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Abstract
Plasticity is the extent to which life history processes such as growth and reproduction depend on the environment. Plastic-
ity in individual growth varies widely between taxa. Nonetheless, little is known about the effect of plasticity in individual 
growth on the ecological dynamics of populations. In this article, we analyse a physiologically structured population model 
of a consumer population in which the individual growth rate can be varied between entirely plastic to entirely non-plastic. 
We derive this population level model from a dynamic energy budget model to ensure an accurate energetic coupling between 
ingestion, somatic maintenance, growth and reproduction within an individual. We show that the consumer population is 
either limited by adult fecundity or juvenile survival up to maturation, depending on the level of growth plasticity and the 
non-plastic individual growth rate. Under these two regimes, we also find two different types of population cycles which 
again arise due to fluctuation in, respectively, juvenile growth rate or adult fecundity. In the end, our model not only provides 
insight into the effects of growth plasticity on population dynamics, but also provides a link between the dynamics found in 
age- and size-structured models.

Keywords Somatic growth rate · Size structure · Trade-off · Single-cohort cycles · Population dynamics

Introduction

Phenotypic plasticity is the difference in individual pheno-
types due to the influence of the environment (Sultan and 
Stearns 2005; Miner et al. 2005). It can arise if individ-
ual behaviour or individual life history processes such as 
growth, reproduction and mortality depend on the environ-
ment. As population dynamics arises from the accumulation 
of individual life histories (Miller and Rudolf 2011), it is 
evident that plasticity in life history processes can strongly 
influence the dynamics of populations. Although plasticity 
is widely explored in the context of evolutionary dynamics, 
the effect of plasticity of life history traits on population 
dynamics is less well understood (Schmitz et al. 2003; Miner 
et al. 2005).

The population dynamic effects of plasticity in different 
life history processes cannot be considered separately, as 
many life history processes are linked through energy alloca-
tion schemes within an individual. It is therefore important 
to know the rules of within-individual energy allocation, 
when considering plasticity in life history processes (Nisbet 
et al. 2000; Brown et al. 2004). Different frameworks have 
been formulated to understand individual energy allocation 
(Kooijman 2000; West et al. 2001; Hou et al. 2008; Sousa 
et al. 2008). In general, assimilated energy is divided over 
maintenance, growth and reproduction, while a deficit in 
assimilated energy can lead to additional mortality due to 
starvation. If a life history process is entirely non-plastic, it 
does not depend on the environment and requires a predeter-
mined amount of energy. The energy requirements of such 
a demand-driven process could be met through changes in 
behaviour to adapt the energy intake or by changes in the 
energy flow to other processes (Kooijman 2010). In con-
trast, a purely supply-driven process is by definition plastic, 
because it depends entirely on the amount of assimilated 
energy and therefore on the food conditions of the environ-
ment. Models for individual energy allocation mainly differ 
in the priority of different processes (Lika and Nisbet 2000; 
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Kooijman 2000; Zhang et al. 2011; Jager et al. 2013), but 
commonly maintenance costs are considered as a non-plastic 
(demand driven) process while both growth and reproduc-
tion are considered as a plastic (supply driven) process (but 
see De Roos et al. (2009) for an example of a model in which 
growth is incorporated as a demand-driven process).

A life history process for which plasticity strongly dif-
fers between taxa is the individual growth in body size. 
Environment-dependent changes in individual growth rate 
are observed in a wide range of ectothermic species ranging 
from Daphnia (McCauley et al. 1990) and fish (Lorenzen and 
Enberg 2002; Zimmermann et al. 2018) to amphibians and 
reptiles (Halliday and Verrel 1988), although some specific 
species in these taxa are found to be endothermic (Dickson 
and Graham 2004). In addition, it is even suggested that 
the growth rate of some large fossil mammals was flexible 
(Köhler and Moyà-Solà 2009). This suggests that the growth 
rate in most ectotherms and early endotherms is plastic. In 
contrast, the growth rate of most modern endotherms (e.g. 
birds and mammals) is relatively independent of environmen-
tal influences. To maintain a constant growth rate in a fluctu-
ating environment, it is necessary to regulate the amount of 
energy acquired and allocated to somatic growth. This can 
partly be achieved by the ability to maintain a constant home-
ostasis and adaptive behaviour (Kooijman 2010). Meanwhile, 
the resting metabolic expenditure of endotherms exceeds that 
of ectotherms by an order of magnitude, even when corrected 
for expenditure for thermoregulation or under conditions with 
limited energy demand such as during torpor or hibernation 
(Bennett and Ruben 1979). The additional resting metabolic 
expenditure in endotherms is likely used to maintain a con-
stant energy flow to growth in order to maintain a constant 
somatic growth rate. This latter idea is supported by field 
observations of ungulates which experience delayed repro-
duction and decreased fecundity with low food abundance 
(Skogland 1986; Clutton-Brock et al. 1987; Festa-Bianchet 
et al. 1995; Coulson et al. 2000; Albon et al. 2000) and labo-
ratory observations on house mice, which stopped ovulating 
while maintaining growth under reduced food conditions 
(Perrigo 1990). Altogether this suggests that the growth rate 
of endotherms is largely predetermined and non-plastic rather 
than supply driven.

Whereas the plasticity of life history characteristics can 
be considered as a continuous trait ranging from non-plastic 
to highly plastic (Sultan and Stearns 2005), the individual 
growth rate in models of structured populations is gener-
ally assumed to be either non-plastic or entirely plastic. This 
results in two categories of structured models with different 
dynamics. For example, age-based models, such as used in 
fisheries management (Schnute and Richards 1998), assume 
that individuals of the same age are of similar size. The 
growth rate of individuals is thus implicitly assumed to be 
independent of the environment, suggesting that individual 

growth is a non-plastic process (De Roos et al. 2003). In 
these models, the population structure is entirely determined 
by the individual reproduction and mortality rate. Popula-
tion dynamic cycles in these models arise due to the delay 
between birth and maturation and the competition between 
different life stages (Gurney et al. 1983; Gurney and Nisbet 
1985; De Roos et al. 2003; Pfaff et al. 2014). In contrast, most 
size-structured models are based on a dynamic energy budget 
model in which individual growth is modelled as a supply-
driven process. As a consequence, the individual growth rate 
depends on the resource density and is therefore entirely plas-
tic (De Roos et al. 1990; De Roos and Persson 2001). Due to 
the highly plastic individual growth rate, the size-structured 
models can show a range of population structures and differ-
ent types of population dynamic cycles which mainly depend 
on the competitive strength of different life stages (De Roos 
et al. 2003; de Roos and Persson 2003). Due to the discrete 
differences between these two classes of structured models, 
it is largely unclear how predictions from (age-structured) 
models with non-plastic growth relate to (size-structured) 
models with entirely plastic growth.

Although we know most about the ecological dynamics 
when individual growth is either entirely plastic or non-
plastic, it is more likely that for most species the actual 
level of plasticity in individual growth lies between these 
two extremes. At such intermediate levels of growth plas-
ticity, individual growth would consist of a non-plastic 
part representing the baseline minimum growth rate of an 
individual, and a plastic part, which is an environment-
dependent additional increase in individual growth. This 
raises the question how population dynamics changes when 
the plasticity in individual growth is at intermediate lev-
els. Here we present a size-structured model in which we 
vary the individual growth rate from non-plastic to entirely 
plastic. We base this model on a simple Dynamic Energy 
Budget (DEB) model (Jager et al. 2013) to ensure a plausi-
ble scheme for energy allocation within an individual. Here-
with we restrict ourselves to the simplest case in which the 
environment only consists of a single dynamic resource. 
Therefore, non-plastic growth in our model indicates that 
the individual growth rate is entirely independent of the 
resource density and requires a predetermined amount of 
energy, which could be set and regulated by genetic and 
chemical regulatory pathways within an individual. In con-
trast, entirely plastic growth indicates that the individual 
growth rate depends on the resource density, is completely 
supply driven and fluctuates accordingly. We will explore 
how the population dynamics in this model changes with 
respect to the level of growth plasticity as well as the maxi-
mum density of the resource, as an increase in the latter is 
generally known to destabilise the dynamics from struc-
tured population models, resulting in population dynamic 
cycles (De Roos et al. 1990).

Theoretical Ecology (2022) 15:95–11396
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Model formulation

Individual energy dynamics

As a basis for the individual energy dynamics, we use a simpli-
fied DEB model described by Jager et al. (2013). This model 
describes energy intake, somatic growth and reproduction in 
terms of energy stored in lean mass ( Em ). In the DEB theory 
framework, it is generally assumed that individuals of all sizes 
and ages have the same shape and body composition and there-
fore both the mass and size of an individual scale with the 
energy stored in lean mass. Energy ingestion (I) is assumed to 
scale with the resource density (R) following a Holling type II 
functional response ( f (R) = R

Rh+R
 , with Rh the half saturation 

constant), the individual surface area ( E2∕3
m  ) and the maximum 

ingestion rate per unit surface area ( IR):

We follow DEB theory and assume assimilation efficiency 
in the gut is a species-specific constant. The surface-specific 
maximum ingestion rate times the assimilation rate is rep-
resented by � . The original energetic model by Jager et al. 
(2013) assumes growth is plastic and follows a �-rule in which 
a fraction � of the assimilated energy is used for somatic 
growth and somatic maintenance costs. The somatic main-
tenance costs are assumed to be non-plastic and scale with 
the energy stored in lean mass through the energy-specific 
maintenance costs (b). Covering somatic maintenance costs 
has priority over somatic growth. This yields the following 
differential equation for plastic somatic growth:

With �m the conversion efficiency of assimilated energy to 
lean mass. These assumptions imply that individuals follow 
a von Bertalanffy type of growth curve when the resource 
density is constant. The maximum lean mass reached by an 
individual is proportional to f (R)3 , whereas the growth rate 
is independent of resource density (Jager et al. 2013).

We assume individuals mature when reaching a predeter-
mined amount of energy stored in lean mass ( EJ ). In adult 
individuals, a fraction 1 − � of the assimilated energy is 
channelled to reproduction, while this fraction is used for 
maturation in juvenile individuals. This results in the follow-
ing differential equation for the total amount of energy ( Er ) 
invested by adults into the production of juveniles:

With �r the conversion efficiency of assimilated energy to 
energy in newborn lean mass.

(1)I = IRf (R)E
2∕3
m

= IR
R

Rh + R
E2∕3
m

(2)
dEm

dt
= �m

(
��f (R)E2∕3

m
− bEm

)

(3)
dEr

dt
= �r(1 − �)�f (R)E2∕3

m

To formulate a version of the model with non-plastic 
growth, the somatic growth rate has to be decoupled from 
the resource density. In other words, a constant amount of 
energy is used for somatic growth and somatic maintenance, 
independent of the current resource density. To stay close to 
the original model with plastic growth, non-plastic somatic 
growth is assumed to follow a von Bertalanffy growth trajec-
tory as well. This results in the following differential equa-
tion for non-plastic somatic growth:

Here, we introduce a parameter � as a scalar modulating 
the non-plastic growth rate to replace the scaled functional 
response (f(R)) in the plastic growth rate. Individuals follow-
ing the non-plastic growth dynamics (Eq. (4)) will therefore 
grow at the same rate as individuals that follow the plastic 
growth dynamics (Eq. (2)) with a scaled functional response 
(f(R)) equal to � . To capture the entire spectrum from non-
plastic growth to entirely plastic growth, we introduce the 
parameter � , which represents the extent to which growth 
is plastic. This results in our general formula for somatic 
growth:

We assume all energy not used for somatic processes is 
used by juveniles for maturation and by adults for reproduc-
tion, resulting in the following expression for the investment 
in reproductive energy:

With EJ , the energy in lean mass corresponding to the 
size at which individuals mature.

Equations 5 and 6 simplify to the model described by 
Jager et al. (2013) if growth is entirely plastic ( � = 1 ). In 
addition, notice that the investment in growth in our model 
is higher compared to the �-rule model with entirely plas-
tic growth if f (R) < 𝜁 , while investment in reproduction is 
higher if f (R) > 𝜁.

By comparing the equation for the assimilated energy 
( �f (R)E2∕3

m  ) with the energy used for growth (Eq. 5), it is 
clear that the rate of energy supply may become insufficient 
to maintain the outlined energy allocation scheme. If energy 
supply becomes insufficient, we assume starvation and 
rechanneling of energy occur. An individual could encounter 
three types of starvation conditions (Fig. 1).

Under the most severe starvation condition as a conse-
quence of very low resource densities, ingested energy is 

(4)
dEm

dt
= �m

(
���E2∕3

m
− bEm

)

(5)
dEm

dt
= �m

(
���f (R)E2∕3

m
+ (1 − �)���E2∕3

m
− bEm

)

(6)

dEr

dt
=

⎧⎪⎨⎪⎩

0 if Em < EJ

𝛾r

�
𝛼f (R)E

2∕3
m −

�
𝜙𝜅𝛼f (R)E

2∕3
m + (1 − 𝜙)𝜅𝛼𝜁E

2∕3
m

��
if Em > EJ

.
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insufficient to cover somatic maintenance costs (red area in 
Fig. 1). This regime occurs when:

We will refer to this condition as severe starvation fol-
lowing De Roos et al. (1990) and we will assume individuals 
starve instantaneously when it occurs.

Under less severe starvation conditions, ingested energy 
is sufficient to cover somatic maintenance costs but the 
energy allocated to somatic processes is not (green area in 
Fig. 1):

De Roos et al. (1990) refers to this starvation condition as 
mild starvation but we will use the term supply-driven star-
vation, because the supply of energy to somatic processes is 
insufficient to cover maintenance costs.

The last type of starvation occurs if the assimilated 
energy is insufficient to cover all energy requirements for 
somatic growth and maintenance:

We will refer to this type of starvation as demand-driven 
starvation, because the energy demand for growth is too 
high for the energy supplied by assimilation. From inequal-
ity (9), it is clear that the boundary between growth condi-
tions and demand-driven starvation is dependent on resource 
density, but not on individual size (Fig. 1, boundary of the 
blue area).

Comparison of the three starvation conditions shows that 
all three starvation boundaries intersect at a single point 

(7)bEm > 𝛼f (R)E2∕3
m

(8)𝛼f (R)E2∕3
m

> bEm > 𝜙𝜅𝛼f (R)E2∕3
m

+ (1 − 𝜙)𝜅𝛼𝜁E2∕3
m

.

(9)𝜙𝜅𝛼f (R)E2∕3
m

+ (1 − 𝜙)𝜅𝛼𝜁E2∕3
m

> 𝛼f (R)E2∕3
m

> bEm.

( E1∕3
m =

��

b

1−�

1−��
� , Fig. 1). If we do not take into account the 

conditions in which severe starvation occurs, individuals can 
only suffer demand-driven starvation if the energy stored in 
lean mass is below this critical value ( E1∕3

m <
𝛼𝜅

b

1−𝜙

1−𝜙𝜅
𝜁 ), 

while individuals can only suffer from supply-driven starva-
tion if the energy stored in lean mass is above this critical 
value ( E1∕3

m >
𝛼𝜅

b

1−𝜙

1−𝜙𝜅
𝜁 ). In other words, small and large 

individuals are vulnerable to demand-driven and supply-
driven starvation, respectively.

In general, we assume energy is rechanneled under starva-
tion conditions from the energy flow with sufficient energy 
to the energy flow with the deficit (equation from matura-
tion and reproduction to growth and somatic maintenance or 
vice versa). More specifically, this means that under supply-
driven starvation, growth of all individuals stops and energy 
allocation to reproduction in adults is reduced:

While under demand-driven starvation, energy allocation 
to reproduction by adults stops and growth of all individuals 
is reduced:

(10)
dEm

dt
= 0

(11)
dEr

dt
=

{
0 if Em < EJ

𝛾r

(
𝛼f (R)E

2∕3
m − bEm

)
if Em > EJ

.

(12)
dEm

dt
= �m

(
�f (R)E2∕3

m
− bEm

)

Growth Severe starvation Supply driven starvation Demand driven starvation

�=0

Energy in lean mass (Em)

Sc
al

ed
 fu

nc
tio

na
l r

es
po

nc
e 

(f(
R

))

a �=0.3

Energy in lean mass (Em)

Sc
al

ed
 fu

nc
tio

na
l r

es
po

nc
e 

(f(
R

))

b �=1

Energy in lean mass (Em)

Sc
al

ed
 fu

nc
tio

na
l r

es
po

nc
e 

(f(
R

))

c

Fig. 1  In addition to growth dynamics, individuals can encounter 
three types of starvation conditions, depending on the energy in lean 
mass and the scaled functional response of the resource density. The 
boundaries of these dynamics shift when growth shifts from non-
plastic ( � = 0 ) to entirely plastic ( � = 1 ). Under severe starvation 
conditions (red area), assimilated energy is insufficient to cover main-

tenance costs. Under supply-driven starvation conditions (green area), 
the energy allocated to somatic processes is insufficient to cover 
maintenance costs. Under demand-driven starvation conditions (blue 
area), assimilated energy is insufficient to cover the costs for mainte-
nance and demand-driven growth
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These rechanneling rules imply that individuals below the 
species-specific threshold size ( E1∕3

m =
��

b

1−�

1−��
� ) prioritise 

growth if experiencing (demand driven) starvation condi-
tions, while individuals above the species-specific threshold 
size prioritise reproduction if experiencing (supply driven) 
starvation conditions (Fig. 1b).

It is likely that the re-channelling of energy will bring 
additional costs such as starvation mortality. We assume 
starvation mortality scales with the energy deficit and is zero 
at the supply-driven starvation boundary and the demand-
driven starvation boundary. In addition, we assume starva-
tion mortality approaches infinity if individual energetics 
approaches the severe starvation boundary. As a conse-
quence, individuals will starve with certainty before entering 
severe starvation conditions. The starvation-induced mor-
tality rate ( �s ) under supply-driven starvation we therefore 
assume to follow:

And under demand-driven starvation conditions:

Growth dynamics

According to DEB theory (Kooijman 2010), the individual 
body mass can be expressed in terms of energy stored in lean 
mass by using the mass-specific energy density ( dm ). In the 
same way, the volume can be related to the mass with the 
volume-specific mass ( dv ) and the length can be related to 
the volume with a shape scaling constant ( �m).

Using these equalities, the individual dynamics can be 
expressed in terms of individual length instead of energy 
stored in lean mass (Table 1, see also the supplementary 
materials) (Murphy 1983; De Roos et al. 1990). To do so, 

(13)
dEr

dt
= 0.

(14)

�s = qs max

⎛
⎜⎜⎜⎝

bEm −
�
���f (R)E

2∕3
m + (1 − �)���E

2∕3
m

�

�f (R)E
2∕3
m − bEm

, 0

⎞
⎟⎟⎟⎠
.

(15)

�s = qs max

⎛⎜⎜⎜⎝

�
���f (R)E

2∕3
m + (1 − �)���E

2∕3
m

�
− �f (R)E

2∕3
m

�f (R)E
2∕3
m − bEm

, 0

⎞⎟⎟⎟⎠
.

(16)W =
Em

dm
= dvV = dv(�m�)

3

(17)� =
V1∕3

�m
=

W1∕3

d
1∕3
v �m

=
E
1∕3
m

d
1∕3
m d

1∕3
v �m

.

we use expressions for the investments into somatic growth 
( Fg(R,�) ), reproduction ( Fr(R) ) and growth and reproduc-
tion together ( Ft(R,�) = Fg(R,�) + Fr(R) ), which depend 
on the resource density, the ultimate size under unlimited 
food conditions ( �∞ ) and possibly the actual length ( � ). Note 
that these investments are proportional to the energy alloca-
tion to growth and reproduction. In addition, these quantities 
are expressed per unit surface area and could therefore be 
interpreted as the (area specific) growth rate, fecundity and 
biomass production as well. The dynamics of the length-age 
relationship ( �(t, a) ) is defined in terms of the von Berta-
lanffy growth rate ( rB ) times the investments into growth 
( Fg(R,�) or Ft(R,�) ) in combination with the size at birth 
( �b ), which is a boundary condition needed to solve this 
differential equation. Individuals mature when reaching the 
size at maturation ( �J ). The individual fecundity ( �(R,�) ) 
is defined in terms of the reproduction rate ( rF ) times the 
investments into reproduction ( Fr(R) or Ft(R,�)) and length 
squared. In this formulation, the parameters for the ultimate 
asymptotic size ( �∞ ), von Bertalanffy growth rate ( rB ) and 
the reproduction rate ( rF ) are composite parameters con-
sisting of the plastic energy assimilation constant ( � ), the 
maximum ingestion and assimilation rate ( � ), the energy-
specific somatic maintenance costs (b), the size at birth 
( �b ) and the energy conversion efficiencies ( �m , �r ) from the 
DEB formulation (Eq. (27)-(29)). Lastly, the dynamics of 
the population age distribution (n(t, a)) depends on the indi-
vidual background mortality ( �b ) and the individual starva-
tion mortality ( �s(R,�) ) in combination with the population 
birth rate (n(t, 0)) calculated as the total reproductive output 
of the population at a given time. We state that the mortality 
under extreme starvation conditions ( Ft(R,�) ≤ 0 ) is infi-
nitely large to indicate that the survival probability under 
this condition is zero and individuals are instantaneously 
removed from the population.

For simplicity, we will assume the resource to be unstruc-
tured and the dynamics of the resource without consumption 
to be described by semi-chemostat dynamics, with a turn-
over rate � and a maximum resource density K:

The parameter Imax is a scaled version of IR , representing 
the ingestion rate per unit surface area in terms of length 
instead of energy stored in lean mass.

Mathematical analysis

Model equilibria can be calculated following the procedure 
described by De Roos et al. (1990). At a constant resource den-
sity (R = R̄) and hence a constant value of the functional response  
( f (R̄) ) the consumer population can only persist if the functional 

(18)
dR

dt
= �(K − R) − ∫

amax

0

Imaxf (R)�(t, a)
2n(t, a)da.
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response is sufficiently high for extreme and demand-driven 
starvation not to occur ( Ft(R̄,�),Fr(R̄) > 0 ), because other-
wise consumers would die instantaneously or never reproduce. 
With a constant functional response, investment in growth and 
the individual size can be solved explicitly as a function of age, 
which results in a von Bertalanffy growth curve:

Herein, we introduce Fg∞(R̄) as the lifetime investment 
in growth at the constant resource density R̄ given an indi-
vidual survives, which we will use as an age independent 
quantity for energy investment in growth (Note that Fg∞(R̄) 
equals the integral of the product rBFg(R̄,�(R̄, a)) over the 
entire lifetime for an individual living at resource density 
R̄ ). From comparing the growth curve with the supply-
driven starvation condition, it is clear that individuals do 
not experience supply-driven starvation when living at a 
constant resource density R̄ ( Fg(R̄,�) > 0 ). The von Ber-
talanffy growth curve also defines the age at maturation at 

(19)
Fg(R̄,�) =

((
𝜙f (R̄) + (1 − 𝜙)𝜁

)
�∞ − �b

)
e−rBa = Fg∞(R̄)e

−rBa

(20)
�(R̄, a) =�b + (1 − e−rBa)Fg∞(R̄)

=�be
−rBa +

(
𝜙f (R̄) + (1 − 𝜙)𝜁

)
(1 − e−rBa)�∞

.

the constant food density ( ̄aJ ), which is the age at which 
individuals reach the size at maturation ( �(R̄, āJ) = �J ). 
For individuals to reach this maturation size at the constant 
resource density R̄ individuals of length �J should not expe-
rience supply-driven starvation ( Fg(R̄,�J) > 0 ). When indi-
viduals do not experience starvation conditions, the dynam-
ics of the population age distribution can be simplified and 
solved explicitly, resulting in an expression for the density 
of individuals at a given age:

By substituting the von Bertalanffy growth curve (Eq. 
(20)) and the age distribution in equilibrium (Eq. (21)) in 
the expression for the population birth rate, we arrive at an 
expression for the lifetime reproductive output (LRO):

The lifetime reproductive output represents the average 
number of offspring an individual is expected to produce 

(21)n̄(a) = n̄(0)e−𝜇ba.

(22)

LRO = rFFr(R̄)∫
amax

āJ

�(R̄, a)
2
e−𝜇ada

= rFFr(R̄)∫
amax

āJ

(
�b + (1 − e−rBa)Fg∞(R̄)

)2
e−𝜇ada

.

Table 1  Equations describing the population dynamics under 
growth conditions and supply-driven ( Fg(R,�) < 0 ), demand-driven 
( Fr(R) < 0 ) and severe ( Ft(R,�) < 0 ) starvation conditions. Notice 

that as long as extreme starvation does not occur ( Ft(R,�) > 0 ) sup-
ply- and demand-driven starvation are mutually exclusive, such that 
Fr(R) ≤ 0impliesFg(R,�) > 0andFg(R,�) ≤ 0impliesFr(R) > 0

Population age-distribution dynamics
�n

�t
+

�n

�a
= −

(
�b + �s(R,�)

)
n(t, a)

n(t, 0) = ∫ amax
0

�(R,�(t, a))n(t, a)da

Energetic surpluses/deficits
Fg(R,�) = (�f (R) + (1 − �)� )�∞ − �

Fr(R) =
(
�

(1−�)f (R)

�
+ (1 − �)

(
f (R)

�
− �

))
�∞

Ft(R,�) = Fg(R,�) + Fr(R) =
f (R)

�
�∞ − �

Length-age dynamics

𝜕�

𝜕t
+

𝜕�

𝜕a
=

⎧⎪⎨⎪⎩

rBFg(R,�) if Fg(R,�) > 0 and Fr(R) > 0

rBFt(R,�) if Fr(R) ≤ 0 and Ft(R,�) > 0

0 otherwise

�(t, 0) = �b

Individual fecundity

𝛽(R,�) =

⎧⎪⎨⎪⎩

rFFr(R)�
2 if �J < �, Fg(R,�) > 0 and Fr(R) > 0

rFFt(R,�)�
2 if �J < �, Fg(R,�) ≤ 0 and Ft(R,�) > 0

0 otherwise

Starvation mortality

𝜇s(R,�) =

⎧⎪⎪⎨⎪⎪⎩

0 if Fg(R,�) > 0 and Fr(R) > 0

−qs
Fg(R,�)

Ft(R,�)
if Fg(R,�) ≤ 0 and Ft(R,�) > 0

−qs
Fr(R)

Ft(R,�)
if Fr(R) ≤ 0 and Ft(R,�) > 0

∞ if Ft(R,�) ≤ 0
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during its lifetime. A population is in equilibrium if every 
individual on average replaces itself and therefore the life-
time reproductive output in equilibrium equals one. By set-
ting the lifetime reproductive output to one, we can solve 
for the functional response in equilibrium, which we indi-
cate with f (R̃) , because this is the only unknown in the 
lifetime reproductive output. The functional response and 
the resource density in equilibrium ( ̃R ) are therefore com-
pletely determined by the growth, reproduction and mortal-
ity traits of the consumer population and hence independent 
of resource growth conditions.

The last step is to derive the population birth rate in equi-
librium ( ̃n(0) ) from the dynamics of the resource (Eq. (18)), 
which together with the resource density defines the com-
plete equilibrium:

From Eq. (23), it follows that the resource density in equi-
librium equals the maximum resource density ( ̃R = K ) at the 
persistence boundary of the consumer population ( ̃n(0) = 0 ). 
Therefore, the persistence boundary is calculated by setting 
the lifetime reproductive output equal to one and substitut-
ing the resource density with the maximum resource density 
(Eq. (40)).

The stability boundary of the model can be calculated 
through linearisation of the dynamic equations around the 
equilibrium state as outlined by (De Roos et al. 1990). The 
derivation of the conditions determining the stability bound-
ary is explained in detail in the supplementary materials 
(Eqs. ((48)-(80)).

Energetic trade‑off

At a given, constant resource density R̄ both the investments 
into growth ( Fg∞(R̄) ) and the investments into reproduction 
( Fr(R̄) ) change with the growth plasticity ( � ). This change 
can be expressed as the derivative of these investments with 
respect to the level of growth plasticity:

The direction of a change in energy allocation due 
to growth plasticity is determined by the non-plastic 
asymptotic size ( ��∞ ) compared to the plastic asymp-
totic size ( f (R̄)�∞ ). An increase in growth plasticity will 
lead to an increase in growth investments and a decrease 

(23)ñ(0) =
𝜈
(
K − R̃

)

Imaxf (R̃) ∫ amax
0

�(R̃, a)
2
e−𝜇ada

.

(24)
𝜕Fg∞

𝜕𝜙
=
(
f (R̄) − 𝜁

)
�∞

(25)
𝜕Fr

𝜕𝜙
= −

(
f (R̄) − 𝜁

)
�∞ .

in reproductive investments if the plastic asymptotic size 
exceeds the non-plastic asymptotic size ( f (R̄)�∞ > 𝜁�∞ ). 
In contrast, an increase in growth plasticity will lead to a 
decrease in growth investments and an increase in reproduc-
tive investments if the non-plastic asymptotic size exceeds 
the plastic asymptotic size ( f (R̄)�∞ < 𝜁�∞ ). It is also clear 
that the effect of the growth plasticity on the growth invest-
ments is always opposite to the effect on reproductive invest-
ments. This reveals a trade-off in which an increase in invest-
ment in growth will always lead to a decrease in investment 
in reproduction and vice versa.

A change in growth plasticity affects the lifetime repro-
ductive output through both the growth investments and the 
reproductive investments:

Explicit expressions for the partial derivatives �LRO
�Fg∞

 and 
�LRO

�Fr

 are derived in the supplementary information. From 
Eq. (26), it is clear that the lifetime reproductive output of 
an individual is completely independent of the growth 
plasticity ( � ) if the plastic asymptotic size equals the non-
plastic asymptotic size ( f (R̄)�∞ = 𝜁�∞ ). From Eqs.(19) 
and (22) we can furthermore infer that the lifetime repro-
ductive output increases with both an increase in energy 
allocation to growth and energy allocation to reproduction 
( 𝜕LRO
𝜕Fg∞

> 0 and 𝜕LRO
𝜕Fr

> 0 ). We therefore can distinguish a 
parameter region in which an increase in growth invest-
ments has a larger effect on lifetime reproductive output 
than a similar increase in reproductive investments 
( 𝜕LRO
𝜕Fg∞

>
𝜕LRO

𝜕Fr

 ) and a parameter region in which an increase 
in reproductive investments has a larger effect on lifetime 
reproductive output than a similar increase in growth 
investments ( 𝜕LRO

𝜕Fg∞

<
𝜕LRO

𝜕Fr

 ). We will refer to the dynamics 
in these regions as growth-limited and reproduction- 
limited dynamics, respectively. Whether or not the lifetime 
reproductive output increases with an increase in growth 
plasticity depends on whether the dynamics are growth- or 
reproduction-limited in combination with whether the 
plastic growth asymptotic size ( f (R̄)�∞ ) is larger or 
smaller than the non-plastic asymptotic size ( ��∞ ). Fur-
thermore, an increase in growth plasticity ( � ) results in a 
change from an increase to a decrease in lifetime reproduc-
tive output when the dynamics changes from growth to 
reproduction-limited, assuming that the plastic asymptotic 
size is larger than the non-plastic asymptotic size 
( f (R̄)�∞ > 𝜁�∞ ). Alternatively, when the plastic asymp-
totic size is smaller than the non-plastic asymptotic size 

(26)

dLRO

d𝜙
=

𝜕LRO

𝜕Fg∞

𝜕Fg∞

𝜕𝜙
+

𝜕LRO

𝜕Fr

𝜕Fr

𝜕𝜙

=

(
𝜕LRO

𝜕Fg∞

−
𝜕LRO

𝜕Fr

)(
f (R̃) − 𝜁

)
�∞

.
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( f (R̄)�∞ < 𝜁�∞ ) an increase in growth plasticity � results 
in a change from an increase to a decrease in lifetime 
reproductive output when the dynamics changes from 
reproduction to growth-limited. The value of the growth 
plasticity ( � ) at which the boundary between these two 
areas occurs, strongly depends on the plastic energy allo-
cation constant ( � ) but is also influenced by other param-
eters (Eqs. (41)-(47)).

Numerical analysis

The persistence boundary and the stability boundary have 
been studied numerically as a function of model parameters 
using general root finding and curve continuation proce-
dures implemented in C (Findcurve software by De Roos 
(2019)). Time dynamics of the model have been computed 
using the Escalator Boxcar Train (EBT) method, especially 
designed for the numerical integration of physiologically 
structured population models (De Roos 1988; De Roos 
et al. 1992). For the numerical analysis of the model and 
corresponding figures, we use a parameter set represent-
ing Daphnia magna feeding on algae, comparable to the 
parameter values used by De Roos et al. (1990) (Table 2). 
We use slightly different definitions of the half saturation 
constant of the functional response ( Rh ) and the repro-
duction rate ( rF ). Therefore, we recalculated the values 
of these parameters to ensure our model is numerically 
equivalent to the model analysed by De Roos et al. (1990) 
if growth is entirely plastic ( � = 1 ). From here on we will 
refer to the structured Daphnia populations as consumers, 
while the unstructured algae community is referred to as 
the resource.

Equilibrium dynamics

In general, four different configurations of the regions with 
growth-limited and reproduction-limited dynamics are pos-
sible (Derivation in supplementary materials Eqs. 41-47). 
(1) If the growth energy allocation constant � is below a 
specific threshold value ( � ≈ 0.857 with our parameter 
set) and the plastic asymptotic size exceeds the non-plastic 
asymptotic size ( f (R̃)�∞ > 𝜁�∞ , Fig. 2A), the dynamics 
is always growth-limited. (2) If the plastic growth energy 
allocation constant � is below the threshold value and the 
non-plastic asymptotic size exceeds the plastic asymptotic 
size, ( 𝜅 < 0.857 , f (R̃)�∞ < 𝜁�∞ , Fig. 2B), the dynamics 
is growth-limited at high growth plasticity (high � ) and 
reproduction-limited at low growth plasticity (low � ). (3) 
In contrast, if the plastic growth energy allocation constant 
� is above the threshold value and the plastic asymptotic 
size exceeds the non-plastic asymptotic size ( 𝜅 > 0.857 , 
f (R̃)�∞ > 𝜁�∞ , Fig. 2C), the dynamics is growth-limited 
at low growth plasticity (low � ) and reproduction-limited 
at high growth plasticity (high � ). (4) Lastly, the dynamics 
is always reproduction-limited if the plastic energy alloca-
tion constant � exceeds the threshold value and the non-
plastic asymptotic size exceeds the plastic asymptotic size 
( 𝜅 > 0.857 , f (R̃)�∞ < 𝜁�∞ , Fig. 2D).

With an increase or decrease in � the average lifetime 
reproductive output increases if the growth plasticity ( � ) 
approaches the boundary between growth-limited dynam-
ics and reproduction-limited dynamics (Fig. 2B and C, yel-
low line). An increase in lifetime reproductive output with a 
change in � implies that the lifetime reproductive output will 
equal 1 at a lower resource density, which hence decreases in 
equilibrium, while equilibrium consumer population density 

Table 2  Parameters used in the 
structured population model 
for Daphnia magna feeding on 
algae derived from De Roos 
et al. (1990)

Parameters of the structured population model

� Plasticity in somatic growth Varied -
� Scalar of the non-plastic growth rate 0.1 or 1 -
� Plastic growth energy allocation constant 0.3 or 0.9 -
�b Length at birth 0.8 mm

�J Length at maturation 2.5 mm

�∞ Asymptotic length under unlimited food conditions 20� mm

amax Maximum age 70 d
rB time constant of growth 0.15 d−1

rF time constant of reproduction 0.00714 mm−3d−1

�b background mortality rate 0.03 d−1

qs starvation mortality scaling constant 0.2 d−1

Imax Maximum feeding rate per unit surface area 1.8 106cells mm−2ml−1d−1

Rh Half saturation constant of functional response 0.14 cells
� semi-chemostat renewal rate 0.5 d−1

K maximum resource density Varied 106cells ml−1
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increases. The maximum resource density (K) needed for the 
consumer population to persist decreases accordingly if the 
growth plasticity ( � ) approaches the boundary between the 
two regions (Fig. 2B and C, red line). In contrast, the life-
time reproductive output always increases with an increase 
in growth plasticity if the dynamics does not change between 

growth-limited dynamics and reproduction-limited dynam-
ics. This leads to a decrease in resource density and an 
increase in population density at equilibrium with increas-
ing growth plasticity. Again, the maximum resource density 
(K) needed for the consumer population to persist decreases 
accordingly (Fig. 2A and D, red line).
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Fig. 2  Persistence boundary (red line, numerically solved from 
Eq. (40)) and stability boundary (green, numerically solved from 
Eq.  (80)) and the boundary between dynamics (yellow dashed, 
numerically solved from Eq. (44)) as a function of the growth 
plasticity ( � ) and the maximum resource density (K) when the 

plastic asymptotic size exceeds the non-plastic asymptotic size 
( f (R̃)�∞ > 𝜁�∞ ) (left panels) and when the non-plastic asymptotic 
size exceeds the plastic asymptotic size ( 𝜁�∞ > f (R̃)�∞ ) (right pan-
els). At the persistence boundaries (red lines), the maximum resource 
density is equal to the resource density in equilibrium

Theoretical Ecology (2022) 15:95–113 103



1 3

Population dynamic cycles

The bifurcation analysis revealed three parameter regions 
with cyclic dynamics (Fig. 2A and B, green lines). One of 
these regions occurred when the dynamics is limited by 
reproduction (Fig. 2B, low � ). In these cycles (Fig. 3a), 
the area-specific investment in growth ( Fg∞ ) and there-
with the maturation rate is relatively high and constant 
due to the high and largely non-plastic growth rate. As 
a result, individuals mature at a young age and the popu-
lation consists of a low number of juveniles and a high 
number of adults. A peak in the number of juveniles occurs 
simultaneously with a peak in investment in reproduction 
( Fr ). The high density of juveniles results in a depletion 
of the resource, which is directly followed by a decrease 
in fecundity. Although individuals mature at a young age, 
a new large reproductive event only occurs after the con-
sumer density has sufficiently decreased by mortality for 
the resource density to recover. In other words, a new cycle 
starts if competition between adults is reduced. As a result, 
the resource density and the investment in reproduction 
fluctuate in phase with the juvenile density but out of phase 

with the adult density, with a period of several times the 
juvenile delay. It is clear that these cycles occur due to the 
fluctuations in fecundity. We therefore refer to these cycles 
as fecundity-driven cycles.

The two other regions with cyclic dynamics occur when 
the dynamics is growth-limited (Fig. 2A and 2B for high � ). 
During these cycles (Fig. 3b and c) the area-specific invest-
ment in growth ( Fg∞ ) and therewith the maturation rate is 
very low and shows periodic increases with a large ampli-
tude. The investment in reproduction reaches a maximum 
simultaneously with the maturation rate. The occurrence of 
the high fecundity simultaneous with the high adult density 
results in the production of a large cohort of juveniles. This 
cohort decreases the resource density, which is followed by 
a decrease in the fecundity and maturation rate. The juvenile 
cohort matures and reproduces after the consumer density 
has sufficiently decreased by mortality for the resource den-
sity to recover. In other words, a new cycle starts as soon as 
competition between juveniles is sufficiently reduced. This 
results in cycles dominated by a single cohort from which 
all individuals mature simultaneously and directly produce 
a new dominant cohort. Consequently, the period of the 
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Fig. 3  Population dynamic cycles for three combinations of � and � 
with K = 0.5 and � = 0.3 . The surface-specific total investment in 
growth if individuals would not die ( Fg∞ ) and the surface-specific 
investment in reproduction are displayed as a measure of growth and 

fecundity. Note the different vertical axes for the consumer densities. 
The red vertical lines mark the occurrence of a peek in adult density 
to ease comparison between graphs
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cycles is approximately equal to the juvenile delay. In addi-
tion, the periodic and simultaneous maturation of a large 
group of juveniles contributes to the non-symmetric shape of 
these cycles in comparison with the fecundity-driven cycles 
(Fig. 3). This type of cycles also occurs when the individ-
ual fecundity is assumed to be independent of the resource 
density (Supplementary figure Fig. S1), which shows that 
these cycles are caused by the fluctuations in maturation rate 
rather than fluctuation in the fecundity. We therefore refer to 
this type of cycles as maturation-driven cycles.

Discussion

We analysed a model in which the individual growth rate 
could be varied between entirely non-plastic ( � = 0 ) to 
entirely plastic ( � = 1 ). Although the model was formulated 
at an individual level to ensure closed individual energy 
dynamics, the model was analysed at the population level. In 
the extreme case in which growth is entirely plastic ( � = 1 ), 
the model simplified to a classic size-structured model as 
analysed by De Roos et al. (1990) and Kooijman and Metz 
(1984). It has been shown that the well-posedness of this 
model is difficult to show because the fecundity ( �(R,�) ) of 
individuals jumps from zero to a positive value at the size 
of maturation and the fecundity at the size at maturation 
( �(R,�J) ) is therefore undefined (Thieme 1988). As a conse-
quence, the model is undefined if the growth rate of a cohort 
is exactly zero at maturation and therefore remains at the size 
of maturation. Although unlikely, it is difficult to predict 
whether this specific condition will occur based on the start-
ing conditions. Our model has the same properties and the 
well-posedness of our model is therefore difficult to prove. 
Nonetheless, these type of models is successfully used in a 
wide range of applications (Baas et al. 2018; De Roos and 
Persson 2001).

If growth is entirely plastic ( � = 1 ), the individual growth 
rate is fully coupled to the resource density and as a con-
sequence the age-size relationship varies per cohort if the 
resource density fluctuates, for example during population 
dynamic cycles as is observed in classic size-structured mod-
els (Supplementary figure Fig. S2b). In contrast, if growth is 
completely non-plastic ( � = 0 ), the model is equivalent to an 
age-structured model given that there is a unique relationship 
between age and body size. Under this extreme condition, 
the individual growth rate in our model only changes if the 
demand-driven starvation condition ( Fr < 0 ) occurs, but the 
analysis of the model did not reveal any dynamic regimes 
in which individuals experienced demand-driven starvation. 
The growth rate is thus completely fixed if growth is non-
plastic ( � = 0 ), which results in a fixed age-size relation-
ship even during population dynamic cycles (Supplementary 

figure Fig. S2a). With the fixed age-size relationship, the 
model can be converted to an age-based model resembling 
our model with non-plastic growth. Besides linking energetic 
models with plastic and non-plastic growth, our model thus 
also connects classic age-structured models with classic size-
structured models.

Our analysis divided the parameter space in a region 
with growth-limited and a region with reproduction-limited 
dynamics. In the region with growth-limited dynamics, 
changes in the area-specific investments in growth have a 
larger effect on the lifetime reproductive output than changes 
in the area-specific investments in reproduction. In contrast, 
in the region with reproduction-limited dynamics, changes 
in the area-specific investments in reproduction have a larger 
effect on lifetime reproductive output than changes in the 
area-specific investments in growth. At the boundary of 
the regions with different limiting mechanisms, the con-
sumer population exploits the resource most efficiently and 
can persist on the lowest resource density (Fig. 2). In other 
words, on this boundary the energy allocation to growth and 
reproduction is most optimal. The location of this optimum 
is closely related to the classic trade-off regarding energy 
allocation to growth and reproduction (Stearns 1992), in 
which an optimal strategy arises through avoidance of severe 
limitation in growth or reproduction. Although this is a very 
intuitive trade-off, we tied it to the specific energy budget 
of individuals. Namely, an optimal energy allocation strat-
egy can only occur if the plastic energy allocation constant 
is low (low � ) and the non-plastic asymptotic size exceeds 
the plastic asymptotic size in equilibrium ( f (R̃)�∞ < 𝜁�∞ ) 
or if the plastic energy allocation constant is high (high 
� ) and the plastic asymptotic size exceeds the non-plastic 
asymptotic size in equilibrium ( f (R̃)�∞ > 𝜁�∞ ). Hence, an 
optimal energy allocation can only occur when energy is 
relatively evenly distributed between growth and reproduc-
tion to avoid severe limitation through growth and reproduc-
tion. As a consequence, evolution cannot always reach an 
optimal energy allocation scheme if evolution only acts on 
growth plasticity.

The parameter regions in which the dynamics is limited 
by growth or reproduction show different kinds of popula-
tion dynamics cycles. In the region with growth-limited 
dynamics, the cycles are caused by fluctuations in matura-
tion, which is caused by fluctuations in growth rate. These 
maturation-driven cycles occur because a cohort of newborn 
individuals outcompetes the adult individuals. This results 
in single-cohort cycles, which are characterised by the syn-
chronisation of a high resource density with the matura-
tion of the dominant cohort. The oscillation period of these 
cycles is approximately equal to the juvenile delay (De Roos 
et al. 2003). Single-cohort cycles generally occur in models 
incorporating a juvenile delay and, based on the oscillation 
period, are mainly observed in generalist species (Murdoch 

Theoretical Ecology (2022) 15:95–113 105



1 3

et al. 2002). The type of single-cohort cycles found in our 
model is described in more detail by De Roos et al. (2003) 
as juvenile-driven cycles, which occur if juvenile individu-
als outcompete adults because they can survive on a lower 
resource density. The mechanism for these juvenile-driven 
cohort cycles is observed in various fish species (Townsend 
et al. 1990; Hamrin and Persson 1986; Townsend and Perrow 
1989) and experimental Daphnia populations (Murdoch and 
McCauley 1985; McCauley 1993).

In the parameter region with reproduction-limited dynam-
ics, the cycles are caused by fluctuations in average fecun-
dity. These fecundity-driven cycles are characterised by low 
amplitude oscillations with a period of more than four times 
the juvenile delay of the consumer. In addition, the total 
consumer density lacks behind the resource density. These 
characteristics occur because a dominant cohort of newborn 
individuals depletes the resource, which causes fecundity to 
decrease. The dominant cohort of juveniles matures before 
the resource density is recovered, which delays their main 
reproductive event until the resource density is recovered, 
which is far beyond the age at maturation. The fecundity-
driven cycles thus differ from the reproduction-driven cycles 
in that competition relaxes after instead of before the matu-
ration of a dominant cohort.

The fecundity-driven cycles in our model show resemblances 
with various previously described types of cycles. The oscil-
lation period of the fecundity-driven cycles is more than four 
times the juvenile delay of the consumer plus two times the 
juvenile delay of the resource, which is generally considered 
indicative of consumer–resource cycles (Murdoch et al. 2002). 
The fecundity-driven cycles indeed show an increase in resource 
density leading to an increase in consumer reproduction as is 
found in classic non-structured models with consumer–resource 
cycles (Rosenzweig and MacArthur 1963). In classic  
consumer–resource cycles this occurs because the resource peri-
odically escapes the control of the consumer, which, however, 
cannot occur in our model, because in our model the resource 
follows semi-chemostat dynamics (De Roos et al. 1990). Instead, 
the increase in resource density in the fecundity-driven cycles 
is due to a relaxation of competition between consumers and 
are therefore different from classic consumer–resource cycles. 
The fecundity-driven cycles also show some resemblances 
with delayed-feedback cycles. One could argue that the deple-
tion of the resource by a dominant cohort has a delayed effect, 
because it only affects the dominant cohort after maturation. 
Pfaff et al. (2014) suggested that delayed-feedback cycles can 
have a period of more than 4 times the juvenile delay and arise 
if the juvenile delay is decoupled from the resource density, 
which exactly occurs in the fecundity-driven cycles we found. 
Nonetheless, the fecundity-driven cycles do not correspond 
to the original description of delayed-feedback cycles from  
Gurney et al. (1983), because the depletion of the resource in the 
fecundity-driven cycles also has a direct effect on the consumer 

population, while Gurney et al. (1983) describe a complete sepa-
ration of time between the moment of competition and the effect 
of competition. These resemblances between the fecundity-
driven cycles, consumer–resource cycles and delayed-feedback 
cycles at least show that very detailed knowledge is needed to 
disentangle different types of cycles in structured populations 
Hastings (2020).

In this article, we presented a model in which we varied 
the plasticity in individual growth. More plastic growth is 
generally expected in ectotherms because the growth rate in 
these individuals is highly dependent on the environment, 
while less plastic growth is generally expected in endotherms 
because in these individuals growth is generally independ-
ent of the environment. Including a non-plastic growth rate 
results in an additional demand-driven process in the energy 
allocation scheme of individuals. We assumed that a poten-
tial deficit or surplus of energy from demand-driven growth 
is compensated by a change in energy allocation to reproduc-
tion. Another strategy to cover a deficit in ingested energy 
could be to increase energy ingestion by adaptive behaviour 
(Kooijman 2010). Although this strategy might weaken the 
trade-off between growth and reproduction, it is unlikely 
that adaptive behaviour could account for the entire deficit 
when individuals live in a natural ecosystem, as sufficient 
resource should be available to increase the consumption 
by adaptive behaviour. In our model, the resource density 
is regulated by competition between consumers. Therefore, 
an increase in consumption due to adaptive behaviour would 
lead to an increase in competition and a decrease in resource 
density which also could enlarge the energy deficit. Even if 
sufficient resource is available, ingested energy is limited by 
physiological and time constraints which are implemented 
in our model by using a type II functional response to model 
energy ingestion. It is therefore unlikely that adaptive behav-
iour can account for the full energy deficit caused by non-
plastic growth and a trade-off between energy allocation to 
growth and reproduction occurs.

We showed that the trade-off between energy investment 
in growth and reproduction results in population dynamics 
regulated by, respectively, maturation or fecundity. Popula-
tions limited by maturation and the corresponding cohort 
cycles are widely explored in the context of ecological 
communities (De Roos et al. 2007; De Roos et al. 2008;  
Persson et al. 2007; Van Leeuwen et al. 2008; van Kooten 
et al. 2007), while the dynamics of populations limited by 
fecundity are less studied in structured populations (see 
De Roos et al. (2009) for an example) and is an open topic. 
In any case, our model analysis revealed how life history 
strategies of species in terms of energy allocation and plas-
ticity affect the mechanisms which limit the population and 
determine the type of population dynamic cycles. In this 
way, we provide a new step in linking distinct ecological 
phenomena such as non-plastic growth and plastic growth, 
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age and stage structure and populations limitation by indi-
vidual growth and fecundity.

Supplementary information

From energy flow to growth dynamics

Here, we outline the calculations to transform the model in 
terms of individual energy dynamics into a size-based popu-
lation model. We define the composite parameters �∞ , rB and 
rF representing the asymptotic length of an individual, the 
von Bertalanffy growth rate in length and the reproduction 
rate proportionally constant of an individual.

Starvation boundaries

We start with reformulating the starvation boundaries (Eqs. 
(7)-(9)), which also results in the area-specific energy sur-
plus (or deficit) available for growth ( Fg ), reproduction ( Fr ) 
and total biomass production ( Ft ). This is done by replacing 
the energy in lean mass ( Em ) with the equivalent in terms 
of size ( dmdv(�m�)3 , Eq. (16)) after which we simplify the 
equation and substitute the composite parameters. For severe 
starvation conditions (Eq. (7)), this results in:

We can do the same for the supply-driven starvation 
condition (Eq. (8)):

(27)�∞ =
��

bd
1∕3
m d

1∕3
v �m

(28)rB =
bym

3

(29)rF =
byr

�
3

b

.

(30)

bEm > 𝛼f (R)E2∕3
m

bdmdv(𝛿m�)
3 > 𝛼f (R)d2∕3

m
d2∕3
v

(𝛿m�)
2

� >
f (R)

𝜅

𝜅𝛼

bd
1∕3
m d

1∕3
v 𝛿m

⇒

0 >
f (R)

𝜅
�∞ − � = Ft(R,�)

.

(31)

bEm > 𝜙𝜅𝛼f (R)E2∕3
m

+ (1 − 𝜙)𝜅𝛼𝜁E2∕3
m

bdmdv(𝛿m�)
3 > 𝜙𝜅𝛼f (R)d2∕3

m
d2∕3
v

(𝛿m�)
2 + (1 − 𝜙)𝜅𝛼𝜁d2∕3

m
d2∕3
v

(𝛿m�)
2

� > (𝜙f (R) + (1 − 𝜙)𝜁 )
𝜅𝛼

bd
1∕3
m d

1∕3
v 𝛿m

⇒

0 > (𝜙f (R) + (1 − 𝜙)𝜁 )�∞ − � = Fg(R,�)

.

The demand-driven starvation condition (Eq. (9)) is not 
dependent on the energy stored in lean mass, so we only 
have to simplify this condition:

Growth rate

To derive the differential equation for the length of an 
individual, we have to rewrite the differential equation for 
the energy stored in lean mass, in terms of length.

We now can substitute the differential equation for the 
energy in lean mass under normal growth conditions (Eq. 
(5)), to derive the differential equation for growth in length 
under growth conditions:

In the same way, we can rewrite the differential equa-
tion for energy in lean mass (Eq. (12)) under demand-
driven starvation conditions:

Fecundity

To derive the fecundity in terms of number of individu-
als ( �(R,�) ), we have to divide the energy investment in 
reproduction ( dEr

dt
 ) by the energy in lean mass of a newborn 

(32)

𝜙𝜅𝛼f (R)E2∕3
m

+ (1 − 𝜙)𝜅𝜁E2∕3
m
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𝜅
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(
f (R)

𝜅
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)
= Fr(R)

.

(33)
d�
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=

d

dt
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1∕3
m
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1∕3
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1∕3
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=
1

3d
1∕3
m d

1∕3
v �mE

2∕3
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dEm

dt
.

(34)

d�

dt
=

�m

3d
1∕3
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1∕3
v �mE

2∕3
m

(
���f (R)E2∕3

m
+ (1 − �)���E2∕3

m
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)

=
b�m
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��
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v �m

)

= rB
(
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(35)

d�

dt
=
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3d
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m d

1∕3
v �mE
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(
�f (R)E2∕3
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(
f (R)

�
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.
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individual ( Eb = dmdv(�m�b)
3 ). Under normal growth condi-

tions (eq. (6)), this results in:

We can use the same steps to derive the fecundity under 
supply-driven starvation conditions from Eq. (11).

Starvation mortality

Lastly, we reformulate the equations for the starvation mor-
tality in terms of length instead of energy stored in lean 
mass. For the supply-driven starvation mortality (Eq. (14)), 
this becomes:

We can do the same for the demand-driven starvation 
mortality (Eq. (15)):

(36)

�(R,�) =
1

Eb
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(
�f (R)E2∕3
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2
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2
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2

.
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3
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= −qs
Fg(R,�)

Ft(R,�)

.

Mathematical analysis

Persistence boundary

From Eq. (23), it follows that the resource density at the 
extinction boundary of the population ( ̃n(0) = 0 ) is equal 
to the maximum resource density ( R̃ = K ). The existence 
boundary can therefore be found by setting the lifetime 
reproductive output (Eq. 22) equal to one with R̃ = K:

Boundary between growth‑ and reproduction‑limited 
dynamics

In the main text we distinguished growth-limited dynamics 
in which the effects through energy investments in growth 
exceed the effects through energy investments in reproduc-
tion ( 𝜕LRO

𝜕Fg∞

>
𝜕LRO

𝜕Fr

 ) and reproduction-limited dynamics in 
which the effects through energy investments in reproduc-
tion exceed the effects though energy investments in 
growth ( 𝜕LRO

𝜕Fg∞

<
𝜕LRO

𝜕Fr

 ). Given a constant resource density 
R̄ we can obtain an explicit expression for the derivative 
of the lifetime reproductive output with respect to the life-
time energy investments in growth and the energy invest-
ments in reproduction:

(39)
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The boundary between the regions with growth- and 
reproduction-limited dynamics occurs if the derivative of 
the lifetime reproductive output with respect to the energy 
investment in growth equals the derivative of the energy 
investment in reproduction.

In the extreme case in which the size at birth is zero and 
individuals mature directly at birth ( �J = �b = 0 ), the age 
at maturation does not affect the lifetime reproductive out-
put and Eq. (44) becomes zero if the term between squared 
brackets becomes zero. We can rewrite this term as:

If we then simplify the equation further and assume that 
the size at birth equals zero ( �b = 0 ), we can obtain the 
following solution:

or

If all growth is plastic ( � = 1 ) this equality is satisfied 
if the plastic energy allocation constant ( � ) equals two-
thirds. If the functional response exceeds the non-plastic 
growth scalar ( f (R̄) > 𝜁  ), the plastic energy allocation 
constant ( � ) at which equality (46) is satisfied, increases 
with decreasing growth plasticity ( � ). In contrast, if the 
non-plastic growth scalar exceeds the functional response 
( f (R̄) < 𝜁 ), the plastic energy allocation constant ( � ) at 
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which (46) is satisfied deceases with decreasing growth 
plasticity ( � ). In other words, � = 2∕3 represents a thresh-
old value. If the plastic energy allocation constant ( � ) is 
below this threshold value, the boundary between the 
growth-limited dynamics and the reproduction-limited 
dynamics occurs if the non-plastic growth scalar exceeds 
the functional response ( f (R̄) > 𝜁 ). If the plastic energy 
allocation constant ( � ) is above the threshold value, the 
boundary between the growth-limited dynamics and the 
reproduction-limited dynamics occurs if the functional 
response exceeds the non-plastic growth scalar ( f (R̄) > 𝜁).

From Eq. (45), it is clear that a positive size at birth 
( �J = �b > 0 ) introduces an additional negative term. The 
introduction of this negative term decreases the threshold 
value of � . From Eq. (44), it is clear that the introduction 
of a size at maturation above the size at birth ( �J > �b > 0 ) 
includes an additional positive term. The introduction of 
this positive term would increase the threshold value of �.

Stability analysis

The stability boundaries can be found by linearisation 
and substitution of exponential trial solutions, following 
De Roos et al. (1990). We first define a small perturbation 
in the equilibrium state of the resource, the age distribution 
and the individual size ( �R , �n , ��):

As long as these perturbations are sufficiently small, 
starvation conditions will not occur and the system can be 
described by equations which are differentiable within their 
domain of definition.

The perturbation in the age at maturation ( �a ) can be 
expressed in terms of the perturbation in length as shown 
by De Roos et al. (1990).

(48)𝜖R(t) =R(t) − R̃

(49)𝜖n(t, a) =n(t, a) − ñ(a)

(50)𝜖
�
(t, a) =�(t, a) − �(R̃, a) .

(51)
I(R,�) = Imaxf (R)�

2 for �b ≤ � ≤ (�f (R) + (1 − �)� )�∞

(52)
g(R,�) =rB

(
(�f (R) + (1 − �)� )�∞ − �

)
for �b ≤ � ≤ (�f (R) + (1 − �)� )�∞

(53)

b(R,�) =
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�
(�(1 − �)f (R) + (1 − �)(f (R) − ��))�∞�

2

for �b ≤ � ≤ (�f (R) + (1 − �)� )�∞

(54)d(R,�) = �b for 0 ≤ a ≤ amax .
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We can substitute the perturbations in the partial differen-
tial equations to formulate a linearised system of equations 
in which we neglect all second and higher order terms:

where the functions gR , g
�
 , bR , b

�
 , IR and I

�
 indicate the par-

tial derivatives of the functions g(R,�) , b(R,�) and I(R,�) , 
with respect to R and � , respectively.

The following step is to substitute exponential trial 
solutions:

into the linearised system, leading to
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.
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We now need to derive the explicit derivatives of the 
ingestion, growth and reproduction functions with respect 
to the resource and the size:

where f �(R) is the derivative of the functional response with 
respect to the resource density R.

We can solve for Δn(a) and Δ
�
(a) explicitly and all quanti-

ties can be expressed in terms of ΔR and Δb which we write 
instead of Δn(0).

From this, we directly arrive at the stability matrix:
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where f �(R̃) represents the derivative of the type II func-
tional response with respect to the resource density in equi-
librium. The eigenvalues of the system are now the roots of
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(79)

S(𝜆)Δ =

(
s11 ss12
s21 s22

)(
Δb

ΔR

)

With elements:

s11 = bc(R̃)
Ās(𝜆, ãJ)

ñ(0)
− 1

s12 =
rF

𝜅
(1 − 𝜅𝜙)f �(R̃)�∞Ās(0, ãJ)

+ bc(R̃)
𝜙

rB + 𝜆
f �(R̃)�∞

( (
1 − e−(rB+𝜆)ãJ

)
�
2

J
e−𝜇bãJ

((
𝜙f (R̃) + (1 − 𝜙)𝜁

)
�∞ − �J

) + 2rBĀ�
(ãJ)

)

s21 = −IRf (R̃)
Ās(𝜆, 0)

ñ(0)

s22 = −𝜈 − 𝜆 − IRf
�(R̃)

(
Ās(0, 0) + 2

rB𝜙

rB + 𝜆
f (R)�∞Ā�

(0)

)

with:

bc(R̃ =
rF

𝜅

(
𝜙(1 − 𝜅)f (R̃) + (1 − 𝜙)

(
f (R̃) − 𝜅𝜁

))
�∞,

Ās(s, amin) = ∫
amax

amin

ñ(0)�(R̃, a)
2
e−(𝜇b+s)ada,

Ā
�
(amin) = ∫

amax

amin

ñ(0)
(
1 − e−(rB+𝜆)a

)
�(R̃, a)e−𝜇bada

(80)det(S(�)) = 0.

The EBT software for simulation of timeseries can be downloaded from 
https:// staff. fnwi. uva. nl/a. m. deroos/ EBT/.
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