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ORIGINAL ARTICLE
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Abstract

Objectives. High-magnitude CD8+ T cell responses are associated
with mild COVID-19 disease; however, the underlying
characteristics that define CD8+ T cell-mediated protection are not
well understood. The antigenic breadth and the
immunodominance hierarchies of epitope-specific CD8+ T cells
remain largely unexplored and are essential for the development
of next-generation broad-protective vaccines. This study identified
a broad spectrum of conserved SARS-CoV-2 CD8+ T cell epitopes
and defined their respective immunodominance and phenotypic
profiles following SARS-CoV-2 infection. Methods. CD8+ T cells
from 51 convalescent COVID-19 donors were analysed for their
ability to recognise 133 predicted and previously described
SARS-CoV-2-derived peptides restricted by 11 common HLA class I
allotypes using heterotetramer combinatorial coding, which
combined with phenotypic markers allowed in-depth ex vivo
profiling of CD8+ T cell responses at quantitative and phenotypic
levels. Results. A comprehensive panel of 49 mostly conserved
SARS-CoV-2-specific CD8+ T cell epitopes, including five newly
identified low-magnitude epitopes, was established. We confirmed
the immunodominance of HLA-A*01:01/ORF1ab1637–1646 and
B*07:02/N105–113 and identified B*35:01/N325–333 as a third epitope
with immunodominant features. The magnitude of subdominant
epitope responses, including A*03:01/N361–369 and A*02:01/S269–277,
depended on the donors’ HLA-I context. All epitopes expressed
prevalent memory phenotypes, with the highest memory
frequencies in severe COVID-19 donors. Conclusion. SARS-CoV-2
infection induces a predominant CD8+ T memory response directed
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against a broad spectrum of conserved SARS-CoV-2 epitopes,
which likely contributes to long-term protection against severe
disease. The observed immunodominance hierarchy emphasises
the importance of T cell epitopes derived from nonspike proteins
to the overall protective and cross-reactive immune response,
which could aid future vaccine strategies.

Keywords: CD8+ T cells, convalescence, epitopes,
immunodominance, infection, SARS-CoV-2

INTRODUCTION

Over the last 2 years, substantial progress has
been made to improve our understanding of
severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2)-specific immunity. However, the
associated coronavirus disease 2019 (COVID-19)
still results in substantial morbidity and mortality
worldwide.1 COVID-19 disease severity ranges
from asymptomatic and mild self-limiting disease
to critical illness with death as a possible
outcome.2

Multiple studies showed a key role for SARS-
CoV-2-specific CD8+ cytotoxic T cells in the
modulation and resolution of COVID-19
pathogenesis.3–10 Robust SARS-CoV-2-specific CD8+

T cell immunity is associated with a mild disease
outcome.3,11 CD8+ T cells impair viral replication
through recognition of viral peptide human
leukocyte antigen class I (pHLA-I) complexes
displayed on the cell surface of infected cells, by
which they accomplish rapid viral clearance and
thereby reduce disease severity.11 Most individuals
generate SARS-CoV-2-specific CD8+ T memory
cells, indicative for the development of long-
lasting immunity.12,13 Furthermore, SARS-CoV-2-
specific CD8+ T cells can recognise conserved viral
epitopes, suggesting that they can provide broad
protection against variants of SARS-CoV-2. Indeed,
it has been shown that CD8+ T cells can continue
to recognise SARS-CoV-2 variants of concern
(VOC),14-16 which makes them an attractive target
for the development of broadly protecting
COVID-19 vaccines. Current COVID-19 vaccines are
designed to induce antibodies directed against
the highly variable receptor-binding domain (RBD)
of the spike protein (S).17,18 However, recent data
indicate that the neutralising antibodies induced
following natural SARS-CoV-2 infection and/or
vaccination are less effective against emerging
SARS-CoV-2 VOC, including Delta and

Omicron.14,19,20 In addition, SARS-CoV-2 vaccines
have been proven very successful in inducing
T cell-mediated immunity.21-24 It is therefore of vital
importance to gain knowledge on the dynamics of
the CD8+ T cell response following SARS-CoV-2
infection and vaccination. More specifically, we
need to identify key immunogenic regions, their
respective immunodominance and longevity of the
SARS-CoV-2-specific CD8+ T cell response.

Understanding the longevity and level of cross-
reactivity of the SARS-CoV-2 CD8+ T cell response
between ancestral SARS-CoV-2 and VOCs within
the human population requires assessment of
SARS-CoV-2-derived peptide recognition across a
wide range of HLA-I allotypes. Previous studies
have addressed the peptide-specific T cell
reactivity after infection and vaccination in
individuals expressing diverse repertoires of HLA-I
allotypes.18,21,22,24–31 A substantial number of
SARS-CoV-2 epitopes of CD8+ T cells in a wide
range of HLA allotypes have been identified.
However, technical limitations have thus far
prevented the parallel detection and analysis of a
myriad of SARS-CoV-2 epitope-specific CD8+

T cells, hampering in-depth assessment of their
immunodominance profiles.23,25,32,33 Gangaev
et al.30 characterised virus-specific CD8+ T cells
ex vivo and reported the immunodominance of
HLA-A*01:01/ORF1ab1637–1646 during acute SARS-
CoV-2 disease; however, the hierarchy in relation
to many other SARS-CoV-2-derived CD8+ T cell
epitopes remains uncharted. Furthermore,
comprehensive characterisation of the memory
phenotypes across a large amount of SARS-CoV-2-
specific CD8+ T cell epitopes directly ex vivo has
not yet been reported and is of great importance
to understand the longevity and strength of the
CD8+ cell response in the months and years
following infection and vaccination.

In this study, we analysed samples from 51
convalescent COVID-19 donors for CD8+ T cell
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recognition of 133 predicted and previously
identified SARS-CoV-2 pHLA-I complexes,
restricted by 11 common HLAs using
combinatorial encoded pHLA class I tetramers
directly ex vivo. Combinatorial encoding allowed
simultaneous screening of up to 30 SARS-CoV-2
pHLA-I combinations per donor, resulting in the
identification of 49 distinct SARS-CoV-2-specific
CD8+ T cell epitopes, including the identification
of five novel pHLA-I combinations. Unique to our
study is the depth of the combinatorial encoding
assay that permitted the parallel establishment of
the immunodominance and phenotype of the
SARS-CoV-2 epitope-specific CD8+ T cells. Our
results established the hierarchy and phenotype
of CD8+ T cells recognising distinct SARS-CoV-2
epitopes in convalescent donors, with higher
frequencies and immunodominant features
observed for nonspike epitopes. Our study could
have important implications for the selection of
CD8+ T cell epitopes in next-generation COVID-19
vaccine design, which aim to provide broad CD8+

T cell-driven protection against current and
emerging SARS-CoV-2 variants.

RESULTS

Characteristics of study participants

A cohort of 51 convalescent SARS-CoV-2
seropositive donors was recruited in the spring of
2020 (Figure 1a; Supplementary table 1). Blood
samples were taken from recruited donors on
average 93-day postsymptom onset (21–353 days)
(Figure 1b). The median age of the cohort was
41 years (range 22–66 years), 47% were female
and 62.7% of the cohort recovered from mild
disease, 21.6% had experienced a severe infection,
3.9% was critically ill and 11.8% did not disclose
the severity of their illness, who were therefore
labelled unknown (Figure 1c–e; Supplementary
figure 1a, Supplementary table 1). Seroconversion
status of the donors was used to confirm previous
SARS-CoV-2 infection. RBD, S and nucleocapsid
(N)-specific IgG antibody levels were measured by
enzyme-linked immunosorbent assay (ELISA).
Convalescent donors who experienced a severe
SARS-CoV-2 infection had significantly higher
RBD, S and N IgG antibody titres than donors,
who experienced a mild infection (Figure 1f). To
study SARS-CoV-2-specific CD8+ T cell responses,
classical HLA-I typing was performed on all

donors. HLA typing revealed 11 common HLA-I
allotypes of interest for which combinatorial
encoded HLA class I tetramers were available in
our cohort, namely HLA-A*01:01, A*02:01,
A*03:01, A*11:01, A*24:02, B*07:02, B*08:01,
B*15:01, B*27:05, B*35:01 and B*40:01 (Figure 1g).
The distribution of those HLA-I allotypes in our
cohort was representative of those found in the
Dutch population (Allele Frequency Net
Database).34 Several donors simultaneously
expressed 2 (n = 23), 3 (n = 15) or 4 (n = 2) HLA-I
allotypes of interest (Figure 1h). Thus, our cohort
includes donors with distinct and representative
HLA-I profiles providing us with the means to
determine the dynamics of the SARS-CoV-2-
specific CD8+ T cell response in a diverse HLA-I
context.

SARS-CoV-2 peptide selection

In addition to 47 previously identified peptides,
78 unique putative SARS-CoV-2 CD8+ T cell pHLA-I
combinations were selected based on the peptide
prediction tools NetMHC-4.0 and/or NetMHCpan-
4.1 and 8 peptides were selected based on their
homology (> 75%) with SARS-CoV-1 and/or
seasonal coronaviruses (Supplementary table 2).
HLA-I peptide binding with one or more HLA-I
allotypes of interest was validated using in vitro
binding assays (Figure 2a). A total of 89 out of
133 predicted peptides had a > 50% binding
efficiency to their respective HLA-I; these were
selected for further analysis. In addition, four
peptides with lower binding affinities (ranging
from 22.6% to 49.4%) were also selected based
on epitope-specific CD8+ T cell responses reported
by others (Supplementary table 2).9,15,26,27 The 93
selected pHLA-I combinations covered 11 HLA
allotypes (Figure 2b), including four peptides
restricted to both HLA-A*03:01 and A*11:01. The
93 peptide sequences were derived from SARS-
CoV-2 structural proteins, namely S (n = 58), N
(n = 20), membrane (M; n = 8) and envelope (E;
n = 1) and nonstructural proteins including
ORF1ab (n = 31), ORF3a (n = 3) and ORF6 (n = 1)
(Figure 2b). The selected spike protein-derived
peptides are associated with the highest number
of HLA-I allotypes (n = 10), followed by the
nucleocapsid protein (n = 9) and ORF1ab (n = 8)
(Figure 2b). HLA-A*02:01 binds the most diverse
peptide repertoire, consisting of 30 peptides
spanning seven viral proteins.
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Identification of SARS-CoV-2-derived CD8+

T cell epitopes

Heterotetramer combinatorial coding (HTCC)-
linked pHLA-I complexes were used to establish

which peptides could be recognised by SARS-CoV-2
-specific CD8+ T cells present in convalescent
COVID-19 donors (Figure 2c and d). Up to 30
unique SARS-CoV-2 pHLA-I complexes were
screened simultaneously in a single donor directly

Figure 1. Convalescent COVID-19 donor cohort and seroconversion. (a) Overview of convalescent donor cohort and study design. Distribution of

days postsymptom onset (b), age (c), sex (d) and disease severity (e). Each dot represents an individual (n = 51 in total) (b, c). Donor with

unspecified days postonset symptoms or severity was set as not available (NA; n = 7) (b) or unknown (n = 6) (c), respectively. (f) Plasma IgG

titres to SARS-CoV-2 RBD, spike (S) and nucleocapsid (N) stratified per severity group; dotted line indicates the seroconversion threshold, and

individual donors were connected by lines. Statistical significance between severity groups was determined with the unpaired Mann–Whitney U-

test, considering P-values < 0.05 as significant. (g) Allelic frequency of 11 HLA-I allotypes of interest in cohort (n = 51) compared with the

general Dutch population obtained from the Allele Frequency Net Database (AFND; n = 1305). (h) Number of simultaneous expressed HLA-I

allotypes of interest across our cohort.
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Figure 2. Selection of 93 pHLA-I complexes for heterotetramer combinatorial coding (HTCC). (a) Distribution of 133 predicted epitopes across

HLA-I and their binding avidity. Peptides with ≥ 50% binding to their respective HLA-I allotype or previous confirmed as CD8+ T cell epitope were

selected for CD8+ T cell analysis. (b) Distribution of selected peptides across viral proteins per HLA-I allotype. (c) Overview of the HTCC approach.

UV exposure cleaves the UV-cleavable peptide in the HLA molecules and is exchanged for SARS-CoV-2-specific peptides (red, green and blue).

Next, pHLA-I complexes were conjugated to two different fluorophores to generate the dual-coded tetramers for each pHLA combination.

Peripheral blood mononuclear cells were stained with the combinatorial encoded tetramers and analysed using flow cytometry. (d) Representative

flow cytometry plots (donor D04) created by Boolean gating CD8+ T cell populations expressing tetramer fluorophores; associated gating strategy

is provided in Supplementary figure 2. Each plot in the matrix represents a unique tetramer dual-coding combination; cells that are double-

positive for both fluorophores are indicated in red, single-positive cells are indicated in green, and cells negative for all tetramer fluorophores are

in blue.
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ex vivo (Figure 2d; Supplementary figure 2).
Positive responses were identified as CD8+ T cells
double-positive for both fluorophores of a specific
pHLA complex (Figure 2d). In total, 49 double-
positive pHLA-I complexes were identified
(Figure 3a), including two novel CD8+ T cell epitopes
(A*03:01/N160–169 and A*03:01/ORF1ab807–816) and
three previously identified peptides associated
with novel HLA-I allotypes (A*11:01/S529–537,
B*07:02/S1014–1022 and B*35:01/N352–360) albeit at
low frequencies (Figure 3a; Supplementary
table 2). The remaining 44 epitopes were
previously described (Figure 3a; Supplementary
table 2). All peptides recognised by CD8+ T cells
were linked to a single HLA-I allotype, with
exception of N361–369 which could be recognised
in complex with HLA-A*03:01 and HLA-A*11:01
(Figure 3a). No epitopes were identified for
HLA-B*08:01 (Figure 3a). For 9 out of 11 included
HLA-I allotypes, at least one epitope was
recognised by 90–100% of the donors expressing
that specific HLA (Figure 3a). The most highly
recognised epitopes were restricted to
HLA-A*01:01, with four epitopes recognised by
> 90% of the HLA-A*01:01+ donors (Figure 3a).
Combined these nine HLA-I allotypes are
commonly expressed in 89% of the world
population, as shown by the IEDB-AR population
coverage tool.35,36 Recognised epitopes were
derived from six SARS-CoV-2 proteins (Figure 3b).
A total of 18 epitopes were found in ORF1ab,
which were restricted to seven HLA-I allotypes.
Epitopes originating from spike (n = 10) and
nucleocapsid (n = 15) proteins were both
restricted to 8 HLA allotypes. Although only two
ORF3a peptides restricted to two HLAs were
identified, 100% of the donors expressing either
HLA-A*01:01 and/or HLA-A*02:01 were able to
recognise the respective ORF3a epitopes
(Figure 3c). In contrast, ORF1ab-specific CD8+

T cells were only identified in 55% of the donors
with the potential to recognise ORF1ab epitopes
(Figure 3c).

Next, the distribution of SARS-CoV-2 epitope
recognition across individual donors in the
convalescent cohort was studied. 96% of the
convalescent donors recognised one or more
SARS-CoV-2 epitopes (Figure 3d). On average, five
epitopes were recognised per donor, one donor
recognised 12 epitopes, six donors recognised only
a single epitope and two donors did not
recognise any of the tested SARS-CoV-2 epitopes
(Figure 3d; Supplementary figure 3a). The

diversity of the tested HLA-I profiles in an
individual donor correlated with the amount of
tested and recognised epitopes (Figure 3d;
Supplementary figure 3b and c). 84% of the
donors was capable of recognising epitopes
derived from multiple viral proteins (Figure 3e).
Combined the 50 convalescent donors recognised
49 different SARS-CoV-2 epitopes, which target a
broad spectrum of the viral genome and spanning
various HLA-I allotypes.

Dynamic immunodominance landscapes of
SARS-CoV-2-specific CD8+ T cell epitopes in
convalescent donors

To probe the magnitude of the individual SARS-
CoV-2 epitope-specific CD8+ T cell populations, we
assessed the percentage of tetramer-positive cells
in the total CD8+ T cell population of a donor
directly ex vivo. Epitopes were ordered based on
the mean frequency of all HLA-I allotype+ donors
tested per allotype, which showed that each HLA-
allotype has a favorable SARS-CoV-2 epitope that
displays a high frequency of CD8+ T cell
recognition in all donors (Figure 4a). Epitopes
recognised by all tested donors did not
consistently have the highest mean frequency, as
observed for HLA-A*02:01 and A*11:01
(Figure 4a). Overall, epitope-specific CD8+ T cell
frequencies were relatively stable up to 228-day
postinfection (Supplementary figure 3d).

A key benefit of combinatorial encoded pHLA-I
tetramers is that it allowed us to evaluate
immunodominance hierarchies of up to 30
epitopes simultaneously within a donor directly
ex vivo (Figure 4b–j; Supplementary figure 4a
and b). We defined immunodominance based on
how the sizes of SARS-CoV-2 epitope-specific CD8+

T cell responses, as measured by tetramer binding,
are impacted by the HLA context of an individual.
Of all the epitopes that displayed the highest
magnitude within a certain HLA, HLA-A*01:01,
B*07:02 and B*35:01 and possibly A*24:02
(Figure 4b–e) were more likely to be dominant
over HLA-A*02:01, A*03:01, A*11:01, B*27:05 and
B*40:01 epitopes (Figure 4f–j). Hence, the
frequency of epitope-specific CD8+ T cells seems to
be dependent on the HLA-I context of a donor, as
changes in immunodominance hierarchy can be
observed between donors with different HLA-I
allotypes. Epitopes with seemingly lower
immunodominance display a higher frequency of
epitope-specific CD8+ T cells when the ability to
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Figure 3. Identification of SARS-CoV-2-specific CD8+ T cell epitopes. (a) Height of the bar indicates the number of donors with a specific HLA-I

allotype tested for the presence of SARS-CoV-2 pHLA-specific responses. Tetramer+CD8+ T cells detected at ≥ 9 cells counted within the dual-

tetramer-positive gate are indicated in dark blue, those with 3–8 dual-positive events are indicated in light blue. (b) Distribution of identified

epitopes across SARS-CoV-2 viral proteins and HLA-I restrictions. (c) Frequency of donors able to recognise various SARS-CoV-2 peptides. (d)

Number of SARS-CoV-2 epitopes recognised by individual donors and their distribution across their HLA profile. (e) Number of epitopes derived

from various SARS-CoV-2 peptides recognised by individual donors.
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present more dominant epitopes on other HLA-I
allotypes is absent. For example, the frequency of
HLA-A*02:01/S269–277-specific CD8+ T cells is
significantly lower in donors, who also express the
HLA-A*01:01 allotype, suggesting that the
HLA-A*01:01 response is dominant over the
A*02:01 response (Figure 4b and f; Supplementary
figure 4c). A similar trend for lower frequency of
HLA-A*02:01/S269–277-specific CD8+ T cells was also
observed in HLA-A*02+B*07:02+ donors when
compared to A*02:01+ donors (Figure 4d and f;
Supplementary figure 4d). In addition, interplay is
detected within the epitopes with
immunodominant features, for instance, HLA-
B*07:02/N105–113-specific CD8+ T cell responses are
generally immunodominant, but in some cases
can be overtaken by HLA-A*03:01, A*24:02 and
B*35:01 epitope-specific CD8+ T cell responses
(Figure 4d). Because of HLA-I diversity beyond the
11 tested HLA-I allotypes, it remains difficult to
grasp a complete picture. However, the data
strongly suggest a prominent role of HLA-A*01:01/
ORF1ab1637–1646, B*35:01/N325–333 and B*07:02/
N105–113 in CD8+ T cell immunity against SARS-
CoV-2.

Conservation of SARS-CoV-2-specific CD8+ T
cell epitopes in SARS-CoV-2 variants of
concern

Next, the amino acid conservation of the
identified epitopes in the five main VOC (Alpha,
Beta, Gamma, Delta and Omicron) was
established.37 Of the 49 epitopes identified in this
study, only two epitopes were mutated to a
significant extent (> 50%), namely HLA-B*07:02/
S680–688 (P681H in Alpha and Omicron and P681R
in Delta) and HLA-B*27:05/N9–17 (P13L in Omicron)
(Table 1). According to the above-established
immunodominance profiles, HLA-B*07:02/S680–688
is considered a subdominant epitope and
although HLA-B*27:05/N9–17 is the only and highly
prevalent epitope found for HLA-B*27:05 its
immunodominance potential relative to other
HLA-I epitopes is limited (Figure 4i). The
remaining 17 mutations were found in < 10% of
variant strains sequenced (Table 1). Interestingly,
9.2% of the Delta strains display a P1640L
mutation in the immunodominant HLA-A*01:01/
ORF1ab1637–1646 epitope. Furthermore, previous
studies have shown that a P272L mutation of the
highly prevalent HLA-A*02:01/S269–277 epitope is
associated with reduced recognition by CD8+

T cells.38 However, our sequence analysis revealed
that this mutation was found in < 1% of current
and past VOC sequences and thus this mutation is
not included in Table 1. These data indicate that
the SARS-CoV-2 CD8+ T cell epitopes are highly
conserved in VOC.

SARS-CoV-2-specific CD8+ T cells display a
memory phenotype

We established the phenotypic profile of the
epitope-specific CD8+ T cells to understand
whether they were recruited during primary SARS-
CoV-2 infection, resulting in immunological
memory formation. Here, combinatorial encoded
pHLA-I tetramers were combined with CD27 and
CD45RA staining, allowing characterisation of
central memory (Tcm; CD27

+CD45RA�), effector
memory (Tem; CD27

�CD45RA�), terminally
differentiated effector memory CD45RA (Temra;
CD27�CD45RA+) and naive-like (Tnaive-like;
CD27+CD45RA+) SARS-CoV-2-specific CD8+ T cells
(Figure 5a; Supplementary figure 2). Phenotypic
profiles for 38 epitopes with ≥ 9 tetramer-positive
events were established (Supplementary figure 4b),
demonstrating a clear central memory response for
36 out of 38 epitopes (Figure 5b), with the
exception of HLA-A*02:01/ORF1ab4093–4101 (68.4%
Tnaive-like) and B*40:01/ORF1ab6219–6228 (55.56%
Tnaive-like) which were detected in a single donor
(Figure 5b). After combining all epitopes per
HLA-I allotype, phenotypic profiles displayed
significantly higher Tcm than Tnaive-like frequencies
in HLA-A*01:01, A*02:01, A*03:01, A*11:01, and
B*07:02 (Figure 5c). Similar trends were observed
for HLA-A*24:02, B*15:01, B*27:05, B*35:01 and
B*40:01 allotypes (Figure 5c; Supplementary
figure 5a). To assess the relation between disease
severity and phenotype distribution, all
responding peptides were combined per severity
group (Figure 5d). Significantly higher frequencies
of SARS-CoV-2-specific CD8+ Tcm responses at the
expense of Tnaive-like responses were observed in
convalescent donors, who experienced severe and/
or critical COVID-19 compared to those who
experienced mild disease (Figure 5d). Individuals
with severity-related characteristics age
(≥ 60 years) displayed significantly higher
frequencies of Temra and lower frequencies of
Tnaive-like SARS-CoV-2 epitope-specific CD8+ T cells
(Supplementary figure 5b). Overall, phenotype
frequencies were relatively stable up to 228-day
postinfection (Supplementary figure 5c–h).
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Figure 4. Frequency and immunodominance landscapes of SARS-CoV-2-specific CD8+ T cell epitopes in convalescent donors. (a) Frequency of

tetramer+CD8+ T cells for SARS-CoV-2 epitopes, each dot represents an individual donor, and epitopes are ordered based on mean frequency per

HLA-I. Colours correspond to different HLA-I restrictions. Tetramer+CD8+ T cells detected at < 9 cells counted within a dual-positive gate are

indicated by open symbols (Supplementary figure 4) and were excluded from phenotypic analysis. Bar indicates median. (b–j) Immunodominance

landscapes of single SARS-CoV-2 epitope-specific CD8+ T cell populations in individual donors grouped based on their HLA-I expression. Unique

symbol/colour combinations are assigned for each individual epitope as indicated by the caption above (a). Graphs (b–j) are ordered based on

the mean frequency of the epitope with the highest mean frequency for the respective HLA (large circles) identified in a.

ª 2022 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of
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Together these results demonstrate that all
SARS-CoV-2 convalescent donors generated a
broad memory CD8+ T cell response across a large
variety of CD8+ T cell epitopes.

DISCUSSION

The 49 SARS-CoV-2 CD8+ T cell epitopes spanned
10 HLA-I allotypes and included five novel pHLA-I
combinations. The simultaneous evaluation of this
study confirmed the immunodominance of
A*01:01/ORF1ab1637–1646, B*07:02/N105–113 and
identified B*35:01/N325–333 as a third SARS-CoV-2
epitope with immunodominant features. The
immunodominance hierarchies of some of the less
dominant epitopes, such as A*02:01/S269–277,
largely depended on the HLA-I context in which
the epitope was expressed. Despite the variable
epitope-specific CD8+ T cell frequencies, all
epitope-specific CD8+ T cell populations had a
clear memory phenotype, with the highest
frequency of CD8+ Tcm cells observed in the most
severe COVID-19 patients. Thus, SARS-CoV-2
infection initiates a broad CD8+ T cell response
across multiple HLA-I allotypes.

The process of peptide prediction and parallel
pHLA screening using combinatorial encoded
tetramers resulted in the identification of 49
SARS-CoV-2 CD8+ T cell epitopes, including five
novel pHLA-I combinations that have not been
previously identified, namely HLA-A*03:01/N160–169,
A*03:01/ORF1ab807–816, A*11:01/S529–537, B*07:02/
S1014–1022 and B*35:01/N352–360. The importance
of the five novel pHLA-I combinations after
infection needs to be further analysed, as only a
fraction of respective HLA-positive donors
recognised these epitopes and frequencies were
relatively low. One of the limitations of our study
is that due to the low frequency of the novel
epitope-specific CD8+ T cells, we were unable to
verify the functionality of the novel epitope-
specific CD8+ T cell response in our donors.
However, the CD8+ T cell response directed
against these novel peptides may improve by
repeated infection and/or vaccination.
Furthermore, the HLA-A*03:01/N160–169 epitope
overlaps with a conserved immunodominant B cell
epitope region in SARS-CoV-1.39 The remaining 44
epitopes were confirmed in other studies, which
used techniques ranging from in vitro stimulation
with overlapping peptide pools to ex vivo
pHLA-I tetramer staining (Supplementary
table 2).4,9,19,23,26–30,39–42 For 42 selected peptides,

no epitope-specific CD8+ T cell populations could
be detected using the combinatorial encoded
tetramers. In addition, no ex vivo responses
were found for A*01:01/S4082–4091 and A*01:01/
ORF1ab5130–5138 that were identified as potential
SARS-CoV-2 CD8+ T cell epitopes by others,
following in vitro expansion.26,27

The novelty of this study lies in the broad
characterisation of immunodominance of CD8+

T cell epitopes of SARS-CoV-2, which has been
initiated by earlier studies for a few epitopes.19,30

A key advantage of the HTCC setup is that it
permits the evaluation of immunodominance
hierarchies of up to 30 epitopes simultaneously
within a single donor through direct ex vivo
analysis, which was performed in a cohort of 50
convalescent COVID-19 donors. Previous
immunodominance studies were limited by the
number of HLA-I allotypes that could be studied
simultaneously in a single donor. The
co-expression of multiple HLA-I of interest in our
convalescent COVID-19 cohort allowed us to assess
immunodominance across 2 or 3 HLA-I allotypes in
26 donors. Comparing immunodominance
hierarchies of epitopes across HLA-I profiles
revealed that HLA-A*01:01/ORF1ab1637–1646

epitope had the strongest immunodominant
features followed by B*07:02/N105–113 and B*35:01/
N325–333. HLA-A*01:01/ORF1ab1637–1646, A*24:02/
S1208–1216 and B*07:02/N105–113 epitopes were
previously identified as potential
immunodominant epitopes based on the high
frequency of epitope-specific CD8+ T cells.23,25,30,31

Our study was able to extend these prior studies
by establishing their immunodominance hierarchy
across multiple epitopes and HLA-I allotypes
simultaneously. Furthermore, HLA-B*35:01/N325–333

was identified as an immunodominant epitope
over HLA-A*11:01 and A*03:01 epitopes.
Contradictory results have been found for HLA-
A*02:01/S269–277, a previous study described the
epitope as immunodominant,23 whereas another
study categorised it as subdominant relative to
other HLA-I restricted epitopes.31 The current
study revealed that the immunodominance or
subdominance of the A*02:01/S269–277 epitope
largely depended on the HLA-I context in which
the epitope was expressed. This likely explains the
different A*02:01/S269–277 immunodominance
profiles that have been previously described.23,31

This study indicates that the magnitude of the
SARS-CoV-2-specific CD8+ T cell response strongly
depends on the HLA-I context within an
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individual. Therefore, the HLA-I allotype profile
could be indicative for the level of CD8+ T cell
protection in future SARS-CoV-2 infections.

However, association studies correlating specific
HLA-I allotypes to COVID-19 remain inconclusive.43

Higher resolution may be required to establish

Figure 5. SARS-CoV-2 epitope-specific CD8+ T cells display a clear memory phenotype. (a) Representative FACS panels indicate the gating

strategy used to characterise the phenotype profile of SARS-CoV-2 epitope-specific CD8+ T cells. CD27 and CD45RA were used to identify

Tcm (CD27+CD45RA�), Tem (CD27�CD45RA�), Temra (CD27�CD45RA+) and Tnaive-like (CD27+CD45RA+) cells. Gates were set based on the total

CD8+ T cell population (left panel). The right panel displays a combination of total CD8+ T cells (grey dots) with dual-tetramer-positive cells (red

dots) (b) Mean phenotypic frequencies of SARS-CoV-2 epitope-specific CD8+ T cells pooled donors per epitope. (c) Tcm and Tnaive frequencies of

tetramer+CD8+ T cells, populations of multiple donors and epitopes with the respective HLA-I restriction were pooled. (d) Mean phenotypic

frequency of tetramer+CD8+ T cells per severity group. Mean (c) and SD (b, d) are shown and statistical significance was determined using the

Wilcoxon (c) or the Mann–Whitney U-test, considering P-values < 0.05 as significant (d).
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whether the dynamic immunodominance profiles
of HLA-I epitopes are linked to disease
progression and/or viral infectivity. Another
interesting aspect that warrants further
investigation is whether and how the
immunodominance profiles will change following
additional infections (exposure to total viral
proteome) and/or vaccinations (exposure to spike
protein only).

Despite the large variety of frequencies and
immunodominance profiles, the ex vivo HTCC
analysis revealed that SARS-CoV-2-specific CD8+

T cells had a strong memory profile for 36 out of 39
epitopes. It is unlikely that the observed memory
phenotypes were the result of previous seasonal
coronavirus infections, due to the lack of amino
acid sequence homology. Hence, these results
therefore suggest that the epitope-specific CD8+

T cells were successfully recruited during primary
seasonal SARS-CoV-2 infection. However, it should
be noted that potential homology with other
pathogen-derived peptides could not be excluded.
Donors who recovered from severe/critical disease
had significantly higher Tcm and lower Tnaive-like
populations than convalescent donors who
experienced mild disease, which is in
correspondence to other studies that found larger
overall T cell responses in patients who recovered
from severe disease.44 Lower Tnaive-like frequencies
were also identified in elderly, which was
expected as elderly are more susceptible to severe
COVID-19.45 Although the memory phenotype of
SARS-CoV-2-specific CD8+ T cells identified in this
study suggests persistence, to confirm their
longevity requires study of epitope-specific T cell
responses over long periods of time.

The strength of the CD8+ T cell response against
future SARS-CoV-2 infections also depends on
their ability to recognise conserved epitopes in
emerging viral variants. Overall, SARS-CoV-2 CD8+

T cell epitopes were highly conserved among all
VOCs, with HLA-B*07:02/S680–688 and B*27:05/N9–17

being the only exceptions. The impact of the
mutations in the HLA-B*07:02/S680–688 epitope on
the overall CD8+ T cell response is probably
limited as this epitope was subdominant and
therefore unlikely to be the result of selective
immune escape. Potentially, the N9–17 P13L
mutation in Omicron is of higher concern, as it
affects the only identified and highly prevalent
HLA-B*27:05 SARS-CoV-2 epitope. Although the
P13L mutation is not predicted to affect peptide-
HLA-I binding considerably (NetMHC-4.0), T cell

receptor (TCR) recognition was found to be
altered.46 Hence, although Omicron evades
previously induced neutralising antibody
responses,47 CD8+ T cell responses to Omicron, and
other VOCs, are hardly affected.15,16,48 However, it
is to be expected that over the years, due to
repeated SARS-CoV-2 infections of people with
existing SARS-CoV-2-specific immunity, mutations
arise in future VOCs that permit escape from
existing CD8+ T cell-driven immunity, as is also
observed for other seasonal infections like
influenza.49,50

Vaccination is the most effective way to protect
against (severe) COVID-19. Current vaccines have
been shown to induce highly effective CD8+ T cell
responses, but generally only exploit the S
protein.51 This means that vaccine-induced CD8+

T cells target a narrow range of spike-derived
epitopes. The current study identified 10 spike-
derived epitopes across eight HLA-I allotypes, of
which A*02:01/s269–277, A*03:01/S378–386 and
A*24:02/S1208–1216 are the only epitopes that
induced high CD8+ T cell frequencies in the
majority of convalescent donors expressing the
respective HLA-I allotype. Spike-derived epitopes
were not identified for HLA-B*08:01, B*15:01 and
B*27:05, which may have been the result of
insufficient peptide prediction for these HLA-I
allotypes. A recent study has identified
HLA-B*15:01 restricted spike-specific CD8+ T cell
epitopes, both the SARS-CoV-2 and seasonal
coronavirus variant of the epitopes could be
recognised by the same T cell receptors.23 To the
best of our knowledge, no spike-specific epitopes
have been identified for HLA-B*08:01 and
B*27:05, suggesting that vaccination may result in
lower spike-specific CD8+ T cell responses in
individuals expressing one or a combination of
these HLA-I allotypes. CD8+ T cells recognising
spike-derived peptides restricted by HLA-A*01:01,
A*11:01, B*07:02, B*35:01 and B*40:01 were
induced at low frequencies after infection-
induced immunity. However, these epitopes may
play a central role after spike-based vaccination,
as in this setting the more immunodominant
epitopes derived from other viral proteins will be
absent. Indeed, a recent study by Minervina
et al.23 demonstrated that HLA-A*01:01, A*02:01,
A*24:02, B*15:01 and B*44:02 restricted spike
epitope-specific CD8+ T cells were preferentially
boosted following vaccination of individuals with
and without a history of previous SARS-CoV-2
infection. It will be of special interest to
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determine whether CD8+ T cells recognising the
newly identified HLA-A*11:01/S529–537 and
B*07:02/S1014–1022 epitopes have a similar potential
to become important in spike-vaccine-induced
immunity, as these are the most prominent spike-
derived epitopes for their respective HLA-I
allotype. However, the high mutation rate
observed in the spike protein, relative to the rest
of the SARS-CoV-2 genome,52 emphasises the
importance of including other SARS-CoV-2
proteins in next-generation vaccines that aim to
provide broad CD8+ T cell-driven protection
against severe disease caused by current and
emerging SARS-CoV-2 variants. In prospect, it
would be interesting to study how spike epitopes
develop in relation to other SARS-CoV-2-derived
epitopes over time, after reinfections and/or
repeated vaccination.

To summarise, we reported immunodominance
hierarchies and memory phenotype profiles of
conserved SARS-CoV-2 CD8+ T cell epitopes
simultaneously in 50 convalescent COVID-19
donors. The ability of epitope-specific CD8+ T cells
to respond to a large variety of conserved
SARS-CoV-2 epitopes and differentiate into a
sustainable memory population is likely to
contribute to long-term protection against severe
disease inflicted by future SARS-CoV-2 strains.
Furthermore, this study underlines and extends
the currently known HLA-I epitope repertoire
against SARS-CoV-2 and described the high level
of conservation of CD8+ T cell epitopes. In
addition, the immunodominance hierarchy
emphasises the importance of CD8+ T cell epitopes
derived from viral proteins, besides spike, to the
overall protective and cross-reactive immune
response. Overall, these epitopes could play an
essential role in developing broad-protective
SARS-CoV-2 vaccines, which aim to protect against
severe disease resulting from current and
emerging SARS-CoV-2 variants.

METHODS

Study participants and sample collection

Fifty-one convalescent SARS-CoV-2 donors infected in the
spring of 2020 were recruited as part of the COVID-19
Convalescent Plasma programme at Sanquin Blood Supply
Foundation, Amsterdam, the Netherlands, between 30
March and 6 September 2020. SARS-CoV-2 infection was
confirmed based on RBD, spike and/or N IgG serology. A
questionnaire was used to determine the date of symptom
onset, date of recovery and severity of the infection.

Donors were categorised into the following categories: mild
(stay at home, minimal symptoms), severe (hospitalised,
ward) and critical (hospitalised, intensive care unit) or
unknown (donors did not provide information on their
disease progression). Demographics of all participants are
listed in Supplementary table 1 and Supplementary
figure 1. The study is in accordance with the declaration of
Helsinki and according to Dutch regulations. Data and
samples were collected only from voluntary,
nonremunerated, adult donors who provided written
informed consent as part of routine blood collection
procedures of the Sanquin Blood Supply Foundation (Blood
Bank). The study was approved by the Ethics Advisory
Council of Sanquin Blood Supply Foundation.

Blood was collected at least 2 weeks after recovery.
Peripheral blood mononuclear cells (PBMCs) were isolated
from heparinised peripheral blood or buffy coats by Ficoll-
Paque separation, and plasma was collected for serology
and granulocytes for HLA-I typing.

Serology

Anti-RBD, spike and nucleocapsid antibody titres were
quantified by ELISA, as described previously.53-55 In short,
the viral antigens were coated overnight at 4°C on
MaxiSorp microtitre plates (Thermo Fisher Scientific,
Landsmeer, the Netherlands). Plasma samples were diluted
1200- and/or 3600-fold in PBS supplemented with 0.1%
polysorbate-20 and 0.3% gelatin (PTG) and were
subsequently incubated on the antigen-coated plate for
1 h at room temperature (RT). After washing, 0.5 lg mL�1

of HRP-conjugated anti-human IgG (MH16-1; Sanquin,
Amsterdam, the Netherlands) was added in PTG and
incubated for 30 min at RT, after which the plated was
washed. The enzymatic conversion of TMB substrate was
monitored, and absorbance was measured at 450 and
540 nm. The signals were quantified using a serially
diluted calibrator consisting of a reference plasma pool of
previously confirmed convalescent COVID-19 patients that
were included on each plate. This calibrator was
arbitrarily assigned a value of 100 AU mL�1, and
seroconversion threshold of IgG was set at 4 AU mL�1

levels as determined by using preoutbreak samples.53,54

Since plasma samples of donors D09 and D29 were
collected after PBS dilution and the Ficoll centrifugation,
ELISA results were multiplied accordingly to the
predilution of the sample.

HLA-I-typing and coverage

HLA class I genotyping was performed on genomic DNA
extracted from the granulocytes using the QIAamp DNA
mini-Kit (Qiagen, Hilden, Germany) by the department of
Immunogenetics Sanquin Diagnostiek B.V.

Allelic frequencies were calculated by dividing the
total number of a specific allele of interest (HLA-A*01:01,
HLA-A*02:01, HLA-A*03:01, HLA-A*11:01, HLA-A*24:02, HLA-
B*07:02, HLA-B*08:01, HLA-B*15:01, HLA-B*27:05, HLA-
B*35:01 and HLA-B*40:01) observed in the 51 HLA-typed
donors by the total number of all allele copies of the
associated genetic locus (alleles of interest/2n). The HLA-I
frequencies of our cohort were compared with the general
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Dutch populations (Allele Frequency Net Database,34

Netherlands Leiden n = 1305, accessed on 3 December 2020).

SARS-CoV-2 epitopes

SARS-CoV-2-specific CD8+ T cell peptides, 8–11 amino acids
in length, were selected based on the ancestral Wuhan-Hu-1
proteome of which sequences were obtained from
National Center for Biotechnology Information (NCBI)
database (Spike YP_009724390.1, Membrane
YP_009724393.1, Nucleocapsid YP_009724397.2, Envelop
YP_009724392.1, ORF1ab YP_009724389.1, ORF3a
YP_009724391.1, ORF6 YP_009724394.1 and ORF7a protein
YP_009724395.1). Epitope predictions were based on
NetMHC-4.0 and/or NetMHCpan-4.1, using their default
settings, and 126 strong (< 0.5) and weak binding (0.5–2)
predicted epitopes were identified covering 120 unique
peptides, 47 of which had already been confirmed by the
scientific community at the start of this study. Another
seven peptides were selected based on their high
homology (> 75%) with SARS-CoV-1 and/or seasonal
human coronaviruses (Supplementary table 2). All 127
peptides (JPT, Berlin, Germany) were tested on actual
binding to their predicted HLA-I allotype of interest, by
in vitro binding assays. Peptides with ≥ 50% binding
avidity relative to the HLA-I allotype control peptide or
previously confirmed as CD8+ T cell epitope in other
studies with lower < 50% binding avidity were selected
for HTCC.

Generation of combinatorial encoded pHLA-I
tetramers

HLA-I complexes with UV-cleavable peptides were
generated in-house by the Reagents department of
Sanquin, as described previously.56 In short, recombinant
HLA-A*01:01, A*02:01, A*03:01, A*11:01, A*24:02, B*07:02,
B*08:01, B*15:01, B*27:05, B*35:01 and B*40:01 heavy
chains and the B2M light chain were produced in
Escherichia coli. pHLA-I complexes were formed by
combining heavy chain, light chain and UV-cleavable
peptide,57 and purified by gel-filtration high-performance
liquid chromatography (HPLC). After biotinylation, pHLA-I
complexes were stored at �20°C until use. UV-mediated
exchanges, by subjecting the pHLA complex to 366 nm UV
light, created SARS-CoV-2-specific pHLA-I complexes.56 HLA-I
tetramers were generated by conjugating 10 different
fluorescent streptavidin conjugates [PE, PE-Cy7, APC
(Thermo Fisher), BUV661, BUV737, BV421, BV605, BV711,
PE-CF594 (BD bioscience, Vianen, the Netherlands) and
BV785 (Biolegend, Amsterdam, the Netherlands)] to the
SARS-CoV-2-specific pHLA-I complexes.58 The UV-exchange
and combinatorial coding techniques are patent-protected
in Europe, the US and other countries WO 2010/060439 and
WO 2006/080837. Due to high sequence similarity of some
peptides, several pHLA tetramer combinations could not be
tested simultaneously, in those cases peptides with higher
in vitro binding avidity and/or those previously described as
CD8+ T cell epitopes by us or others were preferentially
selected. Those three peptides are identified in
Supplementary table 2. Altogether, CD8+ T cell analysis was
performed for 93 epitopes.

Flow cytometry assay

For flow cytometry analysis, donors with overlapping HLA-I
allotypes were grouped and one donor (D51) was
excluded because of technical complications
(Supplementary table 1). PBMCs were thawed in RPMI
1640 (Life Technologies; 21875-034) supplemented with
10% FCS (Bondinco, Alkmaar, the Netherlands), 1%
penicillin–streptomycin (Sigma, Zwijndrecht, the
Netherlands), 1% L-glutamine (Sigma) and 1:1000 DNase
(Worthington Biochemical Corporation, Lakewood, USA;
cat. LS002140, 10 mg mL�1). PBMCs were washed twice in
MACS buffer (0.5% BSA and 2 mM EDTA in PBS), after
which 4–8 million cells per donor were resuspended in
FACS-buffer [0.5% BSA (Sigma; cat. A7030) 0.1% NaN3 in
PBS, 0.2 lm filtered (Whatman, Medemblik, the
Netherlands)]. HLA-I tetramer pools were generated to
stain with up to 30 different peptide-HLA-I tetramers
simultaneously, in the presence of Brilliant Staining Buffer
Plus (BD Bioscience; cat. 566385) according to the
manufacturer’s instructions. After incubating cells with
HLA-I tetramers for 30 min on ice, the antibody mix was
added, and cells were incubated for an additional 30 min
on ice. Antibody mix contained: AF700 anti-human CD3
(clone UCHT1; BD Bioscience; cat. 557943), FITC anti-human
CD8 (clone SK1; BD Bioscience; cat. 345772), BUV395 anti-
human CD45RA (clone HI1000; BD Bioscience; cat. 740298),
BV510 anti-human CD27 (clone O323; BD Bioscience; cat.
751672) and Near-IR-Dye (Invitrogen, Carlsbad, USA; cat.
L10119). Subsequently, cells were washed twice and
fixated with IntraStain (Agilent Dako, Santa Clara, USA;
cat. K231111-2) following the manufacturer’s instructions.
Next, cells were washed twice and resuspended in FACS-
buffer for acquisition on the BD FACSymphonyTM A5 with
FACSDiva software (BD Biosciences). Data were analysed
using FlowJo (v10.8.1; Treestar, Ashland, USA). The
threshold to identify tetramer+CD8+ T cells as antigen-
specific was ≥ 3 double-tetramer-positive cells. A threshold
of ≥ 9 tetramer+CD8+ T cells was used for phenotypic
characterisation.

Amino acid sequence identity

Amino acid sequence identity of the viral peptides of
confirmed SARS-CoV-2 epitopes across the different VOCs,
Alpha, Beta, Gamma, Delta and Omicron was determined
using outbreak.info,37 accessed on 15 August 2022.
Mutations are reported in Table 1 when the mutation was
detected in ≥ 1% of the total sequences in the database for
one of the VOCs.

Statistics

All statistical analyses were performed on GraphPad Prism
(v9.1.1). The assumed nonparametric datasets (two-tailed)
were tested for statistical significance with the Mann–
Whitney U-test (unpaired) or the Wilcoxon (paired),
comparing two groups at a time. Two-tailed simple linear
regression analysis was performed with 95% confidence
interval. Differences were considered significant if P ≤ 0.05.
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Fifty-one convalescent COVID-19 donors were analysed for their ability to recognise 133 predicted SARS-CoV-2-

derived peptides restricted by 11 common HLA-I allotypes using heterotetramer combinatorial coding. Forty-

nine mostly conserved SARS-CoV-2-specific CD8+ T cell epitopes, including five new, were identified. This study

revealed three dominant epitopes (HLA-A*01:01/ORF1ab1637–1646, B*07:02/N105–113 and B*35:01/N325–333). The

magnitude of subdominant epitope responses, including HLA-A*03:01/N361–369 and A*02:01/S269–277, largely

depended on the donors’ HLA context. All epitopes had a prevalent memory phenotype, which were

significantly higher in severe COVID-19 donors.
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