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Audio-Adaptive Activity Recognition Across Video Domains

Yunhua Zhang1 Hazel Doughty1 Ling Shao2* Cees G. M. Snoek1

1University of Amsterdam 2Inception Institute of Artificial Intelligence

Abstract
This paper strives for activity recognition under domain

shift, for example caused by change of scenery or camera
viewpoint. The leading approaches reduce the shift in activ-
ity appearance by adversarial training and self-supervised
learning. Different from these vision-focused works we lever-
age activity sounds for domain adaptation as they have less
variance across domains and can reliably indicate which ac-
tivities are not happening. We propose an audio-adaptive en-
coder and associated learning methods that discriminatively
adjust the visual feature representation as well as address-
ing shifts in the semantic distribution. To further eliminate
domain-specific features and include domain-invariant ac-
tivity sounds for recognition, an audio-infused recognizer
is proposed, which effectively models the cross-modal inter-
action across domains. We also introduce the new task of
actor shift, with a corresponding audio-visual dataset, to
challenge our method with situations where the activity ap-
pearance changes dramatically. Experiments on this dataset,
EPIC-Kitchens and CharadesEgo show the effectiveness of
our approach. Project page: https://xiaobai1217.
github.io/DomainAdaptation.

1. Introduction
The goal of this paper is to recognize activities such as

eating, sleeping or cutting under domain shift caused by
change of scenery, camera viewpoint or actor, as shown
in Figure 1. Existing solutions align distribution-shifted
domains inside a single visual video network by adversarial
training [5,20,27,29] and self-supervised learning [9,22,34].
Although successful, projecting the visual features from
different source and target domains into a shared space can
make the ability of the model to distinguish between classes
in the target domain suffer. We observe that activity sounds
can act as natural domain-invariant cues, as they carry rich
activity information while exhibiting less variance across
domains. We thus propose a video model which adapts to
video distribution shifts with the aid of sound.

Many have considered sound in addition to visual analy-
sis for activity recognition within a single domain [18,24,25,

*Currently at Terminus Group, China.
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Figure 1. We recognize activities under domain shifts, caused by
change of scenery, camera viewpoint or actor, with the aid of sound.

28, 31, 38, 39, 45, 46, 49]. For instance, both Gao et al. [18]
and Korbar et al. [24] reduce the computational cost by pre-
viewing the audio track, while Lee et al. [25] show that com-
bining visual features with audio can better localize actions.
However, the cross-modal correspondences become harder
to discover when shifting domains, causing existing cross-
modal fusion schemes to degrade in performance. Yang et
al. [48] and Planamente et al. [30] propose to directly fuse
visual and audio features or predictions for cross-domain
activity classification. However, the effectiveness of these
methods is reduced when not all activities make a charac-
teristic sound. Different from previous works, we introduce
audio-adaptive learning methods and a cross-modal interac-
tion that utilizes the reliable domain-invariant cues within
sound to help the video model adapt to the distribution shift.

We make three contributions in this paper. First, we
propose an audio-adaptive encoder which exploits the rich
information from sound to adjust the visual feature repre-
sentation causing the model to learn more discriminative
features in the target domain. This is done by preventing
the model from over-fitting to domain-specific visual con-
tent, while simultaneously dealing with imbalanced seman-
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tic distributions between domains. Second, we introduce an
audio-infused recognizer, which eliminates domain-specific
features further and allows effective cross-modal interaction
across domains by considering domain-invariant activity
information within sound. As a third contribution, we in-
troduce the new task of actor shift, and a corresponding
audio-visual video dataset ActorShift, to challenge our ap-
proach when the change in actors results in large variation
in activity appearance. Experiments on EPIC-Kitchens [12],
CharadesEgo [33] and ActorShift, demonstrate the advantage
of our approach under various video distribution shifts for
both audible and silent activities.

2. Related Work
Sound for activity recognition. Many works have uti-
lized sound for within-domain activity recognition in videos,
e.g., [18,21,24,25,38,39]. Since there is a natural correlation
between the visual and auditive elements of a video, Korbar
et al. [23] and Asano et al. [1] learn audio-visual models in a
self-supervised manner. As processing audio signals is much
faster than video frames, both Gao et al. [18] and Korbar et
al. [24] reduce computation by previewing the audio track
for video analysis. Cross-modal attention is widely used
in activity localization [25, 39, 46] and audiovisual video
parsing [38, 45] to guide the visual model to focus on the
audible regions. Zhang et al. [49] conduct repetitive activity
counting by using audio signals to decide the sampling rate
and predict the reliability of the visual features. As opposed
to most works which rely on sound for within-domain activ-
ity recognition, we consider its domain-invariant nature for
activity recognition across different domains.
Video domain adaptation by vision. The field of vision-
focused domain adaptation is extensive (see recent surveys
[43, 51]). Here, we focus on video domain adaptation for
activity recognition. State-of-the-art visual-only solutions
learn to reduce the shift in activity appearance by adversarial
training [5, 6, 8, 9, 20, 27, 29] and self-supervised learning
techniques [9,22,27,34]. While Jamal et al. [20] and Munro
and Damen [27] directly penalize domain specific features
with an adversarial loss at every time stamp, Chen et al. [5],
Choi et al. [9] and Pan et al. [29] attend to temporal seg-
ments that contain important cues. Self-supervised learning
objectives are also incorporated in [27] and [9] to better align
the features across domains by utilizing the correspondences
between RGB and optical flow or the temporal order of video
clips. Song et al. [34] and Kim et al. [22] obtain remark-
able performance by contrastive learning for self-supervised
learning to align the feature distributions between video do-
mains. Instead of relying on the vision modality only, which
may present large activity appearance variance, we consider
the domain-invariant information within sound to help the
model adapt to the visual distribution shift.
Video domain adaptation by vision and audio. As audio

signals contain valuable domain-invariant cues, some recent
works recognize activities across domains with the aid of
sound. Yang et al. [48] directly fuse the features from visual
and audio modalities before classification. However, this
can lead to the visual features dominating the classification
since many activities are silent and the audio features are
less discriminative. As a result, the complementary infor-
mation from sound may not be considered. Planamente et
al. [30] instead align the two modalities with an audio-visual
loss. Nonetheless, the audio predictions for silent activities
remain unreliable and limit their performance improvements.
Instead, we propose audio-adaptive learning that exploits the
supervisory signals from sound to adjust to the distribution
shift and handle both audible and silent activities.

Additionally, existing datasets e.g., [3, 12, 33, 35] focus
on human actors, meaning activities are inherently close
in appearance and share commonalities with hand-object
interactions. Inspired by the A2D dataset by Xu et al. [47],
which contains multiple actor classes for activity recognition,
we introduce the challenging domain adaptation setting of
actor shift, in which the shift between humans and animals
performing the action results in large appearance and motion
differences across domains, further facilitating video domain
adaptation by the use of vision and audio.

3. Approach
For activity recognition under domain shift, we consider

unsupervised domain adaptation where we have: a set of
labeled source videos S={(XS

1 , y
S
1 ), . . . , (X

S
N , ySN )} and a

set of unlabeled target videos T ={XT
1 , . . . , XT

M}. In each
domain, X and y indicate a video sample and the correspond-
ing activity class label, while N and M are the number of
samples in the source and target domain. Using all available
training data from the source and the target domains, the
task is to train an activity recognition model, which performs
well on (unseen) videos from the target domain.

We train our audio-adaptive model in two stages using
videos from source and target domains with accompanying
audio. In the first stage we train our audio-adaptive encoder
(Section 3.1) that uses audio to adapt a visual encoder to
be more robust to distribution shifts. In the second stage
we train our audio-infused recognizer (Section 3.2) using
pseudo-labels from the audio-adaptive encoder for the target
domain and the ground-truth labels for the source domain.
The audio-infused recognizer maps the source and target
domains into a common space and fuses audio and visual
features to produce an activity prediction for either domain.

3.1. Stage 1: Audio-Adaptive Encoder
Our audio-adaptive encoder E(·), detailed in Figure 2,

consists of a visual encoder V(·), an audio encoder A(·)
and an audio-based attention module  (·). Since the sounds
of activities have less variance across domains, E(·) aims
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Figure 2. Audio-adaptive encoder for activity recognition under domain shift. With a pre-trained audio encoder, we train the visual
encoder and audio-based attention module, which guides the visual encoder to focus on the activity relevant features. We do this with two
audio-adaptive learning methods: absent-activity learning and audio-balanced learning. The absent activity learning operates in the target
domain and uses the audio predictions to indicate which activities cannot be heard in the video. The visual predictions are then encouraged
to have low probabilities for these ‘pseudo-absent’ activities. The audio-balanced learning uses audio in the source domain to cluster samples
in each activity class into clusters according to the sounds of the object/environment interacted with. In the audio-balanced loss the rare
activities and interactions are weighted higher to handle the semantic shift between domains.

to extract visual features that are invariant but discrimina-
tive under domain shift with the aid of A(·) pre-trained
for audio-based activity recognition. To this end, we train
V(·) and  (·) with two audio-adaptive learning methods:
absent-activity learning for unlabeled target data and audio-
balanced learning for labeled source data. The former aims
to remove irrelevant parts of the visual features while the
latter helps to handle the differing label distribution between
domains. Once trained, for each video, we can extract an
audio feature vector from A(·) and a series of visual features
from V(·) with which to train our audio-infused recognizer
(Section 3.2) for activity classification.
Audio-based attention. We use an audio-based attention
module  (·) to adapt the visual encoder to focus on activity-
relevant features. For example, the visual model may pre-
dict the activity washing because of the presence of a sink.
However, without the sound of water the attention module
suppresses the channels encoding the sink thus increasing
the prediction of the correct class. The attention module
is based on the transformer encoder [13, 14, 42]. It takes
the audio features as input and outputs the channel attention
feature vector, which is multiplied with the visual features.
Absent-activity learning. The absent-activity learning uses
audio in the target domain to train the attention module and
visual encoder. Naively, we could treat the class with the
highest probability from the visual encoder as the pseudo
label. However, doing so can create biased pseudo-labels
as irrelevant objects often appear in a scene. Instead, we
use the audio predictions to guide the visual pseudo-labels.
While we may not be confident which activity is happening
in a video, particularly for silent videos, we can often be

confident that certain activities with distinctive sounds are
not occurring in a video. We call these “absent activities”.
To learn from these absent activities, we generate pseudo-
absent labels for the unlabeled target domain videos, which
indicate the activities with the lowest probabilities from the
audio encoder. The visual encoder is then encouraged to
predict these unlikely classes with low probability.

Specifically, for an unlabeled video XT in the target
domain, we obtain the audio-based activity probability dis-
tribution pT

a 2 RK (K is the number of classes) from the
audio encoder A(·) trained on labeled source data. From
this we obtain the set of absent activities Q by taking the
lowest r predictions in pT

a , i.e., the classes with the lowest
probabilities from the audio encoder. We also extend this to
multi-label classification by instead assuming the (1� ↵k)�
percent videos with the lowest probabilities do not contain
class k, where � 2 (0, 1] and ↵k is the percentage of videos
containing each activity class in the labeled source domain.

Our loss for absent-activity learning is formulated as:

lA(pT
v ,Q) = �

X

q2Q
log(1� pTv,q), (1)

where pTv,q is the probability output for the qth class for the
video XT . With this loss, the visual encoder is able to ignore
confounding visual features and generate less-noisy pseudo-
labels for the target domain. This allows our model to better
capture high-level semantic information between domains
based on both appearance and motion cues.
Audio-balanced learning. Besides a change in vi-
sual appearance, domain shift can also be caused by a
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change in label distributions [27] and frequencies of ob-
jects/environments. For example, the open activity may
commonly occur on a ‘cupboard’ in the source domain but
be more common with a ‘can’ in the target. These two cases
result in different audio-visual activity appearances. We
address such challenges with our audio-balanced learning,
which not only handles imbalance in activity classes, but
also imbalance in terms of the objects or the environment
being interacted with.

To this end, we first use k-means to group the video sam-
ples inside each activity class by their audio feature fSa with
the assumption that each group represents a different type of
object or environment. We use audio features for clustering
as they can indicate the material of the interacted objects
or the environment the action is performed in, while being
invariant to appearance changes. The number of interac-
tion clusters per activity class is determined by the Elbow
method [37], which favours a small number while obtaining
a low ratio of dispersion both between and within clusters.

We based our audio-balanced loss on the class-balanced
loss by Cui et al. [11]. When using the original class-
balanced loss on a source domain video XS with visual
probabilities pS

v we can balance over our activity classes:

lCB(p
S
v , y

S) =
1� �

1� �ny
L(pS

v , y
S), (2)

where L is a classification loss, e.g., softmax cross-entropy
loss and ny is the number of training samples of ground-
truth activity class y. � 2 [0, 1) is a hyper-parameter which
controls the weighting factor 1��

1��ny . As � ! 1, this weight-
ing factor becomes inversely proportional to the effective
number of samples inside each class so that tail classes in
the source domain are weighted higher in training.

With our audio-balanced loss we include an additional
weighting factor so the long tail of object interactions are
also accounted for with our interaction clusters:

lB(p
S
v , y

S) =
1� �

1� �ny,j
lCB(p

S
v , y

S). (3)

ny,j is the number of samples for the jth interaction cluster
that video XS is assigned within ground-truth activity yS .
By this loss, both rare activities and rare interactions from
frequent activities are given a high weight during training.
This means the classifier can generalize well to the target
domain where the distribution of activities and interactions
may not be the same.
Audio-adaptive encoder loss. The absent-activity loss and
the audio-balanced loss are combined to obtain the overall
loss for training the visual encoder V(·) and audio-based
attention  (·) inside the audio-adaptive encoder E(·):

lE =
X

(Xi)2T

lA(pT
i,v,Qi) +

X

(Xj ,yj)2T

lB(pS
j,v, y

S
j ). (4)
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Figure 3. Audio-infused recognizer. We add domain embedding
Ed to encourage a common visual representation across domains.
Then, an audio-adaptive class token is obtained from a series of
activity sound feature vectors, considering both audio and visual
features. It is sent into the transformer together with the visual
features. By the transformer’s self attention, this token aggregates
information from visual features with the domain-invariant audio
activity cues for activity classification.

3.2. Stage 2: Audio-Infused Recognizer
While audio can help focus on the activity-relevant vi-

sual features, there is still a large difference between the
appearance of activities in different domains. To further
eliminate domain-specific visual features and fuse the activ-
ity cues from the audio and visual modalities we propose the
audio-infused recognizer R(·), visualized in Figure 3.
Transformer with domain embedding. We adopt a trans-
former encoder since its core mechanism, self-attention, can
efficiently encode multi-modal representations [16, 36, 50].
For a vanilla version, we take the input sequence:

zm=[zmcls; fv,1Ev; · · · ; fv,nEv; fa,1Ea, ; · · · ; fa,nEa], (5)

where zmcls is the learnable class token defined as in [14],
and {fv,1, · · · , fv,n|fv,· 2 RCv} and {fa,1, · · · , fa,n|fa,· 2
RCa} are the visual and audio features of n clips from video
X . Ev 2 RCv⇥D and Ea 2 RCa⇥D are linear projections to
map the visual and audio features to D dimensions. To map
source and target domains into a common space, we first
learn a domain embedding Ed 2 RD (d 2 {S, T }), which
contains both positive and negative values and is added to
suppress domain-specific visual features. Then, the input
sequence for the transformer becomes:

z0=[zmcls; fv,1Ev+Ed; · · ·; fv,nEv+Ed; fa,1Ea, ; · · ·; fa,nEa].
(6)

Audio-adaptive class token. Ideally, the transformer’s
self attention will aggregate audio and visual features with
the class token to predict the correct activity. However, the
cross-modal correspondences are difficult to find under dis-
tribution shift, meaning the prediction may rely on the more
discriminative, but less domain-invariant, visual features. To
address this, we propose to generate an audio-adaptive class
token, which is initialized from the audio activity class pre-
diction and gradually aggregates the visual features while
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Source Domain Setting Target Domain Setting

Shift Video Dataset Source Domain Train Target Domain Train Test

Scenery EPIC-Kitchens-55 [12] Kitchens 7,935 Kitchens 7,935 2,114
Viewpoint CharadesEgo [33] Third-person view 3,083 Ego-centric view 3,083 825
Actor ActorShift (ours) Human actors 1,305 Animal actors 35 165

Table 1. Domain adaptation benchmarks for activity recognition under scenery, viewpoint and actor shift with the datasets used and
number of videos per source and target split. Scenery and viewpoint shift are present in existing datasets. We propose the actor shift setting
and dataset to tackle the challenge of a severe change in activity appearance. The dataset is available on the project website.

keeping its own audio-based activity information through
the transformer. As shown in Figure 3, the audio-adaptive
class token is obtained from a series of activity sound vec-
tors {gk 2 RD}Kk=1, with each representing an activity class.
They capture global context information and serve as the rep-
resentation bottleneck to provide regularization for model
learning [2, 32]. For selection, the feature vector from the
audio adaptive encoder A(X) is first processed by a fully
connected layer to give the activity probabilities h 2 RK .
Then, an initial vector is obtained by g=

PK
k=1 hk ⇤ gk. We

include visual features to help silent activities select the rep-
resentative vector. To avoid the visual features dominating,
we project them to a lower dimension with a fully connected
layer before concatenating them with the initial vector g.
The concatenated vector is given to another fully connected
layer which outputs the probabilities h0 for each type of
activity sound. Finally, we obtain the audio representation
zcls=

PK
k=1 h

0
k ⇤ gk, which serves as the class token. Con-

sequently, the input sequence for the transformer becomes:

z=[zcls; fv,1Ev +Ed, ; · · · ; fv,nEv +Ed], (7)

where zcls is the audio-adaptive class token. The class token
output state is further sent to a fully connected layer to get the
final prediction p⇤. For audible activities, the activity sound
vector can be accurately selected and kept discriminative
for audiovisual interaction. For silent activities, the vec-
tor is obtained from environmental sound, which indicates
the presence of multiple possible activities. The vector be-
comes more discriminative as the transformer progressively
enhances it through the visual features.
Audio-infused recognizer loss. We train the audio-infused
recognizer on both source and target videos with the loss:

lR =
X

(Xi,yi)2{S,T }

L(p⇤
i , yi) + ⌘

⇣
L(hi, yi) + L(h0

i, yi)
⌘
, (8)

where hyperparameter ⌘ balances the loss terms and yi is the
groundtruth or, in the case of the unlabeled video, the hard
pseudo-label. p⇤

i is the final classification prediction, and
hi and h0

i are the probabilities for the activity sound vectors
outputted by the first and second fully connected layers.
The first term L(p⇤

i , yi) optimizes the transformer to predict
the correct activity class, while the second term L(hi, yi) +
L(h0

i, yi) optimizes the activity sound vectors. We are now

ready to validate the effectiveness of our approach on three
domain adaptation benchmarks as highlighted in Figure 1,
summarized in Table 1 and detailed next.

4. Domain Adaptation Benchmarks
Scenery shift. We study scenery shift in the EPIC-Kitchens-
55 [12] dataset, which contains first-person videos of fine-
grained kitchen activities. The domain adaptation benchmark
proposed by Munro and Damen [27] uses three domain par-
titions (D1, D2 and D3), where each domain is a different
person in a different kitchen. The task is to adapt between
each pair of domains. This benchmark focuses on eight
activity classes (verbs), which occur in combination with dif-
ferent objects, with a severe class imbalance. The kitchens
have different appearances and contain different utensils.
Viewpoint shift. We consider viewpoint shift in the
CharadesEgo dataset by Sigurdsson et al. [33]. It contains
paired videos of the same activities, recorded from first and
third-person perspective. It has 3,083 and 825 videos per
viewpoint for training and testing, spanning 157 activity
classes. Following [8], we treat the third-person videos as
the source domain and the first-person videos as the target
domain. The changing views make the activities appear
visually different, resulting in a large domain gap.
Actor shift. While both EPIC-Kitchens and CharadesEgo
contain considerable domain shifts, there are still some in-
herent similarities between the domains in these datasets.
Since all the actors are humans, latent signals describing the
way hands and objects interact are shared between domains.
Therefore, we introduce an even more challenging domain
shift setting to further facilitate video domain adaption re-
search and demonstrate the potential of our method. We
introduce ActorShift, where the domain shift comes from
the change in actor species: we use humans in the source
domain and animals in the target domain. This causes large
variances in the appearance and motion of activities.

For the corresponding dataset we select 1,305 videos of 7
human activity classes from Kinetics-700 [3] as the source
domain: sleeping, watching tv, eating, drinking, swimming,
running and opening a door. For the target domain we
collect 200 videos from YouTube of animals performing the
same activities. We divide them into 35 videos for training (5
per class) and 165 for evaluation. The target domain data is
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scarce, meaning there is the additional challenge of adapting
to the target domain with few unlabeled examples.
Evaluation criteria. Following standard practice [27, 33],
we report top-1 accuracy on EPIC-Kitchens and ActorShift
for single-label classification, and mAP (mean average pre-
cision) on CharadesEgo for multi-label classification.

5. Results
We first describe the implementation details before ablat-

ing the components of our method and comparing to prior
works for each type of domain shift.
Implementation details. For our visual encoder V(·) we
use SlowFast [15], unless stated otherwise. For the audio
encoder A(·) we use ResNet-18 [19]. The audio-based at-
tention module  (·) consists of eight transformer encoder
layers [14] with a final fully connected layer to obtain the
attention vector for the visual encoder. The inputs are in-
termediate audio features from A(·) (conv3) along with a
learnable class token defined as in [14] (note this is differ-
ent from our audio-adaptive class token used in R(·)). The
output state of the class token passes through the fully con-
nected layer to obtain the attention vector for V(·). We set
the parameters of our absent activity loss to r=3, �=0.05
and �=0.999. Our audio-infused recognizer R(·) consists
of two transformer encoder layers [14] and three fully con-
nected layers for generating the class token. The sequence
dimension D is 512 and each layer has 8 self-attention heads.
More details are in the supplementary.

5.1. Ablation Study
For ablations we use RGB and audio modalities on both

EPIC-Kitchens and CharadesEgo. During training, all la-
beled source videos are used. With EPIC-Kitchens all target
videos are unlabelled, while for CharadesEgo we use half
labelled and half unlabelled for semi-supervised domain
adaptation as in [8]. Since EPIC-Kitchens contains multiple
adaptation settings, we report the average. Ablations on
component internals are provided in the supplementary.
Stage 1: Audio-adaptive encoder. We report results in Ta-
ble 2. We first consider the audio-adaptive encoder alone.
Initially, we train only the visual encoder with a standard
softmax cross-entropy loss on the source domain. Simply
generating channel attention for the visual features with our
audio-based attention module already improves performance
by 3.2% top-1 accuracy on EPIC-Kitchens and 0.4% mAP
on CharadesEgo. Since audio contains useful activity in-
formation, this attention helps the visual encoder focus on
relevant features. Adding the absent-activity learning re-
sults in 2.5% and 0.9% improvements, demonstrating that
the pseudo-absent labels increase the discriminative ability
of the model in the target domain. We observe that adopt-
ing the audio-balanced learning and replacing the softmax
cross-entropy with our audio-balanced loss delivers a further

EPIC-Kitchens CharadesEgo

Model Top-1 (%) " mAP (%) "

Stage 1: Audio-adaptive encoder E(·)
Visual encoder V(·) 48.0 23.1
+ Audio-based attention  (·) 51.2 23.5
+ Absent-activity learning 53.7 24.4
+ Audio-balanced learning 55.7 25.0
Stage 2: Audio-infused recognizer R(·)
+ Vanilla multi-modal transformer zm 56.1 25.0
+ Domain embedding z0 57.2 25.4
+ Audio-adaptive class token z 59.2 26.3

Table 2. Model components ablation. All components in the
audio-adaptive encoder and the audio-infused recognizer contribute
to performance improvement under distribution shift. For both
EPIC-Kitchens and CharadesEgo the improvements over a vanilla
SlowFast visual encoder are considerable.

Activities Overall
Model Silent Audible mAP (%) "
Visual encoder V(·) 23.2 22.7 23.1
Full model 26.3 25.9 26.3

Table 3. Benefit over silent and audible activities on Charades-
Ego. Our audio-adaptive model benefits both activity types.

2.0% and 0.6% increase. This highlights the importance of
addressing the label distribution shift in domain adaption.
Stage 2: Audio-infused recognizer. For the audio-infused
recognizer, we first consider a vanilla transformer. It takes
as input zm (Eq. 5), i.e. the audio and visual features from
the audio-adaptive encoder, mapped by Ev and Ea into a
common space, alongside a learnable class token. This only
gives a marginal improvement in results. Adding the domain
embedding Ed to reduce domain-specific visual features in
z0 (Eq. 6) gives a benefit of 1.1% on EPIC-Kitchens and
0.4% on CharadesEgo. This is because the cross-modal cor-
respondences become easier to discover. When we replace
the plain audio features and single learnable class token
with our audio-adaptive class token to get z (Eq. 7), we
observe further improvements of 2.0% and 0.9%. This is ex-
pected, as the audio-adaptive class token better incorporates
complementary information from sound for the final activity
classification, with a standard learnable class token the visual
features will dominate the fusion inside the transformer.
Benefit for silent activities. In Table 3, we demonstrate
the effect of our full model on silent and audible activities
separately. We focus on CharadesEgo since only 13 out of
157 classes have a characteristic sound (see supplementary).
Our model obtains ⇠3% absolute increase for both silent and
audible activities over a visual-only encoder. We conclude
that audio is helpful for handling visual distribution shifts
even for activities which do not have a characteristic sound.
Benefit for silent videos. We have also tested our approach
when the audio track is available for training but unavailable
during inference. On EPIC-Kitchens, the audio-adaptive en-
coder achieves 50.7% top-1 accuracy, still an improvement
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Modality EPIC-Kitchen Activity Recognition Across Domains
Method RGB Flow Audio D2 ! D1 D3 ! D1 D1 ! D2 D3 ! D2 D1 ! D3 D2 ! D3 Mean

I3D backbone
Source-only [27] X X 42.5 44.3 42.0 56.3 41.2 46.5 45.5
Munro and Damen [27] X X 48.2 50.9 49.5 56.1 44.1 52.7 50.3
Planamente et al. [30]† X X X 48.5 50.9 49.7 56.3 44.8 52.5 50.5
Yang et al. [48]† X X X 49.2 51.0 49.8 56.5 45.7 52.3 50.8
Kim et al. [22] X X 49.5 51.5 50.3 56.3 46.3 52.0 51.0
Song et al. [34] X X 49.0 52.6 52.0 55.6 45.5 52.5 51.2
This paper X X X 51.9 48.7 53.2 63.2 52.1 55.5 54.1
SlowFast backbone
This paper X X X 59.3 59.1 59.5 69.1 54.8 64.3 61.0

† Based on our re-implementation using our features for RGB, flow and audio.

Table 4. Activity recognition under scenery shift on EPIC-Kitchens for the unsupervised domain adaptation setting. Our audio-adaptive
model achieves state-of-the-art top-1 accuracy, and benefits from audio more than the audio-visual fusion methods used in prior works [30,48].
Results increase further with a SlowFast backbone. More comparisons and modality-combinations are provided in the supplementary.

over visual encoder only (48.0%). With both the audio-
adaptive encoder and audio-infused recognizer, the result
improves to 51.2%. This indicates our approach effectively
uses audio to help the visual encoder learn a more discrimi-
native feature representation in the target domain, even when
audio is absent during inference.
Benefit for the long-tail. In Figure 4, we demonstrate the
benefit of audio-balanced learning towards activities that
are rare in the source domain but are more frequent in the
target domain. We use EPIC-Kitchens since it contains a
long-tail of different object interactions (nouns) in each ac-
tivity class (verb). We treat verb-noun pairs as frequent when
they occur more than 10 times in the source domain, else
they are considered rare. As the distribution of activities
(verbs) changes across domains, the class-balanced loss [11]
improves over the standard softmax cross-entropy loss. How-
ever, the domain shift also causes imbalance in the distribu-
tion of interactions (nouns). Because we balance the loss of
each pseudo-interaction by clustering, our audio-balanced
loss is especially helpful for the rare interactions (0-1 and
2-10 instances) where it obtains ⇠3.5% improvement. In
comparison to the class-balanced loss we are slightly worse
on frequent interactions, as we give higher weight to less
common interactions. As interactions have a long-tail, our
audio-balanced loss does result in an overall improvement.

5.2. Comparison with State-of-the-Art
Scenery shift. We first demonstrate the effectiveness of
our approach for domain adaptation on EPIC-Kitchens, as
defined by Munro and Damen [27]. Here, different domains
mean a change in scenery. The results are shown in Table 4.
We first note that our approach gives ⇠3% improvement
over the best performing prior works with the same I3D
backbone. A further ⇠7% improvement can be gained from
using SlowFast as the backbone [15]. There are several
reasons for this improvement. First, our model utilizes the
domain-invariant nature of audio signals to produce reliable
pseudo-absent labels for the target domain video during
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Figure 4. Benefit for the long-tail on EPIC-Kitchens. Our audio-
balanced loss learns rare activities in the source domain to general-
ize better to unknown activity distributions in the target domain.

training. This is particularly helpful for first-person videos
where the activity may happen out of view. In addition,
both RGB and Flow suffer from large appearance variance
making it harder to guide domain-adaption through these
modalities alone. Second, since the dataset has imbalanced
label distributions, treating all the classes and interactions
equally, as in prior works, results in inaccurate predictions
when the semantic distribution shifts.

We also compare our full model with alternative audio-
visual approaches proposed for cross-domain activity recog-
nition [30, 48]. We let both of them use the same inputs, i.e.,
the features as outputted by the visual and audio encoders.
Both of them use an adversarial loss to first align the visual
features between domains and fuse visual and audio features
or predictions afterwards. This causes the visual features to
dominate the classification while the complementary infor-
mation from sound may not be considered. Planamente et
al. [30] introduce an audio-visual loss, so the two modalities
make a more balanced contribution towards the prediction.
However, the audio predictions for silent activities are unreli-
able and harm their accuracy. Our model better combines the
complementary information in the audio and visual modali-
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Figure 5. Activity recognition under viewpoint shift on
CharadesEgo. Using all source data, we compare with [8, 33]
under varying amounts of labeled target training data. Our model
obtains favourable results under all settings.

ties, effectively coping with many activities being silent.
Viewpoint shift. In this comparison we consider viewpoint
shift in CharadesEgo [33], following the semi-supervised
setting of Choi et al. [8]. Meaning we have some labeled
target domain videos available during training. The results
are shown in Figure 5. Our method achieves better results
than Choi et al. [8] with the same I3D RGB backbone [3],
for all amounts of labeled target videos. When adopting
the SlowFast RGB backbone [15], we again further improve
performance for all settings. In the supplementary, we also
provide a favorable comparison with Li et al. [26] under their
fully-supervised setting. Since CharadesEgo contains paired
first-person and third-person videos, we can test whether our
method needs to see the same action instance from different
viewpoints as in previous methods [33] or whether it can
make use of unpaired videos. When half of the paired videos
from both views are used, we achieve a mAP of 29.9. When
we use unpaired videos, the performance remains unchanged.
We conclude our approach does not require paired training
videos to be robust to viewpoint shift.
Actor shift. For this experiment, we use our ActorShift
dataset and compare our model with the method by Munro
and Damen [27], as their code is available. For fair compari-
son, we replace their I3D backbone with the same SlowFast
backbone used for our model. We also show a baseline of the
SlowFast model trained on source domain video only. The
results are shown in Figure 6. While the method proposed
by Munro and Damen [27] achieves good performance, our
audio-adaptive approach better handles the large activity ap-
pearance variance caused by the shift in actors. For example,
humans and animals sleep in visually different places and
positions, while the sound of snoring or breathing is common
to both. All models struggle with silent activities when there
is both a large shift in appearance and a significant difference
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Figure 6. Activity recognition under actor shift on our Actor-
Shift dataset. When the visual similarities for the same activity are
difficult to discover between domains, our model can use additional
cues from sound to improve the recognition accuracy.

in sounds of activities between the domains, such as drink-
ing and running. We provide examples in the supplemental
material, which are of interest for future work.

6. Discussion
Limitations. During training, our method needs videos from
both source and target domains, and all should have an audio
track with decent quality, limiting our approach to multi-
modal video training sets. While audio at test-time is not
required, it benefits activity recognition results considerably.
Potential negative impact. When deployed our approach
will have to record, store and process video and audio infor-
mation related to human activities, which will have privacy
implications for some application domains.
Conclusions. We propose to recognize activities under do-
main shift with the aid of sound, using a novel audiovisual
model. By leveraging the domain-invariant activity infor-
mation within sound, our model improves over both silent
and audible activities as well as rare activities in the source
domain. Experiments on two domain adaptation benchmarks
demonstrate that our approach has better adaptation ability
than visual-only solutions and benefits from audio more than
alternative audiovisual fusion methods used in prior works.
We also show that our model better handles large activity
appearance variance caused by the shift in actors.
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