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Abstract
We consider the problem of robust mean and location estimation with respect to any
pseudo-norm of the form x ∈ R

d �→ ‖x‖S = supv∈S
〈
v, x

〉
where S is any symmetric

subset of Rd . We show that the deviation-optimal minimax sub-Gaussian rate for
confidence 1 − δ is

max

(
�∗(�1/2S)√

N
, sup

v∈S

∥∥∥�1/2v

∥∥∥
2

√
log(1/δ)

N

)

where �∗(�1/2S) is the Gaussian mean width of �1/2S and � the covariance of the
data. This improves the entropic minimax lower bound from Lugosi and Mendelson
(Probab Theory Relat Fields 175(3–4):957–973, 2019) and closes the gap character-
ized by Sudakov’s inequality between the entropy and the Gaussian mean width for
this problem. This shows that the right statistical complexity measure for the mean
estimation problem is the Gaussian mean width. We also show that this rate can be
achieved by a solution to a convex optimization problem in the adversarial and L2
heavy-tailed setup by considering minimum of some Fenchel–Legendre transforms
constructed using the median-of-means principle. We finally show that this rate may
also be achieved in situations where there is not even a first moment but a location
parameter exists.

Keywords Robustness · Entropy · Gaussian mean widths · Heavy-tailed data ·
Location parameter · Median-of-means · Fenchel–Legendre transform
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998 J. Depersin, G. Lecué

1 Introduction

We consider the problem of robust (to adversarial corruption and heavy-tailed data)
multivariatemean and location estimationwith respect to any pseudo-norm ν ∈ R

d �→
‖ν‖S = supμ∈S

〈
μ, ν

〉
where S is any symmetric subset of Rd (i.e. if x ∈ S then

−x ∈ S). This problem has been extensively studied during the last decade for S = Bd
2

the unit euclidean ball [8–12, 14–16, 18–20, 32, 33, 37, 43, 44]. Only little is known
for general symmetric sets S and we will mainly refer to [36] where this problem has
been handled for S which is the unit dual ball B◦ of a norm ‖·‖ (so that ‖·‖S = ‖·‖).

In [36], the authors introduced the problem of robust to heavy-tailed data estimation
of ameanvectorwith respect to anynorm.Theproblemcanbe stated as follow: given N
i.i.d. randomvectors X1, . . . , XN inRd withmeanμ∗ and covariancematrix�, a norm
‖·‖ on Rd and a confidence parameter δ ∈ (0, 1) find an estimator μ̃N (δ) and the best
possible accuracy r∗(N , δ) such that with probability at least 1− δ, ‖μ̃N (δ) − μ∗‖ ≤
r∗(N , δ). In [36], the authors use themedian-of-means principle [1, 22, 46] to construct
an estimator satisfying the following result.

Theorem 1 (Theorem 2 in [36]) There exist an absolute constant c such that the
following holds. Given a norm ‖·‖ on R

d and a confidence δ ∈ (0, 1), one can
construct μ̃N (δ) such that with probability at least 1 − δ

∥∥μ̃N (δ) − μ∗∥∥ ≤ c√
N

(

E

∥∥∥∥∥
1√
N

N∑

i=1

εi (Xi − μ∗)
∥∥∥∥∥

+ E
∥∥�1/2G

∥∥+ sup
v∈B◦

∥∥�1/2v
∥∥
2

√
log(1/δ)

)

where B◦ is the unit dual ball associated with ‖·‖, (εi ) are i.i.d. Rademacher variables
independent of the Xi ’s and G ∼ N (0, Id).

The construction of μ̃N (δ) is pretty involved and it seems hard to design an algorithm
out of it. In particular, μ̃N (δ) has not been proved to be solution to a convex optimiza-
tion problem. Theorem 1’s main interest is thus from a theoretical point of view – an
existence result – while robust multivariate mean estimation can also be interesting
from a practical point of view [17].

The rate obtained in Theorem 1 can be decomposed into two terms: a deviation
term

sup
v∈B◦

∥∥∥�1/2v

∥∥∥
2

√
log(1/δ)

where supv∈B◦
∥∥�1/2v

∥∥
2 is a weak variance term and a complexity term which is the

sum of a Rademacher complexityE
∥∥∥N−1/2∑N

i=1 εi (Xi − μ∗)
∥∥∥ and aGaussianmean

width E
∥∥�1/2G

∥∥. The intuition behind this rate is explained in [36], in particular, in
Question 1. We will however show that this rate is not the right one and that the
Gaussian mean width term is actually not necessary. Moreover, we will show that
the improved rate can be achieved by an estimator solution to a convex optimization
problem in Sect. 3 and that this holds even in the adversarial corruption model (see
Assumption 1 in Sect. 3 below for a formal definition) and even in some situations
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Optimal robust mean and location estimation via convex… 999

where there is not even a first moment; in that case, μ∗ is a location parameter and �

a scatter parameter.
The optimality of the rate in Theorem 1 has been raised in [36]. The classical

approach to answer this type of question is to consider the Gaussian case that is when
the data Xi , i ∈ [N ] are i.i.d.N (μ∗, �). This is also the strategy used in [36] to obtain
the following deviation-minimax lower bound result.1

Theorem 2 (Theorem 3 and first paragraph in p.962 in [36]) There exists an absolute
constant c > 0 such that the following holds. If μ̂ : RNd �→ R

d is an estimator such
that for all μ∗ ∈ R

d and all δ ∈ (0, 1/4),

P
N
μ∗
[∥∥μ̂ − μ∗∥∥ ≤ r∗] ≥ 1 − δ

where PN
μ∗ is the probability distribution of (Xi )i∈[N ] when the Xi are i.i.d.N (μ∗, �)

then

r∗ ≥ c√
N

(

sup
η>0

η

√
log N (�1/2B◦, ηBd

2 ) + sup
v∈B◦

∥∥∥�1/2v

∥∥∥
2

√
log(1/δ)

)

where N (�1/2B◦, ηBd
2 ) is the minimal number of translations of ηBd

2 needed to cover
�1/2B◦.

The term supv∈S
∥∥�1/2v

∥∥
2

√
log(1/δ) in the lower bound from Theorem 2 is

obtained in [36] from Proposition 6.1 in [8] which is a deviation-minimax lower
bound result holding in the one dimensional case which relies on the fact that the
empirical mean is a sufficient statistics in the Gaussian shift theorem2.

The complexity term supη>0 η

√
log N (�1/2B◦, ηBd

2 ) obtained in Theorem 2 fol-
lows from the duality theorem ofmetric entropy from [2] and a volumetric argument in
the Gauss space similar to the one used to prove dual Sudakov’s inequality in p.82-83
in [31] which has also been used to obtain minimax lower bounds based on the entropy
in [28] and [41].

In general, there is a gap between the upper bound from Theorem 1 and the
lower bound from Theorem 2 even in the Gaussian case. This gap is characterized
by Sudakov’s inequality (see Theorem 3.18 in [31] or Theorem 5.6 in [47]):

sup
η>0

η

√
log N (�1/2B◦, ηBd

2 ) ≤ cE
∥∥∥�1/2G

∥∥∥ (1)

1 The result from [36] is proved for � = Id , it is however straightforward to extend it to the general case.
2 The argument used in [36] goes from the one dimensional case studied in [8] to the d-dimensional case.
It is given in a nonformal way and may require some extra argument to hold. Indeed the estimator x∗(�̂N )

in [36] is constructed using the d-dimensional data X1, . . . , XN and not one-dimensional data such as
x∗(X1), . . . , x

∗(XN ). However, the result from [8] holds for estimators of a one dimensional mean using
one-dimensional data and not d-dimensional ones. Nevertheless, Olivier Catoni showed us how to adapt the
proof of Proposition 6.1 in [8] by using the sufficiency of the empirical mean in the Gaussian shift model
in Rd to get this deviation dependent lower bound term.
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1000 J. Depersin, G. Lecué

where G ∼ N (0, Id). Indeed, in the Gaussian case the complexity term of the rate
obtained in Theorem 1 is the Gaussian mean width, that is the right-hand term from
(1) whereas the complexity term from Theorem 2 is the entropy, that is the left-hand
term in (1).

As mentioned in Remark 3 from [36], when Sudakov’s inequality (1) is sharp then
upper and lower bounds from Theorem 1 and 2 match in the Gaussian case (in that
case the Rademacher complexity is equal to the Gaussian mean width in Theorem 1).
Sharpness in Sudakov’s inequality is however not a typical situation. In particular,
for ellipsoids, Sudakov’s bound (1) is not sharp in general and therefore the lower
bound from Theorem 2 fails to recover the classical sub-Gaussian rate for the standard
Euclidean norm case (that is for S = Bd

2 ) which is given in [37] by

√
Tr (�)

N
+
√

‖�‖op log(1/δ)
N

. (2)

Indeed, when ‖·‖ is the �d2 Euclidean norm then E
∥∥�1/2G

∥∥ = E
∥∥�1/2G

∥∥
2 ∼√

Tr(�) (see, for instance, Proposition 2.5.1 in [48]). Whereas, for the entropy of
�1/2B◦ = �1/2Bd

2 with respect to ηBd
2 , it follows from equation (5.45) in [47] that

sup
η>0

η

√
log2 N (�1/2Bd

2 , ηBd
2 ) = sup

n≥1
en+1(�

1/2)
√
n + 1 ∼ sup

n≥1,k∈[d]

√
n

2n/k

∣∣∣∣∣∣

k∏

j=1

√
λ j

∣∣∣∣∣∣

1/k

∼

√√√√√ sup
k∈[d]

k

∣∣∣∣∣∣

k∏

j=1

λ j

∣∣∣∣∣∣

1/k

(3)

where (en+1(�
1/2))n are the entropy numbers of�1/2 : �d2 �→ �d2 (see page 62 in [47]

for a definition) and λ1 ≥ · · · ≥ λd are the singular values of �. In particular, when
λ j = 1/ j , the entropy bound (3) is of the order of a constant whereas the Gaussian
mean width is of the order of

√
log d . We will fill this gap in Sect. 2 by showing a

lower bound where the entropy is replaced by the (larger) Gaussian mean width. We
will therefore obtain matching upper and lower bounds revealing that Gaussian mean
width is the right way to measure the statistical complexity for the mean estimation
problem with respect to any ‖·‖S .

The paper is organized as follows. In the next section, we obtain the deviation-
minimax optimal rate in the benchmark i.i.d. Gaussian case. In Sect. 3 we show that
the rate from Theorem 1 can be improved and that it can be achieved by a solution
to a convex program in the adversarial contamination model and in under weak or no
moment assumptions. All the proofs have been gathered in Sect. 4.
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Optimal robust mean and location estimation via convex… 1001

2 Deviationminimax rates in the Gaussian case: benchmark
sub-Gaussian rates for themean estimation with respect to ‖·‖S

In this section, we obtain the optimal deviation-minimax rates of estimation of a
mean vector μ∗ when we are given N i.i.d. X1, . . . , XN distributed like N (μ∗, �)

when � � 0 is some unknown covariance matrix. In the following, PN
μ∗ denotes the

probability distribution of (X1, . . . , XN ); it is a Gaussian measure onRNd with mean
((μ∗)
, . . . , (μ∗)
) and a block (Nd)× (Nd) covariance matrix with d ×d diagonal
blocks given by � repeated N times and 0 outside of these diagonal blocks.

Unlike classical minimax results holding in expectation or with constant probability
(see Chapter 2 in [49]) we want, in this section, the deviation parameter δ to appear
explicitly in the minimax lower bound. Moreover, this dependency of the convergence
rate with respect to δ should be of the right order given by the sub-Gaussian

√
log(1/δ)

rate and not other polynomial dependency such as
√
1/δ as one gets for the empirical

mean for L2 variables (see Proposition 6.2 in [8]). This subtle behavior of the rate in
terms of δ cannot be seen in expectation or constant deviation minimax lower bounds.
In particular, this makes such results (like Theorem 3 or 4 below) unachievable via
classical information theoretic arguments as in Chapter 2 in [49].

Fortunately, in [28], aminimax lower bound has been proved thanks to theGaussian
shift theorem which makes the deviation parameter δ appearing explicitly in the min-
imax lower bound. We use the same strategy here to prove our main result Theorem 3
below and its corollary Theorem 4 in the classical Euclidean S = Bd

2 case.
We consider the general problem of estimatingμ∗ with respect to ‖·‖S . Let S ⊂ R

d

be a symmetric set. We first obtain an upper bound result revealing the sub-Gaussian
rate. We use the empirical mean X̄ N = N−1∑

i Xi as an estimator of μ∗. Using
Borell TIS’s inequality (Theorem 7.1 in [30] or pages 56-57 in [48]) we get: for all
0 < δ < 1, with probability at least 1 − δ,

∥∥X̄ N − μ
∥∥
S = sup

v∈S
〈
v, X̄ N − μ

〉 ≤ E sup
v∈S
〈
v, X̄ N − μ

〉+ σS
√
2 log(1/δ)

where σS = supv∈S
√
E
〈
v, X̄ N − μ

〉2 is called the weak variance. It follows that with
probability at least 1 − δ,

∥∥X̄ N − μ
∥∥
S ≤ �∗(�1/2S)√

N
+ supv∈S

∥∥�1/2v
∥∥
2

√
log(1/δ)√

N
(4)

where �∗(�1/2S) = sup
(〈
G, x

〉 : x ∈ �1/2S
) = E

∥∥�1/2G
∥∥
S , for G ∼ N (0, Id), is

the Gaussian mean width of the set �1/2S. In particular, in the case where S = Bd
2 ,

we recover the sub-Gaussian rate (2) in (4). Our aim is now to show that the rate in
(4) is deviation-minimax optimal.

Theorem 3 Let S be a symmetric subset ofRd such that span(S) = R
d . If μ̂ : RNd �→

R
d is an estimator such that for all μ∗ ∈ R

d and all δ ∈ (0, 1/4],

P
N
μ∗
[∥∥μ̂ − μ∗∥∥

S ≤ r∗] ≥ 1 − δ
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1002 J. Depersin, G. Lecué

then

r∗ ≥ max

(
1

24

√
log 2

log(5/4)

�∗(�1/2S)√
N

,
supv∈S

∥∥�1/2v
∥∥
2

12

√
log(1/δ)

N

)

.

It follows from the upper bound (4) and the deviation-minimax lower bound from
Theorem 3 the subgaussian rate for the problem of mean estimation inRd with respect
to ‖·‖S is (up to absolute constants)

max

(
�∗(�1/2S)√

N
,
supv∈S

∥∥�1/2v
∥∥
2

√
log(1/δ)√

N

)

. (5)

Wemay identify the two complexity and deviation terms in the rate above. In particular,
the complexity term is measured here via the Gaussian mean width of the set �1/2S
and not its entropy as it was previously known from Theorem 2. Theorem 3 together
with (4) show that the right way to measure the statistical complexity in the problem of
mean estimation in Rd with respect to any ‖·‖S is via the Gaussian mean width. This
differs fromother statistical problems such as the regressionmodelwith randomdesign
where the entropy has been proved to be the right statistical complexity in several
examples [28, 41]. Following the later results in the regression model, Theorem 3 is a
bit unexpected because one may think that by taking an ERM over an epsilon net of
R
d (for instance μ̂ ∈ argminμ∈�

∑N
i=1 ‖Xi − μ‖p for some p > 0 and � an ε-net of

R
d with respect to ‖·‖S) for the right choice of ε one could obtain a better rate than the

one driven by the Gaussian mean width in (5); indeed, for this type of procedure, one
may expect a rate depending on complexity of the ε-net that is of the (smaller) entropy
instead of the (larger) Gaussian mean width of some localized model. Theorem 3
shows that this is not the case: even discrete ERM cannot achieve a better rate than the
one driven by the Gaussian mean width for the mean estimation problem with respect
to any pseudo-norm.

An important consequence of Theorem 3 is obtained when S = Bd
2 that is for the

classical problem of multivariate mean estimation with respect to the �d2-norm which
is the problem that has been extensively considered during the last decade. In the
following result, we recover the well-known sub-Gaussian rate (2) showing that all
the upper bound results where this rate has been proved to be achieved are actually
deviation-minimax optimal and therefore could not have been improved uniformly
over all μ∗ ∈ R

d .

Theorem 4 If μ̂ : RNd �→ R
d is an estimator such thatPN

μ∗
[∥∥μ̂ − μ∗∥∥

2 ≤ r∗] ≥ 1−δ

for all μ∗ ∈ R
d and all δ ∈ (0, 1/4], then

r∗ ≥ max

⎛

⎝ 1

24

√
log 2

2 log(5/4)

√
Tr(�)

N
,
1

12

√
‖�‖op log(1/δ)

N

⎞

⎠ .
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Optimal robust mean and location estimation via convex… 1003

Given that the empirical mean X̄ N is such that for all μ ∈ R
d with PN

μ -probability
at least 1 − δ,

∥∥X̄ N − μ
∥∥
2 ≤

√
Tr (�)

N
+
√
2 ‖�‖op log(1/δ)

N

we conclude from Theorem 4 that the sub-Gaussian rate (2) is the deviation-minimax
rate of convergence for the multivariate mean estimation problem with respect to �d2
and that it is achieved by the empirical mean. In particular, there are no statistical
procedures that can do better than the empirical mean uniformly over all mean vectors
μ∗ ∈ R

d up to absolute constants, this includes in particular all discretized versions
of X̄ N .

Remark 1 (Exact deviation-minimax rate) An inspection of the proof of Theorem 3
reveals that it is possible to identify the exact deviation-minimax rate of convergence
for the mean estimation problem with respect to any pseudo-norm for Gaussian data:
for δ ∈ (0, 1), this exact rate is given by qS

1−δ/
√
N where

qS
1−δ := q1−δ

(∥∥∥�1/2G
∥∥∥
S

)
= inf

(
q ∈ R : P

[∥∥∥�1/2G
∥∥∥
S

≤ q
]

≥ 1 − δ
)

(6)

and G ∼ N (0, Id). Indeed, it is clear that the empirical mean X̄ N achieves this rate
since X̄ N − μ∗ ∼ �1/2G/

√
N and the minimax lower bound follows from the proof

of Theorem 3 (more details are provided in Sect. 4).
An interesting consequence of (6) and the deviation-minimax optimality of the

empirical mean and of the sub-Gaussian rate from Theorem 4 is the following compu-
tation of a quantile: for σ1 ≥ · · · ≥ σd ≥ 0 and g1, . . . , gd i.i.d.N (0, 1), the quantile

of order 1 − δ of
(∑d

j=1 σ j g2j

)1/2
is such that

inf

⎛

⎜
⎝q ∈ R : P

⎡

⎢
⎣

⎛

⎝
d∑

j=1

σ j g
2
j

⎞

⎠

1/2

≤ q

⎤

⎥
⎦ ≥ 1 − δ

⎞

⎟
⎠ ∼

√√√√
d∑

j=1

σ j +√
σ1 log(1/δ).

3 Convex programs

In this section, we introduce statistical procedures which are solutions to convex
programs and which can achieve the rate from Theorem 1 without the unnecessary
Gaussian mean width term E

∥∥�1/2G
∥∥. We also show that these procedures handle

adversarial corruption and may still perform optimally in some situations where there
is not even a first moment.
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1004 J. Depersin, G. Lecué

3.1 Construction of the Fenchel–Legendreminimum estimators.

Definition 1 Let S be a subset of Rd and f : R
d �→ R. The Fenchel–Legendre

transform of f on S is the function f ∗
S defined for all μ ∈ R

d by f ∗
S (μ) =

supv∈S
(〈
μ, v

〉− f (v)
)
.

For our purpose, the main property of a Fenchel–Legendre transform we will use is
that it is a convex function as it is the maximal function of the family (μ ∈ R

d �→〈
μ, v

〉− f (v) : v ∈ S) of affine functions.
We are now defining two examples of functions such that by taking the minimum

of their Fenchel–Legendre transform over S will lead to optimal estimators ofμ∗ with
respect to ‖·‖S . The construction of these two functions are based on the median-of-
means principle: the dataset {X1, . . . , XN } is split into K equal size blocks of data
indexed by (Bk)k forming an equipartition of [N ]. On each block, an empirical mean is
constructed X̄k = |Bk |−1∑

i∈Bk Xi . The two functions we are considering are using

the K bucketed means (X̄k)k and are defined, for all v ∈ R
d , by

f (v) = 1

|IK |
∑

k∈IK

〈
X̄k, v

〉∗
(k) and g(v) = Med(

〈
X̄k, v

〉
) = 〈

X̄k, v
〉∗(

K+1
2

) (7)

where if ak = 〈
X̄k, v

〉
, k ∈ [K ] then 〈X̄k, v

〉∗
(k), k ∈ [K ] are the rearrangement of (ak)k

such that a∗
(1) ≤ · · · ≤ a∗

(K ) (this is the rearrangement of the values ak’s themselves
and not of their absolute values) and

IK =
[
K + 1

4
,
3(K + 1)

4

]
=
{
K + 1

2
± k : k = 0, 1, . . . ,

K + 1

4

}

is the inter-quartiles interval—without loss of generality we assume that K +1 can be
divided by 4. In other words, f (v) is the average sum over all inter-quartile values of
the vector (

〈
X̄k, v

〉
)k∈[K ] and g(v) is the median of this vector. Note that both functions

f and g are homogeneous i.e. f (θv) = θ f (v) and g(θv) = θg(v) for every v ∈ R
d

and θ ∈ R and in particular they are odd functions; two facts we will use later.
We are now considering the Fenchel–Legendre transform of the functions f and g

over a symmetric set S:

f ∗
S : μ ∈ R

d �→ sup
v∈S

(〈
μ, v

〉− f (v)
)
and g∗

S : μ ∈ R
d �→ sup

v∈S
(〈
μ, v

〉− g(v)
)
. (8)

As mentioned previously the two functions f ∗
S and g∗

S are convex functions. We are
now using them to define convex programs whose solutions will be proved to be robust
and sub-Gaussian estimators of the mean / location vector μ∗ with respect to ‖·‖S :

μ̂
f
S ∈ argmin

μ∈Rd
f ∗
S (μ) and μ̂

g
S ∈ argmin

μ∈Rd
g∗
S(μ). (9)
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Optimal robust mean and location estimation via convex… 1005

In the one dimensional case, one can check that for S = [−1, 1], μ
g
S is the median

of the bucketed means whereas μ̂
f
S is the average of the interquartile values of the

bucketed means.

Remark 2 (Comparison with the trimmed mean from [40] ) Authors of [40] propose
a multivariate trimmed mean for robust estimation. They do not use bucketed mean
and take the trimmed mean of the original data points, removing a varying fraction of
the sample, that fraction depends on δ and |O|. In contrast, μ̂ f

S always use the same
fraction (half) of the bucketed mean: what is varying here is rather the size of the
blocks.

For some special choices of S, the Fenchel–Legendre minimization estimator μ̂
g
S

coincides with some classical procedures. This is for instance the case when S = Bd
1

(the unit ball of the �d1 -norm) or S = Bd
2 . Indeed, when S = Bd

1 , μ̂
g
S is the coordinate-

wise median-of-means:

μ̂
g
S = argmin

μ=(μ j )∈Rd
max
j∈[d]

∣∣μ j − Med
(〈
X̄k, e j

〉)∣∣ = (
Med

(〈
X̄k, e j

〉) : j ∈ [d]) (10)

where (e j )dj=1 is the canonical basis of R
d , because ‖·‖S = ‖·‖conv(S) where conv(S)

is the convex hull of S and so one may just take S = {±e j : j ∈ [d]}. It is therefore
possible to derive deviation-minimax optimal bounds for the coordinate-wise median-
of-means with respect to the �d∞-norm from general upper bounds on μ̂

g
S since in that

case ‖·‖S = ‖·‖∞.
In the case S = Bd

2 (that is for themean/location estimation problemwith respect to
�d2), the Fenchel–Legendre minimum estimator μ̂

g
S is a minmax MOM estimator [29].

This connection allows towrite μ̂
g
S (as well as μ̂

f
S ) as a non-constraint estimator, it also

shows that this minmax MOM estimator is actually solution to a convex optimization
problem and how minmax MOM estimator can be generalized to other estimation
risks.

Minmax MOM estimators have been introduced as a systematic way to construct
robust and sub-Gaussian estimators in [29]. They have been proved to be deviation-
minimax optimal for the mean estimation problem in [33] with respect to ‖·‖2. Their
definition only requires to consider a loss function; here we take for all μ ∈ R

d ,
�μ : x ∈ R

d �→ ‖x − μ‖22 and the minmax MOM estimator is then defined as

μ̃ ∈ argmin
μ∈Rd

sup
ν∈Rd

Med
(
PBk (�μ − �ν) : k ∈ [K ]) (11)

where PBk is the empirical measure on the data in block Bk . The minmax MOM
estimator μ̃ was proved to achieve the sub-Gaussian rate in (2) with confidence 1− δ

when the number of blocks is K ∼ log(1/δ) and K is larger than the number of
adversarial outliers (i.e. K � |O| where |O| will denote later the number of outliers)
in [33]. An adaptive to K version of this estimator via the Lepski’s method may also
be constructed at the price of knowing Tr(�) and ‖�‖op [15, 16].

Even though the minmax formulation of μ̃ suggests a robust version of a
descent/ascent gradient method over the median block (see [29, 33] for more details),
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no proof of convergence of this algorithm is known so far. Moreover, the main draw-
back of the minmax MOM estimator seems to be that it is solution of a non-convex
optimization problem and may therefore be likely to be rather difficult to compute in
practice. In the next result, we show that this is not the case since the minmax MOM
estimator (11) is in fact equal to μ̂

g
S for S = Bd

2 and it is therefore solution to a convex
optimization problem.

Proposition 1 The minmaxMOM estimator μ̃ defined in (11) satisfies μ̃∈ argminμ∈Rd

g∗
Bd
2
(μ). The minmax MOM estimator (11) is therefore solution to a convex optimiza-

tion problem.

Proof We show that μ̃ ∈ argminμ∈Rd sup‖v‖2=1 Med(
〈
X̄k − μ, v

〉
). We consider the

quadratic/multiplier decomposition of the difference of loss functions: for all μ, ν ∈
R
d and x ∈ R

d , we have (�μ − �ν)(x) = ‖x − μ‖22 − ‖x − ν‖22 = −2
〈
x − μ,μ −

ν
〉− ‖μ − ν‖22. Hence, for all μ ∈ R

d , we have

sup
ν∈Rd

Med
(
PBk (�μ − �ν)

) = sup
ν∈Rd

(
−2Med(

〈
X̄k − μ,μ − ν

〉
) − ‖μ − ν‖22

)

= sup
‖v‖2=1

sup
θ≥0

(
2θ Med(

〈
X̄k − μ, v

〉
) − θ2

)
= sup

‖v‖2=1

(
Med(

〈
X̄k − μ, v

〉
)
)2

=
(

sup
‖v‖2=1

Med(
〈
X̄k − μ, v

〉
)

)2

.

We conclude since

argmin
μ∈Rd

(

sup
‖v‖2=1

Med(
〈
X̄k − μ, v

〉
)

)2

= argmin
μ∈Rd

sup
‖v‖2=1

Med
(〈
X̄k − μ, v

〉)
.

��

It follows from Proposition 1 that the minmax MOM estimator μ̃ is solution to a
convex optimization problem. This fact is not obvious given the definition of μ̃ in (11).

Proposition 1 suggests a new formulation for μ̂
g
S and μ̂

f
S . It is indeed possible to

write these estimators as regularized estimators instead of their original constraint
formulation (note that the Fenchel–Legendre transforms in (8) are suprema over S
and are therefore constraint optimization problems). We now show that we may write
them as suprema over all Rd if we add an ad hoc regularization function.

Let us introduce the two following functions which may be seen as regularized
versions of the two f and g functions from (7): for all ν ∈ R

d ,

FS(ν) = f (ν) + ‖ν‖2S◦
4

and GS(v) = g(ν) + ‖ν‖2S◦
4

(12)
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where ν �→ ‖ν‖S◦ = sup(
〈
x, ν

〉 : ‖ν‖S ≤ 1) is the dual norm of ‖·‖S .We also consider
their Fenchel–Legendre transforms over the entire set Rd : for all μ ∈ R

d ,

F∗
S (μ) = sup

ν∈Rd

(〈
μ, ν

〉− FS(ν)
)
and G∗

S(μ) = sup
ν∈Rd

(〈
μ, ν

〉− GS(ν)
)
.

The next result shows that the later two Fenchel–Legendre transforms can be used
to define the two estimators μ̂

f
S and μ̂

g
S .

Proposition 2 Let S be a symmetric subset of Rd such that span(S) = R
d . We have

μ̂
f
S ∈ argminμ∈Rd F∗

S (μ) and μ̂
g
S ∈ argminμ∈Rd G∗

S(μ).

Proof We prove the result only for μ̂
g
S since it is almost the same for μ̂

f
S . The proof

of Proposition 2 for μ̂
g
S is similar to the one of Proposition 1 where the �2-norm is

replaced by ‖·‖S◦ . We have for all μ ∈ R
d

G∗
S(μ) = sup

ν∈Rd

(

−Med(
〈
X̄k − μ, ν

〉
) − ‖ν‖2S◦

4

)

= sup
‖v‖S◦ =1

sup
θ>0

(
−Med(

〈
X̄k − μ

〉
, θv) − θ2

4

)

= sup
‖v‖S◦ =1

(
Med

(〈
μ − X̄k , v

〉))2 = sup
v∈conv(S)

(
Med

(〈
μ − X̄k , v

〉))2

=
(

sup
v∈conv(S)

Med(
〈
X̄k − μ, v

〉
)

)2

where we used that conv(S) is the unit ball of ‖·‖S◦ i.e. conv(S) = {v ∈ R
d : ‖v‖S◦ ≤

1} and the symmetry of S. We conclude since

argmin
μ∈Rd

(

sup
v∈conv(S)

Med(
〈
X̄k − μ, v

〉
)

)2

= argmin
μ∈Rd

sup
v∈S

Med
(〈
X̄k − μ, v

〉)
.

��
As a consequence of Proposition 2, one can write the two estimators μ̂

f
S and μ̂

g
S

as solutions to unconstrained minmax optimization problems like the minmax MOM
estimator (11) and in particular, one may design an alternating ascent/descent sub-
gradient algorithm similar to the one from [29]—we expect the one associated with
μ̂

f
S which uses half of the dataset at each iteration to be more efficient than the one

associatedwith μ̂
g
S which uses only the N/K data in themedian block at each iteration.

That is the reason why we provide in Algorithm 1 this algorithm only for

μ̂
f
S ∈ argmin

μ∈Rd
sup
ν∈Rd

⎛

⎝〈μ, ν
〉− 1

|IK |
∑

k∈IK

〈
X̄k, ν

〉∗
(k) − ‖ν‖2S◦

4

⎞

⎠ .

We also recall that S◦ is the dual body of conv(S) and that by the Danskin’s theorem
the subdifferential of ‖·‖S◦ at ν ∈ R

d when S◦ is a compact and non empty set is given
by the convex hull of all x ∈ S◦ such that ‖ν‖S◦ = 〈

x, ν
〉
.
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input : the data X1, . . . , XN , a number K of blocks, two decreasing steps size
sequences (ηt )t , (θt )t ⊂ R

∗+ and ε > 0 a stopping parameter
output: A robust estimator of the mean μ

1 Construct an equipartition B1 � · · · � BK = {1, . . . , N } at random
2 Construct the K empirical means X̄k = (N/K )

∑
i∈Bk Xi , k ∈ [K ]

3 Compute μ̃(0) the coordinate-wise median-of-means and put μ(0) = μ̃(0) and
ν(0) = μ̃(0)

4 while
∥∥μ(t) − μ(t+1)

∥∥
S ≥ ε do

5 Construct an equipartition B1 � · · · � BK = {1, . . . , N } at random
6 Construct the K empirical means X̄k = (N/K )

∑
i∈Bk Xi , k ∈ [K ]

7 Find the inter-quartile block numbers k1, . . . , k(K+1)/2 ∈ [K ] such that

f (ν(t)) = 1

|IK |
(K+1)/2∑

j=1

〈
X̄k j , ν

(t)〉.

Construct g(t) a subgradient of ‖·‖S◦ at ν(t) and the ascent direction

∇(t+1)
ν = μ(t) − 1

|IK |
(K+1)/2∑

j=1

X̄k j −
∥∥ν(t)

∥∥
S g

(t)

2
.

Update ν(t+1) ← ν(t) + ηt∇(t+1)
ν .

8 Make one descent step: μ(t+1) ← μ(t) − θtν
(t+1).

9 end
10 Return μ(t+1)

Algorithm 1: An alternating ascent/descent algorithm for the robust mean esti-
mation problem with respect to ‖·‖S with randomly chosen blocks of data at each
step.

In a recentwork [3], the author introduces aminmax estimator in a general separable
Banach space having the following form in the finite dimensional case

μ̂ ∈ argmin
μ∈Rd

sup
ν∈rN conv(S)

r−1
N

∣∣∣∣∣
〈
μ, ν

〉− 1

N

N∑

i=1

sin(
〈
ν, Xi

〉
)

∣∣∣∣∣
(13)

where rN has to depend on δ, � as well as ‖μ∗‖S but can be chosen in a data-driven
way using a Lepski’s method. This estimator is proved to achieve the same rate as
in Theorem 5 below up to a mean-dependent term of higher order incurred due the
lack of shift-equivariance. The author of [3] also underlines that μ̂ is solution to a
convex optimization. However, and this is also the case for estimators μ̂

g
S and μ̂

f
S ,

convexity of the objective function is not enough to insure convergence guarantees of
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Optimal robust mean and location estimation via convex… 1009

a related algorithm such as the one in Algorithm 1 or other saddle point algorithms.
As in [3], we also leave the problem of finding a polynomial time algorithm for robust
mean estimation with respect to any norm opened, we refer to [45] where robust mean
estimation in a broader algorithmic context is considered.

Remark 3 Tournament estimators from [38, 39] and theminmaxMOMestimator from
[29, 34] share similar ideas: tournament estimators are like LeCam test estimators and,
following thework of [4],we can derive aρ-aggregationmethodout of itwhich appears
to be a minmax MOM estimator (see [29]) in the setup of MOM estimators. While
those three estimators lead to the same optimal results, the different formulations used
to define is key to the construction of algorithms. To give an example from a different
field, in compressed sensing, the minimum �0-norm andminimum �1-norm estimators
are equal with high probability for Gaussian measurements. However, the minimum
�0-norm estimator does not suggest any helpful algorithm (a descent algorithm for the
min-�0 estimator is likely to be with an exponential time complexity time) whereas
meaningful algorithms can be used to approach a minimum �1-norm estimator; for
instance, it can be written as Linear Programming. The same way, the minmax MOM
suggests algorithms one of them was tested in [29, 34], this is something that had
not been suggested by previous formulations such as the tournament or the Le Cam
test estimators. What we found here brings a new brick to the picture by showing
that the minmax MOM is in fact solution to a convex program (see Proposition 1), a
fact which was not obvious given the original definition of this estimator. This new
convex formulation of the minmax MOM estimator also suggests a generalization to
any norm: this is what we did here with the Fenchel–Legendre transform estimators,
moreover, given that this estimator is also aminmaxMOMestimator it thereby suggests
algorithms such as the one in Algorithm 1.

3.2 The adversarial corruptionmodel and twomodels for inliers.

In this section, we introduce the assumptions under which we will obtain some statis-
tical upper bounds for the Fenchel–Legendre minimum estimators introduced above.
We are considering two types of assumptions: one for the outliers which will be the
adversarial corruption model and one for the inliers which will be either the existence
of a second moment or a regularity assumption on a family of cumulative distribution
functions around 0. We start with the adversarial corruption model.

Assumption 1 There exists N independent random vectors (X̃i )
N
i=1 inR

d . The N ran-
dom vectors (X̃i )

N
i=1 are first given to an “adversary” who is allowed to modify up

to |O| of these vectors. This modification does not have to follow any rule. Then, the
“adversary” gives the modified dataset (Xi )

N
i=1 to the statistician. Hence, the statisti-

cian receives an “adversarially” contaminated dataset of N vectors inRd which can be
partitioned into two groups: the modified data (Xi )i∈O, which can be seen as outliers
and the “good data” or inliers (Xi )i∈I such that ∀i ∈ I, Xi = X̃i . Of course, the
statistician does not know which data has been modified or not so that the partition
O ∪ I = {1, . . . , N } is unknown to the statistician.
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In the adversarial contamination model from Assumption 1, the set O ⊂ [N ] can
depend arbitrarily on the initial data (X̃i )

N
i=1; the corrupted data (Xi )i∈O can have

any arbitrary dependence structure; and the informative data (Xi )i∈I may also be
correlated (for instance, it is, in general, the case when the |O| data X̃i with largest
�d2-norm are modified by the adversary). The adversarial corruption model covers the
Huber ε-contamination model [21] and also the O ∪ I framework from [27, 29, 34].

Assumption 1 does not grant any property of the inliers data (X̃i )i∈[N ] except that
they are independent. We will obtain a general result under only Assumption 1 in
Sect. 4. However, to recover convergence rates similar to the one in Theorem 1 or the
sub-Gaussian rate in (5), we will grant some assumptions on the inliers as well. We
are now considering two assumptions on the inliers which are of different nature.

The two assumptions on the inliers we are now considering are related to a subtle
property of the median-of-means (MOM) principle which somehow benefits from its
two components: the empirical median and the empirical mean. Indeed, MOM is en
empirical median of empirical means and so if we refer to the classical asymptotic
normality (a.n.) results of the empirical mean and the empirical median, the first
one holds under the existence of a second moment and the second one holds under
the assumption that the cdf is differentiable at the median with positive derivative
at the median (see Corollary 21.5 in [50]). We therefore recover these two types of
assumptions when we work with estimators using the MOM principle. A nice feature
of MOM based estimators is that their estimation results hold under either one of the
two conditions and do not require the two assumptions to hold simultaneously. We can
therefore consider the two assumptions independently and get two estimation results
for the Fenchel–Legendre minimum estimators introduced above (which are based on
the MOM principle). We start with the moment assumption.

Assumption 2 The N independent random vectors (X̃i )
N
i=1 have mean μ∗ and there

exists a SDP matrix � ∈ R
d×d such that E(X̃i − μ∗)(X̃i − μ∗)
 � �.

Most of the statistical bounds obtained on MOM based estimators have focused
on the heavy-tailed setup and have therefore consider Assumption 2 as their main
assumption. This is the ’empirical mean component’ of the MOM principle which
has been the most exploited so far. It is however also possible to use the ’empirical
median component’ of the MOM principle to get statistical bounds in cases where a
first momentmay not exist. In that case,μ∗ is called a location parameter,� is called a
scale parameter and a natural assumption is similar to the one used to get the a.n. of the
empirical median, that is an assumption on the cdf of the normalized bucketed means
at / around (in the non-asymptotic version) themedian adapted to themultidimensional
and non-asymptotic setup. We are now introducing such an assumption.

Assumption 3 The inliers data (X̃i )
N
i=1 are i.i.d.. There exists μ∗ ∈ R

d and two
absolute constants c0 > 0 and c1 > 0 such that the following holds: for all v ∈ S and
all 0 < r ≤ c0, HN ,K ,v(r) ≤ 1/2 − c1r where

HN ,K ,v(r) = P

⎡

⎣ 1√
N/K

N/K∑

i=1

〈
X̃i − μ∗, v

〉
> r

⎤

⎦ . (14)
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When S is a symmetric set, if we let r tends to zero in Assumption 3, we see that for
all v ∈ S,

〈
μ∗, v

〉
is amedian of

√
K/N

∑N/K
i=1

〈
X̃i , v

〉
. Hence,μ∗ should be considered

as a multivariate location / median parameter of
√
K/N

∑N/K
i=1 X̃i and not as a mean

since we do not assume the existence of any moment in Assumption 3.
A typical example where Assumption 3 holds is when S = Sd−1

2 (that is for the
location estimation problem with respect to the Euclidean �d2 norm) and the X̃i ’s
are rotational invariant that is when for all v ∈ Sd−1

2 ,
〈
X̃1 − μ∗, v

〉
has the same

distribution as
〈
X̃1 − μ∗, e1

〉
where e1 = (1, 0, . . . , 0) ∈ R

d . In that case, X̃1 has
the same distribution as μ∗ + RU where R is a real-valued random variable on R+
independent of U a random vector uniformly distributed over Sd−1

2 . In that case and
for K = N , for all v ∈ Sd−1

2 and all r ∈ R,

HN ,K=N ,v(r) = H(r) := P[R〈U , e1
〉 ≥ r ]

=
∫ +∞

r
f (x)dx where f : x ∈ R �→ Cd

∫ +∞

|x |
1

u

(
1 − x2

u2

) d−3
2

dPR(u),

PR is the probability distribution of R and Cd is a normalization constant which
can be proved to satisfy

√
d ≤ Cd ≤ 6

√
d (see for instance, Chapter 4 in [7]).

In particular, it follows from the mean value theorem that for all r ≥ 0, H(r) ≤
H(0) −min0≤x≤r f (x)r = 1/2− f (r)r . Therefore, Assumption 3 holds in that case
when there exists constants c′

0, c
′
1 > 0 such that f (c′

0) ≥ c′
1, which in turn holds when

there exists constants c0, c1 > 0 such that H(c0) ≤ 1/2 − c1.
Furthermore, we have, for all t > 0

P[R〈U , e1
〉 ≥ c0] ≤ P[〈U , e1

〉 ≥ t/
√
d] + 1

2
P[R ≥ c0

√
d/t] ≤ e−t2/2 + 1

2
P[R ≥ c0

√
d/t],

where the classical second inequality can be found for instance in [53], Chapter 5. So
if for some constants c̃0, c̃1 > 0, P[R ≥ c̃0

√
d] ≤ 1 − c̃1, then Assumption 3 holds.

This is for instance the case, when R is distributed like ‖G‖2 for G ∼ N (0, Id) by
Borell-TIS inequality, but as well when R is the positive part of a standard Cauchy
variable for instance. As a consequence, Assumption 3 has nothing to do with the
existence of moments and it may hold even when there is not a first moment and even
for K = N .

Another example where Assumption 3 holds, that we will use in the following to
obtain statistical bounds for the coordinate-wise median of means for the location
problem is when S = {±e j : j ∈ [d]} and X̃1 = μ∗ + Z where Z = (z j )dj=1

is random vector in R
d with coordinates z1, . . . , zd having a symmetric around 0

Cauchy distribution. In that case, X̃1 does not have a first moment and μ∗ is a location
parameter as the center of symmetry of the distribution of X̃1. We have for all j ∈ [d],

HN ,K=N ,±e j (r) = P

[〈
X̃1 − μ∗,±e j

〉 ≥ r
]

= P[z j ≥ r ]

=
∫ +∞

r

dx

π(1 + x2)
≤ 1

2
− r

π(1 + r2)
≤ 1

2
− r

2π

for all 0 < r ≤ 1. Therefore, Assumption 3 holds in that case as well.
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Let us provide a final example where averaging is necessary in Assumption 3.
We consider the case d = 1 and the density function (with respect to the Lebesgue
measure on R) t ∈ R �→ f (t) = (3/2)t2 I (|t | ≤ 1). We assume that X̃1 is distributed
according to f . In that case, we have for K = N , v = 1 and all 0 < r < 1,
HN ,K=N ,1(r) − 1/2 = − ∫ r0 f (t)dt = −r3/2 and there are no absolute constants
c0 > 0 and c1 > 0 such that for all 0 < r ≤ c0, HN ,K=N ,1(r) ≤ 1/2 − c1r . In other
words, Assumption 3 does not hold for K = N . However, g := t �→ √

2( f ∗ f )(
√
2t)

is a density function of (X̃1 + X̃2)/
√
2 which is such that g(t) = 27/5 + O(t) when

t ∼ 0. As a consequence, one can find an absolute constant c0 > 0 such that for
all 0 < r ≤ c0, HN ,K=N/2,1(r) ≤ 1/2 − (27/10)r and so Assumption 3 holds for
K = N/2. We can see in this simple one-dimensional example that averaging may
be needed in order to satisfy Assumption 3. The reason behind this observation is
that in this example the density at 0 of X̃1 is zero (and so the classical assumption of
asymptotic normality of empirical median does not hold) whereas it is equal to 27/5
(an absolute non zero constant) for (X̃1 + X̃2)/

√
2 (and so normality asymptotic of

the empirical median holds). It would be interesting to see if one can find an example
extending the previous one for any value of K ; that is to find a density function for X̃1
so that the density function at zero of (X̃1 + · · · + X̃k)/

√
k is zero for all 1 ≤ k ≤ n

and the one of (X̃1+· · ·+ X̃n+1)/
√
n + 1 is positive. We leave this problem for future

research. However, note that if such an example exists then the
√
N/K normalization

used in Assumption 3 may not be the correct one, in particular under a L1+γ moment
assumption for some 0 < γ < 1, the right normalization should be like (N/K )1/(1+γ )

and the resulting rates may not be anymore sub-Gaussian rates.

3.3 Statistical bounds for �̂f
S and �̂g

S

In this section, we obtain estimation bounds with respect to ‖·‖S for μ̂
f
S and μ̂

g
S in

the adversarial contamination model with either the L2 moment Assumption 1 or the
regularity at 0 Assumption 3.

Estimation properties of μ̂
f
S and μ̂

g
S under Assumption 2.

In this section, we obtain high probability estimation upper bounds satisfied by μ̂
f
S

and μ̂
g
S with respect to ‖·‖S in the adversarial contamination and heavy-tailed inliers

model. The rate of convergence is given by the quantity

r∗
S = max

⎛

⎝ 64√
N
E

∥∥∥∥∥∥

1√
N

∑

i∈[N ]
εi (X̃i − μ∗)

∥∥∥∥∥∥
S

, sup
v∈S

∥∥∥�1/2v

∥∥∥
2

√
64K

N

⎞

⎠ . (15)

The key metric property satisfied by the two Fenchel–Legendre transforms f ∗
S and

g∗
S in the adversarial contamination and heavy-tailed inliers model is the following

isomorphic result.

Lemma 1 Grant Assumption 1 and Assumption 2. Let S be a symmetric subset of Rd .
Assume that |O| < K/16. With probability at least 1−exp(−K/512), for allμ ∈ R

d ,∣∣g∗
S(μ) − ‖μ − μ∗‖S

∣∣ ≤ g∗
S(μ

∗) ≤ r∗
S and

∣∣ f ∗
S (μ) − ‖μ − μ∗‖S

∣∣ ≤ f ∗
S (μ) ≤ r∗

S .
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Lemma 1 shows that if ‖μ − μ∗‖S ≥ 2r∗
S then ‖μ − μ∗‖S ≤ g∗

S(μ) ≤
2 ‖μ − μ∗‖S and the same holds for f ∗

S . It means that both g∗
S and f ∗

S are two convex
functions equivalent (up to absolute constants) to μ �→ ‖μ − μ∗‖S on R

d\(2r∗
S)BS ,

where BS is the unit ball associated with ‖·‖S and, on (2r∗
S)BS , they are both smaller

than 2r∗
S . Hence, both g∗

S(· − μ∗) and f ∗
S (· − μ∗) provide a good approximation of

the metric space (Rd , ‖·‖S). In particular, any minimum of g∗
S and f ∗

S will be close
(up to r∗

S ) to a minimum of μ �→ ‖μ − μ∗‖S which is μ∗. This explains the statistical
properties of μ̂

f
S and μ̂

g
S : from Lemma 1,

∥∥∥μ̂ f
S − μ∗

∥∥∥
S

≤ f ∗
S (μ̂

f
S ) + f ∗

S (μ∗) ≤ 2 f ∗
S (μ∗) ≤ 2r∗

S

and the same holds for μ̂
g
S . This leads to the following result.

Theorem 5 Grant Assumption 1 and Assumption 2. Let S be a symmetric subset of
R
d and r∗

S be defined in (15). For all K > 16|O|, with probability at least 1 −
exp(−K/512),

∥∥∥μ̂ f
S − μ∗

∥∥∥
S

≤ 2r∗
S and

∥∥μ̂g
S − μ∗∥∥

S ≤ 2r∗
S .

The rate r∗
S obtained in Theorem 5 can be split into two terms: the complexity term

given by theRademacher complexity and a deviation termexhibiting theweak variance
term as in the Gaussian case. Compare with Theorem 1 from [36], this result shows
that the Gaussian mean width term appearing in Theorem 1 is actually not necessary
and may be responsible of a suboptimal rate since one can construct examples where
the Gaussian mean width is strictly larger than the Rademacher complexity. One such
example can be seen when N = 1 (because of the CLT, the gap is better seen for
N = 1), S = Bd

1 , μ∗ = 0 and � = Id for which the Gaussian mean width is
E
∥∥�1/2G

∥∥
S = E sup‖x‖1≤1

〈
x,G

〉 ∼ √
log d whereas the Rademacher complexity is

E

∥∥∥∥∥
1√
N

N∑

i=1

εi (Xi − μ∗)
∥∥∥∥∥
S

= E sup
‖x‖1≤1

ε1
〈
X1, x

〉 = E ‖X1‖∞ ∼ 1

for instance when X1 = (η j )
d
j=1 and η1, . . . ηd are independent variance one and

bounded random variables.
Theorem 5 also shows that this improved rate can be obtained by a procedure

solution to a convex program and that it can also handle adversarial corruption.
When S = Bd

2 , we recover the classical sub-Gaussian rate because in that case the
Rademacher complexity term in r∗

S is less or equal to
√
Tr(�) [24]. In particular, since

μ̂
g
S is the minmax MOM estimator in that case, we recover the main result from [33].

Estimation properties of μ̂
g
S under Assumption 3.

In this section, we consider some cases where a first moment may not exist; in
that case, μ∗ is a location parameter so that Assumption 3 holds. Unlike in Lemma 1
where we used the Rademacher complexities as a complexity measure, in this proof,
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the complexity measure we are using is the Vapnik and Chervonenkis (VC) dimension
[51, 52] of a classF of Boolean functions, i.e. of functions fromR

d to {0, 1}. The rate
of convergence we obtain in that case is given by

r� = C0

c1

(√
VC(S∗

0 )

N
+
√

u

N

)

+ |O|
c1

√
K N

(16)

where S∗
0 is the set of extreme points of S (that is any point in Swhich cannot bewritten

as the mid point of any two different points in S), c1 is the absolute constant from
Assumption 3, C0 the absolute constant from (32) and u > 0 a confidence parameter.
We abusively call VC-dimension of a set C ⊂ R

d the VC-dimension of the set of
half-spaces generated by the vectors of C .

The following result is an isomorphic result satisfied by the Fenchel–Legendre
transforms g∗

S under Assumption 3. It is similar to the one of Lemma 1 but with the
rate r�.

Lemma 2 Let S be a symmetric subset of Rd . Let S∗
0 denote the set of extreme points

of S. Grant Assumptions 1 and 3 for some K ∈ [N ]. Let u > 0. Assume that
C0
(√

VC(S∗
0 )/K + √

u/K
)+ |O|/K ≤ c0c1 where c0 is the constant from Assump-

tion 3. With probability at least 1−exp(−u), for allμ ∈ R
d ,
∣∣g∗

S(μ) − ‖μ − μ∗‖S
∣∣ ≤

r�.

Asexplained belowLemma1, a result such asLemma2maybeused to upper bound the
‖·‖S distance between μ̂

g
S , a minimum of g∗

S , andμ∗, a minimum ofμ �→ ‖μ − μ∗‖S .
This yields the following result.

Theorem 6 Let S be a symmetric subset of Rd . Grant Assumption 1 and Assump-
tion 3 for some K ∈ [N ]. Let u > 0 and assume that C0

(√
VC(S∗

0 )/K + √
u/K

)+
|O|/K ≤ c0c1 where c0 is the constant from Assumption 3. With probability at least
1 − exp(−u),

∥∥μ̂g
S − μ∗∥∥

S ≤ 2r� where r� is defined in (16).

Unlike Theorem 5, Theorem 6 may hold even when a first moment does not exist.
The result from Theorem 6 holds for all 0 < u � K whereas Theorem 5 holds only for
u = K (even though one may use a Lepski’s adaptive scheme to choose adaptively K
in that case, [15, 16]). The price for adversarial corruption in (16) is between |O|/N
(for K ∼ N ) and

√|O|/N (for K ∼ |O|). It therefore depends on the choice of K for
which Assumption 3 holds. As shown after Assumption 3 for spherically symmetric
random variables one can take K = N and so the best possible price |O|/N for
adversarial corruption may be achieved even when a first moment does not exist. If
one needs some averaging effect so that Assumption 3 holds and Theorem 6 applies,
then one should take K as small as possible that is K ∼ |O| and then

√|O|/N will
be the price for adversarial corruption as in the L2 case described in Theorem 6.

Sub-Gaussian rates under weak or no moment assumption It is possible to recover
(up to absolute constants) the sub-Gaussian rate (5) in Theorem 5 for K ∼ log(1/δ)
when the Rademacher complexity term from (15) and the Gaussian mean width from
(5) satisfy
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E

∥∥∥∥∥∥

1√
N

∑

i∈[N ]
εi (X̃i − μ∗)

∥∥∥∥∥∥
S

� �∗ (�1/2S
)

. (17)

Such a result (i.e. Rademacher complexity is smaller than the Gaussian mean width up
to absolute constants) depends on the set S and the number of moments granted on the
X̃i ’s as well as the sample size. It obviously holds when the X̃i ’s are i.i.d.N (μ∗, �),
so that we recover the deviation-minimax optimal sub-Gaussian rate (5) in that case.
It is also true when the X̃i ’s are sub-Gaussian vectors. There are other situations under
weaker moment assumption where (17) holds.

For instance, when S = Bd
2 , (17) holds under only a L2-moment assumption (see

[24]). It also holds for S = Bd
1 when the X̃i ’s are isotropic with coordinates having

log d sub-Gaussian moments (i.e.
∥∥∥
〈
X̃i , e j

〉∥∥∥
L p

≤ L
√
p for all 1 ≤ p ≤ log d and

j ∈ [d]) and N � log d. Together with (10) and Theorem 5, this implies that the
coordinate-wise MOM is a sub-Gaussian estimator of the mean with respect to the
�d∞-norm under a log d sub-Gaussian moment assumption. Upper bounds such as (17)
have been extended in [42] to general unconditional norms.

It is also possible to recover the sub-Gaussian rate (5) in situations where there
is not even a first moment thanks to Theorem 6. Indeed, for the case S = Bd

1 and
X̃1 = μ∗ + Z where Z = (z j )dj=1 has independent symmetric around 0 Cauchy

distributed coordinates, we showed that Assumption 3 holds for K = N and that μ̂g
S

is the coordinate-wise median (here K = N ) in (10). It follows from Theorem 6, the
fact that S = Bd

1 has 2d extreme points given by the vectors of the canonical basis
and their opposite and the VC dimension of a set of 2d points is less than log(2d) that,
when log(d) � N and |O| � N then for all log(d) � u � N , with probability at least
1 − exp(−u),

∥∥μ̂g
S − μ∗∥∥∞ ≤ 2C0

(√
log(d)

N
+
√

u

N

)

+ 2π |O|
N

(18)

which is the deviation-minimiax optimal sub-Gaussian rate (5)wewould have gotten if
the X̃i were i.i.d. isotropicGaussian vectors centered atμ∗ corrupted by |O| adversarial
outliers (up to absolute constants). But here, (18) is obtained without the existence of
a first moment. Moreover, in (18), the number of outliers is allowed to be proportional
to N and the price for adversarial corruption is of the order of |O|/N which is the
same price we have to pay when inliers has a Gaussian distribution – this differs from
the

√|O|/N information-theoretic lower bound that has been obtained for some non-
symmetric inliers. Furthermore, the computational cost of the coordinate-wise MOM
is O(Nd) since the cost for computing the bucketed means is O(Nd), the one of
finding the median of K numbers is O(K ) [5], it is therefore the same computational
cost as the one of the empirical mean. It is therefore possible to achieve the same
computational and statistical properties as the empirical mean in a setup where a first
moment does not even exist.

123
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We also observe that without adversarial corruption (that is in the i.i.d. case) the
rate obtained in (18) is minimax in the optimal range N � log(d) as proved in the
following result.

Proposition 3 Let X̃ = μ∗ + Z where Z = (z j )dj=1 has symmetric around 0 Cauchy

distributed coordinates and let X̃1, . . . X̃ N be N i.i.d. copies of X̃ . We denote by P⊗N
μ∗

the joint distribution of (X̃1, . . . X̃ N ). We have

inf
μ̂

sup
μ∗∈{±e1,...,±ed }∪{0}

P
⊗N
μ∗

[∥∥μ̂ − μ∗∥∥∞ ≥ r∗(N , d)
]

≥ 1

10
where r∗(N , d) := 2

√

exp

(
log(2d)

16N

)
− 1 (19)

where inf μ̂ denotes the infimum over all estimators and (e1, . . . , ed) is the canonical
basis of Rd .

It follows from Proposition 3 that when N � log(d) then r∗(N , d) �
√
log(d)/N

and so the estimation rate achieved by the coordinate-wise median in (18) is minimax
(when |O| = 0). It is the regime where we recover the sub-Gaussian rate. However,
the sub-Gaussian rate still keeps (up to absolute constants) the value

√
log(d)/N even

for N � log(d) but this is not the case for the model with a Cauchy noise studied in
(18). For instance, when N = 1, theminimax lower bound rate r∗(N , d) is of the order
of d1/32 which is different from the

√
log d sub-Gaussian rate. As a consequence, the

sub-Gaussian rate is indeed achieved up to N � log d by μ̂
g
S but it cannot be the case

(even for any other estimator) for a number of data less than an order of log d as proved
by Proposition 3.

4 Proofs

Proof of Theorem 3 The minimax lower bound rate r∗ exhibits two quantities: one
which is a complexity term depending on the Gaussian mean width of �1/2S and a
deviation term depending on δ. The two terms come from two arguments. We start
with the deviation term.

Let v1 ∈ R
d be such that ‖v1‖S = 1. We consider two Gaussian measures on RdN :

P0 = N (0, �)⊗N and P1 = N (3r∗v1, �)⊗N . They are the distributions of a sample
of N i.i.d. Gaussian vectors inRd with the same covariance matrix � and the first one
with mean 0 and the second one with mean 3r∗v1. We set A0 = (μ̂)−1(BS(0, r∗)) =
{(x1, . . . , xN ) ∈ R

Nd : ∥∥μ̂(x1, . . . , xN )
∥∥
S ≤ r∗} and A1 = (μ̂)−1(BS(3r∗v1, r∗)). It

follows from the statistical properties of μ̂ that P0[A0] ≥ 1 − δ and P1[A1] ≥ 1 − δ.
The key ingredient for the deviation lower bound term is a slight generalization of

Lemma 3.3 in [28] which is based on a version of the Gaussian shift Theorem from
[35]. ��
Lemma 3 Let t �→ �(t) = P(g ≤ t) be the cumulative distribution function of
a standard Gaussian random variable on R. Let �0 � 0 be in R

(Nd)×(Nd) and
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u, v ∈ R
dN . Let two Gaussian measures νu ∼ N (u, �0) and νv ∼ N (v,�0) on

R
Nd . If A ⊂ R

dN is measurable, then

νv(A) ≥ 1 − �
(
�−1(1 − νu(A)) + ‖�−1/2

0 (u − v)‖2
)

(20)

where �
−1/2
0 is the square root of the pseudo-inverse of �0.

Proof of Lemma 3 When�0 = INd , Lemma 3 is exactly Lemma 3.3 in [28] for σ = 1.
To prove Lemma3,we observe that νv(A) = P[G+�

−1/2
0 v ∈ B]where B = �

−1/2
0 A

and G is a standard Gaussian variable in Im(�0). Hence, it follows from Lemma 3.3
in [28] that

P[G + �
−1/2
0 v ∈ B] ≥ 1 − �

(
�−1(1 − P[G + �

−1/2
0 u ∈ B]) + ‖�−1/2

0 (u − v)‖�N2

)

which is exactly (20). ��
It follows from Lemma 3 that

P1[A0] ≥ 1 − �
[
�−1(1 − P0[A0]) +

∥∥∥�−1/2
0 (0 − (3r∗v1, . . . , 3r∗v1))

∥∥∥
2

]
. (21)

Moreover, we have �−1(1 − P0[A0]) ≤ �−1(δ) (because 1 − P0[A0] ≤ δ) and

∥∥∥�−1/2
0 (0 − (3r∗v1, . . . , 3r∗v1))

∥∥∥
2

= 3r∗√N
∥∥∥�−1/2v1

∥∥∥
2
. (22)

As a consequence, if 3r∗√N
∥∥�−1/2v1

∥∥
2 ≤ −�−1(δ) then, in (21), we get

P1[A0] ≥ 1 − �[0] ≥ 1/2 which is not possible because P1[A1] ≥ 1 − δ >

3/4 and A1 ∩ A0 = ∅. As a consequence, we necessarily have 3r∗√N ≥
(−�−1(δ))

∥∥�−1/2v1
∥∥−1
2 . The later holds for any v1 ∈ R

d such that ‖v1‖S = 1 hence

3r∗√N ≥ (−�−1(δ))[1/ inf‖v‖S=1
∥∥�−1/2v

∥∥
2]. It also follows from the boundon the

Mill’s ratio from [25] (here we use that for all x ≥ 0, �(−x) ≥ 2ϕ(x)/
√
4 + x2 + x

where ϕ is the standard Gaussian density function) that for all 0 < δ < 1/4,
−�−1(δ) ≥ 1/4

√
log(1/δ). This shows that

r∗ ≥ 1

12

√
log(1/δ)

N

1

inf‖v‖S=1
∥∥�−1/2v

∥∥
2

. (23)

To conclude on the deviation term, we use the following duality argument.

Lemma 4 Let A ∈ R
d×d be a symmetric and invertible matrix. Let ‖·‖ be a norm and

its dual norm ‖·‖∗ on Rd . Let S be a symmetric subset of Rd such that span(S) = R
d .

We have

1

inf‖v‖S=1
∥∥A−1v

∥∥ ≥ sup
w∈S

‖Aw‖∗ .
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Proof of Lemma 4 Let v be such that ‖v‖S = 1 and w ∈ S. We have |〈v,w
〉| ≤ 1 and

so |〈A−1v/
∥∥A−1v

∥∥ , Aw
〉| ≤ 1/

∥∥A−1v
∥∥. The later holds for all v such that ‖v‖S = 1

and {A−1v/
∥∥A−1v

∥∥ : ‖v‖S = 1} is the unit sphere of ‖·‖. Hence, we conclude by
taking the sup over v such that ‖v‖S = 1 and w ∈ S. ��

It follows from (23) and Lemma 4 for ‖·‖ = ‖·‖2 and A = �1/2 that

r∗ ≥ 1

12

√
log(1/δ)

N
sup
w∈S

∥∥∥�1/2w

∥∥∥
2
. (24)

Let us now turn to the second part of the lower bound; the one coming from the
complexity of the problem (here, it is the Gaussian mean width of �1/2S). We know
that μ̂ is an estimator such that for all μ ∈ R

d , PN
μ

[∥∥μ̂ − μ
∥∥
S ≤ r∗] ≥ 1 − δ which

is equivalent to say that

δ ≥ sup
μ∈Rd

E
N
μ φ

(∥∥μ̂ − μ
∥∥
S

r∗

)

(25)

where we set φ : t ∈ R �→ I (t > 1) and E
N
μ is the expectation with respect to

X1, . . . , XN
i .i .d.∼ N (μ,�).

Next, we consider a Gaussian distribution γ over the set of parameters μ ∈ R
d : for

s > 0, we assume that μ ∼ N (0, s�). It follows from (25) that

δ ≥
∫

μ∈Rd
E
N
μ φ

(∥∥μ̂ − μ
∥∥
S

r∗

)

γ (μ)dμ

= E

[

E

[

φ

(∥∥μ̂(X1, . . . , XN ) − μ
∥∥
S

r∗

)

|X1, . . . , XN

]]

. (26)

In other words, we lower bound the minmax risk by a Bayesian risk. We now use
Anderson’s lemma to lower bound the Bayesian risk appearing in (26). We first recall
Anderson’s Lemma. ��
Theorem 7 (Anderson’s Lemma, see p. 70 in [26]) Let � be a semi-definite d × d
matrix and Z ∼ N (0, �). Let w : R

d �→ R be such that all its level sets (i.e.
{x ∈ R

d : w(x) ≤ c} for c ∈ R) are convex and symmetric around the origin. Then
for all x ∈ R

d , Ew(Z + x) ≥ Ew(Z).

We remark that μ − E[μ|X1, . . . , XN ] is distributed according to N (0, (s/(1 +
Ns)�)) conditionally on X1, . . . , XN . Therefore, applying Anderson’s Lemma con-
ditionally on X1, . . . , XN , we obtain in (26) that

δ ≥ E

[
φ

(‖E[μ|X1, . . . , XN ] − μ‖S
r∗

)]
= P

[∥∥∥�1/2G
∥∥∥
S

≥
√
1 + Ns

s
r∗
]
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where G ∼ N (0, Id). This result is true for all s > 0 so taking s ↑ +∞, we obtain

δ ≥ P

[∥∥∥�1/2G
∥∥∥
S

≥ √
Nr∗] . (27)

Using Borell-TIS’s inequality (Theorem 7.1 in [30] or pages 56-57 in [48]), we know
that with probability at least 4/5,

∥∥�1/2G
∥∥
S ≥ E

∥∥�1/2G
∥∥
S −σS

√
2 log(5/4) where

we set σS = sup‖v‖S=1

∥∥�1/2v
∥∥
2. As a consequence, for δ = 1/4, we necessarily have√

Nr∗ ≥ E
∥∥�1/2G

∥∥
S − σS

√
2 log(5/4) and so

√
Nr∗ ≥ (1/2)E

∥∥�1/2G
∥∥
S when

E
∥∥�1/2G

∥∥
S ≥ 2σS

√
2 log(5/4). Finally, when E

∥∥�1/2G
∥∥
S < 2σS

√
2 log(5/4), we

know from (24) for δ = 1/4 that

r∗ ≥ 1

12

√
log 4

N
σS ≥ 1

24

√
log 2

log(5/4)

E
∥∥�1/2G

∥∥
S√

N
.

��

Proof of the exact minimax rate from Remark 1 It follows from (27) that if μ̂ is an
estimator such that for all μ ∈ R

d , PN
μ

[∥∥μ̂ − μ
∥∥
S ≤ r∗] ≥ 1 − δ then necessarily

δ ≥ P

[∥∥�1/2G
∥∥
S ≥ √

Nr∗
]
which is equivalent to say that r∗ ≥ qS

1−δ/
√
N . This

lower bound holds for any value of δ ∈ (0, 1).

Proof of Theorem 4 Theorem4 follows fromTheorem3 and the following lower bound
on E

∥∥�1/2G
∥∥
Bd
2
. We have from Borell-TIS’s inequality that

E

∥∥∥�1/2G
∥∥∥
2

2
−
(
E

∥∥∥�1/2G
∥∥∥
2

)2 = E

(∥∥∥�1/2G
∥∥∥
2
− E

∥∥∥�1/2G
∥∥∥
2

)2

=
∫ ∞

0
P

[∣∣∣
∥∥∥�1/2G

∥∥∥
2
− E

∥∥∥�1/2G
∥∥∥
2

∣∣∣ ≥ √
t
]
dt ≤ 2σ 2

Bd
2

where σ 2
Bd
2

= sup‖v‖2=1

∥∥�1/2v
∥∥2
2 = ‖�‖op. Since E

∥∥�1/2G
∥∥2
2 = Tr(�), we have

(
E
∥∥�1/2G

∥∥
2

)2 ≥ Tr(�) − 2 ‖�‖op. Therefore, E
∥∥�1/2G

∥∥
2 ≥ √

Tr(�)/2 when
Tr(�) ≥ 4 ‖�‖op and when Tr(�) < 4 ‖�‖op, we use the lower bound from (24)
and an argument similar to the one appearing in the end of the proof of Theorem 3 to
get the result. ��
Proof of Lemma 1 We first prove the result for the g∗

S function. The one for the f ∗
S is

similar up to constants and will be sketched after. The proof of Lemma 1 for the g∗
S

function is a corollary of the general fact which holds under only Assumption 1. Let
u > 0 be a confidence parameter and define R∗

S such that

4√
N R∗

S

E

∥∥∥∥∥∥

1√
N

∑

i∈[N ]
εi (X̃i − μ)

∥∥∥∥∥∥
S

+
√
2u

K
+ sup

v∈S
HN ,K ,v

(
R∗
S

2

√
N

K

)

+ |O|
K

<
1

2
.

(28)
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Let us show that with large probability for all μ ∈ R
d ,
∣∣g∗

S(μ) − ‖μ − μ∗‖S
∣∣ ≤ R∗

S .
We have for all μ ∈ R

d ,

∣∣g∗
S(μ) − ∥∥μ − μ∗∥∥

S

∣∣ =
∣∣∣∣sup
v∈S

(〈
μ, v

〉− g(v)
)− sup

v∈S
〈
v, μ − μ∗〉

∣∣∣∣

≤ sup
v∈S

∣∣〈μ∗, v
〉− g(v)

∣∣ = g∗
S(μ

∗) (29)

where we used that S is symmetric and g is odd. It only remains to show that g∗
S(μ

∗) ≤
R∗
S with large probability. To that end, it is enough to prove that, with large probability,

for all v ∈ S,

∑

k∈[K ]
I (
〈
X̄k − μ∗, v

〉
> R∗

S) <
K

2
. (30)

We use the notation introduced in Assumption 1 and we consider X̃ k =
|Bk |−1∑

i∈Bk X̃i for k ∈ [K ] which are the K bucketed means constructed on the

N independent vectors X̃i , i ∈ [N ] before contamination (whereas X̄k are the ones
constructed after contamination).We also setK = {k ∈ [K ] : Bk ∩O = ∅} the indices
of the non corrupted blocks. We have

∑

k∈[K ]
I (
〈
X̄k − μ∗, v

〉
> R∗

S) =
∑

k∈K
I (
〈
X̄k − μ∗, v

〉
> R∗

S) +
∑

k /∈K
I (
〈
X̄k − μ∗, v

〉
> R∗

S)

≤
∑

k∈[K ]
I (
〈
X̃k − μ∗, v

〉
> R∗

S) + |O|. (31)

It only remains to show that with probability at least 1 − exp(−u), for all v ∈ S,

∑

k∈[K ]
I (
〈
X̃ k − μ∗, v

〉
> R∗

S) ≤ 4K√
N R∗

S

E

∥∥∥∥∥∥

1√
N

∑

i∈[N ]
εi (X̃i − μ∗)

∥∥∥∥∥∥
S

+√
2uK + K sup

v∈S
HN ,K ,v

(
R∗
S

2

√
N

K

)

.
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We define φ(t) = 0 if t ≤ 1/2, φ(t) = 2(t − 1/2) if 1/2 ≤ t ≤ 1 and φ(t) = 1 if
t ≥ 1. We have I (t ≥ 1) ≤ φ(t) ≤ I (t ≥ 1/2) for all t ∈ R and so

∑

k∈[K ]
I (
〈
X̃ k − μ∗, v

〉
> R∗

S)

≤
∑

k∈[K ]
I (
〈
X̃ k − μ∗, v

〉
> R∗

S) − P[〈X̃ k − μ∗, v
〉
> R∗

S/2] + P[〈X̃ k − μ∗, v
〉
> R∗

S/2]

≤
∑

k∈[K ]
φ

⎛

⎝
〈
X̃ k − μ∗, v

〉

R∗
S

⎞

⎠− Eφ

⎛

⎝
〈
X̃ k − μ∗, v

〉

R∗
S

⎞

⎠+ P[〈X̃ k − μ∗, v
〉
> R∗

S/2]

≤ sup
v∈S

⎛

⎝
∑

k∈[K ]
φ

⎛

⎝
〈
X̃ k − μ∗, v

〉

R∗
S

⎞

⎠− Eφ

⎛

⎝
〈
X̃ k − μ∗, v

〉

R∗
S

⎞

⎠

⎞

⎠+ K sup
v∈S

HN ,K ,v

(
R∗
S

2

√
N

K

)

.

Next, we use several tools from empirical process theory and in particular, for a
symmetrization argument, we consider a family of N independent Rademacher vari-
ables (εi )

N
i=1 independent of the (X̃i )

N
i=1. In (bdi) below,we use the bounded difference

inequality (Theorem 6.2 in [6]). In (sa-cp), we use the symmetrization argument and
the contraction principle (Chapter 4 in [31]) – we refer to the supplementary material
of [34] for more details. We have, with probability at least 1 − exp(−u),

sup
v∈S

⎛

⎝
∑

k∈[K ]
φ

⎛

⎝
〈
X̃ k − μ∗, v

〉

R∗
S

⎞

⎠− Eφ

⎛

⎝
〈
X̃ k − μ∗, v

〉

R∗
S

⎞

⎠

⎞

⎠

(bdi)≤ E sup
v∈S

⎛

⎝
∑

k∈[K ]
φ

⎛

⎝
〈
X̃ k − μ∗, v

〉

R∗
S

⎞

⎠− Eφ

⎛

⎝
〈
X̃ k − μ∗, v

〉

R∗
S

⎞

⎠

⎞

⎠+ √
2uK

(sa−cp)≤ 4K

N R∗
S
E sup

v∈S
〈
v,
∑

i∈[N ]
εi (X̃i − μ∗)

〉+ √
2uK

= 4K√
N R∗

S

E

∥∥∥∥∥∥

1√
N

∑

i∈[N ]
εi (X̃i − μ∗)

∥∥∥∥∥∥
S

+ √
2uK .

We therefore showed that underAssumption 1,with probability at least 1−exp(−u),
for all μ ∈ R

d ,
∣∣g∗

S(μ) − ‖μ − μ∗‖S
∣∣ ≤ R∗

S .
Now, if Assumption 2 holds then for all v ∈ S, we have from Markov’s inequality

that

HN ,K ,v

(
R∗
S

2

√
N

K

)

≤ E
〈
X̃ k − μ, v

〉2

(R∗
S/2)

2 = 4Kv
�v

N (R∗
S)

2 ≤ 4K supv∈S
∥∥�1/2v

∥∥2
2

N (R∗
S)

2 ≤ 1

8

and therefore (28) holds for R∗
S = r∗

S when |O| < K/8 and u = K/128. This proves
the result of Lemma 1 for g∗

S under Assumption 2.
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Finally, for the function f ∗
S one needs to control the average of the K/2 inter-

quartiles. One way to do it is to control the value of all elements
〈
X̄k − μ∗, v

〉
in the

inter-quartiles interval. This can be done by defining an R∗
S similar to the one in (28)

but where the right-hand side value 1/2 is replaced by 1/4 in (28). This only modifies
the absolute constants which are the one used in Lemma 1. ��
Proof of Lemma 2 Unlike in Lemma 1 where we used the Rademacher complexities
as a complexity measure, in this proof, the complexity measure we are using is the
Vapnik and Chervonenkis (VC) dimension [51, 52] of a classF of Boolean functions,
i.e. of functions from R

d to {0, 1} in our case, and instead of taking the maximum
over v ∈ R

d , we only take a maximum over v ∈ S∗
0 . We recall that the Vapnik and

Chervonenkis dimension ofF , denoted by VC(F), is the maximal integer n such that
there exists x1, . . . , xn ∈ R

d for which the set {( f (x1), . . . , f (xn)) : f ∈ F)} is of
maximal cardinality, that is of size 2n . We also know (see, for instance, Chapter 3
in [23]) the following concentration bound: let Y1, . . . ,Yn be independent random
vectors in R

d , there exists an absolute constant C0 such that for all u > 0, with
probability at least 1 − exp(−u),

sup
f ∈F

(
1

n

n∑

i=1

f (Yi ) − E f (Yi )

)

≤ C0

(√
VC(F)

n
+
√
u

n

)

. (32)

Lemma 2 is a corollary of a general result which holds under the onlyAssumption 1.
This general result says that for all u > 0, with probability at least 1 − exp(−u), for
all μ ∈ R

d ,
∣∣g∗

S(μ) − ‖μ − μ∗‖S
∣∣ ≤ R� where R� is any point such that

C0

(√
VC(S∗

0 )

K
+
√

u

K

)

+ sup
‖v‖2=1

HN ,K ,v

(

R�
√

N

K

)

+ |O|
K

<
1

2
(33)

where C0 is the constant from (32). In particular, when Assumption 3 holds then one
can check that (33) holds for R� = r� when r� ≤ c0 proving the result of Lemma 2. It
only remains to show the general result above. To that end we follow the same strategy
as in the proof of Lemma 1 up to (31) except that R∗

S is replaced by R� and that S is
replaced by its set of extreme points S∗

0 (the latter holds because of the Krein-Milman
theorem conv(S) = conv(S∗

0 )). From that point, we use (32) and the VC dimension
of the set of affine half spaces to get that with probability at least 1− exp(−u), for all
v ∈ S∗

0 ,

∑

k∈[K ]
I (
〈
X̃ k − μ∗, v

〉
> R�) ≤ HN ,K ,v

(

R�
√

N

K

)

+ C0

(√
VC(S∗

0 )

K
+
√

u

K

)

and so by definition of R�, on the same event, for all v ∈ S∗
0 ,
∑

k∈[K ] I (
〈
X̄k −μ∗, v

〉
>

R�) < 1/2. This concludes the proof. ��
Proof of Proposition 3 We apply Theorem 2.5 from [49] for the �d∞-distance and a set
of hypothesis � := {±re1, . . . ,±red} ∪ {0} where r > 0 will be chosen later. We
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have for all μ1 �= μ2 ∈ �, ‖μ1 − μ2‖∞ ≥ r . We let μ0 = 0. We have for all
μ = (μ j )

d
j=1 ∈ �\{0}, P⊗N

μ << P
⊗N
μ0

and using [13] we get the following estimate

of the Kullback-Leiber divergence between P
⊗N
μ and P

⊗N
μ0

:

K L(P⊗N
μ ,P⊗N

μ0
) = NK L(Pμ,Pμ0) = N

d∑

j=1

K L(Pμ j ,Pμ0 j )

= N
d∑

j=1

log

(
1 + (μ j − μ j0)

2

4

)
= N log

(
1 + r2

4

)
(34)

where Pμ is the probability distribution of μ + Z (where Z = (z j )dj=1 has symmetric
around 0 Cauchy distributed coordinates) and Pμ j is the probability distribution of
μ j + z j . Next, we choose r such that

N log

(
1 + r2

4

)
= 1

2d

2d∑

j=1

K L(P⊗N
re j ,P⊗N

μ0
) + K L(P⊗N−re j ,P

⊗N
μ0

) ≤ log(2d)

16

that is r = 2 (exp(log(2d)/(16N )) − 1)1/2. In that case, Theorem 2.5 from [49]
applies and we get the desired result. ��
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