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Lennert Jansen†, Štěpán Lars Laichter†, Arabella Sinclair‡, Margot J. van der Goot†,
Raquel Fernández†, Sandro Pezzelle†

†University of Amsterdam, ‡University of Aberdeen
{lennertjansen95|lars.laichter}@gmail.com

arabella.sinclair@abdn.ac.uk
{m.j.vandergoot|raquel.fernandez|s.pezzelle}@uva.nl

Abstract

To be trusted and perceived as natural and co-
herent, conversational systems must adapt to
the language of their users. While personal-
ized dialogue is a promising direction, control-
ling generation for fine-grained language fea-
tures remains a challenge in this approach. A
recent line of research showed the effective-
ness of leveraging pre-trained language mod-
els toward adapting to a text’s topic or sen-
timent. In this study, we build on these ap-
proaches and focus on a higher-level dimen-
sion of language variation: speakers’ age. We
frame the task as a dialogue response genera-
tion, and test methods based on bag-of-words
(BoW) and neural discriminators (Disc) to con-
dition the output of GPT-2 and DialoGPT with-
out altering the parameters of the language
models. We show that Disc models achieve a
higher degree of detectable control than BoW
models based on automatic evaluation. In con-
trast, humans can partially detect age differ-
ences in BoW but not Disc responses. Since
BoW responses are deemed better than Disc
ones by humans, simple controllable methods
thus appear to be a better tradeoff between
adaptation and language quality. Our work
confirms the challenges of adapting to higher-
level dimensions of language variation. More-
over, it highlights the need to evaluate natural
language generation thoroughly.

1 Introduction

Developing dialogue systems that can hold human-
like conversations has been a long-standing goal in
Artificial Intelligence (AI) research. This includes
the ability to mimic speakers’ speaking styles and
language traits, which is shown to be of crucial
importance for systems to be trusted and perceived
as natural and coherent (Shum et al., 2018; van der
Goot and Pilgrim, 2019).

Current approaches in conversational models
typically aim to improve dialogues by leveraging
persona-specific traits—a speaker’s age, gender,

geographic location, etc. This is achieved by train-
ing systems with either implicit (Kottur et al., 2017;
Li et al., 2016) or explicit (Qian et al., 2018; Zhang
et al., 2018; Zheng et al., 2019) representations of a
speaker. These approaches are generally shown to
produce multi-turn conversations that are deemed
of better quality by humans, but they pay little at-
tention to understanding what factors determine
human judgements. Recently, See et al. (2019)
showed that linguistic aspects such as specificity,
relatedness, and repetition play an important role,
and that explicitly controlling for them during gen-
eration increases human engagement in a conver-
sation. However, fine-tuning these large models to
control the generation turns out to be a challeng-
ing task, which is further limited by the scarcity of
annotated conversational datasets.

A recent growing interest in controllable text
generation has been fostered by approaches lever-
aging large pre-trained language models (PLMs;
see Sec. 2.2). In particular, one direction is to oper-
ate at the decoding stage while leaving the underly-
ing PLM unaltered (Dathathri et al., 2020; Li et al.,
2022), which was shown to be successful in gener-
ating texts that adapt to a specific topic, length or
sentiment. Though these approaches are not typi-
cally aimed at modelling conversations, they have
been shown to be also suitable to generate con-
trolled responses to dialogue utterances (Madotto
et al., 2020).

Building on this line of research, in this study we
explore adaptation by large PLMs to a specific, yet
unexplored dimension: language variation due to
speakers’ age. The relationship between a person’s
age and their use of language is a thoroughly stud-
ied subject in linguistics and psychology, and vari-
ous differences between younger and older speak-
ers have been reported at the level of both content
and style (see Pennebaker and Stone, 2003). While
a few studies showed that speakers’ age can be pre-
dicted both in discourse and dialogue (see Sec. 2.1),
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no work to date has explored whether, and to what
extent, age-related detectable features can be lever-
aged by controllable text generation models.

In this study, we explore this issue for the first
time. Though previous work showed that some
degree of adaptation can be achieved to a text’s
sentiment or topic, we argue that age-related traits
are different since they involve subtle, fine-grained
features lying at a more abstract level compared to
other language dimensions. Therefore, we hypothe-
size that this task is more challenging and possibly
requires complex adaptation strategies.

Following the approach by Madotto et al. (2020),
we experiment with dialogue data and frame the
controlled generation problem as the task of gener-
ating a response to a dialogue utterance. We opt for
this setup since it allows us to genuinely investigate
language adaptation while leaving aside the extra
challenges of modelling full, multi-turn dialogues.
Though generally short, single dialogue utterances
are shown to contain a fair amount of age-related
language signal (Jansen et al., 2021).

We employ the Plug-and-Play Language Model
(PPLM) method by Dathathri et al. (2020) and
condition the generation of two large PLMs,
GPT-2 (Radford et al., 2019) and DialoGPT (Zhang
et al., 2020a), by means of various age-specific at-
tribute models. With this approach, generation is
steered leaving the underlying PLM unaltered. We
test two attribute models based on bag-of-words
(BoW) methods or more complex neural discrim-
inators, and perform extensive evaluation of the
generated outputs.

Through automatic evaluation, we show that
(1) some degree of detectable age adaptation is
achieved by all tested models, with (2) discrimina-
tor methods outperforming simpler BoW strategies.
At the same time, (3) BoW models turn out to
produce more fluent and less repetitive responses
compared to the more complex models. These re-
sults are partially disconfirmed when moving to
human evaluation. Indeed, (1) humans can detect
age-related differences in the generated language
only to a very limited extent, and (2) this is re-
stricted to responses by BoW but not discriminator
models. As for the quality of the generated lan-
guage, (3) outputs by BoW are deemed more fluent
and human-like compared to discriminator ones,
though this does not systematically correspond to
a perceived better output. Based on these results,
BoW-based controllable strategies appear to be a

better tradeoff between adaptation and language
quality compared to more complex methods.

Overall, our results confirm the challenges
of adapting to higher-level dimensions of
language variation, such as those due to speak-
ers’ age. Moreover, we highlight the need of
complementing automatic analyses with fine-
grained human evaluation. Data and code to
reproduce our experiments can be found here:
https://github.com/lennertjansen/
pplm-age-adapt-dialogue.

2 Related Work

2.1 Language and Age

A wealth of studies in linguistics and psychology
showed that age plays a role in affecting both the
content and style of the speaker’s language (for
further references and discussion, see Pennebaker
and Stone, 2003). These findings motivated NLP
research aimed at predicting the age of a speaker
based on their language. By training a feature-
based classifier on a corpus of age-annotated blog
posts, Schler et al. (2006) found that speakers’ age
is best predicted by a combination of content and
style features. A similar pattern of results was
reported by Nguyen et al. (2011), who extended
the investigation to phone conversations and online
posts, and by Nguyen et al. (2013), who focused
on tweets. Rao et al. (2010) further showed the ad-
vantage of including sociolinguistic features when
dealing with tweets, with Rosenthal and McKe-
own (2011) showing that including features of a
speaker’s online behavior is beneficial when exper-
imenting with blog posts. Recently, Jansen et al.
(2021) went beyond feature-based approaches and
showed that BERT (Devlin et al., 2019) outper-
forms other methods when fine-tuned on a dataset
of dialogue utterances. Again, both stylistic and
lexical cues were reported to be relevant for distin-
guishing between age groups.

Overall, these studies revealed that the language
by younger and older speakers can be detected,
among other aspects, by the use of slang and
neologisms, pronouns, affect words, capitaliza-
tions, alphabetical lengthening, acronyms and verb
tenses. Surprisingly, little attention has been paid
to model age-related differences in language gener-
ation. One exception is represented by research on
personalized conversational models, where age is
typically considered as one of the speaker-specific
traits (Li et al., 2016; Zheng et al., 2019). In these
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approaches, however, age adaptation is neither ex-
plicitly enforced nor directly measured. We tackle
this problem by leveraging recent methods from
controllable text generation.

2.2 Controllable Text Generation

Broadly speaking, controllable text generation
(CTG) refers to the problem of generating texts
that meet certain controllable constraints, which
are usually task-specific (for an overview, see Prab-
humoye et al., 2020; Zhang et al., 2022). In the
context of storytelling, for example, endowing a
story with a plot and an ending is a CTG problem,
as is the control of topic, sentiment or style in a
discourse or dialogue response. The latter line of
research, aimed at enforcing attribute-based gen-
eration, is particularly relevant to our work. Fo-
cusing on discourse data such as reviews or news,
various studies demonstrated the effectiveness of
RNN language models (Ficler and Goldberg, 2017),
VAEs (Hu et al., 2017; Wang et al., 2019; Xu et al.,
2020), and GANs (Wang and Wan, 2018) in control-
ling for attributes such as sentiment, theme, style or,
more rarely, age (Lample et al., 2019). As for dia-
logue, early approaches showed the effectiveness of
SEQ2SEQ models in capturing speaking style and
background information of specific speakers (Li
et al., 2016). However, all these approaches heavily
rely on large-scale datasets, which is a challenge
for supervised and cross-domain text generation
tasks (Zhang et al., 2022).

To alleviate this limitation, approaches that lever-
age large pre-trained language models (PLMs) such
as GPT (Radford et al., 2019), GPT-3 (Brown et al.,
2020), T5 (Raffel et al., 2020) or DialoGPT (Zhang
et al., 2020a) were recently proposed. Some of
them model CTG by fine-tuning the PLM parame-
ters (Lin et al., 2021); others by changing the PLM
architecture or training a large conditional model
from scratch (Keskar et al., 2019; Zhang et al.,
2020b; Wang et al., 2021; He, 2021; Zeng and Nie,
2021). While these methods have generally proven
effective in controlling for the desired attribute in
a dialogue, discourse, and even image captioning
setting, they are often computationally expensive to
train and involve fine-tuning or modifying the PLM
for each desired attribute. To avoid these issues,
a few approaches have proposed to operate at the
decoding stage by steering the PLM outputs while
leaving its parameters unaltered (Dathathri et al.,
2020; Khalifa et al., 2020; Krause et al., 2021; Liu

et al., 2021; Yang and Klein, 2021; Li et al., 2022).
One of the most successful and popular meth-

ods is the Plug-and-Play Language Model (PPLM;
Dathathri et al., 2020). Using a previously trained
attribute-based classifier (with 100,000 times fewer
parameters than the PLM) to guide text generation
by the PLM, this approach was shown to achieve
a good degree of CTG for topic and sentiment in
a discourse setting while being very inexpensive
to train. Motivated by this, Madotto et al. (2020)
extended the approach to model dialogue response
generation and demonstrated its portability to the
conversational domain, where a high degree of con-
trol for sentiment and topic was achieved while en-
suring fluency. In this work, we build on Madotto
et al. (2020) and make a step forward by controlling
a more abstract, higher-level dimension compared
to sentiment or topic: language variation due to
speakers’ age.

3 Problem Formulation

In general terms, the problem we tackle is the fol-
lowing: given a dialogue utterance (prompt), we
generate a dialogue response (output).

3.1 Non-Adaptive Setting
In the non-adaptive setting, we tackle the task as
a plain text generation problem. Given a prompt,
a Transformer-based pre-trained language model
p(x) generates an output x by sampling from the
distribution of words that are assigned the highest
likelihood of following the prompt. This can be
seen as sampling from a conditional distribution,
p(x|prompt).

3.2 Age-Adaptive Setting
In the age-adaptive setting, the task is an instance
of controllable text generation (CTG). Given a
prompt, we seek to generate an output that is con-
trolled for age, i.e., that resembles a response by a
younger/older speaker. This can be seen as a sub-
problem of vanilla text generation: the conditioning
factor for the generated text is further constrained
to also include some predefined attribute, a (in
our case, age). CTG is then analogous to sampling
from the conditional distribution, p(x|prompt, a).

PPLM To control generation, we use the PPLM
method (Dathathri et al., 2020). PPLM builds on a
text classifier or attribute model, p(a|x), that repre-
sents the degree of adherence of text x to a certain
attribute a, e.g., age. Since the attribute model,
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p(a|x), is used to control the generation by a pre-
trained Transformer-based language model, p(x),
PPLM can be seen as modeling the conditional dis-
tribution of generated text x given a, i.e., p(x|a).

In simple terms, the attribute model perturbs the
activation space of the underlying language model
by making it more likely to generate text that aligns
with the predefined attribute. This is achieved by
leaving the parameters of the underlying language
model unaltered. More formally, PPLM perturbs
the generated output one token at a time in the
direction of the sum of two gradients: (1) by maxi-
mizing the loglikelihood of a under the conditional
attribute model p(a|x) (to enforce control); (2) by
ensuring high loglikelihood of the generated text
under the unaltered language model p(x) (to en-
force fluency). The gradient updates only affect the
activation space, i.e., the original model parame-
ters are preserved. Sampling is done by following
gradients in the latent representation space by ap-
proximately implementing the Metropolis-adjusted
Langevin sampler (Roberts and Tweedie, 1996) de-
ployed in Nguyen et al. (2017).1

4 Method

In our experimental pipeline, we condition the gen-
eration of two large pre-trained language models
by means of two age-specific attribute models. In
particular, we generate responses to a number of
dialogue utterances used to prompt text generation.
We then evaluate the extent to which the generated
responses contain age-related features that can be
detected by automatic metrics.

4.1 Data

To train/initialize our attribute models, we use the
data introduced by Jansen et al. (2021). This data
comes from the spoken partition of the British Na-
tional Corpus (BNC; Love et al., 2017) and in-
cludes dialogue utterances by users from either of
two age groups: a younger group (age: 19-29) and
an older group (age: 50 or more). In total, the
data consists of 172,303 utterances, i.e., 138,662
younger utterances and 33,641 older ones. In addi-
tion to the full dataset, Jansen et al. (2021) also use
a partition of it which is balanced per age group and
includes 67,282 total utterances. This is the split of
the data they employ to train their younger/older
classifiers (Sec. 4.5). As described in Sec. 4.3, we
use both the full and balanced version of the data.

1See Dathathri et al. (2020) for further details.

younger-specific words older-specific words

um, sh*t, cool, f*cking,
friends, literally, weekend,
amazing, friend, ha, huh,
hate, fun, blah, uni,
massive, Friday, parents,
mate, hell, annoying, wait,
ridiculous, crazy, horrible

may, mother, perhaps, huge,
business, although, certainly,
email, along, often, possibly,
wonderful, dear, supposed,
otherwise, asked, gosh, bits,
almost, particularly, decided,
finished, across, near, flat

Table 1: Some of the younger- (age 19-29) and older-
specific (age 50+) words used by the BoW method.

4.2 Pre-Trained Language Models
We experiment with two large pre-trained lan-
guage models: GPT-2 (Radford et al., 2019)
and DialoGPT (Zhang et al., 2020a). We gener-
ate responses using these two models both in a
non-adaptive (Sec. 3.1) and age-adaptive setting
(Sec. 3.2). In the age-adaptive setting, the models
are conditioned by an attribute model. Similarly
to Dathathri et al. (2020), we experiment with two
attribute models.

4.3 Age-Controlled Language Models
Below, we describe the attribute models used in our
study. For both models, we experiment with the
same hyperparameters, reported in Appendix A.

BoW-based attribute model This method relies
on lists of words that are representative of each
age group’s language. We automatically extract
them from the full version of the dataset via a
frequency-based approach. In particular, for each
age group, we (i) order all unique words by fre-
quency; (ii) keep the most frequent words—the
ones that make up for at least 85% of the cumu-
lative occurrences; (iii) remove words that are in
both age groups; (iv) keep, for each group, only
the words that account for at least 85% of the re-
spective cumulative occurrences.2 Our final lists
include 56 younger- and 92 older-specific words.
A few examples can be found in Table 1. The BoW-
based attribute model gives the log of the sum of
likelihoods of each word in the list. Given a bag-
of-word {w1, ..., wk} that represents a given age
group a, and the output distribution of the language
model pt+1, the attribute model’s log-likelihood is:

log p(a|x) = log

(
k∑

i

pt+1[wi]

)
(1)

2The 85-th percentile cutoff points are used to yield
wordlists of similar lengths as those by Dathathri et al. (2020).
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Ascending∇ log p(a|x) increases the likelihood of
generating words that are either in the BoW or not
in the BoW, but semantically related.

Neural discriminator attribute model We ran-
domly split the balanced version of the dataset into
a training (90%) and test (10%) set and train a
neural classifier to distinguish between dialogue
utterances from the two age groups. The classifier
receives the representation of the sentence from the
last layer of a frozen pre-trained language model
and performs the binary task via a single linear
layer. The size of both the input and linear layer is
equal to the size of the LM’s output layer. The dis-
criminator is trained using Adam (Kingma and Ba,
2015) with a learning rate of 1 · 10−4 and default
values for all other parameters from PyTorch’s im-
plementation of Adam, with a maximum sequence
length of 512 tokens, for 20 epochs, and a batch
size of 64. The discriminator parameters that are
used in the age-adaptive setting come from the
epoch with the highest test accuracy (67.4% accu-
racy for GPT-2, 67.6% for DialoGPT).

4.4 Prompts

In both the non-adaptive and age-adaptive set-
tings, we prompt the models with handcrafted di-
alogue utterances. This allows us to devise dia-
logue utterances that are neither younger- nor older-
sounding,3 so as to genuinely explore age adapta-
tion of the tested methods while minimizing bias ef-
fects. We experiment with the following 5 prompts:
(i) Good weather we’re having; (ii) Can we talk?;
(iii) Hi, how’s it going?; (iv) Hey; (v) Hello, tell me
about your latest holiday.4 For each prompt, we let
models generate 6 outputs of a given token length.
Since we experiment with 9 output lengths (6, 12,
24, 30, 36, 42, 48, 54, and 60 tokens), each model
is evaluated over a total of 270 dialogue responses,
i.e., 5 prompts × 9 lenghts × 6 outputs. 5

4.5 Evaluation

We evaluate model outputs along two dimensions:
age adaptation and quality of generated language.

3We verify this by feeding the prompts to the best-
performing BERT-based younger/older classifier by Jansen
et al. (2021). We consider them neutral if the classifier assigns
a probability of 0.6 or lower to both age groups.

4For comparison, we have also experimented with prompts
that are classified as either younger- or older-sounding. Re-
sults are in Appendix C.

5An exhaustive exploration of the effect of various prompts
and output lengths is beyond the scope of this study. We leave
it for future work.

Age adaptation To quantify age adaptation, we
leverage the best-predictive younger/older classi-
fier by Jansen et al. (2021). This model adds a
dropout layer and a linear layer on top of BERT
embeddings (Devlin et al., 2019), which are fine-
tuned on the age classification task. In particular,
we use the weights of the best-performing run of
their model (achieving 73% accuracy) and report
accuracy in predicting the expected age, i.e., the
one which the model has been adapted to. Note
that we do not use this classifier as an attribute
model to condition generation for 2 main reasons:
(1) BERT and *GPT models differ on several levels,
which would make the implementation technically
challenging; (3) using BERT as an attribute model
would go against the overall goal of PPLM, which
is to use tiny models to condition large models.

Language quality Following standard practice
in NLG, we take perplexity of an external LM as
a proxy for fluency of the generated language: the
lower the perplexity, the higher the fluency of the
generated output. Perplexity (ppl) is expressed as:

ppl(x) = exp

{
−1

t

t∑

i

ln pθ(xi|x<i)
}

(2)

where x represents a sequence of tokens, t is se-
quence length, xi is the i-th token, and θ denotes
the LM’s parameters. Following Dathathri et al.
(2020), we obtain perplexity scores by GPT-1 (Rad-
ford et al., 2018).

Furthermore, we evaluate the degree of text di-
versity by considering the normalized number of
distinct unigrams (Dist-1), bigrams (Dist-2), and tri-
grams (Dist-3) in the generated output. The higher
the score, the less repetitive the language is.

5 Results

Age adaptation Tables 2a and 2b report the re-
sults by the younger-adapted and older-adapted
models, respectively. As can be seen, discriminator-
based models (Disc) achieve a higher degree of age
control as detected by automatic means compared
to bag-of-words (BoW). This is particularly the
case for the older setting, where both GPT2-based
and DialoGPT-based Disc models outperform their
BoW counterparts by more than 30 accuracy points,
with BoW models being far below chance level.
As for the younger setting, BoW models perform
comparably better by slightly underperforming (Di-
aloGPT) or outperforming (GPT2) their Disc coun-
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Model ppl Dist-1 Dist-2 Dist-3 Acc.
↓ better ↑ better ↑ better ↑ better ↑ better

GPT-2 (G) 27.50 (6.58) 0.87 (0.09) 0.94 (0.04) 0.90 (0.06) -
G-BoW 27.91 (7.18) 0.87 (0.10) 0.93 (0.05) 0.90 (0.06) 70.4%
G-Discrim 32.09 (18.98) 0.77 (0.20) 0.86 (0.13) 0.84 (0.15) 67.8%

DialoGPT (D) 37.52 (12.06) 0.86 (0.13) 0.90 (0.08) 0.85 (0.10) -
D-BoW 38.53 (12.64) 0.87 (0.12) 0.90 (0.08) 0.86 (0.10) 83.0%
D-Discrim 42.01 (16.94) 0.90 (0.12) 0.86 (0.14) 0.77 (0.22) 85.9%

(a) Younger-adapted models

Model ppl Dist-1 Dist-2 Dist-3 Acc.
↓ better ↑ better ↑ better ↑ better ↑ better

GPT-2 (G) 27.50 (6.58) 0.87 (0.09) 0.94 (0.04) 0.90 (0.06) -
G-BoW 27.58 (7.07) 0.86 (0.10) 0.93 (0.04) 0.90 (0.06) 43.0%
G-Discrim 47.15 (47.56) 0.73 (0.24) 0.75 (0.28) 0.75 (0.27) 74.3%

DialoGPT (D) 37.52 (12.06) 0.86 (0.13) 0.90 (0.08) 0.85 (0.10) -
D-BoW 37.85 (11.17) 0.87 (0.12) 0.90 (0.08) 0.86 (0.09) 21.5%
D-Discrim 41.17 (20.72) 0.87 (0.12) 0.89 (0.13) 0.83 (0.16) 56.7%

(b) Older-adapted models

Table 2: Results of age-controlled dialogue generation. Format: average metric (standard error). ppl is perplexity
wrt GPT-1. Dist-n (for n = 1, 2, 3) is the number of distinct n-grams normalized by text length. Acc. stands for
accuracy of the younger/older classifier. Values in bold are the best in the column; the second-best are underlined.

terparts. Overall, these results show that Disc mod-
els are more effective than simple BoW ones to
control for age-related language features, with this
advantage being particularly evident in the older
setting.

Striking differences in performance can be ob-
served between GPT2- and DialoGPT-based mod-
els. While the latter clearly outperform the former
in the younger setting (+13-18 acc. points), an op-
posite pattern is observed in the older setting, with
GPT2-based models gaining 18-22 points over their
DialoGPT-based counterparts. This divergent pat-
tern is interesting, and could be due to a younger-
language bias of DialoGPT (fine-tuned on Reddit
threads, where the majority of users are in the age
range 20-29), which would limit adaptation toward
the older group.6 On average, BoW models are
more effective in GPT-2 than DialoGPT (56.7 vs
52.3), while Disc results are on par (71.1 vs 71.3).

Taken together, these results show that the PPLM
approach is effective in controlling for age-related
language features that can be detected by a trained

6This is supported by the mean probabilities assigned by
the BERT-based classifier to the younger class on DialoGPT
and GPT-2 outputs: 0.76 for DialoGPT, 0.62 for GPT-2.

classifier, and that adaptation is stronger when us-
ing a neural discriminator attribute model.

Language quality Moving to measures of lan-
guage quality, we observe that the base GPT-2 is
either the best or the second-best with respect to
both perplexity and number of distinct n-grams.
As for age-adapted models, BoW ones are gen-
erally shown to outperform Disc models. GPT2-
based BoW models, in particular, appear to be
the best overall age-adapted models: they com-
pare to GPT-2 in terms of both fluency and diver-
sity, which confirms that conditioning generation
through wordlists does not negatively impact on
the quality of the generated language. In contrast,
Disc models perform comparably worse on these
metrics, which suggests a much bigger impact.

Since automatic metrics are known to have their
own limitations (see, e.g., the case of perplexity in
capturing language fluency; Mir et al., 2019), in
the next section we complement the results by the
automatic metrics via extensive human analysis.
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6 Analysis

We run 3 crowdsourcing studies with human par-
ticipants aimed at (1) exploring whether age dif-
ferences detected by a classifier correspond to hu-
man intuitions on age-related language features;
(2) assessing the quality of each model’s gener-
ated language; (3) testing which age-adapted model
produces the best outputs. Based on their over-
all better age control and language quality, we
choose to focus on GPT2-based models: GPT2
(hence, base), BoW-younger, BoW-older, Disc-
younger, and Disc-older. Data collection is per-
formed on Appen (appen.com). Participants are
paid 0.08$ per judgement (which corresponds to
around 10$/hour considering a conservative rate of
2 judgements/minute). In total, the full data collec-
tion costed around 2.5K$. The instructions given
to the participants in the three studies we describe
below are available in Appendix D. Participants
were restricted to be from English-speaking coun-
tries and we used test-questions for quality control:
only participants who correctly answered at least
70% of test-questions were considered trustworthy.

6.1 Are Age-Related Differences Detectable?

We aim at testing whether the age-adapted outputs
by a model (e.g., BoW-younger) are perceived as
sounding more like their target age group (younger)
than those by both its counterpart (BoW-older)
and the base model. Therefore, we set up three
comparisons of outputs by BoW and Disc models,
respectively: younger vs older, younger vs base,
and older vs base. In particular, we experiment
with 300 outputs per model,which sums up to 900
unique outputs within BoW and 900 within Disc
models. Outputs from various models are paired
based on the same prompt and if they have similar
length.7 We ask 5 participants to judge which of
the two outputs in a given comparison pair sounds
younger/older than the other. In total, we collect 9K
judgements by 467 different participants. Table 3
shows some examples.

Results We consider the assessment for a pair as
correct if at least 3 out of 5 participants converge on
the target age group; otherwise, we deem it wrong.
In Figure 1, we report the results of this analysis.
As can be seen, human ‘accuracy’ lags well behind
the accuracy by the classifier in 3 models out of
4. This is not the case only for BoW-older, where

7See Appendix E for more details on data preprocessing.

Figure 1: Accuracy by humans and the classifier in de-
tecting age-adapted outputs. The dotted red line indi-
cates chance level; ** stands for statistical significance
at p < 0.01. Best viewed in color.

the classifier’s accuracy is below chance level. One
striking observation is that, overall, the degree of
age control detected by humans is very limited, and
indeed never significantly outperforming chance
level (50%) for p < 0.05.8 This suggests that what
makes an output sound as younger or older for a
text classifier is not something that is clearly de-
tectable by humans. This could be due to the differ-
ent type of language features that human speakers
and the models leverage when making this assess-
ment. For example, a classifier could exploit regu-
larities on topics or domains that are present in the
training data, while human participants solely rely
on information from their language competence.9

At the same time, some age-related features ap-
pear to be present in the outputs by BoW-younger,
where human accuracy in detecting younger from
base outputs reaches 55% – though this comparison
is not significantly different from chance according
to conventional statistical criteria.10 Moreover, we
find that the difference between BoW-younger (M
= 0.55, SD = 0.5) and Disc-younger (M = 0.43,
SD = 0.5) is statistically significant via an unpaired
t-test, t(587) = 2.9, p = .003. In contrast, no adapta-
tion at all is detected by humans in the outputs by
Disc models.

These results indicate that the adaptation to age
brought by a PPLM approach can be detected by hu-
man speakers only to a limited extent. At the same
time, BoW models are generally better than Disc
ones, and this difference is statistically significant

8We test this by means of a one-sample t-test.
9What are the cues that guide this assessment is in itself

an interesting question, which deserves further investigation.
10One-sample t-test between BoW-younger (M = 0.55, SD

= 0.5) and chance (M = 0.5), t(288) = 1.6, one-tailed p = .056
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model age group output

BoW younger We have the best weather in the world. I
BoW older The weather is good and I think you’re all going to love it. I’m happy to announce that I have a new home
Disc younger This is great. It gives us more fun than ever before, and we can enjoy a great coffee. Happy birthday guys. . . .
Disc older The sun was setting when we were getting up with a huge rain and we got stuck in on one one of the three

Table 3: One example generated for the prompt ‘Good weather we’re having.’ by each age-adapted model for
which at least 4 / 5 participants agreed the response sounds like language from the target age group, both against
the other age model and the base model. Some outputs are truncated due to the fixed-length criterion used.

Figure 2: Human judgements on a scale from 1 to 5 on
fluency and human-likeness of outputs by the base and
the age-adapted models. Best viewed in color.

for the younger age group. Here, people appear to
be better than chance in detecting age-related differ-
ences, though this is only a trend without statistical
significance (possibly due to sample size).

6.2 Is the Generated Language Good?

We test whether, and to what extent, the language
generated by the 4 age-adapted models and the base
model, that we use as a control, is deemed good by
humans. We consider all the outputs generated by
the 5 models, i.e., 1.5K outputs in total. We then
ask 5 participants to judge, on a 5-point scale, the
degree of fluency and human-likeness of the output.
We define fluent language as having few repetitions
and a good flow; human-like as being likely to be
produced by a human speaker. We collect a total
of 15K judgements, i.e., 7.5K per property, by 278
unique participants.

Results We compute the average score obtained
by an output for a property, and then average over
all the samples. Results are reported in Figure 2.
As can be seen, while BoW models are on par with
the base model with respect to both properties, Disc
models are assigned much lower values. That is,
the outputs by Disc models are deemed much less
fluent and less human-like than those by BoW mod-

Figure 3: Percentage of human participants who judged
an output by a model to be better than an output by
another model. Best viewed in color.

els and the base model. One interesting observation
is that judgements of human-likeness are system-
atically higher than fluency, and this holds for all
models. This reveals that the two properties capture
different and possibly complementary aspects (a
text can be human-like though not perfectly fluent),
which highlights the need of using multiple metrics
to assess the quality of NLG systems.

Taken together, these results suggest that the per-
turbations operated by Disc models on the decoding
of the LM are heavier than those by BoW models,
and that Disc models achieve a level of control that
is more detectable by automatic classifiers at the
cost of being less fluent and less human-like. It is
worth noting that this pattern closely mirrors the
perplexity and Dist-n scores reported in Tables 2,
where Disc models are shown to be systematically
behind GPT2 and BoW-based models.

6.3 Which Models Produce Better Outputs?

We focus on the two younger-adapted and older-
adapted models and test which of the two produces
an overall better output according to humans. We
pair each output by a model with an output by the
other model for the same target age group: i.e.,
BoW-younger vs Disc-younger and BoW-older vs
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Disc-older. We end up with 300 pairs per age group,
i.e., 600 pairs in total. We then ask 5 participants to
judge which of the two outputs in the pair is overall
better. In total, we collect 3K judgements by 230
distinct participants.

Results For each pair, we take the output with
the majority of votes (3 or more). We then compute
the proportion of cases in the data where the output
by BoW/Disc was chosen. Results are reported
in Figure 3. For the younger group, BoW-based
outputs (M = 0.56, SD = 0.5) are deemed better
than those by Disc (M = 0.44, SD = 0.5), and this
difference is statistically significant as per a paired
t-test, t(293) = 2.2, p = .026. Surprisingly given
the results of the previous analysis (where BoW
neatly outperforms Disc in terms of fluency and
human-likeness), an opposite pattern is observed
for the older group, though the difference between
BoW and Disc is not significant (p = .222). We
hypothesize that this dissociation could be due to
the different types of evaluation (rating vs. binary
choice), which deserves further investigation.

7 Conclusion

We focused on age-related language variation and
tested whether current approaches to controllable
text generation can capture it in a dialogue response.
We showed that models achieve substantial adapta-
tion based on automatic metrics, while age-related
differences can be detected only to a limited extent
by humans. At the same time, simple controllable
methods based on BoW appear to be a good trade-
off between control and quality. From a broader
perspective, our case-study on age adaptation re-
veals that controlling for subtle, fine-grained lan-
guage features remains an open challenge. More-
over, we show that human evaluation is crucial
to assess the degree of achieved control since it
provides different insights compared to automatic
metrics (Li et al., 2018; Sudhakar et al., 2019).

Limitations

On the need for age adaptation This work
starts from the assumption that users of language
technologies, such as dialogue systems or chat-
bots, would appreciate an age-adaptive system, i.e.,
would perceive age-adaptation as positive. This
is motivated by evidence from psychology and so-
ciolinguistics showing that age-driven linguistic
variation is typically in play. Nevertheless, this as-

sumption remains to be validated by means of user
studies.

On the impact of prompts While we exper-
iment with both age-neutral and age-adapted
prompts, texts are generated based on a limited
number of prompts. Further attention should be
paid to investigating the impact of prompts (and
prompt features) on the resulting outputs.

On the experimental setting While we formu-
late the problem as dialogue response generation,
dialogue features are not exploited. A simple step
in this direction could be to experiment with other
ways of prompting the model, e.g., by providing a
signal of which dialogue participant is speaking (A,
B) and whether there is a turn transition between
prompt and generated response.

On the use of other CTG methods We experi-
ment with only one CTG method, namely PPLM.
In future work, we plan to address this limitation
by extending our investigation to other approaches.

Ethics Statement

Broader impact As for most technologies, ours
can have a positive impact on society, e.g., by pro-
moting the development of more inclusive systems
that speak the language of their users, indepen-
dently of their age; or, by informing work on de-
biasing language models, that appear to be biased
toward the language of younger groups of users.
On the other hand, we acknowledge and are aware
of possible harmful or undesirable uses of this tech-
nology, e.g., toward amplifying biases or explic-
itly/implicitly discriminating people based on their
age (Rosales and Fernández-Ardèvol, 2020; Styp-
ińska, 2021; Noble, 2018). We advocate for a re-
sponsible, rigorous use of the methodology and
materials described in this study.

Privacy and discrimination Age is personal
data or privately identifying information according
to the EU or US defintion, respectively. As such,
it is a protected class in US and various other anti-
discrimination regulations. In the present sttudy,
we experiment with anonymous textual data aggre-
gated at the level of two macro age classes: younger
vs older speakers. For a given utterance, we only
consider the age range of the speaker who uttered
it, 19-29 vs 50+. No info regarding speaker identity
(ID, previous dialogues, etc.) or their demographics
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(gender, location, social status, etc.) is ever consid-
ered. We argue this is a valuable way to limit as
much as possible any privacy and discrimination
risks. We thank the anonymous ethics reviewer for
providing valuable input on this and for pointing to
the studies cited in the paragraph above.

Human evaluation We ensure human partici-
pants taking part in our human evaluation are paid
properly according to the standards of our institu-
tion’s country/countries. To avoid any harm, we
carefully remove any offensive or inappropriate lan-
guage from the samples. Participants were given
the opportunity to report any problem when partici-
pating in the evaluation. No issues were reported.

Pretrained language models There are serious
risks associated with the development and use of
large PLMs (Bender et al., 2021), which we lever-
age in this research. Such risks include the envi-
ronmental impact of the computational resources
required for training and the encoding and possi-
ble amplification of biases present in the massive
amounts of un-curated data the models learn from.
The PPLM approach we explore in the present work
provides an alternative to re-training or finetuning
the model and in this sense it does not incur further
environmental cost. Nevertheless, the approach
does rely on a large PLM, with all the lack of trans-
parency regarding the pre-training data that this
involves. Our attribute models are trained on the
BNC, a carefully curated and documented dataset.
Yet, we acknowledge that the lack of control over
the PLM pre-training data is likely to occasionally
lead to undesirable outputs.
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Appendices

A PPLM Hyperparameters

Table 4 reports the hyperparameters used for both
the BoW and Disc models. Please refer to Dathathri
et al. (2020) for further details on the hyperparam-
eters. For comparison, the set of hyperparameters
used in the paper by Dathathri et al. (2020) is given
in their Table S18.

B Examples of Generated Outputs

In Table 5, we report a few more outputs generated
by GPT2-based models.

C Results with Younger / Older Prompts

For comparison, we also experiment with prompts
that are automatically classified as either younger-
or older-sounding. Younger-sounding prompts:
What are your plans this week?; What do you
wanna eat?; Do you have any hobbies?; Can I add
you on Facebook?; When did you go? Awesome!
I actually haven’t been there. Older-sounding
prompts: Tell me about your family.; Good after-
noon.; I had a splendid weekend.; Hello, how are
you?; Hello, tell me about yourself. the results
of the models using these prompts are reported in
Tables 6 and 7.

D Instructions to Participants

The instructions given to the participants in the
human evaluation studies can be found in Figures 4,
5 and 6.

E Preprocessing for Human Evaluation

The generated samples were checked for
the presence of inappropriate language us-
ing a list of over 1300 English words that
can potentially be offensive, available at
https://www.cs.cmu.edu/~biglou/
resources/bad-words.txt. The samples
that contained terms in this list were manually
scanned and those that were deemed actual
instances of offensive language use were discarded.
Altogether, 39 offensive samples were removed
(BoW-younder: 3; BoW-older: 1; Disc-younger:
35). To counter the fact that some adapted models
had fewer samples, some of the samples were
reused with different pairings to arrive at 300
samples per model.

Outputs from different models being compared
in the human evaluation always involve the same

184

https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/P18-1205
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://www.cs.cmu.edu/~biglou/resources/bad-words.txt
https://www.cs.cmu.edu/~biglou/resources/bad-words.txt


method type attribute hyperparameters
BoW / Disc younger / older m = 3, λkl = 0.01, α = 0.02, γ = 1.5, γgm = 0.9, r = 10, τ = 1.0

Table 4: Hyperparameters used in our experiments. Please refer to Dathathri et al. (2020) for further details. An
important hyperparameter is m, i.e., the number of perturbation steps/iterations.

model age prompt output
BoW Y Can we talk? Yes, I can. And I hope you will join me in this discussion.
BoW O Can we talk? What about the world? What is reality? Can we make it? Are we really all
BoW Y Hey. My name is Alex. I am a programmer by trade. I’ve spent the past 3 years working,. . .
BoW O Hey. I’m just getting my new laptop and I noticed that my wallpaper was getting a weird,. . .
Disc Y Hey. I I I love my parents
Disc O Hi, how is it going? The summer of 2015 has begun and it seems that I’m finally going home to Spain,. . .
Disc Y Hello, tell me about your latest holiday. Do you wish you were you will be happy with it?You can use this technique,. . .
Disc O Hey. ITheItIfThatYouWeAndItThatItIfItYouItItThereItItInThisItIfYouItYouThereIfThatYouItItIt,. . .

Table 5: A few more examples of outputs generated by GPT2-based models. Y stands for younger, O for older.

Model ppl. Dist-1 Dist-2 Dist-3 P̄Y Acc.
↓ better ↑ better ↑ better ↑ better ↑ better ↑ better

GPT2 (G) 28.05 (±6.12) 0.85 (±0.13) 0.91 (±0.08) 0.88 (±0.08) 0.80 (±0.33) -

G-BoW 28.81 (±7.09) 0.86 (±0.12) 0.92 (±0.08) 0.89 (±0.08) 0.82 (±0.32) 83.3%

G-Disc 39.32 (±37.49) 0.84 (±0.21) 0.61 (±0.40) 0.57 (±0.40) 0.70 (±0.40) 70.7%

DialoGPT (D) 36.69 (±9.11) 0.87 (±0.10) 0.91 (±0.06) 0.87 (±0.08) 0.90 (±0.24) -

D-BoW 37.35 (±8.60) 0.88 (±0.10) 0.91 (±0.06) 0.87 (±0.08) 0.90 (±0.26) 90.0%

D-Disc 39.22 (±14.96) 0.89 (±0.12) 0.86 (±0.19) 0.79 (±0.23) 0.89 (±0.25) 91.1%

Table 6: Results of age-controlled dialogue generation: younger-targeted models, conditioned on younger
prompts. Format: average metric (standard error). ppl. is perplexity w.r.t. GPT-1. Dist-n (for n = 1, 2, 3)
is the number of distinct n-grams normalized by text length, as a measure of diversity. P̄Y is the sample’s average
probability to contain features learned to be younger by BERT-based classifier. Acc. is BERT-based classifier’s
accuracy when classifying the row’s samples. Values in bold are the best in the column.

Model ppl. Dist-1 Dist-2 Dist-3 P̄O Acc.
↓ better ↑ better ↑ better ↑ better ↑ better ↑ better

GPT2 (G) 29.34 (±10.30) 0.86 (±0.09) 0.94 (±0.04) 0.90 (±0.06) 0.40 (±0.43) -

G-BoW 28.81 (±10.10) 0.86 (±0.10) 0.93 (±0.05) 0.90 (±0.06) 0.41 (±0.43) 41.1%

G-Disc 95.21 (±174.42) 0.65 (±0.27) 0.78 (±0.18) 0.78 (±0.18) 0.90 (±0.25) 90.3%

DialoGPT (D) 38.18 (±12.03) 0.86 (±0.12) 0.90 (±0.08) 0.86 (±0.09) 0.28 (±0.38) -

D-BoW 37.80 (±11.74) 0.86 (±0.12) 0.90 (±0.07) 0.87 (±0.08) 0.28 (±0.39) 29.3%

D-Disc 40.08 (±16.77) 0.85 (±0.14) 0.88 (±0.10) 0.83 (±0.14) 0.61 (±0.42) 61.1%

Table 7: Results of age-controlled dialogue generation: older-targeted models, conditioned on older prompts.
Format: average metric (standard error). ppl. is perplexity w.r.t. GPT-1. Dist-n (for n = 1, 2, 3) is the number
of distinct n-grams normalized by text length, as a measure of diversity. P̄Y is the sample’s average probability to
contain features learned to be younger by BERT-based classifier. Acc. is BERT-based classifier’s accuracy when
classifying the row’s samples. Values in bold are the best in the column.

prompt. In addition, we make sure that the length
of the generated outputs being compared is similar.
We do this by always picking two relevant samples
from the same length class.
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Figure 4: Participant guidelines for the crowdsourcing study reported in Section 6.1.
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Figure 5: Participant guidelines for the crowdsourcing study reported in Section 6.2.
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Figure 6: Participant guidelines for the crowdsourcing study reported in Section 6.3.
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