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Abstract

The reliability of tests on the risk premia in linear factor models is threatened by lim-
ited sample sizes and weak identification of risk premia frequently encountered in
applied work. We, therefore, propose novel tests on the risk premia that are robust
to both limited sample sizes and the identification strength of the risk premia as
reflected by the quality of the risk factors. These tests are appealing for empirically
relevant settings, and lead to confidence sets of risk premia that can substantially
differ from conventional ones. To show the latter, we revisit two high-profile empir-
ical applications.

Key words: asset pricing, finite samples, identification robust inference, risk premia

JEL classification: G12

Over the past decades, it has become common practice to assess risk premia using the clas-

sic Fama–MacBeth (FM) two-pass approach, see for example, Fama and MacBeth (1973)

and Shanken (1992). It is based on the, so-called, linear beta representation of expected

asset returns (Cochrane 2001) and is one of the default approaches to evaluate asset pricing

models in the financial economics literature, see for example, Fama and French (1992). The

large variety of risk factors that this literature has proposed (see e.g., Lettau and Ludvigson

2001; Kroencke 2017) has, however, led to a growing concern that the reliability of the

two-pass approach is at risk for many of them. This concern results from two common

issues that threaten the two-pass approach: (i) the absence of large correlations between

risk factors and asset returns needed to identify the risk premia and (ii) the rather small

number of time-series observations relative to the number of assets.

A strand of the literature shows a failure in identifying risk premia when the quality of

risk factors specified for the two-pass approach is unsatisfactory. Kan and Zhang (1999),

for instance, show that if risk factors are useless (so betas are zero), their risk premia are
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unidentified and the commonly used FM t-statistic on risk premia tends to be spuriously

significant. Many observed risk factors are, however, not completely useless but just

minorly correlated with asset returns. For these factors, Kleibergen (2009) similarly warns

that their risk premia are only weakly identified, which also makes the FM t-statistic unreli-

able. These findings lead to the emergence of the so-called identification robust tests on risk

premia, which, unlike the FM t-test, remain trustworthy regardless of the quality of risk

factors. In the ideal scenario where risk factors of good quality are used for the FM two-

pass approach, identification robust tests and the FM t-test both provide valid and compar-

able inference on risk premia. In contrast, in empirical studies where the quality of risk

factors is questionable, identification robust tests are more trustworthy than the FM t-test.

See, for example, Kleibergen (2009), Beaulieu, Dufour and Khalaf (2013), Khalaf and

Schaller (2016), and Kleibergen and Zhan (2018).

Another strand of literature is concerned with the challenges that result from the limited

sample sizes in empirical studies. Macroeconomic risk factors, in particular, are commonly

measured at quarterly or annual frequencies, so their number of time-series observations T is

usually not much larger than the number of test assets N. Take Kroencke (2017), for ex-

ample, the yearly consumption growth series from 1960 to 2014 has 55 time-series observa-

tions, T¼55, while 30 portfolios, sorted by size, value, and investment alongside the market

portfolio, are used as test assets, so N¼31. This limited T versus large N setting jeopardizes

asymptotic tests on the risk premia, whose validity typically relies on a much larger value of T

compared with N (Newey and Windmeijer 2009). To conduct valid inference for limited sam-

ple sizes, researchers have, therefore, developed various finite-sample robust methods.

Gibbons, Ross, and Shanken (GRS 1989), for example, propose the GRS test for portfolio ef-

ficiency, which circumvents the limit sample size problem by making distributional assump-

tions. Similar assumptions are made in Kan and Zhou (2004) for deriving the exact

distribution of the Hansen–Jagannathan statistic. More recently, Kleibergen and Zhan (2020)

extend the GRS test to develop a finite-sample robust test on the risk premia.

Both strands of literature above are empirically relevant, since sample sizes in empirical

studies are often not sufficiently large to validate asymptotic tests, such as the FM t-test,

while it has been well documented that a large number of risk factors are of questionable

quality (Kleibergen and Zhan 2015). Despite the fact that the above two strands of litera-

ture are well established, tests on risk premia that account for both the limited sample size

and the questionable quality of risk factors are lacking.

In light of the above, we propose novel tests on the risk premia, which are designed to

be robust to both the sample size and the quality of risk factors. We do so by providing the

exact finite-sample distributions of several identification robust test statistics, including

those in, for example, Kleibergen (2009) and Beaulieu, Dufour, and Khalaf (2013). Put dif-

ferently, while identification robust tests are asymptotically valid regardless of the quality

of risk factors, we extend these tests to finite-sample settings by constructing finite-sample

distributions of their test statistics. In line with Gibbons, Ross, and Shanken (1989),

Kleibergen and Zhan (2020), and many others, these finite-sample distributions result from

the (normality) assumptions of the error term in a linear factor model for asset returns.

We show that our proposed tests on risk premia work favorably in a simulation experi-

ment calibrated to real data. As expected, these tests are found particularly appealing in

simulation settings where the time-series dimension T is close to the cross-section dimen-

sion N. In such settings, the proposed tests lead to correct sizes for testing hypotheses on
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risk premia, while their asymptotic counterparts, that is, the asymptotically valid tests, can

suffer from size distortion. On the other hand, when T is much larger than N, the proposed

tests become identical to the asymptotically valid identification robust tests, all of which

are trustworthy regardless of the quality of risk factors. These numerical findings for the

proposed tests are all in line with our theoretical results.

To illustrate the practical relevance of our proposed tests, we revisit the empirical stud-

ies on the consumption capital asset pricing model (CAPM) and the conditional consump-

tion CAPM in Kroencke (2017) and Lettau and Ludvigson (2001), respectively.1 Kroencke

(2017) focuses on the classic consumption CAPM, where consumption growth is the single

risk factor. The involved data set has T¼55 while N¼ 31 as aforementioned. Instead of

the single factor model, Lettau and Ludvigson (2001) propose a multi-factor conditional

consumption CAPM. We use their quarterly data from 1963Q3 to 1998Q3 with T¼141

and N¼25 portfolios sorted by size and book-to-market as test assets. In both applications,

we find that inverting the proposed tests leads to 95% confidence sets of risk premia that

are substantially different from those based on existing asymptotic tests. This should not be

surprising, since both in Lettau and Ludvigson (2001) and Kroencke (2017), the limited T

relative to N is unlikely to validate asymptotic tests. Moreover, the 95% confidence sets

resulting from the proposed tests are found to be unbounded, reflecting that little informa-

tion on risk premia is contained in the studied data sets. These empirical results thus cast

doubt on the pricing performance of the proposed risk factors in Lettau and Ludvigson

(2001) and Kroencke (2017).

Overall, our findings indicate that robustness to the quality of risk factors and robust-

ness to the sample size should both be accounted for in asset pricing studies. Traditional

asset pricing tests that are not robust to the strength of identification reflected by the quality

of risk factors can lead to erroneous conclusions. Similarly, asymptotically valid tests that

do not account for limited sample sizes can also induce spurious empirical findings. We

simultaneously address these two empirically relevant issues.

The rest of the paper is organized as follows. Section 1 discusses the two issues that

threaten reliable inference on risk premia: lack of identification due to poor quality risk fac-

tors and the limited sample size. It also introduces the two data sets from Kroencke (2017)

and Lettau and Ludvigson (2001) that we use to emphasize the empirical relevance of our

results. Section 2 presents the proposed test statistics and constructs their finite-sample dis-

tributions. Section 3 contains a simulation study as well as applications using the data from

Lettau and Ludvigson (2001) and Kroencke (2017). Section 4 concludes the paper.

Technical details are relegated to the Appendix.

1 Preliminaries

1.1 Linear Beta Representation and the Two-Pass Approach

Premia on risk factors are identified by the linear beta representation of expected asset

returns (Cochrane 2001):

E Rtð Þ ¼ iNk0 þ bkF ¼ iN ;bð Þ k0

kF

� �
; (1)

1 We thank these authors for providing their data.
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with Rt an N � 1 vector of asset returns, iN the N � 1 vector of ones, b an N�K matrix of

factor loadings, k0 the zero-beta return, and kF the K� 1 vector of risk premia.

The b matrix of factor loadings in Equation (1) is related to a linear factor model for

asset returns:

Rt ¼ cþ bFt þ ut; t ¼ 1; . . . ;T; (2)

with Ft a K� 1 vector of risk factors, c an N � 1 vector of constant terms, and ut an N � 1

vector of errors.

A large portion of the asset pricing literature is centered around inference on the risk

premia kF based on Equations (1) and (2). The conventional two-pass procedure estimates

b in the first pass using the time-series regression in Equation (2), so

bb ¼ XT

t¼1

RtF
0
t

 ! XT

t¼1

FtF
0
t

 !�1

; (3)

with Rt ¼ Rt � R;R ¼ 1
T

PT
t¼1 Rt;Ft ¼ Ft � F ; F ¼ 1

T

PT
t¼1 Ft; in the second pass, the risk

premia are estimated using a cross-sectional regression of the average asset returns R on iN
and bb estimated in the first pass:

bk0bkF

 !
¼ iN ;bb� �0

iN; bb� �� ��1

iN; bb� �0
R: (4)

1.2 Lack of Identification and Identification Robust Tests

The iN ;bð Þ matrix plays a crucial role for inference on risk premia (Kleibergen and Zhan

2020). If iN; bð Þ has a full rank value, then kF is well defined by Equation (1) and its estima-

tor bkF is consistent and asymptotically normally distributed under standard regularity con-

ditions (Shanken 1992). It validates the common usage of the t-test on the risk premia. The

full rank condition of iN ;bð Þ is, however, plausibly violated in many empirical settings.

The pioneering study of Kan and Zhang (1999), for example, focuses on the useless fac-

tor setting with b¼ 0. If b¼0, then kF is unidentified in Equation (1), and Kan and Zhang

(1999) show that the FM t-test on risk premia becomes unreliable, that is, its test statistic

tends to be significant, which thus spuriously supports useless risk factors. Kleibergen

(2009) further considers a so-called weak factor setting with b � 0, since many risk factors

proposed in the literature exhibit just minor correlations with asset returns. Similar to the

useless factor setting, Kleibergen (2009) finds that risk premia on weak factors are not well

identified, which further induces a malfunction of the FM t-test. In addition, Kleibergen

and Zhan (2020) show that b’s are often close to be constant over the different assets so

there is little cross-sectional variation in them. In this scenario, Kleibergen and Zhan (2020)

warn that identification of the risk premia is then similarly jeopardized, so the FM t-test

also breaks down. All these studies boil down to the full rank condition of iN; bð Þ, which is

jeopardized if b¼0, b � 0, or b / iN.

To provide empirical evidence that the full rank condition is plausibly violated, we use

the data from Kroencke (2017) and Lettau and Ludvigson (2001). The resulting estimates

of b are presented in Tables 1 and 2, respectively.

Re-produced from Kleibergen and Zhan (2020), Table 1 presents the estimated bs using

the 31 test assets from Kroencke (2017) and 5 different consumption growth measures
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(“Reported,” “P-J,” “Q4-Q4,” “Garbage,” and “Unfiltered,” see the notes to Table 1)

from the asset pricing literature. Kroencke (2017) proposes “Unfiltered” consumption

growth as a risk factor, which appears to outperform the other four consumption growth

measures for consumption-based asset pricing.

Table 1 b with 31 portfolio returns

Reported P-J Q4-Q4 Garbage Unfiltered

bb t-stat bb t-stat bb t-stat bb t-stat bb t-stat

(1) �1.30 �0.41 1.19 0.93 4.18 1.51 4.54 3.33 5.40 3.81

(2) �0.23 �0.09 1.14 1.06 4.42 1.93 4.06 3.52 4.70 3.98

(3) 0.14 0.06 0.99 1.06 4.15 2.09 3.74 3.86 3.80 3.64

(4) �0.52 �0.25 0.73 0.86 3.46 1.92 3.66 4.30 3.33 3.50

(5) �0.23 �0.11 0.73 0.85 3.74 2.06 3.62 4.30 3.33 3.44

(6) �0.84 �0.43 0.58 0.72 3.01 1.75 3.42 4.39 3.10 3.43

(7) �0.85 �0.44 0.49 0.63 2.73 1.63 3.51 4.90 2.95 3.32

(8) �0.59 �0.33 0.39 0.53 2.69 1.69 3.06 4.55 2.85 3.41

(9) �0.12 �0.07 0.30 0.43 2.75 1.87 2.61 3.98 2.48 3.16

(10) 0.34 0.20 0.64 0.92 2.97 2.01 3.14 4.53 2.60 3.29

(11) �0.95 �0.46 0.21 0.25 2.25 1.22 3.58 4.29 2.85 2.91

(12) �0.44 �0.25 0.60 0.81 2.77 1.77 3.15 4.22 2.59 3.09

(13) �0.63 �0.38 0.52 0.78 2.49 1.73 2.95 4.38 2.22 2.84

(14) �0.56 �0.31 0.07 0.10 2.26 1.39 2.51 3.10 2.04 2.28

(15) 0.88 0.53 0.46 0.67 3.14 2.19 2.75 3.89 2.25 2.85

(16) 0.73 0.45 0.58 0.88 3.04 2.19 2.86 4.49 2.62 3.56

(17) 0.96 0.56 0.71 1.03 3.50 2.40 2.93 4.53 2.81 3.61

(18) 1.21 0.65 1.05 1.40 4.27 2.72 3.17 4.35 3.33 4.02

(19) 1.23 0.67 1.09 1.47 3.97 2.56 2.86 3.65 2.96 3.53

(20) 1.77 0.84 1.32 1.56 5.22 2.98 2.93 3.26 4.21 4.67

(21) �0.50 �0.22 0.58 0.61 3.57 1.78 3.85 4.30 3.88 3.73

(22) �0.09 �0.05 0.66 0.88 3.14 1.98 3.00 4.10 3.15 3.82

(23) 0.37 0.23 0.54 0.81 2.84 2.02 2.94 4.49 2.27 2.96

(24) 0.44 0.31 0.54 0.92 2.96 2.40 2.84 5.30 2.25 3.38

(25) �0.50 �0.32 0.31 0.49 2.11 1.57 2.69 5.05 2.22 3.10

(26) 1.04 0.62 0.79 1.16 3.70 2.60 3.09 4.44 2.54 3.25

(27) 1.10 0.66 0.98 1.46 3.71 2.63 2.90 4.13 2.74 3.60

(28) 0.03 0.01 0.71 0.98 3.18 2.07 3.15 4.32 3.07 3.83

(29) �0.89 �0.41 0.17 0.19 2.44 1.26 3.54 3.82 2.70 2.59

(30) �1.40 �0.58 0.03 0.03 2.10 0.97 3.92 3.95 2.92 2.52

(31) 0.23 0.13 0.72 1.00 3.32 2.21 3.21 4.74 2.95 3.72

Notes: The 31 test assets are taken from Kroencke (2017), that is, the 30 portfolios sorted by size, value, and

investment, plus the market portfolio in 1960–2014 (yearly data). “Reported,” “P-J,” “Q4-Q4,” “Garbage”

and “Unfiltered” correspond to five consumption measures: (i) the consumption expenditure on nondurable

goods and services reported by National Income and Product Accounts (NIPA) (“Reported”); (ii) the 3-year

consumption measure from Parker and Julliard (2005) (“P-J”); (iii) the fourth-quarter to fourth-quarter con-

sumption measure from Jagannathan and Wang (2007) (“Q4-Q4”); (iv) the garbage measure in Savov (2011)

(“Garbage”); and (v) the unfiltered NIPA consumption measure in Kroencke (2017) (“Unfiltered”). Each of the

five consumption growth rates is used as the single risk factor for asset returns to estimate b.
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Table 1, however, suggests that the bs for all five consumption growth measures are

problematic. For example, the estimated b-vector for “Reported” consumption growth is

not statistically different from zero. On the other hand, although the bs for the “Garbage”

and “Unfiltered” consumption growth measures all appear sizeable, they exhibit little

cross-sectional variation so they are almost constant and proportional to a vector of ones.

Kleibergen and Zhan (2020) further conduct a rank test on iN; bð Þ and find evidence that its

full rank condition is likely violated under each of the five consumption growth measures.

The reported estimates of the bs in Table 1 thus cast doubt on the empirical findings in

Kroencke (2017).

Similar to Table 1, Table 2 reports the estimated bs using the 25 portfolios sorted by

size and book-to-market for three risk factors (the quarterly consumption growth �c, the

lagged consumption-wealth ratio cay, and their interaction �c� cay) taken from Lettau

Table 2 b with 25 portfolio returns

�c cay �c� cay

bb1 t-stat bb2 t-stat bb3 t-stat

(1) 6.35 2.32 4.25 2.96 �4.56 �0.22

(2) 6.30 2.61 3.66 2.90 2.25 0.12

(3) 5.11 2.28 3.22 2.75 3.22 0.19

(4) 5.50 2.58 2.96 2.65 5.12 0.32

(5) 5.79 2.53 2.65 2.21 11.36 0.65

(6) 4.38 1.76 4.55 3.49 �15.82 �0.84

(7) 3.63 1.65 3.25 2.83 0.02 0.00

(8) 3.92 1.97 3.07 2.95 �1.08 �0.07

(9) 3.52 1.91 2.66 2.76 6.93 0.50

(10) 4.83 2.41 2.16 2.06 8.48 0.56

(11) 2.70 1.21 4.53 3.88 �22.20 �1.31

(12) 2.76 1.47 3.64 3.69 �3.35 �0.23

(13) 2.92 1.69 2.63 2.91 4.40 0.34

(14) 2.58 1.57 2.73 3.18 0.02 0.00

(15) 3.71 1.98 2.15 2.19 4.78 0.34

(16) 1.97 1.02 4.22 4.20 �20.28 �1.39

(17) 2.62 1.49 3.28 3.58 �10.24 �0.77

(18) 1.94 1.21 2.57 3.06 �4.98 �0.41

(19) 2.50 1.56 2.32 2.76 0.60 0.05

(20) 3.78 2.05 2.26 2.34 3.28 0.23

(21) 1.61 1.01 2.77 3.33 �21.22 �1.76

(22) 1.16 0.80 2.53 3.33 �4.20 �0.38

(23) 2.32 1.88 2.46 3.80 �8.27 �0.88

(24) 1.24 0.94 2.24 3.25 �10.49 �1.05

(25) 3.07 2.13 1.59 2.11 �1.25 �0.11

Notes: The 25 portfolios sorted by size and book-to-market in 1963Q3–1998Q3 (quarterly data) are used as

test assets. The three risk factors taken from Lettau and Ludvigson (2001) are the quarterly consumption

growth �c, the (lagged) consumption-wealth ratio cay, and their interaction �c � cay. The 25� 3 dimensional

b matrix is thus b ¼ ðb1; b2; b3Þ, where bi, i¼ 1, 2, 3, corresponds to the ith factor.
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and Ludvigson (2001). It is rather obvious in Table 2 that the last column of the b-matrix,

which corresponds to the �c� cay risk factor, is not statistically significant at the 5% level.

We, therefore, cannot rule out that a column of the b-matrix for this multi-factor model

equals zero, so the iN; bð Þ matrix does not have a full rank value. This is also consistent

with the rank test results reported in Kleibergen and Zhan (2020). Consequently, Table 2

raises doubts on the credibility of the empirical findings based on the FM t-test in Lettau

and Ludvigson (2001).

The bs of questionable quality, such as those reported in Tables 1 and 2, have motivated

Kan and Zhang (1999), Kleibergen (2009), and thereafter Kleibergen and Zhan (2015,

2018, 2020), to analyze their impact on the risk premia. It is now well acknowledged that

inference on the risk premia is sensitive to the strength of identification, as reflected by the

full rank condition of iN ;bð Þ or put differently, the quality of the risk factors that yield the

factor loadings in b. This has led to the so-called identification robust tests on the risk pre-

mia, whose validity does not depend on the rank of iN ;bð Þ, that is, these tests remain trust-

worthy regardless of the quality of the risk factors. An example of such a test is the factor

Anderson–Rubin (FAR) test proposed by Kleibergen (2009), which is an extension of the

robust Anderson and Rubin (1949) test in the instrumental variables regression literature;

see also the Hotelling (H) type test in Beaulieu, Dufour, and Khalaf (2013). Other examples

of identification robust tests include the Lagrange multiplier (LM) and likelihood ratio

(LR) tests.

One potential drawback of these identification robust tests is, however, that many of

them are established using asymptotic arguments, so the validity of these tests often relies

on a large sample size, see, for example, the FAR test in Kleibergen (2009). It is thus ques-

tionable whether these tests perform well in finite-sample applications, which we discuss

next.

1.3 Limited T versus Large N and Finite-Sample Robust Tests

Other than lack of identification due to the quality of risk factors, limited sample sizes also

impose challenges for inference on risk premia. The latter should come out naturally, since

validity of asymptotic tests, such as the FM t-test and the FAR test, requires a large number

of time-series observations T relative to the number of assets N. If T is small while N is

large, it becomes doubtful whether we can still approximate the distributions of the FM t-

statistic and the FAR statistic by normal and chi-squared distributions, respectively. The

large number of assets N or in other words, many moment conditions, resembles the many

instruments issue in instrumental variables regression (Bekker 1994; Bekker and Kleibergen

2003; Newey and Windmeijer 2009).

The limited T versus large N scenario is commonly encountered in empirical asset pric-

ing studies. For instance, Savov (2011) uses the annual garbage growth series from 1960 to

2006, while the 25 Fama-French portfolios augmented by the 10 industry portfolios, as sug-

gested by Lewellen, Nagel and Shanken (2010), are used as test assets. The resulting limited

T¼47 and relatively large N¼ 35 thus cast doubt on the FM t-test used in Savov (2011).

Similarly, the Kroencke (2017) data used for Table 1 use the yearly unfiltered consumption

growth series for the time period 1960–2014, so T ¼ 55; and 30 portfolios sorted by size,

value, and investment alongside the market portfolio are used as test assets, so N ¼ 31: The

simulation experiment in Kleibergen and Zhan (2020), however, shows that neither the FM
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t-test nor the FAR test is size-correct under the limited T versus large N setting. Given that

many risk factors, like the garbage growth in Savov (2011) and unfiltered consumption

growth in Kroencke (2017), are only available at low frequencies and/or within short time

periods, the limited T versus large N problem similarly affects many other empirical studies.

In view of the above, we aim to develop tests on risk premia that are immune to the lim-

ited T versus large N problem and we label these tests as finite-sample robust tests.

Meanwhile, we also want these tests to remain trustworthy when the quality of risk factors is

potentially unsatisfactory. We therefore have a two-fold goal, that is, providing tests that are

reliable when using risk factors of questionable quality as well as for limited sample sizes.

Kleibergen and Zhan (2020) develop two tests to meet this two-fold goal. First, they

construct a finite-sample version of the rank test from Kleibergen and Paap (2006) so it can

be used to test for a reduced rank value of iN ;bð Þ, implicating that the risk premia are not

identified, when N is large compared with T. Second, they extend the GRS test statistic

from Gibbons, Ross, and Shanken (1989) so that it can be used for testing hypotheses on

the risk premia. They refer to it as the GRS-FAR statistic, to reflect that it also results from

the FAR statistic in Kleibergen (2009) with an adjustment for the finite-sample setting. As

in Gibbons, Ross, and Shanken (1989), Kleibergen and Zhan (2020) also assume that the

error term in the linear factor model (2) is normally distributed, in order to derive the

finite-sample F-distribution of the GRS-FAR statistic. Since this F-distribution does not de-

pend on the quality of the risk factors, the finite-sample robust GRS-FAR test is also robust

to the strength of identification.

In the next section, we propose several other tests, which, like the GRS-FAR test, are ro-

bust to both the sample size and the strength of identification reflected by the quality of the

risk factors. Later on, we also show that these tests have comparable or even better power

than the GRS-FAR test. To facilitate comparison and understanding, we also discuss the

GRS-FAR test.

2 Analytical Results

2.1 Null Hypothesis and Assumptions

Our interest lies in testing the hypothesis on the risk premia: H0 : kF ¼ kF;0, with kF;0 the

hypothesized value of kF. We, therefore, delete k0 in Equation (1) by removing the Nth asset

and taking all other asset returns in deviation from the return on the Nth asset. The mo-

ment condition (1) and the linear factor model (2) now become:

E Rtð Þ ¼ BkF (5)

Rt ¼ C þ BFt þ Ut; (6)

where Rt ¼ JNRt; C ¼ JNc; B ¼ JNb; Ut ¼ JNut, with JN ¼ IN�1;�iN�1ð Þ; IN�1 is the

N � 1ð Þ � N � 1ð Þ identity matrix, and iN�1 is the N � 1ð Þ-dimensional vector of ones.

Remark 1. Our proposed test statistics are invariant to which asset return is to be sub-

tracted. Put differently, the choice of the Nth asset does not affect the resulting values of

our statistics. See the Online Appendix of Kleibergen and Zhan (2020).

Remark 2. In tests with excess returns, k0 ¼ 0 is sometimes imposed. See, for example,

Savov (2011). With this zero-restriction, we do not have to remove the Nth asset, and
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Equations (5) and (6) are almost identical to Equations (1) and (2) except for notation. Our

tests can thus be extended straightforwardly to incorporate the k0 ¼ 0 restriction.

Remark 3. The full rank condition of iN; bð Þ, which we discussed previously for identify-

ing risk premia, is equivalent to the full rank condition of B. Since we allow for risk factors

of questionable quality, we do not need to assume that B has a full rank value.

We make the following two assumptions for the linear factor model, both of which have

been used in the previous literature. Further explanations are provided under each

assumption.

Assumption 1. U t is i.i.d. normally distributed with covariance R.

The normality assumption gives rise to the finite-sample distributions of the test statis-

tics proposed later on. This assumption is commonly adopted in the existing literature to fa-

cilitate finite-sample analysis, see, for example, Gibbons, Ross, and Shanken (1989) and

Kan and Zhou (2004). We can as well replace normality with other distributional assump-

tions, and if we do so, the finite-sample distributions of our proposed statistics can be

derived in a similar fashion or using simulation.

Assumption 2. Let F be the T�K matrix whose t-th row is F
0
t and we assume that iT ; Fð Þ

is a deterministic matrix of full rank.

The full rank condition of iT ;Fð Þ, where iT is the T-dimensional vector of ones, rules out

multi-collinearity of risk factors, so b and thus B are estimable using time-series regression.

Here, we assume that risk factors are fixed, instead of imposing restrictions on their limit-

ing behaviors, in order to facilitate the finite-sample analysis of test statistics. The assump-

tion of fixed factors can be similarly found in, for example, Gibbons, Ross, and Shanken

(1989). We could allow for randomness of risk factors by regarding the proposed test statis-

tics as conditional random variables given the risk factors.

2.2 Test Statistics and Their Finite-Sample Distributions

Under the null hypothesis H0 : kF ¼ kF;0 and the moment condition (5), we have

E Rtð Þ ¼ BkF;0, so the average returns R ¼ 1
T

PT
t¼1Rt should be centered around BkF;0. In

order to test H0 : kF ¼ kF;0, we can examine whether R �BkF;0 is centered around zero.

This motivates the test statistics we present next.

Put differently, our proposed test statistics do not rely on an estimator of kF. Instead, we

just examine whether the factor pricing condition (5) holds at the hypothesized risk premia

kF;0. A rejection of H0 : kF ¼ kF;0 could result if Equation (5) holds at a value other than

kF;0 or if Equation (5) does not hold at any value of the risk premia, that is, there exists

model mis-specification.2 Since our test statistics do not involve risk premia estimation,

2 If H0 : kF ¼ kF ;0 is rejected for every hypothesized kF ;0, then it signals that the adopted risk factors

are mis-specified for the factor pricing condition (5). In this case, mis-specification robust infer-

ence methods can be adopted; see, for example, Kan, Robotti, and Shanken (2013) and Kleibergen

and Zhan (2021).
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they remain trustworthy regardless of the strength of risk premia identification, as reflected

by the quality of risk factors or B.

For later use, we distinguish the following two estimators for B: a restricted least squares

estimator under the null,

eB ¼ XT

t¼1

Rt Ft þ kF;0

� 	0 ! XT

t¼1

Ft þ kF;0

� 	
Ft þ kF;0

� 	0 !�1

;

and an unrestricted least squares estimator,

bB ¼ XT

t¼1

RtF
0
t

 ! XT

t¼1

FtF
0
t

 !�1

;

whereRt ¼ Rt �R; Ft is the demeaned factor similarly defined under Equation (3).

Since R � eBkF;0 and R � bBkF;0 are natural choices to help examine whether E Rtð Þ ¼
BkF;0 holds, we use them to construct test statistics. Under H0 : kF ¼ kF;0 imposed on factor

pricing and Assumptions 1 and 2, R � eBkF;0 and R � bBkF;0 are both normally distributed

N � 1ð Þ-dimensional vectors and the distribution of one of these two vectors is just a scaled

version of the distribution of the other3:ffiffiffiffi
T
p

R � eBkF;0

� �
� N 0; 1� k0F;0 bQFF kF;0ð Þ�1kF;0

� �
� R

� �
; (7)

ffiffiffiffi
T
p

R � bBkF;0

� �
� N 0; 1þ k0F;0 bQ�1

kF;0

� �
� R

� �
; (8)

where bQFF kF;0ð Þ ¼ 1
T

PT
t¼1 Ft þ kF;0

� 	
Ft þ kF;0

� 	0
, bQ ¼ 1

T

PT
t¼1 FtF

0
t, and R is the covariance

of the error Ut in Equation (6).

2.2.1 Far and H statistics

The FAR statistic in Kleibergen (2009) is based on the normal approximation of the R �eBkF;0 vector. Similarly, the H type test statistic (see Beaulieu, Dufour, and Khalaf 2013) is

based on the normal approximation of R � bBkF;0. Both statistics can then be viewed as the

standardized lengths of these vectors, which explain their v2 limiting distributions:

FAR kF;0ð Þ ¼
T

1� k0F;0 bQ�1

FF kF;0ð ÞkF;0

R � eBkF;0

� �0bR�1 R � eBkF;0

� �
(9)

H kF;0ð Þ ¼
T

1þ k0F;0 bQ�1
kF;0

R � bBkF;0

� �0bR�1 R � bBkF;0

� �
(10)

with bR a consistent estimator for the covariance matrix R. Unless specified otherwise, we use

bR ¼ 1

T � K� 1

XT

t¼1

Rt � bBFt

� 	
Rt � bBFt

� 	0
as the covariance matrix estimator of R for the proposed test statistics.

3 See Lemmas 1 and 2 in the Appendix. For ease of exposition, all proofs are provided in the

Appendix, so we can focus on our prime results in the main text.
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Theorem 1. If the same covariance estimator bR is used for the FAR and H statistics, then

FAR kF;0ð Þ ¼ H kF;0ð Þ. Under H0 : kF ¼ kF;0 and Assumptions 1 and 2, the FAR and H statis-

tics converge to a v2
N�1 distributed random variable, as T !1 while N is fixed.

Proof: See Appendix A.4

Kleibergen and Zhan (2020) provide another interpretation of the FAR statistic by relat-

ing it to the well-known GRS statistic. They show that R � eBkF;0 can be viewed as an esti-

mator of the constant terms (alphas) in a set of appropriately specified regressions of asset

returns on risk factors. While alphas are zero under the null, the FAR statistic, like the GRS

statistic, just tests whether alphas are zero. Therefore, we could also label the FAR statistic

as the GRS-FAR statistic, as in Kleibergen and Zhan (2020).

The asymptotic result in Theorem 1, however, is at risk in a finite-sample setting where

the time-series dimension T may not be much larger than the cross-section dimension N.

We, therefore, adjust the FAR statistic (or equivalently, the H statistic) and derive its finite-

sample distribution, which is provided in Theorem 2.

Theorem 2. Under H0 : kF ¼ kF;0 and Assumptions 1 and 2,

T � K�N þ 1

T � K� 1ð Þ N � 1ð Þ � FAR kF;0ð Þ � FN�1;T�K�Nþ1; (11)

where FN�1;T�K�Nþ1 is the F-distribution with N�1, T � K�N þ 1 degrees of freedom.

Proof: See Appendix A.

The finite-sample F-distribution in Theorem 2 indicates the importance of the time-series

dimension T relative to the cross-section dimension N. If T is much larger than N, then it is

straightforward to verify that the finite-sample result in Theorem 2 is equivalent to the

asymptotic result in Theorem 1. On the other hand, if T is close to N, which is not uncom-

mon in practice, then inference on risk premia based on Theorem 2 is expected to be sub-

stantially different from that based on Theorem 1. The related simulation evidence can be

found in Kleibergen and Zhan (2020).

2.2.2 GLS-LM and JGLS statistics.

As stated in Theorem 1, asymptotically the FAR statistic has a v2 distribution with N�1

degrees of freedom. Therefore, when we use a large number of test assets, so the degrees of

freedom increase, the FAR test becomes less powerful. This issue has been similarly dis-

cussed for the Anderson and Rubin (1949) statistic in the instrumental variables regression

literature (Kleibergen 2002).

To reduce the degrees of freedom and thus improve the power of tests on the risk pre-

mia, Kleibergen (2009) decomposes the FAR statistic into two parts, the GLS-LM statistic

and the JGLS statistic, both can be used for testing H0 : kF ¼ kF;0:

4 Theorem 1, as well as other asymptotic results presented later on, also holds under weaker condi-

tions; see Kleibergen (2009).
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FAR kF;0ð Þ ¼ GLS-LM kF;0ð Þ þ JGLS kF;0ð Þ:

The GLS-LM statistic results from projecting bR�1
2 R � eBkF;0

� �
on the column space

spanned by bR�1
2eB, so

GLS-LM kF;0ð Þ

¼ T

1� k0F;0 bQ�1

FF kF;0ð ÞkF;0

R � eBkF;0

� �0bR�1
2

0

PbR�1
2eB bR�

1
2 R � eBkF;0

� �

¼ T

1� k0F;0 bQ�1

FF kF;0ð ÞkF;0

R � eBkF;0

� �0bR�1eB eB0bR�1eB� ��1eB0bR�1 R � eBkF;0

� � ; (12)

where PbR�1
2eB ¼ bR�

1
2eB eB0bR�1eB� ��1eB0bR�1

2

0

; bR�1 ¼ bR�1
2

0 bR�1
2. Moreover, the GLS-LM statistic

can also be viewed as a quadratic form of the derivative of the FAR statistic (Kleibergen

2009).

Similarly, the JGLS statistic results from projecting bR�1
2 R � eBkF;0

� �
on the space or-

thogonal to the one spanned by bR�1
2eB, so it equals FAR kF;0ð Þ �GLS-LM kF;0ð Þ:

JGLS kF;0ð Þ

¼ T

1� k0F;0 bQ�1

FF kF;0ð ÞkF;0

R � eBkF;0

� �0bR�1
2

0

IN�1 � PbR�1
2eB� �bR�1

2 R � eBkF;0

� �
: (13)

By decomposing the FAR statistic as described above, the distributions of the resulting

GLS-LM and JGLS statistics have fewer degrees of freedom, as shown in Theorem 3.

Theorem 3. Under H0 : kF ¼ kF;0 and Assumptions 1 and 2, the GLS-LM and JGLS sta-

tistics converge to independent v2
K and v2

N�K�1 distributed random variables, respectively,

as T !1 while N is fixed.

Proof: See Appendix A.

To make GLS-LM and JGLS tests applicable for the limited T versus large N setting, we

similarly derive the finite-sample distributions of their (re-scaled) statistics. These are pro-

vided in Theorem 4.

Theorem 4. Under H0 : kF ¼ kF;0 and Assumptions 1 and 2,

GLS� LM kF;0ð Þ � w�W�1w� w�C C�WCð Þ�1
C�w (14)

T �N þ 1

T � K� 1ð Þ N � K� 1ð Þ � JGLS kF;0ð Þ � FN�K�1;T�Nþ1; (15)

where w � N 0; IN�1ð Þ; W � WN�1 T�K�1;IN�1ð Þ
T�K�1 (scaled Wishart distribution) independent of

w, and C is an arbitrary N � 1ð Þ � N � K� 1ð Þmatrix of full rank.
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Proof: See Appendix A.

The finite-sample distribution of the GLS-LM statistic is non-standard, but, since it is in-

variant to the specification of C, it does not depend on any further nuisance parameters so

its critical values can easily be obtained by simulation.5 The F-distribution of the JGLS stat-

istic has degrees of freedom different from those for the finite-sample FAR statistic, al-

though both statistics take the limited T versus large N problem into account.

2.2.3 FM-LM and JFM statistics.

Next, we decompose the FAR statistic in an alternative manner, which is similar to the

above decomposition resulting in the GLS-LM and JGLS statistics. This decomposition

leads to yet two other test statistics, denoted by FM-LM and JFM, respectively, in

Kleibergen (2009). As shown later, it yields a test whose finite-sample distribution does not

depend on N.

In particular, we project bR�1
2 R � eBkF;0

� �
on the column space spanned by bR1

2eB and the

associated orthogonal space, to construct the FM-LM and JFM statistics, respectively.

These two statistics can thus be written as:

FM-LM kF;0ð Þ

¼ T

1� k0F;0 bQ�1

FF kF;0ð ÞkF;0

R � eBkF;0

� �0bR�1
2

0

PbR1
2eB bR�

1
2 R � eBkF;0

� �

¼ T

1� k0F;0 bQ�1

FF kF;0ð ÞkF;0

R � eBkF;0

� �0eB eB0bReB� 	�1eB0 R � eBkF;0

� � (16)

JFM kF;0ð Þ

¼ FAR kF;0ð Þ � FM-LM kF;0ð Þ

¼ T

1� k0F;0 bQ�1

FF kF;0ð ÞkF;0

R � eBkF;0

� �0bR�1
2

0

IN�1 � PbR1
2eB� �bR�1

2 R � eBkF;0

� � (17)

with PbR1
2eB ¼ bR

1
2

0 eB eB0bReB� 	�1eB0bR1
2; bR ¼ bR1

2bR1
2

0

.

Theorems 5 and 6 provide the asymptotic and finite-sample distributions for these statis-

tics, respectively.

Theorem 5. Under H0 : kF ¼ kF;0 and Assumptions 1 and 2, the FM-LM and JFM statis-

tics converge to independent v2
K and v2

N�K�1 distributed random variables, respectively, as

T !1 while N is fixed.

5 To get the finite-sample critical values for GLS-LM, we can independently simulate w,W from nor-

mal and Wishart distributions, respectively, and use an N � 1ð Þ � N � K � 1ð Þ full rank matrix for

C. The quantiles resulting from the simulated values of the GLS-LM statistic provide the critical

values.
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Proof: See Appendix A.

Theorem 6. Under H0 : kF ¼ kF;0 and Assumptions 1 and 2,

T � 2K

T � K� 1ð ÞK
� FM-LM kF;0ð Þ � FK;T�2K (18)

JFM kF;0ð Þ � w0W�1w� w0C C0WCð Þ�1
C0w; (19)

where w and W are as in Theorem 4, while C is an arbitrary N � 1ð Þ � K matrix of full

rank.

Proof: See Appendix A.

It is worth noting that the finite-sample F-distribution of the FM-LM statistic in Theorem 6

has a nice feature: its degrees of freedom do not depend on the number of assets N. This

statistic can thus be used to overcome the deficiency due to the presence of many assets, for

which we provide simulation evidence later on.

2.2.4 Split-sample CLR statistic.

The conditional LR (CLR) test for H0 : kF ¼ kF;0 resembles the CLR test in Moreira (2003)

for linear instrumental variables regression. In the single factor case, the CLR statistic has a

closed form expression:

CLR kF;0ð Þ

¼ 1

2
FAR kF;0ð Þ � r kF;0ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FAR kF;0ð Þ þ r kF;0ð Þ
� 	2 � 4r kF;0ð ÞJGLS kF;0ð Þ

q� � ; (20)

where r kF;0ð Þ ¼ bQFF kF;0ð ÞeB0bR�1eB corresponds to a rank test statistic for testing rank Bð Þ ¼
0 provided kF ¼ kF;0 and it measures the strength of the risk premia identification. When

r kF;0ð Þ equals zero, so there is no identification, the CLR statistic is identical to the FAR

statistic. On the other hand, for large values of r kF;0ð Þ, the CLR statistic is close to the GLS-

LM statistic. Therefore, the CLR statistic can also be regarded as a data-dependent

weighted average of the FAR and GLS-LM statistics.

Asymptotically, r kF;0ð Þ is independent of FAR kF;0ð Þ and JGLS kF;0ð Þ, so the conditional

limiting distribution of the CLR statistic given the realized value of r kF;0ð Þ results from

combining the independent limiting distributions of the GLS-LM and JGLS statistics

whose sum makes up the FAR statistic. The conditional critical values of the CLR statis-

tic can then straightforwardly be simulated for any given value of r kF;0ð Þ in the manner

of Moreira (2003); see also Kleibergen (2009). In the finite-sample setting, however,

FAR kF;0ð Þ and JGLS kF;0ð Þ are no longer independently distributed of r kF;0ð Þ, which com-

plicates the derivation of conditional finite-sample critical values for the CLR statistic.

To address this issue, we propose to conduct a CLR test by usage of the split-sample

CLR (sCLR) statistic.

Specifically, the full sample with t ¼ 1; . . . ;T, is divided into two parts: t ¼ 1; . . . ;T1

for the first sub-sample, while t ¼ T1 þ 1; . . . ;T for the second. We use the first sub-

sample to estimate R, which is only used for calculating r kF;0ð Þ: All the other parts of the

CLR statistic are computed using the second sub-sample. The resulting CLR statistic is
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labeled as the sCLR statistic. The r kF;0ð Þ statistic used for the sCLR statistic is then inde-

pendent of the FAR kF;0ð Þ and JGLS kF;0ð Þ statistics. We can thus provide the finite-

sample distribution of the sCLR statistic, as in the next theorem.

Theorem 7. Under H0 : kF ¼ kF;0 and Assumptions 1 and 2 with K¼1, the sCLR kF;0ð Þ
statistic conditional on the rank statistic r has the distribution:

1

2
w0W�1w� rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0W�1wþ r
� 	2 � 4rw0C C0WCð Þ�1

C0w

q� �
;

where w, W, and C are as in Theorem 4, except that T � T1 replaces T for the (second)

sample size, and r is the rank statistic whose bR results from the first sample with

t ¼ 1; . . . ;T1.

Proof: See Appendix A.

The sCLR test is, however, not always feasible. If T is too close to N, the two split-sample

sizes, T1 and T � T1; may not exceed N. Yet we require the time-series dimension to at least

exceed the cross-section dimension for our proposed tests. For example, the degrees of free-

dom in Theorem 2 implicitly implies that we need T � K�N þ 1 > 0. In the single factor

model with K¼ 1, T � K�N þ 1 > 0 reduces to T>N. For the sCLR statistic, both T1

and T � T1 thus have to exceed N so T has to exceed 2N: For this reason, we focus on the

FAR test and its components, the GLS-LM, JGLS, FM-LM, and JFM tests, rather than the

CLR test.

2.3 Subset FAR Statistic

So far we have focused on testing a joint hypothesis specified on all risk premia:

H0 : kF ¼ kF;0. To construct a confidence set of each individual risk premium in multi-

factor models, we can just project out the joint confidence set which can be computed

using tests of the joint hypothesis specified on all risk premia. Alternatively, Kleibergen

(2009) and Kleibergen and Zhan (2020) use a subset FAR (sFAR) statistic. We provide

the asymptotic and finite-sample behaviors of the sFAR statistic in Theorems 9 and 10,

respectively. We refrain from constructing the asymptotic and finite-sample behaviors

of the other statistics since these, unlike for the sFAR statistic, need the risk premia left

unrestricted by the hypothesis of interest to be well identified.

For the K� 1 dimensional vector of risk premia kF ¼ ðkF;1; kF;2; . . . ; kF;KÞ0, consider

its partition such that kF ¼ ðkF;1; k
0
2Þ
0 with k2 ¼ ðkF;2; . . . ; kF;KÞ0. Our objective is to test

the null hypothesis H0 : kF;1 ¼ k0
F;1.6 The corresponding sFAR statistic, denoted by

sFARðk0
F;1Þ, results from minimizing the FAR statistic under the hypothesized k0

F;1:

sFAR k0
F;1

� �
¼ min

k2

FAR k0
F;1; k

0
2

� �0� �
:

6 Our results can easily extend to cases where kF ;1 is a vector instead of a scalar, and for simplicity and

for the fact that scalar tests are popular among empirical studies, we focus on the scalar case.
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Consider the following characteristic polynomial:

jl 1þ k0F;1 bQ�1

FF;11kF;1 �k0F;1 bQ�1

FF;12

�bQ�1

FF;21kF;1
bQ�1

FF;22

0@ 1A� R � bB1kF;1; bB2

� �0bR�1 R � bB1kF;1; bB2

� �
j ¼ 0;

with bQ�1

FF ¼
bQ�1

FF;11
bQ�1

FF;12bQ�1

FF;21
bQ�1

FF;22

0@ 1A; bB ¼ bB1; bB2

� �
. The sFAR k0

F;1

� �
statistic equals T times

the smallest root of this characteristic polynomial, which shows that the sFAR k0
F;1

� �
statis-

tic is also a rank test statistic testing the null hypothesis that the rank of

E Rtð Þ � B1kF;1;B2

� 	
is smaller than K�1; see Kleibergen and Paap (2006).

Proposition 8. The sFAR statistic is bounded according to

sFAR k0
F;1

� �
� gJGLS k0

F;1; k
00

2

� �0� �
(21)

with gJGLSððk0
F;1; k

00

2 Þ
0Þ ¼ FARððk0

F;1; k
00

2 Þ
0Þ � gGLS-LMððk0

F;1; k
00

2 Þ
0Þ, where gGLS-LMððk0

F;1; k
00

2 Þ
0Þ

only uses the score with respect to the k2.

Proof: See Appendix A.

Proposition 8 directly implies that the distribution of a JGLS statistic can serve as an upper

bound for the associated sFAR statistic, as shown in Theorems 9 and 10.

Theorem 9. Under H0 : kF;1 ¼ k0
F;1 and Assumptions 1 and 2, as T !1 while N is fixed,

the limiting distribution of the sFARðk0
F;1Þ statistic is bounded by the v2

N�K distribution, that is,

sFARðk0
F;1Þ � v2

N�K: (22)

Proof: See Appendix A.

Theorem 9 is consistent with the sharp asymptotic sFAR upper bound provided by

Guggenberger et al. (2012), while we derive the result via a different approach, that is,

we derive the upper bound by showing that the sFAR statistic is bounded by a JGLS

statistic as stated in Proposition 8. Theorem 4 provides an exact finite-sample distribu-

tion of the JGLS statistic, similarly we can derive the exact finite-sample distribution of

the gJGLSððk0
F;1; k

00

2 Þ
0Þ statistic and thus provide a finite-sample upper bound for the sFAR

statistic in Theorem 10.

Theorem 10. Under H0 : kF;1 ¼ k0
F;1, Assumptions 1 and 2, the scaled sFARðk0

F;1Þ statistic,
T�N

ðT�K�1ÞðN�KÞ sFARðk0
F;1Þ, is in finite samples bounded by the FN�K;T�N distribution, that is,

T �N

ðT � K� 1ÞðN � KÞ � sFARðk0
F;1Þ � FN�K;T�N: (23)

Proof: See Appendix A.
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Theorem 10 is also consistent with the asymptotic v2-upper bound from Theorem 9 as

the scaled F-distribution will converge to the same v2-limit as T increases to infinity. The

sFAR statistic, as previously discussed, is also a rank test statistic. Theorem 11 extends the

finite-sample bound of the sFAR statistic to the generalized reduced rank test statistic

(Kleibergen and Paap 2006) with a Kronecker structure, which coincides with the canonical

correlation rank statistic of Anderson (1951).

Theorem 11. Under Assumptions 1 and 2, the canonical correlation rank test which tests

for a lower rank value of B (from Equation (6)), rk ¼ minkT ð
bBkÞ0bR�1

ðbBkÞ

k0bQ�1

FF k
, is in finite samples

bounded by the FN�K;T�N distribution, that is,

T �N

ðT � K� 1ÞðN � KÞ � rk � FN�K;T�N : (24)

Proof: See Appendix A.

Theorem 11 provides a finite-sample upper bound for the canonical correlation rank

test of B, which commonly serves as a pre-test testing the identification strength of linear

asset pricing models. Provided that Equation (6) is simply a linear model, Theorem 11 eas-

ily extends to the canonical correlation rank test of slope coefficients in linear models with

independent Gaussian noise and thus provides a finite-sample adaption for the rank test

with a Kronecker structure (Kleibergen and Paap 2006).

3 Numerical and Empirical Results

3.1 Simulation Evidence

To illustrate the performance of our proposed tests, we conduct a simple simulation study.

For the data generating process (DGP), we consider a single factor model:

Rt ¼ cþ bFt þ ut; with Ft � NID 0;Vf

� 	
; ut � NID 0;Xð Þ;

where c, b, Vf, and X are calibrated to data from Kroencke (2017). We set c ¼ iNk0 þ bkF,

so the moment condition (1) holds.

3.1.1 Size.

Using the simulated data of Ft and Rt from the DGP, we test H0 : kF ¼ 2 at the 5% signifi-

cance level for generating the sizes presented in Figure 1. In particular, we fix the time-

series sample size at T¼ 55 to mimic the Kroencke (2017) study, while we consider a se-

quence of values for the number of test assets N, up to N¼31. The FAR, GLS-LM, JGLS,

FM-LM, and JFM tests described in the last section are implemented, using both their

finite-sample and asymptotic critical values. The simulated sizes result from 1,000 Monte

Carlo replications.

Figure 1 shows that all finite-sample robust tests (dashed curves) have actual sizes close

to the nominal 5%, regardless of the value of N. This is in sharp contrast with the asymp-

totically valid tests (solid curves), whose sizes tend to exceed the nominal 5% as N

increases. When N is small, so it is far below T, we observe in Figure 1 that asymptotic tests
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are close to be size-correct. On the other hand, when N is large, so the limited T versus

large N problem becomes severe, asymptotic tests (except FM-LM) exhibit size distortion

while finite-sample robust tests remain trustworthy. All these findings are in line with our

earlier analysis.

It is worth emphasizing that the FM-LM test performs well using either finite-sample

(dashed red) or asymptotic (solid red) critical values. This is explained by Theorem 6, where

N does not appear in the degrees of freedom of the finite-sample distribution of the FM-LM

statistic. Put differently, while the limited T versus large N problem affects many asymptotic-

ally valid tests, it is less so for the FM-LM test. This feature makes the FM-LM test more

appealing than the FAR, GLS-LM, JGLS, and JFM tests for limited T versus large N.

Figure 1 is to be compared with Figure 2, for which we increase T from 55 to 500.

Under the large T¼500, Figure 2 shows that both the asymptotically valid tests (solid) and

finite-sample robust tests (dashed) have actual sizes near the nominal 5%. This further

demonstrates the importance of the T versus N issue. If researchers adopt a large number of

test assets, such as N¼ 31 assets in Kroencke (2017), or N¼35 as in Savov (2011), then a

much larger T is generally needed to validate asymptotic tests. This argument also applies

to the identification robust FAR, GLS-LM, JGLS, and JFM tests when using asymptotic

critical values. Kleibergen and Zhan (2020) provide similar simulation evidence for the FM

t-test, whose size not only suffers from the limited T versus large N problem, but also relies

on risk factors of satisfactory quality.

3.1.2 Power.

Next, we briefly analyze the power performance of our proposed tests. To do so, we vary

kF imposed in the DGP described above and keep testing H0 : kF ¼ 2, which is close to the
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Figure 1 Simulated sizes as a function of the number of test assets N with T¼ 55. Dashed curves for fi-

nite-sample robust tests: FAR, dashed black; GLS-LM, dashed blue; JGLS, dashed magenta; FM-LM,

dashed red; JFM, dashed green. Solid curves for asymptotically valid tests: FAR, solid black; GLS-LM,

solid blue; JGLS, solid magenta; FM-LM, solid red; and JFM, solid green. The null hypothesis is

H0 : kF ¼ 2 in a single factor CAPM calibrated to Kroencke (2017). The significance level is 5%.
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point estimate of the consumption risk premium reported in Kroencke (2017). To facilitate

comparison, we consider two scenarios: (i) N¼ 31 and T¼ 55, as in Kroencke (2017) and

(ii) N¼ 31 and T¼500. The simulated power curves for these two scenarios are presented

in Figures 3 and 4, respectively.

The left-hand side panel of Figure 3 shows that finite-sample robust tests are all size-

correct in our simulation study calibrated to Kroencke (2017), and these tests have good

power. The power curves of the GLS-LM and FM-LM tests show a sudden decline in power

which results since they are (functions of) quadratic forms of the derivative of the FAR stat-

istic with respect to the risk premium. The power decline therefore occurs from this deriva-

tive not only being zero at the minimizer of the FAR statistic. Andrews, Moreira, and Stock

(2006) show that the CLR statistic is optimal for testing in the homoskedastic linear instru-

mental variables regression model with one structural parameter, since it optimally com-

bines the GLS-LM and JGLS statistic using the conditioning statistic. Since the conditioning

statistic is not independently distributed from the GLS-LM and JGLS statistics, we cannot

use it here.

In contrast, the right hand side panel of Figure 3 shows that among the examined

asymptotically valid tests, only the FM-LM test appears to be size-correct for the N¼ 31

and T¼55 setting. This is consistent with Figure 1 as well as Theorem 6.

Figure 3 is to be compared with Figure 4, for which we consider T¼ 500. The two pan-

els of Figure 4 now appear similar to each other, since both the finite-sample robust tests

and the asymptotic tests are expected to be valid when T is sufficiently large. Similar to the

left-hand side panel of Figure 3, Figure 4 also suggests that the power performances of the

examined tests are comparable to each other.

Kleibergen (2009) discusses how the power decline of GLS-LM and FM-LM tests, as

shown in Figure 3, can be avoided by sequentially testing the risk premia using either the in-

dependent GLS-LM and JGLS tests or the FM-LM and JFM tests. For illustration, here we
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Figure 2 This figure is generated in the same manner as Figure 1, except that we fix T at T¼ 500.
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consider a combination such that a 96% critical value is applied to GLS-LM and a 99%

critical value to JGLS, so the overall size equals 5%. Similarly, we also consider the com-

bined test using FM-LM (96%) and JFM (99%).

Figure 5 presents the power curves of the GLS-LM and JGLS combined test and the FM-

LM and JFM combined test in the N¼ 31 and T¼55 setting. For comparison, we also
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Figure 4 This figure is generated in the same manner as Figure 3, except that we fix T at T¼ 500.
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Figure 3 Simulated power curves with N¼ 31 and T¼ 55. Dashed curves for finite-sample robust tests in

the left panel: FAR, dashed black; GLS-LM, dashed blue; JGLS, dashed magenta; FM-LM, dashed red;

and JFM, dashed green. Solid curves for asymptotically valid tests in the right panel: FAR, solid black;

GLS-LM, solid blue; JGLS, solid magenta; FM-LM, solid red; and JFM, solid green. The null hypothesis is

H0 : kF ¼ 2 in a single factor CAPM calibrated to Kroencke (2017). The significance level is 5%.
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present the power curves of the FAR test and the FM t-test with the Shanken (1992)

correction.

The left hand side panel of Figure 5 shows that the power decline in Figure 3 is no longer

in place, once we combine tests in the manner suggested by Kleibergen (2009). Moreover,

the GLS-LM and JGLS combined test (dashed blue) appears more powerful than the FM-

LM and JFM combined test (dashed red) and the FAR test (dashed black). On the other

hand, the FM t-test (dotted brown) exhibits size distortion, since it over-rejects H0 : kF ¼ 2.

The right hand side panel of Figure 5 again shows that the asymptotic counterparts of these

tests do not function well in the N¼ 31 and T¼ 55 setting.

Figure 5 is to be compared with Figure 6, where T is increased to 500. Under this large

value of T, the two panels in Figure 6 are, as expected, almost indistinguishable. Figure 6

also shows that the FM t-test starts to perform well under the large T ¼ 500ð Þ. However, its

power curve lies below those of robust tests, that is, it appears to be less powerful.

3.2 Risk Premia in the Consumption CAPM

In this section, we use our proposed tests to analyze risk premia in the consumption CAPM

and conditional consumption CAPM. The data sets from Kroencke (2017) and Lettau and

Ludvigson (2001) are adopted to facilitate comparison. The yearly data taken from

Kroencke (2017) has T¼ 55 and N¼ 31, while the quarterly data taken from Lettau and

Ludvigson (2001) has T¼ 141 and N¼25. The detailed description of the involved test

assets and risk factors is provided for Tables 1 and 2, where the estimated bs are reported.

For ease of exposition, we present the p-value plots resulting from testing risk premia

using our proposed tests. A p-value larger than, say, 5%, implies that we could not reject

the null at the 5% significance level. Thus, if we find that the p-value curves are all above
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Figure 5 Simulated power curves with N¼ 31 and T¼ 55. Dashed curves for finite-sample robust tests

in the left panel: FAR, dashed black; a combined test of GLS-LM (96%) and JGLS (99%), dashed blue; a

combined test of FM-LM (96%) and JFM (99%), dashed red. Solid curves for asymptotically valid tests

in the right panel: FAR, solid black; a combination of JGLS and GLS-LM, solid blue; a combination of

JFM and FM-LM, solid red. In both panels, the dotted brown power curve is for the FM t-test with the

Shanken (1992) correction, using critical values from the normal distribution. The null hypothesis is

H0 : kF ¼ 2 in a single factor CAPM calibrated to Kroencke (2017). The significance level is 5%.
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the 5% line, then we cannot reject any hypothesized value of the risk premium, that is, the

95% confidence sets of the risk premium is unbounded. In contrast, if the p-value curves

cross the 5% line, then we can reject those hypothesized values of the risk premium whose

corresponding p-values are below 5%. Finally, if the p-value curves lie fully below the 5%

line, then we reject every hypothesized value of the risk premium.

Figure 7 provides the p-value curves resulting from testing the consumption risk pre-

mium using the data from Kroencke (2017). We use five of our proposed tests: FAR, GLS-

LM, JGLS, FM-LM, and JFM.7 Overall, the p-value curves based on the finite-sample ro-

bust tests (dashed black) imply unbounded 95% confidence sets of the consumption risk

premium. In particular, the p-values from the finite-sample FAR, GLS-LM, JGLS, and JFM

tests are all above 5%, so the resulting confidence sets are unbounded. Only the FM-LM

test has some of its p-values below 5%, for some hypothesized risk premia near zero.

Therefore, only these hypothesized values can be rejected at the 5% level, and the 95% con-

fidence set resulting from the FM-LM test is thus unbounded but disjoint. The unbounded-

ness of the 95% confidence sets reflects both the questionable quality of the consumption

growth data and the limited sample size, and casts doubt on the findings in Kroencke

(2017) based on the FM t-test, which we re-produce in Panel A of Table 3. Dufour (1997)

and Kleibergen and Zhan (2020) provide further detailed explanations for why confidence

sets resulting from robust tests can be unbounded. In particular, Kleibergen and Zhan

(2020) show that unbounded confidence sets commonly occur, if risk premia are unidenti-

fied due to poor quality risk factors, and/or the involved time series is short, so little infor-

mation on risk premia can be extracted from the data.

Figure 7 also shows the large discrepancy between finite-sample robust tests (dashed

black) and asymptotically valid tests (solid red). Most striking is that the asymptotic FAR,

JGLS, and JFM tests reject every hypothesized risk premium, while their finite-sample

counterparts do not. The FM-LM test distinguishes itself from the other tests, since its
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Figure 6 This figure is generated in the same manner as Figure 5, except that we fix T at T¼ 500.

7 Since T¼ 55 while N¼ 31, we do not employ the sCLR test which needs T > 2N:
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finite-sample and asymptotic versions lead to almost identical p-values. This should not be

surprising, since Theorem 6 shows that the FM-LM test does not suffer from the limited T

versus large N problem. As long as T exceeds 2K by a large enough margin, the finite-

sample adjusted FM-LM test is almost equivalent to its asymptotic counterpart.

Figure 7 p-values of the FAR, GLS-LM, JGLS, FM-LM, and JFM tests for testing the values of the con-

sumption risk premium on the horizontal axis. Dashed black curves result from the finite-sample critic-

al values of these test statistics, while solid red curves of p-values result from the asymptotic critical

values. The test assets (30 portfolios sorted by size, value, and investment, plus the market portfolio)

and the single risk factor (unfiltered consumption growth) in 1960–2014 are taken from Kroencke

(2017). The 5% benchmark line is also plotted.

Table 3 Conventional 95% confidence intervals (CIs) of risk premia

A. Kroencke (2017) B. Lettau and Ludvigson (2001)

�c �c cay �c�cay

Estimate of kF 2.04 0.02 �0.13 0.06

FM t 2.18 0.20 �0.43 3.12

95% CI by FM t (0.20, 3.88) (�0.20, 0.25) (�0.70, 0.45) (0.02, 0.09)

Shanken t 1.75 0.15 �0.31 2.25

95% CI by Shanken t (�0.24, 4.32) (�0.29, 0.34) (�0.93, 0.68) (0.01, 0.11)

Notes: The estimate of kF and the FM t-statistic results from the FM (1973) two-pass procedure. The t-statistic

with the Shanken (1992) correction is also presented. 95% CIs are constructed by inverting the t-tests. For the

consumption CAPM, we replicate the Kroencke (2017) study: the yearly unfiltered consumption growth in

1960–2014 is used for �c, while 30 portfolios sorted by size, value, and investment, plus the market portfolio,

are used as test assets. For the conditional consumption CAPM, we replicate the Lettau and Ludvigson (2001)

study: the quarterly consumption growth �c, the (lagged) consumption-wealth ratio cay, and their interaction

in 1963Q3–1998Q3 are used as three risk factors, while 25 portfolios sorted by size and book-to-market are

used as test assets.
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Similar to Figure 7, Figure 8 provides p-value plots based on the sFAR test for each of

the three risk premia in the conditional consumption CAPM in Lettau and Ludvigson

(2001). They are used to construct the 95% confidence sets of each of the risk premia, to

compare with the conventional ones presented in Panel B of Table 3.8

Figure 8 shows that the finite-sample adjusted sFAR test (dashed black) leads to un-

bounded 95% confidence sets of the risk premium on each of the three risk factors in the

model (�c: consumption growth; cay: the lagged consumption–wealth ratio; �c� cay: their

interaction). In contrast, 95% confidence sets based on the asymptotic sFAR test (solid red)

are unbounded and disjoint for �c and cay, since only a bounded set of hypothesized risk

-20 -10 0 10 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
�  Consumption

-20 -10 0 10 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
cay

-20 -10 0 10 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
�  Consumption �  cay

Figure 8 p-values of the sFAR test for testing the values of risk premia on the horizontal axis. Dashed

black curves result from the sFAR test using the finite-sample F-critical values, while solid red curves

of p-values result from the asymptotic v2-critical values. The test assets (25 portfolios sorted by size

and book-to-market ratio) and three risk factors (Dc, cay, Dc � cay) in 1963Q3–1998Q3 are taken from

Lettau and Ludvigson (2001). The 5% benchmark line is also plotted.

8 For our other proposed tests, the 95% confidence sets for the individual risk premium result from

projecting the 95% joint confidence sets of all three risk premia on the separate axes reflecting

each risk premium. We, therefore, refrain from using them to construct the 95% confidence sets

for the individual risk premium.
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premia are associated with p-values below 5%. Furthermore, for the interaction term �c�
cay, both the finite-sample and the asymptotic p-value curves lie above 5%, so they suggest

an unbounded 95% confidence set. Lettau and Ludvigson (2001), on the other hand, report

a significant FM t-statistic on the interaction term to help establish their conditional con-

sumption CAPM, which we re-produce in Panel B of Table 3. In contrast with Lettau and

Ludvigson (2001), the unbounded confidence sets implied by Figure 8 thus put the signifi-

cant risk premium from the FM t-test under doubt; see also Kleibergen (2009) and

Kleibergen and Zhan (2020).

Finally, it is worth emphasizing that the unbounded confidence sets of risk premia in

Figures 7 and 8 are in line with the corresponding b estimates in Tables 1 and 2. As indi-

cated by Tables 1 and 2, we cannot rule out that the full rank condition of iN ;bð Þ is violated

in a statistical sense. If the full rank condition does not hold, then the risk premia kF in

Equation (1) are unidentified. Any real value can thus become possible for the unidentified

kF, which consequently leads to the unbounded confidence sets in Figures 7 and 8.

4 Conclusions

We provide finite-sample distributions for the identification robust statistics testing risk

premia in the beta representation of expected asset returns. By doing so, we make these tests

suitable for empirical settings where sample sizes are often limited and the quality of risk

factors is questionable. The size and power performances in Monte Carlo simulations show

that these tests work favorably, and their empirical usage is illustrated using two well-

known applications.

Acknowledgement

We thank Paolo Zaffaroni and Francisco Pe�naranda for their discussion of the Hall White

Memorial Lecture during the SoFiE 2019 Annual Meeting at Fudan University in Shanghai,

which greatly improved the manuscript.

Supplementary Data

Supplemental data are available at https://www.datahostingsite.com

Appendix A: Proofs

In this Appendix, we provide the proofs for the analytical results stated in the main text. These

proofs build on Lemmas 1 and 2 below.

Lemma 1. For any given kF;0,

eB ¼ bB � R � bBkF;0

� � 1

�kF;0

0@ 1A0 1 0

0 bQ
0@ 1A 0

IK

0@ 1A
1

�kF;0

0@ 1A0 1 0

0 bQ
0@ 1A 1

�kF;0

0@ 1A ; (25)
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R � eBkF;0 ¼
1

1þ k0F;0 bQ�1
kF;0

R � bBkF;0

� �
; (26)

whereR; eB ; bB, and bQ are defined in the main text.

Proof of Lemma 1:

bQ ¼ X
t

FtF
0
t

� �
=T (27)

bQFF kF;0ð Þ ¼
X

t

Ft þ kF;0

� 	
Ft þ kF;0

� 	0� �
=T ¼ bQ þ kF;0k

0
F;0; (28)

where the last equality results from the fact that Ft are demeaned factors. Using Aþ aa0ð Þ�1 ¼
A�1 � 1

1þa0A�1a
A�1aa0A�1, we have

bQFF kF;0ð Þ�1 ¼ bQ þ kF;0k
0
F;0

� ��1

¼ bQ�1
� 1

1þ k0F;0 bQ�1
kF;0

bQ�1
kF;0k

0
F;0
bQ�1

; (29)

which implies

1� k0F;0 bQFF kF;0ð Þ�1kF;0 ¼
1

1þ k0F;0 bQ�1
kF;0

: (30)

Plugging Equation (29) into eB, which can be rewritten as eB ¼ 1
TR

0 iTk0F;0 þ F
� �bQFF kF;0ð Þ�1 with

F ¼ F1; . . . ; FT

� 	0
andR ¼ R1; . . . ;RTð Þ0, we get:

eB ¼ 1

T
R0 iTk0F;0þF
� �bQFFðkF;0Þ�1

¼ 1

T
R0F bQ�1

� 1

1þk0F;0 bQ�1
kF;0

bQ�1
kF;0k

0
F;0
bQ�1

 !
þRk0F;0 bQFFðkF;0Þ�1

¼ bB� 1

1þk0F;0 bQ�1
kF;0

bBkF;0k
0
F;0
bQ�1
þRk0F;0 bQFFðkF;0Þ�1

¼ bB� 1

1þk0F;0 bQ�1
kF;0

bBkF;0k
0
F;0
bQ�1
þRk0F;0 bQ�1

� 1

1þk0F;0 bQ�1
kF;0

bQ�1
kF;0k

0
F;0
bQ�1

 !

¼ bB� 1

1þk0F;0 bQ�1
kF;0

bBkF;0k
0
F;0
bQ�1
þ 1

1þk0F;0 bQ�1
kF;0

Rk0F;0 bQ�1

¼ bB� R� bBkF;0

� � �k0F;0 bQ�1

1þk0F;0 bQ�1
kF;0

;

(31)

which then implies the following Equations (32) and (33):

eB ¼ bB � R � bBkF;0

� � 1
�kF;0

� �0
1 0

0 bQ�1

� �
0
IK

� �
1
�kF;0

� �0
1 0

0 bQ�1

� �
1
�kF;0

� � (32)
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eBkF;0 ¼ bBkF;0 � R � bBkF;0

� � �k0F;0 bQ�1
kF;0

1þ k0F;0 bQ�1
kF;0

: (33)

From Equation (33), it results that

R � eBkF;0 ¼
1

1þ k0F;0 bQ�1
kF;0

R � bBkF;0

� �
: (34)

Q.E.D.

Remarks. Lemma 1 also implies

eB � R � eBkF;0

� �
k0F;0 bQ�1

¼ bB : (35)

If the model is correctly specified, the term R � eBkF;0

� �
is asymptotically zero, so the two estima-

tors eB and bB are asymptotically equivalent.

Lemma 2. Under H0 : kF ¼ kF;0 and Assumptions 1 and 2,

ffiffiffiffi
T
p

R � bBkF;0

� �
� N 0; 1þ k0F;0 bQ�1

kF;0

� �
� R

� �
; (36)

ffiffiffiffi
T
p

R � eBkF;0

� �
� N 0; 1� k0F;0 bQFF kF;0ð Þ�1kF;0

� �
� R

� �
; (37)

R � bBkF;0

� �
?eB ; (38)

R � eBkF;0

� �
?eB ; (39)

R � bBkF;0

� �
?bR; (40)

R � eBkF;0

� �
?bR; (41)

bR ¼ 1

T � K� 1

X
t

Rt � bBFt

� 	
Rt � bBFt

� 	0
� WN�1 T � K� 1;Rð Þ

T � K� 1
; (42)

R?bB ; R?bR; bB?bR; eB?bR: (43)

Proof of Lemma 2: We only need to show Equations (36), (39), (40), and (42). The proof

of these results, together with Lemma 1, implies the rest of Lemma 2.

(1) Show
ffiffiffiffi
T
p

R � bBkF;0

� �
� N 0; 1þ k0F;0 bQ�1

kF;0

� �
� R

� �
:
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ffiffiffiffi
T
p

R � bBkF;0

� �
¼

ffiffiffiffi
T
p

R � BkF;0 � bB � B� 	
kF;0

� �
¼

ffiffiffiffi
T
p

U � bB � B� 	
kF;0

� �
¼

ffiffiffiffi
T
p

U0iT i0T iT

� 	�1 � U0F F0Fð Þ�1
kF;0

� �
¼

ffiffiffiffi
T
p
U0X X0Xð Þ�1

1 �k0F;0
� �0

; (44)

where U ¼ U1; . . . ;UTð Þ0; F ¼ F1; . . . ; FT

� 	0
, and X ¼ iT ; Fð Þ. It then follows thatffiffiffiffi

T
p

R � bBkF;0

� �
¼

ffiffiffiffi
T
p
U0X X0Xð Þ�1

1 �k0F;0
� �0

¼ 1 �k0F;0
� �

X0X=Tð Þ�1 � IN�1

� � 1ffiffiffiffi
T
p

X
t

Xt � U t

 ! (45)

and we thus get Equation (36) by using

1ffiffiffiffi
T
p

X
t

Xt � Ut � N 0; X0Xð Þ=T � R
� 	

: (46)

(2) Show R � eBkF;0

� �
?eB , where ? stands for independence:

We prove the claim by showing

R � eBkF;0

vec eB � B� 	
0@ 1A � 1ffiffiffiffi

T
p

wR

wB

0@ 1A; (47)

where wR ?wB and they are N � 1ð Þ � 1 and N � 1ð ÞK� 1 normally distributed random vectors

with mean zero and covariance matrices ð1� k0F;0 bQ�1

FF ðkF;0ÞkF;0Þ � R and bQFFðkF;0Þ�1 � R,

respectively. To show it, we start with

R � eBkF;0

vec eB � B� 	
0@ 1A ¼ R � BkF;0 � k0F;0 � IN�1

� �
vec eB � B� 	

vec eB � B� 	
0B@

1CA; (48)

where

R � BkF;0 ¼ U ¼ U0iT i0T iT

� 	�1 ¼ i0T iT

� 	�1
i0T � IN�1

� �
vec U0ð Þ (49)

vec eB � B� 	
¼ 1

T
bQ�1

FF kF;0ð Þ F0 þ kF;0i
0
T

� 	
� IN�1

� �
vec U0ð Þ: (50)

We therefore have
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R � eBkF;0

vec eB � B� 	 !
� IN�1 � k0F;0 � IN�1

� �
0 IK N�1ð Þ

 !
i0T iT

� 	�1
i0T � IN�1

1

T
bQ�1

FF kF;0ð Þ F þ iTk0F;0
� �0

� IN�1

0B@
1CAvec U0ð Þ

�
i0T iT
� 	�1i0T �

1

T
k0F;0 bQ�1

FF kF;0ð Þ F þ iTk0F;0
� �0� �

� IN�1

1

T
bQ�1

FF kF;0ð Þ F þ iTk0F;0
� �0

� IN�1

0BB@
1CCAvec U0ð Þ

� 1

T

i0T � k0F;0 bQ�1

FF kF;0ð Þ F þ iTk0F;0
� �0� �

� IN�1bQ�1

FF kF;0ð Þ F þ iTk0F;0
� �0

� IN�1

0BB@
1CCAvec U0ð Þ

:

(51)

Note that ði0T � k0F;0 bQ�1

FF ðkF;0ÞðF þ iTk0F;0Þ
0Þ � ðbQ�1

FF ðkF;0ÞðF þ iTk0F;0Þ
0Þ0 ¼ 0, which implies

R � eBkF;0? eB.

(3) Show ðR � bBkF;0Þ? bR:

Note that bR ¼ U0MXU=ðT �K� 1Þ with MX ¼ IT �XðX �XÞ�1X�, while ðR � bBkF;0Þ ¼
U0XðX0XÞ�1ð 1 �k0F;0 Þ0 as shown in Equation (44). The independence thus results from

U0X?U0MX, since

EðvecðU0XÞ0vecðU0MXÞÞ ¼ EðððX0 � IN�1ÞvecðU0ÞÞ0ðMX � IN�1ÞvecðU0ÞÞ ¼ 0: (52)

(4) Show bR � WN�1ðT�K�1;RÞ
T�K�1 :bR ¼ U0MXU=ðT � K� 1Þ, where MX ¼ IT �XðX �XÞ�1X�is the projection matrix with rank T �

K� 1; U ¼ ðU1; . . . ;UTÞ0 with U t � Nð0N�1;RÞ. Using Theorem 2 of Mathew and Nordstrom

(1997), it follows that

bR ¼ U0MXU=ðT � K� 1Þ � WN�1ðT � K� 1;RÞ=ðT � K� 1Þ: (53)

Q.E.D.

Proof of Theorem 1: Equivalence of FAR and H statistics results from Equations (26) and

(30):

R � eBkF;0 ¼
1

1þ k0F;0 bQ�1
kF;0

ðR � bBkF;0Þ (54)

1� k0F;0 bQFFðkF;0Þ�1kF;0 ¼
1

1þ k0F;0 bQ�1
kF;0

: (55)

Assumptions 1 and 2 imply that Assumption 1 in Kleibergen (2009) holds. Theorem 1 thus results

from Theorem 5 in Kleibergen (2009).

Q.E.D.

Proof of Theorem 2: From Lemma 2, we know:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

1� k0F;0 bQFFðkF;0Þ�1kF;0

s
ðR � eBkF;0Þ � Nð0;RÞ (56)
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ðR � bBkF;0Þ? bR (57)

bR ¼ 1

T � K� 1

X
t

ðRt � bBFtÞðRt � bBFtÞ0 �
WN�1ðT � K� 1;RÞ

T � K� 1
: (58)

With these results, the FN�1;T�K�Nþ1 distribution for the finite-sample FAR statistic results from

Theorem 3.2.13 from Muirhead (2009).

Q.E.D.

Proof of Theorem 3: Similar to the proof of Theorems 1 and 3 results from Theorem 6 in

Kleibergen (2009).

Q.E.D.

Proof of Theorem 4: Let eB? be an arbitrary ðN � 1Þ � ðN � K� 1Þ matrix such that

ðeB; eB?Þ is of full rank and eB0?eB ¼ 0. The projection matrix MbR�1
2eB ¼ IN�1 � PbR�1

2eB can be

written as bR1
2

0 eB?ðeB0?bReB?Þ�1eB0?bR1
2. The JGLSðkF;0Þ statistic can thus be written as

JGLSðkF;0Þ

¼ T

1� k0F;0 bQ�1

FF ðkF;0ÞkF;0

ðR � eBkF;0Þ0bR�1
2

0

ðIN�1 � PbR�1
2eB ÞbR�

1
2ðR � eBkF;0Þ

¼ T

1� k0F;0 bQ�1

FF ðkF;0ÞkF;0

ðR � eBkF;0Þ0eB?ðeB0?bReB?Þ�1eB0?ðR � eBkF;0Þ

: (59)

Conditional on eB, Lemma 2 implies:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

1� k0F;0 bQ�1

FF ðkF;0ÞkF;0

vuut eB0?ðR � eBkF;0Þ � Nð0; eB0?ReB?Þ (60)

eB0?bReB? � WN�K�1ðT � K� 1; ðeB?Þ0RðeB?ÞÞ
T � K� 1

(61)

eB0?bReB??eB0?ðR � eBkF;0Þ (62)

since eB? only depends on eB by construction. These results imply that T�Nþ1
ðT�K�1ÞðN�K�1Þ �

JGLSðkF;0Þ � FN�K�1;T�Nþ1. Note that GLS-LMðkF;0Þ ¼ FARðkF;0Þ � JGLSðkF;0Þ, where

FARðkF;0Þ and JGLSðkF;0Þ, once properly scaled, follow F-distributions with different degrees of

freedom. The finite distribution of GLS-LMðkF;0Þ is thus the difference of the finite-sample distri-

butions of the FARðkF;0Þ and JGLSðkF;0Þ statistics. From the proof of Lemma 2, we know
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ffiffiffiffi
T
p R � eBkF;0

vec eB � B� 	
0BB@

1CCA � wR

wB

0B@
1CA

�N 0;

1� k0F;0 bQ�1

FF kF;0ð ÞkF;0

� �
� R 0

0 bQFF kF;0ð Þ�1 � R

0BBB@
1CCCA

0BBB@
1CCCA

(63)

and bR � WN�1 T�K�1;Rð Þ
T�K�1 , R � eBkF;0? bR. Therefore, we have FAR kF;0ð Þ � w0W�1w, where

w � N 0; IN�1ð Þ; W � WN�1 T�K�1;IN�1ð Þ
T�K�1 . As R � eBkF;0; bR are independent from eB?, we have

JGLS kF;0ð Þ � w0C C0WCð Þ�1
C0w independent of C from Equation (59).Q.E.D.

Proof of Theorem 5: Similar to the proof of Theorems 1 and 5 results from Theorem 7 in

Kleibergen (2009).

Q.E.D.

Proof of Theorem 6: Conditional on eB, Lemma 2 implies:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

1� k0F;0 bQ�1

FF kF;0ð ÞkF;0

vuut eB0 R � eBkF;0

� �
� N 0; eB0ReB� �

(64)

eB0bReB � WK T � K� 1; eB0ReB� �
T � K� 1

(65)

eB0bReB ? eB0 R � eBkF;0

� �
: (66)

These results imply that T�2K
T�K�1ð ÞK� FM-LM kF;0ð Þ � FK;T�2K, and this distribution does not de-

pend on eB . Given JFM kF;0ð Þ ¼ FAR kF;0ð Þ � FM-LM kF;0ð Þ, the finite distribution of JFM kF;0ð Þ is

thus the difference of the finite-sample distributions of the FAR kF;0ð Þ and FM-LM kF;0ð Þ statistics:

JFM kF;0ð Þ � w0W�1w� w0C C0WCð Þ�1
C0w. The proof is similar to that for GLS-LM in Theorem

4, except for that C is an arbitrary N � 1ð Þ � K matrix of full rank.

Q.E.D.

Proof of Theorem 7: The i.i.d. condition in Assumption 1 implies that r in the sCLR stat-

istic is independent from the other parts. Theorem 7 thus results from Lemma 2 and

Theorem 4.

Q.E.D.

Proof of Proposition 8: Proposition 1 in Online Appendix B shows that

@FAR kFð Þ
@k0F

¼ �2T R � eBkF

� 	0bR�1eB (67)

and thus
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GLS-LM kFð Þ ¼
1þ k0F bQ�1

kF

4T

@FAR kFð Þ
@k0F

eB0bR�1eB� ��1
@FAR kFð Þ

@k0F

 !0
: (68)

Similarly, we have

@FAR kFð Þ
@k02

¼ �2T R � eBkF

� 	0bR�1eB2 (69)

which then leads to the construction of gGLS-LM k0
F;1; k

00
2

� �0� �
:

gGLS-LM k0
F;1; k

00
2

� �0� �
¼ 1þ k0F bQ�1

kF

4T

@FAR kFð Þ
@k02

jkF¼k0
F

eB02bR�1eB2

� ��1 @FAR kFð Þ
@k02

jkF¼k0
F

 !0
¼ T

1� k0F;0 bQ�1

FF kF;0ð ÞkF;0

R � eBkF;0

� �0bR�1
2

0

PbR�1
2eB2

bR�1
2 R � eBkF;0

� �
:

For gJGLSððk0
F;1; k

00
2 Þ
0Þ:

gJGLS k0
F;1; k

00
2

� �0� �
¼ FAR k0

F;1; k
00
2

� �0� �
� gGLS-LM k0

F;1; k
00
2

� �0� �

¼ T

1� k0F;0 bQ�1

FF kF;0ð ÞkF;0

R � eBkF;0

� �0bR�1
2

0

IN�1 � PbR�1
2eB2

� �bR�1
2 R � eBkF;0

� � :

Denote bk2ðk0
F;1Þ ¼ argmink2

FARððk0
F;1; k

0
2Þ
0Þ. Thus, gGLS-LMððk0

F;1;
bk 02ðk0

F;1ÞÞ
0Þ ¼ 0 by construc-

tion. As a result, once we establish gJGLSððk0
F;1;
bk 02ðk0

F;1ÞÞ
0Þ � gJGLSððk0

F;1; k
00

2 Þ
0Þ, it then implies

sFAR k0
F;1

� �
¼ gJGLS k0

F;1;
bk 02 k0

F;1

� �� �0� �
� gJGLS k0

F;1; k
00

2

� �0� �
:

Proposition 3 in Online Appendix B shows that

@JGLS

@k0F
kFð Þ ¼

1

T
JGLS kFð Þ

@FAR

@k0F
kFð Þ eB0bR�1eB� ��1 bQ�1

�
bQ�1

kFk
0
F
bQ�1

1þ k0F bQ�1
kF

0@ 1A
and in the similar fashion, we have

@ gJGLS

@k00
2

k0
F;1; k

00
2

� �0� �
¼ 1

T
JGLS k00

F

� �
@FAR

@k00
2

k00
F

� � eB02bR�1eB2

� ��1

C0 bQ�1
�
bQ�1

kFk
0
F
bQ�1

1þ k0F bQ�1
kF

0@ 1AC

with C ¼ ð0..
.
IK�1Þ. In practice, we deal with N > Kþ 1 and thus without loss of generality we

may safely assume that almost surely, zeros of @gJGLS
@k02
ððk0

F;1; k
0
2Þ
0Þ (as a function of k2) are zeros of

@FAR
@k02
ððk0

F;1; k
0
2Þ
0Þ (as a function of k2). Given the facts that the stationary points of FARððk0

F;1; k
0
2Þ
0Þ

and gJGLSððk0
F;1; k

0
2Þ
0Þ (as functions of k2) coincide, they achieve the minimum at the same point.

Therefore, the inequality gJGLSððk0
F;1;
bk 02ðk0

F;1ÞÞ
0Þ � gJGLSððk0

F;1; k
00

2 Þ
0Þ holds.
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Q.E.D.

Proof of Theorem 9: This is a direct result of Proposition 8 and Theorem 3. See also

Guggenberger et al. (2012), Gospodinov, Kan, and Robotti (2017).

Q.E.D.

Proof of Theorem 10: This is a direct result of Proposition 8 and the fact that

T �N

T � K� 1ð Þ N � Kð Þ �
gJGLS k0

F;1; k
00

2

� �0� �
� FN�K;T�N ;

which is indicated by the proof of Theorem 4.Q.E.D.

Proof of Theorem 11: We know that bB � N B;Q�1
FF � R

� �
. If B is of lower rank than K,

then the null is equivalent to that there exists non-zero k such that Bk ¼ 0. If the first entry

in k is non-zero, there exists k0 such that B 1; k00
� 	0 ¼ 0. Denote

eB2 ¼ bB2 þ bB 1;�k00
� 	0

A

rk kð Þ ¼ T

k0Qk
bBk
� 	0bR�1 bBk

� 	
rkF k0ð Þ ¼

T

1;�k00
� 	

Q 1;�k00
� 	0 bB 1;�k00

� 	
0

� �0bR�1 bB 1;�k00
� 	0� �

rkeG k0ð Þ ¼
T

1;�k00
� 	

Q 1;�k00
� 	0 bB 1;�k00

� 	
0

� �0bR�1
2

0

PbR�1
2eB2

bR�1
2 bB 1;�k00

� 	0� �
rkeJ k0ð Þ ¼ rkF k0ð Þ � rkeG k0ð Þ

with Q ¼ Q�1
FF ; A ¼

1
�k0

� �0
Q

0
IK�1

� �
1
�k0

� �0
Q

1
�k0

� �. By construction, rk ¼ minkrk kð Þ � mink0
rkF k0ð Þ.

Then the result follows the proof of Theorem 10 by noticing mink0
rkF k0ð Þ � rkeJ k0ð Þ and

minkrk kð Þ equals T times the minimal root of the following polynomial, which is the canon-

ical correlation rank test

jlQ� bB0bR�1bBj ¼ 0:

Q.E.D.
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