling another correction can be added,  

𝑛𝑐,eff = 𝑛𝐶,1 × 𝑛𝐶,2
𝑓coverage

𝑓undersampling
= 𝑛𝐶,1 × 𝑛𝐶,2

𝑓coverage

√1+0.21(
𝑡mod

1𝜎𝑡
)

2
             (1.36) 

Where 𝑓undersampling is an under-sampling correction factor. According to this 

equation it may be concluded that each peak should be sampled 4 to 5 times to 

reduce the loss in peak capacity by under-sampling to below 1% [94].   

 

1.3.1. Challenges and recent developments in LC×LC 

The potential of 2D-LC has often been said to be hindered by challenges related to, 

for example, the aforementioned under-sampling, the increased development time, 

potential incompatibility between the two separations, and the inaccessibility of 

commercial tools for data analysis. However, despite these challenges the use of 2D-

LC in industry is becoming more and more common. Over the last ten years 

significant developments have been made with respect to instrumentation [88,94,95]. 

Additionally, the growing usage of chemometrics aimed specifically at 2D-LC makes 

the technique more accessible than ever before [96].  

The most common challenges for the on-line coupling of two methods by means of 

a switching valve or “modulator” with two or more sample loops are mobile-phase 

incompatibility, under-sampling, and increased dilution or injection band 

broadening due to overloading of the 2D column. The two most-common solutions 
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to mitigate these issues are i) the use of small “trap” columns instead of sample loops, 

commonly referred to as stationary-phase assisted modulation (SPAM) [97], and ii) 

in-loop dilution, referred to as active-solvent modulation (ASM) [98]. The passive and 

SPAM modulation strategies are illustrated in Figure 1.5.  

Figure 1.5: A) Conventional 2D-LC configuration (passive modulation), and B) SPAM 

configuration, lefthand side and righthand side figures indicate valve positions A and B.  

 

The use of SPAM allows for a re-focusing of analytes within the trap column and a 

large reduction in the amount of 1D solvent entering the 2D column [97]. It 

consequently allows for a reduction in analysis time and an increase in sensitivity, by 

increasing the 1D flowrate and decreasing the 2D column diameter, respectively. 

However, to perform SPAM successfully the trapping columns should retain all 

analytes irrespective of the 1D mobile-phase composition in which they elute. As a 

result, SPAM cannot be used if SEC is applied as a first-dimension separation, unless 

large dilution flows are used after the 1D column.  In the case of a 1D-RPLC separation 

either a dilution flow should be used prior to the effluent entering the trap column, 

or the stationary phase in the trap should be more retentive than that of the 1D 

column. In the specific case where SEC is used as a 2D separation, neither solution is 

ideal. Therefore, in certain cases a combination of SPAM with temperature 

modulation may be more feasible and easier to implement [99,100]. Such a strategy 
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is discussed in Chapter 2 of this thesis. The alternative strategy, ASM, allows for a 

potential re-focusing at the head of the 2D column by ensuring that the analyte is 

transferred in a weak(er) solvent. Since no trap columns are used ASM does not suffer 

from the same issues as SPAM, and is also more repeatable, since the lifetime of the 

trap columns is limited. However, ASM does ideally require a refocusing on the 2D 

column, to counteract the dilution that occurs. In practice this limits ASM to systems 

in which RPLC is used in the second dimension. 

 

1.4. Understanding materials by characterizing essential distributions   

Nowadays many materials used in a wide range of fields consist of polymers that 

embody great structural complexity. Examples include amphiphilic block copolymers 

that are employed as drug delivery systems, or acid-functionalized polymers used in 

waterborne coatings. Often these materials must feature specific functional 

properties that are required for the application in which they will be used. Often 

synthesis conditions and post-processing are varied to obtain the desired material 

properties, and the underlying structure-property relationships are often not 

completely understood. Detailed analysis of these materials is one of the steps 

necessary to aid in elucidating this connection between on the one hand the 

distributions of the polymer in terms of, for example, microstructure, chemical 

composition or molecular weight, and on the other hand the functional properties. 

Within the UNMATCHED project (UNderstanding MATerials by CHaracterizing 

Essential Distributions) many techniques have been investigated, or further 

developed, to aid in the analysis of such materials. One set of techniques that is 

particularly suitable for the analysis of essential distributions is liquid 

chromatography and two-dimensional liquid chromatography. Several new ways to 

implement these techniques for the separation of synthetic polymers by LC are 

presented in this thesis.  
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Scope of the thesis  

Challenges in analytical chemistry must often be tackled by developing new 

experimental methods or techniques, or by smartly applying chemometrics. Often a 

combination of these is required. Both subjects are represented in this thesis. While 

every chapter includes both, the focus in the first chapters is primarily on the 

development of new LC methods and techniques. In later chapters this gradually 

shifts towards a focus on chemometric strategies.  

Chapter 1 provides a general introduction to the subjects discussed in this thesis. 

Relevant characteristics of synthetic polymers are briefly discussed and the 

foundations of the liquid-chromatographic techniques used in later chapters are 

reviewed. 

In Chapter 2 the effect of temperature on retention is utilized for trapping high-

molecular-weight analytes on small (so-called) “trap” columns. This is done to 

improve the two-dimensional liquid chromatography (2D-LC) separations of 

polymers. The relatively stronger effect of temperature on the retention of higher-

molecular-weight polymers is shown to allow for their successful trapping and 

subsequent elution, without requiring rapid temperature (heating and cooling) 

cycles. This allows one to remove solvents and to simultaneously refocus the analytes 

prior to a subsequent second-dimension analysis by size-exclusion chromatography 

(SEC). Such an LC×SEC combination is significantly more challenging when utilizing 

conventional trapping or dilution strategies. As part of this work a new modulation 

strategy was also developed that reduces the pressure pulses during valve switching. 

This potentially enhances the lifetime of the used trap columns.      

In Chapter 3 a new method termed recycling gradient-elution liquid 

chromatography (LCLC) is described. The aim is to increase the effective gradient 

steepness, so as to suppress the underlying influence of the molecular-weight 

distribution typically observed for lower-molecular-weight polymers. The method is 

successfully applied to measure the chemical-composition distributions of various 

copolymers.  

In Chapter 4 the use of SEC gradients (or gradient-SEC, gSEC) as an alternative to 

RPLC for the chemical-composition analysis of polymers is investigated. As a part of 

this work the influence of the mobile-phase composition on the elution volume in 
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SEC was investigated. The method was then applied in 1D-LC and 2D-LC separations, 

as well as in the recycling mode described in chapter 3. It is shown that, compared 

to conventional gradient-elution LC, the use of SEC-gradients is primarily 

advantageous when breakthrough is an issue in reversed-phase LC (RPLC). For 

example, in the case of LC×LC, with RPLC in the second dimension.     

In Chapter 5 the effect of system-induced gradient deformation on retention-

modelling approaches is highlighted. Capacitively coupled contactless conductivity 

detection is demonstrated as a straightforward method to measure gradient 

deformation. The approach allows for nearly identical retention parameters to be 

determined on systems that vary greatly in terms of gradient deformation.   

In Chapter 6 an overview is given of strategies used for the pre-processing of one-

dimensional data. Different facets of such pre-processing are reviewed, including 

smoothing, drift correction, peak detection and deconvolution.  

In Chapter 7 a critical comparison of some of the drift-correction and smoothing 

algorithms discussed in chapter 6 is made. To do so, simulated data are generated 

that are representative of complex real data based on three different components, 

i.e. high-frequency noise, low-frequency background drift, and relevant chemical 

signals, or peaks, with a frequency varying between that of drift and noise. The 

individual components were either directly taken from or based on experimental 

data. A data set consisting of 500 chromatograms was generated and corrected with 

different combinations of drift-correction and smoothing algorithms (35 

combinations) to identify the best-performing combinations.      

In Chapter 8 the conclusions from the work in this thesis are reviewed and 

recommendations for future studies are given. Additionally, preliminary work and 

challenges that were not yet solved are discussed. Some strategies that appear 

feasible are envisioned.  
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Abstract 

Many materials used in a wide range of fields consist of polymers that feature great 

structural complexity. One particularly suitable technique for characterizing these 

complex polymers, that often feature correlated distributions in e.g. microstructure, 

chemical composition, or molecular weight, is comprehensive two-dimensional 

liquid chromatography (LC×LC). For example, using a combination of reversed-phase 

LC and size-exclusion chromatography (RPLC×SEC). Efficient and sensitive LC×LC 

often requires focussing of the analytes between the two stages. For the analysis of 

large-molecule analytes, such as synthetic polymers thermal modulation (or cold 

trapping) may be feasible and this approach is studied for the analysis of a 

styrene/butadiene “star” block copolymer. Trapping efficiency is evaluated 

qualitatively by monitoring the effluent of the trap with an evaporative light-

scattering detector and quantitatively by determining the recovery of polystyrene 

standards from RPLC×SEC experiments. The recovery was dependent on the 

molecular weight and the temperatures of the first-dimension column and of the 

trap, and ranged from 46% for a molecular weight of 2.78 kDa to 86% (or up to 94.5% 

using an optimized set-up) for a molecular weight of 29.15 kDa, all at a first-

dimension-column temperature of 80 ᵒC and a trap temperature of 5 ᵒC. Additionally 

a strategy to reduce the pressure pulse from the modulation has been developed, 

bringing it down from several tens of bars to only a few bar.  
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2.1. Introduction 

High-performance liquid chromatography (HPLC) is one of the most prevalent 

techniques for the analysis of soluble samples. Both practice and theory have proven 

that LC is limited in terms of the separation power that can be achieved within a 

given timespan, depending on the operating pressure [1]. Ultra-high-pressure liquid 

chromatography (UHPLC) allows for faster or more-efficient separations, but the gain 

of about a factor of four in maximum pressure (and achievable number of theoretical 

plates) in moving from HPLC to UHPLC only results in a factor of two increase in 

separation power (resolution). To gain more information on complex samples, LC is 

oftentimes hyphenated to mass spectrometry (MS) or even high-resolution mass-

spectrometry (HRMS), typically by utilizing an electrospray (ESI) interface. It is well-

known, however, that such an approach is rarely feasible for polymer analysis [2], as 

it is limited to relatively small and polar polymers unless supercharging is utilized 

[3,4]. Larger (sufficiently polar and narrowly distributed) polymers can be analysed 

by matrix-assisted laser-desorption/ionization (MALDI) MS. However, MALDI cannot 

easily be interfaced with LC and is ultimately still molecular-weight limited, even after 

pre-fractionation with LC. For relatively high-molecular-weight polymers 

multidimensional chromatography offers additional selectivity, separation power 

and, thus, information. For example, combined chemical-composition and 

molecular-weight distributions can be obtained from the structured chromatograms 

generated by comprehensive two-dimensional liquid chromatography (LC×LC) [5,6]. 

Two-dimensional LC (2D-LC) may be applied in one of three modes, viz. heart-cutting 

(LC-LC), multiple-heart cutting (mLC-LC) or comprehensive (LC×LC) [5]. During an 

LC×LC separation, the entire effluent from the first dimension is subjected to an 

additional separation in many small fractions, leading much higher peak capacities 

and peak production rates (peak capacity per unit time) than 1D-LC. LC×LC has seen 

several significant developments in recent years, many of which focused on the 

interface (“modulator”) between the first and second dimension. Examples include 

the use of active-solvent modulation (ASM) [7] and stationary-phase-assisted 

modulation (SPAM) [8]. A reaction chamber may be incorporated between the two 

separations [9] so that additional structural information may be obtained. Both ASM 

and SPAM aim to alleviate incompatibility issues between the first and second 

dimensions, primarily focusing on solvent incompatibility, but also allowing narrow 

second-dimension (2D) columns and low 2D flowrates to be used, reducing analyte 
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dilution and improving compatibility with MS. Briefly, in the case of ASM this is 

achieved by diluting the fraction collected in the loop, while SPAM achieves focussing 

and a switch of solvents by replacing the conventional sample loops by short, so-

called “trap” columns containing a suitable stationary phase. Both ASM and SPAM 

can allow for a focusing or reconcentration of the analyte, in the case of ASM this 

may be achieved at the inlet of the 2D column, while in SPAM it occurs in the trap 

column. One of the most significant advantages of SPAM when compared to ASM is 

that the 1D eluent can be completely eliminated from the system, not just diluted. 

Disadvantages of SPAM include the need to develop  methods for specific 

applications (depending on the 1D eluent, the 2D eluent and the analytes) and the 

limited life-time of the trap columns, which may be related to pressure pulses [10]. 

One strategy to improve the life-time of the trap columns may be to synchronize the 

modulation with the pump-frequency (pump-frequency-synchronized modulation, 

PFSM; vide infra).  

Trapping or focusing may also be achieved by means of a difference in temperature 

[11–18] rather than eluent strength. This was first demonstrated for off-line 2D-LC 

by Verstraeten  et al. [11] using capillary columns packed with porous graphitic 

carbon (PGC) as a trapping device. By first cooling and then rapidly heating (1200 

°C/min) this column, neutral analytes could be successfully trapped and a 

concentration enhancement factor of 18 could be achieved. A form of thermal 

modulation called temperature-assisted on-column solute focusing (TASF) was also 

demonstrated, initially for parabens as analytes, in capillary 1D-LC by Groskreutz et 

al. [12,13] In their approach analytes were focused by cooling the column inlet using 

Peltier devices, after which the inlet was rapidly heated to “inject” the analytes as a 

narrow band. Another thermal approach to allow for focussing of the analytes and 

solvent switching was developed by van de Ven et al. [18]. In this “in-column 

focusing” approach the analytes were first loaded into a modulation column in the 

initial mobile phase at a relatively high temperature, after which the modulation 

column was cooled down and the analytes were eluted in the backflush mode with 

a stronger solvent, which allowed for the analytes to leave the zone of initial mobile 

phase if their retention increased with the decrease in temperature, and subsequent 

refocusing into a more narrow band.  



Chapter 2 

53 

Most of the work described above has been carried out using 1D-LC, either to allow 

for better sensitivity in capillary LC or with the eventual aim of applying the method 

in LC×LC. Thermal focussing in 1D-LC may be practically useful, as a  relatively 

straightforward way to help concentrate the analytes if other means of focusing, such 

as injection in a weak eluent, cannot be effectively applied. However, when thermal 

focusing is to be applied for modulation in 2D-LC, the cooling and heating must be 

performed repeatedly and much-more rapidly, which make the concept much-more 

challenging. Typically, trap columns have a very small internal volume and contain a 

more-hydrophobic stationary phase than used in the 1D column [5,11] In the case of 

polymers many of these issues are avoided simply due to their retention 

characteristics. Because retention varies much-more strongly with mobile-phase 

composition or temperature for polymers than for small-molecule analytes, thermal-

modulation strategies may be feasible for their separation by 2D-LC. For the 2D 

RPLC×SEC analysis of polymers there are obvious benefits of using a trapping 

strategy. Thanks to a lowered 2D injection volume, efficient small-particle SEC 

columns can be used that facilitate fast, highly sensitive, and high-resolution 

separations [19]. Also, the 2D column may be narrower than the 1D column, further 

enhancing the mass sensitivity of the analysis and greatly reducing the amount of 

eluent required. However, thermal strategies may exacerbate issues around the 

lifetime of the traps and the switching-induced pressure pulses, since cooling down 

the trap column will locally increase the viscosity of the mobile phase.  

The objective of the present work is to demonstrate thermal modulation as an easy-

to-implement means to achieve fast and efficient two-dimensional polymer 

separations. We first aim to demonstrate that the cold-trapping principle can be 

applied to polystyrene standards in simple 1D-LC experiments and we set out to 

study the applicable range of molecular weights. Subsequently, we aim to extend the 

approach to LC×LC separations of a polystyrene/polybutadiene star block 

copolymer. Our final objective is to create a robust system that can be used for a 

large number of LC×LC analysis without intervention. 
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2.2. Theory  

In all cases the principle underlying the focusing of the analyte may be described by 

known retention models [20–22]. In reversed-phase (RP) LC it is generally accepted 

that the retention of an analyte may be approximately described by a log-linear 

relationship between retention factor and solvent composition. This is often termed 

the linear-solvent-strength (LSS) model and it is described by Equation 2.1:    

ln 𝑘 = ln 𝑘0 − 𝑆𝜑                                (2.1) 

With 𝑘0 the retention factor extrapolated to a composition of 100% weak solvent, 𝑆 

is the slope which determines how quickly 𝑘 changes with 𝜑, and 𝜑 the volume 

fraction of strong solvent in the mobile phase. Hence reducing the fraction of strong 

solvent, increases retention, as long as 𝑆 is positive. Generally, the higher the slope 

in the LSS curve, the easier it will be to trap the analyte, for example by dilution of 

the eluent with weak solvent. Typically, solvent-based focusing occurs more readily 

at ambient or sub-ambient temperatures, because for most analytes retention 

decreases with increasing temperature, implying that a lower solvent strength (i.e. a 

lower fraction of strong solvent) will be required to achieve the same retention. 

However, typically the effect of solvent composition will be much greater than the 

effect of temperature, which is the primary reason why thermal modulation for small 

analytes requires highly retentive stationary phases (such as PGC in the RPLC mode). 

In those cases the temperature is mainly utilized to decrease the time it takes for the 

analytes to elute from the trap (i.e. reduced peak width). In case of typical gradient 

separations analytes are expected to be less focused at a particular composition 

when temperature is increased, unless the starting composition of the gradient is 

altered (to lower fraction of strong solvent) concomitantly. This effect of temperature 

on retention implies that thermal modulation can be applied for focusing or trapping. 

The effectiveness of this strategy depends on the analytes’ retention as a function of 

temperature, which can be described by the van ’t Hoff equation, Equation 2.2:    

ln 𝑘 = −
∆𝐻°

𝑅𝑇
+

∆𝑆°

𝑅
− ln 𝛽                                  (2.2) 

With ∆𝐻° the molar enthalpy of solute transfer between phases, ∆𝑆° the 

corresponding entropy change, 𝑅 the universal gas constant, 𝑇 the absolute 

temperature (in Kelvin) and 𝛽 the volumetric phase ratio. The plot of ln 𝑘 versus 
1

𝑇
 is 
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called a van ’t Hoff plot. In most cases linear van ’t Hoff behaviour is observed, and 

the slope of the plot allows ∆𝐻°  to be determined across a certain temperature 

range. Differences in ∆𝐻° for different components then result in varying selectivity 

of an LC separation with temperature. Thermal modulation can be achieved more 

easily with a given temperature difference if the slope of the van ’t Hoff plot is larger 

(i.e. at larger ∆𝐻°). However, the effect of temperature on retention is much smaller 

than the effect of mobile-phase composition. As a rule-of-thumb, a change of 5 to 

10 °C corresponds to a change of only about 1% mobile-phase composition for small 

compounds [23]. In many of the examples in literature a reasonably large change in 

temperature was therefore required to focus the analytes [11]. For most compounds 

a lower recovery is experienced when using thermal modulation, as the large 

temperature differences required for trapping and the rigorous cooling and heating 

cycles to achieve proper transfer from trap column to 2D column can be difficult to 

realize. Apart from the large temperature differences, highly retentive stationary 

phases, such as porous graphitic carbon (PGC), have proven to be required. However, 

for compounds with high molecular weights thermal modulation may be more 

attractive, because the enthalpy of transfer (the slope of the van ’t Hoff plot) typically 

increases with increasing molecular weight [22,24,25].  

The high slope in both the LSS and the van ’t Hoff plot means that higher molecular-

weight polymers generally require only a very small change in either mobile phase 

composition or temperature to achieve trapping compared to most small, 

uncharged, analytes, at their time of elution from the 1D column. A combined use of 

a gradient 1D separation operated at high temperature and the use of thermal 

modulation prior to the 2D separation therefore benefits in two ways. Firstly, due to 

the high LSS slope polymers will elute at or close to a specific mobile phase 

composition, unlike small analytes which may be more strongly affected by the 

gradient slope due to the changing equilibrium while moving through the column. 

Simultaneously, these analytes will also have a high slope in the van’ t Hoff plot, 

which means that the composition at which the analyte elutes will be more greatly 

influenced by the temperature than a small analyte. Both of these aspects suggest 

that a small change in temperature will be sufficient to retain the analyte within the 

trap. Of course, it is expected that this will become increasingly more challenging the 

higher the gradient rate and the smaller the polymer. In both cases the elution 

 2 



Chapter 2 

56 

composition of the polymer at the trap temperature may already be reached by the 

mobile phase before the analyte reaches the trap, resulting in an insufficient 

difference in retention at the trap.  

2.3. Materials and Methods 

2.3.1. Chemicals and Materials 

A 10 port 2-position UHPLC valve (MXT715-102) was purchased from Rheodyne, 

IDEX (Lake Forest, IL, USA). An Arduino Uno Rev 3 was purchased from a local 

electronics supplier. Acetronitrile (ACN, ≥99.9%, LC-MS Grade) was purchased from 

Honeywell Research Chemicals (Seelze, Germany), Tetrahydrofuran (THF, 99.9%, 

Isocratic grade, non-stabilized) was purchased from Bernd Kraft (Oberhausen, 

Germany), MilliQ Water was obtained using a purification system purchased from 

MilliPore (Burlington, MA, USA). An EasiCal polystyrene-standards kit was purchased 

from Agilent (Waldbronn, Germany), while the Styrolux 693D sample was obtained 

from BASF (Ludwigshafen am Rhein, Germany).  

Columns used during testing included two 150 mm length × 2.1 mm I.D. APC SEC 

columns packed with 2.5 µm ethylene bridged-hybrid (BEH)  particles with 450-Å 

pore size, and a single 50 × 4.6 mm XBridge BEH Shield RP18 XP column containing 

2.5-µm particles with 130-Å pore size, all purchased from Waters (Milford, MA, USA). 

For the trapping columns two 2.1 × 5.0 mm,  XBridge BEH C18 XP VanGuard 

Cartridges were used containing 2.5-µm particles with 130-Å pores, also purchased 

from Waters. 

2.3.2. Equipment and software  

The system used for testing included a (G1322A) 1260 degasser, a (G1311A) 1100 

quaternary pump, a (G5667A) 1260 HiP auto-sampler, a (G4260B) 1260 Infinity 

evaporative light-scattering detector (ELSD), a (G1314D) variable-wavelength 

detector (VWD), and a (G1316A) 1100 column oven, all purchased from Agilent, as 

well as an Acquity system, including a p-isocratic solvent manager (isocratic pump), 

sample manager pFTN (autosampler), column manager S (column oven), 

photodiode-array detector with taper slit and refractive-index detector; purchased 

from Waters. Cooling was performed using a Huber ministat v3.03 purchased from 

HUBER SE (Berching, Germany).  
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Data acquisition was performed using WinGPC software purchased from PSS 

Polymer Standards Service (Mainz, Germany). The Acquity system was controlled 

using Empower-3 software purchased from Waters. Data analysis was performed in 

MATLAB R2020a (Mathworks, Woodshole, MA, USA).   

2.3.3. Introducing cold trapping   

The 2D-LC cold-trap set-up used is illustrated in Figure 2.1. A Huber ministat v3.03 

was utilized to cool and circulate a mixture of isopropyl alcohol (IPA) and mineral oil 

through an aluminium block, in which holes were drilled to hold the trapping 

columns in place. The columns themselves were chosen based on their small volume 

(approximately 10 µL) and contained the same C18 silica-based stationary phase as 

used in the 1D column. The aluminium block was cooled to approximately 5 °C (unless 

otherwise specified) by continuously flushing a cold mixture of IPA and mineral oil 

through the inside of the holder, a thermocouple was utilized to measure the 

temperature. The first-dimension column was held at 80 °C, resulting in a 

temperature difference of 75 °C between the column and the aluminium block. In 

the current experiments solvents were not preheated before entering the column 

and were not precooled before entering the trap.  

Figure 2.1: Schematic illustrating the 2D-LC cold-trap set-up, with on the lefthand side valve 

position A, and the righthand side valve position B. Colours are not indicative of temperature.  

 

In case of the 1D-LC experiments, a DAD was placed directly after the RPLC column. 

The trap was placed after the first DAD and its outlet was connected to a second 

DAD. This allowed us to clearly monitor the effect of the trap on polymer retention 
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and compare the modulation set-up to conventional RPLC experiments. In the 

current work a single trap was used for the trapping, while a secondary trap was used 

to ensure that the backpressure between valve position A and B remained similar 

when the 2D SEC pump was not transferring the contents from trap A to the SEC 

column. The modulations consisted of two phases: a loading phase, and a transfer 

phase. Unless otherwise specified the duration of the loading phase was 74.8 s, while 

the duration of the transfer phase was 4.4 s. The decision to use a single trap in this 

case was made to ensure that solely the effects of temperature on the trapping were 

studied. Any effects that may result from differences between the two trap columns 

are excluded from the observations.  

2.4. Results and discussion 

2.4.1 Pump-frequency synchronized modulation   

It is known that many columns may suffer from a sharp increase in pressure that 

either occurs when switching the modulator valve between positions A and B or as a 

result from the very steep gradients that may be used in the second dimension. This 

seems to be especially the case for very low-volume columns, such as the guard 

columns used for trapping in this study. Even in the case of an isocratic second 

dimension, as used in the present work, LC×LC cannot generally be carried out 

without performing modulations (with the exception of spatial two-dimensional 

separations [26–28]), and hence this issue affects any LC×LC system. Such sharp 

pressure pulses may have a negative impact on the lifetime of the second-dimension 

column and they may cause variations in the flow, resulting in a worse repeatability 

of LC×LC measurements [10]. To reduce the pressure pulses resulting the 

modulations a strategy was designed in which the modulation time was adjusted to 

the pump frequency. As the isocratic pump used had accessible pressure sensors in 

both the accumulator and primary pump heads, the read outs could be fed to the 

WinGPC software used to control the LC×LC experiments. This allowed monitoring 

the positions of the pistons inside the pump head and the frequency at which these 

moved. The trace obtained from such measurements is illustrated in blue in Figure 

2.2-A, which corresponds to the piston movement inside the primary pump.  
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Figure 2.2: A) Pressure profile in case of normal, unsynchronized, modulation, B) Pressure 

profiles when synchronizing piston movement and modulation. Left: overview of the pressure 

during the first 40 minutes of the separation; middle: system and piston pressure during the 

final modulations; right: expansion of the middle figures.  

 

In our case we are performing SEC in the 2nd dimension, where we are using an 

isocratic pump, consisting of a combination of a primary pump and an accumulator 

pump (dual-piston in-series, see Supplementary Material Figure S-1). The 

modulations are synchronized with the piston movement by reading out the pressure 

sensor using an Arduino-Uno microcontroller, which directs the modulations at a 

frequency corresponding to that of the piston movement. The latter will remain 

constant at constant flow. The resulting traces are shown in Figure 2.2-B. The results 

show that the magnitude of the pressure spikes in the second dimension due to the 

modulation (orange signal) can be significantly reduced using this strategy. 

Furthermore, when comparing the traces of the pressure inside the primary pump 

head (blue signals) it can be seen that without synchronization (Figure 2.2-A, 

middle/right) the pump responds to an increase in the system pressure (orange 

signal) by reducing its movement (lower pressure), as is evident from the small 

decrease in the tops of the blue trace after the modulation. This can be a source of 

flowrate inaccuracies. The effect is reduced when synchronizing the modulation with 
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the piston stroke (Figure 2.2-B, middle/right). At this stage there is insufficient 

evidence to proof that  the lifetime of the trap columns increases, but based on 

experience elsewhere [10], it is reasonable to assume this to be the case. The 

synchronization method also allows operation closer to the pressure limit of the 

system while avoiding a pump shutdown, so that UHPLC systems can be used to 

their full potential.   

2.4.2. Cold-trap set-up and 1D experiments 

2.4.2.1Illustrating the principle by 1D-LC experiments  

To quickly assess whether a particular compound can be focused in the cold-trap, 

1D-LC experiments were performed. In this case two DAD detectors were installed, 

one before and one after the trap, to monitor the change in retention times and peak 

profiles. A linear gradient from 0 to 100% ACN to THF was run in 10 minutes. This 

resulted in the following chromatograms shown in  Figure 2.3 for a selection of 

polystyrene standards.  

 

Figure 2.3: Gradient-elution chromatograms recorded at 254 nm with a cold-trap installed 

after the column, with uninterrupted flow and trap temperature of 5 °C throughout. Line colour 

indicates column temperature. Left: full chromatograms; right: expansion of 5 to 9 min range. 

Injection of individual polystyrenes of different molecular weight ranging from 3.5 to 125 kDa.  

 

From the first set (upper) traces in Figure 3 it is clear that the low-molecular-weight 

standards elute before the higher molecular-weight standards. The latter elute 
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increasingly close together, approaching the pseudo-critical point for polystyrene for 

this combination of stationary and mobile phases, i.e. the composition at which 

retention becomes independent of molecular weight in this gradient. This pseudo-

critical point is seen to shift towards longer elution times (higher fractions of strong 

solvent) at lower column temperatures. When inspecting the second set of traces 

(bottom), recorded using the detector located after the trap, it can be seen that a 

significant gain in resolution (from 𝑅𝑠 = 0.0842 to 𝑅𝑠 = 0.995 for standard 5 and 6, 

for a column temperature of 80 °C) could be achieved for the highest molecular 

weight standards. This additional resolution indicated that a separation was 

occurring within the trap. Our current explanation for this additional separation 

occurring in the very small trap (volume of about 10 µL) is based on three effects. 

Firstly, it is assumed that the high-molecular-weight polystyrenes are adsorbed at 

the start of the 1D-LC column and only start moving with the mobile phase once a 

composition close to the critical composition is approached. This is consistent with 

prior observations and explanations [29]. Secondly, all these polystyrenes reach the 

trap nearly simultaneously where, due to the lower temperature, the polystyrene 

standards are significantly more retained (i.e. “trapped”). Thirdly and finally, in the 

trap column the standards then essentially experience a second gradient step. Due 

to the very small volume of the trap this second gradient is extremely shallow, since 

the effective slope of a (LSS) gradient can be defined as:   

𝑏 = 𝑉𝑚∆𝜑𝑆/(𝑡𝑔𝐹)                               (2.3) 

In which 𝑉𝑚 is the column void volume, ∆𝜑 is the change in mobile phase 

composition such that for a 0-100%B gradient ∆𝜑 = 1, 𝑡𝑔 is the gradient duration, 𝐹 

is the mobile phase flowrate and 𝑆 is a compound-specific parameter that describes 

the variation of retention (ln 𝑘) with a change in mobile phase composition (𝜑). Such 

a shallow gradient enhances the influence of the molecular weight on the retention 

of polystyrenes. Once again, this is consistent with previous results and it is also in 

accordance with the idea that the optimal gradient for an RPLC separation of a 

homologous series or a homopolymer is convex in shape [30] or uses a convex 

temperature gradient [31] if a separation based on molecular weight is desired. In 

our case the separation is simply achieved by using two different column volumes, 

which is conceptually much simpler. The lower-weight-standards are seen not to be 

retained on the trap column, because for these analytes the effect of temperature on 
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retention is much smaller. Achieving increased resolution for high-molecular-weight 

standards was not the objective of the cold-trap experiments, but it was an 

interesting side effect. The original objective was to investigate the shift in elution 

composition resulting from the trapping for the standards of different molecular 

weight (Figure 2.4).  

From this it can be observed that the 

low-molecular-weight standards are 

only trapped to a limited extent. The 

delay caused by the trap increases 

with increasing molecular weight, 

indicating that high-molecular-

weight standards are trapped 

during at least some fraction of the 

1D-LC gradient. This will be an 

important factor in 2D-LC, where we 

aim to trap analytes for a certain 

(modulation) time. As long as the 

increased elution composition that 

is observed in these experiments is 

not reached during the trapping 

time, one would expect that the analyte will be successfully trapped prior to injection 

in the second dimension. This means that the gradient rate in the 1D separation and 

the temperature difference between the 1D column and the trapping column 

determine the maximum modulation time and that the latter will be larger for high-

molecular-weight analytes. Larger temperature differences will be required between 

the 1D column and the trap to successfully trap analytes when using faster gradients. 

In our LC×LC experiments the gradient was much shallower (0.09%/min and 

0.25%/min in most cases) than the one used in the 1D experiments (10%/min). 

Therefore, no problems with trapping were anticipated, except for the lowest-

molecular-weight standards (≤ 10 kDa), which experienced limited trapping. 

However, for low-molecular-weight polymers other options exist, including different 

retention mechanisms and the use of mass-spectrometric detection [32].      

 

Figure 2.4: Retention time as function of 

molecular weight before and after the trap, 

including difference in composition of elution 

(∆𝝋) for the largest temperature difference.  

 



Chapter 2 

63 

2.4.3. LC×LC experiments 

Several LC×LC measurements were performed to illustrate the application of the 

cold-trap strategy in practice. To demonstrate the performance and feasibility of the 

developed trapping strategy a separation of a Styrolux 693D sample was performed. 

Separation could be achieved within 1.5 h based on the number and length of 

polystyrene arms. In the schematic illustration on the right-hand side of Figure 2.5 

[33] polystyrene (PS) arms are indicated in red and polybutadiene (PB) blocks are 

indicated in blue. PS arms may be either long (L; 98 kDa) or short (S; 18 kDa). Up to 

seven PB chains can be connected using a coupling agent.  The separation of this 

sample, using the cold-trap, is illustrated in Figure 2.5. 

 

Figure 2.5: RPLC×SEC separation of Styrolux based on number and length of polystyrene arms 

(indicated in red in right-hand schematic). L denotes long polystyrene arms of 98 kDa, S 

indicates short arms of 18 kDa.  

 

Note that the individual “peaks” or distributions were in this case assigned manually, 

based on the work by Chang et al. [33] who analysed this sample by a combination 

of reversed-phase temperature-gradient interaction chromatography and SEC (RP-

TGIC×SEC). The separation achieved in the present work (using solvent-programmed 

RPLC in the first dimension instead of TGIC) is comparable, but the analysis time is 
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four times shorter, thanks largely to the thermal modulation. Thermal modulation 

allowed narrower columns to be used in the second dimension (2.1 mm i.d. as 

compared to 7.5 and 8 mm used in [33]). By using a volumetric flow rate that was 

about four times lower (0.6 mL/min instead of 2.5 mL/min) and columns that were a 

factor two shorter (300 vs. 600 mm), 2D separations could be about six times faster, 

while reducing the amount of eluent required per analysis (2D flow rate × analysis 

time) by a factor of about 14 and increasing the mass sensitivity (detected 

concentration / injected concentration) by at least a factor 14 (volume effect only; 

effective trapping will increase this factor further). 

2.4.3.1. Investigating the effect of transfer time and flow direction  

One of the critical parameters for accurate quantification is the possible loss of 

analyte during the trapping/loading stage or during transfer from the trap to the 

second dimension (i.e. the transfer stage).  To ensure that no such losses were 

incurred, an ELSD was placed in the waste line, using the setup illustrated 

schematically in Supplementary Material (Figure S-2). Signals were observed at 

times corresponding with the moment the modulation occurs (i.e. when switching 

from the trapping stage to the transfer stage), the intensities of which corresponded 

with the DAD trace of the 1D-LC separation. Backflushing the trap led to much lower 

pulses than forward flushing (see Figure S-3). The exact origin of these modulation 

pulses is not known, but they are thought to be related to this particular set-up with 

a single loop and a ten-port valve. No signal was observed on the ELSD during the 

trapping phase. The signal between the evenly spread “modulation” peaks showed a 

completely flat baseline, indicating that there are no detectable losses during the 

trapping. 

Several different (pump-frequency synchronized) flush times were investigated, 

namely about 4.4, 8.8 and 13.2 s. These times were selected because the period 

between piston strokes determined in the section above was approximately 4.4 s. 

Longer transfer times led to lower pulses in the ELSD signal. To determine whether 

any significant losses occurred we compared the resulting LC×LC chromatograms 

directly. These are shown in Figure 2.6. In Figures 2.6-A-C only the transfer duration 

is varied. Longer transfer times are seen to lead to slightly less-intense peaks, which 

may be explained by the analyte sent to waste during the transfer phase in the 

current single-trap set-up. Losses corresponding to the transfer time divided by the 
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cycle time are anticipated. With a constant cycle time of 79.2 s this would result in 

losses of about 5.5, 11, and 17% (=4.4/79.2), for the 4.4, 8.8 and 13.2 s transfer times, 

respectively. This is reflected in the peak intensities in the LC×LC chromatograms of 

Figures 2.6-A, 2.6-B and 2.6-C, respectively. A comparison of Figure 2.6-B and 2.6-

D shows much lower peak intensities in case of forward-flushing of the trap during 

the transfer, which is in line with the observations in Figure S-3. Backflushing of the 

trap resulted in the smallest loss of analyte. Based on Figure 2.6, we selected a 

transfer time of 4.4 s with back-flushing of the trap to the second-dimension for 

further experiments. 

 

Figure 2.6: 2D-LC chromatogram obtained as a function of transfer duration, A) Duration of 

4.4 s, B) Duration of 8.8 s, C) Duration of 13.2 s and D) Duration of 8.8 s with a forward’s flush 

direction.  
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2.4.3.2. Investigating the effect of trap temperature on trapping efficiency   

To investigate the trapping efficiency as a function of temperature, several 2D-LC 

measurements were performed, for both the Styrolux sample and polystyrene 

standards, with the cold trap set at different temperatures. The recovery of 

polystyrene standards with molecular weights within the range of 10 to 300 kDa was 

investigated, which was the separation range of the APC SEC columns. 

The recoveries of two sets of polystyrene standards were measured at trap 

temperatures of 5, 40 and 70 °C, all at a first-dimension-column temperature of 80 

°C. Quantification was performed by first correcting for the drift using 

asymmetrically-reweighted penalized least-squares (arPLS) [34], after which a 

deconvolution was performed using the modified Pearson VII distribution [35]. 

Finally, the peak areas were obtained using a trapezoidal approximation on the 

individual peaks. Chromatograms before and after baseline correction are illustrated 

in Figure 2.7-A. An example of the results of peak deconvolution is illustrated in 

Figure 2.7-B.  

Figure 2.7: Approach for peak area determination, A) Top: background correction with arPLS; 

bottom: corrected chromatograms, B) Top: peak deconvolution of the different polystyrene 

standards; bottom: Residuals between data and peak fit.    
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After determining the peak areas in 

this way, the recovery was 

determined for the different 

polystyrene standards. The 1D 

experiments (areas of eluting peaks 

without a trap installed) were used 

as reference. The results are 

illustrated in Figure 2.8. 

 

The recovery is seen to clearly 

improve with an increase in 

molecular weight of the analytes 

and with a decrease in trapping 

temperature (i.e. an increase in the 

temperature difference between the 

1D-LC column and the trap). The 

losses observed may be due to the single-trap configuration (anticipated loss of 5.5% 

in the present case) or to incomplete desorption of the analytes from the trap. Also, 

errors in the curve fitting and, especially, the background filtering may have resulted 

in lower calculated recoveries. In the case of a trapping temperature of 5 °C 

recoveries approached the maximum attainable value of 94.5%.   

A similar procedure as described above was used to investigate the recovery for the 

Styrolux sample as a function of the trapping temperature. In this case curve fitting 

was not performed since there were few individual peaks visible, instead only the 

overall recovery was determined. The same trap temperatures of 5, 40 and 70 ᵒC were 

used and the same first-dimension-column temperature of 80 °C. The LC×LC  

chromatograms and overall recoveries obtained from these experiments are shown 

in Figure 2.9. 

Figure 2.8: Recovery for polystyrene standards 

of different molecular weight at different trap 

temperatures. The peaks eluting at the 

exclusion limit of the SEC columns (molecular 

weights above 600 kDa) were not considered.    
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Figure 2.9: LC×LC chromatograms and calculated overall recoveries for Styrolux with different 

trap temperatures as indicated and a first-dimension-column temperature of 80 °C. 

 

The peaks showing the greatest losses in recovery in the LC×LC chromatograms elute 

during the steepest step in the gradient used in in the 1D separation (elution times 

10 to 20 min). This corresponds to the results and conclusions that were already 

drawn from the 1D-LC experiments (section 4.2.1) and illustrates that a larger 

temperature difference will be required especially for low-molecular-weight analytes 

that are transferred to the trap in a steep 1D-LC gradient. At the same time, it is quite 

remarkable that even with a temperature difference of only 10 ᵒC most of the polymer 

seems to be successfully retained on the trap-column. This further supports the 

conclusion that the combination of the typically shallow gradients used in the first 

dimension of LC×LC experiments and the retention characteristics of high-

molecular-weight analytes creates conditions for successful thermal modulation. 

However, in the present paper predictions were not made regarding the conditions 

required to trap a polymer of a specific polarity and molecular weight. When knowing 

the actual gradient shape [36] and retention-temperature relationships [37–39] it 

should be possible to, based on only a few 1D experiments, predict whether a 

particular polymer or statistical copolymer can be effectively focussed using the cold-

trapping method. An in-depth investigation regarding such an approach is 

warranted. 
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2.5. Conclusions 

A new trapping strategy termed cold-trapping has been developed, which is 

applicable to all analytes that show sufficient increase in retention with decreasing 

temperature. This is expected to include all high-molecular-weight compounds. In 

the current work polystyrene and Styrolux were used to assess the applicability of 

the strategy. A single trap was used to assess the strategy, however, for further use 

in LC×LC applications two trapping columns should be utilized rather than one as 

the increase in duration of the “transfer” phase should result in higher recoveries. 

Possible limitations in terms of analyte polarity will be a subject of further study. 

Additionally, the pressure pulse observed during modulation was minimized. Pump-

frequency synchronized modulation was demonstrated as a simple and effective 

means to consistently reduce the observed pressure pulses arising from valve 

switching, as compared to regular operation of the switching valve. This may lead to 

extended life time of the trapping columns, but this must be confirmed in future 

research. Also, the long-term repeatability and precision of thermally modulated 

LC×LC warrants further investigation. 
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Abstract 

Synthetic polymers typically show dispersity in molecular weight and potentially in 

chemical composition. For the analysis of the chemical-composition distribution 

(CCD) gradient liquid chromatography may be used. The CCD obtained using this 

method is often convoluted with an underlying molecular-weight distribution 

(MWD). In this paper we demonstrate that the influence of the MWD can be reduced 

using very steep gradients and that such gradients are best realized utilizing 

recycling gradient liquid chromatography (LCLC). This method allows for a more-

accurate determination of the CCD and the assessment of (approximate) critical 

conditions (if these exist), even when high-molecular-weight standards of narrow 

dispersity are not readily available. The performance and usefulness of the approach 

is demonstrated for several polystyrene standards, and for the separation of 

statistical copolymers consisting of styrene/methyl methacrylate and methyl 

methacrylate/butyl methacrylate. For the latter case, approximate critical 

compositions of the copolymers were calculated from the critical compositions of 

two homopolymers and one copolymer of known chemical composition, allowing 

for a determination of the CCD of unknown samples. Using this approach it is shown 

that the copolymers elute significantly closer to the predicted critical compositions 

after recycling of the gradient. This is most clear for the lowest-molecular-weight 

copolymer (𝑀𝑤 = 4.2 kDa), for which the difference between measured and predicted 

elution composition decreases from 7.9% without recycling to 1.4% after recycling.    
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3.1. Introduction  

Synthetic polymers play an important role in our current society. The use and 

applications of these materials is widespread; examples include polyurethane foam 

cushions, use of aramid in optical fiber cables and jet engine enclosures, the use of 

polytetrafluoroethylene in low friction bearings or non-stick pans, and many more. 

To continue to develop new products tailored towards specific applications, the 

analysis of these materials and their underlying distributions is vital. For 

homopolymers these include distributions in size or molecular weight (MWD), 

degree of branching (DBD), functionality-type/end-group (FTD), or molecular 

architecture (MAD). For copolymers additional distributions in terms of chemical 

composition (CCD) and sequence or block length (BLD) exist and specific 

distributions, such as on degree-of-substitution and/or tacticity are important 

characteristics of specific types of polymers. To analyze and understand the 

relationship between these distributions and the resulting material properties, 

typically some form of liquid chromatography (LC) is utilized [1–5]. One example is 

size-exclusion chromatography (SEC), which is the current benchmark for the analysis 

of the MWD and is often coupled to various detectors to provide additional 

information such as on the change in average chemical composition across the 

molecular weight distribution [6,7] or to assess the degree of branching [8]. To 

determine the CCD there is not a single, generally accepted method. Gradient-

elution LC methods, including reversed-phase liquid chromatography (RPLC) and 

normal-phase liquid chromatography (NPLC) are most common, but isocratic LC 

methods such as temperature-gradient interaction chromatography (TGIC) [9–11], 

barrier methods such as SEC-gradients (or gradient SEC, gSEC) [12,13], and thermal 

field-flow-fractionation (ThFFF) [14] are also used.  

To properly determine the MWD or the CCD, both distributions must not 

simultaneously influence the separation. Typically this is not the case since the 

retention of a polymer increases approximately exponentially with molecular weight 

in the case of isocratic LC separations [15–17]. Both the MWD and CCD may be 

determined by using two-dimensional liquid chromatography (2D-LC) or 

comprehensive 2D-LC (LC×LC), which can simultaneously provide information on 

molar mass and chemical composition distributions if a method such as RPLC is 

coupled with SEC. However, in certain cases it can be desirable to have a one-
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dimensional method available that can provide information on solely the CCD, as this 

avoids the practical complexity of 2D-LC. Currently there are no easy-to-implement 

methods that do so, although examples of such separations exist [18–20]. One 

approach which may potentially be applied for this is recycling liquid 

chromatography (LCLC). This method, which was introduced several decades ago 

[21,22], aims to improve column performance by artificially increasing the column 

length. Nowadays the method is primarily used for specific (preparative) purification 

purposes, but has otherwise mostly been abandoned as a result of improvements in 

column and system performance [23–26]. However, the combination of gradient-

elution and LCLC may prove especially beneficial to obtain a separation less 

affected by the MWD. This is because it allows for a reduction of the molecular weight 

influence through an increase in the gradient steepness, which should reduce the 

influence of molar mass, by virtually increasing the column hold-up volume (𝑉0) 

without being limited by pressure or requiring an increase in column diameter.  

Our objective in the present work was to investigate the applicability of gradient 

elution LCLC for achieving a separation that is dominated by the CCD, while 

minimizing the effect of the molecular weight. To lay the foundation for such an 

approach, several practical aspects of column selection first needed to be considered 

and the approach was tested for narrow polystyrene standards, which were 

considered an ideal model system. The ultimate objective was to obtain high-

resolution separations of copolymers with very similar average composition and 

broad MWD and to clearly distinguish effects of the CCD and the MWD in the 

chromatogram. Challenging samples consisted of two (statistical) styrene/methyl 

methacrylate (S/MMA) copolymers and statistical copolymers of methyl 

methacrylate and butyl methacrylate (MMA/BMA). With this work we aim to explore 

the benefits of LCLC, and to establish when and how the method may be used for 

the analysis of synthetic (co-)polymers.   

3.1.1. Theory  

To reduce the influence of a polymer’s molar mass in RPLC, one must have an 

indication of how the retention time (𝑡𝑅) of a polymer is influenced by its chemical 

composition and molecular weight. Under isocratic conditions the retention time 

increases linearly with the analyte retention factor (𝑘), which is governed by the 

distribution equilibrium of the analyte between the stationary and the mobile phase. 
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k varies with the (volume) fraction of strong solvent in the mobile phase (𝜑). When 

the solubility of the analyte polymer in the mobile phase is not a limiting factor, one 

of four situations can occur, namely i) the polymer elutes in order of high to low 

molecular weight before the void volume of the column without experiencing any 

interaction with the stationary phase, and thus eluting primarily based on its 

hydrodynamic volume (i.e. size exclusion chromatography (SEC)); ii) the polymer 

elutes in order of low to high molecular weight at a volume larger than the void 

volume of the column, due to differential adsorption on (or partitioning into) the 

stationary phase (i.e. liquid adsorption chromatography (LAC)); iii) the polymer elutes 

without a significant molecular-weight dependence, often attributed to a balance 

between enthalpic adsorption and entropic exclusion (but more accurately solely the 

balance between enthalpy and entropy) and termed liquid chromatography at critical 

conditions (LCCC) [27–29]; iv) the polymer does not elute at all. For a homopolymer 

subjected to LAC the retention factor (𝑘) increases approximately exponentially with 

molar mass, so that Case ii can easily turn into Case iv. To avoid this, gradient-elution 

is generally preferred for the LAC analysis of high-molecular-weight analytes. In case 

of a gradient, 𝜑 increases with time, which typically (if the initial 𝑘 is sufficiently large) 

leads to a decrease in 𝑘 with time [15–17,30–33]. When the initial mobile-phase 

composition is chosen such that 𝑘 is large (𝑘init > 10) for all analytes and the injection 

solvent is not significantly stronger than the starting eluent [34], sample focusing will 

occur at the top of the column. As the gradient progresses, 𝑘 decreases and the 

analyte’s velocity will increase as it is caught up by the gradient, until it leaves the 

column. At the time of leaving the column the local retention factor of the analyte 

has become (much) smaller compared to the starting conditions. This is the main 

reason why peaks in gradient-elution chromatograms are much narrower than well-

retained peaks in isocratic LC. In addition, peaks may be compressed  thanks to the 

gradient, which causes the rear of the peak to travel faster than the front [35–37].  

However, retention in LAC is also strongly affected by analyte molecular weight. This 

causes broad and typically fronting peaks for polymers with a broad MWD. The 

ultimate elution pattern of the polymer depends on the actual gradient program and 

on the MWD. To understand the influence of the MWD during gradient elution, it 

must be known how the distribution of (local) retention factors vary with the (local) 

mobile-phase composition. With this knowledge one can describe the elution 
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behaviour of the polymer distribution in a similar way as for small molecules by 

solving the differential gradient equation [15–17,28,30–33,38–42]. Many different 

models have been proposed to describe the variation of the retention factor with 

mobile-phase composition [43]. Examples include models that are generally used for 

small molecules, such as the log-linear model, commonly referred to as the linear-

solvent strength (LSS) model [16,17,44], quadratic model (QM) [40] and the Neue-

Kuss [45] model, but also polymer-specific models that aim to incorporate entropic 

exclusion effects [28,39]. As has previously been shown by multiple authors 

[16,17,39], simpler models such as the LSS model can often adequately describe the 

retention of a polymer in gradient-LC, most likely as a result of the typically (very) 

small range in 𝜑 across which high-molecular-weight analytes elute with reasonable 

retention factors (e.g. 1 < 𝑘 < 10). When using the log-linear (LSS) model it is 

assumed that the logarithm of the retention factor varies linearly with mobile-phase 

composition,  

ln 𝑘 = ln 𝑘0 −𝑆𝜑                     (3.1)  

in which 𝑘0 is the retention factor extrapolated to 𝜑 = 0 and 𝑆 is a parameter that 

captures the change in retention with mobile phase composition. Assuming a linear 

gradient and taking the above approach to determine the dependence of 𝑡𝑅 on 𝜑′ 

(with 𝜑′ =
𝑑𝜑

𝑑𝑡
), one may define the intrinsic gradient steepness (𝑏, defined as the rate 

of change in 𝑘 during the gradient per volume of mobile phase passing through the 

column for a specific analyte). According to the linear-solvent-strength (LSS) concept 

of Snyder [44] 𝑏 is defined as  

𝑏 = −
𝑑(ln 𝑘)

𝑑𝜑

𝑑𝜑

𝑑𝑡
𝑡0 = 𝑆∆𝜑

𝑉0

𝑉𝐺
= 𝑆∆𝜑

𝑡0

𝑡𝐺
= 𝑆∆𝜑

𝑉0

𝑡𝐺𝐹
                 (3.2) 

where 𝑉0 and  𝑡0 are the column hold-up/void volume and time, respectively, ∆𝜑 is 

the composition range spanned by the gradient, 𝐹 is the volumetric flowrate, and 𝑡𝐺 

and 𝑉𝐺 are the duration and the volume of the gradient, respectively. Time and 

volume are related by the flow rate, i.e., 𝑡0 = 𝑉0/𝐹 and 𝑉𝐺 = 𝑡𝐺𝐹. Therefore, 𝑏 does 

not vary with 𝐹 at constant 𝑉𝐺 , but does vary with 𝐹 at constant 𝑡𝐺 . In Equation 3.2 

𝑆 depends on the molecular weight and the chemical composition of the analyte. It 

has been shown that 𝑆 increases with molecular weight for a homologues series [15] 

and, hence, for polymers of similar structure/composition.  
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From isocratic experiments performed on narrow polymer standards it is known that 

at some particular 𝜑 (the so-called “critical composition”, 𝜑crit) the influence of the 

molecular weight may vanish. At this mobile-phase composition the retention factor 

𝑘 is identical for all members of a homopolymeric series, irrespective of molecular 

weight [27–29]. Unless specific interactions occur, for example with end groups, the 

value of 𝑘 at this critical composition tends to be very small, resulting in elution close 

to 𝑡0. Performing an isocratic separation at this composition can give insights in end-

group and block-length distributions. However, isocratic separations  at the critical 

conditions are difficult to perform and virtually impossible for separations of (high 

molecular weight) copolymers, because 𝜑crit strongly depends on the composition 

of the copolymer. For statistical copolymers without strongly adsorbing end groups 

𝑘 varies due to chemical composition and molecular weight. For high-molecular-

weight molecules 𝑆 is very large, so that analyte molecules do not migrate at 𝜑 values 

below the critical composition (i.e. weaker solvents). In case of gradient elution, large 

analytes are completely retained on the column until the critical composition is 

reached. If an analyte molecule falls behind, it will catch up due to SEC effects; if it 

were to run ahead, it would immediately stop migrating, because of the weaker 

solvent composition. Hence, all high-molecular-weight components of a series tend 

to be focussed at the critical composition. 

The LSS model yields a simple approximation for the retention factor at the moment 

of elution (𝑘𝑒), 

𝑘𝑒 =
𝑘0

𝑏𝑘0+1
                       (3.3) 

which for very large values of 𝑘0, and not extremely shallow gradients, simplifies to 

𝑘𝑒 =
1

𝑏
. Because 𝑆 values are large for high-molecular-weight analytes, 𝑏 values are 

also large (Equation 3.2) and each analyte has a similarly small retention factor at 

the point of elution (𝑘𝑒). In contrast, the low-molecular-weight (oligomeric) members 

have much smaller 𝑆 values and larger values of ∆𝜑
𝑉0

𝑉𝐺
 (i.e. steeper gradients) are 

needed to minimize the effect of molecular weight on the elution composition (and, 

thus, on the elution time). For steep gradients (large values of 𝑏) the elution time 

depends solely on the chemical composition of the analyte and the selectivity 

depends primarily on ∆𝜑crit. All copolymers created from monomers I and II are 

expected to elute between the respective critical compositions of the two 
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homopolymers, i.e. 𝜑crit,𝐼 to 𝜑crit,𝐼𝐼. The highest chemical selectivity for copolymers 

with a narrow chemical-composition distribution is obtained with steep gradients 

that span a narrow range in mobile phase composition (∆𝜑) around the critical point 

of the copolymer 𝜑crit,𝐶𝑃 . To compensate for the narrow range (small ∆𝜑), 
𝑉0

𝑉𝐺
 must be 

made high, either by reducing the gradient volume (e.g. by reducing the flow rate, 

while keeping 𝑡𝐺 constant, or by shortening 𝑡𝐺), or by increasing the column volume 

(𝑉0). Reducing the flow rate whilst keeping 𝑡𝐺 constant implies a reduction of the 

linear velocity, and an increase in analysis time. A lower gradient volume also 

increases the risk of system-induced gradient deformation, depending on the ratio 

of the gradient volume to the system’s dwell volume (
𝑉𝐺

𝑉dwell
) [46,47]. It is generally 

recommended that this ratio (
𝑉𝐺

𝑉dwell
) should remain around or above unity. Reducing 

𝑡𝐺 would reduce the analysis time, but would lead to a decrease in peak capacity. An 

increase in column length to increase 𝑉0 would cause an increase in the plate number 

and the peak capacity, but is limited by restrictions on the pressure and the analysis 

time. The above discussion suggests that it would be highly attractive to achieve the 

required high (effective) gradient steepness by increasing 𝑉0 through lengthening 

the column, without increasing the pressure drop. This is exactly what can be 

achieved by repeatedly recycling the gradient.  

3.1.2. Summary of potential advantages and disadvantages 

In the present work such an LCLC setup is realized by using a single ten-port valve, 

which allows for the initially created gradient to be alternated between two columns, 

increasing the gradient steepness by virtually increasing the column length. LCLC 

seems to be an effective method to achieve very small 𝑘𝑒 values for analytes of 

divergent molecular weights, while potentially maintaining a high selectivity with 

regard to the chemical composition. Furthermore, in LCLC the flow rate does not 

have to be reduced, since the increase in (effective) column length does not result in 

an increase in pressure. Maintaining a high flow rate reduces system-induced 

deformation of a low-volume gradient caused by the mixer and avoids an increase 

in the dwell time [46,47]. LCLC is, therefore, expected to be considerably faster than 

a non-recycling approach where a low flow rate must be used. However, LCLC is 

possibly not without disadvantages. Column-induced gradient deformation caused 

by adsorption or absorption of mobile-phase components (“solvent de-mixing”) may 
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play a larger role [48,49], as may a possible build-up of impurities (depending on 

their retention characteristics). LCLC requires fast column equilibration. This is not 

expected to be a problem for RPLC, but it may be for other methods, such as 

hydrophilic-interaction liquid chromatography (HILIC) and ion-exchange 

chromatography (IEC). To remedy this, a larger initial ratio of 
𝑉0

𝑉𝐺
, so that the gradient 

fills a smaller % of the column and allows for longer equilibration of the stationary 

phase, would be required. Finally, because very small values of 𝑘𝑒 are reached at the 

moment of elution, extra-column band broadening may become more significant.   

3.2. Experimental 

Two different systems (A and B), in two different laboratories (referred to below as 

laboratory A and laboratory B), were used for different parts of this work for 

comparison and to demonstrate the transferability of the method. In case the utilized 

system is not indicated, system A was used.  

3.2.1. Laboratory A 

3.2.1.1. Equipment and software  

System A, located in  Germany, consisted of an Acquity Quaternary Solvent Manager, 

an Acquity Column Heater, an Acquity PDA Detector, equipped with a pressure-

resistant UV cell (up to 413 bar), and an Acquity Sample Manager with flow-through 

needle (FTN), all purchased from Waters (Milford, MA, USA). System control and data 

acquisition was performed using WinGPC software purchased from PSS Polymer 

Standards Service (Mainz, Germany). 

3.2.1.2. Chemicals and Materials 

Acetonitrile (ACN, ≥99.9%, LC-MS Grade) was purchased from Honeywell Research 

Chemicals (Seelze, Germany) and tetrahydrofuran (THF, 99.9%, Isocratic grade, 

unstabilized) from Bernd Kraft (Oberhausen, Germany). Narrow polystyrene 

standards were obtained from Polymer Standards Service.  

 

 

 

 3 
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3.2.2. Laboratory B 

3.2.2.1. Equipment and software  

System B, located in The Netherlands, included a (G1322A) 1100 degasser, (G1311A) 

1100 quaternary pump, an (G1329A) 1100 auto-sampler, and an (G1316A) 1100 

column oven, all purchased from Agilent (Waldbronn, Germany). An LC-10 AVvp UV 

detector, equipped with a pressure-resistant UV cell (up to 80 bar) was purchased 

from Shimadzu (Kyoto, Japan).  

System control was performed using Agilent ChemStation. Data acquisition was 

performed using Shimadzu LabSolutions software.  

3.2.2.2. Chemicals and Materials 

THF and non-stabilized THF (99.9%, LC-MS Grade, unstabilized) were obtained from 

VWR Chemicals (Darmstadt, Germany), ACN (≥99.9%, LC-MS Grade) and methanol 

(MeOH, 99.9%, LC-MS Grade) were obtained from Biosolve (Valkenswaard, the 

Netherlands). 2,2'-Azodi(2-MethylButyroNitrile) (AMBN, 98%) and Methyl-

methacrylate monomers (MMA, 99%) were obtained from Sigma Aldrich (Steinheim, 

Germany). Styrene monomers (ST, 99%) was obtained from Fluka (Seelze, Germany). 

1-Butanon (MEK, 99%) was obtained from Acros (Geel, Belgium). All water was 

purified in-house using a Satorius Arium 611VF at a resistivity of 18.2 MΩ∙cm 

obtained from Sartorius (Göttingen, Germany). A polystyrene (PS) standards kit was 

obtained from Polymer Standards Service. 

3.2.3. Material and methods common to Laboratory A and B 

Certain equipment and chemicals, as well as procedures, were transferred and 

therefore identical in both laboratories. These are included in this section.  

3.2.3.1. Equipment and procedure  

For the recycling experiments two sets of two 250 × 4.6 mm Nucleosil columns (C18 

and bare silica), both containing 5-µm particles with a pore size of 4000 Å were 

obtained from Macherey Nagel (Düren, Germany). Two 250 × 4.6 mm C18 columns 

containing 5-µm particles with a pore size of 100 Å were obtained from YMC (Kyoto, 

Japan). Additionally, two 250 × 4.6 mm Imtakt Presto FF-C18 columns from Imtakt 

(Kyoto, Japan), containing non-porous 2-µm particles, were also evaluated.  
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For the SEC experiments three 150 × 4.6 mm Acquity APC XT columns containing 

1.7-µm particles with a pore size of 45 Å were used. Non-stabilized THF was used as 

eluent.   

A 10-port 2-position UHPLC valve (MXT715-102) was purchased from Rheodyne, 

IDEX Corporation (Lake Forest, IL, USA). An Arduino Uno Rev 3 was purchased from 

a local electronics supplier and was used to control the timing of the 10-port valve, 

irrespective of the system used.  

In all cases the approximate cycle timing was determined from a blank THF injection 

and a 0-100% gradient of THF in ACN was run to determine the dwell volume. Unless 

otherwise mentioned, the temperature of the column oven was set to 30 ºC.  

3.2.3.2. Chemicals  

Five (statistical) copolymer samples consisting of styrene and methyl methacrylate 

(S/MMA), with average compositions of: 84/16; 71/29; 57/43; 42/58; 25/75, were 

synthesized in-house in laboratory B using thermally-initiated free-radical 

polymerization. The full procedure is included in the supplementary information 

(section S1).  

Six different (statistical) copolymer samples consisting of methyl methacrylate and 

butyl methacrylate (MMA/BMA) were obtained from DSM (Waalwijk, The 

Netherlands). A block copolymer from MMA/BMA was obtained from Polymer 

Standards Service GmbH.  

3.2.4. Data analysis  

All data analysis (e.g. alignment, background correction, chromatogram reshaping 

and peak analysis) was performed in MATLAB R2021a, purchased from Mathworks 

(Natick, MA, USA).    

 

 

 

 3 
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3.3. Results & Discussion 

3.3.1. Design and initial experiments 

3.3.1.1. Design of the LCLC set-up  

To perform the recycling gradient experiments a ten-port valve and two identical 

columns were utilized. A scheme of the set-up is shown as Figure 3.1-A. For the 

experiment the gradient is only created a single time and is continuously recycled 

between two columns. Because it is not possible to recycle a gradient that exceeds a 

single column volume without losing part of the gradient to waste, the gradient 

volume was always kept below the void volume of one column. A pressure-resistant 

UV-detector was installed in-line to allow monitoring of the separation and the 

gradient during each cycle. Figure 3.1-B shows an example of the data obtained 

from this in-line UV detector when running  of a test compound. A recurring signal 

is obtained that may be “folded” in a similar manner as is commonly done for 

modulations in LC×LC or comprehensive two-dimensional gas chromatography 

(GC×GC) (Figure 3.1-C). The folded data can then be visualized as either a stacked 

plot (left) or as a surface plot (right).  

Figure 3.1: A) Schematic illustration of the recycling-gradient set-up, B) Trace from the in-line 

DAD resulting from the recycling gradient with the switching moments of the valve indicated 

by the dotted lines, C) Data folded and aligned, displayed as stacked individual cycles (left) or 

as a surface plot (right). 
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The duration of the first cycle was 
(𝑉0,1+𝑉0,2)+𝑉dwell

𝐹
≈

2𝑉0 +𝑉dwell

𝐹
. In the present case two 

columns of (nearly) equal volume were used (𝑉0 ≈ 𝑉0,1 ≈ 𝑉0,2). However, in principle 

any combination of columns (packed with the same particles) may be used when 

unequal switching times are used, provided that the gradient volume remains below 

the smallest of the two column volumes (𝑉𝐺 ≤ min{𝑉0,1, 𝑉0,2}). After the first cycle, 

the gradient (with the analytes positioned in it) was redirected to the first column. 

The gradient was then alternated between columns for a number of n cycles with a 

constant recycle time of 
𝑉0

𝐹
. Folding the individual cycles (Figure 3.1-C) reveals a few 

important aspects of LCLC. Firstly, it is possible to track the progression of an 

analyte within the gradient. Secondly, it shows that selecting the correct recycle 

timing is critical, especially when a very large number of cycles is to be performed. 

When the timing of each cycle is off, the gradient and the position of the analytes 

are not aligned in each run. In Figure 3.1-C the selected cycle time was about 1.2 s 

too short. The dotted line in Figure 3.1-C corresponds to a benchmark point (signal 

disturbance around the moment the valve is switched) in the chromatograms from 

each cycle. If the correct cycle time is used such a line becomes vertical. In most cases 

the correct cycle timing could be accurately determined by aligning each cycle based 

on characteristic features in the background signal. 

3.3.1.2. Experimental evaluation of gradient deformation  

From previous work it is known that steep gradients come with a higher risk of strong 

column-induced gradient deformation [49]. To practically assess the magnitude of 

this effect and its consequences for LCLC, several initial tests were performed on a 

variety of columns. A reasonably large PS standard (113 kDa, PS6) was followed 

during a number of cycles. For all experiments the same gradient from 0-100% THF 

in ACN in 3 min was used. For the different columns the flowrate was adjusted so 

that the gradient volume remained below 𝑉0. For the 120 and 4000 Å columns 𝑉0 was 

about 3.1 mL, so a flowrate of 1 mL∙min-1 was used. For the non-porous C18 columns 

𝑉0 was about 1.2 mL so a flowrate of 0.4 mL∙min-1 was used. The results of these initial 

experiments are illustrated in Figure 3.2 for several sets of columns with different 

stationary-phase chemistries, pore sizes, and particle sizes. The decision to recycle 

the entirety of the gradient (∆𝜑 = 1, 𝑉𝐺 = 𝑉0) was based on the desire to cover a wide 

range of possible critical compositions (𝜑crit). This is especially relevant when little or 

 3 
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no information is available on the retention characteristics of the sample (i.e. no 

known information on the distributions of ln 𝑘0 and 𝑆, or on 𝜑crit). This will often be 

the case when analysing (co-)polymers.   

Figure 3.2: LCLC of PS6 (113 kDa) using recycling of a 3-min 0-100% THF in ACN gradient 

for a couple of A) 120 Å, 5-µm C18 columns, B) 4000 Å, 5-µm C18 columns, C) 4000 Å, 5-µm 

bare silica columns and D) non-porous 2-µm C18 columns 

  

From Figure 3.2 it may be concluded that the worst result was obtained for the 120 

Å C18 columns. The shape of the background absorbance signal due to the gradient 

is seen to drastically change and the PS6 peak (indicated by the asterisk) in the 

gradient becomes eventually obscured (Figure 3.2-A). Apparently, the column is not 

sufficiently equilibrated between cycles. Also, a spurious peak appears in the first 

cycle, and can be more clearly seen in the second cycle (indicated by the red arrow). 

A convex shape of the leading part of the gradient is indicative of solvent de-mixing 

caused by the preferential adsorption of the more-UV-active and most non-polar 

solvent (THF) on the column. Due to the inadequate equilibration of the column and 

an apparent saturation of the stationary phase with THF, no useful results were 

obtained. After only three cycles the peak corresponding to PS6 completely overlaps 

with a “breakthrough peak” of THF. In contrast, for both the columns containing 4000 

Å particles (Figure 3.2-B for C18 particles and Figure 3.2-C for bare-silica particles), 
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as well as the columns containing non-porous C18 particles (Figure 3.2-D) the traces 

for each cycle are much more consistent and the PS6 standard readily assumes its 

position around the critical composition for polystyrene in the gradient (which is 

expected considering its relatively large molecular weight). For all columns other 

than the 120 Å C18 columns, a gradual increase in the pressure was consistently 

observed during each cycle, due to an increase in the fraction of the more-viscous 

THF. In conclusion, successful recycling of the full gradient (∆𝜑 = 1, 𝑉𝐺 = 𝑉0) could 

not be achieved in columns that contained particles with small pores (120 Å), likely 

because the required equilibration time for these columns was much longer than for 

the wide pore packings [50]. However, if an application is run across a narrower range 

of compositions (smaller ∆𝜑), small-pore particles with large available surface areas 

may still feasibly be used. In the present study all further experiments were 

conducted using the stationary phases with 4000 Å pores and the non-porous 

particles.    

3.3.1.3. LCLC of PS standards on various columns   

To investigate the applicability of the method for reducing the molecular-weight 

influence on retention, PS standards of different molecular weight were used as a 

model system. Peak molecular weights (𝑀𝑝) and polydispersity indices (PDI, in 

brackets) were 4.29 kDa (1.05), 10.4 kDa (1.03), 19.6 kDa (1.03), 43.3 kDa (1.03), 70.9 

kDa (1.03), and 113 kDa (1.03), respectively,  henceforth referred to as PS1 through 

PS6. The separation obtained for these standards on the non-porous C18, the 4000-

Å C18, and the 4000-Å bare-silica columns is illustrated in Figure 3.3. Examples of the 

non-aligned signals are included in the supplementary material (Figure S-1, section 

S2).  
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Figure 3.3: LCLC of PS1-6. A) non-porous C18 columns using a 3-min gradient of 20-80% 

THF in ACN at a flow rate of 0.4 mL∙min-1; B) 4000 Å C18 columns using a 3-min gradient of 20-

80% THF in ACN at a flow rate of 1 mL∙min-1; C) 4000 Å bare-silica columns using a 3-min 

gradient of 0-100% THF in ACN at a flow rate of 1 mL∙min-1. The first-cycle chromatograms 

are shown in the bottom panel; the last (20th or 10th) cycle chromatograms are shown in the 

top panel. The central panel displays the surface plots for all cycles. 

 

These experiments confirm that the influence of the molecular weight is 

progressively reduced with an increasing number of cycles in case of the C18 columns 

(for both the non-porous particles, Figure 3.3-A, and the 4000 Å particles, Figure 

3.3-B). The mitigation of the molecular-weight effect concurs with an increase in the 

effective gradient steepness (𝑏). On the non-porous columns (Figure 3.3-A), the 

difference in elution composition between PS1 (4.29 kDa) and PS6 (113 kDa) is 

reduced from ∆𝜑 = 17% (first cycle, i.e. no recycling) to ∆𝜑 < 0.1%  (20 cycles). 

Evidently, when the gradient steepness is sufficiently large, the elution order 

becomes essentially independent of molecular weight. A comparison of Figure 3.3-

A and Figure 3.3-B also demonstrates that, in case of gradient elution, the presence 

of pores does not determine whether a (pseudo) critical composition exists. For the 

bare-silica columns (Figure 3.3-C), only a marginal reduction in the molecular-

weight influence was observed, which indicates the absence of critical conditions on 

these columns and with this combination of solvents. The separation obtained using 
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the bare-silica columns (Figure 3.3-C) is nearly independent of the effective column 

length and there is little or no variation in the retention factor at the moment of 

elution (𝑘e) with 𝑏. This demonstrates that LCLC may, within one experiment, also 

provide information on the underlying elution behaviour, as the minor influence of 

an increase in column length indicates that elution is governed more so by solubility 

(ACN to THF corresponding to a non-solvent to solvent gradient) than by interaction 

with the column. This results in another potential practical application of LCLC, 

namely the ability to determine approximate critical conditions when narrow 

standards are not available, as is very often the case (e.g. for copolymers).  

For all analytes the changes in peak width and shape as a function of cycle number 

were assessed for both the non-porous and 4000-Å C18 packings (Figure 3.4). 

Figure 3.4: Front and tail peak widths (in mL) obtained during LCLC of PS1-6; widths are 

measured to the peak center line at 10% of the maximum peak height, and depicted as 

function of cycle number. Blue circles: front peak widths; red diamonds: tail peak widths. 

Gradient: 3-min 20-80% THF in ACN. A) non-porous C18 particles; flow rate, 0.4 mL∙min-1; B) 

4000 Å C18 particles; flow rate, 1 mL∙min-1. 

 

The obtained peak-width parameters on the columns packed with non-porous 

particles was, in most cases, a factor two to three smaller than those obtained for the 

4000 Å C18 columns, likely thanks to faster mass-transfer in these columns, because 

of the smaller particle size (2-µm vs. 5-µm) and the absence of pores. Additionally, 

irrespective of the column used, the shape of the peak depends on the molecular 

weight of the analyte and small differences can be observed in the peak widths 
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between successive cycles (“zig-zag” effect). Apparently, the chromatogram depends 

slightly on which of the two columns the gradient has passed through before 

entering the in-line DAD. This may be explained by differences in the packing, the 

stationary phase itself, or small differences in the pressure for the two columns. The 

latter effect is a less likely explanation, because LCLC requires only moderate 

pressures. An eventual pressure effect may be expected to be more pronounced for 

high-molecular-weight analytes, which from previous studies are known to 

experience relatively large changes in partial molar volume with a change in pressure 

compared to small analytes [51–53], which cannot be discerned from Figure 3.4. 

Concerning the shape of the peak, two processes can be observed. Firstly, the peak 

fronting decreased significantly with cycle number, most noticeably for the low-

molecular-weight analytes and marginally for PS5 and PS6. Secondly, the peak tailing 

increased with cycle number, again less strongly for the high-molecular-weight 

standards. The first process is likely a result of the selectivity with respect to molecular 

weight, which is much larger for PS1 than for PS6, as a result of the much shallower 

effective gradient that this standard experiences (i.e. lower value of 𝑏, because of 

smaller 𝑆 values). The second process may be a result of either chromatographic peak 

broadening or an inversion of the molecular weight dependence around the 

“pseudo” critical composition. Using gradient elution the peak width (in volume units, 

𝜎𝑉) may be described using Equation 3.4:  

𝜎𝑉 = 𝐺
𝑉0

√𝑁
(1 + 𝑘𝑒)                               (3.4)  

In which 𝐺 is a band compression factor, which for very steep gradients (large 𝑏) and 

an unretained mobile-phase modifier should reach a (supposedly limiting) value of 

about 0.58 [36,37]. Because in our case large 𝑏 values can likely be reached and the 

resulting 𝑘𝑒 values are small (and likely similar) for all analytes, the peak width after 

a given number of cycles should depend primarily on 𝑁 and 𝑉0. When such 

conditions are reached 𝜎𝑉 is expected to increase with the square root of the number 

of cycles. Given the small 𝑘𝑒 values, extra-column band broadening is also a point of 

concern.  

In this work the peak broadening seemed to manifest itself primarily in the form of 

peak tailing, rather than as an increase in overall peak width. This effect was largest 

for PS1. To investigate this effect, an LCLC analysis of PS1 on the non-porous 
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column was ended after the 10th cycle. Fractions of the effluent were collected and 

subsequently measured with SEC. The results of these experiments, as performed on 

the non-porous-particle C18 columns, are illustrated in Figure 3.5.  

Figure 3.5: A) Fractionation of PS1 after analysis by LCLC (10 cycles) using non-porous C18 

particles with a 3-min 20-80% THF gradient in ACN at a flowrate of 0.4 mL∙min-1; fraction 

numbers are indicated. B) SEC chromatograms of the fractions indicated in A, measured using 

Acquity APC XT columns, with unstabilized THF at a flowrate of 0.5 mL∙min-1 and a column 

oven temperature of 60ºC.   

 

Small differences in elution time (and thus molecular weight) are found to remain 

after 10 cycles, especially for fractions 3 and 4 (∆𝑀𝑝 ≈ 1.1 kDa). Additionally, the 

average 𝑀𝑝 (as determined by calibration relative to a different set of PS standards) 

differed slightly from the listed value. Irrespective of these differences, all later 

fractions showed nearly consistent peak molecular weights. This confirms that the 

observed peak tailing is a result of chromatographic and extra-column dispersion, 

rather than selectivity. Chromatographic peak broadening occurs predominantly at 

the trailing edge of the peak. This can be explained by the fact that, after the 

molecular-weight effect on retention is fully diminished (no remaining selectivity as 

observed in Figure 3.5), a peak-sharpening effect due to the gradient likely prevails 

at the front of the peaks. Molecules that run ahead of the peak (and thus the 

gradient) will slow down due to the increase in weak solvent and get back in line. 

Such gradient-sharpening is absent at the back side of the peaks, where all 𝑘 values 

are low. Such an explanation is in agreement with the observation that the 

broadening is greatest for low-molecular-weight standards, while higher-molecular-

weight standards show less broadening. Contrarily, extra-column band broadening 
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is expected to be more severe for high-molecular-weight standards, as a result of 

their much smaller diffusion coefficients. However, SEC or hydrodynamic effects 

could help sharpen the peaks, as this would allow large molecules that have fallen 

behind to catch up. For the 4000 Å columns a brief assessment of the influence of 

flowrate and the range of mobile-phase composition covered by the gradient (∆𝜑) 

on peak width was performed across 10 cycles for a narrow and broad PS standard. 

The results of these experiments are included in the supplementary material (Figure 

S-2, section S3) and indicated that broad and narrow standards reach nearly equal 

peak width at high number of cycles for the same gradient. Gradients spanning 

smaller ∆𝜑 and higher flow rates generally resulted in broader peaks.    

3.3.2. LCLC for the analysis of chemical-composition distributions     

3.3.2.1. Separations of S/MMA copolymers  

Because LCLC could successfully suppress the influence of the molecular weight in 

case of PS, it was deemed to be a good technique for determining chemical-

composition distributions (CCD), without a confounding effect of molecular weight. 

Experiments were performed on five statistical copolymers consisting of S/MMA 

(SM1-5), as well as on seven MMA/BMA copolymers (MB1-7), to assess whether the 

approach could be applied  to achieve higher resolution between samples differing 

only slightly in composition. For SM1-2 a gradient spanning a narrow range in 

composition (small ∆𝜑) was used. This caused a pronounced influence of the 

underlying broad MWD (𝑀𝑤 = 54 kDa (PDI = 2.3) and 64 kDa (PDI = 2.1) for 

copolymer SM1 and SM2, respectively) of these samples on the elution profile 

obtained with conventional gradient-elution LC, as is clear from the first-cycle trace 

in Figure 3.6-A where distinctly fronting peaks are obtained. 
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Figure 3.6: LCLC of S/MMA copolymers SM1-2 (A) and SM1-5 (B) performed on two 4000 

Å C18 columns using a flow rate of 1 mL∙min-1. Gradient, A) 30-50% THF in ACN in 2.5 min, B) 

0-60% THF in ACN in 2.5 min. Average S/MMA compositions: SM1, 84/16; SM2, 71/29; SM3, 

57/43; SM4, 42/58; SM5, 25/75. Experiments were performed on System B.  

 

The underlying MWD jeopardizes the determination of the CCD when a shallow 

gradient is used. In subsequent cycles the effective gradient slope (𝑏) gradually 

increases causing the profile to reflect the CCD, with little or no influence of the broad 

MWD. Much sharper peaks were obtained after ten cycles, as a result of the narrow 

CCD of both copolymers. The signal-to-noise ratio improved by more than a factor 

of three for both distributions and the their resolution improved from 0.66 to 1.5 

(determined after deconvoluting the two distributions). If a broader range of polymer 

compositions (broad CCD) is considered (SM1-5), a gradient with a larger ∆𝜑 is 

required (Figure 3.6-B). This increases the value of 𝑏 and reduces the influence of 

the MWD for all copolymers, even in the first cycle. Because the difference in the 

critical compositions of SM1 and SM2 (∆𝜑crit =  𝜑crit,SM2 − 𝜑crit,SM1) is about 4.8%, 

and is independent of the slope of the gradient, a higher resolution in terms of 

chemical composition is obtained when the gradient covers a smaller range of eluent 

compositions, within the same time frame. This confirms that the retention of these 

copolymers follows the same basic rules as the PS homopolymers, with a strong 

correlation between the molecular-weight dependent slope (𝑆) and intercept (ln 𝑘0) 

of Equation 3.1. Peaks are seen to remain broader in time units at smaller ∆𝜑 even 

after recycling of the gradient. In terms of volume-fraction units (at the elution 

composition) peaks are narrower for narrow range gradients. This may be the best 

reflection of the actual CCD, because the chemical-composition selectivity of the 
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separation is maximized and overshadows the contribution of the chromatographic 

dispersion. 

3.3.2.2. Separations of MMA/BMA copolymers  

To further illustrate the effect of gradient recycling the method was also applied to 

a separation of MMA/BMA copolymers (MB1-7), using both the columns containing 

non-porous and 4000 Å C18 particles (Figure 3.7). 

 

Figure 3.7: LCLC of MMA/BMA copolymers MB1-7 performed on A) non-porous C18 

particles using a gradient of 0-60% THF in ACN in 3 min at a flowrate of 0.4 mL∙min-1, and B) 

4000-Å C18 particles using a gradient of 0-60% THF in ACN in 2.5 min at a flowrate of 1 mL∙min-

1. Average MMA/BMA compositions (as determined by 1H-NMR) and 𝑴𝒘: MB1, 50/50 (4.2 

kDa); MB2, 76/24 (80 kDa); MB3, 58/42 (20 kDa); MB4, 32/68 (15 kDa); MB5, 30/70 (50 kDa); 

MB6, 85/15 (100 kDa); MB7, 0/100 (160 kDa). 

 

In this case a broader range of composition (∆𝜑) was used. Again we observed that 

the separation with respect to polymer composition, once obtained, can be 

maintained in subsequent cycles. Unlike the above example of the S/MMA 

copolymers, most peaks show the characteristic fronting due to the confounding 

MWD in the first cycle (upper panels in Figure 3.7). The fronting is reduced or 

disappears for many peaks with an increasing number of cycles, as the effect of the 

MWD is increasingly suppressed. An additional method to illustrate the effect of the 

recycling is to predict the approximate critical compositions of the copolymers and 

comparing these with the obtained elution compositions before and after a recycling 

of the gradient. Previous work has shown that the approximate critical composition 
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of a statistical copolymer, which consists of two types of monomers (I and II), can be 

calculated using data obtained for the corresponding homopolymers [16], by using 

Equation 3.5  

𝜑crit,𝐶𝑃 =
𝑝𝐼(1−𝑋𝐼𝐼)+𝑝𝐼𝐼𝑋𝐼𝐼

𝑞𝐼𝑝𝐼(1−𝑋𝐼𝐼)+𝑞𝐼𝐼𝑝𝐼𝐼𝑋𝐼𝐼
                   (3.5) 

in which the subscripts I and II indicate monomer type I and II, respectively, 𝑋 is the 

mass fraction of the respective monomer in the copolymer (CP), 𝑞 is the slope 

obtained by assuming a linear correlation between 𝑆 and ln 𝑘0, and corresponds to 

the approximate critical composition as  𝜑crit =
1

𝑞
, 𝑝 is the slope obtained by 

assuming a linear correlation between ln 𝑘0 and molecular weight, and  𝜑crit,𝐶𝑃 is the 

approximate critical composition of copolymer CP with mass fraction 𝑋𝐼𝐼. 

Determining 𝑝𝐼 and 𝑝𝐼𝐼 individually for both homopolymers may require multiple 

experiments and can be tedious. However, since 𝜑crit,𝐶𝑃 can be shown to depend on 
𝑝𝐼

𝑝𝐼𝐼
 by dividing Equation 3.5 by 𝑝𝐼𝐼 it can be easier to rewrite Equation 3.5 to:  

𝑝𝐼

𝑝𝐼𝐼
=

𝑋𝐼𝐼(1−
𝜑crit,𝐶𝑃
𝜑crit,𝐼𝐼

)

(1−𝑋𝐼𝐼)(
𝜑crit,𝐶𝑃

𝜑crit,𝐼
−1)

                    (3.6)   

This equation allows one to determine 
𝑝𝐼

𝑝𝐼𝐼
 provided that the approximate critical 

conditions are determined for two high-molecular-weight homopolymers (each 

consisting of monomers I and II, respectively), and one high-molecular-weight 

copolymer CP of known average composition, given by 𝑋𝐼𝐼. In our case recycling of 

the gradient promotes elution at the approximate critical composition. Therefore, it 

is expected that the difference between the measured elution composition (𝜑𝑒) and 

the predicted critical composition (𝜑crit,𝐶𝑃) is minimized with an increase in the 

number of cycles (or gradient steepness), especially for the lowest-molecular-weight 

analytes (MB1 and MB4). The approximate critical compositions were calculated in 

this way using 𝜑crit,PMMA = 0.09, 𝜑crit,PBMA = 0.47, and 𝜑crit,MB5 = 0.34 (with 𝑋BMA =

0.70, as determined from 1H-NMR). The differences between the measured elution 

compositions and the elution compositions predicted in this way (calculated as: 

|𝜑𝑒 − 𝜑crit,𝐶𝑃| ∗ 100) for MB1 and MB4 decreased from 7.9% and 2.0% in the first 

cycle, to 1.4% and 0.092% after the final cycle, respectively. Assuming instead that 

𝜑crit,𝐶𝑃 varied linearly with 𝑋BMA between 𝜑crit,PMMA and 𝜑crit,PBMA led to an 
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overestimation in all cases. A full overview is given in the supplementary information 

(Figure S-3, section S4). The largest shift in elution composition after recycling of the 

gradient occurred for copolymer MB1. This is not surprising, since this is a low-

molecular-weight copolymer (𝑀𝑤 = 4.2 kDa). Additionally, because it is a block 

copolymer, the peak remains broad even after recycling. Block copolymers tend to 

have a much broader CCD than statistical copolymers, due to the block-length 

distributions of the two blocks. The peak of copolymer MB4 showed significant 

fronting, even after 10 cycles. To evaluate whether this fronting occurred due to the 

remaining influence of the MWD or was the result of the underlying CCD, peak 

fractions were taken after 1 and 20 cycles. The MWD of each fraction was 

subsequently determined using SEC and also the change in peak asymmetry during 

the recycling experiment was evaluated (Figure 3.8).  

Figure 3.8: LCLC of copolymer MB4 using non-porous C18 particles with a 3-min 0-60% THF 

gradient in ACN at a flowrate of 0.4 mL∙min-1. A) Front (blue) and tail (red) peak widths (in mL) 

as function of cycle number (calculation, see Figure 4). B and C) Peak profiles after 1st and 20th 

cycle, respectively, with fractions taken indicated; dashed line under the peak indicates the 

background signal of the gradient. D and E) SEC chromatograms of the fractions indicated in 

B and C, respectively, measured using Acquity APC XT columns at a flowrate of 0.5 mL∙min-1 

and a column oven temperature of 60 ºC.   

 

As seen in Figure 3.8-A, the peak fronting decreases during the cycles, until it seems 

to converge after 20 cycles, indicating that the confounding effect of the underlying 

MWD has been diminished. However, significant fronting remains, even after 20 

cycles (Figure 3.8-C), the underlying gradient is indicated in the figure to better 

highlight the remaining extent of peak fronting. An analysis of the fractions taken 
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from the 20th cycle (Figure 3.8-D) shows that the underlying MWD within all fractions 

after the first two is the same, indicating that even for a relatively low molecular 

weight polymer (𝑀𝑝 = 15 kDa) a good reflection of the true CCD of the polymer can 

be obtained. This case underlines the value of LCLC. Without recycling there is a 

strong confounding effect of the MWD and the CCD, which prevents correct 

interpretation of the results. 

3.4. Conclusion  

In this work the use of LCLC for the analysis of the CCD of copolymers is introduced 

and demonstrated. The entirety of the gradient is continuously recycled to achieve 

extremely steep gradients, so as to minimize the effect of the MWD on the elution 

profile. Conventionally, very fast gradients require short durations, in combination 

with long columns and low flow rates, resulting in decreased peak capacities, long 

analysis times, and an increased risk of system-induced gradient deformation. Such 

issues can be avoided with LCLC. It is demonstrated that a set of polystyrene 

standards of greatly different molecular weights can be made to (nearly) completely 

co-elute. LCLC was used to determine the CCD of two sets of copolymers (S/MMA 

and MMA/BMA), with the confounding effect of the MWD being successfully 

suppressed. Based on the results presented, LCLC appears suitable for the accurate 

determination of the CCD of a wide range of copolymers with narrow or broad CCDs 

and MWDs. No prior information on the critical conditions is required, greatly 

reducing the effort required and eliminating the need for (narrow) standards.  

Chromatographic dispersion remains, but gradient conditions and column 

dimensions may be chosen such that the chemical-composition selectivity is 

dominant. Columns packed with large-pore particles or non-porous particles can be 

used for LCLC, but small-pore particles give rise to column-induced gradient 

deformation. This was ascribed to adsorption of mobile-phase components on 

packings with large surface areas.  

An LCLC experiment may be ended after any number of cycles and combined with 

any detector suitable for gradient LC. Also, LCLC may be coupled on-line with other 

methods, such as size-exclusion chromatography, to better highlight potential 

differences between samples. A comprehensive coupling of LCLC and SEC may 

provide clearly interpretable results, and the orthogonality between RPLC or NPLC 
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and SEC will be increased. Even without addition of another method LCLC was 

shown to be capable of a more direct determination of the CCD.  
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Abstract 

The properties of a polymeric material are influenced by its underlying molecular 

distributions, including the molecular-weight (MWD), chemical composition (CCD), 

and/or block length (BLD) distributions. Gradient-elution liquid chromatography (LC) 

is commonly used to determine the CCD. Due to the limited solubility of polymers, 

samples are often injected in strong solvents. Such solvents may lead to broadened 

or poorly shaped peaks and, in unfavourable cases, to “breakthrough” phenomena, 

where a part of the sample travels through the column unretained. To remedy this, 

a technique called size-exclusion-chromatography gradients or gradient size-

exclusion chromatography (gSEC) was developed in 2011. In this work, we aim to 

further explore the potential of gSEC for the analysis of the CCD, also in comparison 

with conventional gradient-elution reversed-phase LC, which in this work 

corresponded to gradient-elution reversed-phase liquid chromatography (RPLC). 

The influence of the mobile-phase composition, the pore size of the stationary-phase 

particles, and the column temperature were investigated. The separation of five 

styrene/ethyl acrylate copolymers was studied with one-dimensional RPLC and gSEC. 

RPLC was shown to lead to a more-accurate CCD in shorter analysis time. The 

separation of five styrene/methyl methacrylate copolymers was also explored using 

comprehensive two-dimensional (2D) LC involving gSEC, i.e. SEC×gSEC and 

SEC×RPLC. In 2D-LC, the use of gSEC was especially advantageous as no 

breakthrough could occur.  
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4.1. Introduction  

Polymers are among the most important building blocks of materials. The 

applications of polymers are nearly limitless, from packaging applications to 

electronics, paints, clothing, and drug delivery systems. To continuously improve 

polymeric materials, it is vital to understand how their molecular structure and 

composition relate to their physical properties. Several techniques can be used to 

characterize the chemical structure of polymers, including pyrolysis – gas 

chromatography coupled to mass spectrometry, and spectroscopic methods such as 

infrared, ultraviolet absorbance, Raman or nuclear magnetic resonance spectroscopy 

[1–6]. However, most of these methods merely provide average polymer 

composition, and do not yield information on the distributions present, such as 

molecular-weight (MWD), chemical-composition (CCD), and/or block-length (BLD) 

distributions. To assess these distributions, liquid chromatography (LC) is more 

generally used [7–16]. A common LC technique for the analysis of polymers is size-

exclusion chromatography (SEC), which is a well-established benchmark for 

determining molecular-weight distributions (MWD) [1,10,13,14]. There is no such 

benchmark method for the analysis of the CCD, although gradient-elution LC is 

probably most commonly used [7–11,15,16].  

The greatest challenges for the application of solvent-gradient LC are analyte 

detection and polymer solubility. Due to the changing mobile-phase composition, 

many typical detectors used for SEC, such as refractive-index, viscometric, or light-

scattering detectors cannot be used. Efforts to make such detectors work with 

gradients [17–20] have been moderately successful at best. Many polymers are 

difficult to dissolve. Strong solvents and patience are typically required and injecting 

the resulting sample at the starting conditions of a gradient separation, in a weak 

eluent, can be problematic. This may be exacerbated for crystalline (co)polymers, due 

to issues with slow redissolution [21]. Even if crystallinity is not an issue, an injection 

solvent that is a strong eluent can still lead to broad or deformed peaks and, 

ultimately, to a phenomenon called breakthrough [22]. When this occurs a part of 

the sample stays in the solvent plug and passes (nearly) unretained through the 

column. Several methods have been developed to address this issue [23,24]. These 

include sandwich injection [23] and solvent-mixing strategies [24]. Additionally, so-

called barrier methods may be applied [25,26]. However, the latter fundamentally 
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result in very low peak capacities (one per barrier). SEC-gradients, henceforth 

referred to in this work as gradient-SEC (gSEC), can be seen as a much-improved 

implementation of a barrier method, with a gradual rather than stepwise change in 

mobile-phase composition. Originally introduced by Schollenberger et al. [27,28], 

gSEC eliminates the risk of breakthrough and offers a much larger peak capacity than 

conventional barrier methods (the principles and practise of gSEC are outlined 

below). However, reports on the use of gSEC for the separation of synthetic polymers 

have so far been scarce [27–30]. While some work has been performed illustrating 

different elution mechanisms [27,28], many aspects of gSEC have not yet been 

studied. These include the influence of the solvent composition and of the column 

packing material (e.g. the particle pore size). Importantly, gSEC has never been 

directly compared with conventional gradient-elution LC, neither in one-dimensional 

LC nor as a second-dimension separation in two-dimensional LC.  

Our objectives in the present work were to critically evaluate the influence of the 

mobile phase, the temperature, and the pore size in gSEC, and to compare RPLC and 

gSEC, so as to highlight the advantages and shortcomings of both methods. SEC 

separations of polystyrene (PS) and polymethyl methacrylate (PMMA) were 

performed on various columns of different chemistries, containing particles of 

different pore sizes, and using various mobile-phase mixtures of acetonitrile (ACN) 

and tetrahydrofuran (THF), at two different temperatures (25 and 60°C). Following 

these experiments, gSEC measurements were performed using small-pore 

stationary-phase particles. We set out to compare the separation of five styrene/ethyl 

acrylate (S/EA) copolymers and five styrene/methyl methacrylate (S/MMA) 

copolymers, each characterized by a broad MWD, but a narrow CCD. Both RPLC and 

gSEC were used for the separation of the S/EA copolymers. For the S/MMA 

copolymers comprehensive two-dimensional liquid chromatography (LC×LC) in 

either SEC×RPLC or SEC×gSEC mode were applied. To perform SEC×RPLC 

successfully, we needed to avoid breakthrough in the second dimension. This is 

notoriously difficult, because a strong first-dimension solvent is combined with a 

large second-dimension injection volume. In SEC×gSEC breakthrough did not occur, 

as the strong first-dimension solvent matches the starting conditions of the gSEC 

separation.   
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4.2. Theory  

The retention of an analyte may be described using the retention factor (𝑘), given by 

𝑘 =
𝑡𝑅−𝑡0

𝑡0
                         (4.1) 

where 𝑡𝑅 is the retention time of the analyte and 𝑡0 is the void time of the column 

(given by the void volume 𝑉0, divided by the flowrate, 𝐹), or the time it takes for an 

unretained marker to move through the column. On a particular column, 𝑘 is 

commonly adjusted by changing the mobile phase composition and/or the 

temperature. Solvents are generally classified as either weak (causing large 𝑘) or 

strong (causing small 𝑘). For high-molecular-weight analytes, such as polymers, the 

size (hydrodynamic radius) of the analyte molecules in relation with the pore 

diameter of the packing material also plays a role for retention. When the solvent 

strength is sufficiently high, no interaction occurs between the analytes and the 

packing material. The elution order is then (ideally) determined solely by the 

hydrodynamic volume of the polymer, as the accessible pore volume will be different 

for polymers of different sizes (size-exclusion conditions). In this case, elution occurs 

before 𝑡0 and the analytes travel faster than the surrounding mobile phase. At low 

solvent strength the situation is more complex, as the polymer may not be soluble, 

or 𝑘 may be very large. In either case, the polymer will not elute from the column. 

When increasing the fraction of strong solvent (𝜑) in the case of gradient elution, 

solubility generally improves and retention (i.e. the local retention factor) decreases 

with time. The migration of the polymer through the column now depends on how 

quickly solubility improves with 𝜑 or how quickly 𝑘 decreases with 𝜑. If there is no 

interaction with the column at the mobile phase composition where the polymer is 

first soluble, the elution composition will be solely determined by the polymer’s 

solubility [12,31]. In all other cases the polymer will elute “normally”, i.e. primarily 

based on the strength of interaction with the column material [32–34]. Size-exclusion 

conditions will not be encountered, because as soon as polymer molecules move 

faster than the mobile phase they will experience a weaker solvent and be retained 

again until the eluent strength is sufficient.  

To describe the gradient-elution process quantitatively it must be known how 𝜑 

changes with time, and how 𝑘 changes with 𝜑. In previous work, it has been shown 

that the retention of a polymer in gradient-elution RPLC is reasonably well described 
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by a log-linear model, often referred to as the linear-solvent strength (LSS) model 

[32–36]. It is assumed that the logarithm or natural logarithm of the retention factor 

(𝑘), varies linearly with 𝜑. Based on this model an “effective” gradient steepness 

parameter can be defined. Using this concept, it was shown that effectively steep 

gradients minimize the influence of the MWD on retention, while the influence of the 

CCD is enhanced [37]. In such a steep gradient all molecules of a specific 

homopolymer, or of a co-polymer of a given composition, are found to elute at a 

specific (“critical”) composition (𝜑crit), independent of their molecular weight 

[33,34,37–43]. 

Effectively steep gradients are most easily realized by using a step gradient, changing 

instantaneously from an initial composition (𝜑init, weak eluent, high 𝑘) to a final 

composition (𝜑final, strong eluent, low 𝑘) higher than 𝜑crit. However, this results in 

co-elution of all analytes (homopolymers and copolymers) with critical compositions 

that fall within the range of 𝜑 that is covered by the gradient (i.e. 𝜑init ≤ 𝜑crit ≤

𝜑final). This implies that a finite ∆𝜑 results in co-elution of a (large) faction of the CCD 

of a copolymer. Therefore, a step gradient cannot be used to determine the CCD. For 

this purpose, a continuous gradient must be used, of which linear gradients are most 

common. However, a step gradient may be used to separate two different homo- or 

co-polymers with sufficiently different 𝜑crit. 

Normally, analytes are injected before the gradient arrives at the column inlet. It is 

also possible to inject the analyte after the end of the step gradient has passed the 

injector. If 𝜑crit ≤ 𝜑final, the injected analyte molecules experience SEC conditions, 

and large molecules travel through the column faster than the gradient. This results 

in so-called “barrier” methods, where a step gradient (𝜑init ≤ 𝜑crit ≤ 𝜑final) is 

established within the column before injection [25,26]. If the analyte travels much 

faster than the solvent and the time of injection is not too far after the step gradient 

has passed the injector, the analyte molecules may catch up with the gradient step. 

They cannot move past the gradient, as they would experience a weaker solvent and 

slow down. Again, all analytes with 𝜑init ≤ 𝜑crit ≤ 𝜑final will co-elute at the moment 

the step gradient reaches the end of the column. Once again, the use of a continuous 

(e.g. a linear) gradient will provide a better characterization of the CCD. This latter 

type of method is referred to as gSEC [27–30].  
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As with conventional gradient-elution RPLC, a gSEC separation that is based primarily 

on the CCD is desirable. Such a separation can be combined with SEC to achieve high 

orthogonality in LC×LC. With a conventional gradient, the influence of the MWD is 

reduced when using effectively steep gradients [37]. In the case of gSEC this is also 

true, as whether analyte molecules can reach 𝜑crit before the gradient elutes from 

the column depends on the extent of exclusion they experience and on how far the 

analyte molecules must travel through the column to reach 𝜑crit. As with a 

conventional gradient, the effective gradient steepness depends on the ratio of the 

column volume to the gradient volume. At constant column volume, a smaller 

gradient volume (steeper gradient) implies that the analyte has to travel less far to 

reach 𝜑crit. A larger column volume (relative to the volume of the gradient) implies 

that analyte molecules have a greater chance (i.e. a greater part of the column) to 

reach 𝜑crit. The maximum gradient volume (𝑉𝐺,max), such that analyte molecules can 

reach 𝜑crit, can be calculated if a set of criteria are met, viz. (i) a critical composition 

exists for a particular combination of mobile phase, stationary phase, and analyte (i.e. 

𝜑init ≤ 𝜑crit ≤ 𝜑final, where the initial and final compositions may cover the entire 

range from 0 to 1), (ii) the analyte molecules are unretained at 𝜑 > 𝜑crit, (iii) the 

injection takes place at the moment the end of the gradient arrives at the column 

inlet, and (iv) the calibration curve for the column is known. 𝑉𝐺,max may then be 

calculated using   

𝑉𝐺,max =
𝑉0−(𝑉𝑖+𝐾SEC𝑉𝑝)

1−
𝜑crit−𝜑init

𝜑final−𝜑init

=
∆𝜑

𝜑final−𝜑crit
(𝑉0 − (𝑉𝑖 + 𝐾SEC𝑉𝑝))                                (4.2)  

where 𝑉𝑖 and 𝑉𝑝 are the interstitial, and pore volume, respectively, and 𝐾SEC is the SEC 

distribution coefficient. It is assumed that 𝑉0 = 𝑉𝑖 + 𝑉𝑝 . Note that any smaller gradient 

volume would lead to a steeper gradient and causes elution of the analyte at 

𝜑 = 𝜑crit; hence, our use of the term “maximum gradient volume”. For gradient 

volumes larger than 𝑉𝐺,𝑚𝑎𝑥  the analytes cannot catch up with 𝜑crit and elute 

unretained. In such situations, elution is based on hydrodynamic size, but not on 

chemical composition. In gSEC, each analyte will have to first move some distance 

through the column to reach 𝜑crit. This is in contrast with conventional gradient-

elution LC, where migration of the analyte polymers will, for relatively large 

molecular-weight analytes, occur within the vicinity of 𝜑crit as the analyte is first 

retained at the head of the column. As a result, a steeper gradient will be required 
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using gSEC compared to conventional gradient-elution LC to separate high-

molecular-weight polymers with different 𝜑crit. Some other general conclusions can 

also be drawn from Equation 4.2, namely: i) to avoid the use of very small gradient 

volumes, analyte exclusion should be promoted (𝐾SEC should be minimized) by 

choosing small-pore-size packings, ii) columns with a large pore volume (𝑉𝑝) are 

preferred, since this maximizes the migration velocity of the analyte relative to the 

mobile-phase velocity, and iii) 𝑉𝐺 will be determined by the polymer with the smallest 

𝜑crit in the sample. Under the assumptions underlying Equation 4.2, it is clear that 

gSEC will perform better when the difference between 𝜑crit and 𝜑final is reduced. 

However, this would hinder the ability of the method to analyse samples of widely 

different chemical composition, since these samples will feature large differences in 

𝜑crit. Once again, conventional gradient-elution will be less affected by this, since 

analytes will only move within the vicinity of 𝜑crit. In this study we set out to evaluate 

the points raised above and to verify the conclusions drawn from Equation 4.2.  

4.3. Experimental 

Two different systems (A and B), in two different laboratories (referred to below as 

laboratory A, located at the University of Amsterdam and laboratory B, located at the 

Vrije Universiteit Amsterdam), were used for different parts of this work. Certain 

samples were common to both laboratories, these are described here.  

A polystyrene (PS) standards kit was obtained from PSS (Mainz, Germany) and 

polymethylmethacrylate (PMMA) standards were obtained from Polymer 

Laboratories (Church Stretton, UK). Styrene/methyl methacrylate (S/MMA) and 

styrene/ethyl acrylate (S/EA) copolymers were synthesized in-house using thermally 

initiated free-radical polymerization, the procedure, chemicals, along with their molar 

masses, polydispersity, and approximate average chemical composition are included 

in the supplementary information (Table S-1, Section S-1).   
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4.3.1. Laboratory A 

4.3.1.1. Chemicals and Materials 

Non-stabilized tetrahydrofuran (THF, 99.9%, LC-MS Grade) and toluene (99%, LC-

MS grade) were obtained from VWR Chemicals (Darmstadt, Germany), acetonitrile 

(ACN, ≥99.9%, LC-MS Grade) was obtained from Biosolve (Valkenswaard, The 

Netherlands).  

4.3.1.2. Systems and Equipment 

The experiments in this study were carried out on an Agilent system, combining 

components from both an Agilent 1100 and a 1290 Infinity 2D-LC system, all 

obtained from Agilent (Waldbronn, Germany). The system included an 1100 

autosampler (G1313A), an 1100 capillary pump (G1376A), a 1290 binary pump 

(G7120A) equipped with a jet weaver V35 mixer, and a 1290 column compartment 

(G1316C) equipped with a 2-position/8-port valve (model 5067-4214). For detection, 

the system comprised a 1290 diode-array detector (DAD, G4214A) with a max-light 

cartridge cell (model G4212-6008, 10 mm path length, 1 µL cell volume), and a 1260 

evaporative light-scattering detector (ELSD, G4260B). The capillary pump was used 

for the 1D SEC measurements and the binary pump for the gSEC experiments. The 

system was controlled using Agilent OpenLAB CDS ChemStation software (rev. 

c.01.10). 

The 1D-gSEC and SEC-recovery experiments were carried out on an Agilent 1290 

Infinity LC system. This system included a 1290 Infinity II autosampler (G7129B), a 

1290 binary pump (G7120A) equipped with a jet weaver V35 mixer, and a 1290 MCT 

column oven (G7116B). For detection, the system comprised a 1290 DAD (G7117B) 

with a max-light cartridge cell (Model G4212-6008, 10 mm path length, 1 µL cell 

volume). The system was controlled using Agilent OpenLAB CDS ChemStation 

software (rev. c.01.10). 

Conventional (isocratic) SEC measurements were performed at various ACN/THF 

eluent compositions, at 25 and 60°C. The flow rate was 0.5 mL∙min-1, the injection 

volume 3.0 μL, and the sample concentration was 0.5 mg∙mL-1. Columns used for 

these experiments included a 50 × 4.6 mm XBridge bridged-ethylene hybrid (BEH) 

Shield RP18 XP column, packed with 130-Å, 3.5-µm particles, two Nova-Pak 150 × 
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3.9 mm C18 columns packed with 60-Å, 4-µm particles, all purchased from Waters 

(Milford, MA, USA), as well as a 150 × 4.6 mm Dionex Acclaim Polar-Advantage C18 

column packed with 300-Å, 3-µm particles purchased from Dionex (Sunnyvale, CA, 

USA), and two sets of two 250 × 4.6 mm Nucleosil columns (C18 and bare silica), both 

packed with 4000-Å, 5-µm particles, purchased from Macherey Nagel (Düren, 

Germany). 

For the 1D-LC gSEC experiments, three different silica-based C18 columns were used; 

often multiple columns of the same type were coupled in series. These columns 

included two 50 × 4.6 mm and one 100 × 4.6 mm XBridge BEH Shield RP18 XP 

columns, packed with 130-Å, 3.5-µm particles, the two Novapak columns, and the 

Dionex Acclaim Polar-Advantage C18 column. For these experiments an injector 

program was used to realize the required delayed injection. Injection was timed to 

occur one minute after the start of the experiment, i.e. at the end of the gradient. A 

variable initial hold-up time was programmed into the gradient so that gradient 

volumes could be varied based on the volume of each column, while simultaneously 

keeping the injection time constant. The measured retention times were not adjusted 

for the injection time and are relative to the start of the experiment.   

For the 2D-LC experiments, two 150 × 2.1 mm APC SEC columns packed with 2.5-

µm BEH particles with 450-Å pore size were used in the first dimension, while for the 

second-dimension separation two of the 50 × 4.6 mm XBridge BEH Shield RP18 XP 

columns were used. All columns were obtained from Waters. For SEC×RPLC, the 

gradient program was as follows: 0-0.1 min linear gradient 80/20% ACN/THF, 0.1-

0.65 min linear gradient 50/50%, 0.65-0.75 linear gradient 45/55%. For SEC×gSEC, it 

was the following: 0-0.1 min isocratic 40/60% ACN/THF, 0.1-0.2 min linear gradient 

to 95/5%, 0.2-0.35 min linear gradient 20/80%, 0.35-0.9 min linear gradient 50/50%, 

0.9-0.95 min linear gradient 45/55%, 0.95 min isocratic 40/60%. 

The data of 𝜑crit vs. temperature was obtained from gradient experiments performed 

at different temperatures on the XBridge column. The critical composition was 

assumed to be equivalent to the elution composition of a high-molecular-weight 

standard.  

Data analysis was performed in MATLAB R2020a (Mathworks, Woodshole, MA, USA). 
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4.3.2. Laboratory B 

4.3.2.1. Chemicals and Materials 

Acetonitrile (ACN, ≥99.9%, HPLC Grade) was obtained from Biosolve, non-stabilized 

tetrahydrofuran (THF, HPLC grade) was obtained from VWR Chemicals.  

4.3.2.2. Systems and Equipment 

The experiments were performed on a 1290 Infinity II Agilent system. The system 

included an autosampler (G7167B), a quaternary pump (G7104A), a multi-column 

thermostat (MCT, G7116B). A variable-wavelength detector (VWD, G7114B) and an 

ELSD (G7102A) were used for detection. The VWD was set to record UV absorption 

at 210 and 260 nm.  

Conventional (isocratic) SEC measurements were performed at various ACN/THF 

eluent compositions, at 25 and 60°C. The flow rate was 0.5 mL∙min-1, the injection 

volume 3.0 μL, and the sample concentration was 0.5 mg∙mL-1. Columns used for 

these experiments were all Zorbax columns purchased from Agilent. These included 

a 100 × 4.6 mm Rapid Resolution StableBond C18 column, packed with 300-Å, 3.5-

μm particles, a 250 × 9.4 mm semi-preparative StableBond C18 column packed with 

300-Å, 5-μm particles, and a 250 × 9.4 mm semi-preparative StableBond C18 column 

packed with 80-Å, 5-μm particles. 

For the 1D-gSEC and RPLC experiments in sections 4.3 and 4.4, the gradient program 

is described in the respective figures. The temperature was 25°C, the flow rate 0.5 

mL∙min-1, the injection volume 3.0 μL, and the sample concentration 0.5 mg∙mL-1. 

Once again, a delayed injection was used for the gSEC experiments. The injection 

took place after a delay of 0.4 mL (48 s) to account for the system dwell volume. 

These experiments were carried out on Rapid Resolution StableBond column.  

 

 

 

 

 4 



Chapter 4 

118 

4.4. Results and Discussion 

4.4.1. Influence of mobile-phase composition on elution volume in SEC  

The elution volume in SEC is generally thought to be independent of the nature and 

composition of the solvent, provided that interactions with the stationary phase are 

absent. However, the size (hydrodynamic radius) of molecules in solution may be 

affected by the nature of the solvent. Because the solvent composition is varied in 

gSEC, it is relevant to investigate the effects of solvent composition on elution 

volumes and calibration curves in SEC. Similar work, albeit using overall stronger 

mobile phase compositions, has previously been performed by Caltabiano et al. [44].   

Conventional (isocratic) SEC experiments were performed using different fractions of 

THF in ACN, all of which were above the 𝜑crit of PS and PMMA, to ensure SEC 

behaviour. The results of these SEC experiments for homopolymer PS and PMMA on 

various columns with different pore sizes and chemistries are provided in Figure 4.1.  

The elution volume of PS increases with an increase of the concentration of weak 

solvent (ACN) on all C18 stationary phases, whereas the effect of the THF fraction on 

the elution volume of PS is small on the one bare-silica column tested (Figure 4.1-

H). The possible explanations for the increase in elution volume with a decrease in 

strong solvent when using the C18 columns include the following: 

i) the polymeric coil size/hydrodynamic volume decreases with an 

increase of the weak solvent. This effect should be independent of the 

column used;  

ii) the pore volume of the column changes with the mobile phase 

composition, due to a swelling or shrinking of the packing particles;  

iii) non-SEC interactions occur with the stationary phase as the mobile-

phase composition approaches 𝜑crit; 

iv) a change in the ratio of the interstitial to pore volume occurs due to a 

change in the thickness of the C18 layer with mobile-phase 

composition.  

Several of these effects may occur concomitantly. Explanation (i), the addition of ACN 

(non-solvent for PS) is expected to result in a contraction of the PS chain. 

Precipitation of PS occurs at a composition of about 50/50 in ACN/THF. For the bare 
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silica columns (Figure 4.1-H) ACN is a stronger (more polar) solvent than THF. 

However, because solvents are strong, retention on these columns should not be 

strongly affected by the ratio of ACN/THF. Thus, the small increase in elution volume 

observed for the larger standards on the bare silica column might be mainly 

attributed to the change of coil size with eluent composition. The effect should 

increase with increasing polymer size and be most prominent in the linear (shallow) 

part of the calibration curve. This is indeed observed in Figure 4.1-F. For similar 

slopes of the calibration curves this effect is expected to occur to similar extend also 

on C18 columns, but there it is likely overshadowed by other effects.  

  

Figure 4.1: SEC calibration curves of ten PS standards (A-G) and ten PMMA standards (H-I) 

obtained for different mobile phase compositions at 25°C. The fraction of THF (in ACN) is 

indicated in the legend. Columns: A) Novapak C18 (150 × 3.9 mm, 60Å), B) Two XBridge C18 (50 

× 4.6 mm, 130Å), C) Dionex C18 (150 × 4.6 mm, 300Å), D and I) Nucleosil C18 (250 × 4.6 mm, 

4000Å), E), Zorbax SB C18 (100 × 4.6 mm, 300Å), F) Zorbax SB C18 (250 × 9.4 mm, 80Å), G) 

Zorbax SB C18 (250 × 9.4 mm, 300Å), and H) Nucleosil Bare Silica (250 × 4.6 mm, 4000Å).  
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Explanation (ii), an effect of the mobile-phase composition on the volume occupied 

by the solid packing material in the column is considered highly unlikely for the silica 

particles used in the present study. The effect may be quite significant when other 

types of particles, such as PS cross-linked with divinylbenzene (PS-DVB), are used. 

This leaves an increase in interaction of the analyte molecules with the C18 layer 

(Explanation iii) or a change in the stationary phase volume (Explanation iv) as the 

more-probable causes of the significant increase in elution volume on the C18 

columns. Explanation iii is an analyte-specific effect, whereas Explanation iv is column 

specific. Therefore, it may be possible to distinguish between the two effects by 

performing the same experiments with a series of analyte polymers with similar 

hydrodynamic volumes, but a different chemical structure. Hence, the experiments 

on the 4000Å Nucleosil C18 column (Figure 4.1-D) were repeated for a set of PMMA 

standards (Figure 4.1-I). At first sight, the observed variations in the calibration 

curves seem to be similar for the PS and PMMA standards. However, a closer 

inspection of the data reveals that at low concentrations of ACN the elution volume 

of the PMMA standards slightly increases with an increase in ACN content, whereas 

an increase in elution volume is observed at high concentrations of ACN. The 

maximum effect for PMMA is reached at 85% ACN in Figure 4.1-F, whereas in case 

of PS it is already reached at 45% ACN (see supplementary information, Figure S-1, 

section S-2). For both PS and PMMA it seems that the effect is strongest when the 

mobile-phase composition is close to 𝜑crit. Clearly, the observed effects depend on 

the analyte polymer, which is a strong indicator that interactions with the stationary 

phase (Explanation iii) account for the largest changes in elution volume, with 

changes in C18 layer thickness (Explanation iv) and polymer hydrodynamic volume 

(Explanation i) playing secondary roles. The same conclusions can be drawn from 

experiments with PMMA on the columns used in Figures 4.1-E/F/G (see 

supplementary information, Figure S-2, section S-2).   

If the elution volume increases because of retention, then it should be possible to 

estimate 𝜑crit by fitting a retention model to the elution volume vs. 𝜑 data for the 

analyte polymers of various molecular weights. According to the LSS model, the 

changes in elution volume can be fitted to an exponential equation for analytes that 

show reasonably large changes with 𝜑 (e.g. those that elute in the linear part of the 

calibration curve). The intersection point of the fitted lines for analytes of different 
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molar mass should correspond to a reasonable estimate for 𝜑crit [33,34,37]. This 

approach was performed for the data in Figures 4.1-A/B/C. However, 𝑡𝑅 < 𝑡0, 𝑘 is 

negative (and hence ln 𝑘 undefined) for our data. In that case, it is not possible to 

use the LSS model. Instead, we chose to fit a different equation (𝑉𝑒 = 𝑘0𝑒−𝑆𝜑 − 𝑐). 

Here, 𝑘0 and 𝑆 still correspond to 𝑘 at 𝜑 = 0 and the change in 𝑘 with 𝜑, respectively. 

The third parameter, 𝑐, accounts for a reduction in 𝑉0 with molecular weight, due to 

the limited accessibility of the pore volume. Fitting this equation only gave a 

reasonable estimate for 𝜑crit,PS (approximately 50%) on the XBridge column (Figure 

4.1-B). This may be because the analyte’s interaction with the column is (likely) very 

weak when the mobile phase composition is stronger than 𝜑crit. The effect of a 

change in analyte hydrodynamic volume with 𝜑 is then also relatively enhanced. Both 

effects will complicate the extrapolation that is required to determine 𝜑crit, implying 

that measurements must be performed close to the critical composition to yield 

good estimates of 𝜑crit, which means such predictions are not very useful.   

Similar experiments, as those underlying Figure 4.1, were also performed at a 

temperature of 60 ºC for some of the columns (supplementary information, Figure 

S-3, section S-2). Compared to 25 ºC, a shift towards a lower elution volume was 

observed for all analytes (including the 𝑡0 marker, toluene) and columns. Based on 

the thermal expansion coefficients of ACN and THF this shift is likely a result of a 

thermal expansion of the mobile phase (from the pump temperature to the column 

temperature) and the concomitant increase in velocity. Apart from this general shift, 

at higher temperatures the variation of the elution volume with mobile-phase 

composition is seen to be smaller. This is consistent with the above explanation, as a 

higher temperature generally leads to a reduction in enthalpic interactions. 

Moreover, in the present system an increased temperature leads to a shift of 𝜑crit to 

lower 𝜑, implying that the experiments across the same range of 𝜑 are performed 

further from 𝜑crit, and, hence, the increase in elution volume will be smaller at higher 

temperatures (supplementary information, Figure S-4, section S-2).    

One aspect that has not been discussed is the diminishing effect of the solvent 

composition for analyte polymers that approach the exclusion limit of the column 

(see for example Figure 4.1-A). Two competing effects determine the overall 

variation observed. Larger molecules are expected to exhibit greater interaction with 

the column, because in adsorption or partition LC retention increases exponentially 
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with molecular weight [33,34]. The opposing effect is a reduction in available surface 

area for larger polymers, which depends on the ratio of the size of the polymer in 

solution (hydrodynamic radius) and the pore-size distribution of the packing 

material. The result of the two competing effects may be that the effect of mobile 

phase composition is largest for analytes eluting within the most-selective range of 

the calibration curve. When comparing different columns, it is seen that an increase 

in pore size (see for example Figure 4.1-D) results in an increase in the effect of 𝜑 

on the high-molecular-weight analytes, as these are no longer fully excluded. For 

low-molecular-weight polymers (𝑀𝑤  103 Da) the effect of composition is much 

greater in Figure 4.1-A than in Figure 4.1-D. Such analytes fully permeate all pores 

in the latter case. However, the total available surface area is much smaller on the 

4000-Å column used to record Figure 4.1-D than on the 60-Å column used to record 

Figure 4.1-A.  

Irrespective of the cause of a change in elution volume, the above results imply that 

Equation 4.2 only provides an approximate value for the required gradient 

steepness in case of gSEC when C18 columns are used. Any shifts towards higher 

elution volumes (i.e. less exclusion) implies that steeper gradients than predicted by 

Equation 4.2 will be required in gSEC to achieve a separation dominated by the CCD. 

While in principle it should be possible to estimate the required gradient steepness 

based on experiments where the slope of the gradient is varied, this will be 

challenging because the change in retention with gradient steepness is likely too 

small in gSEC. Hence, this was not investigated.    
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4.4.2. Influence of pore size in gSEC 

To investigate the influence of the pore size in gSEC, the separation of a series of 

polystyrenes was performed using several different columns (Figure 4.2). Error in 

elution time, as determined from triplicate measurements was, in nearly all cases, 

below 0.002 min.  

 

Figure 4.2: Elution time of PS standards of different molecular in gSEC on four different 

columns. Linear gradient from 5-60% THF in ACN; the gradient duration (𝒕𝑮) and flowrate were 

adjusted based on the column. Injection was timed to occur at the end of the gradient. A) Two 

Novapak columns (150 × 3.9 mm, 60Å; 𝒕𝑮 = 0.50 min, flow: 1.0 mL∙min-1, 𝑽𝑮/𝑽𝟎 ≅ 0.30); B) Two 

XBridge columns (50 × 4.6 mm, 130Å; 𝒕𝑮 = 0.80 min, flow: 0.5 mL∙min-1, 𝑽𝑮/𝑽𝟎 ≅ 0.40); C) 

Dionex column (150 × 4.6 mm, 300Å; 𝒕𝑮 = 0.65 min, flow: 0.9 mL∙min-1, 𝑽𝑮/𝑽𝟎 ≅ 0.35); D) 

Zorbax column (100 × 4.6 mm, 300Å; 𝒕𝑮 = 0.65 min, flow: 0.5 mL∙min-1, 𝑽𝑮/𝑽𝟎 ≅ 0.30). 

Figure 4.2 shows that for all columns the elution time still varies with analyte 

molecular weight. Although the elution time differences are small, these variations 

are consistent and significant. Under the applied conditions, it was not possible to 

achieve a fully molecular-weight-independent elution on any of the columns. This 

was quite disappointing, considering that the difference between the eluent 

composition at the injection point (𝜑final) and the approximate 𝜑crit, as determined 

from earlier gradient-elution LC experiments of large standards, was only about 0.1. 

This difference corresponds to only about 5-7% of the column volume, depending 

on the exact column used. Apparently, to achieve molecular-weight-independent 
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elution, even steeper gradients would be required. On the column with the smallest 

pores (Figure 4.2-A), an inversion of the molecular-weight dependence of the 

elution time can be observed for the highest molecular-weight standards. 

Confounding SEC and interaction-LC mechanisms, or potentially confounding 

interaction and precipitation effects, probably prohibit genuine critical behaviour. For 

the different columns, a loss in recovery was also observed for specific standards 

(supplementary information, Table S-2, section S-3). For the 60-Å columns, low 

recoveries of 11% and 19% were obtained for the standards of 130 and 330 kDa, 

respectively. The largest standards (552 and 1270 kDa) showed higher recoveries (80-

90%, or higher). On the 130-Å column, the standards of 330 and 552 kDa showed 

low recoveries (11% and 7%, respectively). For the 300-Å column (Dionex), the loss 

in recovery was significantly smaller, with 79% as the lowest recovery for the 330 kDa 

standard. The loss in recovery seems related to the pore size of the stationary phase 

particles. Possibly, as a result of small changes in hydrodynamic volume with mobile-

phase composition, analytes may get trapped when their size is similar to the pore. 

This explanation is supported by the data and discussion of Figure 4.1, and will be 

especially important to consider for the quantitation of copolymers that feature a 

broad MWD. The very fast gradients applied in gSEC may give rise to differences in 

mobile-phase composition within and outside the pores. Small analytes have ample 

room to move in and out of the pores, whereas the largest analytes do not enter the 

pores at all. Since in gSEC the gradient must always pass through the column before 

the analytes, insufficient equilibration in small pores is difficult to avoid. In columns 

with larger pores (and smaller surface areas), column equilibration will be faster and 

differences in eluent composition in and outside the particles will be smaller [45]. 

However, such columns will diminish the extent of exclusion, and, consequently, 

steeper gradients will be required to attain elution independent of molecular weight.  
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4.4.3. Influence of gradient steepness 

To further investigate the effects of the gradient steepness on elution behaviour and 

recovery, a series of PMMA and PS standards were subjected to different gradient 

volumes on the Zorbax 300-Å column. In Figure 4.3, the influence of gradient 

steepness is illustrated for PS and PMMA standards when analysed with both gSEC 

and RPLC.  

 

Figure 4.3: Elution time of different (known) molecular weight PS (circles) and PMMA 

(diamonds) standards in gSEC (open markers) and RPLC (filled markers) obtained at different 

gradient steepnesses using the Zorbax (4.6 × 100 mm), 300-Å column. In all cases, a linear 

gradient from 0-60% THF in ACN was used at a flow of 0.5 mL∙min-1; the gradient duration was 

varied as follows: A) 2.0 min (𝑽𝑮 = 1 mL, 𝑽𝑮/𝑽𝟎 ≅ 0.83), B) 1.2 min (𝑽𝑮 = 0.6 mL, 𝑽𝑮/𝑽𝟎 ≅ 0.50), 

and C) 0.8 min (𝑽𝑮 = 0.4 mL, 𝑽𝑮/𝑽𝟎 ≅ 0.33). 

For the gSEC experiments (Figure 4.3, open markers), an increase in gradient 

steepness (moving from Figure 4.3-A to C) did result in the expected decrease in 

molecular-weight dependence for both the PS and PMMA standards. Note that 

retention times are relative to the experiment start and not relative to the injection 

time. However, for the PMMA standards, which must travel significantly further 

through the gradient to reach their critical composition (expected 𝜑crit,PMMA ≈

0.09 − 0.10 vs. 𝜑crit,PS ≈ 0.5), even a SEC-gradient that occupied only 33% of the 

column volume (Figure 4.3-C) was not sufficiently steep to eliminate the molecular-

weight dependence. Only the three largest PMMA standards eluted nearly 
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unaffected by their molecular weight, i.e. close to 𝜑crit,PMMA. The smallest PMMA 

standards eluted unretained (at 𝑡 = 𝑡0 + 𝑡𝐺) in all cases. Equivalent experiments were 

also performed using RPLC (Figure 4.3, filled markers). In this case, the same gradient 

steepnesses are found to consistently lead to a smaller influence of the molecular 

weight, as compared with gSEC. We envisage three possible reasons. i) 

Fundamentally, in gSEC analytes need to catch up with the gradient front, and the 

main mechanism contributing to a higher migration velocity is the extent of exclusion 

from the pores. The largest possible difference in velocities is about a factor of two, 

which is only achieved in strong solvents. In contrast, in a conventional gradient 

experiment the difference in migration velocity between the analytes and the 

gradient front relies on interaction (adsorption, partition) effects, allowing for an 

“infinite” ratio of velocities. ii) Exclusion effects are strongly reduced in the vicinity of 

the critical composition (see Figure 4.1 and the accompanying discussion). This 

implies that before the analyte polymers arrive at their appropriate position in the 

gradient (at 𝜑 = 𝜑crit) their progression slows down. iii) For analytes for which 

𝜑final ≫ 𝜑crit, e.g. PMMA, the analytes need to cover a wide range of mobile-phase 

composition. The final composition of the gradient is determined by the last-eluting 

analytes, in this case PS. Hence, the first-eluting analytes must travel the furthest in 

the least amount of time.  

4.4.4. 1D-LC separations of S/EA copolymers by RPLC and gSEC 

An important advantage of gSEC is that injection occurs in a strong solvent and that 

breakthrough can be avoided. To evaluate this, one- and two-dimensional 

separations (SEC×RPLC and SEC×gSEC) of S/EA copolymers were performed. 

Representative results of the 1D-LC RPLC and gSEC experiments performed on the 

Zorbax 300-Å column are shown in Figure 4.4.  

All copolymers have high molecular weights (> 70 kDa), so that molecular-weight-

independent elution can be expected in RPLC gradients. For RPLC (Figure 4.4, upper 

traces in each frame), the separation based on chemical composition improves when 

progressively less-steep gradients are used (Figures 4.4-A to C). When the gradient 

is steep enough to allow for a copolymer to elute at their (approximate) critical 

composition, the chromatographic peak gives an adequate impression of the 

chemical-composition distribution. At this point, even steeper gradients will result in 
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a reduced selectivity. The optimal gradient will be based on the lowest molecular-

weight fraction in the sample. Low-molecular-weight analytes will elute closer to the 

critical composition when steeper gradients are applied. Therefore, a relatively 

straightforward method to estimate the required gradient steepness for a sample 

that features an unknown CCD and MWD will be to perform several gradient 

experiments and to find the gradient steepness that minimizes the change in peak 

fronting.   

 

Figure 4.4: RPLC (top traces) and gSEC (bottom traces) of S/EA copolymers on the Rapid 

Resolution SB C18 column (100 × 4.6 mm, 300-Å). Approximate average copolymer 

compositions of S/EA1: 80/20, S/EA2: 65/35, S/EA3: 50/50, S/EA4: 35/65 and S/EA5: 20/80). 

Gradients from 0 to 60% THF in ACN in A) 0.4 min (𝑽𝑮 = 0.2 mL, 𝑽𝑮/𝑽𝟎 ≅ 0.16), B) 0.8 min (𝑽𝑮 

= 0.4 mL, 𝑽𝑮/𝑽𝟎 ≅ 0.33), and C) 2.0 min (𝑽𝑮 = 0.4 mL, 𝑽𝑮/𝑽𝟎 ≅ 0.83); flowrate 0.5 mL∙min-1; 

UV absorbance detection at 210 nm. 
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For gSEC (Figure 4.4, bottom traces in each frame), the results are different, since in 

this case the analytes cannot reach their adsorption threshold before eluting from 

the column, so elution is dominated by molecular weight rather than chemical 

composition. Such a molecular-weight-dependent elution results in very broad peaks 

(Figure 4.4-C). The highest chemical-composition selectivity can be achieved with 

gradients that are just steep enough to suppress the molecular-weight effect on 

elution. For RPLC, a (much) lower gradient steepness suffices. Consequently, RPLC 

offers greater chemical-composition selectivity than gSEC, when using the 300-Å 

column. Smaller pore packings might provide improved gSEC separations but will 

likely lead to reduced recovery and a skewed view of the CCD. The best separation is 

achieved with the 1-mL gradient in RPLC (upper traces in Figure 4.4-C). 

4.4.5. SEC×RPLC and SEC×gSEC separations of S/MMA copolymers  

One possible attractive application of gSEC is as a second-dimension separation in a 

2D-LC system, where SEC is used in the first dimension using a mobile phase that is 

a very strong solvent in the second dimension. In case of SEC×RPLC, breakthrough 

may be an issue. Circumvention would require an additional modulation step, e.g. by 

dilution of the transferred fractions with weak solvent before re-injection in the 

second dimension. A separation of five different S/MMA copolymers, and a 

homopolymer PS, was performed using SEC×RPLC and SEC×gSEC. The results of 

these experiments are provided in Figure 4.5.  

In both cases, a separation based on both the CCD and the MWD is achieved within 

approximately 35 min. To perform SEC×gSEC (Figure 4.5-B), the gradient was 

delayed to ensure that injection occurred just after the gradient. This resulted in an 

offset in the second dimension, which was corrected for in Figure 4.5-B to allow for 

easier comparison. After correction, the elution composition of the different 

copolymers and the PS standard are nearly equivalent. Some molecular-weight 

influence is observed in SEC×gSEC as seen from the upward curving of the elution 

profiles towards the right in Figure 4.5-B. When using RPLC as the second dimension 

(Figure 4.5-A), some breakthrough is observed around 3 min. This results in lower 

signals for the more-polar copolymers that contain a greater fraction of MMA (SM4 

and SM5; signals with 2D retention times of about 20 and 15 min, respectively). 

Breakthrough is absent in SEC×gSEC (Figure 4.5-B). However, due to the molecular-
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weight effect, SEC×gSEC is not fully orthogonal and careful calibration will be 

required to obtain quantitative MWD×CCD information.  

 

Figure 4.5: A) SEC×RPLC and B) SEC×gSEC separation of five S/MMA copolymers and a PS 

homopolymer. First dimension: SEC; two 150 × 2.1 mm APC SEC columns (2.5-µm particles, 

450-Å pore size), mobile phase 100% THF; flowrate 15 μL∙min-1. Second dimension: A) RPLC or 

B) gSEC; two 50 × 4.6 mm XBridge BEH Shield RP18 XP columns (3.5-µm particles, 130-Å pore 

size), flowrate 0.9 mL∙min-1. 

4.5. Conclusion 

In this work, the applicability of gSEC is investigated for the analysis of the CCD, as 

an alternative to conventional gradient-elution RPLC. It was shown that gSEC can be 

advantageous, as it is not susceptible to the breakthrough phenomenon commonly 

observed in RPLC. For both gradient-elution RPLC and gSEC the application of steep 

gradients resulted in a reduced influence of the MWD on the separation. Hence, a 

better impression of the CCD of copolymers could be obtained in such gradients. 

However, molecular-weight-independent elution was shown to be much more 

challenging to achieve in gSEC. Because the difference in migration velocity in gSEC 

is restricted to approximately a factor of two (i.e. total exclusion vs. total permeation 

for very large and very small analytes, respectively), it takes long for (relatively) low-

molecular-weight analytes to reach their final position in the gradient, which is 

around their critical composition. This problem is aggravated by a limited choice of 

columns, as the small pore-size packings that should ideally be used resulted in 

reduced recovery. This is important to consider for the quantitation of polymers that 

feature broad molecular-weight distributions since the reduction in recovery seemed 
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to depend on the pore size of the packing relative to the hydrodynamic volume of 

the polymer. Molecular-weight information and chemical-composition information 

are likely to be confounded in gSEC. We also implemented gSEC as a second-

dimension separation technique for comprehensive LC×LC characterization of 

polymers. Comprehensive two-dimensional distributions (MWD×CCD) could be 

obtained by SEC×RPLC, as well as by SEC×gSEC. In the latter case breakthrough in 

the second dimension was avoided. However, in SEC×gSEC the residual molecular-

weight dependence complicates quantitative analysis.  
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Abstract 

The time required for method development in gradient-elution liquid 

chromatography (LC) may be reduced by using an empirical modelling approach to 

describe and predict analyte retention and peak width. However, prediction accuracy 

is impaired by system-induced gradient deformation, which can be especially 

prominent for steep gradients. As the deformation is unique to each LC instrument, 

it needs to be corrected for if retention modelling for optimization and method 

transfer is to become generally applicable. Such a correction requires knowledge of 

the actual gradient profile. The latter has been measured using capacitively coupled 

“contactless” conductivity detection (C4D), featuring a low detection volume 

(approximately 0.05  µL) and compatibility with very high pressures (80 MPa or more). 

Several different solvent gradients, from water to acetonitrile, water to methanol, and 

acetonitrile to tetrahydrofuran, could be measured directly without the addition of a 

tracer component to the mobile phase, exemplifying the universal nature of the 

approach. Gradient profiles were found to be unique for each solvent combination, 

flowrate, and gradient duration. The profiles could be accurately described by 

convoluting the programmed gradient with a weighted sum of two distribution 

functions. Knowledge of the exact profiles was used to improve the inter-system 

transferability of retention models for polystyrene standards.  
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5.1. Introduction  

The separation of soluble analytes is typically achieved by means of liquid 

chromatography (LC). For the vast majority of applications reversed-phase liquid 

chromatography (RPLC) is used. LC is performed either isocratically (i.e. constant 

mobile-phase composition) or, more commonly, by using gradient elution. Gradients 

allow for decreasing retention during the experiment and are indispensable for 

analysing complex samples that contain many compounds with large differences in 

hydrophobicity. To handle extremely complex samples the use of two-dimensional 

LC (2D-LC), specifically comprehensive 2D-LC (LC×LC), is becoming more common. 

To keep the overall analysis time within reasonable limits (e.g. an hour or less) the 

second dimension of an LC×LC separation has to be very short (typically less than 

one minute), and the gradient duration must be even shorter, to allow for column 

re-equilibration. In the most-common implementations of LC×LC, relatively high 

flowrates (1 mL∙min-1or higher) are used in the second dimension [1], but nowadays 

contemporary modulation techniques allow a combination of narrow columns and 

low flowrates to be used for fast second-dimension (2D) separations [2–7]. 

The use of steep solvent gradients offers a plethora of benefits, but also introduces 

certain complications, one of which is gradient deformation [8–13]. Typically the term 

“gradient” is used for the programmed variation of the solvent composition with 

time. The actual composition will not equal the programmed value if the gradient is 

distorted when it is formed, or if it deforms when it travels through the 

chromatographic system. The former is primarily a result of the type, model, 

configuration, and condition of the pump that is used to create the gradient 

[8,10,12,13], while several mechanisms contribute to the latter. Examples include 

selective adsorption of mobile-phase components on parts of the system or the 

stationary phase in the column, or inadvertent stagnant zones in the system, for 

instance caused by poor connections. Especially the adsorption of the mobile phase 

on the stationary phase is well-described and is known to result in severe 

deformation, in particular when large and rapid changes in solvent polarity are 

imposed [9,11]. Previously, we have shown that correcting for (system-induced) 

gradient distortion allowed for great improvements when transferring retention time 

predictions between different LC systems [8]. 
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In this work the focus is on the system-induced deformation that is introduced when 

the gradient is formed by the pump. Previously, it has been shown that the actual 

gradient profile delivered is unique for each system, and that it depends on the type 

of pump (e.g. quaternary or binary), the flowrate (𝐹), the gradient duration (𝑡𝐺), the 

dwell volume of the pump, and any purposeful or accidental mixing [8,12]. The 

system-induced gradient deformation is related to, for instance, the pump geometry, 

the mixing volume, the specific (mixing) properties of the solvents, and the type of 

mixer. The smaller the solvent volume occupied by the gradient, the more difficult it 

is to minimize the deformation. Knowledge of the actual gradient profile that enters 

the column is useful for troubleshooting purposes, but also essential for improving 

retention-time prediction (e.g. during selectivity optimization using gradient-

scanning experiments), and for inter-system comparisons and method transfer [8].  

The actual gradient profile can be obtained by direct or indirect measurements [13–

17]. A typical example of the former is the measurement of the dwell curve, 

performed by adding a tracer compound (such as acetone) to one of the mobile-

phase components and installing a detector (often a UV/Vis absorbance or diode-

array detector) immediately after the pump [13]. Such a measurement is often used 

to obtain a value for the dwell time (𝑡dwell) of the system, which is related to the dwell 

volume (𝑉dwell) through the volumetric flowrate (𝐹) by 𝑉dwell = 𝐹𝑡dwell. However, 

dwell curves also contain information on gradient distortion. 

Measuring accurate gradient profiles is not trivial. Solvatochromic effects can disturb 

the  measurement and must be avoided or corrected for by accounting for shifts in 

the absorbance band of the tracer. Therefore, water and water with tracer are often 

used as the quasi gradient-forming solvents, however, this implies that viscosity and 

non-ideal-mixing effects are not accounted for [8,13]. If a volatile tracer, such as 

acetone, is used, its concentration and thus the measurement may be strongly 

affected by the degasser, which is incorporated in most contemporary pumps. 

Ideally, the deformation should be measured during genuine separation conditions 

(LC solvents, high pressure), as this is much-more representative of the actual 

distortion and accounts for possible variations in the profile with time (e.g. related to 

pump functioning) and temperature. A direct measurement of the gradient profile in 

principle can be performed if a (UV) detector is installed before the column. However, 

in this case the presence of a tracer is undesirable, as it may affect the separation 
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and the subsequent detection of the analytes. Moreover, the detector cell should be 

high-pressure resistant and installing a pre-column detector also adds to the dwell 

volume and the gradient distortion. For these reasons, a direct measurement of the 

actual gradient profile as it enters the column with a UV absorbance detector is quite 

cumbersome.  

Alternatively, an indirect method for measuring the gradient profile may be 

considered [15–17]. If we for any arbitrary gradient profile can accurately calculate 

the elution time of analytes for which an accurate retention model and model 

parameters are known, the gradient profile may be computed based on retention 

data. However, this entails many measurements for a series of analytes that elute 

through the entire gradient, and it requires prior determination of accurate retention 

parameters for all these analytes [15–17]. Moreover, dealing with arbitrary gradient 

profiles mathematically involves several assumptions. Clearly, due to the large 

experimental effort needed, this approach is not all that feasible. Consequently, 

neither the direct nor the indirect approach are practical.  

One method that could potentially fill this gap was described in a publication by 

Zhang et al. [14]. They presented capacitively coupled contactless conductivity 

detection (C4D) as a tool to measure the gradient for troubleshooting purposes. The 

authors used formic acid or trifluoro acetic acid as an additive to the mobile phase 

to facilitate detection. C4D has several attractive features that could improve the 

ease-of-use and correction capability of our previously developed approach for 

determining gradient deformation [8]. Firstly, the ability to measure changes in 

solvent composition by monitoring a bulk property of the solvent, i.e., the 

conductivity (or the dielectric constant), instead of using tracer compounds. 

Secondly, the detector does not make contact with the mobile phase (hence 

“contactless”), but only with the outside wall of a (fused-silica) capillary. Therefore, 

this detector has no pressure limitation beyond those of the LC instrument, and is 

compatible with all solvents. Finally, the mobile-phase volume inside the detector 

can be very small (detection volume of about 0.05 µL in case of a capillary i.d. of 75 

µm). As a result, C4D shows potential for direct measurement of the gradient at 

different points in a chromatographic system during a separation without 

contributing to dispersion or dwell volume. 
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In this work, we investigate whether C4D can be used to directly measure solvent 

gradients without any additives in the mobile phase. Subsequently, we extend our 

previously developed method to correct retention parameters for gradient 

deformation to the use of the organic modifiers methanol (MeOH) acetonitrile (ACN) 

and tetrahydrofuran (THF), and assess its applicability for improving method transfer 

between systems. Gradients from water to ACN, water to MeOH, and ACN to THF 

were directly measured using C4D. No additives were added to the solvents. To 

explore the feasibility of using C4D for quantitative monitoring of the gradient, the 

detector linearity was evaluated as a function of mobile phase composition at 

different input frequencies and voltages. A possible change in detector response with 

a change in pressure was also investigated, within the range of 15 to 65 MPa (at a 

frequency of 150 kHz and a voltage gain of 0 dB). In our previous work, gradient 

deformation was accurately described by convoluting the set profile with a single 

distribution function that characterized the response of the system. In this work, we 

aimed to assess whether the use of a weighted combination of two distributions 

could be used to account for potential differences caused by the two solvents. We 

also investigated whether correction of the deformed gradient allowed more 

accurate retention-time predictions across different systems.  

5.2. Theory  

5.2.1. Capacitively coupled contactless conductivity detection 

Contactless conductivity detection is used to non-invasively and non-destructively 

measure the resistivity, or conductivity, of a solution. So-called capacitively coupled 

contactless conductivity detection (C4D), has proven useful in combination with 

electrokinetic separations, such as capillary isotachophoresis and capillary 

electrophoresis [18–23]. The detector consists of two consecutive tubular electrodes, 

i.e. the actuator and sensing electrodes, through which a fused-capillary is placed 

concentrically (Figure 5.1A). Unlike conventional conductivity detectors that feature 

two parallel electrodes that are placed on either side of the analysed solution, C4D 

measures the conductivity of a solution longitudinally (along the capillary), rather 

than transversally (across the capillary). This allows for a higher detection sensitivity, 

based on the axial distance between the electrodes. Consequently, narrow capillaries 

can be used with good sensitivity [23]. An alternating current (AC) in the form of a 

sine-wave with a frequency (𝑓) is applied to the actuator electrode. After passing 
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through the solution in the capillary, the sine wave can be measured at the sensing 

electrode and the signal can be converted to an output voltage (𝑉out = 𝑅𝐹𝐼) by means 

of a transimpedance amplifier that contains a feedback resistor with resistance (𝑅F), 

and a feedback capacitor with capacitance (𝐶F). The current passing through the cell 

(𝐼) is determined by the solution in the capillary and the components of the detector 

cell. The equivalent electronic circuit for the detector cell in its simplest form is 

depicted in Figure 5.1B. ([18]; amplifier not shown). 

As shown in Figure 5.1 several 

components of the C4D cell act as 

capacitors. The measured voltage 

(𝑉out) depends on the impedance 

(𝑍), rather than solely on the 

resistance of the solution (𝑅𝐿) as 

𝑉out = 𝑅𝐹𝐼 = 𝑅𝐹
𝑉in

𝑍cell
. Hence, the 

response of the detector is 

influenced by the capacitance of the 

capillary walls (𝐶𝑤), a stray 

capacitance (𝐶𝑆), and the 

capacitance of the solution in the 

capillary (𝐶𝐿). In the absence of an 

inductor, 𝑍 is the opposition to 

current given by the resistance, 𝑅, 

and the capacitive reactance (𝑋𝐶), the resistance to a change in current over time for 

a capacitor (𝐶), and is given by Equation 5.1.  

𝑍 = 𝑅 − 𝑖𝑋𝐶 = 𝑅 − 𝑖
1

2𝜋𝑓𝐶
= 𝑅 +

1

𝑖2𝜋𝑓𝐶
                    (5.1)  

The measured response (𝑉out) will be a function of 𝑓. The C4D cell would consequently 

better be called an impedance detector or, more aptly, an admittance detector, 

rather than a conductivity detector. The conductance (𝐺) depends solely on 𝑅 as 𝐺 =
1

𝑅
, while the admittance corresponds to 𝐴 =

1

𝑍
. A C4D cell can be presented as the 

simplified parallel circuit shown in Figure 5.1-B. For such a circuit the impedance can 

be calculated from the individual impedances in the circuit.  

Figure 5.1: A) Schematic overview of the C4D 

probe; B) Equivalent electronic circuit for the 

configuration shown in A.   
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𝑍cell =
𝑍1𝑍2

𝑍1+𝑍2
=

𝑍𝑠(𝑍𝐿+𝑍𝑤)

𝑍𝑠+(𝑍𝐿+𝑍𝑤)
                      (5.2)  

Where the stray impedance 𝑍1 = 𝑍𝑆 =
1

𝑖2𝜋𝑓𝐶𝑆
 , and the impedance over the detection 

window 𝑍2 = 𝑍𝐿 + 𝑍𝑤 =

𝑅𝐿
𝑖2𝜋𝑓𝐶𝐿

𝑅𝐿+
1

𝑖2𝜋𝑓𝐶𝐿

+
1

𝑖2𝜋𝑓𝐶𝑤
. Note that the capillary walls are treated 

here as a single capacitance. The impedance of the entire circuit is then given by 

Equation 5.3.  

𝑍cell =
1+𝑅𝐿𝑖2𝜋𝑓𝐶𝑤+𝑅𝐿𝑖2𝜋𝑓𝐶𝐿

𝑖2𝜋𝑓(𝑅𝐿𝑖2𝜋𝑓𝐶𝑤𝐶𝑠+𝑅𝐿𝑖2𝜋𝑓𝐶𝐿𝐶𝑠+𝑅𝐿𝑖2𝜋𝑓𝐶𝑤𝐶𝐿+𝐶𝑠+𝐶𝑤)
                  (5.3)  

This equation shows that the response of the C4D cell depends on the capacitance 

of the liquid in the capillary relative to its resistance. When 𝑅𝐿 ≫ 𝐶𝐿, the C4D cell is 

more akin to a dielectometric detector, since the capacitance (𝐶𝐿) depends linearly 

on the dielectric constant (휀) of the solution. On the other hand, if the resistance of 

the solution is much smaller (𝑅𝐿 ≪ 𝐶𝐿), then it acts as a conductivity detector. In the 

latter case 𝑍2 simplifies to 𝑅𝐿 +
1

𝑖2𝜋𝑓𝐶𝑤
 and the impedance of the circuit is given by  

𝑍cell =
1

(𝐶𝑤+𝐶𝑠)𝑖2𝜋𝑓

1+𝑅𝐿𝑖2𝜋𝑓𝐶𝑤

1+𝑅𝐿𝑖2𝜋𝑓
𝐶𝑤𝐶𝑠

𝐶𝑤+𝐶𝑠)

                              (5.4)  

If 𝐶𝑠 ≈ 0 (assumed to be the case when a shielding electrode is placed between the 

actuator and sensing electrodes) this equation further simplifies to 𝑍cell =
1+𝑅𝐿𝑖2𝜋𝑓𝐶𝑤

𝑖2𝜋𝑓𝐶𝑤
. 

Equation 5.4 shows that the influence of the wall capacitance increases at lower AC 

frequencies, while at higher frequencies the stray capacitance starts to influence the 

detector response. The impedance decreases at higher frequencies. Hence, the 

detector response increases with frequency. There is only a limited region of 

frequencies where the detector response does not depend on the frequency. In case 

of shielded electrodes this region is significantly increased.  

5.2.2. Empirical retention modelling  

The objective of empirical retention modelling is to describe the retention of an 

analyte as a function of the mobile-phase composition, pressure and/or temperature. 

Once a suitable model has been found, 𝑡𝑅 can be predicted at any set of experimental 

conditions, without additional experiments. Because the number of initial 

measurements to establish the model is small, method-development time can be 
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drastically reduced. Software is available for this purpose, even for the case of LC×LC 

[24]. We briefly describe the approach here.  

5.2.2.1. Linear-solvent strength model   

Under isocratic conditions, i.e. a mobile phase composition that remains constant 

over the measurement duration, it is prudent to convert the retention time (𝑡𝑅) to 

the (dimensionless) retention factor (𝑘), which is a measure of the distribution of 

analyte between stationary and mobile phase. k is the ratio of the adjusted retention 

time (𝑡𝑅′) to the void time of the column (𝑡0).  

𝑘 =
𝑡𝑅−𝑡0

𝑡0
=

𝑡𝑅′

𝑡0
                     (5.5) 

For an uncharged analyte in RPLC 𝑘 decreases exponentially with an increase in the 

volume fraction of the strong solvent (𝜑) [25]. The empirical relationship between 

ln 𝑘 and 𝜑 is approximately linear (with slope 𝑆1), but more accurately described by 

including a curvature parameter (𝑆2) [26]. 

𝑘(𝜑) = 𝑘0𝑒−𝑆1𝜑𝑒𝑆2𝜑2
                     (5.6) 

Where 𝑘0 is the retention factor extrapolated to 𝜑 = 0. Because 𝑆2 is often small, 

Equation 5.6 can be suitable approximated as:  

𝑘(𝜑) = 𝑘0𝑒−𝑆𝜑                      (5.7)  

Which is a log-linear model, commonly referred to as the linear-solvent strength 

(LSS) model [25]. Since 𝑘 varies exponentially with 𝜑, the use of gradient-elution LC 

is common for samples featuring analytes with large differences in retention. In case 

of gradient-elution LC, 𝜑, and consequently 𝑘, change with time during the run. If it 

is known how 𝜑 changes with time, and an assumption is made on how the (local) 

retention factor changes with 𝜑, the retention factor at the end of the column (i.e. 

the retention factor at the moment of elution, 𝑘𝑒) may be estimated. Equation 5.8 

can be solved to calculate 𝑡𝑅:  

1

𝜑′
∫

𝑑𝜑

𝑘(𝜑)

𝜑𝑒

𝜑init
= 𝑡0 −

𝑡init+𝑡𝐷

𝑘init
                               (5.8) 

Where 𝑘init is the retention factor at the initial conditions (𝑘(𝜑init)). In case of a simple 

linear gradient, 𝜑′ is the change in the volume fraction 𝜑 (∆𝜑 = 𝜑final − 𝜑init) over 
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the gradient duration (𝑡𝐺), i.e. 𝜑′ =
∆𝜑

𝑡𝐺
 for a linear gradient and 𝜑𝑒 = (𝑡𝑅 − 𝑡0 − 𝑡𝐷 −

𝑡init)
∆𝜑

𝑡𝐺
+ 𝜑init.  

5.2.3. Describing system-induced gradient deformation 

The system-induced gradient deformation can be parametrically described by means 

of a response function [27]. The approach is summarized in Equation 5.9.  

𝜑𝑑 = 𝐌′𝜑𝑝                    (5.9)  

Where 𝜑𝑑 is the actual volume fraction obtained with a deformed gradient, 𝐌 is a 

square matrix of uniform basis functions (and M’ is its transpose), and 𝜑𝑝 is the 

volume fraction according the programmed gradient. In previous work the deformed 

gradient was found to be accurately described by using a stable distribution (Figure 

5.2A) as the basis or response function [8]. The stable distribution is a function of 

four parameters 𝑅𝐹(𝛿, 𝛾, 𝛽, 𝛼), which roughly correspond to the first four statistical 

moments of a distribution [28]. Parameter 𝛿 corresponds to the first moment or 

mean of the distribution. Parameter 𝛾 corresponds to the second centralized 

moment, which reflects the variance or width of the distribution. Parameters 𝛽 and 

𝛼 correspond to the standardized 

and centralized third and fourth 

moment, respectively, which 

represent the skewness (asymmetry) 

and kurtsosis (‘tailedness’) of the 

distribution. A part of matrix 𝐌 

(with, for clarity, a reduced number 

of functions), the programmed 

gradient (providing 𝜑𝑝) and the 

deformed gradient (providing 𝜑𝑑), 

are illustrated in Figure 5.2. 

 

As shown by Figures 5.2B and C, 𝜑𝑝 

essentially acts as a set of weights for 

the functions in 𝐌. The form of the 

stable function and the gradient-

program vector 𝜑𝑝 are assumed 

Figure 5.2: A) Stable distribution with 𝜹 = 𝟎. 𝟓, 

𝜸 = 𝟎. 𝟎𝟓, 𝜷 = 𝟏. 𝟐, 𝜶 = 𝟏. 𝟐; B) Subset of 

stable distribution basis functions in matrix 𝐌; 

C) Element-wise multiplication of the functions 

in B with the programmed gradient providing 

𝝋𝒑; D) Programmed gradient (blue line) and 

deformed gradient (red line) obtained by 

Equation 5.9. 
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invariable over the gradient program. Therefore, the approach cannot account for 

additional deformation related to particular mobile phase compositions, for instance 

when non-ideal functioning of the pump is correlated to the nature and/or 

percentage of mobile-phase components, or when solvent-specific effects of volume 

contraction or expansion upon mixing occur. To incorporate potential effects of the 

mobile-phase composition, in this work a weighted combination of two stable 

distributions is used, where the weights are assigned based on 𝜑𝑝. This approach is 

summarized in Equation 5.10. 

𝜑𝑑 = 𝐌𝟏
′ 𝜑𝑝

2 + 𝐌𝟐
′ (𝜑𝑝 − 𝜑𝑝

2)                (5.10) 

 

Where 𝐌𝟏
′  and 𝐌𝟐

′  are both square 

matrices containing 𝑅𝐹1 and 𝑅𝐹2, 

respectively. 

As illustrated, the weights are 

assigned such that the first response 

function, 𝑅𝐹1, still describes most of 

the gradient distortion, contributing 

across the entire gradient program. 

The second response function, 𝑅𝐹2, 

is expected to contribute relatively 

more at the beginning of the 

gradient. At 𝜑𝑝 = 0.5, 𝑅𝐹1 and 𝑅𝐹2 

contribute equally, albeit also 

depending (to a certain extent) on 

the parameters of the response 

function. For example, for 𝑅𝐹2 a shift 

towards higher 𝛼 (and larger mean) 

implies a larger contribution at a 

later point in the gradient, and vice 

versa.     

 

Figure 5.3: A) Stable distributions 

𝑺𝟏(𝟎. 𝟔𝟒, 𝟎. 𝟎𝟖, 𝟎. 𝟕𝟓, 𝟏. 𝟐) and 

𝑺𝟐(𝟎. 𝟔𝟐, 𝟎. 𝟎𝟓, 𝟏, 𝟏), B) Weighted 

representation of (left) 𝑹𝑭𝟏 and (right) 𝑹𝑭𝟐 

with weights 𝝋𝒑
𝟐 and (𝝋𝒑 − 𝝋𝒑

𝟐), respectively, C) 

Sum of the functions illustrated in B, D) 

Programmed gradient (blue line) and 

deformed gradient (red line) obtained by 

Equation 5.10.   
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5.3. Experimental 

5.3.1. Instrumental 

Experiments were carried out on two Agilent LC instruments (Agilent Technologies, 

Waldbronn, Germany). Instrument I was an Agilent 1290 Infinity II series equipped 

with a binary pump (G7120A) equipped with a 35-µL JetWeaver mixer, an 

autosampler (G7129B), a column oven (G7116B) and a diode-array detector (DAD; 

G7117B). Instrument II was an Agilent 1100 system equipped with a degasser 

(G1322A), a quaternary pump (G1311A), an autosampler (G1329A), a column oven 

(G1316A), and a multiple-wavelength detector (G1365B). For all measurements 

involving LC, an InfinityLab Poroshell 120 SB-C18 column (50 mm × 4.6 mm i.d.) 

containing 2.7-µm core-shell particles with 120-Å pore size was used, purchased 

from Agilent. For both instruments the same TraceDec conductivity detector was 

used, which was purchased from Innovative Sensor Technologies (Strasshof an der 

Nordbahn, Austria).  

5.3.2. Chemicals 

The eluent was prepared using deionized water (resistivity 18.2 MΩ cm; Arium 

611UV, Sartorius, Germany). Non-stabilized tetrahydrofuran (THF; 99.9%, LC-MS 

Grade) was obtained from VWR Chemicals (Darmstadt, Germany). Acetonitrile (ACN; 

≥99.9%, LC-MS Grade) was obtained from Biosolve (Valkenswaard, The Netherlands). 

Narrow polystyrene standards (PS1-3; polydispersity 1.05) with molecular weights of 

682, 1800 and 3400 Da, respectively, were obtained from PSS Polymer Standards 

Service (Mainz, Germany). Test solutions of PS1, 2 and 3 were prepared in non-

stabilized THF at a concentration of 1.0 mg∙ mL−1. Thiourea (ACS reagent grade, ≥ 

99%) was obtained from Sigma-Aldrich (St. Louis, MO, United States)  

5.3.3. Analytical procedures 

5.3.3.1. Gradient formation and measurement 

The gradient shape was measured on both LC instruments using two different 

approaches. For the first approach, the gradient profiles were measured without the 

column installed using water as solvent A, and water containing 0.001 g/L thiourea 

as solvent B. A total of 27 measurements was performed, namely three gradients 

from 0 to 100% B in 0.5, 1.0 or 1.5 min, each at three different flow rates (0.25, 0.50 
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and 0.75 mL∙min−1), all performed in triplicate. An initial isocratic delay period (100% 

A) of 0.25 min was used. UV absorbance detection was performed at 220 and 254 

nm with a bandwidth of 4 nm. The sampling rate for Instrument I was 160 Hz, while 

for Instrument II it was 20 Hz. Column ovens were set to 30°C.  

In the second approach, the gradient shape was measured before and during the 

actual LC analyses of the standards (details included below) using the TraceDec C4D 

probe with a frequency of 150 kHz, a gain of 50% and a voltage gain of 0 dB, unless 

otherwise specified. Voltage gain in dB is given by 20 log
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
. All built-in smoothing 

was turned off. For these measurements, a fused-silica capillary was used with an 

inner diameter (i.d.) of 75 µm and an outer diameter (o.d.) of 375 µm. The capillary 

was 10 cm long and was positioned within the C4D probe by sliding it into a circular 

slot (diameter of approximately 375 µm) in the probe. This capillary and the C4D 

probe were present for all measurements. The C4D probe was kept at ambient 

temperature without additional temperature control. Next to the water-to-water 

gradients as mentioned in the first approach, for Instrument I the following gradients 

were performed: water to ACN, water to MeOH, and ACN to THF. For Instrument II 

the evaluated gradients were water to ACN and ACN to THF.  

The PS test compounds were analysed with the LC column installed. On Instrument I 

measurements of the gradients (ACN to THF) were performed at three flow rates 

(0.25, 0.50 and 0.75 mL∙min−1), whereas on Instrument II only 0.25 mL∙min−1 was used 

due to pressure limitations. An initial isocratic delay period (100% A) of 0.25 min was 

followed by a gradient from 0 to 60% B in 0.5, 1.0 or 1.5 min, followed by a 5-min 

isocratic hold, with subsequently 100% ACN and 100% non-stabilized THF. All 

measurements were performed in triplicate. The injection volume was 2 µL. UV 

absorbance detection was performed at 220 and 254 nm with a bandwidth of 4 nm. 

5.3.3.2. Data treatment 

Algorithms were written in MATLAB 2022a (Mathworks, Natick, MA, USA). To 

determine the response functions, all measurements for each solvent combination 

(i.e. different gradient times and flow rates) were fitted simultaneously. The recorded 

gradient measurements were truncated to 6 and 10 min for Instruments I and II, 

respectively. The TraceDec conductivity detector was linearized based on calibration 
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with step gradients as described in section 5.4.1.1. For each solvent system, the 

response as a function of mobile-phase composition (𝜑) was described through a 

fourth-order polynomial with intercept zero. Based on the polynomial, the gradients 

were normalized between the expected signal values of the start and end 

composition of the programmed gradient. The normalized signals were linearized 

using the inversed polynomial. These linearized gradients were reduced to 500 data 

points to reduce computation time. 

Two stable distributions were fitted as response functions to describe the deformed 

gradient. Equation 5.10 was used to describe the contribution of the response 

functions. An interior-point algorithm was utilized for fitting. The actual shape of 

gradients outside the training set were predicted by multiplying the response 

matrices for the specified flow by the programmed gradient. 

Retention times and 𝑘 values were manually determined from the chromatograms. 

The average values from the triplicate measurements were used for fitting the LSS 

model. Retention-time correction accounting for gradient deformation was done 

using the corresponding established response functions and approximating the 

distorted gradient profile as a series of 500 linear steps. Corrected retention 

parameters were compared with those obtained conventionally, i.e., correcting only 

for dwell volume and initial-hold volume.  

5.4. Results and Discussion 

5.4.1. Investigating the use of C4D for gradient measurements  

5.4.1.1. Linearity of C4D response 

The response of the C4D as a function of the mobile-phase composition was 

evaluated by running a step gradient featuring increments of 10 vol% for different 

solvent combinations, i.e., water/(water with thiourea), water/ACN, water/MeOH and 

ACN/THF. No additives were used to increase the solvent conductivity. The 

experiments were performed for different detector settings by varying detector 

frequency and applied voltage gain. The results are illustrated in Figure 5.4.  
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Figure 5.4: Influence of the mobile-phase composition (volume fraction 𝝋 of the strong 

solvent) and detector frequency on the C4D response; Left, water/ACN; Middle, water/MeOH; 

Right, ACN/THF; Voltage gain, 0 dB; AC frequency f, 150, 310 or 460 kHz (as indicated in 

legend).     

  

The detector voltage (𝑉in) proved an important variable. Irrespective of the solvent 

combination, no measurable signal could be obtained when the voltage gain was set 

lower than 0 dB (e.g. -24 dB, which implies a 16 times lower 𝑉out than 𝑉in). This 

suggests that the impedance 𝑍cell is relatively high compared to more-conventional 

applications of this detector. According to Equation 5.3, the absolute response at a 

particular mobile-phase composition is expected to increase non-linearly with the 

frequency and this is confirmed in Figure 5.4. The degree of linearity of the response 

vs. mobile-phase composition was not affected by the frequency. The curves in 

Figure 5.4 are seen to be predominantly linear for water/MeOH and ACN/THF. The 

response was somewhat less linear for water/ACN. This non-linearity was corrected 

for using a fourth-order polynomial as described in the Experimental section. The 

detector response is expected to increase (i.e. become more negative) with 

decreasing solution conductivity and dielectric constant (휀). Considering the 

insignificant conductivity of the used solvents, the response likely depends primarily 

on 휀. The dielectric constants of the respective solvents are 휀𝑇𝐻𝐹(7.58) <
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휀𝑀𝑒𝑂𝐻(32.7) < 휀𝐴𝐶𝑁(37.5) < 휀𝑤𝑎𝑡𝑒𝑟(80.1), and the detector response roughly follows 

this order indeed. If it is assumed that the 휀 of a binary solvent mixture is described 

by 휀𝐴𝐵 = 𝜑𝐴휀𝐴 + 𝜑𝐵휀𝐵 (where 𝜑𝐴 and 𝜑𝐵 are the volumetric fractions of solvents A 

and B, respectively) one would certainly expect the response of the detector to vary 

linearly with composition. However, multiple expressions or mixing rules for 휀𝐴𝐵 have 

been proposed, and it appeared that experimental data cannot be accurately 

described by a single expression for 휀 for all binary solvent mixtures [29]. Thus, it 

cannot be concluded from the present data whether the response is solely a function 

of 휀, or whether additional effects play a role.  

When a frequency of 150 kHz and a voltage gain of 0 dB were used, changes in binary 

solvent compositions studied in this work could be detected adequately without 

requiring additives. A lower frequency improves the dynamic range and increases 

the universality of the approach, while a higher frequency leads to an increase in 

sensitivity. In this case it was chosen to use 150 kHz, as this was sufficiently sensitive 

to measure the gradient profile. These settings were used for all further 

measurements. When solvents A and B were identical, i.e. water/(water with 

thiourea), no change in the C4D signal was observed. This was expected, since 

thiourea will not significantly affect the dielectric constant, nor the conductivity of 

water. The measurements of Figure 5.4 were repeated using a DAD at 254 nm 

instead of the C4D. Due to the solvatochromic behaviour of thiourea, no combination 

of solvents, except for the combination of water/(water with thiourea), showed an 

absorbance that varied linearly with mobile-phase composition at the measured 

wavelength (Supplementary information, Section S1, Figure S1). While the linearity 

correction performed for C4D could also enable one to use a DAD for this approach, 

the use of C4D is still more practical due to the significantly lower detection volume 

and the resistance to high pressure or ultra-high pressure conditions.  

5.4.1.2. Influence of pressure on C4D response    

To be sure we can use C4D adequately for measuring actual gradients, we assessed 

whether a change in pressure caused by the solvent gradient affected the response 

of the C4D cell when positioned before the column. The step gradient schedules 

described above were measured for water/ACN at seven different initial gradient 

pressures ranging from about 15 to 65 MPa. The different pressures were achieved 

by adapting a recently described set-up [30] (Supplementary information, Section 
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S2). This allowed us to increase the pressure at the inlet of the C4D (and thus in the 

C4D cell) without changing the flowrate. In these experiments no significant changes 

in detector response with varying pressure was observed (Supplementary 

information, Section S2, Figure S2). Previously, Zhang et al. have reported an effect 

of pressure on the C4D response [14]. This may potentially be due to the presence of 

TFA in the solvent assessed in their study. We did not use any mobile-phase additives 

in our pressure experiments. The effect of pressure observed by Zhang et al. [14] may 

be related to a change in conductivity, whereas in our work the detector response 

mainly determines on 휀, which does 

not significantly change with 

pressure.  

5.4.2. Effect of mobile-phase 

composition on system-induced 

gradient distortion   

The gradients delivered by the LC 

pumping system were directly 

measured using the C4D cell. To 

investigate whether system 

properties, such as mixing volume 

or pump geometry, affect both 

solvent channels (A and B) equally, 

different gradients were monitored 

with C4D, viz. from water to water 

containing thiourea as a tracer, 

from water to MeOH, from water to 

ACN, and from ACN to THF. Ideally, 

differences in type of solvent 

should not affect the capacity of the 

LC system to consistently form 

gradients, and for the same 

gradient scheme all solvent 

combinations should yield identical 

gradient profiles when measured 

Figure 5.5: C4D-recorded gradient profiles (φ 

vs. time) generated by A) Instrument I, and B) 

Instrument II. Gradient conditions: flow rate, 

0.25 mL∙min−1; gradient time, 0.5, 1.0 and 1.5 

min (respectively from red to yellow for A), 

Instrument I and from light blue to purple for 

B); solvent combinations, A) water/ACN and 

ACN/THF (both 0 to 60% solvent B), and B) 

water/ACN (0 to 100% solvent B), and ACN/THF 

(0 to 60% solvent B). Smaller frames at the right 

show expansions of the recorded profiles at the 

end of the gradient for water/ACN (top A and 

top B) and ACN/THF (bottom A and bottom B). 

C4D settings: frequency, 150 kHz; voltage gain: 

0 dB. 
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before entering the column. The gradient profiles obtained on both LC systems for 

three different gradient durations using water/ACN and ACN/THF are depicted in 

Figures 5.5-A (Instrument I) and 5.5-B (Instrument II). Right frames show vertical 

expansions of the profiles near the end of the gradient.  

In Figure 5.5 the gradient profiles obtained for the various solvents combinations 

and gradient durations are shown. It can be seen that the differences, with respect 

to solvents, were largest at the end of the gradient. Typically differences at the start 

of the gradient were minor, although if there were issues with repeatability, they 

caused differences at the start of the gradient (not shown). Usually such 

measurements were the first in a series but it is not entirely clear what caused these 

issues. The greatest effect seems to be the much larger dwell volume in Instrument 

II relative to that of Instrument I. However, a closer inspection of the right frames of 

Figure 5.5 reveals that different solvent combinations also result in different gradient 

profiles. Generally, these differences manifested themselves as an increase in tailing 

(relative to a perfectly linear gradient profile). In most cases deviations for water/ACN 

(Figures 5.5A and B, top right frames) were larger than for ACN/THF (Figures 5.5A 

and B, bottom right frames), which may be related to the larger differences in 

polarity, viscosity, and/or compressibility of the former two solvents.   

When gradients times were very short (0.5 min) and gradients were ran from 0 to 

100% A to B, small distortions, which appeared as a negative dip at the end of the 

gradient, could be observed for water/ACN and water/MeOH (Supplementary 

information, section S3, Figure S3). For ACN/THF, or for 0 to 60% gradients, these 

distortions were not observed. Such distortions increased for higher flowrates and 

shorter gradients. As the detector response is linear with the solvent composition 

change and not affected by pressure (see above), these distortions were ascribed to 

incomplete mixing of the A and B solvents. Such mixing issues are expected when 

∆𝜑 is large and 𝑡𝐺 is small.  

5.4.3. Describing deformed gradients using response functions 

As outlined in the previous sections, gradient distortions can be reliably measured 

with C4D and also appear to depend on mobile-phase composition. To correctly 

describe gradients with deformations, a weighted combination of two response 

functions (details in Section 5.2.3) was applied to negotiate with distortions which 
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vary in magnitude along the gradient program. This approach was used to more 

accurately describe actual water/ACN, water/MeOH and ACN/THF gradient profiles 

as monitored by C4D. Several measured gradient profiles, established response 

functions, and resulting fits with corresponding residuals, are shown in Figure 5.6 

for Instruments I and II.   

 

Figure 5.6: (left) C4D-recorded and fitted gradient profiles, (middle) corresponding residuals, 

and (right) response functions 𝑹𝑭𝟏 and 𝑹𝑭𝟐 used for profile fitting by Equation 10. A-C) 

Instrument I; D-E) Instrument II. Gradient conditions: flow rate, 0.25 mL∙min−1; gradient time, 

0.5 min (red and light blue traces), 1.0 min (orange and dark blue traces) and 1.5 min (yellow 

and purple traces); solvent combinations, A and D) water/ACN, B) water/MeOH, C and E) 

ACN/THF; A-C) 0 to 60% solvent B, and D-E) 0 to 100% solvent B.  

 5 



Chapter 5 

156 

The fitted gradient profiles nicely matched the recorded profiles (Figure 5.6, left). As 

indeed can be concluded from the squared residual plots (squared differences 

between the fit and the measurement points, Figure 5.6, middle), good profile fits 

were obtained for all solvent combinations on both LC instruments. To place the 

obtained fits into context we also used our previous approach. Namely, the use of a 

single stable distribution response function rather than two. The obtained fits (in 

terms of sum-squared errors, SSE) using two response functions rather than one were 

(average for all solvents combinations) 26.8 and 35.2% better than when using only 

a single response function for Instrument I and II, respectively. The full information 

on these fits is included in the Supplementary information, section S4, Table S1.  

The overall shape of the gradient distortions is indicated by the response functions 

shown in the right frames of Figure 5.6. Especially on Instrument II, the combination 

of water/ACN (Figure 5.6-D, right) led to a more-tailing curve as compared to the 

response function for ACN/THF (Figure 5.6-E, right), which is more symmetric. 

Indeed, the water/ACN gradient showed more distortion at the end of the gradient 

as compared to ACN/THF. For Instrument I, the shape of the response functions was 

quite similar for all solvent combinations, indicating that for this instrument solvent-

specific distortions are small. The overall distortion, i.e. resulting from instrument and 

solvents, is described by the combined response functions (𝑅𝐹1 and 𝑅𝐹2), which 

complicates assignment of effects to particular parameters. However, certain trends 

can be observed. In most cases for a given instrument and gradient, the mean of 𝑅𝐹1 

and 𝑅𝐹2 (𝛿) did not differ significantly. This could be expected since irrespective of 

the weighing, 𝛿 is predominantly determined by the dwell volume of the LC 

instrument. Response functions with a larger 𝛿 (i.e. dwell volume, as for Instrument 

II) also had a relatively larger variance (𝛾, or width). Indeed, a larger dwell volume 

causes more gradient deformation, as for a constant gradient volume a relatively 

larger portion of that gradient volume is present in the mixer, the pump head and 

connecting tubing, leading to dispersion. This results effectively in a decrease of the 

gradient slope, which is the most important parameter for building retention models 

from scanning gradients and use these for retention predictions. The response-

function parameters which are related to skew and kurtosis (𝛽 and 𝛼, respectively) 

describe the function’s asymmetry and are indicative for the severity of the gradient 

deformation at the start and end of the gradient. When 𝛼 = 2, the stable distribution 
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corresponds to a normal distribution and hence, has no asymmetry (𝛽 has no effect). 

For other cases, for example 𝛼 = 1 and 𝛽 = 0 or 1 the distribution changes from a 

Cauchy to a Landau distribution. Finally, for 𝛼 = 0.5 and 𝛽 = 1 the distribution equals 

a Levy distribution. In our case 𝛽 and 𝛼 values varied widely (Supplementary 

information, section S4, Table S2) and it was challenging to attribute the magnitude 

of these parameters to particular solvent attributes or mixing effects. To correctly 

interpret these parameters a significantly more in-depth study of the gradient 

deformation using different solvents, potentially incorporating computational fluid 

dynamics, is required. Since the change in asymmetry is the most significant 

difference from the standard correction approach for gradient deformation. A study 

looking at each part of the pump and how it contributes to this asymmetry might be 

interesting to eventually improve 

pump design. 

5.4.4. Retention modelling of 

polymers and method transfer  

We investigated the possibility to 

obtain identical retention 

parameters from two very different 

LC instruments (I and II) by 

correcting for the instrument-

specific gradient deformation. Three 

(scanning) gradients from 0 to 60% 

THF in ACN in 0.5, 1.0 and 1.5 min at 

a flowrate of 0.25 mL∙min−1 were 

performed for three polystyrene 

standards of different molecular 

weight (𝑀𝑤 ; 682, 1800 and 3400 Da, 

henceforth referred to as PS1, 2 and 

3, respectively). The standards were 

well separated under the gradient 

conditions used. PS2 and 3 yielded a 

single peak on the RPLC column, 

whereas for PS1 consistently the 

Figure 5.7: Chromatograms obtained for PS1 

(red and purple traces), PS2 (orange and dark 

blue traces) and PS3 (yellow and light blue 

traces) using a (from top to bottom) 1.5, 1.0 

and 0.5 min gradient on A) Instrument I, and B) 

Instrument II. Flow rate: 0.25 mL∙min−1. Signals 

were manually offset and scaled to aid visual 

comparison. Dotted lines indicate the 

approximate shape of the gradient (from 0 to 

60% THF), obtained from blank measurements 

obtained using UV detection at 254 nm. 

Triangles indicate which oligomer peak from 

PS1 was used for modelling.  
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same peak of one of the separated oligomers was selected. The same set of gradient 

experiments was performed on both Instruments I and II. Since different gradient 

profiles were observed on these two instruments, different retention parameters will 

be obtained when the gradient deformation is not taken into account. The elution 

patterns for the three standards are shown in Figure 5.7.  

As expected, the oligomers from PS1 (red and purple traces) elute first, partially 

before the gradient (i.e. in 100% ACN), followed by PS2 (orange and dark blue traces) 

and PS3 (yellow and light blue traces), which elute entirely within the gradient. An 

increase in dwell volume, as for Instrument II, improved the resolution for the lowest-

𝑀𝑤 oligomers of PS1 that elute early in the gradient. In principle, if retention at 𝜑init 

is sufficiently large, the dwell volume should not affect the retention of an analyte. 

This is not the case for PS1, but may be the case for PS2 and, especially, PS3. 

Consequently, if gradient deformation is absent the same gradient program should 

result in identical retention times on the two instruments (if corrected for the dwell 

volume) and identical elution compositions. However, the gradient profiles measured 

with the C4D cell clearly show that such is not the case. As previously described, the 

response-function parameter 𝛾 is significantly larger for Instrument II than for 

Instrument I, resulting in a shallower gradient. Shallow gradients enhance the 

influence of 𝑀𝑤 in gradient separations of homologues series [31,32]. For the 0.5-

min gradient (Figures 5.7A and B, bottom sets of traces) this is especially noticeable 

when comparing the retention times and peak shapes for PS2 and PS3 on both 

systems. For the response function of Instrument I, 𝛾 is smaller and the gradient 

steeper, resulting in near co-elution of the standards. This effect is expected to 

increase when analytes elute closer towards the end of the gradient.  

Without considering the gradient deformation that occurs on Instrument II, the 

retention times of PS1-3 all seem to correspond to elution after the gradient (i.e. at 

𝜑𝑒 = 𝜑final) rather than during the gradient. However, the C4D measurements show 

that the gradient deforms to such an extent that a 0.5-min gradient time actually 

results in a gradient duration closer to 1.5 min, which is further increased by gradient 

deformation. The post-column volumetric fraction of THF could be tracked as well 

using its absorbance at 220 or 230 nm (Figures 5.7A and B, dotted lines). This 

confirms that the gradients measured with C4D are more indicative for the gradients 

entering the column than the programmed gradient. However, additional distortion 
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seems to occur within the column, indicating our current correction could still be 

improved by taking into account the distortion that occurs from the injector to the 

detector, for example by additionally accounting for adsorption of one or more of 

the mobile-phase components in the column [9,11] after first accounting for the 

pump-related distortions.  

The retention times obtained from the measurements in Figure 5.7 were converted 

to retention parameters, as done in our previous work [8]. Either a straightforward 

single-step linear gradient were used to describe the gradient profile (the 

conventional approach) or a series of 500 linear segments was used to approximate 

the distorted profile. The errors in prediction of the retention times using a 1.0-min 

gradient (using models based on data from the 0.5 and 1.5 min gradients), and the 

obtained LSS parameters (ln 𝑘0 and 𝑆), before and after accounting for the gradient 

deformation, are included in Table 5.1. In all cases the absolute error in measured 

retention times (n =3) was smaller than 0.0035 min. 

Table 5.1: Predicted retention parameters (𝐥𝐧 𝒌𝟎 and 𝑺) of PS1-3 obtained using models based 

on the measurements for 0.5 and 1.5 min gradients in Figure 6 before and after gradient 

correction, average prediction errors (squared differences) of the retention times (∆𝒕𝒆; n =3) 

obtained for the 1.0-min gradient, and percentual differences in retention parameters between 

Instrument I and II before and after correction;  𝜹𝑨𝑩(𝑺) =
|𝑺𝑨−𝑺𝑩|

(
𝑺𝑨+𝑺𝑩

𝟐
)

∗ 𝟏𝟎𝟎 and analogous for 𝐥𝐧 𝒌𝟎. 

Colours indicate the severity of the differences, with red being worse and green being better.  

 

 Instrument I  Instrument II % Differences 

Uncorrected 𝐥𝐧 𝒌𝟎 𝑺 

∆𝒕𝒆 

(min) 𝐥𝐧 𝒌𝟎 𝑺 

∆𝒕𝒆 

(min) 𝛅𝑨𝑩(𝐥𝐧 𝒌𝟎)  𝜹𝑨𝑩(𝑺) 

PS1 1.70 2.97 0.027 2.23 1.34 0.009 27.0 75.4 

PS2 2.48 4.44 0.017 2.74 2.75 0.001 9.9 47.1 

PS3 3.69 6.47 0.009 3.27 3.79 0.010 12.2 52.2 

Corrected                

PS1 1.71 3.05 0.026 2.21 2.99 0.002 25.5 2.0 

PS2 2.50 4.58 0.016 2.78 4.88 0.002 10.4 6.4 

PS3 3.77 6.75 0.008 3.77 6.96 0.006 0.1 3.1 

 

 

 5 



Chapter 5 

160 

Overall, the largest changes in ln 𝑘0 and 𝑆 for PS1-3 before and after correction, 

occurred for Instrument II. For Instrument I on average much smaller changes were 

observed. More specifically, for Instrument II the 𝑆 values of PS1-3 are significantly 

larger after correction. and much more in line with the values obtained with 

Instrument I. This can be explained considering the differences in retention times of 

PS1-3 observed between the different gradients. When ln 𝑘0 is reasonably large (𝑘0 ≥

10), small values for 𝑆 indicate that the elution composition of the analyte may be 

strongly affected by the gradient slope. For the 0.5-min gradient, the selected 

oligomer peak of PS1 appears to elute later than 5.4 min (the sum of the instrument 

dwell time, the column dead time, the initial hold-time, and the gradient duration). 

This implies that without paying attention to gradient deformation, the peak appears 

to elute after the gradient, whereas with the 1.5 min gradient it appears to elute 

within the gradient. Thus, without correction for the actual gradient profile, the 

change in elution composition with gradient duration appears larger than it actually 

is and variations in the (programmed) gradient slope appear to have much greater 

effect. The actual slopes of the 0.5 and 1.5 min gradients are more comparable than 

the programmed slopes, since the 0.5-min gradient deforms to a greater extent than 

the 1.5-min gradient. When accounting for this, the same retention times would 

correspond to smaller differences in elution composition and a larger value for 𝑆 is 

expected, which is also what we observe. On Instrument I the retention parameters 

only changed slightly, because for this system the deformation of the gradient was 

much smaller, and because the analytes did not elute within the region where 

deformation was most significant.  

Interestingly, the error in the retention-time predictions did not significantly change 

before and after correction, and was similarly small for all compounds. Furthermore, 

the errors were smaller for Instrument II than for Instrument I. Since there is less 

deformation on Instrument I the same gradient programs/durations (0.5 and 1.5 min) 

correspond to actual gradient slopes that are more different on Instrument II, which 

are all more shallow than intended. Therefore, a greater range in retention is covered 

on Instrument I than on Instrument II and interpolation to the 1.0-min gradient is 

less accurate. One source of prediction error may be non-linearity of the ln 𝑘 vs. 𝜑 

relationship and as a consequence greater errors may result if a greater range in 

retention is covered (Instrument I). In addition, if non-linearity effects indeed play a 
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significant role, prediction errors will be larger for analytes featuring a smaller 𝑆 

parameter. This is indeed observed, as the error decreases in order of analyte 𝑀𝑤 . 

However, Bashir et al. have observed an increase in prediction error with analyte 𝑀𝑤 

when using the LSS model [33], suggesting that other factors also contributed to the 

error. Notably, Bashir et al. studied much larger polymers (𝑀𝑤 up to 40 kDa). Likely, 

effects of pore size, such as differences in accessible stationary-phase surface area 

or differences in mobile-phase composition inside and outside of the pores, also play 

a role for high-molecular-weight polymers.  

While the effect of gradient deformation on retention time predictions was most 

evident on (the older) Instrument II, some solvent-specific deformation of the 

gradient could still be observed on Instrument I. The effect that such small deviations 

have on retention (and on retention-time prediction) will depend on the specific 

analyte and on the gradient program. Especially at low flowrates and for complex, 

multi-segment gradients the effect may be significant.   

5.5. Conclusion 

In this work the possibility was investigated to directly measure gradient profiles 

using capacitively coupled contactless conductivity detection (C4D) on-line. C4D was 

capable of measuring gradients generated using various commonly-used LC 

solvents. These included water and the organic solvents ACN, MeOH and THF, to 

which no ionic tracers were added. In most cases, the detector response changed 

linearly with mobile-phase composition, and if needed slight non-linearities were 

corrected for. The C4D response was used to accurately monitor various gradients 

created by two different LC instruments, one equipped with a quaternary pump and 

one with a binary pump. The formed gradients were seen to be uniquely distorted 

depending on the solvent combination. Large distortions were especially observed 

for gradients that encompassed an elution volume that was low in comparison with 

the dwell volume of the pump.  

Gradient distortions could be accurately described by a weighted combination of 

two stable functions. This allowed us to predict the actual gradient profile for a given 

set of solvents as a function of the applied gradient program and the flow rate. When 

empirical retention modelling is used to obtain retention parameters for a given 

analyte and a given model, the distorted gradient profile must be taking into 
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account. In this work the distorted gradient profile was approximated by a 

segmented gradient consisting of 500 linear segments. Using this approach, 

retention parameters obtained when using the linear-solvent strength model on the 

two different systems were much-more similar than without correction for distorted 

gradients. This suggests that the proposed correction approach can also be used for 

transferring gradient-LC methods between instruments. We envision that our 

approach is a step towards the creation of a library of retention parameters that does 

not depend on the instrument used.  

Our approach relied on measuring the actual gradient profile without adding extra 

distortion and without pressure limitations using C4D. Our approach does not 

account for column-induced distortion of the gradient, for example, by selective ad- 

or absorption of one of the mobile-phase components on the stationary phase. Such 

column-induced distortions will be larger for low-volume (short duration, low flow 

rate) gradients. To obtain retention parameters that are completely independent of 

the column and of the instrument, all contributions to gradient distortion must be 

taken into account. Without such a rigorous correction, we found that conclusions 

drawn regarding which retention model yields the most-accurate description for a 

given set of scanning gradients are influenced by the experimental conditions, due 

to changes in the actual gradient slope. 

 

Supplementary material  

 

 

 



Chapter 5 

163 

References  

[1] D.R. Stoll, X. Li, X. Wang, P.W. Carr, S.E.G. Porter, S.C. Rutan, Fast, comprehensive two-

dimensional liquid chromatography, J Chromatogr A. 1168 (2007). 

https://doi.org/10.1016/j.chroma.2007.08.054. 

[2] D.R. Stoll, P.W. Carr, Two-Dimensional Liquid Chromatography: A State of the Art Tutorial, Anal 

Chem. 89 (2017). https://doi.org/10.1021/acs.analchem.6b03506. 

[3] B.W.J. Pirok, A.F.G. Gargano, P.J. Schoenmakers, Optimizing separations in online 

comprehensive two-dimensional liquid chromatography, J Sep Sci. 41 (2018). 

https://doi.org/10.1002/jssc.201700863. 

 [4] R.J. Vonk, A.F.G. Gargano, E. Davydova, H.L. Dekker, S. Eeltink, L.J. de Koning, P.J. Schoenmakers, 

Comprehensive two-dimensional liquid chromatography with stationary-phase-assisted modulation 

coupled to high-resolution mass spectrometry applied to proteome analysis of saccharomyces cerevisiae, 

Anal Chem. 87 (2015). https://doi.org/10.1021/acs.analchem.5b00708. 

[5] D.R. Stoll, K. Shoykhet, P. Petersson, S. Buckenmaier, Active Solvent Modulation: A Valve-Based 

Approach to Improve Separation Compatibility in Two-Dimensional Liquid Chromatography, Anal Chem. 

89 (2017). https://doi.org/10.1021/acs.analchem.7b02046. 

[6] L.S. Roca, A.F.G. Gargano, P.J. Schoenmakers, Development of comprehensive two-dimensional 

low-flow liquid-chromatography setup coupled to high-resolution mass spectrometry for shotgun 

proteomics, Anal Chim Acta. 1156 (2021). https://doi.org/10.1016/j.aca.2021.338349. 

[7] L.E. Niezen, B.B.P. Staal, C. Lang, B.W.J. Pirok, P.J. Schoenmakers, Thermal modulation to enhance 

two-dimensional liquid chromatography separations of polymers, J Chromatogr A. 1653 (2021). 

https://doi.org/10.1016/j.chroma.2021.462429. 

[8] T.S. Bos, L.E. Niezen, M.J. den Uijl, S.R.A. Molenaar, S. Lege, P.J. Schoenmakers, G.W. Somsen, 

B.W.J. Pirok, Reducing the influence of geometry-induced gradient deformation in liquid chromatographic 

retention modelling, J Chromatogr A. 1635 (2021). https://doi.org/10.1016/j.chroma.2020.461714. 

[9] F. Gritti, G. Guiochon, The distortion of gradient profiles in reversed-phase liquid 

chromatography, J Chromatogr A. 1340 (2014) 50–58. https://doi.org/10.1016/j.chroma.2014.03.004. 

[10] G. Hendriks, J.P. Franke, D.R.A. Uges, New practical algorithm for modelling retention times in 

gradient reversed-phase high-performance liquid chromatography, J Chromatogr A. 1089 (2005). 

https://doi.org/10.1016/j.chroma.2005.07.003. 

 5 



Chapter 5 

164 

[11] F. Gritti, G. Guiochon, Separations by gradient elution: Why are steep gradient profiles distorted 

and what is their impact on resolution in reversed-phase liquid chromatography, J Chromatogr A. 1344 

(2014). https://doi.org/10.1016/j.chroma.2014.04.010. 

[12] S. Nawada, F. Gritti, Theoretical framework for mixer design for noise reduction and gradient 

fidelity, J Chromatogr A. 1653 (2021). https://doi.org/10.1016/j.chroma.2021.462357. 

[13] M.A. Quarry, R.L. Grob, L.R. Snyder, Measurement and use of retention data from high-

performance gradient elution. Correction for “non-ideal” processes originating within the column, J 

Chromatogr A. 285 (1984) 19–51. https://doi.org/10.1016/S0021-9673(01)87733-5. 

[14] M. Zhang, A. Chen, J.J. Lu, C. Cao, S. Liu, Monitoring gradient profile on-line in micro- and nano-

high performance liquid chromatography using conductivity detection, J Chromatogr A. 1460 (2016). 

https://doi.org/10.1016/j.chroma.2016.07.005. 

[15] P.G. Boswell, J.R. Schellenberg, P.W. Carr, J.D. Cohen, A.D. Hegeman, Easy and accurate high-

performance liquid chromatography retention prediction with different gradients, flow rates, and 

instruments by back-calculation of gradient and flow rate profiles, J Chromatogr A. 1218 (2011). 

https://doi.org/10.1016/j.chroma.2011.07.070. 

[16] M.H. Magee, J.C. Manulik, B.B. Barnes, D. Abate-Pella, J.T. Hewitt, P.G. Boswell, “Measure Your 

Gradient”: A new way to measure gradients in high performance liquid chromatography by mass 

spectrometric or absorbance detection, J Chromatogr A. 1369 (2014). 

https://doi.org/10.1016/j.chroma.2014.09.084. 

[17] N. Wang, P.G. Boswell, Accurate prediction of retention in hydrophilic interaction 

chromatography by back calculation of high pressure liquid chromatography gradient profiles, J 

Chromatogr A. 1520 (2017). https://doi.org/10.1016/j.chroma.2017.08.050. 

[18] F. Opekar, P. Tůma, K. Štulík, Contactless impedance sensors and their application to flow 

measurements, Sensors (Switzerland). 13 (2013). https://doi.org/10.3390/s130302786. 

[19] A.J. Zemann, Capacitively coupled contactless conductivity detection in capillary 

electrophoresis, Electrophoresis. 24 (2003). https://doi.org/10.1002/elps.200305476. 

[20] P. Kubáň, P.C. Hauser, Fundamental aspects of contactless conductivity detection for capillary 

electrophoresis. Part I: Frequency behavior and cell geometry, Electrophoresis. 25 (2004). 

https://doi.org/10.1002/elps.200406059. 

[21] P. Kubáň, P.C. Hauser, Fundamental aspects of contactless conductivity detection for capillary 

electrophoresis. Part II: Signal-to-noise ratio and stray capacitance, Electrophoresis. 25 (2004). 

https://doi.org/10.1002/elps.200406060. 



Chapter 5 

165 

[22] E. Baltussen, R.M. Guijt, G. van der Steen, F. Laugere, S. Baltussen, G.W.K. van Dedem, 

Considerations on contactless conductivity detection in capillary electrophoresis, Electrophoresis. 23 

(2002). https://doi.org/10.1002/1522-2683(200209)23:17<2888::AID-ELPS2888>3.0.CO;2-4. 

[23] P. Kubáň, P.C. Hauser, Ten years of axial capacitively coupled contactless conductivity detection 

for CZE - A review, Electrophoresis. 30 (2009). https://doi.org/10.1002/elps.200800478. 

[24] S.R.A. Molenaar, P.J. Schoenmakers, B.W.J. Pirok, Multivariate Optimization and Refinement 

Program for Efficient Analysis of Key Separations (MOREPEAKS), (2021). 

https://doi.org/doi:10.5281/zenodo.5710442. 

[25] L.R. Snyder, J.W. Dolan, J.R. Gant, Gradient elution in high-performance liquid chromatography. 

I. Theoretical basis for reversed-phase systems, J Chromatogr A. 165 (1979). 

https://doi.org/10.1016/S0021-9673(00)85726-X. 

 [26] P.J. Schoenmakers, H.A.H. Billiet, R. Tussen, L. de Galan, Gradient selection in reversed-phase 

liquid chromatography, J Chromatogr A. 149 (1978) 519–537. https://doi.org/10.1016/S0021-

9673(00)81008-0. 

[27] E. Tyteca, G. Desmet, A universal comparison study of chromatographic response functions, J 

Chromatogr A. 1361 (2014). https://doi.org/10.1016/j.chroma.2014.08.014. 

[28] D.W. Morton, C.L. Young, Analysis of peak profiles using statistical moments, 210421-001518. 

33 (1995). https://doi.org/10.1093/chromsci/33.9.514. 

[29] B. Zhuang, G. Ramanauskaite, Z.Y. Koa, Z.G. Wang, Like dissolves like: A first-principles theory 

for predicting liquid miscibility and mixture dielectric constant, Sci Adv. 7 (2021). 

https://doi.org/10.1126/sciadv.abe7275. 

[30] S. Fekete, M. Fogwill, M.A. Lauber, Pressure-Enhanced Liquid Chromatography, a Proof of 

Concept: Tuning Selectivity with Pressure Changes and Gradients, Anal Chem. 94 (2022) 7877–7884. 

https://doi.org/10.1021/acs.analchem.2c00464. 

[31] F. Fitzpatrick, R. Edam, P. Schoenmakers, Application of the reversed-phase liquid 

chromatographic model to describe the retention behaviour of polydisperse macromolecules in gradient 

and isocratic liquid chromatography, J Chromatogr A. 988 (2003) 53–67. https://doi.org/10.1016/S0021-

9673(02)02050-2. 

[32] L.E. Niezen, B.B.P. Staal, C. Lang, H.J.A. Philipsen, B.W.J. Pirok, G.W. Somsen, P.J. Schoenmakers, 

Recycling gradient-elution liquid chromatography for the analysis of chemical-composition distributions 

of polymers, J Chromatogr A. 1679 (2022) 463386. https://doi.org/10.1016/J.CHROMA.2022.463386. 

[33] M.A. Bashir, W. Radke, Comparison of retention models for polymers. 1. Poly(ethylene glycol)s, 

J Chromatogr A. 1131 (2006) 130–141. https://doi.org/10.1016/j.chroma.2006.07.089. 

 5 



Chapter 5 

166 



Chapter 5 

167 

 

Recent data pre-processing 

strategies in one- and two-

dimensional chromatography 



Chapter 5 

168 

Abstract 

The proliferation of increasingly more sophisticated analytical separation systems, 

often incorporating increasingly more powerful detection techniques, such as high-

resolution mass spectrometry, causes an urgent need for highly efficient data-

analysis and optimization strategies. This is especially true for comprehensive two-

dimensional chromatography applied to the separation of very complex samples. In 

this contribution the latest developments in approaches for (pre-)processing are 

reviewed. 
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6.1. Introduction 

Analytical instruments are indispensable for modern society. To keep pace with the 

growing needs of society to obtain extended and reliable information on an 

increasing number of sample characteristics, analytical methods are continuously 

improved [1]. New analytical tools typically are able to generate more and more 

complex data, from which it is increasingly difficult to extract useful information and 

deduce simple and correct answers, especially when multi-component samples are 

analysed. To extract all valuable information from what has been referred to by some 

as “a tsunami of data” or, more generally, “Big Data”, efficient data-analysis strategies 

are evidently needed [2].  

One frequently applied analytical tool is chromatography, where the separation of 

analytes in a mixture may be obtained by exploiting differences in their partitioning 

between the employed stationary and mobile phases. The employed detection 

techniques can detect one signal as a function of time, often referred to as single-

channel data, or spectrum at every point in time. This multi-channel data may 

facilitate identification or quantification of the analyte represented by the 

chromatographic signal. Although co-elution of multiple analytes upon 

chromatographic analysis may significantly complicate quantification and 

identification [3,4].  

The quest for more separation power led to the development of comprehensive two-

dimensional (2D) chromatography where the entire first-dimension (1D) effluent is 

divided in many fractions, each of which is subjected to a second-dimension (2D) 

separation [5,6]. The result is illustrated for a comprehensive two-dimensional liquid 

chromatography (LC×LC) separation in Figure 6.1, where a mixed-mode ion-

exchange LC separation (A) is combined with a reversed-phase LC separation (B) 

leading to a 2D chromatogram (C) [7]. Qualitative information may be obtained from 

the position of the spots (potentially supported by data obtained from MS detection) 

and quantitative information from the spot intensities [8].  
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Figure 6.1: Separation of a mixture of industrial surfactants using A) mixed-mode ion-

exchange LC, B) reversed-phase LC, and C) a comprehensive combination of mixed-mode ion-

exchange LC and reversed-phase LC. Adapted with permission from [7]. 

However, when applied to highly complex samples even with 2D chromatography it 

can still be difficult to extract accurate and correct information from the obtained 

results. Indeed, samples such as copolymer formulations [9,10], food [11,12], protein 

digests [13,14], metabolic mixtures [15] and oil mixtures [16–18] may easily contain 

thousands of different components. To resolve these, powerful separation systems 

are needed, often equipped with sophisticated detectors such as high-resolution 

mass spectrometers which are able to generate huge amounts of higher-order data 

[19]. A large amount of information is contained in the resulting datasets, with a mass 

spectrum (and sometimes multiple fragmentation spectra) at each point in time in 

the 2D separation space. Arguably, extracting all relevant information is the biggest 

challenge we currently face in high-resolution chromatography. Fortunately, many 
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researchers are devoting their time to developing efficient chemometric data-

processing strategies. 

In this work, the latest pre-processing methods will be discussed, in which we address 

post-analysis corrections to resolve baseline drift, undesired background signals, 

shifting retention times, and unresolved peaks.  

It is worth mentioning that, ultimately, two-dimensional chromatographic datasets 

comprise a collection of 1D separations. Consequently, many of the chemometric 

strategies used in 2D chromatography are based on the analysis of one-dimensional 

chromatograms. 

6.2. Pre-processing 

6.2.1. Aim 

The main data pre-processing strategies are generally considered to be (i) denoising 

and smoothing (ii) baseline (drift) correction, (iii) retention time alignment, (iv) peak 

deconvolution and resolution enhancement, and (v) data compression. Steps (i) and 

(ii) together are generally termed “background correction” and are required for the 

accurate identification and, especially, quantification of analytes. This has been a 

long-standing issue, with the first reports having been published in the 1960’s 

[20,21]. During the denoising and smoothing procedures, low-amplitude signals are 

first removed, irrespective of their frequency spectrum, after which high-frequency 

signals are removed, irrespective of their amplitude. Next, baseline (drift) correction 

can be performed, with the aim to determine the baseline shape and subtract it from 

the measurement. Step (iii), retention time alignment, is used to correct shifts in 

retention time that occur between experiments. This is required to compare series of 

chromatograms and to allow one to discern the real differences between similar 

samples. Peak deconvolution and resolution enhancement (iv) are utilized to resolve 

two or more (partially) overlapping signals. Finally, data compression (v) is generally 

required for large datasets to both reduce the computational resources required and 

to speed up data analysis.     

Important to note here is that all pre-processing strategies tend to rely on 

assumptions or premises, which, in some cases, may lead to incorrect conclusions. A 

case in point is background correction, which may lead to removal of true signals. 
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This is likely to occur when real peaks cannot easily be distinguished from the 

background signal. Another example is inaccurate alignment, which may occur due 

to the incorrect identification of landmark peaks (or anchor points) used for the 

alignment. This can subsequently lead to errors during data analysis when assessing 

the differences between chromatograms. It should also be stressed that, while a pre-

processing method may yield correct results in a specific situation, its usefulness 

should always be critically assessed for any other application, lest incorrect 

conclusions are drawn. This section reviews recent developments regarding the pre-

processing of chromatographic data, with a focus on recent strategies for 

background correction and retention-time alignment. Where useful, less-recent 

methods are also briefly explained.   

6.2.2. Baseline correction   

As described previously, the first pre-processing step involves denoising, smoothing 

and baseline-drift correction to reduce baseline disturbances. In liquid 

chromatography (LC), noise mainly results from small fluctuations in the flow rate, 

the mobile-phase composition and the temperature. Drift results primarily from a 

variation in the mobile-phase composition (gradients). In GC electronic noise may 

dominate and drift arises from the variations in the flow rate and temperature-

induced “bleeding” of the stationary phase. Certain derivative-based peak detection 

methods (see section 3.1) may struggle when such noise is present, illustrating the 

necessity for noise removal. In this paper well-known noise removal strategies, such 

as Savitsky-Golay [22] or Kalman filtering [23], are not specifically discussed. 

However, many of the recent background correction procedures either perform such 

noise removal prior to base-line drift correction or utilize subsequent peak detection 

methods that do not require noise removal. The baseline-drift correction is often 

performed by either a curve-fitting or a smoothing strategy [24]. The aim in both 

approaches is to fit a curve through the presumed background data points, by 

utilizing a loss function, such as the well-known least-squares, or by polynomial 

fitting [24]. Background correction methods can be roughly categorized as 

parametric or non-parametric. Parametric models are defined as those models that 

assume the background is of a certain form which can be described by a constant 

number of parameters, e.g. linear, quadratic or polynomial regression. Non-

parametric methods on the other hand make no prior assumptions regarding the 
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shape of the baseline and allow for a flexible number of parameters, the exact 

number of which depends on the data. Many background correction methods are 

non-parametric, these include adaptive iteratively reweighted penalized least 

squares (airPLS), asymmetrical least squares (asLS) and corner cutting (CC) [25]. 

Interpolation may in some cases also be required when the actual shape of the 

background signal under the peaks must be determined. When a large number of 

peak clusters are present, baseline correction can become increasingly difficult, as 

the data points that contain information on the background become scarce. 

However, as stated above, such baseline-less data sets are becoming increasingly 

common with the ever-increasing complexity of the samples analytical chemists are 

asked to deal with. Certain techniques perform especially well in these cases (see 

section 2.2.5) [26].  

6.2.2.1. Penalized least squares approaches 

Many background correction algorithms are based around the use of penalized least 

squares, which is a smoothing method based on the Whittaker smoothing function 

[27]. Such methods include adaptive iteratively reweighted penalized least squares 

(airPLS), modified airPLS (MairPLS), asymmetrical least squares (asLS), asymmetrically 

reweighted penalized least squares (arPLS) and morphologically weighted penalized 

least squares (MPLS) [24,28,29].  

The penalized least squares algorithm relies on balancing the fit of a model to the 

data, 𝐹, given by the sum of squares error (SSE), against its roughness (𝑅) by 

adjusting a smoothing parameter, 𝜆. This is given by: 

𝜑 = 𝐹 + 𝜆𝑅 = ∑ (𝑥𝑖 − 𝑧𝑖)2 + 𝜆 ∑ (∆𝑧𝑖)
2𝑚

𝑖=2
𝑚
𝑖=1 = ‖x − z‖2 + 𝜆‖Dz‖2               (6.1) 

Where 𝑥𝑖 is the ith data point in the signal (x), 𝐃 is the derivative of the identity matrix 

(𝐈), and 𝑧𝑖 is the ith point of the fitted data, z. The difference between adjacent fitted 

data points is given by ∆𝑧𝑖 Solving for 
𝜕𝜑

𝜕𝑧
= 0 returns a set of linear equations that 

can be solved to determine the fit, z:  

(𝐈 + 𝜆𝐃′𝐃)z = x                                                                                                (6.2) 

To utilize this smoothing function for baseline correction, one must first establish the 

location of peaks in the chromatogram. Once these peak points are known, a binary 
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mask or “weighted matrix” can be created, the points of which correspond to either 

one or zero, depending on whether the data point in the chromatogram corresponds 

to background or to a peak, respectively. This is the approach taken by both Cobas 

[30] and Zhang et al. [31]. 

(𝐖 + 𝜆𝐃′𝐃)z = 𝐖x                                                                                               (6.3) 

With 𝐖 the weighted matrix or binary mask indicating the location of peaks. The 

disadvantage of this weighted-least-squares method is that it requires peak 

detection, which may in itself be affected by the correct definition of the baseline. 

The asymmetrical least squares (asLS) method developed by Eilers et al. [24] aims to 

solve this issue by introducing an asymmetry parameter. This parameter allows for 

the weights that are placed on positive and negative deviations from the baseline to 

be smaller and larger, respectively. However, in the case of asLS, this asymmetry 

parameter is constant, irrespective of the position on the baseline. For this reason, 

airPLS was introduced [29], which allows for certain regions of the baseline to be 

penalized more than other regions. In airPLS a weight vector is obtained by iteratively 

solving a weighted penalized least squares problem. An accurate weight vector is 

thought to be established once the difference between the signal and the fitted 

vector |𝑑𝑡| falls below one thousandth of the original signal.  

|𝑑𝑡| < 0.001|x|                                                                                              (6.4) 

Both asLS and airPLS overestimate the baseline in the presence of additive noise. 

Therefore, the asymmetrically reweighted penalizes least squares (arPLS) approach 

was developed by Baek et al. [32]. Additional methods based around the same 

principles are MairPLS, in which the chromatogram (x) is pre-treated prior to 

performing airPLS (see section 2.2.4) [29], and MPLS, developed by Li et al. For MPLS 

a morphological strategy is used for the initial determination of the weight vector 

[28,33]. Background drift is ultimately accounted for by using the previously 

described weighted penalized least squares.  

While the penalized least squares approaches are not considered computationally 

intensive, it should be noted that all of them require finding the correct smoothing 

(𝜆) parameter to fit the baseline. This may make these methods more time-

consuming than some of the other methods.   
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6.2.2.2. Multivariate curve resolution and orthogonal subspace projection for 

background correction   

Multivariate curve resolution (MCR-ALS) is one of the best-known 2-way data 

analysis methods. It allows recovering the number of components in a mixture, their 

response profiles, and their estimated concentrations [34,35]. Therefore, MCR is often 

applied for quantitative purposes. However, it may also be used for background 

correction. MCR requires the data to satisfy the condition of bilinearity. Examples of 

its application include LC-DAD and LC-MS data [36,37]. MCR decomposes a matrix 

into pure chromatographic and spectral profiles, plus noise or error, as in Equation 

6.5.  

𝑋 = 𝐶𝑆𝑇 + 𝐸                                                                                          (6.5) 

in which 𝑋 represents the recorded data, and 𝐶 and 𝑆 the pure chromatographic and 

spectral profiles of the components in the sample, respectively. 𝐸 is the error matrix, 

(ideally) containing only instrumental noise. Often initial estimates are made by 

singular value decomposition (SVD) [38] or PCA, but sometimes alternative methods 

are used [39]. Then constraints are set in place and the equation is iteratively 

optimized by means of alternating least-squares (ALS). The signal 𝑋 does not only 

contain information on analytes but also on background drift: 

𝑋 = 𝑋analyte+𝑋background                                                                                       (6.6a) 

𝑋analyte = 𝑐1𝑠1
𝑇 + 𝑐2𝑠2

𝑇 ··· 𝑐𝑁𝑠𝑁
𝑇                                                                          (6.6b) 

𝑋background = 𝑐𝑏𝑘,1𝑠𝑏𝑘,1
𝑇 + 𝑐𝑏𝑘,2𝑠𝑏𝑘,2

𝑇 ··· 𝑐𝑏𝑘,𝑀𝑠𝑏𝑘,𝑀
𝑇                                              (6.6c) 

By considering that the spectra of the analytes 𝑠𝑁 also contain background data, a 

subspace projection can be created that is orthogonal to the original data. 

Multiplication of the original data with this subspace will cause the background drift 

to be cancelled out. Which is called orthogonal subspace projection (OSP) or 

orthogonal spectral signal projection (OSSP). For more information regarding this 

technique and its use in background correction please refer to the literature [40,41].  
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6.2.2.3. Corner cutting with Bezier smoothing   

One example of non-parametric background correction is the corner cutting (CC) 

method that has been developed by Liu et al. [25]. In CC, a smooth baseline is 

generated by fitting a Bezier curve [42] through the points that remain after corner 

points are removed from the signal vector. These corner points are defined as those 

points that lie above a straight line created between the previous and subsequent 

points in the data. This results in the automatic removal of peaks as these, by 

definition, will be corner points. However, a disadvantage of the approach is that it 

results in increasingly concave baselines as the algorithm progresses. This has been 

addressed by the authors by introducing a terminal condition related to the average 

area reduction that occurs during the iterations. The baseline is obtained after the 

iteration at which the average reduction in area is maximal. The approach was 

evaluated by comparing it to airPLS and various software packages [43–45], as well 

as by employing Support Vector Machines (see Section 3.3.4) classification. Since 

improved baseline correction should lead to better classification results, this may be 

one criterion to decide which method performs best. By correcting the background 

in Raman,  X-ray diffraction (XRD), LC-MS and matrix-assisted laser 

desorption/ionization – time-of-flight MS (MALDI-ToF MS) data, the CC method was 

shown to yield the best results, without requiring additional parameters to be 

determined.  

6.2.2.4. Local minimum value approach 

Another approach to baseline correction is by utilizing the concept of local minimum 

values (LMVs) [46]. The approach consists of three stages, namely: i) initialization, ii) 

iterative optimization, and iii) an estimation of background drift. In the first stage a 

set of data points are assigned as local minimum values if the following set of 

conditions are satisfied:  

𝑥𝑖−1 > 𝑥𝑖                                                                                                (6.7a) 

𝑥𝑖 < 𝑥𝑖+1                                                                                                         (6.7b) 

In which 𝑥𝑖 is the ith data point in the chromatogram, while 𝑥𝑖−1 and 𝑥𝑖+1 are the data 

points before and after 𝑥𝑖 . A chromatogram with LMVs selected is illustrated in 

Figure 6.2.  
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Figure 6.2: Background correction using LMVs, A) The selection of LMV’s by the criteria of 

Eqns. 7a and 7b, B) The resulting minimum vector, C) Removal of outliers by a moving-window 

strategy, with m the respective iteration, and D) The original signal, the baseline and the signal 

corrected for background. Reproduced with permission from [46].  

The complete set of LMVs is stored in a “minimum vector” and consists of 

chromatographic peak points and noise. This minimum vector is shown in Figure 

6.2-B. Any of the peak points that may have been included in the minimum vector 

are treated as outliers and removed by utilizing a moving-window strategy. This 

requires an a priori estimation of the appropriate width of the moving window. The 

initial minimum vector that still contains outliers and the corrected minimum vector 

are shown in Figure 6.2-B and 6.2-C, respectively. Any point with a signal-to-noise 

ratio (S/N) larger than 2.5 is considered a peak point and replaced with the median 

value of an extracted vector from the window in which that point occurs. This strategy 

is then repeated until convergence. After the iterative optimization stage, the 

baseline is estimated by linear interpolation. The corrected chromatogram is 

ultimately obtained by subtracting the estimated baseline from the original data, as 

is illustrated in Figure 6.2-D.  

The LMV method was compared with morphologically-penalized-least-squares 

(MPLS) [28] and moving-window-minimum-value (MWMV) methods [47] using both 
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simulated and GC data. The simulated data consisted of both single and overlapping 

peaks, with the latter being comprised of contributions of two, three or four peaks. 

Using the simulated data, peak areas and standard deviations were determined after 

background correction by local minimum values-robust statistical analysis (LMV-

RSA), MWMV and MPLS at different levels of noise. It was demonstrated that the 

LMV-RSA approach yielded the most-accurate peak areas and the lowest standard 

deviations, with recoveries close to 100% in all cases and standard deviations below 

4.5% at all but the highest noise level. MWMV performed slightly worse, while MPLS 

generally resulted in significantly lower peak areas, especially in the case of 

overlapping peaks, with recoveries of around 53% and 74% for the peak clusters 

containing three and four peaks, respectively. The influence of the moving-window 

width (in the range between 20 and 80 data points) was found negligible for the GC 

data set.  

Additionally, the LMV approach was compared to the “background drift correction 

by orthogonal subspace projection” (BD-OSP) method, which was utilized for the LC-

QTOF-MS data [41]. In this case the differences were only assessed qualitatively. It 

was shown that after correction with BD-OSP, total-ion-current (TIC) data still 

contained background drift, whereas data corrected with LMV-RSA did not contain 

background drift but had lost part of the information contained in the TIC [44]. The 

comparisons showed that LMV-RSA performed comparably or better than the MPLS, 

MWMV and OSP approaches. However, as also stated by the authors, it is important 

to note that the technique can only be applied if local minimum values can be 

assigned.  

6.2.2.5. Automatic peak detection and background drift correction  

Another approach to background correction and detection is the automatic peak 

detection and background drift correction (ACPD-BDC) method of Yu et al. [48] 

Firstly, peak start points (𝑥𝑖) and end points (𝑥𝑗) were determined. A data point was 

defined as a start point if the following condition was satisfied:  

𝑥𝑖 < 𝑥𝑖+1 < 𝑥𝑖+2 < 𝑥𝑖+3                                                                                           (6.8) 
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i.e. starting position of a peak 𝑥𝑖 must be smaller than the next three data points, 

𝑥𝑖+1 to 𝑥𝑖+3. Similarly, any data point is defined as an end point of the peak if the 

following condition is satisfied:  

𝑥𝑗 > 𝑥𝑗+1 > 𝑥𝑗+2 > 𝑥𝑗+3                                                                                           (6.9) 

which similarly states that a peak’s end point 𝑥𝑗 must be larger than the next three 

points, 𝑥𝑗+1 to 𝑥𝑗+3. While not stated explicitly by the authors it is assumed by us that 

in condition (8) only the first point in an increasing series is taken as a peak starting 

point, as this condition will lead to multiple points of increasing intensity being 

detected while the signal is rising, depending on peak width and detector frequency. 

Similarly, for Equation 6.9 only the last point in a decreasing series should be taken 

as the end point of a peak. These start and end points were then contained in two 

vectors (𝑎 = [𝑎1 𝑎2 … 𝑎𝑝]  and 𝑏 = [𝑏1 𝑏2 … 𝑏𝑞]). A combination of a starting and 

ending point, [𝑎𝑚  𝑏𝑛], was considered a peak’s elution range as long as the following 

logical condition is met: 𝑏𝑛−1 < 𝑎𝑚 < 𝑏𝑛 < 𝑎𝑚+1. All detected peaks were 

subsequently subtracted from the original signal, 𝒙. In this way an initial estimate of 

the background was made (𝑥new). Threshold values were established using the first-

order derivative of this initial estimate (𝑑𝑥new) and outliers were iteratively removed 

by condition (Equation 6.10), with noise thresholds being defined as 3𝜎.  

|𝑑𝑖−𝑑𝒙new̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |

𝜎
> 3                                                                                                       (6.10) 

In which 𝜎 is the standard deviation within 𝑑𝑥new and 𝑑𝑖 is the ith element of 𝑑𝑥new . 

This condition estimates the noise level, by iteratively removing elements in 𝑑𝑥new. 

It is important to obtain a correct 𝑑𝑥new vector, as its first-order derivative is 

subsequently used as a threshold to selectively remove pseudo peaks from the 

original signal (𝑥). This was carried out by evaluating the first-order and second-order 

derivatives of the original signal. Pseudo peaks were removed based on two 

conditions, i.e. (i) the absolute value of the first-order derivative of the original signal, 

relative to the threshold value previously established using Equation 6.10, and (ii) 

the number of times the second-order derivative crosses the zero-line. The authors 

accepted a signal as a true peak if the absolute value of the first-order derivative was 

five times larger than the noise threshold, and if the second-order derivative crossed 

the zero-line fewer than eight times. Background drift was ultimately corrected for 
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by first replacing the previously detected regions containing peaks by linear base 

lines and was denoised using three-point moving-window averaging. This resulted 

in a modified signal vector (𝑥background), which is now assumed to accurately describe 

the background. Baseline correction is then performed by subtracting this 

background from the original signal. The developed background correction 

procedure was then evaluated and compared to the use of airPLS [29] and MairPLS, 

in which the background signal (𝑥background) is used rather than the original 

chromatogram signal (𝑥) as in airPLS. These three methods were applied for the 

background correction of simulated data, experimental LC data on a sample 

containing 11 antibiotics in tap water, and GC data on plant-based flavour extracts. 

MairPLS and ACPD-BDC performed similarly for all data sets evaluated, while airPLS 

performed considerably worse. This is illustrated in Figure 6.3 where for each 

method the uncorrected and background-corrected LC chromatograms are shown.    

 

 
Figure 6.3: Comparison of background drift correction in 15 LC samples, containing 11 

antibiotics in tap water. A) Original chromatograms, B) and C) background correction by airPLS 

and MairPLS, respectively (smoothing factor, 𝜆 = 104), D) correction by ACPD-BDC. 

Reproduced with permission from [48]. 
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MairPLS and ACPD-BDC were further evaluated by means of PCA. In this study, the 

variance explained by the first principal component before and after background 

correction are used as figures of merit. For the LC data, this increased from 36.9% 

before background correction to 43.5% after background correction by MairPLS and 

to 44.4% when ACPD-BDC was used. For the GC data set almost no change was 

observed in the percentage of variance explained, which remained close to 95.0% in 

all cases.    

6.2.2.6. Bayesian approaches to background correction 

As previously stated, baseline correction is often hindered by crowded 

chromatograms and low signal-to-noise (S/N) ratios. One approach aimed 

specifically at facilitating baseline correction even under these conditions has been 

developed by Lopatka et al. [26]. In this approach, a probabilistic peak-detection 

algorithm is used to determine the probability of a point in the chromatogram 

belonging to a peak or to the baseline. It is hence termed the peak-weighted (PW) 

method. The algorithm operates by fitting several different models across a set 

window of data using a least-squares approach. Then, a likelihood is assigned to each 

model and from this, the probability of the data point belonging to a peak is 

calculated. User-defined parameters include the number of overlapping peaks 

allowed in each section and the window width, which directly depends on the peak 

width. This approach was compared to the mixture model (MM) and asymmetrical 

least-squares (asLS) [24,49] approaches and was shown to perform especially well in 

case of crowded chromatograms. This is illustrated for simulated data in Figure 6.4. 

The PW method was also applied for background correction of a comprehensive 

two-dimensional GC-FID chromatogram of fire debris. However, with suitable 

benchmarks unavailable the authors found it impossible to objectively assess the 

performance of the PW method in this situation.  

A different approach based on Bayesian regularized artificial neural networks 

(BRANN) [50] was developed by Mani-Varnosfaderani et al.. The iterative BRANN 

algorithm was compared to airPLS, MPLS, iterative polynomial fitting (iPF), and CC 

(see Sections 2.3.2) methods using the projected-difference-resolution (PDR) 

criterion. 
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Figure 6.4: Comparison of background-drift correction by asLS, MM and PW methods for 

crowded (left) and sparse (right) simulated chromatograms [26]. The green points are those 

points that have been given high weight by the PW model and are primarily used to describe 

the background, while the blue points have been given low weights.  
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6.2.2.7. Baseline estimation and denoising using sparsity  

When a signal can be described reasonably accurately using only a few non-zero 

parameters it can be classified as sparse. For a typical chromatogram, consisting of 

peaks, noise, and background, this assumption may also be applied if it features 

relatively few peaks compared to the number of baseline points. One algorithm that 

utilizes this concept of sparsity, and has been developed recently, is called baseline 

estimation and denoising using sparsity (BEADS) [51]. It was later further improved 

to create the “assisted BEADS” algorithm [52]. BEADS specifically aims to model the 

signal, background, and noise, without employing the use of overly restrictive 

parametric models. As the background is considered a low-pass signal, depending 

on the cut-off frequency, low-pass filters may allow this background to be removed. 

In mathematical terms the approach is based on modelling the chromatographic 

signal as: 

𝑥 = 𝑠 + 𝑤 = 𝑥𝑝 + 𝑓 + 𝑤                                                                                       (6.11) 

With 𝑥 the input data or chromatogram containing peaks 𝑥𝑝, baseline 𝑓, and white 

Gaussian noise 𝑤. Thus 𝑠 describes the noiseless input chromatogram (𝑥𝑝 + 𝑓). It is 

assumed that in the absence of peaks the baseline can be estimated by utilizing a 

low-pass filter. Thus, from an estimate of the peak vector (�̂�𝑝) an estimate of the 

baseline (𝑓) can be obtained by filtering the chromatogram.  

𝑓 = L(𝑦 − �̂�)                                                                                                   (6.12) 

Once the baseline is estimated, the noiseless input chromatogram (�̂�) can also be 

obtained as this is simply �̂� + 𝑓. This means �̂� can be estimated by using both a low-

pass filter L and a high-pass filter H.  

�̂� = L𝑦 + H�̂�                                                                                            (6.13) 

The task is then to obtain an accurate estimate of the peak vector and to establish 

suitable filters. To achieve this, the authors investigated two different cost functions 

and employed an algorithm to minimize these. For a more extensive overview of the 

cost functions and algorithm employed, please refer to [51].  
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The performance of BEADS was compared to airPLS [29] and backcor [53] strategies 

for baseline correction of simulated and real chromatographic data. The results are 

illustrated in Figure 6.5, using chromatographic data from [29] 

Figure 6.5: Comparison of background drift correction using BEADS (top), backcor (middle) 

and airPLS (bottom). Reproduced with permission from [51]. 

BEADS was found to have performed favourably in comparison with airPLS and 

backcor, with the former underestimating the baseline in the range from datapoint 

(sample in Figure 5) 2200 to 2500 and the latter overestimating the baseline in this 

region. However, while BEADS performed well, the baseline was required to be 

periodic, i.e. the signal at the start of the chromatogram should be equal to that at 

the end of the chromatogram. If the above requirement is not fulfilled, for example 
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due to changes in mobile-phase composition or temperature, the modelled baseline 

will show end-point transient artefacts. This would manifest in a decrease (or 

increase) of the baseline towards the starting value at the end point of the 

chromatogram. An additional limitation includes the need to manually adjust 

parameters, such as the order of the filter employed and its cut-off frequency, the 

penalty function utilized in the optimization and its asymmetry, and the 

regularization parameters, which should be set in accordance with the expected 

sparsity of the data. Small changes in these parameters can result in very different 

baselines. However, as noted by the authors, these parameters do allow the approach 

to be used for diverse signals, including, for example, baseline estimation in 

electrocardiography (ECG). Furthermore, BEADS cannot correctly handle negative 

signals, such as those observed in for example refractive-index detection (RID).  

To summarize, the following difficulties arise when using BEADS for baseline 

correction: (i) parameter adjustment and selection (ii) the signal intensity for the first 

and last points in the chromatogram should be equal, and (iii) difficulties with 

assessing data that may contain negative peaks. Most of these limitations have been 

addressed by Navarro-Huerta et al. [52] who have developed the assisted-BEADS 

algorithm, and by Selesnick, who has proposed a solution for the endpoint artefacts 

[54]. Parameter selection may be facilitated by auxiliary autocorrelation plots. In such 

plots the correlation between consecutive data points is measured. By determining 

the autocorrelation of the noise after background correction and by plotting this as 

a function of one (or, ideally, all) of the adjustable parameters, the optimal value of 

the parameter(s) can be established from the location in the plot where 

autocorrelation is minimized. To address the sensitivity of BEADS to negative peaks 

an additional algorithm has been applied, which discards sporadic negative signals 

[52].  

6.2.2.8. Background correction in GC-MS and LC-MS using recorded profile 

spectra 

An MS-based approach to baseline correction and noise removal in GC-MS and LC-

MS data has been developed by Erny et al. [55]. In this work, the recorded profile 

(full) spectra were used rather than conventional centroid mass spectra. The latter is 

obtained by retaining only the peak centres at discrete m/z values (i.e. zero-line 

width), and the corresponding intensity while discarding any other information. 
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However, it has recently been shown that errors may result from the use of 

centroided spectra in subsequent data analysis, the most prominent being the 

merging of overlapping peaks. As the number of profile spectra to be analysed was 

60,000 and 141,000 for CE-ToF-MS and UHPLC-QToF-MS respectively, a selection of 

profile spectra was first made based on their relative length. This relative length is 

defined as the number of non-zero values divided by the total number of values in 

the MS profile. As a zero value means no ion is detected at the given time and m/z 

interval, the relative length is an indicator of what type of information is contained 

within the profile. By generating a base peak profile from a selection of profiles that 

differ in relative length, the information in these profiles can be visualized. Using this 

approach, the authors selected the profile spectra with a relative range of 75-100% 

as the data to use for background correction, along with profiles containing more 

than 50% of non-zero values. This resulted in 3,909 and 37,000 profiles for 

background correction in CE-ToF-MS and UHPLC-QToF-MS, respectively. The same 

strategy was also applied for noise estimation, using the profile spectra in the relative 

range from 0-25%. Both airPLS and arPLS were then investigated for baseline 

correction, while a moving-window strategy was employed for noise removal using 

the noise estimated from the base-peak profile as a threshold value. The use of a 

higher noise threshold was also investigated, however, this ultimately resulted in the 

removal of low-intensity peaks. The background correction itself, performed with 

arPLS, did not result in significant alterations of the total-ion profile. As a final step 

the spectra are converted back to conventional MS-centroid spectra. The 

computation time was approximately 2 and 20 mins for the CE-ToF-MS (0.7 GB) and 

UHPLC-Q/ToF-MS (2.9 GB) data sets, respectively. The primary difference with other 

approaches is that baseline correction and noise removal are primarily based on the 

profile spectra, which are first selected based on their relative length, so as to 

improve the accuracy of the correction. This allowed the authors to reliably obtain 

base-peak ions that were previously obscured by background ions. It also allowed 

for a substantial reduction in data size.  

6.2.2.9. Methods for 2D chromatography 

A number of research groups have specifically investigated methods for 2D 

chromatography. One example exploits the trait of visualizing LC×LC and GC×GC 

separations as 2D image. In their work, Reichenbach et al. utilized a number of 
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statistical and structural characteristics of the background signal in 2D 

chromatograms, including the white noise properties of noise in chromatographic 

signals to correct for the background [56]. Their algorithm has been applied to both 

GC×GC and LC×LC data using the GC Image and LC Image software tools [57,58]. 

Other approaches have consulted the data from the 1D perspective. Zeng et al. used 

the linear least-squares curve fitting approach combined with moving-average 

smoothening to correct all 1D peaks within the 2D chromatograms [59]. Zhang et al. 

employed alternating trilinear decomposition (ATLD) to correct the analytical signal 

for the background drift of LC×LC-DAD data [60]. Self-weighted alternating trilinear 

decomposition (SWATLD) and parallel factor analysis (PARAFAC) were also applied 

for this function. 

6.2.3. Retention-time-alignment strategies 

After the data have been corrected for the background signal alignment may be 

required. This is especially the case in LC, where retention-time shifts between 

analyses are not uncommon. This alignment is generally performed either based on 

integrated peak tables or on pixel-level chromatograms. In the latter case, the entire 

chromatogram is used for the alignment. When using integrated peak tables, peaks 

are aligned by assigning a unique identifier to each peak and assuming this to be 

consistent across all chromatograms being aligned. Therefore, such alignment 

strategies are often closely linked with other chemometrics methods that allow for 

both peak detection and tracking. The algorithms vary in complexity from simple 

scalar shift alignment, alignment to selected target peaks, local alignment, to globally 

optimized alignment, which automatically optimizes the alignment in multiple 

regions of the chromatogram. Some of the best-known globally optimized alignment 

approaches are correlation-optimized warping (COW), dynamic time warping (DTW), 

parametric time warping (PTW), and correlation-optimized shifting (COSHIFT) [61–

63]. Many of these algorithms have been applied in various fields, such as forensic 

profiling and metabolic fingerprinting [64,65].  

6.2.3.1. Correlation-optimized warping 

In COW, the chromatogram is first divided in several local regions, which are 

iteratively stretched and compressed until the Pearson correlation coefficient (PCC) 
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between the sample and the reference chromatogram is maximized. The PCC is 

calculated from Equation 6.14. 

PCC =
(𝑟−�̅�)𝑇(𝑥−�̅�)

√(𝑟−�̅�)𝑇(𝑟−�̅�)(𝑥−�̅�)𝑇(𝑥−�̅�)
                                                                                 (6.14) 

in which 𝑟 is a vector describing the reference chromatogram, while 𝑥 is the test 

chromatogram. Their means are given by �̅� and �̅�, respectively. Several input 

parameters are required, such as the segment length and the slack length. 

Adaptations to COW have also been developed, including the 2D-COW algorithm by 

Zhang et al. [66] and an alternative method by Gros et al. [67], which has recently 

been applied for alignment of GC×GC-HRMS data [68].  

6.2.3.2. Automatic time-shift alignment  

An additional approach to time-shift alignment, automatic time-shift alignment 

(ATSA), was developed by Zheng et al. [69]. This method comprises three different 

steps, viz. (i) automatic baseline correction and peak detection, (ii) preliminary 

alignment through adaptive segment partition, and (iii) a precise alignment. Baseline 

correction was performed by LMV-RSA (see Section 2.2.1) and peak detection was 

carried out by a multi-scale Gaussian smoothing-based strategy (see section 3.3.2) 

[70]. Then the chromatogram was divided into a number of short segments, the time 

shifts within which were expected to be similar. A preliminary alignment of the 

chromatograms was performed by first establishing a reference chromatogram.  

However, as noted by the authors, relying solely on maximizing PCC values can lead 

to misalignments, as the magnitude of the PCC value is influenced strongly by large 

peaks. Therefore, the preliminary alignment was performed by using the total peak 

correlation coefficient (TPC) instead, which is calculated from:    

TPC = (
∑ 𝑤𝑖PCC𝑖

𝐼
𝑖=1

∑ 𝑤𝑖
𝐼
𝑖=1

)
𝑁test

𝑁ref
                                                                                         (6.15) 

in which 𝑤𝑖 is the weight of the ith-matched peak, defined as the ratio between peak 

area and peak length, and 𝑁test and 𝑁ref are the number of peaks in the test and 

reference chromatograms, respectively. Peak length describes the width of the peak, 

but in number of data points, rather than time units. Segments that were not 

correctly aligned were treated as outliers and were re-aligned if they did not fall 

within the 99% confidence interval. For re-alignment PCC values were used and the 
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coefficient closest to the expected time-shift value was selected as optimal. After 

preliminary alignment, overlapping and disconnected segments may be present in 

the chromatogram. These were corrected by using a warping strategy and adjusting 

the boundaries between segments. To ensure that the chromatogram retains the 

same start and endpoints after time-alignment, a linear interpolation strategy was 

used. The PCC values obtained after preliminary alignment already showed 

significant improvement, increasing from 0.72 to 0.96.  

After the preliminary alignment, the final precise alignment was carried out by first 

segmenting the aligned test chromatogram based on the number of 

chromatographic peaks present. Boundaries set in the middle between the end 

position of a peak and the starting position of a subsequent peak. Each segment was 

then aligned to the nearest reference peak based on retention time. For segments 

that did not contain a reference peak, the time shift was taken as the average of that 

of neighbouring segments. Then once again warping was used to properly align the 

segment boundaries, as the time-shifts caused disconnected and overlapping 

segments. After performing the entire retention-time alignment procedure the 

correlation coefficient improved further, from about 0.96 to about 0.99.  

The authors then evaluated their approach. The influence of the two pre-estimated 

parameters, i.e. initial segment size and initial time shift were investigated. Several 

different settings were tested, and the obtained PCC values were compared. Initial 

segment size was varied incrementally from 1 to 10 min and was found to result in 

nearly constant PCC values of approximately 0.993. However, the authors noted that 

larger segment sizes (> 10 min) would reduce the required computing power but 

resulted in drastic time-shift changes. The initial time-shift estimate was varied from 

0.1 to 1 min and resulted in constant PCC values. The ATSA method was also 

evaluated by analysing the eventual peak areas. This is especially important because 

a warping strategy was used, which may influence quantification. Once again, the 

peak areas before and after the entire alignment strategy were compared by using 

the obtained PCC values. The approach was shown to have a negligible effect on the 

determined peak area (PCC = 0.9998). However, as stated by the authors, the relative 

deviation increased for very small peaks. ATSA was applied in a study concerning the 

storage of essential oils and it was compared with COW. The experimental data 

suggested degradation of the essential oils during storage. However, after alignment 
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using either COW or ATSA, the obtained correlation coefficients suggested that no 

degradation had taken place. This demonstrates clearly that the use of retention-

time alignment may lead to incorrect conclusions. Thus, whether such a strategy can 

be applied must be critically assessed for each application.   

6.2.3.3. MS-based peak 

alignment 

Several alignment 

algorithms have been 

developed that are based 

on the use of MS [71,72]. In 

the approach of Fu et al. 

[71] baseline correction 

was first carried out by a 

LMV approach (see Section 

2.2.4). The actual time-shift 

alignment consists of four 

steps: (i) extraction of the 

path of maximum MS-

correlation, (ii) peak-

alignment modification 

using landmark peaks, (iii) 

grouping and registration 

of missing peaks, and (iv) 

peak-alignment 

refinement. The first step 

required an initial 

estimate of the time shift 

(0.5 min in the described 

case), after which PCCs 

(see Section 2.3.1, 

Equation 6.14) were 

calculated based on mass 

spectra for each test and 

Figure 6.6: Peak alignment based on maximum-correlation 

path and the additional use of landmark peaks. A) selected 

range of the chromatogram; (B) misaligned peaks when 

only mass-spectral information is utilized; (C) The locations 

of the misaligned peaks in the maximum correlation 

coefficient path and the modified result after utilizing 

landmark peaks. In green the highest obtained PCC values 

are shown prior to the correction using landmark peaks; 

higher PCC values could be obtained by ignoring peaks 155 

and 156 however, the new PCC values are shown in yellow; 

(D) Aligned chromatogram after correction. Reproduced 

with permission from [71].  
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reference chromatographic peak that fell within this initial time-shift window. All 

PCCs were collected in a correlation matrix that was used to determine the 

maximum-correlation path. The correlation matrix and the determined maximum-

correlation path are illustrated in Figure 6.6.  

The approach is based on the assumption that peak elution order is consistent 

between samples. This may not always the case. Therefore, alignment based on 

landmark peaks has also been incorporated. In this approach, landmark peaks are 

first defined as those peaks showing PCCs above 0.99. The time shifts of these 

landmark peaks are then stored in a vector and outliers are removed based on the 

median and the standard deviations of the landmark peaks’ time shifts. Time shifts 

between two landmark peaks are linearly interpolated and an expected time shift can 

be calculated. This is then compared to the original time shift resulting from step (i) 

and the peak is realigned to the nearest reference peak in case the expected time 

shift is significantly different from the original time shift. However, as noted by the 

authors, while the time shift can also be approximated using non-linear interpolation, 

it cannot be employed in situations where the elution order has changed. In steps 

(iii) and (iv), certain peaks may be not be present in the reference chromatogram. 

These missing peaks are grouped based on their retention time with a maximum 

time shift window of 0.1 min, after which the chromatogram is realigned one final 

time.  

The developed MS-based alignment was validated by applying it to a GC-MS data 

set including 12 growth and 18 maturation plant samples. Peak-alignment results of 

these 30 samples are illustrated in Figure 6.7 for a selection of 15 closely eluting 

peaks.   
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Figure 6.7: Peak alignment results with A) the original chromatogram; highlighted are 15 

closely eluting peaks, (B) alignment results, and C) and D) original and aligned peaks within 

the region containing the 15 closely eluting peaks. Reproduced with permission from [71]. 

Another method incorporating baseline correction, peak detection, and time-shift 

alignment was proposed by Yu et al. for metabolic profiling analysis of 30 plant 

samples [73]. The method uses ACPD for peak detection and baseline correction, 

after which time shifts are corrected for based on the TIC data. After this pre-

treatment PCA, ANOVA and partial least-squares discriminant analysis (PLSDA) were 

applied to further analyse the data. Peak alignment required first choosing a 

reference chromatogram, which in this case was the chromatogram containing the 

highest number of peaks. After peak detection and background correction, segments 

from both the chromatogram to be aligned and the reference chromatogram were 

selected based on an initial time-shift estimate (0.5 min was chosen). Initially, a rough 

alignment was performed using a similar approach as described in Section 2.3.1. In 

this case the cosine correlation was calculated rather than the PCC. Note that both 

are related, with the difference being that the PCC is the centred cosine correlation, 

which itself is the normalized inner product. The sum of the weighted individual 

cosine values (COS) was then used to obtain the initially aligned chromatogram.  

After initial alignment, a precise alignment was carried out by accounting for the 

relative distances, cosine values, and real distances between a chromatographic peak 
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in the reference and each of the peaks to be aligned in the sample chromatogram, 

within the respective segment. This yielded an alignment table. In those cases where 

two of the reference peaks were aligned to the same sample peak, the peak with the 

smallest cosine correlation would be removed, the roles of reference and test 

chromatogram inverted, and the two alignment tables would be combined. For all 

other cases this approach was not applied.    

Although the time-shift-alignment procedure was validated by aligning the data 

from the plant samples, the procedure was not compared with other approaches. As 

also stated by the authors, one of the disadvantages of this peak alignment approach 

is that the elution order must remain unchanged between samples. This assumption 

is actually inherent to many of the peak-alignment methodologies currently 

available.   

6.2.3.4. Approaches for 2D chromatography 

In addition to the approaches above, a number of less-recent studies have focused 

on retention-time alignment in 2D chromatography where in particular second-

dimension modulations must be aligned to facilitate further data analysis. PARAFAC 

was applied to correct such retention-time shifts between neighbouring modulations 

[74]. Johnson et al. applied a windowed-rank minimization with interpolative 

stretching to the separations of naphthalenes in jet fuel by GC×GC [75]. Another 

method applied to GC×GC data used indexing schemes for warping in both 

dimensions [76]. Similar to background correction, other developed methods for 

retention-time alignment approached the data from an imagine perspective 

[59,77,78]. With most developed approaches generally exclusively adoptable to 

three-way data structures, Allen and Rutan developed an approach which allowed 

processing of four-way data structures and applied this to LC×LC-DAD data [79]. 

6.2.3.5. Correction for wrap around 

In some cases, analytes may not elute within the modulation time and appear in 

following modulations. This is known as wrap around and is rather common in 

GC×GC. One method to resolve this treats the 2D chromatogram as a continuous 

three-dimensional cylinder where the end of one modulation is the beginning of the 

next [80]. Alternatively, absolute retention times may be determined by using an 

integer fraction of the original modulation to detect occurrences of wrap around [81]. 
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6.3. Conclusions and outlook 

Robust data-analysis strategies are needed to obtain useful information on complex 

samples using the increasingly advanced analytical tools. Pre-processing of the data 

is indispensable to remove irrelevant anomalies, which otherwise may induce 

significant errors in, for example, quantification or classification. For background 

correction, BEADS (baseline estimation and denoising using sparsity) and assisted 

BEADs are highly promising recent developments, as these approaches seems 

capable of handling many different types of background distortions and are fast. The 

main downside is that these are parametric methods that require prior optimization 

[63,64]. An important development that may lead to more-accurate information is 

the use of profile spectra instead of centroid spectra in the correction of GC/LC-MS 

data, which is especially important considering the prevalence of these hyphenated 

MS methods [55]. Along similar lines, the most-noteworthy strategies for peak 

alignment in two-dimensional chromatography are those that operate not just in 

one-dimension but in both. Methods developed for such pixel-level alignment are 

still quite scarce, especially for application in LC×LC. One such method has, however, 

been recently been developed for GC×GC-HRMS data by Zushi et al. [68].  

Although there have been many additional developments, it is difficult to judge 

which methods truly perform best. What has become abundantly clear is that a two-

dimensional chromatogram is still very often treated as a series of individual 1D 

chromatograms, with the pre-processing methods being applied separately to all of 

these. This is most likely because many of the existing methods have been developed 

for LC-MS data sets, rather than for two-dimensional data. In terms of background 

correction, improvements can quite possibly be made by focusing on a series of 

modulations. The surface of the chromatogram may then be corrected, instead of 

applying a 1D-method iteratively (row or column-wise) to the data.  

Data-analysis strategies, aimed to extract relevant information, are also rather 

difficult to compare, because the results greatly depend on the quality of the data. 

Most reported methods were developed to tackle a specific challenge in a data set 

and comparisons with other approaches supported by numerical data have rarely 

been reported. A comprehensive study of different types of data and data-analysis 

techniques would allow a better overview of which techniques can be best used in 

which situation. 
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Abstract 

The objective of the present work was to make a quantitative and critical comparison 

of a number of drift and noise-removal algorithms, which were proven useful by 

other researchers, but which had never been compared on an equal basis. To make 

a rigorous and fair comparison, a data generation tool is developed in this work, 

which utilizes a library of experimental backgrounds, as well as peak shapes obtained 

from curve fitting on experimental data. Several different distribution functions are 

used, such as the log-normal, bi-Gaussian, exponentially convoluted Gaussian, 

exponentially modified Gaussian and modified Pearson VII distributions. The tool was 

used to create a set of hybrid (part experimental, part simulated) data, in which the 

background and all peak profiles and areas are known. This large data set (500 

chromatograms) was analysed using seven different drift-correction and five 

different noise-removal algorithms (35 combinations). Root-mean square errors and 

absolute errors in peak area were determined and it was shown that in most cases 

the combination of sparsity-assisted signal smoothing and asymmetrically 

reweighted penalized least-squares resulted in the smallest errors for relatively low-

noise signals. However, for noisier signals the combination of sparsity-assisted signal 

smoothing and a local minimum value approach to background correction resulted 

in lower absolute errors in peak area. The performance of correction algorithms was 

studied as a function of the density and coverage of peaks in the chromatogram, 

shape of the background signal, and noise levels. The developed data-generation 

tool is published along with this article, so as to allow similar studies with other 

simulated data sets and possibly other algorithms. The rigorous assessment of 

correction algorithms in this work may facilitate further automation of data-analysis 

workflows.                                       
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7.1. Introduction 

Spectroscopic or chromatographic data can generally be assumed to consist of three 

components, (i) low-frequency baseline drift, (ii) high-frequency noise and (iii) 

relevant chemical information, typically with a frequency between that of drift and 

noise. The latter two contributions together are also commonly described as 

“background”. Often, there is more background than chemical information present 

in a signal, as each data point contains a background contribution. In such a case, or 

if the background is of a frequency very similar to that of the relevant signals, 

problems may occur with the interpretation of the data. For example, peak detection 

may be hindered, and errors in classification, discrimination, and, especially, 

quantification, may occur [1–7]. It is, therefore, desirable to perform baseline-drift 

correction and noise removal to ensure a correct interpretation of the data, unless 

peak detection can be performed in such a way that it is not hindered by the presence 

of noise and drift.   

A large number of background-correction algorithms have been developed [8–25]. 

Examples of baseline-drift-correction algorithms include many of the penalized 

least-squares (PLS) methods, including asymmetrical least squares (asLS) [16], 

asymmetrically reweighted penalized least squares (arPLS) [24], adaptive iteratively 

reweighted penalized least squares (airPLS) [19], modified airPLS (MairPLS),  and 

morphologically weighted penalized least squares (MPLS) [10] as well as other 

techniques, such as iterative polynomial fitting [26,27], Corner-Cutting [9], Backcor 

[11,12] and baseline estimation and denoising using sparsity (BEADS) [14]. 

Additionally, methods based on Fourier filtering and on wavelets have also been 

developed [22,28,29] as well as less conventional methods based on the use of neural 

networks [30,31]. Although many background-correction methods have been 

proposed, comparisons between the performance of these are scarce and often 

inadequate.  

Firstly, in many cases the background-correction methodologies developed for use 

on spectroscopic or chromatographic data are compared only qualitatively to two or 

three other methods using experimental data, while quantitative comparisons tend 

to be limited to small sets of simple simulated data [19,24]. Consequently, it is not 

clear which background-correction methods perform best. Instead, a trial-and-error 
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approach is routinely taken, in which three or four methods are arbitrarily selected 

and applied to a small test set of data. The (qualitatively) best performing one is used 

for the correction of all further measurements. If the test set is representative for all 

data and good methods are selected, such an approach can work reasonably well. 

However, this is by no means guaranteed and when correction is required for large 

numbers of measurements automation of background correction in data-analysis 

workflows is susceptible to errors. This is especially relevant when data-analysis 

methods, such as classification, discrimination or clustering are employed. In such 

cases, incorrect background correction can lead to erroneous results and incorrect 

conclusions. 

Secondly, most approaches have been developed for specific datasets, such as 

Backcor, which was originally intended for the background correction of optical 

spectra [11]. While this is understandable, it induces the risk of a data-dependent 

bias in performance when evaluating the different methods. However, since 

quantitative comparisons are virtually non-existent, the magnitude of this risk cannot 

be assessed. 

Thirdly, there are no data sets available for an objective comparison of background-

correction approaches. Authors have generally employed specific datasets or 

simulated data. The latter is a pragmatic solution, which has the advantage that the 

ground-truth values for peak characteristics (e.g. peak area, shape) and background 

are known. This allows quantification of the extent of information loss as a result of 

the correction. A common criticism against the use of simulated data is that it is 

thought to be less representative than real data. In many cases this can be deemed 

true, as simple polynomial, sinusoidal or linear baselines are used, along with 

Gaussian peak shapes. Ideally, a large set of generated data that is sufficiently varied 

should be used against which all methods can be benchmarked.   

In this work we aim to rigorously compare a number of recently developed 

background correction methodologies (i.e. baseline-drift correction as well as noise 

removal) in a comprehensive and critical manner. For this purpose, we used 

experimental data on backgrounds and peaks to create large sets of hybrid (part 

experimental, part simulated) data. Methods that took very long computation times 

(e.g. several minutes or more for a one-dimensional signal of approximately 20000 
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data points) were discarded in the present work after an initial evaluation, as our 

eventual objective is to apply the most-appropriate algorithms to two-dimensional 

liquid chromatography (2D-LC). For the same reason, only methods with no more 

than three different input parameters were assessed, to avoid significant manual 

tuning of the parameters to obtain satisfactory results.  

7.2. Theory 

A variety of different background-correction methods have been compared in this 

work. Here a brief overview of the theory behind each method is given. The noise-

removal methods that were used prior to drift correction include well-known 

smoothing methods, such as Savitsky-Golay smoothing (SG) [8], Whittaker 

smoothing [32], finite-impulse-response (FIR) low-pass filtering [33], and wavelet 

filtering [34], as well as the more novel sparsity-assisted signal smoothing (SASS) 

[21]. After smoothing, drift-correction methods, viz. asymmetric least-squares (asLS) 

[16] and two conceptually similar methods, including adaptive iteratively reweighted 

penalized least-squares (airPLS) [19], asymmetric reweighted penalized least-squares 

(arPLS) [24] were applied. Additionally, the mixture model (MM) [18], a method based 

on iterative polynomial fitting with an asymmetric cost function (Backcor [11]), a 

method based on local minimum values (LMV) [15]  and a recent method based on 

the use of an artificial neural network (ANN), henceforth referred to as the 

Autoencoder [31], were also included.   

7.2.1. Drift-Correction Methods  

7.2.1.1. Backcor   

Many drift-correction methods are based on a polynomial-fitting approach, with the 

signal drift being described by a polynomial of a certain order. Such approaches 

cannot easily be automated, as this would require automatic detection of peaks and 

selection of background regions in the raw data. The correction method should itself 

be capable of determining which points belong to the drifted baseline and which do 

not. In Backcor this is achieved by iteratively fitting a polynomial through the entire 

signal and utilizing asymmetric forms of typically symmetric cost functions, such as 

the Huber or truncated quadratic cost functions, to penalize data points falling above 

the fit less harshly than those that fall below the fit [11,12]. As a result, minimizing 

such a cost function results in positive peaks being automatically filtered out during 
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the fitting procedure, since they have a lower cost. Because the noise around the drift 

is assumed to be normally distributed, this method still relies on a user-defined 

threshold to distinguish between noise and peaks.  

The condition for the asymmetric truncated quadratic cost function is as follows. 

 𝜑 = {
 𝑑2, 𝑑 < 𝑠

 𝑠2, 𝑑 ≥ 𝑠
                               (7.1) 

With 𝑑 = 𝑥𝑖 − 𝑧𝑖 , 𝑥 the original data, 𝑧 the fitted data, 𝑑 the difference between the 

fit and the data for the i-th datapoint, 𝜑 the cost, 𝑠 the user-defined threshold. The 

user additionally has to choose the cost function and the degree of the polynomial. 

Note that when the asymmetrical truncated quadratic cost function is used together 

with a threshold 𝑠 of zero the approach is equivalent to the iterative polynomial 

fitting approaches [26,27]. It can be seen that 𝑑2 corresponds to conventional least 

squares, unless the difference exceeds the set threshold, above which d2 becomes 

constant (and equal to s2). Minimizing the sum of the 𝜑 for all datapoints allows 

determining the polynomial coefficients and hence the drift.  

7.2.1.2. Local-minimum value  

The local-minimum-value approach relies on the presence of local-minimum values 

(LMV’s), which are data points lower in intensity than adjacent data points [15]. The 

approach first establishes an “initial background” consisting of local minimum values, 

and then removes any points above this initial estimate by using a moving window 

and median-based outlier detection. The latter relies on a threshold based on the 

amount of noise in the signal. The drift is then obtained by linear interpolation 

between the areas that were considered as outliers (peak regions). In this approach 

the peak regions are therefore detected based primarily on the noise in the signal 

and the chosen window width, which should be chosen based on the peak width.   

7.2.1.3. Asymmetric least-squares   

Many well-known background-correction algorithms are based on the use of 

penalized least squares (PLS). The PLS algorithm relies on balancing the fit of a model 

to the data, 𝐹, given by the sum of squares error (SSE), and its roughness (𝑅) by 

adjusting a smoothing parameter, 𝜆:  



Chapter 7 

209 

𝜑 = 𝐹 + 𝜆𝑅 = ∑ (𝑥𝑖 − 𝑧𝑖)2 + 𝜆 ∑ (∆𝑧𝑖)
2𝑚

𝑖=2
𝑚
𝑖=1 = ‖𝑥 − 𝑧‖2 + 𝜆‖𝐃𝑧‖2              (7.2) 

Where 𝑥𝑖 is the ith data point in the signal, 𝑥, and 𝑧𝑖 is the ith point of the fitted data, 

𝑧. The difference between adjacent fitted data points is therefore given by ∆𝑧𝑖 . This 

method as such cannot be used for background-drift correction, as it requires prior 

information on the locations of peaks in the signal. If these locations are known a 

binary mask or “weighted matrix” can be created, which ensures that only the 

background drift is modelled [35,36]. 

(𝐖 + 𝜆𝐃′𝐃)𝑧 = 𝐖𝑥                                                                 (7.3) 

𝑧 =  (𝐖 + 𝜆𝐃′𝐃)−1𝐖𝑥                                                                                            (7.4) 

Where 𝐖 is a diagonal matrix with weight vector 𝑤𝑖 on its diagonal, λ is the 

smoothing parameter and 𝐃 is a difference matrix such that 𝐃𝑧 = ∆𝑧.  In case a binary 

mask is used 𝑤𝑖 consists of solely ones and zeroes to differentiate between peaks 

and baseline, respectively. However, in principle the weights may be any value 

between zero and one depending on how the weights are established. Furthermore, 

in case of the asLS, arPLS, and airPLS algorithms the determination of these weights 

is based on an iterative process where weights are selected based on the difference 

from the fitted baseline. For the initial fit no penalty is given (weights are all equal to 

one). Points far away from this initially determined baseline are then given smaller 

weight and hence will have less influence on the fit. These weights are then used to 

solve Equation 7.4 once again, and new weights are established. This process is 

continued until the weights become invariable. In asLS, developed by Eilers et al. [16], 

the weights are established using an asymmetry parameter (𝑝), which allows for the 

weights associated with positive and negative deviations from the baseline to be 

different (smaller and larger, respectively). This approach is summarized in Equation 

7.5.   

𝑤𝑖 = {
𝑝,      𝑥𝑖 > 𝑧𝑖

1 − 𝑝,      𝑥𝑖 ≤ 𝑧𝑖
                                        (7.5) 

The asymmetry parameter 𝑝 can vary between 0 and 0.5, with 0.5 resulting in a 

conventional fit, while anything smaller than 0.5 will result in the peaks being taken 

into account less.  
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7.2.1.4. Adaptive iteratively reweighted penalized least-squares  

In the case of airPLS weights are selected based on an exponential function 

(Equation 7.6a) [19]. The algorithm is terminated once the difference between the 

signal and the fitted vector |𝑑𝑡| falls below a user-selected threshold, i.e. when 

condition (Equation 7.6b) is met. 

𝑤𝑖 = {
         0,              𝑥𝑖 ≥ 𝑧𝑖

𝑒𝑛(𝑥𝑖−𝑧𝑖)/|𝑑|,      𝑥𝑖 < 𝑧𝑖
                          (7.6a) 

|𝑑𝑡| < 0.001|x|                                            (7.6b) 

With 𝑛 being the iteration index and 𝑑 = 𝑥𝑖 − 𝑧𝑖 , as earlier defined. 

7.2.1.5. Asymmetric reweighted penalized least-squares   

In the asymmetrically reweighted penalized least-squares (arPLS) algorithm, 

developed by Baek et al. [24] the weights are established based on a logistic function, 

as shown in  Equation 7.7.  This method functions in essentially the same way as 

asLS and airPLS, but is claimed to be better at establishing the drift in the presence 

of noise, due to how the weights are selected.   

𝑤𝑖 = {
𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑑, 𝜇𝑑,𝑖 , 𝜎𝑑,𝑖),    𝑥𝑖 ≥ 𝑧𝑖

               1,                           𝑥𝑖 ≤ 𝑧𝑖

                                      (7.7) 

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑑, 𝜇𝑑,𝑖 , 𝜎𝑑,𝑖) =
1

1+𝑒2(𝑑−(−𝜇𝑑+2𝜎𝑑))/𝜎𝑑
                  (7.8) 

With 𝑑 = 𝑥𝑖 − 𝑧𝑖 , 𝜇𝑑 and 𝜎𝑑 are the mean and standard deviation of 𝑑−, which is the 

part of 𝑑 where the condition 𝑥𝑖 < 𝑧𝑖 is met. This allows for weights above and below 

the signal to be the same, while any signal higher than the noise mean will receive a 

progressively lower weight. The baseline is established once the weights become 

invariable, once again depending on a set threshold.  

7.2.1.6. Mixture model  

The mixture model estimates the baseline by calculating the posterior probability 

that a point belongs to the baseline [18]. The entire signal is assumed to be 

constructed from a mixture of two probability densities, one of which is normal (and 

corresponds to the baseline) and one of which is unknown, corresponding to the 

peaks. To estimate both components of the signal/mixture, a so-called Expectation-
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Maximization algorithm is used. In the first step of this algorithm the posterior 

probabilities are calculated, after which the baseline is modelled using P-splines 

(penalized B-splines). The coefficients (or penalties 𝛼) of these P-splines are 

determined by minimizing the following objective function:  

𝜑 = (𝑥 − 𝐁𝛼)𝑇𝐏(𝑥 − 𝐁𝛼) + 𝜆‖𝐃𝛼‖2                                     (7.9) 

�̂� = (𝐁′𝐏𝐁 + 𝜆𝐃′𝐃)−1𝐁′𝐑𝑥                           (7.10) 

In which 𝑥 corresponds to the data, 𝐁 corresponds to an n × m cubic spline basis of 

m number of splines, 𝜆 is the smoothing parameter, 𝐏 = 𝑑𝑖𝑎𝑔(𝑝𝑖) and 𝑝𝑖 is the 

posterior probability for the ith data point to belong to the baseline. These posterior 

probabilities are calculated from  

𝑝𝑖 =
𝜋𝑔(𝑥|𝜇,𝜎)

𝜋𝑔(𝑥|𝜇,𝜎)+(1−𝜋)ℎ(𝑥−𝜇)
                          (7.11) 

where 𝑔(𝑥|𝜇, 𝜎) is the normal density function (baseline + normally distributed noise 

with background level, 𝜇, and standard deviation, 𝜎), ℎ(𝑥 − 𝜇) the unknown density 

function (peaks), and 𝜋 an unknown mixing ratio. This approach is conceptually 

similar to the previous three methods, with the posterior probabilities used as the 

weights. Once again, the method differs in how these weights are determined. 

7.2.1.7. Autoencoder  

The Autoencoder method is based on the use of deep learning algorithms and aims 

to concomitantly denoise and drift correct the input data [31]. The method achieves 

this by using a large number (in the order of several thousands) of differentiable or 

adaptable filters, which can be fine-tuned as long as a representative and large data 

set is available on which to train the method. Naturally this method is therefore 

limited by the data on which it was trained. However, recently Kensert et al.[31] have 

shown that by using a model trained on a large set of simulated data the successful 

drift correction and smoothing of experimental data may be achieved. In the present 

study we have included their pre-trained model to further assess how well this 

method can perform without performing extensive initial training. This is interesting 

because if the method is sufficiently flexible it could allow for unsupervised 

background correction, which is typically very difficult to achieve.  
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7.3. Experimental 

Experimental backgrounds were obtained from various sources. Background 5 was 

measured on an Acquity system purchased from Waters (Milford, MA, USA) using 

refractive-index detection, while all other backgrounds (1 to 4) were measured on an 

Agilent 1260 system using diode-array UV detection, purchased from Agilent 

(Waldbronn, Germany). Backgrounds 1, 3, and 5 were obtained from empty 

modulations in comprehensive two-dimensional liquid chromatography (LC×LC) 

runs, while backgrounds 2 and 4 were blank measurements in one-dimensional LC.  

Signal simulation has been performed using MATLAB 2018a purchased from 

MathWorks (Natick, MA, USA), on a Dell XPS13 Laptop purchased from Dell (Round 

Rock, TX, USA). Background correction and automatic parameter determination were 

performed using MATLAB 2020a on a Dell Alienware Area 51-9829 R2 PC.  

The developed tool is available as a downloadable application on: https://cast-

amsterdam.org/software/ 

7.4. Results & Discussion 

7.4.1. Establishing experimental data for use in simulation 

The major disadvantage of simulated data is that the complexity of experimental 

data may be oversimplified. Conversely, using experimental data may complicate the 

comparison of background-correction methods, as the ground-truth values (e.g. true 

peak areas) are not known. Therefore, we developed a library of simulated data which 

was based on experimental data. The workflow comprised three steps (see Figure 

7.1). (i) A background was selected from a pool of blank experiments; (ii) Varying 

degrees of white noise were drawn from a Gaussian distribution; (iii) A number of 

peaks were added, with a shape extracted from experimental data by curve-fitting.  
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Figure 7.1: Scheme illustrating the developed approach for data simulation and subsequent 

background correction. Different coloured blocks (red, orange, light blue) indicate the three 

signal components (background, noise, and peaks)   

7.4.1.1. Establishing experimental background and adding noise 

The first step in the creation of the simulated data was the establishment of the low 

frequency drift component. As drift can be highly unpredictable and, therefore, 

difficult to model, an empirical approach was taken, where the background signals 

were obtained by compiling a library of different blanks from a variety of 

chromatographic experiments. This library can be further expanded with future 

research. Naturally, such experimental backgrounds contain an initial amount of 

noise in addition to the drift component. To establish an estimate of the initial noise 

in these backgrounds, the median absolute deviation (MAD) was used [37]. This is a 

robust measure of the deviation around the local average (i.e. the noise) present in 

the signal and is calculated using Equation 7.12a. However, in the presence of a 

baseline and peaks it has been suggested that a more representative value can be 

obtained by calculating the MAD from the first derivative of the background signal 

as given by Equation 7.12b [15].  

𝜎 = 𝑘 ∗ median|𝑥𝑖 − median(𝑥)|      (𝑖 = 1, … , 𝑁)         (7.12a) 

𝜎 = 𝑘 ∗ median|𝑑𝑥𝑖 − median(𝑑𝑥)| (𝑖 = 1, … , 𝑁)                     (7.12b) 

 7 



Chapter 7 

214 

In which 𝑑𝑥 is the derivative of the signal and 𝑑𝑥𝑖 is the ith point in this derivative, 𝑘 

is a (constant) scaling factor which for normally distributed data equals 1.4826. For 

an overview of the five experimental backgrounds that were used see Supplementary 

Material Figure S-1, section S-1.  

In some cases, the experimental backgrounds contained one or more system peaks. 

These were manually removed from the signals by curve fitting and subtraction, 

followed by smoothing across this range. This was deemed necessary, because our 

approach ideally requires an experimental background that contains only low 

frequency drift and a small amount of initial noise. Their removal had to be 

performed manually and was hence tedious and time-consuming. However, when 

algorithms are not compared as presented in this work, the removal of such peaks is 

not required, as long as these are positive. Only in the presence of negative peaks 

will this be critical for most drift correction algorithms, as such peaks are generally 

treated as background drift.    

The experimental backgrounds were perturbed with additional white noise, which 

was simulated as numbers randomly drawn from a normal distribution.  

7.4.1.2. Establishing experimental peak shape  

For the last step in the creation of the library (step III in Figure 7.1) experimental 

peak shapes were extracted from real chromatographic data. It is of key importance 

that the peaks are accurately modelled. This may be achieved by fitting empirical 

peak-shape models or distribution functions, such as the Gaussian, exponentially 

modified Gaussian (EMG), or Pearson distributions to the data. For chromatographic 

data deviations from the expected ideal Gaussian profile are expected, due to 

heterogenous mass-transfer kinetics and non-linear adsorption isotherms [38]. Such 

deviations usually come in the form of tailing (or sometimes fronting) peak profiles. 

For each peak the extent of tailing and/or fronting may be different. To describe all 

possible peaks mathematically, a function must be used that is flexible enough to 

describe any amount of tailing and fronting. Several comparisons of distribution 

functions have previously been performed [39–42]. From these studies a general 

consensus emerged that the EMG distribution described chromatographic peak 

shapes most accurately [42]. In the present study these common distributions were 

also evaluated, along with several alternatives, such as Gaussian, Bi-gaussian [43,44], 
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Pearson VII [45] and Modified Pearson VII [46] distributions. To successfully perform 

curve fitting two requirements must be met, i.e. (i) the approximate peak location 

must be known, and (ii) no background must be present [47]. In this study, the first 

prerequisite was met through manual selection of peak locations. While this can be 

performed automatically using peak-detection approaches, this would induce a risk 

of overlooking overlapping or small peaks. This may result in incorrect fitting for 

overlapping peaks. To meet the second requirement, either some form of 

background correction must be applied or data containing little or predictable 

background drift must be used. We opted to perform a linear background correction 

from the first to the last point in the selected peak regions. This involves the 

assumption that within the region of the peak the baseline does not show significant 

curvature. There are cases in which the approach cannot be used to describe peaks, 

for example when a large number of overlapping peaks is present, or when the 

background drift is significantly non-linear directly under the peak.  

After the locations and peak regions were established, each peak was subjected to a 

least-squares curve-fitting procedure with 15 different distributions. In case of 

overlapping peaks, all peaks in the selected region were included and curve fitting 

was performed with two or more distributions of the same type. The possibility that 

overlapping peaks required different types of distribution functions was not 

considered in the current study, however even with a single distribution function it is 

still possible to describe a variety of peak shapes. The goodness-of-fit of the 

distributions to the experimental peaks was assessed using the Akaike information 

criterion (AIC) calculated using Equation 7.13:  

𝐴𝐼𝐶 =  𝑁 ∗ ln
𝑆𝑆𝐸

𝑁
+ 2𝐾                (7.13) 

Where 𝑁 is the number of data points, 𝑆𝑆𝐸 is the sum of squared errors, in our case 

normalized for peak height, and 𝐾 corresponds to the number of variables in the 

distribution function.  

As an example, the results of this fitting approach applied to a selection of peaks 

from a single 2D-LC modulation (second-dimension chromatogram) containing 

significant background drift are shown in Table 7.1 along with the types of 

distribution tested. The AIC values for the five best-performing distribution functions 

for each peak are shown in Figure 7.2, along with the individual fits for peaks 1-5.  
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Figure 7.2: A) Fit for Modified Pearson VII and EMG distributions on experimental data, B) AIC 

values for the five best distribution models for each of the fitted peaks and C) zoomed-in fits 

and residuals for five individual peaks.   

 

Table 7.1: AIC values obtained for a selection of distribution functions for the fitted peaks 

shown in Figure 7.2.  

Distribution Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6 ∑ 𝐀𝐈𝐂 

Modified Pearson VII -1.03×103   -1.77×103   -1.13×103   -1.28×103   -1.10×103   -9.86×102   -7.20×103   

Exponentially Modified 

Gaussian 

-1.04×103   -1.39×103   -1.11×103   -1.24×103   -1.08×103   -1.01×103   -6.91×103   

Exponentially 

Broadened Gaussian 

-9.75×102   -1.37×103   -1.13×103   -1.23×103   -1.08×103   -1.00×103   -6.29×103   

BiGaussian -8.89×102   -1.37×103   -1.13×103   -9.69×102   -1.06×103   -8.55×102   -5.59×103   

Mixed 

Gaussian/Lorentzian 

-7.55×102   -9.59×102   -1.29×103   -9.26×102   -8.28×102   -7.98×102   -5.38×103   

Pearson -7.56×102   -9.45×102   -1.13×103   -9.12×102   -8.30×102   -7.70×102   -5.30×103   

Log-normal -7.78×102   -9.58×102   -1.12×103   -8.72×102   -8.39×102   -7.81×102   -5.30×103   

Gaussian -7.47×102   -9.44×102   -1.13×103   -8.63×102   -8.22×102   -7.70×102   -5.14×103   

Logistic -6.64×102   -9.35×102   -1.23×103   -8.24×102   -7.56×102   -7.07×102   -4.08×103   

Exponentially 

Broadened Lorentzian 

-5.35×102   -1.06×103   -6.86×102   -9.08×102   -6.35×102   -6.09×102   -3.82×103   

Lorentzian -5.04×102   -8.98×102   -6.65×102   -8.30×102   -5.86×102   -5.73×102   -3.04×103   
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The results shown in Table 7.1 and Figure 7.2 are representative of those obtained 

on large numbers of treated datasets. The modified Pearson VII and EMG 

distributions were found capable of describing a range of different peak shapes. 

Other distribution functions performed well in some cases, but were less generally 

applicable. These conclusions are in agreement with previous studies on this subject 

[39,41]. Because the modified Pearson VII distribution [46] provided a slightly better 

fit compared to the EMG function this distribution was chosen for the creation of 

peaks in the simulated data. This distribution is described by Equation 7.14  

𝑓(𝑥) = 𝐻 (1 +
(𝑥−𝜇)2

𝑚(𝜎+𝐴𝑠(𝑥−𝜇))2)
−𝑚

             (7.14)  

in which 𝜇 corresponds to the mean of the distribution (the retention time), 𝜎 

indicates the width of the peak, 𝑚 is a parameter related to the kurtosis of the peak, 

covering a range between a fully Gaussian and a Lorentzian peak shape, 𝐴𝑠 describes 

the asymmetry, or the extend of fronting or tailing, of the peak and 𝐻 corresponds 

to the height of the peak.. 

7.4.1.3. Simulation of model chromatograms and spectra   

Chromatograms or spectra are generated based on several input parameters as 

summarized in Table 7.2. The first set of parameters is used to describe peak shape 

and height while the second set of parameters dictates the intensity of the noise and 

the number of peaks in the chromatogram as well as their spacing.  
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Table 7.2: All parameters to be selected for signal generation.   

Parameter Set Parameter Symbol Range Description 

1st Set: Kurtosis 𝑚 3.5-51 Describes peak 

kurtosis 

 Asymmetry  𝐴𝑠 0.01-0.28 Describes peak 

asymmetry  

 Amplitude  𝐻 0.1-1 Multiplier for peak 

height 

 Width  𝜎 0.007-0.008 Peak Width  

 Position  𝜇 Random Peak Retention Time  

2nd Set:  Min. Peak Spacing  10%  Minimum space 

between two 

adjacent peaks (e.g. 

 𝜇1𝑎𝑛𝑑𝜇2) 

 Peak Coverage   10-100% % of data points 

corresponding to 

peaks within 

selected region 

 Noise Intensity   0-0.1 Amplitude of noise 

added to the 

chromatogram  

 Background   1,2,3,4 or 5 Experimental blank  

 Region Selection   Based on blank 

𝑡0 

Region in which 

peak  

𝜇 are generated.  

 

The first set of input parameters determine the peak shape. These are drawn 

randomly and uniformly from the established maximum and minimum of a 

respective shape-defining parameter, i.e. 𝑚 or 𝐴𝑠. As certain peaks in the input data 

may be significantly more asymmetrical than other ones, an outlier test was first 

performed on the 𝑚 and 𝐴𝑠 parameters obtained from the fitting procedure. 

Parameters were marked as outliers if they were more than three times the median 

absolute deviation away from the median. This test was performed to ensure that 

the simulated signals would represent realistic signals i.e. it was assumed that most 

peaks in a chromatogram would be of a typical shape. Outliers were subsequently 
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removed. To ensure that peak heights are consistent between all signals, the 

experimental background drift was first “min-max normalized” and peak heights 

were uniformly selected from a range between 0.1 and 1.  However, in realistic data 

often some peaks are much higher or lower in intensity than the “average peak”. To 

simulate this, 10% of the generated peaks were randomly selected to have an 

intensity of either 5 or 200% of the maximum intensity of the drift (i.e. 0.05 or 2). 

Peak widths were chosen based on the fitted peaks. This seems justified, since for 

signals of different length (e.g. slow one-dimensional chromatograms or very fast 

second-dimension chromatograms) the parameters from the first set (𝑚 and 𝐴𝑠) did 

not seem to change significantly, rather the peak width itself changed. However, it 

should be considered that in the present study primarily gradient-RPLC data of small, 

uncharged molecules were used to model the peaks, hence peak widths are expected 

to be relatively constant. The peak-shape parameters may change significantly in 

other modes of chromatography.   

The second set of input parameters determine the number of peaks, their locations 

and the amount of overlap allowed between individual peaks. Firstly, regions where 

no peaks are to be generated, can be selected. Such regions were selected based on 

the experimental measurements. Secondly, a minimum peak spacing is selected, 

based on peak widths, as well as a total peak coverage. The peak overlap was 

calculated based on the width at 5% of the peak height and it was chosen in 

accordance with the selected peak coverage. For example, a minimum spacing of 0% 

may result in completely overlapping peaks, while a minimum spacing of 100% will 

result in a signal where all peaks are completely separated. The chosen total peak 

coverage is defined as the number of data points containing information on peaks, 

again measured from the width at 5% of the peak height, to the total region available 

for peak generation. The coverage, width and shape roughly determine the number 

of peaks that must be generated, but the coverage alone does not account for 

varying amounts of peak overlap. The signal coverage is calculated based on the 

minimum spacing only. This means that the actual coverage will always be lower than 

the chosen value. To account for this the actual peak coverage is determined once 

more after the full signal has been generated.  

By adding the generated peaks to the experimental background perturbed with 

additional white noise, many realistic chromatograms can be rapidly created. To 
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allow other researchers to retrieve data from earlier publications (e.g. the present 

study) the tool features the setting of a seed, which is a number that serves to 

initialize the random number generator.  This ensures that all “random” signal 

generation is controlled and reproducible. The same “random” signals can be 

generated again at any time, when required for future work.  

7.4.2. Background correction 

Using the developed data-simulation tool, background-correction methods could 

now be accurately compared. To this end different signals were created with peak 

coverages of 10, 21, 32, 43, 54, 66, 77, 88, 99 and 110%. Additionally, noise was added 

to each signal at ten different levels with “intensity” or standard deviation (𝜎) of 0 to 

0.1 (up to ≈20% of the average peak height). Minimum peak spacing in all signals 

was set to 10%. This ensures the occurrence of severely overlapping peaks, while 

there were no peaks generated at exactly the same location.        

Realistic data were generated in this manner for each of five different experimental 

backgrounds, resulting in 500 different signals for background comparison. A small 

representative fraction of the signals simulated in this way (different noise and 

coverage levels, three different experimental baselines) are shown in Figure 7.3.  

To compare the background-correction and smoothing methods it is vital that the 

input parameters for each method are set such that the estimated background is as 

close as possible to the actual background. For the smoothing methods ideal input 

parameters were obtained by minimizing the root-mean-square error (RMSE, given 

by Equation 7.15) between the simulated noise and the noise obtained from 

subtracting the smoothed signal from the original signal, using a grid-search 

approach within manually defined constraints. For the drift-correction methods a 

similar approach was used where the RMSE was minimized between the known drift 

component and the background as determined by a drift-correction algorithm. 

 

𝑅𝑀𝑆𝐸 =  √∑ (𝑏𝑖−𝑧𝑏,𝑖)𝑁
𝑖 = 1

2

𝑁
              (7.15) 
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Where 𝑏𝑖 corresponds to i-th data point in the known background (either noise or 

drift component), 𝑧𝑏,𝑖 corresponds to the i-th data point in the estimated background 

and 𝑁 corresponds to the total number of data points in either 𝑧 or 𝑏. For both 

smoothing and drift-correction methods this RMSE was minimized separately, 

starting with optimization of the smoothing, followed by optimization of the drift 

correction. Examples of some of the corrections obtained in this way are illustrated 

in Figure 7.4. In this case Savitsky-Golay was used for smoothing, while the result of 

six different drift-correction methods are shown.  

Based on visual inspection of this specific signal the LMV and arPLS methods seem 

to perform slightly better than the other methods. The next step was to quantitatively 

compare all methods using the entire collection of generated data (500 

chromatograms).  

7.4.3. Quantitative Comparison of Correction Performance 

7.4.3.1. Influence of the Smoothing Method  

Using the simulated data and automatic parameter selection, a quantitative 

comparison was made between all methods or combinations of methods by 

evaluating the RMSE obtained for each signal as well as the % error in obtained peak 

areas. First, the influence of the smoothing method, applied before the drift 

correction, was investigated based on the calculated RMSE values. This resulted in a 

response surface where RMSE as a function both the added noise intensity, and the 

peak coverage could be visualized. A comparison was made by overlaying all surfaces 

and maintaining only the lowest RMSE values. For many of the smoothing methods 

the response surfaces were fairly similar (see Supplementary Material Figure S-2, 

section S-3), indicating that there were only minor differences in the performance of 

the smoothing methods. Background 5 (see Supplementary Material Figure S-1) 

yielded larger deviations. However, this may be explained by the fact that this is by 

far the shortest signal in terms of the number of data points, as a result of a very low 

detector frequency. Therefore, the way in which we added noise (by randomizing 

each data point) may not be realistic in this case and the frequency of peaks in this 

signal is much closer to the frequency of the noise. Overall, the degree of noise 

and/or the choice of the smoothing algorithm appear to only marginally affect the 

performance of the various background-correction algorithms.      
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Figure 7.3: Representative examples of the generated data. A) no added noise + low peak 

coverage (44%), B) no added noise + medium peak coverage (76%), C) medium added noise 

(𝝈 = 0.044) + low peak coverage (44%), D) medium added noise (𝝈 = 0.044) + medium peak 

coverage (76%), E) high added noise (𝝈 = 0.078)  + high peak coverage (92%). Numbers 

indicate the different backgrounds.  

 

Figure 7.4: A) Correction of generated data (added noise of 0.078, coverage of 67.5%) by the 

combination of Savitsky-Golay (window width: 23, polynomial order: 6) smoothing followed 

by drift correction using the LMV (window width: 5), Backcor (s: 0.0579, polynomial order: 18), 

MM (number of b-splines: 73, 𝛌: 105), Autoencoder, AsLS (𝛌: 105, p: 0.0306), arPLS (𝛌: 3×105) 

and airPLS (lambda: 3×104) methods. B) Expansion of the region 8.3-10.3 min. C) Expansion of 

the region 12.5 – 14.5 min. For information on the methods see section 2. Dotted lines in (B) 

and (C) correspond to the generated (true) peak signals.  
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7.4.3.2. Influence of the Drift Correction Method  

To provide a clearer overview of the influence of noise and peak coverage for the 

different-drift correction methods the RMSE was calculated between the known drift 

and the background determined by the algorithms. This was performed both with 

and without prior smoothing to evaluate how well the different algorithms 

performed in the presence of additive noise. Calculating the RMSE between the sum 

of known noise and drift components and the estimated background illustrates 

clearly that most methods cannot perform smoothing and drift removal 

simultaneously. In this case the Autoencoder method performed best. However, 

when the RMSE is calculated between the estimated background and the known drift 

component it is shown that most methods do not perform worse at determining the 

underlying signal drift in the presence of additive noise. This data is included in the 

Supplementary Material (Figure S-4 and Figure S-5). Because the Autoencoder was 

capable of describing both noise and drift while many of the other algorithms could 

not it was decided to first perform smoothing using SASS for the comparison of the 

methods. In Figure 7.5 the RMSE values obtained using background 2, initially 

smoothed using SASS are illustrated.  

Figure 7.5:  A) RMSE surfaces obtained for the various drift-correction methods in 

combination with the SASS smoothing algorithm and for background 2 in Figure 3. Methods 

are indicated by the coloured dots. B) Bottom view (lowest values) resulting from the overlaid 

RMSE surfaces. For an explanation of the methods see section 2.  
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From this comparison arPLS is seen to be the best performing method in most cases. 

However, this conclusion was found to depend on the background used. For other 

backgrounds the LMV or Backcor algorithms performed better than arPLS. However, 

if arPLS did not perform best, it was usually the second-best method and arPLS 

showed consistently good performance for all backgrounds investigated in this study 

(for an overview of all minimum RMSE surfaces see Supplementary Material Figure 

S-3).  

7.4.3.3. Determination of Error in Peak Areas  

It is interesting to know which method results in the smallest error in peak area. 

Therefore, the error in peak area obtained after correction has been evaluated. These 

errors were determined and compared to an approximate peak area obtained by 

trapezoidal integration from the simulated peaks. In case of overlapping peaks these 

were treated as one, therefore this is a “peak region” comparison rather than a 

comparison of individual peaks. This avoids reliance on curve fitting and the 

possibility of baseline or noise resulting in incorrect results. The regions were 

selected using the simulated peaks. The error in peak areas obtained from this 

approach for each method and for the signal with a peak coverage of 35.2% and a 

noise intensity of 0.033 from background 2 is portrayed in Figure 7.6. This is a 

representative case, in which a few peak regions contain overlapping peaks, but 

many peaks are isolated.  

From Figure 7.6-B it is clear that Backcor performed worse than the other methods 

(indicated by the larger spread) followed by the MM and Autoencoder methods. The 

best-performing methods were LMV, asLS and airPLS, with mean errors of 3.8, 9.9 

and 7.9% respectively. In many cases errors were still substantial, especially for low-

intensity peaks, as could be expected. Peaks in regions 2, 4, 5, 13 and 17 showed the 

largest relative errors of up to nearly -150%, which implies that the drift is 

significantly over-corrected in this region relative to the peak’s height, resulting in a 

much smaller determined peak area. However, the peaks in these regions typically 

also had very low signal-to-noise ratios (S/N) on the order of ~1.5-3. Relative errors 

of 10 or even 20% in peak area were quite common, also for peaks of average height 

(for more in-depth figures of % error vs peak height for the different methods see 

Supplementary Material Figure S-6). This surprising finding highlights the 

importance of appropriate drift correction and noise removal when accurate 
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quantification is desired. The errors were similar when a different smoothing method 

was used prior to the drift correction. The results for the same signal and selected 

peak regions as in Figure 7.6, but with four different noise intensities (0.02, 0.06, 

0.08, and 0.1), are illustrated in Figure 7.7. 

It is seen in Figure 7.7 that every method performs worse at higher noise levels, as 

is evident from the larger spread and the higher number of outliers. The deterioration 

of the performance is strongest for Backcor, MM and Autoencoder methods. 

Specifically in the case of the largest noise level it is likely that the deterioration of 

the Autoencoder’s performance is because signals with this noise intensity (and 

correspondingly low S/R) were not included in the training set data. For all methods 

the reduced performance is not reflected in the corresponding RMSE surfaces (all of 

which appear relatively similar). 

7.4.3.4. Outlook   

Various improvements can still be made to the approach followed in this work and 

our evaluation method still has some limitations. The greatest challenges to the 

validity of the approach remain (i) the method used to extract the background, peaks 

and noise from the experimental input data, and (ii) whether the experimental data 

can be accurately recreated using simulations. We have avoided the first issue 

partially by using a set of experimental blanks for the simulations, which do not 

contain any peaks. The second point is especially critical when reconstructing peak 

shapes. In this work we have extracted peak shapes using an automatic curve-fitting 

approach.  This is critically important, as manually evaluating the performance of 

background-correction and peak-detection algorithms will be incredibly time-

consuming for large data sets. A further improvement can be parameter 

optimization. While a grid-search may currently be the best method for the 

determination of the parameters, there is still a certain risk that sub-optimal 

parameters are selected and the approach is very time-consuming. Furthermore, the 

influence of differently correlated noise on background-correction may be significant 

and this should be a subject of future study, as different detectors will produce 

different types of noise.  
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Figure 7.6: A) Signal with (in blue) markings indicating peak regions used for the % error 

calculation, the different traces represent (from top to bottom) the uncorrected signal and the 

generated peaks, followed by signals corrected using the LMV (window width: 113), Backcor 

(s: 0.1271, polynomial order: 20), MM (number of b-splines: 100, 𝛌: 105), Autoencoder, AsLS (𝛌: 

105, p: 0.0510), arPLS (𝛌: 5.4×103) and airPLS (lambda: 4×104) methods. B) Error in peak area 

for each method. Regions 3, 6, 15 and 25 contain overlapping peaks; all other regions are 

individual peaks.  

 

Figure 7.7: Relative errors for six different-drift correction methods for the signal shown in 

Figure 8-A for four levels of added noise corresponding to noise intensities of A) 𝝈 = 0.02, B) 

𝝈 = 0.06, C) 𝝈 = 0.08 and D) 𝝈 = 0.1. Signals smoothed prior to this analysis using SASS.  
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7.5. Conclusion 

A data-simulation tool has been developed which makes it possible to compare 

different background-correction and peak-detection methods. We have used this 

tool to compare a variety of data (pre-)processing methods. From the methods 

compared in this study, a combination of SASS and arPLS most often resulted in the 

lowest RMSE. Based on visual inspection this combination also showed the best 

looking results. However, it did not result in the smallest errors in peak area. The 

combination of SASS and LMV methods performed best in this respect. In terms of 

speed the Backcor and LMV algorithms provided the fastest drift correction, 

generally with evaluation times of less than half a second, while the arPLS algorithm 

performed slowest. However, this algorithm still generally provided results in less 

than a second if the number of data points remained below 10 thousand. For the 

smoothing algorithms nearly all algorithms performed equally, typically with 

evaluation times of less than 0.1s. It should also be specially mentioned that while in 

this case a pre-trained Autoencoder model was used, the results of this method were 

still relatively good. This indicates that in the future it may be possible to perform 

automatic background correction using similar methods as long as the training set 

is sufficiently large. The best combination of methods seems to depend on the nature 

of the background, which implies that it cannot always be a-priori predicted. 

However, the present study has provided valuable tools and methods to improve 

quantification in case the true background is unknown.  

 

Supplementary material  
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Conclusions, challenges and recommendations  

The focus of this thesis has been on developing new methods or improving existing 

methods, for the analysis of polymer distributions. Additionally, research has been 

performed that is more broadly applicable to any liquid chromatography (LC) 

separation, such as on the correction for gradient deformation and the comparison 

of background correction algorithms.  

The first chapters of this thesis, Chapters 1 through 4, were primarily focused on 

novel liquid chromatographic methods to assess polymer distributions and the 

underlying theory of LC applied to (synthetic) polymers. Techniques such as thermal 

modulation in comprehensive two-dimensional liquid chromatography (combining 

reversed-phase liquid chromatography and size-exclusion chromatography, 

RPLC×SEC), recycling gradient-elution chromatography (LCLC) and gradient size-

exclusion chromatography (gSEC), as well as SEC×gSEC, were investigated and 

possible applications were highlighted.  

The later chapters, Chapters 5, 6 and 7, focused on chemometric strategies that aim 

to improve the ease-of-interpretation of chromatographic data, either by correcting 

for gradient deformation, or by applying algorithms for noise or drift removal to aid 

peak detection.  

This final chapter serves to highlight the conclusions from the work in this thesis, to 

give recommendations for future studies based on these conclusions, to discuss 

preliminary work on subjects beyond the scope of this thesis, and to describe 

challenges that were not yet overcome or published. The challenges related to each 

chapter are shortly discussed.  
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8.1. Novel techniques to determine polymer distributions 

8.1.1. Describing the retention of polymers   

In Chapter 1 several models were introduced that aim to describe the retention of 

polymers. These were the linear-solvent strength (LSS) model, the polymer model 

(PM) and the Brun model. The use of the LSS and Brun models to predict the 

retention of polystyrene (PS) polymer standards in gradient-elution RPLC was 

investigated. Predictions were made on columns packed with stationary phases that 

featured different pore sizes. The models were fitted to the retention times or elution 

compositions in three gradients using Equation 8.1 and Equation 8.2, which give 

the retention time under gradient conditions according to the LSS model [1] and the 

elution composition according to the Brun model [2], respectively.     

𝑡𝑅 =
1

𝜑′𝑆
ln [1 + 𝑆𝜑′𝑘init (𝑡0 −

(𝑡dwell+𝑡init

𝑘init
)] + 𝑡dwell + 𝑡init + 𝑡0                       (8.1)  

 𝜑𝑒 = 𝜑crit + (
𝜑′

𝑄
) ln[1 − 𝑒−𝑄]                                     (8.2)  

Where 𝜑′ is the gradient steepness or  𝜑′ =
𝑑𝜑

𝑑𝑡
, 𝑘0 is the retention factor extrapolated 

to 100% weak solvent (𝜑 = 0), 𝑘init is the retention factor at the initial mobile-phase 

composition, 𝑆 is a slope parameter that determines how quickly 𝑘 changes with 𝜑; 

𝑡dwell, 𝑡init, and 𝑡0  are the dwell, programmed-initial-delay, and void times, 

respectively, and 𝜑𝑒 and 𝜑crit are the elution and critical mobile-phase compositions, 

respectively. In the Brun model the influence of molecular weight is captured in the 

𝑄 parameter through the radius of gyration (𝑅𝑔) through 𝑄 = 𝑅𝑔
2 2

𝐷𝑎

𝑑𝑐

𝑑𝜑
𝜑′, where 𝐷, 𝑎, 

and 𝑐 are an average pore diameter, the width of the interaction layer of the 

stationary phase, and an interaction parameter (for a particular repeating unit), 

respectively. When 𝑅𝑔 varies with molecular weight as 𝑅𝑔~√𝑀 (a relationship that 

corresponds relatively well to experimental data [3]), then all of the other parameters 

in 𝑄 may be lumped into a single 𝐴 parameter, and so 𝑄 = 𝐴𝑀. This means that for 

a polymer of a particular chemical composition that varies in molecular weight, 𝜑𝑒 

depends solely on the parameters 𝐴 and 𝜑crit. In the LSS model the elution time for 

each standard is fitted separately. This means that a much greater number of 

parameters (two for each standard) is available to describe the elution time than 

when the Brun model is used. Equation 8.1 and Equation 8.2 are fitted to the 
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measured elution or retention time/mobile-phase composition from two gradient 

experiments. Three gradient experiments were performed. For the LSS model the 

shortest and longest gradient duration were used to fit the model, while the gradient 

of intermediate duration was used to assess the quality of the prediction and was 

not used for fitting. The Brun model was fitted to 𝜑𝑒 of standards featuring different 

𝑀. Each gradient was fitted separately. The fits for each model, presented as 𝜑𝑒 vs. 

𝑀𝑤 are shown in Figure 8.1. The data were obtained using a Phenomenex C18 column 

(4.6 × 150 mm) containing 100-Å superficially porous particles of 3.5 µm diameter 

and running gradients from 5 to 95% THF in ACN at a flowrate of 1 mL∙min-1. Gradient 

durations were varied from 10 to 15, and 20 min. Other columns featuring fully 

porous particles of larger pore size (300 and 500-Å) were also tested. However, for 

those columns the fit shown in Figure 8.1-B became progressively worse.  

Figure 8.1: Measured elution composition (filled circles) and predicted elution composition 

(lines) using A) the LSS model (Equation 8.1), B) the Brun model (Equation 8.2) or C) a modified 

Brun Model. D) Absolute difference between predicted and measured elution composition for, 

from top to bottom, 𝜑′ of 0.09, 0.06 and 0.045 presented as a stacked bar plot.   
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As shown, in all cases the LSS model yielded a better fit. This is likely because of the 

much greater number of parameters. In the Brun model all of the standards of the 

same chemical composition, but different molecular weight, are described using only 

two parameters, which severely reduces the flexibility of the model. It is likely that 

this reduced flexibility is the cause for the worse predictions, especially for the lower-

molecular-weight standards. One of the ways the model may be improved is by not 

assuming that the relationship 𝑅𝑔~√𝑀 is valid, but instead fitting a relationship 

where 𝑅𝑔 is allowed to vary differently with 𝑀. Instead of using 𝑄 = 𝐴𝑀, a slightly 

different relationship, 𝑄 = 𝐴𝑀𝑏, is used. The fits obtained using the additional 

parameter allowed for as much as a ten-fold improvement (for the shallowest 

gradient where retention occurs furthest from 𝜑crit) in the fit. These results are 

illustrated in Figure 8.1-C. However, as can be seen this model still cannot account 

for the earlier elution of the high-molecular-weight standards.  

It is also possible to use the polymer model (PM), which typically yields better 

predictions [4]. However, this is a three parameter model and, as with the LSS model, 

the elution composition is predicted separately for each standard, rather than for a 

type of polymer. We conclude that, as of now, there is not a suitable and universal 

model that can (exactly) describe the elution composition of a polymer of a particular 

chemical composition as a function of 𝑀. This may be due to several factors, for 

example a change in the shape of the polymer with 𝑀, which also depends on its 

chemical composition (and sequence) and changes how the polymer interacts with 

the stationary phase within a pore. Additionally, differences in accessible stationary-

phase volume and differences in the mobile-phase composition inside and outside 

of the porous structure of the stationary phase can all play a role. This will be even 

more complicated for copolymers or for homopolymers that feature pronounced 

end groups or branching. Nevertheless, the LSS predictions show that a homologues 

series can still be modelled relatively well, as long as each molecular-weight fraction 

is treated separately.   

8.1.2. Thermal modulation    

In Chapter 2 an increase in analyte retention with a decrease in temperature was 

exploited to focus polymers on small, so-called, “trap” columns, as are also 

commonly used in stationary-phase-assisted modulation (SPAM) [5]. Unlike SPAM, 
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thermal modulation does not require dilution flows or traps packed with highly 

retentive stationary phases. However, the use of thermal trapping faces its own 

challenges and issues. One of the most important of these is the bias towards the 

trapping of high-molecular-weight, more-hydrophobic analytes. Additionally, proper 

temperature control is required, which may increase the complexity of the set-up.   

In the original work (Chapter 2) the cooling of the trap columns was achieved by 

means of a custom set-up, which was relatively bulky, as it required a large aluminium 

block holding the trap columns, and a separate device to pump cold mineral oil 

through the block. After this original publication a few alternative set-ups were 

investigated.  

The first incorporated Peltier heating elements to control the temperature of a 

copper block, which had two (milled-out) spaces that held the trap columns, as well 

as a thermostat probe. This set-up was much smaller and could both heat and cool 

the trap columns electrically, so that mineral oil was not required. Furthermore, a 

larger range in temperature could be reached, from approximately -20ºC to above 

90ºC. We did not attempt to reach lower or higher temperatures, although it should 

be relatively straightforward to expand this range by using more-powerful Peltier 

elements, and especially by stacking said elements on top of each other.  The set-up 

as tested is illustrated in Figure 8.2  

While it is likely that this set-up can also be used for thermal trapping, and reach an 

actual trap-column temperature closer to the programmed temperature, due to the 

difference in the block material (copper rather than aluminium), its operation for 

LC×LC was not evaluated in-depth, due to time constraints. 

Another, significantly easier-to-implement, set-up was also assessed. Here an Agilent 

two-compartment column oven was used, where one side was heated and the other 

cooled. Insulating material was placed between the two sides of the oven. The oven 

is limited to a range of temperature from 5ºC to 80ºC, but does not require custom 

equipment. This set-up is illustrated in Figure 8.3, along with some of the LC×LC 

separations obtained with it.  
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Figure 8.2: Alternative set-up for temperature control, achieved using high wattage (300 W) 

Peltier elements. This set-up could be used for both cooling (A) and heating (B).  

 
Figure 8.3: A) 2D-LC set-up for temperature modulation. Red and blue boxes indicate the 

heated and cooled parts of the oven, respectively; B) RPLC×SEC separation of statistical S/EA 

(average composition EA/S of 1: 80/20, 2: 65/35, 3: 50/50, 4: 35/65, and 5: 20/80) copolymers. 
1D column: XBridge BEH Shield RP18 XP (50 × 4.6 mm) column containing 2.5-µm, 130-Å pore 

size particles, 2D column: two APC SEC (2.1 × 150mm) columns packed with 2.5-µm ethylene 

bridged-hybrid (BEH), 450-Å pore size particles. Trap temperature was kept constant at 5 ºC, 
1D column temperature was varied.   
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Of the evaluated set-ups, this latter one is likely the most practical, because our 

experiments showed that most polymers do not require large differences in 

temperature to be successfully trapped. However, unlike the previous two set-ups, 

temperature control is likely worse in this set-up as the trap columns are heated and 

cooled primarily through the air inside the oven.  

Irrespective of which set-up is used, the main flaw of thermal trapping, and any other 

trapping approach, is that there is a possibility that not all analytes are retained on 

the trap, so that quantification is jeopardized. Additionally, trap columns are 

challenging to consistently pack properly, and the packing stability over many 2D-

LC separations, featuring high pressure that can vary quickly, will limit the 

repeatability of the method. Neither of these issues can be easily resolved. However, 

for polymer samples for which the chemical composition and molecular weight are 

not completely unknown, as is often the case, the thermal trapping approach may 

feasibly be used.    

8.1.3. Recycle chromatography      

In Chapter 3 recycling gradient-elution LC (LCLC) was described as a tool to assess 

the chemical-composition distribution (CCD) of a polymer. The method has several 

limitations, most of which may feasibly be worked around. The first potential issue is 

extra-column band broadening. In our set-up a photodiode array detector featuring 

a pressure-resistant (40 MPa) flow cell was used, which featured a relatively large 

volume of 8 µL. As the analyte will pass through this volume repeatedly over several 

cycles, such an extra-column volume may significantly degrade the performance of 

the separation, especially if narrow (small i.d.) columns are used. This limits the 

method to columns that feature relatively large internal diameters. To circumvent 

this issue the detector cell – and the associated connections – must be miniaturized, 

or other (highly-sensitive, non-destructive) detectors must be used. For non-UV-

active polymers the choice for a suitable gradient-compatible detector that can be 

placed in-line is limited. However, for charged analytes the use of conductivity 

detection, such as a capacitively coupled conductivity detector (C4D), is feasible. Even 

for non-charged analytes combining LCLC with a C4D is interesting, as it allows one 

to monitor the gradient during the recycling experiment, as shown in chapter 5. 

Alternatively, the in-line detector may be removed completely, and only the final 
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cycle may be measured. In that case any gradient-compatible detector may be used 

(e.g. a mass-spectrometer or an evaporative light-scattering detector).  

The second issue is that LCLC, as presented, necessitated the use of columns 

packed with low-surface-area stationary phases, which severely limits the number of 

columns that may be used. Stationary phases that feature larger surface areas may 

be used by increasing the column equilibration time, which may be achieved by 

reducing the gradient volume. This reduces the number of cycles that can be 

measured, but also reduces the number of cycles required to reach elution 

independent of molecular weight. Especially if the in-line detector is removed to 

mitigate the extra-column band broadening, a reduction in gradient volume will be 

less of an issue, because ultimately similar results may be obtained.  

The third issue with LCLC is that more band broadening will occur for the lower-

molecular-weight analytes than for the large analytes, which can hinder a correct 

assessment of the CCD. This molecular-weight-based broadening is difficult to 

eliminate, because small analytes also determine the required number of cycles (the 

duration) of the LCLC experiment. Furthermore, analytes cannot be refocused after 

the LCLC experiment, as this would likely reintroduce an influence of molecular 

weight. Therefore, analytes must be refocused during the experiment. To achieve this 

without compromising the results from the LCLC experiment, retention at 𝜑init 

must be high, followed by reducing the retention for all analytes. One way to achieve 

this is by using temperature. If the column is cooled for the first cycle, then all 

analytes will elute in a mobile-phase composition that is stronger than it would be 

had the column been heated. This does not reduce band broadening or the number 

of cycles required, because in a cold column 𝜑crit also shifts to a stronger mobile-

phase composition, due to the increase in retention (i.e. it would require more cycles 

to reach). However, if the column is subsequently heated after the first cycle, then 

𝜑crit will shift towards a weaker mobile-phase composition. Because the low-

molecular-weight analytes will have eluted in a stronger mobile-phase composition 

in the (formerly) cold column they can now reach 𝜑crit more quickly, which reduces 

the time available for band broadening. Because the larger analytes will have eluted 

in a mobile-phase composition that correspond to SEC conditions after heating, 

these will catch up with the gradient and refocus towards 𝜑crit. This strategy relies 

on two aspects. Firstly, for all analytes the influence of temperature on retention must 
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be consistent, i.e. it must be either increasing or decreasing, and not both, within the 

same sample. Secondly, the largest analytes, which in a gradient experiment elute 

closest to 𝜑crit, must be able to refocus due to exclusion. Hence, this strategy will 

likely only work on a porous packing material. Alternatively, a similar effect may be 

obtained by placing a trap column, containing a more-retentive stationary phase 

than the columns used for the recycling, before the recycling set-up. However, this 

is a less-flexible strategy. The column temperature can be more easily adjusted to 

the MWD of the sample.  

Irrespective of the above issues, there are certain applications of LCLC that have 

not yet been investigated. Perhaps the most interesting is the potential of the 

method to obtain information regarding a potential sequence distribution. 

According to the theory discussed in Chapter 1 of this thesis, focusing around the 

critical composition only occurs for statistical copolymers [2]. Therefore, the average 

composition over the molecular-weight distribution (MWD) within a slice taken from 

the CCD obtained by LCLC, should be more-or-less constant. If focusing is absent, 

as is expected for blocky copolymers, then the average composition over the MWD 

should not be constant within a fraction. For such copolymers earlier fractions should 

show more deviation in average composition in the lower-molecular-weight region, 

while later fractions should show deviations in the higher-molecular-weight region. 

For certain copolymers this experiment may be performed by taking fractions from 

the final cycle of the LCLC experiment, and subjecting these to SEC (with refractive-

index or UV detection) to assess the MWD and determine the change in average 

composition within each fraction. Ideally a comprehensive LCLC ×SEC experiment 

could be performed to obtain this information within one experiment. The easiest 

way to implement such a method may be to perform the LCLC experiment at 

normal conditions, after which the flowrate can be reduced to then send fractions to 

the 2D SEC separation using a conventional LC×LC set-up. A different way may be to 

select a slightly incorrect cycle timing, so that each cycle a small part of the end, or 

the front, of the gradient can be cut and send to the 2D. An in-between focusing step 

may also be incorporated, e.g. using trap columns, although this increases the risk of 

re-introducing the influence of the MWD on retention.  
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8.1.4. Gradient size-exclusion chromatography  

In Chapter 4 the determination of the CCD by size-exclusion chromatography 

gradients or gradient size-exclusion chromatography (gSEC) was investigated. 

Several conclusions could be drawn based on this work, some – but not all – of which 

concur with the results presented in Chapter 3. Based on the conventional SEC 

experiments that were performed using progressively weaker mobile-phase 

compositions, the influence and relative magnitude of certain effects, such as 

retention or a change in polymer size, could be assessed. Additionally, it was shown 

that polymers that are too large to enter the porous packing experience less 

retention, due to the smaller accessible stationary-phase surface. For high-

molecular-weight analytes such effects are hardly measurable, because retention 

scales strongly with analyte size. This may be a potential reason for the greater 

deviations in retention times at “critical conditions” on the large-pore packing 

compared to the non-porous packing observed in Chapter 3. However, it is also 

possible that the observations are due to small changes in mobile-phase 

composition inside and outside of the pores. Further experiments are required to 

properly assess the reason for the larger deviations around the critical point.   

In our work gSEC was shown to be primarily advantageous in cases where 

breakthrough in conventional gradient-elution LC was problematic. However, there 

are potentially other applications for gSEC. If retention on the stationary phase is 

sufficiently strong, one can ensure that a polymer never encounters a solvent in 

which it precipitates. Therefore, gSEC may be useful for specific polymers that are 

slow to redissolve. As this is a kinetic process, such polymers may show abnormal 

behaviour when separated using conventional gradient-elution-LC methods [6]. 

Such anomalous effects are expected to be more severe for steeper gradients.    

8.2. Correction strategies applicable to chromatographic data        

8.2.1. Capacitively coupled contactless conductivity detection 

In Chapter 5 the use of a C4D to measure gradient deformation was demonstrated. 

The C4D, which measures the capacitance of the solution, could be used to detect 

changes in the bulk solvent composition. Since the C4D was not limited by pressure 

and added almost no additional (dwell) volume to the system, the detector was ideal 

for this purpose. The C4D may also feasibly be used for several other applications. As 
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mentioned previously, one of these may be LCLC. Since the C4D does not add dwell 

volume the distortion of the gradient in successive cycles may be monitored. This 

approach may also feasibly be used to obtain insights in the re-equilibration of 

different stationary phases. This may be particularly useful for hydrophilic-interaction 

liquid chromatography (HILIC). Additionally, the C4D may be used to measure the 

effect of every component in an LC instrument on the gradient profile or to (relatively 

easily) measure and compare the performance of different mixing units when 

combinations of aqueous and organic solvents are used.  

8.2.2. Background-drift-correction and noise-removal algorithms  

In Chapter 7 several background-drift-correction and noise-removal algorithms, 

some of which were reviewed in Chapter 6, were compared using generated data 

representative of complex real data. The greatest challenge to the practical usage of 

this approach is the extremely large number of combinations of background, peaks, 

and noise that may be encountered during an experiment. Hence, all possible real 

data can never be completely covered by generated data. Nevertheless, the 

approach provided useful insights regarding the performance of each algorithm and 

revealed which algorithms could be used to most-consistently achieve good results. 

Because LC×LC is becoming increasingly common and often results in greater data 

complexity, a study such as performed in Chapter 7, but instead focused on two-

dimensional liquid or gas chromatography, may be especially interesting. While two-

dimensional data adds complexity, it may also provide additional information that 

can actually improve the performance of the algorithms. As an example, in the case 

of 1D-LC it can be challenging to correct for underlying drift when the number of 

data points that contain information on relevant peaks is large compared to the 

number of points that reflect the background drift. In 2D-LC this problem will be 

smaller for samples of similar complexity. The larger separation space will not only 

provide more information on relevant signals, but also on the background, unless 

the sample complexity becomes so great that even 2D-LC does not provide sufficient 

separation space. Especially when the number of peaks is much greater in certain 

modulations than in other ones, the information of the background in surrounding 

modulations that contain fewer peaks may be used to obtain a reasonable guess for 

the background in those modulations where the background is difficult to correct.  
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8.3. The future of LC×LC and the development of chemometric strategies 

for the analysis of polymer distributions 

As of now the use of 2D-LC in industry is still limited, although especially heart-cut 

2D-LC has seen a dramatic increase in usage in recent years. The lack of acceptance 

is likely because of the (often repeated) notion that the technique is complex, too 

time-consuming to optimize, not sufficiently repeatable and/or reproducible, or 

simply because the data are more challenging to correctly interpret. All of these are 

valid points. However, during the last two decades a significant amount of work has 

been performed to allow for the use of 2D-LC in industry. Dedicated instrumentation 

and user software has become available, and chemometrics strategies have been –  

and are still being – developed to improve data interpretation and to reduce 

method-development time. All these developments make the use of 2D-LC much 

easier than it has ever been. Especially the introduction and further development of 

algorithms that can automate the entire method-development procedure [7] is 

expected to significantly improve the ability of a user to quickly and easily find a 

suitable method for a problem. Even if the resulting method may not be truly 

“optimal” in many cases, it likely suffices. In this way it becomes much more cost-

efficient to automatically and quickly obtain a reasonable separation. Furthermore, 

from the iteration process of such an algorithm valuable information can be obtained 

that may serve as a good starting point for a “manual” fine-tuning of the separation, 

if needed. However, the fully automated method-development strategy faces several 

challenges, which are especially steep for synthetic polymers. Such polymer samples 

often feature an incredibly large number of very similar analytes that can also vary 

greatly in terms of molecular-weight. Both aspects complicate the use of mass-

spectrometry, which is required to track analytes across chromatograms. 

Additionally, predicting the retention behaviour for polymers will be complex 

because even if analytes can be tracked, describing their retention consistently over 

multiple experiments is more difficult due to their strong dependence on very small 

changes in mobile-phase composition and temperature, and because of additional 

effects such as solubility. Finally, it is more challenging to define an optimum, 

because usually the type of information that is obtained is very important, which for 

polymers is difficult to capture in commonly used parameters such as the peak 

capacity or the resolution.  
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Summary  

The detailed analysis of polymeric materials is one of the necessary steps to elucidate 

the relationship between the chemical distributions of a polymer and the functional 

properties of a material. Within the UNMATCHED project (UNderstanding MATerials 

by CHaracterizing Essential Distributions) many techniques have been investigated – 

or further developed – to aid in the analysis of such materials. The primary focus of 

this thesis was on using liquid chromatography (LC) in innovative ways to analyze 

polymer chemical distributions. Additionally, chemometric strategies that help 

improve the interpretability of the data obtained from these methods were 

investigated and documented in later chapters.  

In Chapter 1 the relevant theory of liquid chromatography for small molecules and 

the different modes of polymer elution in isocratic and gradient-elution LC are 

described. For polymers the precipitation-redissolution and interaction mechanisms 

are briefly mentioned. Additionally, the role of the pore size of the packing and the 

retention behaviour of copolymers are briefly described. It is specified that the 

retention of a copolymer depends on the retention of the monomers that are 

incorporated and on how these monomers are distributed in the polymer chain 

(referred to as “blockiness” or “randomness”). Finally, challenges with respect to the 

retention modelling of such polymers are highlighted.  

When multiple chemical distributions, such as a chemical-composition (CCD) and a 

molecular-weight distribution (MWD), are present within one sample, the use of two-

dimensional liquid chromatography (2D-LC) is often beneficial. By combining 

separation methods, such as gradient-elution reversed-phase liquid 

chromatography (RPLC) and size-exclusion chromatography (SEC), information on 

both distributions may be obtained. In contemporary 2D-LC analytes are refocused, 

either at the start of the second-dimension (2D) column, or within small (so-called 

trap) columns that replace the conventional sample loops. The latter technique is 

often referred to as stationary-phase-assisted modulation (SPAM), and often 

requires a dilution of the eluent coming from the first-dimension (1D) with a weaker 

solvent to facilitate the trapping of the analytes. In Chapter 2 an alternative to SPAM 

is presented, which does not require one to dilute the effluent. The technique termed 
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thermal modulation or cold-trapping was demonstrated to be a useful tool for 2D-

LC separations of polymers, especially when SEC was used in the second dimension, 

because in that case dilution is especially undesirable. Since the effect of temperature 

on retention is much larger for high-molecular-weight analytes than for small 

molecules, it was shown that only a small difference in temperature already sufficed 

to trap nearly all large analytes. Additionally, a new modulation strategy was 

presented that reduces the pressure pulses during valve switching, which can 

potentially enhance the lifetime of the trap columns used. 

A different approach to the analysis of copolymers that feature both a CCD and a 

MWD is to suppress the influence of one of these distributions on retention. In that 

case two one-dimensional liquid chromatography (1D-LC) separations can be 

sufficient to obtain the desired information. In Chapter 3 a new technique termed 

recycling gradient-elution LC (LCLC) is described, which allows suppressing the 

effect of molecular weight on retention. The use of LCLC for the analysis of the 

CCD of copolymers was introduced and demonstrated. By continuously recycling the 

gradient, the effect of the MWD on elution could be minimized. Conventionally, very 

fast gradients require short durations, in combination with long columns and low 

flow rates, resulting in decreased peak capacities, long analysis times, and an 

increased risk of the system-induced gradient deformation that is described later in 

the thesis. Such issues could be avoided with LCLC and unbiased information on 

the CCD could be obtained  

In Chapter 4 the use of SEC gradients (or gradient-SEC, gSEC) was investigated as 

an alternative to RPLC for the chemical-composition analysis of polymers. The 

influence of the mobile-phase composition on the elution volume in SEC was 

explored on columns that greatly varied in terms of packing pore size. Both gSEC 

and RPLC were applied in 1D-LC and 2D-LC separations. It was shown that, compared 

to conventional gradient-elution LC, the use of SEC-gradients is primarily 

advantageous when breakthrough is an issue in RPLC. This is, for example, the case 

when comprehensive 2D-LC (LC×LC) is used with SEC is used in the first dimension, 

coupled to RPLC in the second dimension (SEC×RPLC). Molecular-weight-

independent elution was shown to be much more challenging to achieve in gSEC, 

since the difference in migration velocity in gSEC is restricted to a factor of two (i.e. 
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total exclusion vs. total permeation). When implementing RPLC or gSEC as a 2D 

separation technique in LC×LC, two-dimensional distributions (MWD×CCD) could be 

obtained. When gSEC was used breakthrough in the 2D system could be avoided. 

However, in SEC×gSEC the residual molecular-weight dependence complicated a 

quantitative analysis.  

In Chapter 5 the effect of system-induced gradient deformation on retention-

modelling approaches is discussed. Capacitively coupled “contactless” conductivity 

detection (C4D) was demonstrated as a tool to measure solvent gradients. By using 

C4D it was possible to measure gradients generated using various commonly used 

LC solvents. These included water and the organic solvents acetonitrile, methanol 

and tetrahydrofuran, to which no ionic tracers were added. In most cases, the 

detector response changed linearly with mobile-phase composition (i.e. the volume 

fraction of organic solvent). If needed slight non-linearities were corrected for. It was 

further shown that solvent- and instrument-dependent gradient profiles could be 

described using weighted response functions, which allowed us to predict the 

gradient distortion at different flowrates. Knowledge of the gradient distortion was 

then used to improve retention modelling, by approximating the distorted gradient 

as a segmented gradient consisting of 500 linear segments. Ultimately, nearly 

instrument-independent retention parameters could be obtained for systems that 

produced greatly different gradient profiles for identical gradient programs.  

In Chapter 6 an overview is given of the most-recent strategies used for the pre-

processing of one-dimensional data. Different facets of pre-processing were 

reviewed, including smoothing, drift correction, and alignment strategies. It is 

emphasized that pre-processing is indispensable when the data are to be used for 

subsequent quantification or classification purposes. For background correction 

BEADS (baseline estimation and denoising using sparsity) and assisted BEADs were 

found to be highly promising recent developments, as these approaches seemed 

capable of handling many different types of background distortions and were fast. 

Along similar lines, the most-noteworthy strategies for peak alignment in two-

dimensional chromatography were found to be those that operate not just in one-

dimension, but in both simultaneously. Finally, it could be concluded that, although 
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there have been many interesting developments, it is often difficult to judge which 

methods truly perform best.  

Based on the conclusions from Chapter 6, a data-simulation tool is described in 

Chapter 7, which enabled the comparison of different background-correction and 

peak-detection methods. The tool was used to compare a variety of data (pre-

)processing methods. Drift-correction methods that were evaluated included the use 

of polynomial fitting using asymmetric cost functions (Backcor) and the use of 

asymmetrically penalized least squares (AsLS), asymmetrically reweighted penalized 

least squares (ArPLS), or adaptive iteratively reweighted penalized least squares 

(AirPLS). Additionally, the mixture model (MM) and the use of local minimum values 

(LMV) were evaluated. Noise-removal or smoothing methods that were evaluated 

included sparsity-assisted signal smoothing (SASS), Savitsky-Golay and Whittaker 

smoothing, and the use of low-pass or wavelet filters. The study showed that a 

combination of SASS and arPLS most often resulted in the lowest root-mean-square 

error and apparently provided the best results. However, this combination did not 

result in the smallest errors in peak areas. The combination of SASS and LMV 

methods performed best in this latter respect. In terms of speed the Backcor and 

LMV algorithms provided the fastest drift correction, generally with evaluation times 

of less than half a second, while the arPLS algorithm performed slowest. The best 

combination of methods seems to depend on the nature of the background, which 

implies that it cannot always be a-priori predicted. However, the present study has 

provided valuable tools and methods to improve quantification in case the true 

background is unknown.  

In Chapter 8 the conclusions from the work in this thesis were reviewed and 

recommendations for future studies were given. Additionally, preliminary work and 

challenges yet to be solved were discussed. Some feasible strategies were 

envisioned.   
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Samenvatting   

De gedetailleerde analyse van polymeermaterialen is een van de benodigde stappen 

om de connectie tussen enerzijds de chemische verdelingen in het polymeer en 

anderzijds de functionele eigenschappen van het materiaal te verhelderen. In het 

UNMATCHED project (UNderstanding MATerials by CHaracterizing Essential 

Distributions) zijn veel technieken onderzocht – of verder ontwikkeld – om de analyse 

van dit soort materialen te realiseren. De focus van dit proefschrift lag op het gebruik 

van vloeistofchromatografie (LC) op nieuwe manieren om chemische verdelingen 

van polymeren te bepalen. In latere hoofdstukken wordt aanvullend werk 

beschreven, dat het gebruik van chemometrische methoden die de kwaliteit en/of 

de interpreteerbaarheid van de data kunnen verbeteren.      

In Hoofdstuk 1 worden zowel de relevante theorie van vloeistofchromatografie als 

het elutiegedrag van polymeren onder isocratische en gradiënt-elutie condities 

beschreven. Het verschil in precipitatie-/oplosbaarheid- en interactiemechanismes 

wordt verduidelijkt. Ook wordt de invloed van de kolompakking, met name de 

poriegrootte, op het retentiegedrag van co-polymeren kort beschreven. De retentie 

van een copolymeer blijkt zowel af te hangen van de verhouding van de monomeren, 

als van de verdeling van de monomeren in het polymeer molecuul. Tot slot worden 

er een aantal uitdagingen beschreven voor het nauwkeurig modelleren van de 

retentie van polymeren.  

Als een polymeermonster wordt gekenmerkt door meerdere chemische verdelingen, 

zoals een chemische samenstellingsverdeling (CCD) en een moleculaire 

massaverdeling (MWD), kan het gebruik van tweedimensionale vloeistof 

chromatografie (2D-LC) voordelen bieden. Door het koppelen van 

scheidingsmethoden, zoals gradiënt-elutie reversed-phase ("omgekeerde fase") 

vloeistof chromatografie (RPLC) en size-exclusion chromatografie (SEC), kan er 

informatie over beide chemische verdelingen worden verkregen. In moderne 2D-LC 

scheidingen worden stoffen vaak geconcentreerd, hetzij aan het begin van de 

tweede dimensie (2D) kolom of in kleine zogeheten “trap” kolommen, die de 

conventionele sample loops (“monsterlussen”) vervangen. De laatstgenoemde 

methode wordt vaak aangeduid als stationary-phase-assisted modulatie (SPAM) en 

vereist vaak een verdunning van het eluens dat uit de eerstedimensie scheiding 
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wordt verkregen met een “zwakker” oplosmiddel, om het concentreren van analieten 

op de trap kolom te faciliteren. In Hoofdstuk 2 wordt een alternatief voor SPAM 

beschreven dat geen extra verdunning vereist. Deze techniek wordt thermische 

modulatie of “cold-trapping” genoemd. Ze biedt voornamelijk voordelen voor 2D-

LC scheidingen waarin SEC in de tweede dimensie gebruikt wordt, omdat in dat geval 

een verdunning van het eluens niet wenselijk is. Omdat de invloed van temperatuur 

op retentie vele malen groter is voor analieten met een hoog moleculair gewicht dan 

voor kleine moleculen kon worden aangetoond dat een klein verschil in temperatuur 

al voldoende is om grote analieten te concenteren op de trapkolom. Als aanvulling 

op dit werk werd er een nieuwe modulatiestrategie beschreven die leidde tot kleinere 

drukveranderingen, hetgeen belangrijk kan zijn voor de levensduur van de 

trapkolom.  

Een alternatief voor de analyse van co-polymeren met zowel een relevante CCD als 

een MWD is het onderdrukken van de invloed van één van de chemische verdelingen 

op het scheidingsproces. In dat geval kunnen twee ééndimensionale scheidingen 

voldoende zijn om de benodigde informatie te verkrijgen. In Hoofdstuk 3 wordt een 

nieuwe methode genaamd recycling gradiënt-elutie vloeistofchromatografie 

(LCLC) beschreven, die dit bewerkstelligt. Het gebruik van LCLC voor de analyze 

van de CCD van een copolymeer wordt gedemonstreerd. Door het doorlopend 

recyclen van de gradiënt kon de invloed van de MWD geminimaliseerd worden. 

Normaliter vereist dit erg snelle gradiënten van korte duur in combinatie met lange 

kolommen en lage stroomsnelheden. Dit leidt tot een vermindering in piek 

capaciteit, lange analysetijden, en een groter risico dat de gradiënt in het instrument 

vervormd wordt. Het laatste wordt in hoofdstuk 5 in dit proefschrift beschreven. Door 

middel van LCLC konden deze problemen vermeden worden.  

In Hoofdstuk 4 wordt het gebruik van zogeheten SEC-gradiënten (of gradiënt-SEC, 

gSEC) beschreven en vergeleken met RPLC voor de analyse van de CCD. Bovendien 

werd de invloed van de mobiele-fasesamenstelling op het elutievolume in SEC 

onderzocht voor een verscheidenheid van kolommen, die pakkingen bevatten met 

verschillende poriegroottes. Zowel gSEC als RPLC werden vervolgens toegepast voor 

1D-LC en 2D-LC scheidingen. Aangetoond werd dat, in vergelijking met 

conventionele gradiënt RPLC methoden, het gebruik van gSEC vooral voordelen 
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biedt als er in RPLC doorbraak optreedt van de monsterplug. Dit is met name het 

geval voor comprehensive (“alomvattende”) 2D-LC (LC×LC) scheidingen, waarbij SEC 

gebruikt wordt als 1D scheiding en wordt gekoppeld aan RPLC als 2D methode. Het 

bleek met gSEC moeilijker om een scheiding te realiseren, die niet beïnvloedt werd 

door het moleculegewicht van de analieten, omdat het verschil in migratiesnelheid 

maximaal een factor twee kan zijn (totale exclusie vs. totale permeatie). Door zowel 

gebruik te maken van RPLC en gSEC als 2D methoden in LC×LC, kon informatie 

verkregen worden over tweedimensionale verdelingen (MWD×CCD). Met het 

gebruik van gSEC als 2D methode kon monsterdoorbraak voorkomen worden, maar 

kwantitatieve bepalingen bleken ingewikkelder, vanwege de resterende invloed van 

het moleculegewicht op de scheiding.  

In Hoofdstuk 5 wordt de invloed van systeem-geïnduceerde gradiënt vervorming 

op het modelleren van retentie benadrukt. Het gebruik van capacitief gekoppelde 

“contactloze” geleidbaarheidsdetectie (C4D) voor het meten van 

oplosmiddelgradiënten wordt beschreven. De C4D maakte het meten mogelijk van 

verschillende veelgebruikte oplosmiddelen, zoals water en de organische 

oplosmiddelen acetonitril, methanol en tetrahydrofuraan, zonder dat daaraan 

ionische stoffen werden toegevoegd,. In veel gevallen veranderde de respons van de 

detector lineair met veranderingen in de oplosmiddelsamenstelling, maar in het 

geval van een niet-lineaire verandering kon hiervoor gecorrigeerd worden. Ook werd 

aangetoond dat oplosmiddel- en instrumentafhankelijke gradiëntprofielen 

beschreven konden worden met gewogen responsfuncties. Dit soort functies maakte 

het mogelijk om de gradiëntvervorming voor verschillende stroomsnelheden te 

voorspellen. Informatie over de gradiëntvervorming kon vervolgens gebruikt worden 

voor het verbeteren van retentiemodellen. Hiervoor werd de vervormde gradiënt 

beschreven als een samengestelde gradiënt bestaande uit 500 lineaire segmenten. 

Uiteindelijk konden met deze methode min-of-meer systeemonafhankelijke 

retentieparameters bepaald worden voor systemen waarvan de gradiëntprofielen 

zeer verschillend waren voor gelijke gradiëntprogramma’s.  

In Hoofdstuk 6 word een overzicht gegeven van de meest recent geïntroduceerde 

datavoorbewerkingstrategieën voor hoofdzakelijk eendimensionale data. 

Verschillende aspecten van de datavoorbewerking worden beschreven, zoals 
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ruisverwijderingstechnieken, correctie van zogenoemde “drift” (verlopende basislijn), 

en alignment (“uitlijn”) methodes. Er kon worden geconcludeerd dat 

datavoorbewerkingsmethoden onmisbaar zijn als de data gebruikt worden voor 

verdere kwantificering of classificatie. Vooral een achtergrondcorrectiemethode 

genaamd Baseline Estimation And Denoising using Sparsity 

(“achtergrondbenadering en ruisverwijdering door middel van schaarsheid”, BEADS) 

en geassisteerde BEADS methoden bleken zeer interessante recente ontwikkelingen 

te zijn, omdat deze technieken veel verschillende soorten achtergronden snel 

konden corrigeren. De meest belangrijke alignment technieken waren die methoden 

die zich richtte op tweedimensionale scheidingen. De conclusie was dat, hoewel er 

veel interessante recente ontwikkelingen waren, het vaak lastig was om de kwaliteit 

van de methoden te bepalen.   

Gebaseerd op de conclusies in Hoofdstuk 6 is een data-simulatie programma 

ontwikkeld, waarmee verschillende achtergrondcorrectie- en piekdetectiemethoden 

objectief vergeleken kunnen worden. Dit is beschreven in Hoofdstuk 7. Het 

programma werd gebruikt om verschillende achtergrondcorrectie-algoritmen te 

vergelijken. Verschillende driftcorrectiemethoden werden vergeleken, zoals het 

gebruik van polynoomfitting met asymmetrische kostenfuncties (“Backcor”), 

“asymmetrically penalized least squares (AsLS)”, “asymmetrically reweighted 

penalized least squares (ArPLS)”, “adaptive iteratively reweighted penalized least 

squares (AirPLS)” en het gebruik van een mengmodel (MM) of lokale minimale 

waardes (LMV). Ook worden een aantal ruisverwijderingstechnieken beschreven en 

vergeleken, namelijk “sparsity-assisted signal smoothing” (SASS), “Savitsky-Golay” or 

“Whittaker smoothing” en het gebruik van low-pass of wavelet filters. Uit het 

vergelijken van de methoden bleek dat een combinatie van SASS en arPLS vaak de 

laagste gemiddelde kwadratische afwijking en de best ogende resultaten gaf. Deze 

combinatie resulteerde echter niet in de laagste afwijkingen voor het piekoppervlak. 

In dit opzicht werkte een combinatie van de SASS en LMV methoden beter. De 

Backcor en LMV algoritmen konden het snelst de drift corrigeren, vaak binnen een 

halve seconde, terwijl het arPLS algoritme het traagst was. De beste combinatie van 

methoden blijkt af te hangen van de feitelijke achtergrond, wat het moeilijk maakt 

om te voorspellen welke methoden het best zal werken. Desalniettemin zijn er in 
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deze studie waardevolle methoden ontwikkeld, die tot betere kwantificering kunnen 

leiden als de achtergrond niet tevoren bekend is.  

In Hoofdstuk 8 worden de conclusies van dit proefschrift nogmaals tegen het licht 

gehouden en worden aanbevelingen voor toekomstig onderzoek geformuleerd. Ook 

worden een aantal initiële resultaten, uitdagingen die niet opgelost werden in het 

kader van dit proefschrift., en strategieën die goed uitvoerbaar lijken te zijn 

beschreven.  
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AirPLS  Adaptive iteratively reweighted penalized least squares 

ASM  Active-solvent modulation  

AsLS  asymmetrical least squares 

ATLD   Alternating trilinear decomposition 

ATSA  Automatic time-shift alignment  

BDC   Background drift correction 

BD-OSP  Background drift correction by orthogonal subspace projection 

BEADS  Baseline estimation and denoising using sparsity 

BEH  Bridged-ethylene hybrid  

BLD  Block length distribution  

BMA  Butyl methacrylate  

BRANN  Bayesian regularized artificial neural networks  

C4D  Capacitively coupled “contactless” conductivity detection  

CC  Corner cutting  

 
4 In case multiple meanings are given to an abbreviation, the additional meaning is only 

used in the indicated chapters. 
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CCD  Chemical composition distribution  

CE  Capillary electrophoresis  

COS   Cosine correlation  

COSHIFT Correlation-optimized shifting  

COW  Correlation-optimized warping  

DAD  Diode-array detector  

DBD  Degree-of-branching distribution  

DTW  Dynamic time warping  

EA  Ethyl acrylate  

ECG  Electrocardiography  

ELSD   Evaporative light-scattering detector  

EMG  Exponentially modified gaussian 

FID  Flame-ionization detector  

FIR  Finite-impulse-response  

FTD  Functionality-type distribution  

GC  Gas chromatography 

GC×GC  Comprehensive two-dimensional gas chromatography  

gSEC  Gradient size-exclusion chromatography  

HILIC  Hydrophilic-interaction liquid chromatography  

HPLC  High-performance liquid chromatography  

HRMS  High-resolution mass spectrometry  

IEC  Ion-exchange chromatography  

IPA  Isopropyl alcohol  

IPC  Interaction polymer chromatography  

i.d.   Internal diameter  

iPF  Iterative polynomial fitting  

L  Long-arm in star-block copolymer  

LAC  Liquid adsorption chromatography  

LC  Liquid chromatography  

LCCC  Liquid chromatography at critical conditions  

LC-LC  Heart-cut two-dimensional liquid chromatography 

LC×LC   Comprehensive two-dimensional liquid chromatography 

LCLC  Recycling gradient-elution liquid chromatography  

LC-MS  Liquid chromatography mass spectrometry  
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LMV  Local minimum value  

LMV-RSA Local minimum values robust statistical analysis  

LSS  Linear-solvent strength  

MAD  Molecular architecture distribution  

Median absolute deviation (in Chapter 7)  

MairPLS  Modified adaptive iteratively reweighted penalized least squares 

MALDI  Matrix-assisted laser-desorption/ionization  

MB  Copolymer of methyl methacrylate and butyl methacrylate  

MCR  Multivariate curve resolution  

MCR-ALS Multivariate curve resolution alternating least-squares 

MeOH  Methanol  

mLC-LC  Multiple-heart-cut two-dimensional liquid chromatography 

MM  Mixture model  

MMA  Methyl methacrylate  

MPLS  Morphologically weighted penalized least squares  

MS  Mass spectrometry  

MWD  Molecular-weight distribution  

MWMV  Moving-window-minimum-value  

NPLC  Normal-phase liquid chromatography  

o.d.   Outer diameter  

OSP  Orthogonal subspace projection  

OSSP  Orthogonal spectral signal projection  

PARAFAC Parallel factor analysis 

PB  Polybutadiene  

PCA  Principal component analysis  

PCC  Pearson correlation coefficient  

PDI  Polydispersity index  

PDR  Projected-difference-resolution 

PFSM  Pump-frequency-synchronized modulation  

PGC  Porous graphitic carbon  

PLS  Penalized least squares   

PLSDA  Partial least-squares discriminant analysis 

PM  Polymer model  

PS  Polystyrene  
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PTW  Parametric time warping  

PW  Peak weighted  

QM  Quadratic model  

QTOF  Quadrupole time-of-flight  

RF  Response function  

RID  Refractive-index detection  

RMSE  Root mean square error  

RP   Reversed phase  

RPLC  Reversed-phase liquid chromatography  

S  Styrene  

   Short-arm in star-block copolymer (in Chapter 2)  

S/N  Signal-to-noise ratio  

SASS  Sparsity-assisted signal smoothing  

SEC  Size-exclusion chromatography  

SG  Savitsky-Golay  

sLC×LC  Selective comprehensive two-dimensional liquid chromatography 

SM  Copolymer of styrene and methyl methacrylate  

SPAM  Stationary-phase assisted modulation  

SVD  Singular value decomposition  

SWATLD  Self-weighted alternating trilinear decomposition 

TASF  Temperature-assisted on-column solute focusing  

TFA  Trifluoroacetic acid  

THF  Tetrahydrofuran  

ThFFF  Thermal field-flow-fractionation 

TIC  Total ion current  

TLC  Thin-layer chromatography  

ToF  Time-of-flight  

TPC  Total peak correlation coefficient  

UHPLC  Ultra-high-performance liquid chromatography  

VWD  Variable-wavelength detector  

XRD  X-ray diffraction  
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10.4. List of Symbols5 

�̂�  Estimated P-splines coefficients or penalties  

𝛼  Selectivity 

Kurtosis (“tailedness”) parameter in the stable distribution, 

standardized and centralized fourth moment (in Chapter 5)   

  Coefficients (or penalties) of P-splines (in Chapter 7)    

𝐴  Area 

𝐴  Eddie dispersion term  

𝐴𝑠  Asymmetry parameter in the modified Pearson VII distribution  

𝑎   Thickness of a “monomolecular” adsorption layer 

𝛽  Column phase ratio  

 Skewness (asymmetry) parameter in the stable distribution, 

standardized and centralized third moment (in Chapter 5)  

𝐁  n × m cubic spline basis of m number of splines 

𝐵  Longitudinal diffusion term 

𝑏 Rate of change of the retention factor in a gradient per volume of 

mobile phase 

𝑏𝑖  The ith data point in the known background 

𝐶F  Feedback capacitor  

𝐶𝑤  Capacitance due to capillary walls  

𝐶𝑆  Stray capacitance  

𝐶𝐿  Capacitance due to solution in the capillary   

C18  Octyldecylsilane  

𝐶  Mass-transfer term  

𝐶𝑠  Mass-transfer term in the stationary phase  

𝐶𝑚  Mass-transfer term in the mobile phase  

𝐶  Pure chromatographic profiles of the components in the sample 

𝑐  Interaction parameter  

𝑐𝑖  ith chromatographic profile representing the analyte 

𝑐𝑏𝑘,𝑖  ith chromatographic profile representing the background  

 
5 In case multiple meanings are given to a symbol, the additional meaning is only used in the 

indicated chapters.  
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Đ𝑀  Dispersity in molecular weight  

𝛿𝐴𝐵 Percentual difference in retention parameters before and after 

accounting for gradient deformation  

𝛿 Mean (position) parameter in the stable distribution, first (raw) 

moment  

𝐃  Derivative of the identity matrix  

𝐷𝑚  Diffusion coefficient in the mobile phase   

𝐷  Average pore diameter  

𝑑𝑥new  Derivative of the new initial estimate of the background 

𝑑𝑖 ith data point in the derivative of the new initial estimate of the 

background 

𝑑  Difference between fit and data (in Chapter 7)  

𝑑𝑡  Threshold difference  

𝑑−  Negative part of the difference between input data and fit  

𝑑𝑝  Particle diameter  

휀  Porosity  

  Dielectric constant (in chapter 5)  

휀𝐴𝐵 Dielectric constant of solvent mixture consisting of two (A and B) 

solvents  

휀𝐴  Dielectric constant of solvent A  

휀𝐵  Dielectric constant of solvent B  

𝐸  Error matrix  

𝐹  Volumetric flowrate 

𝑓  Frequency  

Array containing background (in Chapter 6) 

𝑓  Estimate of the background array 

𝑓coverage  Correction factor for incomplete surface coverage in 2D-LC  

𝑓undersampling Correction factor for under-sampling  

𝛾 Scale (width) parameter in the stable distribution, second centralized 

moment  

𝑔(𝑥|𝜇, 𝜎) Normal density function  

∆𝐺°  Partial molar volume change in Gibbs free energy  

∆𝐺mon
𝑜  Partial molar volume change in Gibbs free energy for a type of 

monomer unit  



Chapter 10 

273 

𝐺  Gradient compression factor  

Conductance (in Chapter 5)  

𝐻  Plate height  

  Peak height (in Chapter 7)  

H  High-pass filter (in Chapter 6)  

∆𝐻°   Partial molar volume change in enthalpy  

ℎ(𝑥 − 𝜇) Unknown density function  

𝐈   Identity matrix (in Chapters 6 and 7)   

𝐼  Current  

𝑖  Imaginary number  

  Iteration number (when used in large mathematical operators)  

𝐾  Distribution coefficient  

  Number of variables (in Chapter 7)  

𝐾𝐿𝐶   Distribution coefficient (LC) 

𝐾𝑃𝑀  Distribution coefficient according to the polymer model  

𝐾SEC  “Distribution” coefficient (SEC) 

𝑘0,𝐴 Retention factor extrapolated to 100% weak solvent, obtained 

before accounting for gradient deformation  

𝑘0,𝐵 Retention factor extrapolated to 100% weak solvent, obtained after 

accounting for gradient deformation  

𝑘0  Retention factor extrapolated to 100% weak solvent  

𝑘  Retention factor  

𝑘init  Retention factor at initial gradient conditions  

𝑘  Scaling factor (in Chapter 7)  

𝑘𝐶𝑃 Retention factor of a copolymer calculated from the retention of two 

homopolymers  

𝑘𝐼  Retention factor of a homopolymer of monomer type I  

𝑘𝐼𝐼  Retention factor of a homopolymer of monomer type II  

𝑘𝐵  Boltzmann’s constant  

𝑘crit  Retention factor at critical conditions  

𝑘𝑒  Retention factor at the moment of elution  

𝑘mean  Mean retention factor  

𝜆  “Smoothing” parameter  

𝐿  Length  
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L  Low-pass filter (in Chapter 6)  

𝜇  Mean  

𝜇𝑑  Mean of 𝑑− 

𝐌  Square matrix of uniform basis functions  

𝑀𝑤  Weight-average molecular weight  

𝑀𝑛  Number-average molecular weight  

𝑀𝑝  Peak molecular weight  

𝑀  Molecular mass    

𝑚  Kurtosis parameter in the modified Pearson VII distribution  

𝜈  Copolymer randomness or “blockiness” 

𝑁  Total number of data points (in Chapter 7)  

𝑁test  Number of peaks in the test signal  

𝑁ref  Number of peaks in the reference signal   

𝑁  Number of molecules  

Plate number   

Number of data points (in Chapter 7)  

𝑁𝐴  Avogadro’s constant  

𝑁𝐼  Average chain length of monomer type I  

𝑁𝐼𝐼  Average chain length of monomer type II  

𝑛  Iteration index (in Chapter 7)  

𝑛𝑐  Peak capacity  

𝑛𝑐,eff  Effective peak capacity  

𝛺  Number of potential microstates in the system  

𝜋  Ratio of a circle's circumference to its diameter 

Unknown mixing ratio (in Chapter 7)  

𝛷  Inverse of the phase ratio  

𝜑  Volumetric fraction of the strong mobile-phase modifier 

Function cost (e.g. sum of squared errors, in Chapter 6 and 7)  

𝜑𝐴  Volumetric fraction of solvent A  

𝜑𝐵  Volumetric fraction of solvent B  

𝜑crit Volumetric fraction of the strong mobile-phase modifier at critical 

conditions  

𝜑crit,𝐶𝑃 Volumetric fraction of the strong mobile-phase modifier at critical 

conditions for copolymer  
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𝜑𝑑  Actual volume fraction of strong solvent in a deformed gradient  

𝜑𝑝  Programmed volume fraction of strong solvent.  

𝜑init Fraction of strong mobile-phase modifier at the start of a solvent 

gradient  

𝜑final Fraction of strong mobile-phase modifier at the end of a solvent 

gradient 

𝜑′ Change in volume fraction of the strong mobile-phase modifier over 

the gradient duration for a linear gradient.   

𝜑sol Fraction of strong mobile-phase modifier at which a polymer 

solubilizes  

𝐏  Array containing posterior probabilities on its diagonal  

𝑃  Pressure  

𝑝𝑖  Posterior probability for the ith data point  

𝑝  Asymmetry parameter (in Chapter 7)  

𝑝  y-intercept of the 𝑆 vs. ln 𝑘0 correlation for a homologues series 

𝑝𝐼 y-intercept of the 𝑆 vs. ln 𝑘0 correlation for a homologues series for 

monomer type I  

𝑝𝐼𝐼 y-intercept of the 𝑆 vs. ln 𝑘0 correlation for a homologues series for 

monomer type II  

𝑞  Slope of the 𝑆 vs. ln 𝑘0 correlation for a homologues series  

𝑞𝐼 Slope of the 𝑆 vs. ln 𝑘0 correlation for a homologues series for 

monomer type I 

𝑞𝐼𝐼 Slope of the 𝑆 vs. ln 𝑘0 correlation for a homologues series for 

monomer type II 

𝑅  Migration rate  

  Universal gas constant (in Chapter 2)  

  Resistance (in Chapter 5)  

  Roughness (in Chapter 6 and Chapter 7)  

𝑅𝐹  Feedback resistor  

𝑅𝑔  Radius of gyration  

𝑅𝑠  Resolution  

  Fit of a model (In Chapter 6 and Chapter 7)  

𝑟  Reference signal for alignment  

�̅�  Mean of reference signal  
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𝜎  Standard deviation  

𝜎𝑑  Standard deviation of 𝑑− 

𝜎𝑡  Measure of peak width in time units  

𝜎𝑉  Measure of peak width in volume units  

𝜎𝑥  Measure of peak width in distance units  

𝑆  Slope parameter in the LSS model  

Entropy  

Pure spectral profiles of components in the sample (in Chapter 6)  

∆𝑆°  Partial molar volume change in entropy  

∆𝑆°SEC Partial molar volume change in entropy due exclusion from the 

pores  

∆𝑆°LC Partial molar volume change in entropy due to interaction with the 

stationary phase  

𝑆1  Slope parameter in QM 

𝑆2  Curvature parameter in QM 

𝑆𝐴 Slope parameter obtained before accounting for gradient 

deformation  

𝑆𝐵 Slope parameter obtained after accounting for gradient 

deformation   

𝑠  Noiseless input signal 

User-defined threshold value (in Chapter 7) 

�̂�  Estimate of the noiseless input signal     

𝑠𝑖  ith spectral profile representing the analyte 

𝑠𝑏𝑘,𝑖  ith spectral profile representing the background   

𝑇  Absolute temperature  

𝑡0  Void time 

𝑡  Time  

𝑡dwell  Dwell time  

𝑡𝑒  Elution time  

𝑡mod  Modulation time  

𝑡𝑅  Retention time  

𝑡𝑅′  Retention time adjusted with respect to the void volume  

∆𝑡𝑒  Average prediction errors of the retention time  

𝑢𝑒  Linear velocity of the analyte at the time of elution  
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𝑢𝑖  Linear velocity of an analyte 

𝑢𝑚  Linear velocity of the mobile phase  

𝑉0  Void volume  

𝑉  Volume 

𝑉dwell  Dwell volume 

𝑉𝑒  Elution volume  

𝑉𝑠  Stationary-phase volume  

𝑉𝑠′  Accessible stationary-phase volume   

𝑉𝑅  Retention volume  

𝑉𝑚  Void volume  

𝑉𝑝  Pore volume  

𝑉𝑖  Interstitial volume  

𝑉𝐺  Volume of the gradient  

𝑉𝐺,max Maximum gradient volume such that all analytes reach their critical 

composition  

𝑉out  Output voltage  

𝑉in  Input voltage  

𝐖  Weights matrix  

𝑤  Signal consisting of solely white gaussian noise  

𝑤𝑏  Peak width at the “base” of the peak  

𝑤𝑏,𝑎𝑣𝑔  Average peak width at peak “base”  

𝑤𝑖  Weight of the ith matched peak 

Weight vector (in Chapter 7)   

𝑋  Matrix of recorded data 

X𝐼  Mass fraction of monomer type I  

𝑋𝐼𝐼  Mass fraction of monomer type II 

𝑋analyte  Chemically relevant (analyte) component in matrix of recorded data 

𝑋background Background component in matrix of recorded data  

𝑋𝐶  Capacitive reactance    

𝑥𝑝  Array containing information of peaks  

�̂�𝑝  Estimate of the peak array 

�̅�  Mean of signal  

𝑥  One-dimensional array of signal data  

𝑥new  New initial estimate of the background  

 10 



Chapter 10 

278 

𝑥background Modified signal vector correspond to the background  

𝑥𝑖  ith data point in the signal (x)  

𝑍  Impedance  

𝑧  Fitted data to one-dimensional array of data  

𝑧𝑏,𝑖   The i-th data point in the estimated background 

𝑧𝑖  ith data point of fitted data (z) 
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